NASA Technical Reports Server (NTRS)
Latham, T. S.; Rodgers, R. J.
1972-01-01
Analytical studies were continued to identify the design and performance characteristics of a small-scale model of a nuclear light bulb unit cell suitable for testing in a nuclear furnace reactor. Emphasis was placed on calculating performance characteristics based on detailed radiant heat transfer analyses, on designing the test assembly for ease of insertion, connection, and withdrawal at the reactor test cell, and on determining instrumentation and test effluent handling requirements. In addition, a review of candidate test reactors for future nuclear light bulb in-reactor tests was conducted.
NASA Technical Reports Server (NTRS)
Roman, W. C.; Jaminet, J. F.
1972-01-01
Experiments were conducted to develop test configurations and technology necessary to simulate the thermal environment and fuel region expected to exist in in-reactor tests of small models of nuclear light bulb configurations. Particular emphasis was directed at rf plasma tests of approximately full-scale models of an in-reactor cell suitable for tests in Los Alamos Scientific Laboratory's Nuclear Furnace. The in-reactor tests will involve vortex-stabilized fissioning uranium plasmas of approximately 200-kW power, 500-atm pressure and equivalent black-body radiating temperatures between 3220 and 3510 K.
Modeling Ultraviolet (UV) Light Emitting Diode (LED) Energy Propagation in Reactor Vessels
2014-03-27
21 Table 4: UV Mercury Lamps , UV LED Bulbs, and Visible LED Bulb Advantages and Disadvantages...over low pressure mercury lamps include smaller size, minimal start up time, and no hazardous material. Projections show UV LEDs will follow similar
Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop
NASA Technical Reports Server (NTRS)
Clark, John S. (Editor)
1991-01-01
Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.
PBF Reactor Building (PER620). In subpile room, camera faces southeast ...
PBF Reactor Building (PER-620). In sub-pile room, camera faces southeast and looks up toward bottom of reactor vessel. Upper assembly in center of view is in-pile tube as it connects to vessel. Lower lateral constraints and rotating control cable are in position. Other connections have been bolted together. Note light bulbs for scale. Photographer: John Capek. Date: August 21, 1970. INEEL negative no. 70-3494 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
NASA Technical Reports Server (NTRS)
Weinstein, H.; Lavan, Z.
1975-01-01
Analytical investigations of fluid dynamics problems of relevance to the gaseous core nuclear reactor program are presented. The vortex type flow which appears in the nuclear light bulb concept is analyzed along with the fluid flow in the fuel inlet region for the coaxial flow gaseous core nuclear reactor concept. The development of numerical methods for the solution of the Navier-Stokes equations for appropriate geometries is extended to the case of rotating flows and almost completes the gas core program requirements in this area. The investigations demonstrate that the conceptual design of the coaxial flow reactor needs further development.
NASA Technical Reports Server (NTRS)
Jaminet, J. F.
1972-01-01
A model and test equipment were developed and cold-flow-tested at greater than 500 atm in preparation for future high-pressure rf plasma experiments and in-reactor tests with small nuclear light bulb configurations. With minor exceptions, the model chamber is similar in design and dimensions to a proposed in-reactor geometry for tests with fissioning uranium plasmas in the nuclear furnace. The model and the equipment were designed for use with the UARL 1.2-MW rf induction heater in tests with rf plasmas at pressures up to 500 atm. A series of cold-flow tests of the model was then conducted at pressures up to about 510 atm. At 504 atm, the flow rates of argon and cooling water were 3.35 liter/sec (STP) and 26 gal/min, respectively. It was demonstrated that the model is capable of being operated for extended periods at the 500-atm pressure level and is, therefore, ready for use in initial high-pressure rf plasma experiments.
Exploratory study of several advanced nuclear-MHD power plant systems.
NASA Technical Reports Server (NTRS)
Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.
1973-01-01
In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.
How the Energy Independence and Security Act of 2007 Affects Light Bulbs
Inefficient light bulbs are being phased out under the New Light Bulb Law. It does not sweepingly ban incandescent bulbs, just those not energy efficient (with some exemptions). It also includes many provisions not pertaining to lighting.
Spectroscopic Analysis of Today's Compact Fluorescent Light Bulbs
NASA Astrophysics Data System (ADS)
Pluhar, Edward
2012-03-01
In today's consumer market, there are many different light bulbs that claim to produce `natural' light. In my research, I both quantitatively and qualitatively analyzed this claim. First, utilizing a spectroscope, I compared the spectra emitted by different brands and types of compact fluorescent light (CFL) bulbs to the spectra emitted by the Sun. Once the bulbs were quantitatively analyzed, I proceeded to qualitatively analyze them by exposing subjects to the different bulbs. The subjects were asked to rate the quality of color in different pictures illuminated by each type of CFL. From these tests, I was able to determine the ``best'' CFL bulbs, and conclude whether the health risks associated with CFL bulbs outweigh the cost savings, longevity of the bulbs, and/or quality of light benefits.
Analysis of ORNL site temperature and humidity data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, B.E.
1989-08-01
The Advanced Neutron Source (ANS) is planned as a new state-of-the-art facility for neutron research and is currently undergoing conceptual design at the Oak Ridge National Laboratory (ORNL). The current concept calls for a nuclear research reactor with an operating power near 350 MW and extensive experiment and user support facilities. Analyses have been undertaken to determine an acceptable design basis wet-bulb temperature range for the facility. Comparisons are drawn with the design wet-bulb temperature previously used for the High Flux Isotope Reactor (HFIR), which is located on an adjacent site a Oak Ridge. This report explains the importance ofmore » wet-bulb temperature to the reactor cooling system performance, and describes the analysis of available meteorological data, and presents the results and the recommendations for a wet-bulb temperature range for use as a part of the plant design basis conditions. 1 ref., 6 figs.« less
What Is the Real Efficiency of Bulbs?
ERIC Educational Resources Information Center
Polacek, Lubos
2012-01-01
Bulbs are considered to be very inefficient sources of light. Bulbs give light and heat. As we use them for a long time, especially in winter, a large part of the heat produced by bulbs lowers the power consumption of the heating system. In this paper the problem of the real efficiency of a bulb is solved when both the lighting and heating effects…
NASA Technical Reports Server (NTRS)
2004-01-01
The WEstinghouse Lighting Corporation's Eye Saver[TM] Easy Reading Light Bulb is the result of collaboration between Westinghouse, Marshall Research LLC, and NASA's Space Optics Manufacturing Technology Center at Marshall Space Flight Center. The light bulb contains a chrome top that directs light to areas where it is needed most. The bulb, which lasts 2,000 hours, provides 40 percent more surface illumination on work and reading surfaces, compared to a standard incandescent bulb. The lightly frosted finish reduces glare, which helps to reduce eyestrain. The bulb is particularly helpful for people with low vision and eye diseases such as macular degeneration.
Shedding Some Light on Fluorescent Bulbs.
ERIC Educational Resources Information Center
Guilbert, Nicholas R.
1996-01-01
Explores some of the principles behind the working of fluorescent bulbs using a specially prepared fluorescent bulb with the white inner fluorescent coating applied along only half its length. Discusses the spectrum, the bulb plasma, and light production. (JRH)
Oscillating lamp fixture for growing areas
NASA Technical Reports Server (NTRS)
Hiatt, Harvey
1994-01-01
The Oscillating Parabolic Mirror of 'Beamflicker' was designed by Dr. Richard W. Tinus, Supervisory Plant Physiologist, USDA Forest Service, Rocky Mountain Forest and Range Experimental Station, Flagstaff, Arizona. With his idea, an economic greenhouse lighting system was developed and patented, U.S. Patent #5095414. The Beamflicker uses a stationary 400 watt high pressure sodium arc bulb. The parabolic mirror rotates 180 degrees around the bulb to produce intermittent lighting every minute throughout the night. This one bulb can replace up to 88 incandescent bulbs in a 40 x 100 foot greenhouse over different sections of a growing area. The lighting intensity of the Beamflicker varies greatly depending on the distance from the bulb. The light intensity varies from 1.3 (mu)mol m(exp 2)/s feet from the bulb to 52.5 (mu)mol m(exp 2)/s directly beneath the bulb. A year long study involving light intensity and many species will be concluded in July 1994. These research results should be published within the next year.
Permanent transparent color-warming glazes for dimmable and non-dimmable LED bulbs
NASA Astrophysics Data System (ADS)
Spanard, Jan-Marie A.
2014-02-01
Illuminant metameric failure is frequently experienced when viewing material samples under LED generated light vs. traditional incandescent light. LED light temperatures can be improved with phosphor coatings, but long-wave red light is still generally absent in LED "warm-white" light, resulting in metameric failure of orange-to-red objects. Drawing on techniques developed for the architectural restoration of stained glass, we find that transparent, heat-resistant, permanent, pigmented coatings can be applied to any glass, aluminum or plastic surface of an LED bulb, including the phosphor plate, dome or envelope, to produce warmer visible light than in current warm-light LED bulbs. These glazes can be applied in combination with existing technologies to better tune the LED emitted light or they may be used alone. These pigmented coatings include, but are not limited to, those made by suspending inorganic materials in potassium silicates or durable transparent pigmented resins. The pigmented resin glazes may be produced in either a clear gloss vehicle or an iridescent, light diffusing transparent base. Further, a graduated density of the tinted glazes on dimmable bulbs allow the light to change color as wattage is diminished. The glazes may be applied in the manufacturing of the bulb or marketed to current bulb owners as an after-market product to better tune the thousands of LED light bulbs currently in use.
Newly patented process enables low-cost solution for increasing white light spectrum of LEDs
NASA Astrophysics Data System (ADS)
Spanard, Jan-Marie
2017-10-01
A newly patented process for completing the spectral light array emitted by LED bulbs provides a low-cost method for producing better human centered lighting (HCL). This process uses non-luminescent colorant filters, filling out the jagged LED spectral emission into a full, white light array. While LED bulbs have the distinct economic advantages of using less energy, producing less heat and lasting years longer than traditional incandescent bulbs, the persistent metameric failure of LED bulbs has resulted in slower, and sometimes reluctant, adoption of LED lighting by the residential, retail and architectural markets. Adding missing wavelengths to LED generated bulbs via colorant filters increases the aesthetic appeal of the light by decreasing current levels of metameric failure, reducing the `flatness', `harshness', and `dullness' of LED generated light reported by consumers. LED phosphor-converted light can be successfully tuned to "whiter" white light with selective color filtering using permanent, durable transparent pigments. These transparent pigments are selectively applied in combination with existing manufacturing technologies and utilized as a final color-tuning step in bulb design. The quantity of emitted light chosen for color filtering can be adjusted from 1% to 100% of emitted light, creating a custom balance of light quantity with light quality. This invention recognizes that "better light" is frequently chosen over "more light" in the consumer marketplace.
16 CFR 305.3 - Description of covered products.
Code of Federal Regulations, 2011 CFR
2011-01-01
... operation. Some models may require user intervention to initiate these different segments of the cycle after... inner reflective coating on the outer bulb to direct the light, an R, PAR, or similar bulb shapes... bulb to direct the light, an R, PAR, ER, BR, BPAR, or similar bulb shapes with E26 medium screw bases...
NASA Astrophysics Data System (ADS)
1988-01-01
Ultra Sales, Inc.'s fluorescent lighting fixture gets a boost in reflectivity through installation of Lightdriver, a thin tough thermoplastic film plated with aluminum, capable of reflecting 95 percent of visible light striking it. Lightdriver increases brightness without adding bulbs, and allows energy savings by removing some bulbs because the mirrorlike surface cuts light loss generally occasioned by conventional low reflectivity white painted surface above the bulbs in many fluorescent fixtures. Forty-five percent reduction in lighting electricity is attainable.
NASA Astrophysics Data System (ADS)
Rammohan, A.; Kumar, C. Ramesh
2017-11-01
Illumination of any light is measured using a different kind of calibrated equipment’s available in the market such as a goniometer, spectral radiometer, photometer, Lux meter and camera based systems which directly display the illumination of automotive headlights light distribution in the unit of lux, foot-candles, lumens/sq. ft. and Lambert etc., In this research, we dealt with evaluating the photo resistor or Light Dependent Resistor (LDR) and phototransistor whether it is useful for sensing light patterns of Automotive Halogen and Xenon bulbs. The experiments are conducted during night hours under complete dark space. We have used the headlamp setup available in TATA SUMO VICTA vehicle in the Indian market and conducted the experiments separately for Halogen and Xenon bulbs under low and high beam operations at various degrees and test points within ten meters of distance. Also, we have compared the light intensity of halogen and xenon bulbs to prove the highest light intensity between halogen and Xenon bulbs. After doing a rigorous test with these two sensors it is understood both are good to sensing beam pattern of automotive bulbs and even it is good if we use an array of sensors or a mixed combination of sensors for measuring illumination purposes under perfect calibrations.
The broken bulb can continue to release mercury vapor until it is cleaned up and removed. This cleanup guidance represents minimum recommended actions to reduce mercury exposure, and will be updated as more efficient practices are identified.
Energy-reduction concept for incandescent lamps
NASA Technical Reports Server (NTRS)
Vorhaben, K. H.
1981-01-01
Reusable infrared reflector maintains filament temperature and reduces power requirements. Fixed installed over light bulb directs energy formerly lost back to lamp filament. This energy aids electric current in heating filament, allowing lower-wattage bulb to produce same amount of light as higher-wattage bulb in ordinary fixture.
Compact fluorescent light (CFL) bulbs contain a few milligrams (mg) of elemental mercury. When a CFL breaks, some of the mercury is immediately released as elemental mercury vapor and the remainder is deposited on indoor surfaces with the bulb debris. In a controlled study design...
ERIC Educational Resources Information Center
Modern Schools, 1976
1976-01-01
A thumbnail sketch of some of the light bulbs manufactured for a purpose other than seeing. These "dark" lamps perform varied tasks including keeping food fresh, detecting and preventing disease, spurring plant growth, heating, and copying printed material. (Author/MLF)
Lim, Seong-Rin; Kang, Daniel; Ogunseitan, Oladele A; Schoenung, Julie M
2013-01-15
Artificial lighting systems are transitioning from incandescent to compact fluorescent lamp (CFL) and light-emitting diode (LED) bulbs in response to the U.S. Energy Independence and Security Act and the EU Ecodesign Directive, which leads to energy savings and reduced greenhouse gas emissions. Although CFLs and LEDs are more energy-efficient than incandescent bulbs, they require more metal-containing components. There is uncertainty about the potential environmental impacts of these components and whether special provisions must be made for their disposal at the end of useful life. Therefore, the objective of this study is to analyze the resource depletion and toxicity potentials from the metals in incandescent, CFL, and LED bulbs to complement the development of sustainable energy policy. We assessed the potentials by examining whether the lighting products are to be categorized as hazardous waste under existing U.S. federal and California state regulations and by applying life cycle impact-based and hazard-based assessment methods (note that "life cycle impact-based method" does not mean a general life cycle assessment (LCA) but rather the elements in LCA used to quantify toxicity potentials). We discovered that both CFL and LED bulbs are categorized as hazardous, due to excessive levels of lead (Pb) leachability (132 and 44 mg/L, respectively; regulatory limit: 5) and the high contents of copper (111,000 and 31,600 mg/kg, respectively; limit: 2500), lead (3860 mg/kg for the CFL bulb; limit: 1000), and zinc (34,500 mg/kg for the CFL bulb; limit: 5000), while the incandescent bulb is not hazardous (note that the results for CFL bulbs excluded mercury vapor not captured during sample preparation). The CFLs and LEDs have higher resource depletion and toxicity potentials than the incandescent bulb due primarily to their high aluminum, copper, gold, lead, silver, and zinc. Comparing the bulbs on an equivalent quantity basis with respect to the expected lifetimes of the bulbs, the CFLs and LEDs have 3-26 and 2-3 times higher potential impacts than the incandescent bulb, respectively. We conclude that in addition to enhancing energy efficiency, conservation and sustainability policies should focus on the development of technologies that reduce the content of hazardous and rare metals in lighting products without compromising their performance and useful lifespan.
Chua, Weiliang; Kong, Chee Hoe; Murphy, Diarmuid Paul
2015-05-01
How many orthopods does it take to change a light bulb? One - to refer to the medics for 'Darkness ?Cause'. Additionally, anaesthetists and surgeons often disagree on the estimated blood loss during surgery and the estimated procedure duration. We designed this study to compare the ability of orthopaedic surgeons and anaesthetists in: (a) estimating fluid volumes; (b) estimating procedure durations; and (c) changing light bulbs. Participants had to either be a specialist in anaesthesia or orthopaedic surgery, or a trainee in that specialty for at least two years. Three different fluid specimens were used for volume estimation (44 mL, 88 mL and 144 mL). Two videos of different lengths (140 seconds and 170 seconds), showing the suturing of a banana skin, were used for procedure duration estimation. To determine the ability at changing light bulbs, the participants had to match eight different light sockets to their respective bulbs. 30 male anaesthetists and trainees and 31 male orthopaedic surgeons and trainees participated in this study. Orthopaedic surgeons underestimated the three fluid volumes by 3.9% and anaesthetists overestimated by 5.1% (p = 0.925). Anaesthetists and orthopaedic surgeons overestimated the duration of the two procedures by 21.2% and 43.1%, respectively (p = 0.006). Anaesthetists had a faster mean time in changing light bulbs (70.1 seconds vs. 74.1 seconds, p = 0.319). In an experimental environment, male orthopaedic surgeons are as good as male anaesthetists in estimating fluid volumes (in commonly seen surgical specimens) and in changing light bulbs. Both groups are poor at estimating procedure durations.
Utilization of busted CFL in developing cheap and efficient segmented compact LED bulbs
NASA Astrophysics Data System (ADS)
Andres, N. S.; Ponce, R. T.
2018-01-01
Today’s generation will not survive a day without the help of lighting. In fact, someone’s productivity, particularly at night, depends on the presence of a good lighting and it seems that it is a daily necessity. Lighting takes a large part on the consumption of household electrical energy particularly in the Philippines. There are different type of lighting bulbs used at home can affect the overall lighting consumption. Nowadays, most commonly and widely used bulb in the household is the Compact Fluorescent Light (CFL). However, the main problem of CFL is the mercury they contain. In addition to this is the harmful effect of mercury such as Emission of UV Radiation. In response to the said problem, this project study gives solution to the problem of the society concerning environment, health and safety as well energy conservation, by developing a segmented compact light-emitting diode (SCLED) bulb from busted CFL that are efficient, economical, and does not contain toxic chemicals.
NASA Astrophysics Data System (ADS)
Rubinger, Rero Marques; da Silva, Edna Raimunda; Pinto, Daniel Zaroni; Rubinger, Carla Patrícia Lacerda; Oliveira, Adhimar Flávio; da Costa Bortoni, Edson
2015-01-01
We compared the photometric and radiometric quantities in the visible, ultraviolet, and infrared spectra of white light-emitting diodes (LEDs), incandescent light bulbs and a compact fluorescent lamp used for home illumination. The color-rendering index and efficiency-related quantities were also used as auxiliary tools in this comparison. LEDs have a better performance in all aspects except for the color-rendering index, which is better with an incandescent light bulb. Compact fluorescent lamps presented results that, to our knowledge, do not justify their substitution for the incandescent light bulb. The main contribution of this work is an approach based on fundamental quantities to evaluate LEDs and other light sources.
Comparative Study of Light Sources for Household
NASA Astrophysics Data System (ADS)
Pawlak, Andrzej; Zalesińska, Małgorzata
2017-03-01
The article describes test results that provided the ground to define and evaluate basic photometric, colorimetric and electric parameters of selected, widely available light sources, which are equivalent to a traditional incandescent 60-Watt light bulb. Overall, one halogen light bulb, three compact fluorescent lamps and eleven LED light sources were tested. In general, it was concluded that in most cases (branded products, in particular) the measured and calculated parameters differ from the values declared by manufacturers only to a small degree. LED sources prove to be the most beneficial substitute for traditional light bulbs, considering both their operational parameters and their price, which is comparable with the price of compact fluorescent lamps or, in some instances, even lower.
On the Intensity Profile of Electric Lamps and Light Bulbs
ERIC Educational Resources Information Center
Bacalla, Xavier; Salumbides, Edcel John
2013-01-01
We demonstrate that the time profile of the light intensity from domestic lighting sources exhibits simple yet interesting properties that foster lively student discussions. We monitor the light intensity of an industrial fluorescent lamp (also known as TL) and an incandescent bulb using a photodetector connected to an oscilloscope. The light…
NASA Astrophysics Data System (ADS)
Wong, Darren; Lee, Paul; Foong, S. K.
2017-11-01
In this paper, we examined teachers’ understanding of electrical concepts such as power, current and potential difference based on how these concepts were applied to understand the relative brightness seen in bulbs of different wattage under different connections—series or parallel. From the responses of teachers to a concept question, we identified common lines of reasoning and the associated conceptual difficulties. To support the explanation of the concept question, we set up relevant circuits and made measurements of the circuits. We discuss the temperature dependence of the resistance of the light bulb which although critical for in depth understanding of the relative brightness, was often omitted in the teacher responses. Lastly, we share insights and strategies to elicit and confront students' thinking and to help them resolve, extend and apply their thinking with regard to the related electrical concepts using various light bulb activities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... indexing the bulb base in the bulb holder. B. Diameter, width, depth, and surface finish of seal groove... interchangeability dimensions for indexing the bulb base in the bulb holder. B. Mating diameter, width, depth, and...
Code of Federal Regulations, 2014 CFR
2014-10-01
... indexing the bulb base in the bulb holder. B. Diameter, width, depth, and surface finish of seal groove... interchangeability dimensions for indexing the bulb base in the bulb holder. B. Mating diameter, width, depth, and...
Compact Fluorescent Light Bulbs (CFLs)
CFLs can help you save money, use less energy, reduce light bulb changes, and lower greenhouse gas emissions, which lead to climate change. Learn about proper cleanup, recycling and disposal, labels, mercury, and UV radiation.
Acrodynia: exposure to mercury from fluorescent light bulbs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tunnessen, W.W. Jr.; McMahon, K.J.; Baser, M.
1987-05-01
Medical attention was sought for a 23-month-old toddler because of anorexia, weight loss, irritability, profuse sweating, peeling and redness of his fingers and toes, and a miliarial rash. The diagnosis was mercury poisoning, and an investigation of his environment disclosed that he had been exposed to mercury from broken fluorescent light bulbs. Acrodynia resulting from fluorescent bulbs has not been previously reported.
Electrical Energy Harvesting from Thermal Energy with Converged Infrared Light
NASA Astrophysics Data System (ADS)
Goh, S. Y.; Kok, S. L.
2017-06-01
Photovoltaics (PV) cell is a common energy harvester that had been used to harvest solar energy and convert it into electrical energy. However, the vast energy from the spectrum of sunlight is not fully harvested. Therefore, thermoelectric (TE) module that harvest electrical energy from heat is being proposed in this paper. Generally, the part of the sunlight spectrum that induce heat is in the spectrum band of infrared (IR). For the experimental set-up in this paper, infrared (IR) light bulb was being used to simulate the IR spectrum band of the sunlight. In order to maximize the heat energy collection, a convex lens was being used to converge the IR light and therefore focused the heat on an aluminium sheet and heat sink which was placed on top of the hot side of the TE module. The distance between convex lens and IR light bulb is varying in between 10cm and 55cm and the reading was taken at an interval of 5cm. Firstly, the temperature of the IR light and converged IR light were recorded and plotted in graph. The graph showed that the temperature of the converged IR light bulb is higher than the IR light bulb. Lastly, the voltage and power output of the TE module with different heat source was compared. The output voltage and power of the TE module increased inverse proportional to the distance between IR light bulb and TE module.
Bobadilla-Mendez, M F; Rojas-Granados, C P; Andrade, E F; Retes, P L; Ferreira, L G; Alvarenga, R R; Rodriguez-Gil, J E; Fassani, E J; Zangeronimo, M G
2016-05-01
Artificial lights are essential for controlling the reproductive tract development of birds during puberty and therefore influence reproductive quality. The aim of this study was to evaluate the effect of different light sources on reproductive anatomic and physiological characteristics of female Japanese quail (Coturnix coturnix japonica). A total of 270 birds from one day of age were housed in a masonry shed divided into six rooms with light isolation. Each room was equipped with a different type of light bulb and contained seven cages with five birds in each. The light bulbs tested were: incandescent; compact fluorescent; and light-emitting diode (LED) in the colors white, blue, red and green. The experimental design was completely randomized with six treatments and seven replications of individual birds each. The anatomic and physiological condition of the birds was evaluated at four, eight and 12 weeks of age. The white LED bulb advanced (P<0.05) the sexual maturity by one week, resulted (P<0.05) in higher live weights and greater weight and relative percentage of ovarian stroma, oviduct and ovarian tissue at eight weeks of age. Higher plasma concentrations of estradiol and lipids were also observed (P<0.05) at eight weeks under the white LED bulb. At 12 weeks of age, the magnum and isthmus folding characteristics were better (P<0.05) with the red LED bulb. In conclusion, the photostimulation with the white LED bulb was more efficient at activating the reproductive cycle, hastening the onset of sexual maturity and increasing the development of reproductive organs after puberty. Copyright © 2016 Elsevier B.V. All rights reserved.
Dimmable Electronic Ballast for a Gas Discharge Lamp
NASA Technical Reports Server (NTRS)
Raducanu, Marius; Hennings, Brian D.
2013-01-01
Titanium dioxide (TiO2) is the most efficient photocatalyst for organic oxidative degradation. TiO2 is effective not only in aqueous solution, but also in nonaqueous solvents and in the gas phase. It is photostable, biologically and chemically inert, and non-toxic. Low-energy UV light (approximately 375 nm, UV-A) can be used to photoactivate TiO2. TiO2 photocatalysis has been used to mineralize most types of organic compounds. Also, TiO2 photocatalysis has been effectively used in sterilization. This effectiveness has been demonstrated by its aggressive destruction of microorganisms, and aggressive oxidation effects of toxins. It also has been used for the oxidation of carbon monoxide to carbon dioxide, and ammonia to nitrogen. Despite having many attractive features, advanced photocatalytic oxidation processes have not been effectively used for air cleaning. One of the limitations of the traditional photocatalytic systems is the ballast that powers (lights) the bulbs. Almost all commercial off-the-shelf (COTS) ballasts are not dimmable and do not contain safety features. COTS ballasts light the UV lamp as bright as the bulb can be lit, and this results in shorter bulb lifetime and maximal power consumption. COTS magnetic ballasts are bulky, heavy, and inefficient. Several iterations of dimmable electronic ballasts have been developed. Some manifestations have safety features such as broken-bulb or over-temperature warnings, replace-bulb alert, logbulb operational hours, etc. Several electronic ballast boards capable of independently lighting and controlling (dimming) four fluorescent (UV light) bulbs were designed, fabricated, and tested. Because of the variation in the market bulb parameters, the ballast boards were designed with a very broad range output. The ballast boards can measure and control the current (power) for each channel.
ERIC Educational Resources Information Center
Demski, Jennifer
2008-01-01
A student committee whose main duty is changing light bulbs may sound like the punch line to a bad joke, but as the students and faculty at Montgomery County Public Schools (MCPS) in Rockville, MD, know, changing a light bulb is no laughing matter. As part of the district's green initiative, all standard incandescent and fluorescent light bulbs…
49 CFR Appendix A to Part 564 - Information to be Submitted for Replaceable Light Sources
Code of Federal Regulations, 2013 CFR
2013-10-01
..., and any other interchangeability dimensions for indexing the bulb base in the bulb holder. B. Diameter..., diameters, key/keyway sizes, and any other interchangeability dimensions for indexing the bulb base in the...
49 CFR Appendix A to Part 564 - Information to be Submitted for Replaceable Light Sources
Code of Federal Regulations, 2014 CFR
2014-10-01
..., and any other interchangeability dimensions for indexing the bulb base in the bulb holder. B. Diameter..., diameters, key/keyway sizes, and any other interchangeability dimensions for indexing the bulb base in the...
49 CFR Appendix A to Part 564 - Information To Be Submitted for Replaceable Light Sources
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and any other interchangeability dimensions for indexing the bulb base in the bulb holder. B. Diameter..., diameters, key/keyway sizes, and any other interchangeability dimensions for indexing the bulb base in the...
49 CFR Appendix A to Part 564 - Information To Be Submitted for Replaceable Light Sources
Code of Federal Regulations, 2010 CFR
2010-10-01
..., and any other interchangeability dimensions for indexing the bulb base in the bulb holder. B. Diameter..., diameters, key/keyway sizes, and any other interchangeability dimensions for indexing the bulb base in the...
49 CFR Appendix A to Part 564 - Information To Be Submitted for Replaceable Light Sources
Code of Federal Regulations, 2012 CFR
2012-10-01
..., and any other interchangeability dimensions for indexing the bulb base in the bulb holder. B. Diameter..., diameters, key/keyway sizes, and any other interchangeability dimensions for indexing the bulb base in the...
The "Green Lab": Power Consumption by Commercial Light Bulbs
ERIC Educational Resources Information Center
Einsporn, James A.; Zhou, Andrew F.
2011-01-01
Going "green" is a slogan that is very contemporary, both with industry and in the political arena. Choosing more energy-efficient devices is one way homeowners can "go green." A simple method is to change home lighting from hot incandescent bulbs to compact fluorescent lights (CFLs). But do they really save energy? How do their illuminations…
Distinguished Lecture Series - Balancing the Energy & Climate Budget
None
2017-12-09
The average American uses 11400 Watts of power continuously. This is the equivalent of burning 114 x100 Watt light bulbs, all the time. The average person globally uses 2255 Watts of power, or a little less than 23 x100 Watt light bulbs.
16 CFR 1209.5 - Test procedures for corrosiveness.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., examine the metal coupons over a 40-W appliance light bulb for perforation. (c) Noncorrosiveness... 40-W appliance light bulb. ... maintaining 48.9±1.7 °C (120±3 °F) and 97 ±1.5 percent relative humidity. (2) Crystallizing dishes. Six glass...
16 CFR 1209.5 - Test procedures for corrosiveness.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., examine the metal coupons over a 40-W appliance light bulb for perforation. (c) Noncorrosiveness... 40-W appliance light bulb. ... maintaining 48.9±1.7 °C (120±3 °F) and 97 ±1.5 percent relative humidity. (2) Crystallizing dishes. Six glass...
16 CFR § 1209.5 - Test procedures for corrosiveness.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., examine the metal coupons over a 40-W appliance light bulb for perforation. (c) Noncorrosiveness... 40-W appliance light bulb. ... maintaining 48.9±1.7 °C (120±3 °F) and 97 ±1.5 percent relative humidity. (2) Crystallizing dishes. Six glass...
A light bulb moment: an unusual cause of foreign body aspiration in children.
Lau, C T; Lan, Lawrence; Wong, Kenneth; Tam, Paul Kwong Hang
2015-08-26
A 15-month-old girl developed persistent cough with no associated history of foreign body aspiration. Chest X-ray showed a U-shaped radiopaque foreign body, which was initially thought to be a hairpin, in the right main bronchus. Rigid bronchoscopy was performed and the foreign body turned out to be a light-emitting diode (LED) bulb. In this article, we report our experience of LED bulb aspiration in children, with the view to raise the awareness of clinicians about this potentially life-threatening emergency. 2015 BMJ Publishing Group Ltd.
Huth, Jesse C; Archer, Gregory S
2015-09-01
The poultry industry is currently undergoing a shift to alternative lighting sources as incandescent lights become less available. While LED and CFL bulbs both have associated increased energy savings, they may affect the bird's growth and well-being differently as they output different light spectrums. To determine how different LED bulbs and a CFL bulb affected broiler performance, behavior, stress, and overall well-being, we conducted an experiment using Cobb broiler chickens (N=360). A NextGen LED bulb (NextGen), a Once Innovations LED bulb (Once), and a dimmable CFL (CFL) were used, all of which had different spectral outputs. Growth and feed conversion, several stress measures, fear tests, organ characteristics, and animal welfare assessment parameters were collected to determine how each light type affected animal well-being. LED treatments had shorter (P<0.05) latency to right during tonic immobility testing when compared to the CFL treatment; however, no other differences (P>0.05) were seen in the other fear tests. The Once treatment resulted in lower composite physical asymmetry, heterophil/lymphocyte ratio, and basal plasma corticosterone concentrations compared to the other treatments (P<0.05). Differences were observed in some organ measures; notably in the eye dimensions of the Once treatment. The Once treatment also had lower (P<0.05) plumage, hock, and footpad scores when compared to CFL treatment, while the Nextgen treatment had lower (P<0.05) plumage and hock scores than the CFL treatment but no difference between the two was seen in foot pad scores. Weight at the end of the growout was not affected by bulb type, however, both LED treatments had increased feed conversion (P<0.05). These results indicate that LEDs can result in better well-being and feed conversion when compared to CFLs. It is also notable that the LEDs did not have the same effects and this is likely due to the spectrum of light each creates. LEDs were shown to improve production and well-being of broiler chickens compared to CFLs. © 2015 Poultry Science Association Inc.
A Fan-tastic Quantitative Exploration of Ohm's Law
NASA Astrophysics Data System (ADS)
Mitchell, Brandon; Ekey, Robert; McCullough, Roy; Reitz, William
2018-02-01
Teaching simple circuits and Ohm's law to students in the introductory classroom has been extensively investigated through the common practice of using incandescent light bulbs to help students develop a conceptual foundation before moving on to quantitative analysis. However, the bulb filaments' resistance has a large temperature dependence, which makes them less suitable as a tool for quantitative analysis. Some instructors show that light bulbs do not obey Ohm's law either outright or through inquiry-based laboratory experiments. Others avoid the subject altogether by using bulbs strictly for qualitative purposes and then later switching to resistors for a numerical analysis, or by changing the operating conditions of the bulb so that it is "barely" glowing. It seems incongruous to develop a conceptual basis for the behavior of simple circuits using bulbs only to later reveal that they do not follow Ohm's law. Recently, small computer fans were proposed as a suitable replacement of bulbs for qualitative analysis of simple circuits where the current is related to the rotational speed of the fans. In this contribution, we demonstrate that fans can also be used for quantitative measurements and provide suggestions for successful classroom implementation.
Heat Loss Experiments: Teach Energy Savings with Cardboard "House"
ERIC Educational Resources Information Center
Roman, Harry T.
2011-01-01
Using two cardboard boxes, a light bulb socket, light bulbs of varying wattage, a thermometer, and some insulation, students can learn some interesting lessons about how heat loss occurs in homes. This article describes practical experiments that work well on units related to energy, sustainable energy, renewables, engineering, and construction.…
USDA-ARS?s Scientific Manuscript database
Light-emitting diode (LED) lighting is being used in the poultry industry to reduce energy usage in broiler production facilities. However, limited data are available comparing efficacy of different spectral distribution of LED bulbs on blood physiological variables of broilers grown to heavy weight...
Energy Efficiency Comparison between Compact Fluorescent Lamp and Common Light Bulb
ERIC Educational Resources Information Center
Tanushevsk, Atanas; Rendevski, Stojan
2016-01-01
For acquainting the students of applied physics and students of teaching physics with the concept of energy efficiency, electrical and spectral characteristics of two widely used lamps--integrated fluorescence lamp and common light bulb have been investigated. Characterization of the lamps has been done by measuring the spectral irradiance and…
ERIC Educational Resources Information Center
Adney, Kenneth J.
1991-01-01
An activity in which students compare the sun's brightness with that of a light bulb of known luminosity (in watts) to determine the luminosity of the sun is presented. As an extension, the luminosity value that the student obtains for the sun can also be used to estimate the sun's surface temperature. (KR)
NASA Technical Reports Server (NTRS)
Latham, Tom
1991-01-01
The nuclear light bulb engine is a closed cycle concept. The nuclear light bulb concept provides containment by keeping the nuclear fuel fluid mechanically suspended in a cylindrical geometry. Thermal heat passes through an internally cooled, fused-silica, transparent wall and heats hydrogen propellant. The seeded hydrogen propellant absorbs radiant energy and is expanded through a nozzle. Internal moderation was used in the configuration which resulted in a reduced critical density requirement. This result was supported by criticality experiments. A reference engine was designed that had seven cells and was sized to fit in what was then predicted to be the shuttle bay mass and volume limitations. There were studies done of nozzle throat cooling schemes to remove the radiant heat. Elements of the nuclear light bulb program included closed loop critical assembly tests done at Los Alamos with UF6 confined by argon buffer gas. It was shown that the fuel region could be seeded with constituents that would block UV radiation from the uranium plasma. A combination of calculations and experiments showed that internal moderation produced a critical mass reduction. Other aspects of the research are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, H.E.; Lin, J.W. III; Macha, E.S.
1984-12-04
A borehole survey instrument is provided having a meniscus type floating compass member with indicia thereon for indicating azimuth and inclination. A light source is disposed below the indicia for illuminating the indicia upward through the liquid through which the meniscus type floating compass member floats. A lens system is provided for focusing the image of the illuminated compass member upon a film disposed below the compass member. This arrangement permits the centering post for the compass member to be of minimum diameter consistent with rigidity requirements and permits a high angle compass member to indicate angles of inclination approachingmore » ninety degrees. A multiple light bulb light source is utilized and each light bulb is mounted in a manner which permits a single light bulb to illuminate the entire compass member. A hand-held programming and diagnostic unit is provided which may be momentarily electrically mated with the borehole survey tool to input a programmed timed delay and diagnostically test both the condition of the light bulbs utilized as the illumination source and the state of the batteries within the instrument. This hand-held programmable unit eliminates all the mechanical programming switches and permits the instrument to be completely sealed from the pressure, fluids and contaminants normally found in a well bore.« less
The EPA Mobile Reaction Chamber (MRC) is a 24-foot trailer containing a 14.3-m3 Teflon lined photochemical chamber used to generate simulated urban atmospheres. Photochemistry in the MRC is catalyzed by 120 fluorescent bulbs evenly mixed with black light bulbs and UV bulbs (300 &...
High brightness microwave lamp
Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.
2003-09-09
An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.
How "Bright" is it to Use CFLs? A Look at the Controversy
ERIC Educational Resources Information Center
Miller, Roxanne Greitz
2008-01-01
Commonly referred to as CFLs, compact fluorescent light bulbs are rapidly replacing traditional incandescent light bulbs for residential use. However, controversy and even comic parody have arisen surrounding CFL use. CFLs contain small amounts of mercury, and several public forums and news agencies have been announcing that the breakage of a CFL…
ERIC Educational Resources Information Center
Wong, Darren; Lee, Paul; Foong, See Kit
2017-01-01
In this paper, we examined teachers' understanding of electrical concepts such as power, current and potential difference based on how these concepts were applied to understand the relative brightness seen in bulbs of different wattage under different connections--series or parallel. From the responses of teachers to a concept question, we…
USDA-ARS?s Scientific Manuscript database
Limited data are available for comparing light-emitting diode (LED) bulbs that are currently available in commercial broiler production facilities. We evaluated the effects of color temperatures (Kelvin) of LED bulbs on growth performance, carcass characteristics, and ocular welfare indices of broil...
Investigating the LED's dark side. Novel LED Model Offers New Insights
Chow, Weng Wah
2014-07-01
A revolution in lighting is well on its way. Rewind the clock a year or so and the prices of LED bulbs made many shoppers wince. But now it is possible to get a high-quality 60 W equivalent for well under $10, and that’s allowing sales of LED bulbs incorporating chips from the likes of Cree and Philips Lumileds to take off. Although these solid-state bulbs are much more pricey than incandescents, which have largely disappeared from shelves due to legislation, they more than make up for that additional up-front cost with a substantial trimming of the electricity bill. Itmore » is a more tricky decision, however, whether it makes more sense to buy an LED bulb or a cheaper compact fluorescent (CFL). In terms of durability, adaptability and environmental impact, the solid-state bulb is the clear winner. But both types of light are similar in the efficiency stakes, and thus the running costs.« less
NASA Technical Reports Server (NTRS)
1978-01-01
The Bulb-Miser was developed during NASA's Apollo program to protect the Saturn launch vehicle from electrical current surge. It is now being produced for the commercial market by Bulb-Miser, Inc., Houston, Texas. Technically known as a "temperature compensating thermistor," the Bulb-Miser is a simple, inexpensive device which looks like a washer about the size of a quarter. It is slipped between bulb and socket and can be used with any incandescent bulb that screws into a standard socket. In addition to delaying burnout, the Bulb-Miser also offers some reduction of electrical energy. But the economy of the device goes beyond energy use or bulb cost; to big users of bulbs, it makes possible substantially lower maintenance labor costs. One field test involving an apartment complex showed that it took two men 30 man hours monthly to replace light bulbs; after Bulb-Miser installation only nine man hours a month were needed. Bulb-Misers are used not only in private homes but also by hospitals, schools, hotels and motels, restaurants, banks and firms providing contract maintenance for large outdoor electric signs. The broadest use is in industrial facilities; the list of big companies which have purchased the Bulb-Miser reads like a Who's Who of American industry.
The light bulb, cystoscopy, and Thomas Alva Edison.
Moran, Michael E
2010-09-01
Thomas Alva Edison was an icon of American achievement who literally invented the 20th century. Although best known as the inventor of the electric light bulb, the phonograph, and motion pictures, he also left a lasting legacy via peripheral developmental applications, such as endoscopes. A review of published urologic writings about incandescent cystoscopes was cross-referenced to writings about or from Edison. Important events that allowed transference of technology from the Edison laboratory to clinical practice were emphasized. Edison was born in 1847 while Lincoln was serving in Congress; he died in 1931 when Hoover struggled with the Great Depression. Edison's life spanned the formative period of America that Henry Adams called the "coming of age." Edison received a Sprengel vacuum device in late 1879, and as usual, he was able to tweak the machine to better performance. For 5 days in October, 16 to 21, he improved the vacuum from 1/100,000 to 1/1,000,000 atm, and his first incandescent bulb burned softly. On December 21, 1879, he leaked the story to N.Y. Herald journalist Marshall Fox, and the world was notified of the light bulb. Special Christmas light visits started in Menlo Park just 4 days later. Edison patented the screw cap for easy changes, and the first bulbs sold for 40 cents (cost $1.40). 100,000 bulbs sold in 1882, 4 million by 1892, and 45 million in 1903. Immediately, competitors and specialty manufacturers entered the market. Dr. Henry Koch and Charles Preston in Rochester, N.Y., developed a smaller, low amperage bulb that could be fitted to medical devices. No discussion of electricity and modern applications would be complete without some discussion of Thomas Alva Edison and his sentinel contributions. The first church, post office, and ship were illuminated in 1892. The first hotel, theater, and electric sign were in 1893. The rapidity of dispersal and secondary applications of Edison's inventions is typified by the rise of cystoscopes. Nitze used a modified Edison bulb in his second and third generation scopes by 1887-1888 within 8 years of discovery.
Lamp bulb with integral reflector
Levin, Izrail; Shanks, Bruce; Sumner, Thomas L.
2001-01-01
An improved electrodeless discharge lamp bulb includes an integral ceramic reflector as a portion of the bulb envelope. The bulb envelope further includes two pieces, a reflector portion or segment is cast quartz ceramic and a light transmissive portion is a clear fused silica. In one embodiment, the cast quartz ceramic segment includes heat sink fins or stubs providing an increased outside surface area to dissipate internal heat. In another embodiment, the quartz ceramic segment includes an outside surface fused to eliminate gas permeation by polishing.
LEDs Illuminate Bulbs for Better Sleep, Wake Cycles
NASA Technical Reports Server (NTRS)
2015-01-01
Life on the International Space Station (ISS) wreaks havoc on an astronaut’s biological rhythms, and one way NASA mitigates the problem is through the use of LED lighting to alternately stimulate energy and focus and induce relaxation. Satellite Beach, Florida-based Lighting Science partnered with Kennedy Space Center to commercialize an LED system designed for the ISS, resulting in its DefinityDigital product line of light bulbs now used in numerous homes, hotel chains, and resorts.
NASA Technical Reports Server (NTRS)
Kendall, J. S.; Stoeffler, R. C.
1972-01-01
Investigations of various phases of gaseous nuclear rocket technology have been conducted. The principal research efforts have recently been directed toward the closed-cycle, vortex-stabilized nuclear light bulb engine and toward a small-scale fissioning uranium plasma experiment that could be conducted in the Los Alamos Scientific Laboratory's Nuclear Furnace. The engine concept is based on the transfer of energy by thermal radiation from gaseous fissioning uranium, through a transparent wall, to hydrogen propellant. The reference engine configuration is comprised of seven unit cavities, each having its own fuel transparent wall and propellant duct. The basic design of the engine is described. Subsequent studies performed to supplement and investigate the basic design are reported. Summaries of other nuclear light bulb research programs are included.
2012-08-27
The first of a series of coronal mass ejections (CMEs) over three days (Aug. 20-22), this bulbous CME certainly resembles a light bulb. It has the thin outer edge and a bright, glowing core at its center. CMEs are often bulbous, but it has been years since we have seen one with the elements (pun intended) of a light bulb. The frames were taken by SOHO's LASCO C3 instrument. Credit: NASA/GSFC/SOHO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
In a World of Exploding Possibilities in Distance Learning, Don't Forget about the Light Bulb
ERIC Educational Resources Information Center
Bosch, Andrea; Hartenberger Toby, Lisa; Alhamzy, Abdul Rahman
2015-01-01
This article looks closely at decisions about technology choices and suggests that many are driven by markets and perceptions, and not the problems that the technology might solve. The example of market manipulation related to the commercial light bulb in the early 20th century is used to demonstrate the powerful influence of global markets to…
Electronic device simulates respiration rate and depth
NASA Technical Reports Server (NTRS)
Thomas, J. A.
1964-01-01
An oscillator circuit and a thermistor, in close proximity to a light bulb, periodically alter the heat output of the bulb by varying the voltage across its filament. Use of this simulator permits checkout tests on pneumographs.
Heat transfer assembly for a fluorescent lamp and fixture
Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.
1992-01-01
In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.
Automated Continuous Commissioning of Commercial Buildings
2011-09-01
matched pair of supply and return chilled water temperature sensors, a pyranometer , and aspirated wet and dry bulb temperature sensors for the weather...temp X Aspirated weather station is required. Outside air wet bulb X Pyranometer X Wind speed & direction X Main power meter X Lighting load power X...Aspirated weather station is required. Outside air wet bulb X Pyranometer X Provides measurements on global horizontal solar radiation, beam radiation and
ERIC Educational Resources Information Center
Koubek, Edward
1985-01-01
Outlines a demonstration involving weak acids and bases in aqueous solutions. A standard conductivity demonstration with a solution of acetic acid yields a barely glowing light bulb; a similar result occurs with ammonia solution. However, the bulb glows brightly when the solutions are mixed. (DH)
Training for Retrieval of Knowledge under Stress through Algorithmic Decomposition
1986-10-01
Light Bulb and Dyslexia problems used by Lichtenstein & MacGregor (1985). The problems are presented in Appendix D. All aspects of the problems were...this bulb as defective. What is the orobabilitv that this bulb is really defective? The Dyslaxia Problem Dyslexia iu a disorder characterized by an...Department of the Army * Calspan Corporation Technical review by Steve Kronheim and will be available only through DTIC or other reference service& such as
Heat transfer assembly for a fluorescent lamp and fixture
Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.
1992-12-29
In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.
Inexpensive infrared source improvised from flashlight
NASA Technical Reports Server (NTRS)
1966-01-01
Inexpensive hand-held source of infrared energy is provided by a flashlight bulb coated with a paint which filters out the visible light emitted by the bulb and transmits only infrared radiation. This device can be used for checking infrared sensors and for experimental purposes.
Launching Light: Beyond the Bulb for the United Nations' International Year of Light 2015
NASA Astrophysics Data System (ADS)
Arcand, K. K.; Watzke, M.
2015-09-01
In astronomy, light is the language used to understand the Universe. From radio waves to gamma rays, light in all its forms delivers information that helps astronomers learn about the Universe. When the United Nations declared 2015 to be the International Year of Light and Light-based Technologies (IYL2015), it presented an opportunity to share the role that light plays in astronomy and beyond. The IYL2015 also offered a chance to build on experiences and sustain networks from the International Year of Astronomy in 2009. Light: Beyond the Bulb is an IYL2015 project that melds both of these goals. The project takes the form of an exhibit that showcases what light can do, from here on Earth and across the vastness of space, hosted by volunteer networks in public spaces for informal science learning.
Olanrewaju, H A; Purswell, J L; Collier, S D; Branton, S L
2015-08-01
Light-emitting diode (LED) lighting is being used in the poultry industry to reduce energy usage in broiler production facilities. However, limited data are available comparing efficacy of different spectral distribution of LED bulbs on blood physiological variables of broilers grown to heavy weights (>3 kg). The present study evaluated the effects of color temperature (Kelvin) of LED bulbs on blood physiological variables of heavy broilers in 2 trials with 4 replicates/trial. The study was a randomized complete block design. Four light treatments consisted of 3 LED light bulbs [2,700 K, (Warm-LED); 5,000 K, (Cool-LED-#1); 5,000 K, (Cool-LED-#2)] and incandescent light (ICD, standard) from 1 to 56 d age. A total of 960 1-day-old Ross × Ross 708 chicks (30 males/room 30 females/room) were equally and randomly distributed among 16 environmentally controlled rooms at 50% RH. Each of the 4 treatments was represented by 4 rooms. Feed and water were provided ad libitum. All treatment groups were provided the same diet. Venous blood samples were collected on d 21, 28, 42, and 56 for immediate analysis of selected physiological variables and plasma collection. In comparison with ICD, Cool-LED-#1 had greater (P < 0.05) effects on pH, partial pressure of CO₂(pCO₂), partial pressure of O₂(pO₂), saturated O₂(sO₂), and K⁺. However, all these acid-base changes remained within the normal venous acid-base homeostasis and physiological ranges. In addition, no effect of treatments was observed on HCO(3)(-), hematocrit (Hct), hemoglobin (Hb), Na⁺, Ca²⁺, Cl⁻, mean corpuscular hemoglobin concentration (McHc), osmolality, and anion gap. Moreover, blood glucose concentrations were not affected by treatments. This study shows that the 3 LED light bulbs evaluated in this study may be suitable for replacement of ICD light sources in commercial poultry facilities to reduce energy cost and optimize production efficiency without inducing physiological stress on broilers grown to heavy weights. © 2015 Poultry Science Association Inc.
A Fan-tastic Alternative to Bulbs: Learning Circuits with Fans
NASA Astrophysics Data System (ADS)
Ekey, Robert; Edwards, Andrea; McCullough, Roy; Reitz, William; Mitchell, Brandon
2017-01-01
The incandescent bulb has been a useful tool for teaching basic electrical circuits, as brightness is related to the current or power flowing through a bulb. This has led to the development of qualitative pedagogical treatments for examining resistive combinations in simple circuits using bulbs and batteries, which were first introduced by James Evans and thoroughly expanded upon by McDermott and others. This paper argues that replacing bulbs with small computer fans leads to similar, if not greater, insight of experimental results that can be qualitatively observed using a variety of senses. The magnitude of current through a fan is related to the frequency of the rotating fan blades, which can be seen, heard, and felt by the students. Experiments using incandescent bulbs only utilize vision, which is not ideal as the human eyes' perception of brightness is skewed because the response to light intensity is logarithmic rather than linear.
ERIC Educational Resources Information Center
Baba, Keith
1995-01-01
Explains how a school's use of compact fluorescents can reduce operating costs and maintain performance. Indicates that energy cost savings can repay the initial costs of buying incandescent bulbs in as short as 12 months with continuing savings thereafter. Tips for avoiding costly mistakes in lighting retrofits are highlighted. (GR)
LED's in Physics Demos: A Handful of Examples.
ERIC Educational Resources Information Center
Lottis, Dan; Jaeger, Herbert
1996-01-01
Describes the use of light-emitting diodes (LED) instead of incandescent bulbs in experiments that generally use battery and bulbs to enable students to explore and understand fundamental electrical phenomena. Presents the following examples: Faraday's Law demonstration, conductors and insulators, and rectifying action of a diode. (JRH)
The internal resistance of supercapacitors
NASA Astrophysics Data System (ADS)
Costa, G. G. G.; Pietronero, R. C.; Catunda, T.
2012-07-01
In this paper we study the transient behaviour of RC circuits with supercapacitors, varying R between 1 and 100 Ω. We demonstrate that supercapacitors behave as ideal capacitors in series with an internal resistance (r ~ 8 Ω for C = 0.2 F, 5.5 V). This result is important to optimize the demonstration of RC circuits using a supercapacitor in series with a light bulb, because the r value is comparable with the effective resistance of the bulb. This means that the bulb brightness is significantly decreased by r.
Energy Saving in Electric Lighting for the United States Army.
1979-10-05
these reasons. Avoid devices such as power saving buttons which are to be placed in the sockets of incandescent bulbs. They are merely half-wave...using the button or a long-life bulb. Another device to avoid is the pulse or transient suppressor. This device, essentially a voltage clipper...arranged In a geo- metric pattern. It is used to shield a lamp from Lumen: A unit of light output from a lamp. view at certain angles to avoid glare from
A Fan-Tastic Quantitative Exploration of Ohm's Law
ERIC Educational Resources Information Center
Mitchell, Brandon; Ekey, Robert; McCullough, Roy; Reitz, William
2018-01-01
Teaching simple circuits and Ohm's law to students in the introductory classroom has been extensively investigated through the common practice of using incandescent light bulbs to help students develop a conceptual foundation before moving on to quantitative analysis. However, the bulb filaments' resistance has a large temperature dependence,…
76 FR 79063 - Appliance Labeling Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-21
... bulbs (75 FR 41696 (July 19, 2010)), and (2) television labels (76 FR 1038 (Jan. 6, 2011)). The..., 2011, became effective on May 10, 2011, while the earlier light bulb amendments will not become..., instruction 10 and the amendments to Appendix L to Part 305 is removed. Donald S. Clark, Secretary. [FR Doc...
Investigation of a light fixture fire
Jurney, James D.; Cournoyer, Michael E.; Trujillo, Stanley; ...
2016-04-16
Metal-halide lamps produce light by discharging an electric arc through a gaseous mixture of vaporized mercury and metal halides. Metal-halide lamps for use in spaces with lower mounting heights can produce excessive visual glare in the normal, higher field-of-view unless they are equipped with prismatic lenses. Should the bulb fail, high internal operating pressure of the arc tube can launch fragments of arc tube at high velocity in all directions, striking the outer bulb of the lamp with enough force to cause the outer bulb to break. This article reports an investigation of a light fixture fire and reviews amore » case study of a metal-halide lamp fire. We reported on causal analysis of the metal-halide lamp fire uncovered contributing factors that created the environment in which the incident occurred. Latent organizational conditions that created error-likely situations or weakened defenses were identified and controlled. Lastly, effective improvements that reduce the probability or consequence of similar metal-halide lamp fire incidents were implemented.« less
Investigation of a light fixture fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurney, James D.; Cournoyer, Michael E.; Trujillo, Stanley
Metal-halide lamps produce light by discharging an electric arc through a gaseous mixture of vaporized mercury and metal halides. Metal-halide lamps for use in spaces with lower mounting heights can produce excessive visual glare in the normal, higher field-of-view unless they are equipped with prismatic lenses. Should the bulb fail, high internal operating pressure of the arc tube can launch fragments of arc tube at high velocity in all directions, striking the outer bulb of the lamp with enough force to cause the outer bulb to break. This article reports an investigation of a light fixture fire and reviews amore » case study of a metal-halide lamp fire. We reported on causal analysis of the metal-halide lamp fire uncovered contributing factors that created the environment in which the incident occurred. Latent organizational conditions that created error-likely situations or weakened defenses were identified and controlled. Lastly, effective improvements that reduce the probability or consequence of similar metal-halide lamp fire incidents were implemented.« less
Check for Safety: A Home Fall Prevention Checklist for Older Adults
... Avoid going barefoot or wearing slippers. Improve the lighting in your home. Put in brighter light bulbs. ... less to use. It’s safest to have uniform lighting in a room. Add lighting to dark areas. ...
Code of Federal Regulations, 2011 CFR
2011-10-01
.... A. Angular locations, diameters, key/keyway sizes, and any other interchangeability dimensions for... base in the bulb holder such as tabs, keys, keyways, surface, etc. III. Bulb Holder Interchangeability Dimensions and Tolerances. A. Mating angular locations, diameters, key/keyway sizes, any other...
Code of Federal Regulations, 2012 CFR
2012-10-01
.... A. Angular locations, diameters, key/keyway sizes, and any other interchangeability dimensions for... base in the bulb holder such as tabs, keys, keyways, surface, etc. III. Bulb Holder Interchangeability Dimensions and Tolerances. A. Mating angular locations, diameters, key/keyway sizes, any other...
An historical collection of papers on nuclear thermal propulsion
NASA Astrophysics Data System (ADS)
The present volume of historical papers on nuclear thermal propulsion (NTP) encompasses NTP technology development regarding solid-core NTP technology, advanced concepts from the early years of NTP research, and recent activities in the field. Specific issues addressed include NERVA rocket-engine technology, the development of nuclear rocket propulsion at Los Alamos, fuel-element development, reactor testing for the Rover program, and an overview of NTP concepts and research emphasizing two decades of NASA research. Also addressed are the development of the 'nuclear light bulb' closed-cycle gas core and a demonstration of a fissioning UF6 gas in an argon vortex. The recent developments reviewed include the application of NTP to NASA's Lunar Space Transportation System, the use of NTP for the Space Exploration Initiative, and the development of nuclear rocket engines in the former Soviet Union.
Ko, Eun Young; Nile, Shivraj Hariram; Sharma, Kavita; Li, Guan Hao; Park, Se Won
2014-01-01
Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4′-diglucoside and quercetin-4′-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent light effect was more eminent which stimulates the maximum synthesis of quercetin in onion. In case of whole onion bulb, skin and pulp showed different responses to light treatment, respectively. The pulp had the highest quercetin glucosides under blue light, whereas the lowest under fluorescent light. Onion skin showed nearly opposite pattern as compared to the pulp. In particular, light treatment proved to be a better way to increase the level of quercetin content in onions which might be utilized for industrial production of bioactive compounds from onion and onion waste products. PMID:26150744
Ko, Eun Young; Nile, Shivraj Hariram; Sharma, Kavita; Li, Guan Hao; Park, Se Won
2015-07-01
Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4'-diglucoside and quercetin-4'-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent light effect was more eminent which stimulates the maximum synthesis of quercetin in onion. In case of whole onion bulb, skin and pulp showed different responses to light treatment, respectively. The pulp had the highest quercetin glucosides under blue light, whereas the lowest under fluorescent light. Onion skin showed nearly opposite pattern as compared to the pulp. In particular, light treatment proved to be a better way to increase the level of quercetin content in onions which might be utilized for industrial production of bioactive compounds from onion and onion waste products.
NASA Technical Reports Server (NTRS)
1989-01-01
Rayovac Corporation's Luma 2 flashlight incorporates NASA's systems redundancy. The company also received assistance from NERAC. The flashlight has an extra-bright Super Krypton primary bulb and an independent backup system including a separate lithium power cell (a NASA developed technology), its own bulb and switch with corrosion proof sealed contacts. NERAC has also assisted Rayovac in developing other products.
Integrity Monitoring of Mercury Discharge Lamps
NASA Technical Reports Server (NTRS)
Tjoelker, Robert L.
2010-01-01
Mercury discharge lamps are critical in many trapped ion frequency standard applications. An integrity monitoring system can be implemented using end-of-life signatures observed in operational mercury discharge lamps, making it possible to forecast imminent failure and to take action to mitigate the consequences (such as switching to a redundant system). Mercury lamps are used as a source of 194-nm ultraviolet radiation for optical pumping and state selection of mercury trapped ion frequency standards. Lamps are typically fabricated using 202Hg distilled into high-purity quartz, or other 194-nm transmitting material (e.g., sapphire). A buffer gas is also placed into the bulb, typically a noble gas such as argon, neon, or krypton. The bulbs are driven by strong RF fields oscillating at .200 MHz. The lamp output may age over time by two internal mechanisms: (1) the darkening of the bulb that attenuates light transmission and (2) the loss of mercury due to migration or chemical interactions with the bulb surface. During fabrication, excess mercury is placed into a bulb, so that the loss rate is compensated with new mercury emanating from a cool tip or adjacent reservoir. The light output is nearly constant or varies slightly at a constant rate for many months/years until the mercury source is depleted. At this point, the vapor pressure abruptly falls and the total light output and atomic clock SNR (signal-to-noise ratio) decrease. After several days to weeks, the light levels decrease to a point where the atomic clock SNR is no longer sufficient to stay in lock, or the lamp self-extinguishes. This signature has been observed in four separate end-of-life lamp failures while operating in the Deep Space Network (DSN). A simple integrator circuit can observe and document steady-state lamp behavior. When the light levels drop over a predetermined time interval by a specified amount (e.g., 20 percent), an alarm is set. For critical operational applications, such as the DSN or in space flight, this warning provides notice that a failure may be imminent, and for operators or control algorithm to take action.
Analyzing of chromaticity temperature of novel bulb composed of PDMS and phosphor
NASA Astrophysics Data System (ADS)
Novak, M.; Fajkus, M.; Jargus, J.; Bednarek, L.; Cubik, J.; Cvejn, D.; Vasinek, V.
2017-10-01
The authors of this article focused on the issue of measurement of the chromaticity temperature of proposed bulbs made from polydimethylsiloxane, depending on the temperature of proposed bulbs. The advantage of this solution is the immunity to electromagnetic interference (EMI) and the ability to use, for example in dangerous environments (such as mines, factories, etc.). For the realization of incandescent bulbs was used transparent two-component elastomer Sylgard 184. A mixture of polydimethylsiloxane (PDMS) and a curing agent in a defined ratio (10:1) and admixture with garnet phosphor YAG: Ce was cured in the temperature box at temperature 90°C +/- 3°C in the shape of the bulbs. All experiments were realized with eight different weight ratios of phosphor and Sylgard 184. Optical power (5 W) from a laser with a wavelength of 455 nm was fed to the proposed bulbs using the cylindrical waveguide of polydimethylsiloxane with a diameter of 5 mm. Chromaticity temperature was measured by two temperature sensors for 12h. The outcome of this study is the evaluation of the chromaticity temperature of output light depending on temperature variations of proposed bulbs due to the conversion of optical power into heat.
DOT National Transportation Integrated Search
2013-08-01
Research was conducted to determine the effective intensity of flashing lights that incorporate light-emitting diodes (LEDs). LEDs require less power and have the ability to flash without the addition of moving parts. Compared with incandescent bulbs...
Microwave-driven ultraviolet light sources
Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.
2002-01-29
A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.
Light intensity of curved laryngoscope blades in Philadelphia emergency departments.
Levitan, Richard M; Kelly, John J; Kinkle, William C; Fasano, Charles
2007-09-01
Laryngoscopy and tracheal intubation requires laryngeal exposure and illumination. The objective of this study is to assess variation in laryngoscope lights across different emergency departments (EDs). A convenience sample of 3 Mac #4 blade and handle pairs in each of 17 Philadelphia area EDs was tested with a digital light meter to derive the median lux at the distal tip. For each blade tested, we characterized blade design (American, English, or German) and light type (fiber-illuminated versus conventional bulb-on-blade) and measured light-to-tip distance. A total of 50 blades and handle pairs were tested (one ED had only 2 Mac #4 blades). American designs were the most common (38/50), followed by English (6/50) and German (3/50) designs. Three blades had hybrid design features and acrylic light-conducting fibers. Median luminance varied from 11 lux to 5,627 lux. The glass fiber-illuminated blades (n=13) produced greater luminance (median 1,205 lux; interquartile range [IQR] 726 to 2,176 lux) than bulb-on-blade designs (median 689 lux; IQR 290 to 906 lux). German fiber-illuminated blades produced the highest luminance (median 1,937 lux; IQR 1,453 to 3,782 lux). English bulb-on-blade designs produced more luminance (median 915 lux; IQR 745 to 1270 lux) than American (median 689 lux; IQR 269 to 807 lux). German and English blades had shorter light-to-tip distances (median 51 mm and 47 mm, respectively) than American blades (65 mm). Curved laryngoscope blades in different EDs have marked variation in light intensity. The contribution of luminance to laryngoscopy performance warrants investigation.
Noncontact localized internal infrared radiation measurement using an infrared point detector
NASA Astrophysics Data System (ADS)
Hisaka, Masaki
2017-12-01
The techniques for temperature measurement within the human body are important for clinical applications. A method for noncontact local infrared (IR) radiation measurements was investigated deep within an object to simulate how the core human body temperature can be obtained. To isolate the IR light emitted from a specific area within the object from the external noise, the radiating IR light was detected using an IR point detector, which comprises a pinhole and a thermopile positioned at an imaging relation with the region of interest within the object. The structure of the helical filament radiating IR light inside a light bulb was thermally imaged by scanning the bulb in two dimensions. Moreover, this approach was used to effectively measure IR light in the range of human body temperature using a glass plate placed in front of the heat source, mimicking the ocular fundus.
Noncontact localized internal infrared radiation measurement using an infrared point detector
NASA Astrophysics Data System (ADS)
Hisaka, Masaki
2018-06-01
The techniques for temperature measurement within the human body are important for clinical applications. A method for noncontact local infrared (IR) radiation measurements was investigated deep within an object to simulate how the core human body temperature can be obtained. To isolate the IR light emitted from a specific area within the object from the external noise, the radiating IR light was detected using an IR point detector, which comprises a pinhole and a thermopile positioned at an imaging relation with the region of interest within the object. The structure of the helical filament radiating IR light inside a light bulb was thermally imaged by scanning the bulb in two dimensions. Moreover, this approach was used to effectively measure IR light in the range of human body temperature using a glass plate placed in front of the heat source, mimicking the ocular fundus.
None
2017-12-27
Description: In this edition of Energy 101, we talk about Lumens. When you're shopping for light bulbs, compare lumens to be sure you';re getting the amount of light, or level of brightness, you want.
ERIC Educational Resources Information Center
Wiebe, Ann
1994-01-01
Presents a lesson plan detailing an interdisciplinary mathematics/science activity in which students take a home survey of light bulbs and then design an energy-saving lighting system for a home. Contains reproducible student worksheets. (MKR)
Prendergast, Brian J; Pyter, Leah M; Galang, Jerome; Kay, Leslie M
2009-03-02
In reproductively photoperiodic Syrian hamsters, removal of the olfactory bulbs (OBx) leads to a marked and sustained increase in gonadotrophin secretion which prevents normal testicular regression in short photoperiods. In contrast, among reproductively nonphotoperiodic laboratory strains of rats and mice, bulbectomy unmasks reproductive responses to photoperiod. The role of the olfactory bulbs has been proposed to have opposite effects on responsiveness to photoperiod, depending on the photoperiodicity of the reproductive system; however, Syrian hamsters are the only reproductively photoperiodic rodent species for which the role of the olfactory bulb in reproductive endocrinology has been assessed. This experiment evaluated the role of the olfactory bulbs in the photoperiodic control of reproduction in Siberian hamsters (Phodopus sungorus), an established model species for the study of neural substrates mediating seasonality. Relative to control hamsters housed in long days (15 h light/day), exposure of adult male hamsters to short days (9h light/day) for 8 weeks led to a temporal expansion of the pattern of nocturnal locomotor activity, testicular regression, decreases in testosterone (T) production, and undetectable levels of plasma follicle-stimulating hormone (FSH). Bilateral olfactory bulbectomy failed to affect any of these responses to short days. The patterns of entrainment to long and short days suggests that pre-pineal mechanisms involved in photoperiodic timekeeping are functioning normally in OBx hamsters. The absence of increases in FSH following bulbectomy in long days is incompatible with the hypothesis that the olfactory bulbs provide tonic inhibition of the HPG axis in this species. In marked contrast to Syrian hamsters, the olfactory bulbs of Siberian hamsters play essentially no role in the modulation of tonic gonadotrophin production or gonadotrophin responses to photoperiod.
DOT National Transportation Integrated Search
2013-08-01
Across the Nation, many agencies have been replacing conventional incandescent light bulbs in traffic signals with light-emitting diodes (LED) (see figure 1 and figure 2). LEDs are primarily installed to reduce energy consumption and decrease mainten...
Gutjahr, Sylvain; Lapointe, Line
2008-11-01
Woodland spring ephemerals exhibit a relatively short epigeous growth period prior to canopy closure. However, it has been suggested that leaf senescence is induced by a reduction in the carbohydrate sink demand, rather than by changes in light availability. To ascertain whether a potentially higher net carbon (C) assimilation rate could shorten leaf lifespan due to an accelerated rate of storage, Erythronium americanum plants were grown under ambient (400 ppm) and elevated (1100 ppm) CO2 concentrations. During this growth-chamber experiment, plant biomass, bulb starch concentration and cell size, leaf phenology, gas exchange rates and nutrient concentrations were monitored. Plants grown at 1100 ppm CO2 had greater net C assimilation rates than those grown at 400 ppm CO2. However, plant size, final bulb mass, bulb filling rate and timing of leaf senescence did not differ. Erythronium americanum fixed more C under elevated than under ambient CO2 conditions, but produced plants of similar size. The similar bulb growth rates under both CO2 concentrations suggest that the bulb filling rate is dependant on bulb cell elongation rate, rather than on C availability. Elevated CO2 stimulated leaf and bulb respiratory rates; this might reduce feed-back inhibition of photosynthesis and avoid inducing premature leaf senescence.
ERIC Educational Resources Information Center
Eaton, Bruce G., Ed.
1977-01-01
Describes a low-cost wave analyzer; how to convert an incandescant light bulb to an x-ray tube; how to use an electric toothbrush to generate waves; the use of a light-emitting diode as a point light source; how to rejuvenate helium-neon lasers; and calibration of an ammeter. (MLH)
NASA Astrophysics Data System (ADS)
Haas, Harald
2016-08-01
The humble household light bulb - once a simple source of illumination - could soon be transformed into the backbone of a revolutionary new wireless communications network based on visible light. Harald Haas explains how this “LiFi” system works and how it could shape our increasingly data-driven world
LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties
Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald
2014-11-11
An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.
Rival Centennial Casts New Light on Edison.
ERIC Educational Resources Information Center
Broad, William J.
1979-01-01
Discusses how the celebration of the centennial of the electric lamp raises the claim of the supporters of Sir Joseph Swan in England that Swan not Edison was the first inventor of the light bulb. (HM)
USDA-ARS?s Scientific Manuscript database
Most governments around the world including the USA have passed measures to phase out incandescent light bulbs in favor of more energy-efficient lighting alternatives. Research is limited on blood physiological variables of broilers grown to heavy weights (> 3 kg) under these new light sources to en...
[Near infrared light irradiator using halogen lamp].
Ide, Yasuo
2012-07-01
The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.
Effect of UV irradiation on the apoptosis and necrosis of Jurkat cells using UV LEDs
NASA Astrophysics Data System (ADS)
Inada, Shunko A.; Amano, Hiroshi; Akasaki, Isamu; Morita, Akimichi; Kobayashi, Keiko
2009-02-01
Phototherapy is a very effective method for treating most of the incurable skin diseases. A fluorescent light bulb is used as a conventional UV light source for this type of therapy. However, infrared radiation from the light source sometimes causes serious problems on patient's health. In addition, the normal part of the skin is irradiated when a large fluorescent light bulb is used. Moreover, a conventional UV irradiation system is heavy and has a short lifetime and a high electrical power consumption. Therefore, a new UV light source for solving the problems of phototherapy is required. To realize low-power-consumption, lightweight and long-lifetime systems, group III nitride-based UV-A1 light-emitting diodes (LEDs) were investigated. We examined the UV LED irradiation of Jurkat cell, which is a tumor cell and more sensitive to UV light than a healthy cell. The numbers of apoptotic and necrotic cells were confirmed to be the same using a UV LED and a conventional lamp system. The UV LED showed the possibility of realizing a new UV light source for phototherapy.
NASA Astrophysics Data System (ADS)
Buchanan, Mark
2009-04-01
In 1890 an electricity company enticed the German physicist Max Planck to help it in its efforts to make more efficient light bulbs. Planck, as a theorist, naturally started with the fundamentals and soon became enmeshed in the thorny problem of explaining the spectrum of black-body radiation, which he eventually did by introducing the idea - a "purely formal" assumption, as he then considered it - that electromagnetic energy can only be emitted or absorbed in discrete quanta. The rest is history. Electric light bulbs and mathematical necessity led Planck to discover quantum theory and to kick start the most significant scientific revolution of the 20th century.
LIGHTING FOR READING: DESIGNING AN LED LUMINAIRE FOR HOMES AND OFFICES
Energy waste from traditional incandescent light bulbs was reduced by fluorescent lamps, but they pose a threat to the environment due to the mercury in each tube and disposal issues. Light emitting diodes (LEDs) provide superior energy efficiency, longer life, toxin-free comp...
Internal heat gain from different light sources in the building lighting systems
NASA Astrophysics Data System (ADS)
Suszanowicz, Dariusz
2017-10-01
EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.
Mercury free microscopy: an opportunity for core facility directors.
Baird, T Regan; Kaufman, Daniel; Brown, Claire M
2014-07-01
Mercury Free Microscopy (MFM) is a new movement that encourages microscope owners to choose modern mercury free light sources to replace more traditional mercury based arc lamps. Microscope performance is enhanced with new solid state technologies because they offer a more stable light intensity output and have a more uniform light output across the visible spectrum. Solid state sources not only eliminate mercury but also eliminate the cost of consumable bulbs (lifetime ∼200 hours), use less energy, reduce the instrument down time when bulbs fail and reduce the staff time required to replace and align bulbs. With lifetimes on the order of tens of thousands of hours, solid state replacements can pay for themselves over their lifetime with the omission of consumable, staff (no need to replace and align bulbs) and energy costs. Solid state sources are also sustainable and comply with institutional and government body mandates to reduce energy consumption, carbon footprints and hazardous waste. MFM can be used as a mechanism to access institutional financial resources for sustainable technology through a variety of stakeholders to defray the cost to microscope owners for the initial purchase of solid state sources or the replacement cost of mercury based sources. Core facility managers can take a lead in this area as "green" ambassadors for their institution by championing a local MFM program that will save their institution money and energy and eliminate mercury from the waste stream. Managers can leverage MFM to increase the visibility of their facility, their impact within the institution, and as a vital educational resource for scientific and administrative consultation.
Brake wear warning device: A concept
NASA Technical Reports Server (NTRS)
Hawkins, S. F.
1973-01-01
Heat-insulated wire is introduced through brake shoe and partially into brake lining. Wire is connected to positive terminal and light bulb. When brakes wear to critical point, contact between wire and wheel drum grounds circuit and turns on warning light.
Cusack, Lara; Rivera, Sam; Lock, Brad; Benboe, Daniel; Brothers, David; Divers, Stephen
2017-12-01
The importance of vitamin D 3 has been documented in multiple reptile species, with deficiencies resulting in alterations in calcium homeostasis, including nutritional secondary hyperparathyroidism. Though vitamin D 3 can be obtained directly from dietary sources or from photobiosynthetic production, species variability in diet and behavior makes exposure to ultraviolet B (UVB) radiation an essential requirement for some diurnal species. The effect of different bulbs to promote synthesis of cholecalciferol (vitamin D 3 ) in the bearded dragon ( Pogona vitticeps) was evaluated. Individual animals ( n = 5 for each group) were exposed to industry standard fluorescent bulbs (UVB), non-UVB producing bulbs (UVBN), and light-emitting diode (LED) UVB (LED) bulbs for a period of 11 mo. Weekly measurements of UV index (UVI) were recorded for each bulb. Plasma vitamin D 3 , 25-hydroxycholecalciferol (25OHD 3 ), ionized calcium (iCa), total calcium (TCa), and phosphorus (P) were measured at time zero and at 4 mo, 8 mo, and 11 mo. Parameters were measured between groups and time points. There were decreases ( P < 0.05) with time for iCa for the LED and UVB groups, for TCa in the UVB group, and for vitamin D 3 in the LED and UVBN groups. There were no significant differences between study groups for vitamin D 3 , iCa, TCa, or P . Overall plasma concentration for 25OHD 3 in the LED group was greater than for the UVB ( P = 0.0347) and the UVBN ( P = 0.0490) groups.
ERIC Educational Resources Information Center
Kesonen, Mikko Henri Petteri; Asikainen, Mervi Anita; Hirvonen, Pekka Emil
2017-01-01
In the present article, the context-dependency of student reasoning is studied in a context of optics. We investigated introductory students' explanations about the behavior of light when different light sources, namely a small light bulb and a laser, were used in otherwise identical task assignments. The data was gathered with the aid of pretest…
Analysis of the Dryden Wet Bulb GLobe Temperature Algorithm for White Sands Missile Range
NASA Technical Reports Server (NTRS)
LaQuay, Ryan Matthew
2011-01-01
In locations where workforce is exposed to high relative humidity and light winds, heat stress is a significant concern. Such is the case at the White Sands Missile Range in New Mexico. Heat stress is depicted by the wet bulb globe temperature, which is the official measurement used by the American Conference of Governmental Industrial Hygienists. The wet bulb globe temperature is measured by an instrument which was designed to be portable and needing routine maintenance. As an alternative form for measuring the wet bulb globe temperature, algorithms have been created to calculate the wet bulb globe temperature from basic meteorological observations. The algorithms are location dependent; therefore a specific algorithm is usually not suitable for multiple locations. Due to climatology similarities, the algorithm developed for use at the Dryden Flight Research Center was applied to data from the White Sands Missile Range. A study was performed that compared a wet bulb globe instrument to data from two Surface Atmospheric Measurement Systems that was applied to the Dryden wet bulb globe temperature algorithm. The period of study was from June to September of2009, with focus being applied from 0900 to 1800, local time. Analysis showed that the algorithm worked well, with a few exceptions. The algorithm becomes less accurate to the measurement when the dew point temperature is over 10 Celsius. Cloud cover also has a significant effect on the measured wet bulb globe temperature. The algorithm does not show red and black heat stress flags well due to shorter time scales of such events. The results of this study show that it is plausible that the Dryden Flight Research wet bulb globe temperature algorithm is compatible with the White Sands Missile Range, except for when there are increased dew point temperatures and cloud cover or precipitation. During such occasions, the wet bulb globe temperature instrument would be the preferred method of measurement. Out of the 30 dates examined, 23 fell under the category of having good accuracy.
High efficiency incandescent lighting
Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin
2014-09-02
Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.
NASA Astrophysics Data System (ADS)
Stamenkovic, Dragan D.; Popovic, Vladimir M.
2015-02-01
Warranty is a powerful marketing tool, but it always involves additional costs to the manufacturer. In order to reduce these costs and make use of warranty's marketing potential, the manufacturer needs to master the techniques for warranty cost prediction according to the reliability characteristics of the product. In this paper a combination free replacement and pro rata warranty policy is analysed as warranty model for one type of light bulbs. Since operating conditions have a great impact on product reliability, they need to be considered in such analysis. A neural network model is used to predict light bulb reliability characteristics based on the data from the tests of light bulbs in various operating conditions. Compared with a linear regression model used in the literature for similar tasks, the neural network model proved to be a more accurate method for such prediction. Reliability parameters obtained in this way are later used in Monte Carlo simulation for the prediction of times to failure needed for warranty cost calculation. The results of the analysis make possible for the manufacturer to choose the optimal warranty policy based on expected product operating conditions. In such a way, the manufacturer can lower the costs and increase the profit.
Development of a Prototype Algal Reactor for Removing CO2 from Cabin Air
NASA Technical Reports Server (NTRS)
Patel, Vrajen; Monje, Oscar
2013-01-01
Controlling carbon dioxide in spacecraft cabin air may be accomplished using algal photobioreactors (PBRs). The purpose of this project was to evaluate the use of a commercial microcontroller, the Arduino Mega 2560, for measuring key photioreactor variables: dissolved oxygen, pH, temperature, light, and carbon dioxide. The Arduino platform is an opensource physical computing platform composed of a compact microcontroller board and a C++/C computer language (Arduino 1.0.5). The functionality of the Arduino platform can be expanded by the use of numerous add-ons or 'shields'. The Arduino Mega 2560 was equipped with the following shields: datalogger, BNC shield for reading pH sensor, a Mega Moto shield for controlling CO2 addition, as well as multiple sensors. The dissolved oxygen (DO) probe was calibrated using a nitrogen bubbling technique and the pH probe was calibrated via an Omega pH simulator. The PBR was constructed using a 2 L beaker, a 66 L box for addition of CO2, a micro porous membrane, a diaphragm pump, four 25 watt light bulbs, a MasterFiex speed controller, and a fan. The algae (wild type Synechocystis PCC6803) was grown in an aerated flask until the algae was dense enough to used in the main reactor. After the algae was grown, it was transferred to the 2 L beaker where CO2 consumption and O2 production was measured using the microcontroller sensor suite. The data was recorded via the datalogger and transferred to a computer for analysis.
Resource efficiency and its necessity
NASA Astrophysics Data System (ADS)
Tamás, András; Nagy, Orsolya; Balla, Zoltán; Kith, Károly
2015-04-01
Renewable energy resources have an important role by improving energy efficiency, thereby contributing to the sustainable and eco-friendly use of local energy resources. The rationalization of energy management and the implementation of innovative renewable energy projects can be an excellent tool in terms of both corporate, municipal and household levels to reduce energy costs. The Hungarian Power Companies Ltd. calculates that in Hungary new electricity generating capacity is needed for establishing growth in consumer demand and the replacement of old power plants. On 31th December 2013, there was 9 197 megawatts of installed electrical capacity in the Hungarian electricity system. By 2019, only 70% is expected to be available and by 2030, only 5 100 megawatts of capacity can be calculated. In addition to the replacement needs, the supposed increase in consumer demand also requires the establishment of new capacities (MTI, 2014). In this study, we examined one of Hungary's leading agribusiness companies' technical and other parameters. In the company's head office, hot water is produced by a solar panel. The roof-mounted solar cells heat a 200-liter reservoir of stored water. The daily use of water each day account to between 50 and 200 liters. Waste heat in the cooling system of the company's shop is utilized by using a group-agregator. Cooling is done with significant heat removal. This amount of heat or a portion of it could be recovered. Therefore, a heat exchanger was inserted into the cooling gas cycle which leads to a secondary water cycle with a 300 litre water tank. This solution produces hot water, providing the shop workers' daily hot water needs. Lighting was upgraded by replacing traditional high-performance 250-watt bulbs to 130-watt more energy-efficient light bulbs. The saving achieved is 120 watts per bulb. The energy-saving light bulbs last longer than the mercury-filled bulbs. It is important that the sockets be the same, so they do not have to replace the luminaires. In addition to saving energy it is also important to protect the environment. The mercury-filled bulbs are obsolete pollute the environment after disposal. The other plant headquarters replaced 60 watts lamps to LED lamps. Also, lighting and the whole network will be replaced. The LED light's energy demand is 23 watts; therefore, barn lighting will result in savings of 2000 watts per hour. It is an important criterion of electricity to burden the electrical network only to the necessary extent. Therefore, services measure both the inductive and capacitive consumption. To avoid extra costs, factor correction capacitors are used. Therefore, reactive energy costs can be avoided. The world's energy resources are finite and it is increasingly more expensive to produce them. Therefore, we must strive to make renewable energy systems involve greater proportion of today's power structure. The company contributed to the requirement that the share of renewable energy sources by 2020 should reach 14.65% in Hungary. Green energy investment pays off in a long run for all businesses and it is a necessary economic development.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... (9) Lead oxide in the glass envelope of Black Light Blue (BLB) lamps. (e) Components of electronic devices that are removable or replaceable, such as battery packs and light bulbs that are inaccessible...
Code of Federal Regulations, 2012 CFR
2012-01-01
.... (9) Lead oxide in the glass envelope of Black Light Blue (BLB) lamps. (e) Components of electronic devices that are removable or replaceable, such as battery packs and light bulbs that are inaccessible...
Code of Federal Regulations, 2011 CFR
2011-01-01
.... (9) Lead oxide in the glass envelope of Black Light Blue (BLB) lamps. (e) Components of electronic devices that are removable or replaceable, such as battery packs and light bulbs that are inaccessible...
Code of Federal Regulations, 2014 CFR
2014-01-01
.... (9) Lead oxide in the glass envelope of Black Light Blue (BLB) lamps. (e) Components of electronic devices that are removable or replaceable, such as battery packs and light bulbs that are inaccessible...
L Prize Drives Technology Innovation, Energy Savings
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-04-30
Fact sheet that provides an overview of DOE's L Prize competition, which challenges industry to develop high-quality, high-efficiency SSL products to replace 60W incandescent and PAR38 halogen light bulbs, and highlights the competition's first 60W winner from Philips Lighting North America.
Yamashita, Shuuji; Iguchi, Kazuhiro; Noguchi, Yoshihiro; Sakai, Chihiro; Yokoyama, Satoshi; Ino, Yoko; Hayashi, Hideki; Teramachi, Hitomi; Sako, Magoichi; Sugiyama, Tadashi
2018-01-01
In recent years, the popularity of LED lighting has rapidly increased, owing to its many advantages, including economic benefits. We examined the change in the quality of drugs during storage under LED and fluorescent lighting and found that some medicines exhibited a different degree of color change depending on the light source. The purpose of this study was to investigate the effects of different plastic storage bags on the color change over time when various medicines were stored under LED and fluorescent lighting conditions. Photostability tests were conducted on several types of target drugs. Subsequently, subjective evaluation by ten evaluators and objective evaluation by image analysis software were carried out regarding color change. A similar change in color tone was observed after all types of illumination. Subjective evaluation by 10 evaluators revealed that "change in color tone" occurred in the order of bulb-color LED lighting < daylight-color LED lighting < fluorescent lighting, regardless of the type of plastic bags. A similar tendency was observed also in objective evaluation. In this study, it was considered that a brown light-shielding plastic bag was more effective than a normal plastic bag for the prevention of the color change of medicines stored under LED lighting. The above results suggested that the most appropriate combination of plastic bag and light source for medicine storage was a brown light-shielding plastic bag and bulb-color LED lighting.
A Simple Demonstration of Absorption Spectra Using Tungsten Holiday Lights
ERIC Educational Resources Information Center
Birriel, Jennifer J.
2009-01-01
In a previous paper submitted to the Demonstrations section (Birriel 2008, "Astronomy Education Review," 7, 147), I discussed using commercially available incandescent light bulbs for the purpose of demonstrating absorption spectra in the classroom or laboratory. This demonstration solved a long-standing problem that many of astronomy instructors…
High Pressure Microwave Powered UV Light Sources
NASA Astrophysics Data System (ADS)
Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.
1997-10-01
Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.
Genotoxicity and carcinogenicity of the light emitted by artificial illumination systems.
De Flora, Silvio
2013-03-01
The light delivered by artificial illumination systems, and in particular by halogen quartz bulbs, contains UVA, UVB, and UVC radiation, is genotoxic to both bacterial and human cells and is potently carcinogenic to hairless mice. Since IARC has classified UV radiation in Group 1, any source of UV light poses a carcinogenic hazard to humans. Suitable regulations would be needed in order to control the safety of the light emitted by artificial light sources.
Chawengkijwanich, Chamorn; Hayata, Yasuyoshi
2008-04-30
Titanium dioxide (TiO2) has attracted a great deal of attention as a photocatalytic disinfecting material in the food and environmental industry. TiO2 has been used to inactivate a wide variety of microorganisms in many applications. In the present study, we aimed to develop a TiO2 powder-coated packaging film and clarify its ability to inactivate Escherichia coli both in vitro and in actual tests, using two different particle sizes and two types of illumination at different intensities. No inhibition effect of the testing method itself on the growth of E. coli was observed. The cells of E. coli were found to have decreased 3 log CFU/ml after 180 min of illumination by two 20 W black-light bulbs (wavelength of 300-400 nm) on TiO2-coated oriented-polypropylene (OPP) film, while E. coli decreased 1 log CFU/m with black-light illumination of uncoated OPP film. The results showed that both ultraviolet A (UVA; wavelength of 315-400 nm) alone and TiO2-coated OPP film combined with UVA reduced the number of E. coli cell in vitro, but that the reduction of E. coli cell numbers was greater by TiO2-coated OPP film combined with UVA. The antimicrobial effect of TiO2-coated film is dependent on the UVA light intensity (0, <0.05 and 1 mW/cm2) and the kind of artificial light (black-light and daylight fluorescent bulbs), but it is independent of the particle size of TiO2 coating on the surface of OPP film. The surviving cell numbers of E. coli on TiO2-coated film decreased 3 log and 0.35 log CFU/ml after 180 min of illumination by two 20 W black bulbs and two 20 W daylight fluorescent bulbs, respectively. Despite the lesser efficacy of the photocatalytic method with fluorescent lights, the survival of E. coli cells using this method was 50% of that using fluorescent lights alone. In the actual test, the number of E. coli cells from cut lettuce stored in a TiO2-coated film bag irradiated with UVA light decreased from 6.4 on Day 0 to 4.9 log CFU/g on Day 1, while that of an uncoated film bag irradiated with UVA light decreased from 6.4 to 6.1 log CFU/g after 1 day of storage. The result shows that the TiO2-coated film could reduce the microbial contamination on the surface of solid food products and thus reduce the risks of microbial growth on fresh-cut produce.
Final Cannon AFB Housing Privatization Environmental Assessment
2009-07-01
parking areas, sidewalks, street lighting , utilities, and storm water drainage systems within the MFH areas would be the responsibility of the PO. The...accordance with the quality standards established. Infrastructure such as roads, parking areas, sidewalks, street lighting , utilities, and storm water...to new residents presents instructions for proper disposal of used oil, batteries, tires, and fluorescent light bulbs. 3.7 AIR QUALITY 3.7.1
Alignment Tool For Inertia Welding
NASA Technical Reports Server (NTRS)
Snyder, Gary L.
1991-01-01
Compact, easy-to-use tool aligns drive bar of inertia welder over hole in stub. Ensures drive bar concentric to hole within 0.002 in. (0.051 mm.). Holds two batteries and light bulb. Electrical circuit completed, providing current to bulb when pin in contact with post. When pin centered in post hole, it does not touch post, and lamp turns off. Built for use in making repair welds on liquid-oxygen-injector posts in Space Shuttle main engine. Version having suitably modified dimensions used to facilitate alignment in other forests of post.
Fort Meade demonstration test LEDS in freezer rooms, fiber optics in display cases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Steven; Parker, Graham B.
2008-10-25
Demonstration projects at Fort George G. Meade, MD, substituted LED lighting for incandescent bulbs in commisary wal-in freezers and fiber optic lighting in reach-in display cases. The goal was to reduce energy consumption and the results were positive. Journal article published in Public Works Digest
MARINE ELECTRICITY FROM HIGH ALTITUDE WIND WITH KITE (MEHAWK)
We currently have a functioning land-based prototype in field test. In this proposed project, we would like to build and finish a working prototype that can fit to a small boat. It will be launched from the boat and generate electricity that can at least light up a light bulb ...
2018-04-25
iss055e032444 (April 25, 2018) --- NASA astronaut Scott Tingle replaces a failed light bulb in a light to be used on a new external television camera group (ETVCG) that will be installed on an upcoming spacewalk. Parts from the old ETVCG, removed during a previous spacewalk, will be shipped back to Earth in Dragon for refurbishment.
Microwave Oven Experiments with Metals and Light Sources
ERIC Educational Resources Information Center
Vollmer, Michael; Mollmann, Klaus-Peter; Karstadt, Detlef
2004-01-01
"Don't put metal objects in the microwave" is common safety advice. But why? Here we describe demonstration experiments involving placing household metallic objects in a microwave oven. These allow a better understanding of the interaction of microwaves with materials. Light bulbs and discharge lamps can also be used in instructive demonstrations.
Rep. Barton, Joe [R-TX-6
2010-09-16
House - 09/17/2010 Referred to the Subcommittee on Economic Development, Public Buildings and Emergency Management. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
More Theoretical Odds and Practical Ends
ERIC Educational Resources Information Center
Siddons, J. C.
1975-01-01
Illustrates how various common objects can be used in the classroom to demonstrate physical science concepts. Describes the use of toys, ice cubes, light bulbs, meter sticks, and wine bottles as teaching aids. (MLH)
Light bulb heat exchanger for magnetohydrodynamic generator applications - Preliminary evaluation
NASA Technical Reports Server (NTRS)
Smith, J. M.; Hwang, C. C.; Seikel, G. R.
1974-01-01
The light-bulb heat-exchanger concept is investigated as a possible means of using a combustion heat source to supply energy to an inert gas MHD power generator system. In this concept, combustion gases flow through a central passage which consists of a duct with transparent walls through which heat is transferred by radiation to a radiation receiver which in turn heats the inert gas by convection. The effects of combustion-gas emissivity, transparent-wall-transmissivity, radiation-receiver emissivity, and the use of fins in the inert gas coolant passage are studied. The results indicate that inert gas outlet temperatures of 2500 K are possible for combustion temperatures of 3200 K and that sufficient energy can be transferred from the combustion gas to reduce its temperature to approximately 2000 K. At this temperature more conventional heat exchangers can be used.
Problem Solvers: Problem--Light It up! and Solutions--Flags by the Numbers
ERIC Educational Resources Information Center
Hall, Shaun
2009-01-01
A simple circuit is created by the continuous flow of electricity through conductors (copper wires) from a source of electrical energy (batteries). "Completing a circuit" means that electricity flows from the energy source through the circuit and, in the case described in this month's problem, causes the light bulb tolight up. The presence of…
Miley, Don
2018-04-16
Sixty years ago, the first light bulb to be lit with nuclear energy got its juice right here in Idaho. Here's a virtual tour of the place where it all happened. To learn more visit http://www.inl.gov/ebr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miley, Don
2011-06-01
Sixty years ago, the first light bulb to be lit with nuclear energy got its juice right here in Idaho. Here's a virtual tour of the place where it all happened. To learn more visit http://www.inl.gov/ebr.
[The role of engineer Gustave Trouvé (1839-1902) in the history of endoscopy].
Ségal, A
1995-01-01
The author relates the important contribution of engineer Gustave Trouvé (1839-1902) in endoscopy's history. Since 1873, he was, in fact, the first to ... set an electric light at the tip of the endoscope, by using a small incandescent airtight bulb. Edison's "Mignon" bulb was only discovered after 1886. The Vienese manufacturer Joseph Leiter was completely absorbed with the importance of this invention without having mentioned the true value of this rises of information, in this case G. Trouvé and surely also Dr Max Nitze who was despoiled.
Sport specific fitness testing of elite badminton players.
Chin, M K; Wong, A S; So, R C; Siu, O T; Steininger, K; Lo, D T
1995-01-01
There is a scarcity of descriptive data on the performance capacity of elite badminton players, whose fitness requirements are quite specific. The purpose of this paper is to investigate the physiological response of elite badminton players in a sport-specific fitness test. Twelve Hong Kong national badminton team players performed a field test on a badminton court. Six light bulbs were connected to a programming device causing individual bulbs to light up in a given sequence. The players were instructed to react to the flashes by running towards them, and striking shuttles mounted in the vicinity of the bulbs. Exercise intensity was controlled by altering the interval between successive lightings. A low correlation (r = 0.65) was found between the results of the field test and the rank-order list of subjects, based on an objective on-field physiological assessment and subjective ranking. This may be explained by the requirements of other factors besides physical fitness which contribute to success in elite level badminton competition. These factors may include, for example, technical skill, mental power, and aesthetic judgements on the court. Maximum mean (s.d.) heart rate data (187(8) beats.min-1) and blood lactate values (10.4(2.9) mmol.l-1) in this study showed that players were under maximal load during the field test. From the testing data, it seems reasonable to speculate that the intensity of level 3 (20 light pulses.min-1; 3.0 s.pulse-1) and level 4 (22 light pulses.min-1; 2.7 s.pulse-1) simulates the requirement of actual games energy expenditure of the Hong Kong badminton players exercising at close to their anaerobic threshold. The results also show that an estimate of fitness can be derived from measurements involving exercise closely resembling that which is specific for the sports activity in question. Improved training advice and guidance may result from such studies. PMID:8800846
ERIC Educational Resources Information Center
Lisitano, Larry F.; And Others
1983-01-01
Three student projects using clay are discussed. These include a ceramic wall panel with an eagle motif, clay vessels formed by coiling clay, and clay puppets made with light bulbs as armatures. Instructions on materials, forming techniques, and finishing are given. (IS)
Galaxies Burn Bright Like High-Wattage Light Bulbs
2012-08-29
NASA WISE has identified about 1,000 extremely obscured objects over the sky, as marked by the magenta symbols. These hot dust-obscured galaxies, or hot DOGs, are turning out to be among the most luminous.
Gillan, Claire M.; Morein-Zamir, Sharon; Durieux, Alice M. S.; Fineberg, Naomi A.; Sahakian, Barbara J.; Robbins, Trevor W.
2014-01-01
There is disagreement regarding the role of perceived control in obsessive–compulsive disorder (OCD). The present study used a traditional illusion of control paradigm (Alloy and Abramson, 1979) to empirically test control estimation in OCD. Twenty-six OCD patients and 26 matched comparison subjects completed an illusion of control task wherein their goal was to attempt to exert control over a light bulb. The density of reinforcement (high, low) and the valence of trials (gain, loss) were experimentally manipulated within subjects. Unbeknownst to participants, the illumination of the light bulb was predetermined and irrespective of their behavior. OCD patients exhibited lower estimates of control compared with healthy comparison subjects. There were no interactions between group and outcome density or group and valence. We found that OCD patients endorse lower estimates of control than comparison subjects. This finding highlights a potential role for contingency learning in the disorder. PMID:24659974
Creating illusions of knowledge: learning errors that contradict prior knowledge.
Fazio, Lisa K; Barber, Sarah J; Rajaram, Suparna; Ornstein, Peter A; Marsh, Elizabeth J
2013-02-01
Most people know that the Pacific is the largest ocean on Earth and that Edison invented the light bulb. Our question is whether this knowledge is stable, or if people will incorporate errors into their knowledge bases, even if they have the correct knowledge stored in memory. To test this, we asked participants general-knowledge questions 2 weeks before they read stories that contained errors (e.g., "Franklin invented the light bulb"). On a later general-knowledge test, participants reproduced story errors despite previously answering the questions correctly. This misinformation effect was found even for questions that were answered correctly on the initial test with the highest level of confidence. Furthermore, prior knowledge offered no protection against errors entering the knowledge base; the misinformation effect was equivalent for previously known and unknown facts. Errors can enter the knowledge base even when learners have the knowledge necessary to catch the errors. 2013 APA, all rights reserved
Harnessing Electricity from Chemical Gardens
2015-08-05
This photo simulation shows a laboratory-created "chemical garden," which is a chimney-like structure found at bubbling vents on the seafloor. Some researchers think life on Earth might have got its start at structures like these billions of years ago, partly due to their ability to transfer electrical currents -- an essential trait of life as we know it. The battery-like property of these chemical gardens was demonstrated by linking several together in series to light an LED (light-emitting diode) bulb. In this photo simulation, the bulb is not really attached to the chimney. The chimney membranes are made of iron sulfides and iron hydroxides, geologic materials that conduct electrons. JPL's research team is part of the Icy Worlds team of the NASA Astrobiology Institute, based at NASA's Ames Research Center in Moffett Field, California. JPL is managed by the California Institute of Technology in Pasadena for NASA. http://photojournal.jpl.nasa.gov/catalog/PIA19834
NASA Technical Reports Server (NTRS)
Rodgers, R. J.; Latham, T. S.; Krascella, N. L.
1971-01-01
Calculation results are reviewed of the radiant heat transfer characteristics in the fuel and buffer gas regions of a nuclear light bulb engine based on the transfer of energy by thermal radiation from gaseous uranium fuel in a neon vortex, through an internally cooled transparent wall, to seeded hydrogen propellant. The results indicate that the fraction of UV energy incident on the transparent walls increases with increasing power level. For the reference engine power level of 4600 megw, it is necessary to employ space radiators to reject the UV radiated energy absorbed by the transparent walls. This UV energy can be blocked by employing nitric oxide and oxygen seed gases in the fuel and buffer gas regions. However, this results in increased UV absorption in the buffer gas which also requires space radiators to reject the heat load.
Teaching the Factors Affecting Resistance Using Pencil Leads
ERIC Educational Resources Information Center
Küçüközer, Asuman
2015-01-01
The aim of this paper is to provide a way of teaching the factors that affect resistance using mechanical pencil leads and the brightness of the light given out by a light bulb connected to an electrical circuit. The resistance of a conductor is directly proportional to its length (L) and inversely proportional to its cross-sectional area (A).…
Arendt, John D; Katers, John F
2013-07-01
The majority of states in the USA, including Wisconsin, have been affected by elevated air, soil and waterborne mercury levels. Health risks associated with mercury increase from the consumption of larger fish species, such as Walleye or Pike, which bio-accumulate mercury in muscle tissue. Federal legislation with the 2011 Mercury and Air Toxics Standards and the Wisconsin legislation on mercury, 2009 Wisconsin Act 44, continue to aim at lowering allowable levels of mercury emissions. Meanwhile, mercury-containing compact fluorescent lights (CFL) sales continue to grow as businesses and consumers move away from energy intensive incandescent light bulbs. An exchange in pollution media is occurring as airborne mercury emissions from coal-burning power plants, the largest anthropogenic source of mercury, are being reduced by lower energy demand and standards, while more universal solid waste containing mercury is generated each time a CFL is disposed. The treatment of CFLs as a 'universal waste' by the Environmental Protection Agency (EPA) led to the banning of non-household fluorescent bulbs from most municipal solid waste. Although the EPA encourages recycling of bulbs, industry currently recycles fluorescent lamps and CFLs at a rate of only 29%. Monitoring programs at the federal and state level have had only marginal success with industrial and business CFL recycling. The consumer recycling rate is even lower at only 2%. A projected increase in residential CFL use in Wisconsin owing to the ramifications of the Energy Independence and Security Act of 2007 will lead to elevated atmospheric mercury and landfill deposition in Wisconsin.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... for Passive Advanced Light Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard... Passive Advanced Light Water Reactors.'' The current SRP does not contain guidance on the proposed RTNSS for Passive Advance Light Water Reactors. DATES: Submit comments by November 13, 2012. Comments...
A New Way to Teach Introductory Electricity.
ERIC Educational Resources Information Center
Steinberg, Melvin S.
1988-01-01
Cites the misconceptions that students beginning the study of electric circuits often have about electricity. Explains the use of capacitors with circuits of batteries and light bulbs to introduce electrostatic forces and help to alleviate the problem of misconceptions. (RT)
Blast Off into Space Science with Fuses.
ERIC Educational Resources Information Center
Bombaugh, Ruth
2000-01-01
Introduces an activity in which students build a fuse with steel, wood, light bulbs, copper wire, clay, and batteries. Uses the cross-age instructional approach to teach about the value of instructional time. Contains directions for building a fuse. (YDS)
Fluorescent Lamp Replacement Study
2017-07-01
friendly products, advances in efficiency, and lower production costs for lamps. The conversion of fluorescent bulbs to LED technology has many benefits ...of 4727 W. An economic analysis was calculated to compare the various lighting technologies that were implemented at ATC and the cost benefits ...the various lighting technologies that were implemented at ATC and the cost benefits of each, a lifecycle comparison was made between the fluorescent
Bacterial contamination monitor
NASA Technical Reports Server (NTRS)
Rich, E.; Macleod, N. H.
1973-01-01
Economical, simple, and fast method uses apparatus which detects bacteria by photography. Apparatus contains camera, film assembly, calibrated light bulb, opaque plastic plate with built-in reflecting surface and transparent window section, opaque slide, plate with chemical packages, and cover containing roller attached to handle.
Code of Federal Regulations, 2011 CFR
2011-01-01
... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... behavior of the reactor system during a loss-of-coolant accident. Comparisons to applicable experimental...
Code of Federal Regulations, 2014 CFR
2014-01-01
... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...
LIGHT-EMITTING DIODE TECHNOLOGY IMPROVES INSECT TRAPPING
GILLEN, JONATHON I.; MUNSTERMANN, LEONARD E.
2008-01-01
In a climate of increased funding for vaccines, chemotherapy, and prevention of vector-borne diseases, fewer resources have been directed toward improving disease and vector surveillance. Recently developed light-emitting diode (LED) technology was applied to standard insect-vector traps to produce a more effective lighting system. This approach improved phlebotomine sand fly capture rates by 50%, and simultaneously reduced the energy consumption by 50–60%. The LEDs were incorporated into 2 lighting designs, 1) a LED combination bulb for current light traps and 2) a chip-based LED design for a modified Centers for Disease Control and Prevention light trap. Detailed descriptions of the 2 designs are presented. PMID:18666546
Low-energy light bulbs, computers, tablets and the blue light hazard.
O'Hagan, J B; Khazova, M; Price, L L A
2016-02-01
The introduction of low energy lighting and the widespread use of computer and mobile technologies have changed the exposure of human eyes to light. Occasional claims that the light sources with emissions containing blue light may cause eye damage raise concerns in the media. The aim of the study was to determine if it was appropriate to issue advice on the public health concerns. A number of sources were assessed and the exposure conditions were compared with international exposure limits, and the exposure likely to be received from staring at a blue sky. None of the sources assessed approached the exposure limits, even for extended viewing times.
Do-It-Yourself Air Sensors – Exploring the Atmosphere and Turning on Light Bulbs!?
These are educational slides that will be presented in a webinar to the National Science Teachers Association. Topics covered include general air quality, current EPA research, and EPA's particle sensor kit that is a classroom activity.
NASA Astrophysics Data System (ADS)
Seifollahi, Alireza
It is said that future of the world is based on space exploration which leads us to think more about low cost and light weight instruments. Cheap and sensitive instruments should be de-signed and replace the expensive ones. One of the required instruments in space ships is gyroscope controls the direction of space ship. In this article I am going to give an idea to use optical properties in a new gyroscope which will be cheaper as well as more sensitive in com-pare with most of the being used normal gyroscope nowadays. This instrument uses an optical system to measure the angular changes in the direction of a space craft movements in any of the three axels. Any movement, even very small one, will move a crystal bulb which is lashed by some narrow elastic bands in a fixed box surrounded by three optical sources and light meters. Light meters measure the attitude and the angel of changes in the light beams going through the bulb which is related to the amount of changes in the space craft directions. The system will be very sensitive even against movement around its access. As an electro digital device in connection to a Main Process Unit (MPU) it can be used in Stability Augmentation System (SAS) in a space ship. The sensitivity rate of the instrument will be based on the quality and sensitivity of the light meters.
Electric Power Load Analysis (EPLA) for Surface Ships
2012-09-17
112 - Shipping: Emergency Lighting And Power Systems (Copies of this document are available from the Superintendent of Documents, U.S. Government...number of (dry bulb ) temperature/relative humidity ambient conditions and an associated percentage of time the ship is spent operating in the particular...propulsion cannot be otherwise restored in less than 2 minutes. c. Machinery space class W and circle W ventilation. d. Emergency lighting . DDS 310-1
2010-10-01
Waste Shredder TEG – Thermoelectric Generator THRP – Total Heat Recovery Plant VOC – Volatile Organic Compounds WETT – Wastewater Electrochemical...Every two fibers emit the same amount of light as a 50 W light bulb.[12] There is a 1.2 m (48 in) diameter parabolic dish that collects solar rays...coatings have full functionality in a cold climate, are solvent free, contain low levels of Volatile Organic Compounds (VOCs), and have strong adhesion
Optical Coherence Tomography Angiography Features of Iris Racemose Hemangioma in 4 Cases.
Chien, Jason L; Sioufi, Kareem; Ferenczy, Sandor; Say, Emil Anthony T; Shields, Carol L
2017-10-01
Optical coherence tomography angiography (OCTA) allows visualization of iris racemose hemangioma course and its relation to the normal iris microvasculature. To describe OCTA features of iris racemose hemangioma. Descriptive, noncomparative case series at a tertiary referral center (Ocular Oncology Service of Wills Eye Hospital). Patients diagnosed with unilateral iris racemose hemangioma were included in the study. Features of iris racemose hemangioma on OCTA. Four eyes of 4 patients with unilateral iris racemose hemangioma were included in the study. Mean patient age was 50 years, all patients were white, and Snellen visual acuity was 20/20 in each case. All eyes had sectoral iris racemose hemangioma without associated iris or ciliary body solid tumor on clinical examination and ultrasound biomicroscopy. By anterior segment OCT, the racemose hemangioma was partially visualized in all cases. By OCTA, the hemangioma was clearly visualized as a uniform large-caliber vascular tortuous loop with intense flow characteristics superimposed over small-caliber radial iris vessels against a background of low-signal iris stroma. The vascular course on OCTA resembled a light bulb filament (filament sign), arising from the peripheral iris (base of light bulb) and forming a tortuous loop on reaching its peak (midfilament) near the pupil (n = 3) or midzonal iris (n = 1), before returning to the peripheral iris (base of light bulb). Intravenous fluorescein angiography performed in 1 eye depicted the iris hemangioma; however, small-caliber radial iris vessels were more distinct on OCTA than intravenous fluorescein angiography. Optical coherence tomography angiography is a noninvasive vascular imaging modality that clearly depicts the looping course of iris racemose hemangioma. Optical coherence tomography angiography depicted fine details of radial iris vessels, not distinct on intravenous fluorescein angiography.
75 FR 13142 - Florida Power and Light Company; Turkey Point, Units 3 and 4; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... Light Company; Turkey Point, Units 3 and 4; Exemption 1.0 Background Florida Power and Light Company... ferritic materials of pressure-retaining components of the reactor coolant pressure boundary of light water... reactor coolant pressure boundary of light water nuclear power reactors to provide adequate margins of...
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Connolly, Walter
1986-01-01
A relatively simple opto-electronic setup is described that utilizes a cadmium sulphide (CdS) photoconductive cell to detect resonance of a stretched vibrating string or wire. The display may be either an oscilloscope or a frequency counter. Also describes an inexpensive socket for flanged-base light bulbs. (JN)
A Progress Report on the WBGT (Wet Bulb Globe Temperature) Meter and its Usage in the Royal Navy,
clinical applications. The instrument is relatively light and is ready for air transport at all times so that WBGT Meter may therefore be considered as an ideal piece of thermometric equipment for military use.
The Evolution of Academic Library Architecture: A Summary.
ERIC Educational Resources Information Center
Toombs, Kenneth E.
1992-01-01
Reviews the history of architectural developments in academic libraries. Highlights include natural lighting and the invention of the incandescent bulb; compact shelving; open versus closed stacks; modular construction methods; central air conditioning and controlled environments; interior arrangements; access to handicapped users and staff; and…
Taking Another Look: Sensuous, Consistent Form.
ERIC Educational Resources Information Center
Townley, Mary Ross
1983-01-01
There is a natural progression from making single objects to creating sculpture. By modeling the forms of objects like funnels and light bulbs, students become aware of the quality of curves and the edges of angles. Sculptural form in architecture can be understood as consistency in the forms. (CS)
Improved thermal isolation for superconducting magnet systems
NASA Technical Reports Server (NTRS)
Wiebe, E. R.
1974-01-01
Closed-cycle refrigerating system for superconductive magnet and maser is operated in vacuum environment. Each wire leading from external power source passes through cooling station which blocks heat conduction. In connection with these stations, switch with small incandescent light bulb, which generates heat, is used to stop superconduction.
Production of Artificial Lightning in An Ordinary Clear Light Bulb.
ERIC Educational Resources Information Center
Zaffo, Peter Alfred
1981-01-01
Reported is a method of producing artificial lightning in an ordinary clear lightbulb. The appearance of sparks produced is that of a miniature stroke of forked lightning seen in natural thunderstorms. The sparks also show the intricate branching patterns often seen in natural lightning. (JT)
Color speckle in laser displays
NASA Astrophysics Data System (ADS)
Kuroda, Kazuo
2015-07-01
At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).
Low-energy light bulbs, computers, tablets and the blue light hazard
O'Hagan, J B; Khazova, M; Price, L L A
2016-01-01
The introduction of low energy lighting and the widespread use of computer and mobile technologies have changed the exposure of human eyes to light. Occasional claims that the light sources with emissions containing blue light may cause eye damage raise concerns in the media. The aim of the study was to determine if it was appropriate to issue advice on the public health concerns. A number of sources were assessed and the exposure conditions were compared with international exposure limits, and the exposure likely to be received from staring at a blue sky. None of the sources assessed approached the exposure limits, even for extended viewing times. PMID:26768920
Estimation of light source colours for light pollution assessment.
Ziou, D; Kerouh, F
2018-05-01
The concept of the smart city raised several technological and scientific issues including light pollution. There are various negative impacts of light pollution on economy, ecology, and heath. This paper deals with the census of the colour of light emitted by lamps used in a city environment. To this end, we derive a light bulb colour estimator based on Bayesian reasoning, directional data, and image formation model in which the usual concept of reflectance is not used. All choices we made are devoted to designing an algorithm which can be run almost in real-time. Experimental results show the effectiveness of the proposed approach. Copyright © 2018 Elsevier Ltd. All rights reserved.
Investigation of gaseous nuclear rocket technology
NASA Technical Reports Server (NTRS)
Kendall, J. S.
1972-01-01
The experimental and theoretical investigations conducted during the period from September 1969 through September 1972 are reported which were directed toward obtaining information necessary to determine the feasibility of the full-scale nuclear light bulb engine, and of small-scale nuclear tests involving fissioning uranium plasmas in a unit cell installed in a driver reactor, such as the Nuclear Furnace. Emphasis was placed on development of RF simulations of conditions expected in nuclear tests in the Nuclear Furnace. The work included investigations of the following: (1) the fluid mechanics and containment characteristics of one-component and two-component vortex flows, both unheated and RF-induction heated; (2) heating of particle-seeded streams by thermal radiation from a dc arc to simulate propellant heating; (3) condensation and separation phenomena for metal-vapor/heated-gas mixtures to provide information for conceptual designs of components of fuel exhaust and recycle systems; (4) the characteristics of the radiant energy spectrum emitted from the fuel region, with emphasis on definition of fuel and buffer-gas region seed systems to reduce the ultraviolet radiation emitted from the nuclear fuel; and (5) the effects of nuclear radiation on the optical transmission characteristics of transparent materials.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0237] Cost-Benefit Analysis for Radwaste Systems for Light... (RG) 1.110, ``Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors... components for light water nuclear power reactors. ADDRESSES: Please refer to Docket ID NRC-2013-0237 when...
ERIC Educational Resources Information Center
Kennedy, Mike
2006-01-01
In recent years, scores of educators and designers have been won over to the view that natural light--provided by the sun instead of bulbs or tubes--is desirable and beneficial for education facilities. Studies that show students performing better in classrooms that have the right kinds of daylighting bear out the intuitive beliefs of many…
Changing Light Bulbs: Practice, Motivation, and Autonomy
ERIC Educational Resources Information Center
Carter, Jean A.
2011-01-01
The comment on the Ryan, Lynch, Vansteenkiste, and Deci (2011) article on motivation and autonomy in psychotherapy considers motivation and its role as prerequisite, process variable, or appropriate outcome, speculating that all are appropriate ways to conceptualize motivation in the behavior change process. Autonomy, as a useful addition, refers…
Laser Lights or Dim Bulbs? Evaluating Reference Librarians' Use of Electronic Sources.
ERIC Educational Resources Information Center
Welch, Jeanie M.
1999-01-01
Discusses the evaluation of academic library reference librarians' effectiveness in providing services to patrons using electronic sources based on experiences at the University of North Carolina at Charlotte. Topics include core technical competencies for subject specialists and reference desk service; the Internet; and methods of evaluation.…
Dispersion of Sound in Marine Sediments
2014-09-30
to broadband data from a light bulb sound source deployed in the SW06 experiment. The signal range was ~7 km, and the data were received on the MPL ...the next phase of experiments. The research is connected with research projects of the following: W. S. Hodgkiss and P. Gerstoft ( MPL , SCRIPPS
You're a What?: Tower Technician
ERIC Educational Resources Information Center
Vilorio, Dennis
2012-01-01
In this article, the author talks about the role and functions of a tower technician. A tower technician climbs up the face of telecommunications towers to remove, install, test, maintain, and repair a variety of equipment--from antennas to light bulbs. Tower technicians also build shelters and radiofrequency shields for electronic equipment, lay…
An Inexpensive Device for Studying Electrochromism
ERIC Educational Resources Information Center
Ibanez, Jorge G.; Puente-Caballero, Rodrigo; Torres-Perez, Jonatan; Bustos, Daniel; Carmona-Orbezo, Aranzazu; Sevilla, Fortunato B., III
2012-01-01
A novel procedure for the preparation of electrochromic WO[subscript 3] films from readily available materials is presented. It is based on the electrochemical preparation of potassium tungstate from tungsten filaments of incandescent light bulbs in a potassium hydroxide solution. Tungstic acid is then produced by proton exchange using a…
Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.
Toh, Ren Wei; Li, Jie Sheng; Wu, Jie
2018-01-04
A new reaction screening technology for organic synthesis was recently demonstrated by combining elements from both continuous micro-flow and conventional batch reactors, coined stop-flow micro-tubing (SFMT) reactors. In SFMT, chemical reactions that require high pressure can be screened in parallel through a safer and convenient way. Cross-contamination, which is a common problem in reaction screening for continuous flow reactors, is avoided in SFMT. Moreover, the commercially available light-permeable micro-tubing can be incorporated into SFMT, serving as an excellent choice for light-mediated reactions due to a more effective uniform light exposure, compared to batch reactors. Overall, the SFMT reactor system is similar to continuous flow reactors and more superior than batch reactors for reactions that incorporate gas reagents and/or require light-illumination, which enables a simple but highly efficient reaction screening system. Furthermore, any successfully developed reaction in the SFMT reactor system can be conveniently translated to continuous-flow synthesis for large scale production.
Moreno-Pachon, Natalia M; Mutimawurugo, Marie-Chantal; Heynen, Eveline; Sergeeva, Lidiya; Benders, Anne; Blilou, Ikram; Hilhorst, Henk W M; Immink, Richard G H
2018-06-01
Tulip vegetative reproduction. Tulips reproduce asexually by the outgrowth of their axillary meristems located in the axil of each bulb scale. The number of axillary meristems in one bulb is low, and not all of them grow out during the yearly growth cycle of the bulb. Since the degree of axillary bud outgrowth in tulip determines the success of their vegetative propagation, this study aimed at understanding the mechanism controlling the differential axillary bud activity. We used a combined physiological and "bottom-up" molecular approach to shed light on this process and found that first two inner located buds do not seem to experience dormancy during the growth cycle, while mid-located buds enter dormancy by the end of the growing season. Dormancy was assessed by weight increase and TgTB1 expression levels, a conserved TCP transcription factor and well-known master integrator of environmental and endogenous signals influencing axillary meristem outgrowth in plants. We showed that TgTB1 expression in tulip bulbs can be modulated by sucrose, cytokinin and strigolactone, just as it has been reported for other species. However, the limited growth of mid-located buds, even when their TgTB1 expression is downregulated, points at other factors, probably physical, inhibiting their growth. We conclude that the time of axillary bud initiation determines the degree of dormancy and the sink strength of the bud. Thus, development, apical dominance, sink strength, hormonal cross-talk, expression of TgTB1 and other possibly physical but unidentified players, all converge to determine the growth capacity of tulip axillary buds.
Participation of the Olfactory Bulb in Circadian Organization during Early Postnatal Life in Rabbits
Navarrete, Erika; Ortega-Bernal, Juan Roberto; Trejo-Muñoz, Lucero; Díaz, Georgina; Montúfar-Chaveznava, Rodrigo; Caldelas, Ivette
2016-01-01
Experimental evidence indicates that during pre-visual stages of development in mammals, circadian regulation is still not under the control of the light-entrainable hypothalamic pacemaker, raising the possibility that the circadian rhythmicity that occurs during postnatal development is under the control of peripheral oscillators, such as the main olfactory bulb (MOB). We evaluated the outcome of olfactory bulbectomy on the temporal pattern of core body temperature and gross locomotor activity in newborn rabbits. From postnatal day 1 (P1), pups were randomly assigned to one of the following conditions: intact pups (INT), intact pups fed by enteral gavage (INT+ENT), sham operated pups (SHAM), pups with unilateral lesions of the olfactory bulb (OBx-UNI), and pups with bilateral lesions of the olfactory bulb (OBx-BI). At the beginning of the experiment, from P1-8, the animals in all groups were fed at 11:00, from P9-13 the feeding schedule was delayed 6 h (17:00), and finally, from P14-15 the animals were subjected to fasting conditions. The rabbit pups of the INT, INT+ENT, SHAM and OBx-UNI groups exhibited a clear circadian rhythmicity in body temperature and locomotor activity, with a conspicuous anticipatory rise hours prior to the nursing or feeding schedule, which persisted even during fasting conditions. In addition, phase delays in the nursing or feeding schedule induced a clear phase shift in both parameters. In contrast, the OBx-BI group exhibited atypical rhythmicity in both parameters under entrained conditions that altered the anticipatory component, as well as deficient phase control of both rhythms. The present results demonstrate that the expression of circadian rhythmicity at behavioral and physiological levels during early stages of rabbit development largely depends on the integrity of the main olfactory bulb. PMID:27305041
Microvasculature of the Olfactory Organ in the Japanese Monkey (Macaca fuscata fuscata)
NASA Astrophysics Data System (ADS)
Okada, Shigenori; Schraufnagel, Dean E.
2002-06-01
Olfaction is an important and primitive sense. As its importance has changed with evolution, anatomic adjustments have occurred in its structure and vasculature. Primates are a family of vertebrates that have had to develop their visual system to adapt to the arboreal environment and have evolved from a macrosmatic to a microsmatic species as the optic system has enlarged. This has resulted in anatomic changes of a small but critical area at the base of the brain. This paper describes the three-dimensional vascular anatomy of the olfactory organ of the Japanese monkey (Macaca fuscata fuscata). This is best understood by dividing the organ into three parts: the olfactory tract, olfactory bulb, and olfactory nerves in the nasal mucosa. The bulb can be partitioned into an outer or cortical part and inner or medullary part. The vasculature and tissue were examined grossly and with light microscopy and scanning electron microscopy of vascular corrosion casts. The olfactory tract and bulb were supplied by an arteriole from the anterior cerebral artery on each side. The tract was supplied by capillaries running spirally with a coarse network. At the olfactory bulb, the arteriole ramified into the intracortical and medullary branches that formed capillary networks. The bulbar intracortical capillaries were divided into two layers with different densities and vascular patterns. The capillaries of the superficial layer had a ladder-like pattern. The branches that ran into the medulla of the olfactory bulb were more widely spaced. Twigs from the posterior ethmoidal artery ran along the nerve fiber and formed intra- and extrafascicular networks. Each region of the olfactory organ had characteristic three-dimensional vascular patterns that were related to their cellular architecture.
2010-03-01
AFIT/GEM/ENV/10-M01 Abstract Rising global energy demand and natural disasters continuously threaten energy supplies and prices. As a result , the...light bulbs. The study used the Process-Sum and Economic Input-Output Life-cycle Assessment (EIO- LCA ) methods. The results of the study found that... results for this phase of the analysis. Summary This chapter has detailed the methodology used in this study. Using both LCCA and EIO- LCA allowed for
1981-01-14
wet-bulb temperature depression versus dry -bulb temperature, means and standard deviations of d-j-bulb, wet-bulb (over) SDD, 1473 UNCLASS IF I ED FC...distribution tables Dry -bulb temperature versud wet-bulb temperature Cumulative percentage frequency of distribution tables 20. and dew point...PART 5 PRECIPITATION PSYCHROMETRIC.DRY VS WET BULB SNOWFALL MEAN & STO 0EV SNOW EPTH DRY BULB, WET BULB, &DEW POINtI RELATIVE HUMIDITY PARTC SURFACE
Thermal injury secondary to laparoscopic fiber-optic cables.
Hindle, A Katharine; Brody, Fred; Hopkins, Vernon; Rosales, Greg; Gonzalez, Florencia; Schwartz, Arnold
2009-08-01
Laparoscopy requires a reliable light source to provide adequate visualization. However, thermal energy is produced as a by-product from the optical cable. This study attempts to quantify the degree of possible thermal damage secondary to the fiber-optic light source. Using a digital thermometer, temperature measurements were recorded at the tip of optical cables from five different light sources (Karl Storz, Inc., Tuttlingen, Germany). Temperature measurements were recorded with new and old bulbs. The tip of the cable was applied to surgical drapes and the time to charring was recorded. Subsequently, the tip of the optical cable was applied to a porcine model and tissue samples were obtained after varying amounts of time (5, 15, 30, 60, and 90 s). Sections of the damaged tissue were prepared for microscopic evaluation. Parameters for thermal injury included extent of epidermal, dermal, and subcutaneous fat damage and necrosis. The lateral extent and depth of injury were measured. The maximum temperature at the tip of the optical cable varied between 119.5 degrees C and 268.6 degrees C. When surgical drapes were exposed to the tip of the light source, the time to char was 3-6 s. The degree and volume of injury increased with longer exposure times, and significant injury was recorded with the optical cable 3 mm from the skin. This study demonstrates that the temperature at the tip of the optical light cord can induce extensive damage. The by-product of light, heat, can produce immediate superficial tissue necrosis that can extend into the subcutaneous fat even when the optical tip is not in direct contact with the skin. In addition, our study shows the variation in temperature that exists between light sources and bulb status. Overall, surgeons must realize and respect the potential complications associated with optical technology.
Lee, Seung Un; Lee, Jong Ha; Choi, Suk Hyun; Lee, Jin Shik; Ohnisi-Kameyama, Mayumi; Kozukue, Nobuyuki; Levin, Carol E; Friedman, Mendel
2008-09-24
Onion plants synthesize flavonoids as protection against damage by UV radiation and by intracellular hydrogen peroxide. Because flavonoids also exhibit health-promoting effects in humans, a need exists to measure their content in onions and in processed onion products. To contribute to the knowledge about the levels of onion flavonoids, HPLC and LC-MS were used to measure levels of seven quercetin and isorhamnetin glucosides in four Korean commercial onion bulb varieties and their distribution within the onion, in scales of field-grown onions exposed to home processing or to fluorescent light and in 16 commercial dehydrated onion products sold in the United States. Small onions had higher flavonoid content per kilogram than large ones. There was a graduated decrease in the distribution of the flavonoids across an onion bulb from the first (outside) to the seventh (innermost) scale. Commercial, dehydrated onion products contained low amounts or no flavonoids. Losses of onion flavonoids subjected to "cooking" (in percent) ranged as follows: frying, 33; sauteing, 21; boiling, 14-20; steaming, 14; microwaving, 4; baking, 0. Exposure to fluorescent light for 24 and 48 h induced time-dependent increases in the flavonoid content. The results extend the knowledge about the distribution of flavonoids in fresh and processed onions.
Light Bulbs and Change: Systems Thinking and Organisational Learning for New Ventures
ERIC Educational Resources Information Center
Hebel, Misha
2007-01-01
Purpose: The purpose of the paper is to revisit the practical worth of different systems thinking tools applied to three different business clients, which may be dismissed by academic researchers as theoretically old fashioned. Design/methodology/approach: The methodologies used are systems-based (SSM, VSM and causal loop diagrams), culminating in…
DOT National Transportation Integrated Search
2015-06-01
With the slowing of the American economy since 2008, it has become imperative that municipalities : identify areas in which costs can be reduced while still providing needed services to its constituents. The : use of traffic signals equipped with lig...
ERIC Educational Resources Information Center
Sandifer, Cody
2009-01-01
Students' eyes grow wide with wonder as they get a motor to work or make a bulb light for the first time. As these daunting feats of electrical engineering remind us, teaching electricity is invariably rewarding and worthwhile. In this inquiry-based science project, elementary students work in pairs to design and wire a shoe box "room" that meets…
Students Will Erupt with Excitement over New Book
ERIC Educational Resources Information Center
Curriculum Review, 2009
2009-01-01
Imagine recreating a tsunami's force in a bathtub or exploring the potential of geothermal energy by using steam from a kettle to illuminate a light bulb. These types of activities and more are offered in Matthew Levy and Mario Salvadori's collection of experiments and demonstrations in Earthquakes, Volcanoes and Tsunamis. More than 30 easy and…
Supercharging Lessons with a Virtual Lab
ERIC Educational Resources Information Center
Stewart, Jefferson; Vincent, Daniel
2013-01-01
The authors describes their experiences incorporating the virtual lab into a simple circuit lesson during an energy unit in a sixth-grade class. The lesson included a hands-on group experiment using wire, batteries, and light bulbs to make a circuit and an online simulation, using a virtual lab. Class discussions, student inquiries, and the study…
26 CFR 48.4218-1 - Tax on use by manufacturer, producer, or importer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the incorporation of a taxable article, such as an electric light bulb, into a nontaxable article... type electric or gas clothes drier incorporated in a combination washer-drier. (b) Household type electric, gas, or oil cooking range combined either with a range using other means of heating or with a...
26 CFR 48.4218-1 - Tax on use by manufacturer, producer, or importer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the incorporation of a taxable article, such as an electric light bulb, into a nontaxable article... type electric or gas clothes drier incorporated in a combination washer-drier. (b) Household type electric, gas, or oil cooking range combined either with a range using other means of heating or with a...
Laboratory plate tectonics: a new experiment.
Gans, R F
1976-03-26
A "continent" made of a layer of hexagonally packed black polyethylene spheres floating in clear silicon oil breaks into subcontinents when illuminated by an ordinary incandescent light bulb. This experiment may be a useful model of plate tectonics driven by horizontal temperature gradients. Measurements of the spreading rate are made to establish the feasibility of this model.
ERIC Educational Resources Information Center
Daane, Abigail R.; Wells, Lindsay; Scherr, Rachel E.
2014-01-01
Energy Theater is a dynamic, full-body activity that engages all students in representing the flow of energy in various phenomena, such as a light bulb burning steadily or a refrigerator cooling food. In Energy Theater, each participant acts as a unit of energy that has one form at a time. Regions on the floor correspond to objects in a physical…
2009-03-01
focus of much semiconductor research. GaN alloyed materials have moved 2 to the forefront of modern semiconductor device technology owing to their...LEDs are used in place of incandescent light bulbs, they consume 80-90% less power and provide lifetimes over 10 times longer than incandescent light...of various lengths of time . Finally, comparisons are made between the results of this research and those from other researchers. Chapter 6
Dilworth, R.H.; Borkowski, C.J.
1961-12-26
A transistorized, fountain pen type radiation monitor to be worn on the person is described. Radiation produces both light flashes in a small bulb and an audible warning tone, the frequency of both the tone and light flashes being proportional to radiation intensity. The device is powered by a battery and a blocking oscillator step-up power supply The oscillator frequency- is regulated to be proportional to the radiation intensity, to provide adequate power in high radiation fields, yet minimize battery drain at low operating intensities. (AEC)
Murphy, Michael K; Volsky, Peter G; Darrow, David H
2015-11-01
To test the hypothesis that a substantial proportion of laryngoscopes exhibit substandard illuminance by comparing laryngoscope illuminance in a tertiary-level medical center to established standards and identifying features associated with poor illuminance. Cross-sectional observational study. Academic tertiary care medical center (level 1 trauma center, specialty cardiac hospital, and general hospital). Laryngoscopes from main, cardiac, and outpatient operating rooms; emergency department; and code carts were tested using a standard technique. Illuminance (lux) was chosen as the outcome measure. Benchmarks were derived from the International Standards Organization and medical literature. Light types included incandescent bulb, light-emitting diode, and xenon. Personnel were surveyed regarding maintenance practices. Across all hospitals, 691 laryngoscopes were tested. Mean (SD) illuminance was 810 (700) lux for incandescent bulb-on-blade designs (n = 237), 1860 (1220) lux for incandescent bulb in-handle designs (n = 79), 4730 (3210) lux for LED (n = 354), and 28,800 (34,500) lux for xenon (n = 21). Seven percent of units failed to turn on (n = 45). Using an established threshold of 867 lux, 28% of devices (47% of incandescent, 12% of LED, and 10% of xenon) were substandard. All laryngoscopes were cleaned according to standard protocols following use; no preventive maintenance was reported. Twenty-eight percent of laryngoscopes in a tertiary care hospital exhibit substandard illuminance; these results corroborate the findings of our inaugural study on this subject. Consequently, our hospital is instituting changes to reduce the likelihood of substandard performance by laryngoscopes in circulation. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
The nervus terminalis in the mouse: light and electron microscopic immunocytochemical studies.
Jennes, L
1987-01-01
The distribution of gonadotropin-releasing hormone (GnRH)-containing neurons and fibers in the olfactory bulb was studied with light and electron microscopic immunohistochemistry in combination with retrograde transport of "True Blue" and horseradish peroxidase and lesion experiments. GnRH-positive neurons are found in the septal roots of the nervus terminalis, in the ganglion terminale, intrafascicularly throughout the nervus terminalis, in a dorso-ventral band in the caudal olfactory bulb, in various layers of the main and accessory olfactory bulb, and in the basal aspects of the nasal epithelium. Electron microscopic studies show that the nerve fibers in the nervus terminalis are not myelinated and are not surrounded by Schwann cell sheaths. In the ganglion terminale, "smooth" GnRH neurons are seen in juxtaposition to immunonegative neurons. Occasionally, axosomatic specializations are found in the ganglion terminale, but such synaptic contacts are not seen intrafascicularly in the nervus terminalis. Retrograde transport studies indicate that certain GnRH neurons in the septal roots of the nervus terminalis were linked to the amygdala. In addition, a subpopulation of nervus terminalis-related GnRH neurons has access to fenestrated capillaries whereas other GnRH neurons terminate at the nasal epithelium. Lesions of the nervus terminalis caudal to the ganglion terminale result in sprouting of GnRH fibers at both sites of the knife cut. The results suggest that GnRH in the olfactory system of the mouse can influence a variety of target sites either via the blood stream, via the external cerebrospinal fluid or via synaptic/asynaptic contacts with, for example, the receptor cells in the nasal mucosa.
Microfluidic reactors for visible-light photocatalytic water purification assisted with thermolysis
Wang, Ning; Tan, Furui; Wan, Li; Wu, Mengchun
2014-01-01
Photocatalytic water purification using visible light is under intense research in the hope to use sunlight efficiently, but the conventional bulk reactors are slow and complicated. This paper presents an integrated microfluidic planar reactor for visible-light photocatalysis with the merits of fine flow control, short reaction time, small sample volume, and long photocatalyst durability. One additional feature is that it enables one to use both the light and the heat energy of the light source simultaneously. The reactor consists of a BiVO4-coated glass as the substrate, a blank glass slide as the cover, and a UV-curable adhesive layer as the spacer and sealant. A blue light emitting diode panel (footprint 10 mm × 10 mm) is mounted on the microreactor to provide uniform irradiation over the whole reactor chamber, ensuring optimal utilization of the photons and easy adjustments of the light intensity and the reaction temperature. This microreactor may provide a versatile platform for studying the photocatalysis under combined conditions such as different temperatures, different light intensities, and different flow rates. Moreover, the microreactor demonstrates significant photodegradation with a reaction time of about 10 s, much shorter than typically a few hours using the bulk reactors, showing its potential as a rapid kit for characterization of photocatalyst performance. PMID:25584117
Period and pulse duration with "strobe" lights
NASA Astrophysics Data System (ADS)
Birriel, Jennifer
2016-01-01
Strobe lights have traditionally been discussed in The Physics Teacher in the context of stop action strobe photography. During the Halloween season most department and hardware stores sell inexpensive, compact "strobe" lights (although these can be found online year round). These lights generally sell for under 10 and usually employ LED lights. Most such devices have a rotary switch to adjust the rate at which the LED bulbs flash. This rotary switch is not calibrated—i.e., it has no markings to indicate the rate, but in general the greater the rotation of the switch from the off position, the faster the rate of flashing. We show how these simple devices can be used with a light sensor to study both the frequency of flashing and the duration of the light pulse. We briefly discuss if these devices are truly strobe lights.
Re-designing illumination level in printing working area
NASA Astrophysics Data System (ADS)
Wahyuni, D.; Tambunan, M.; Panjaitan, N.; Budiman, I.
2018-02-01
This research was conducted in four printing business in Medan city. The illumination level on the research object is very low around 30 Lux far below the required value of government regulation at 200 Lux. Poor lighting has an impact on the number of defective products that pass the inspection, so we need to improve the workspace lighting to improve the quality of work. The method of determining the measuring point follows SNI 16-7062-2004, and the measuring instrument used is 4 in 1 Environment Meter. The results show that almost all workspaces under study require improved lighting, because the light bulbs used are not able to meet the lighting needs. This research recommends improving the workspace lighting using LED (Light Emitting Diode) lights because it has high energy efficiency and relatively more lifetime compared to the existing lamp.
Flicker Vision of Selected Light Sources
NASA Astrophysics Data System (ADS)
Otomański, Przemysław; Wiczyński, Grzegorz; Zając, Bartosz
2017-10-01
The results of the laboratory research concerning a dependence of flicker vision on voltage fluctuations are presented in the paper. The research was realized on a designed measuring stand, which included an examined light source, a voltage generator with amplitude modulation supplying the light source and a positioning system of the observer with respect to the observed surface. In this research, the following light sources were used: one incandescent lamp and four LED luminaires by different producers. The research results formulate a conclusion concerning the description of the influence of voltage fluctuations on flicker viewing for selected light sources. The research results indicate that LED luminaires are less susceptible to voltage fluctuations than incandescent bulbs and that flicker vision strongly depends on the type of LED source.
Lesna, Izabela; da Silva, Fernando R; Sato, Yukie; Sabelis, Maurice W; Lommen, Suzanne T E
2014-06-01
The dry bulb mite, Aceria tulipae, is the most important pest of stored tulip bulbs in The Netherlands. This tiny, eriophyoid mite hides in the narrow space between scales in the interior of the bulb. To achieve biological control of this hidden pest, candidate predators small enough to move in between the bulb scales are required. Earlier experiments have shown this potential for the phytoseiid mite, Neoseiulus cucumeris, but only after the bulbs were exposed to ethylene, a plant hormone that causes a slight increase in the distance between tulip bulb scales, just sufficient to allow this predator to reach the interior part of the bulb. Applying ethylene, however, is not an option in practice because it causes malformation of tulip flowers. In fact, to prevent this cosmetic damage, bulb growers ventilate rooms where tulip bulbs are stored, thereby removing ethylene produced by the bulbs (e.g. in response to mite or fungus infestation). Recently, studies on the role of predatory mites in controlling another eriophyoid mite on coconuts led to the discovery of an exceptionally small phytoseiid mite, Neoseiulus paspalivorus. This predator is able to move under the perianth of coconuts where coconut mites feed on meristematic tissue of the fruit. This discovery prompted us to test N. paspalivorus for its ability to control A. tulipae on tulip bulbs under storage conditions (ventilated rooms with bulbs in open boxes; 23 °C; storage period June-October). Using destructive sampling we monitored predator and prey populations in two series of replicated experiments, one at a high initial level of dry bulb mite infestation, late in the storage period, and another at a low initial dry bulb mite infestation, halfway the storage period. The first and the second series involved treatment with N. paspalivorus and a control experiment, but the second series had an additional treatment in which the predator N. cucumeris was released. Taking the two series of experiments together we found that N. paspalivorus controlled the populations of dry bulb mites both on the outer scale of the bulbs as well as in the interior part of the bulbs, whereas N. cucumeris significantly reduced the population of dry bulb mites on the outer scale, but not in the interior part of the bulb. Moreover, N. paspalivorus was found predominantly inside the bulb, whereas N. cucumeris was only found on the outer scale, thereby confirming our hypothesis that the small size of N. paspalivorus facilitates access to the interior of the bulbs. We argue that N. paspalivorus is a promising candidate for the biological control of dry bulb mites on tulip bulbs under storage conditions in the Netherlands.
Onion epidermis as a new model to study the control of growth anisotropy in higher plants.
Suslov, Dmitry; Verbelen, Jean-Pierre; Vissenberg, Kris
2009-01-01
To elucidate the role of cellulose microfibrils in the control of growth anisotropy, a link between their net orientation, in vitro cell wall extensibility, and anisotropic cell expansion was studied during development of the adaxial epidermis of onion (Allium cepa) bulb scales using polarization confocal microscopy, creep tests, and light microscopy. During growth the net cellulose alignment across the whole thickness of the outer epidermal wall changed from transverse through random to longitudinal and back to transverse relative to the bulb axis. Cell wall extension in vitro was always higher transverse than parallel to the net cellulose alignment. The direction of growth anisotropy was perpendicular to the net microfibril orientation and changed during development from longitudinal to transverse to the bulb axis. The correlation between the degree of growth anisotropy and the net cellulose alignment was poor. Thus the net cellulose microfibril orientation across the whole thickness of the outer periclinal epidermis wall defines the direction but not the degree of growth anisotropy. Strips isolated from the epidermis in the directions perpendicular and transverse to a net cellulose orientation can be used as an extensiometric model to prove a protein involvement in the control of growth anisotropy.
ERIC Educational Resources Information Center
Litts, Breanne K.; Kafai, Yasmin B.; Lui, Debora A.; Walker, Justice T.; Widman, Sari A.
2017-01-01
Learning about circuitry by connecting a battery, light bulb, and wires is a common activity in many science classrooms. In this paper, we expand students' learning about circuitry with electronic textiles, which use conductive thread instead of wires and sewable LEDs instead of lightbulbs, by integrating programming sensor inputs and light…
Sticker Shock--There's a High Price to Pay for Ignorance about Electricity
ERIC Educational Resources Information Center
Roy, Ken
2005-01-01
Lighting a fluorescent bulb by touching it to the nose of a student who has one hand on an electrostatic generator is an illuminating demonstration of the properties of voltage. It demonstrates that the several hundred thousand volts of electricity passing through the student's body are not dangerous. However, students and teachers need to…
Modeling Hidden Circuits: An Authentic Research Experience in One Lab Period
ERIC Educational Resources Information Center
Moore, J. Christopher; Rubbo, Louis J.
2016-01-01
Two wires exit a black box that has three exposed light bulbs connected together in an unknown configuration. The task for students is to determine the circuit configuration without opening the box. In the activity described in this paper, we navigate students through the process of making models, developing and conducting experiments that can…
Music through the Skin--Simple Demonstration of Human Electrical Conductivity
ERIC Educational Resources Information Center
Vollmer, M.; Möllmann, K. P.
2016-01-01
The conduction of electricity is an important topic for any basic physics course. Issues of safety often results in teacher demonstration experiments in front of the class or in extremely simple though--for students--not really fascinating (not to say boring) hands on activities for everybody using 1.5 V batteries, cables and light bulbs etc. Here…
In Search of the Dimensions of an Incandescent Light Bulb Filament
ERIC Educational Resources Information Center
Ladino, Luis A.; Rondón, Hermilda S.
2018-01-01
The purpose of this paper is to present and discuss an alternative solution to an experimental problem given to high school students in the XXII Ibero-American Physics Olympiad held by Colombia this year. From the measurements of electric current and potential difference across a small tungsten filament lamp students should find the dimensions of…
Cyclic tests of P-bulb end-seal designs for a shuttle-type wing-elevon cove membrane seal
NASA Technical Reports Server (NTRS)
Hunt, L. R.
1979-01-01
Four P-bulb end seal designs were tested at room temperature in a cyclic seal test apparatus. Test results show that all the P-bulb end seals have the durability required for a 100 mission life (neglecting possible elevated-temperature effects) and three of the four P-bulbs provide an adequate seal against a 7.0-kPa air pressure differential. Antifriction material attached to the P-bulb rub surface reduced friction slightly but could degrade the sealing effectiveness. A flat rub surface molded into the P-bulb discouraged wrinkling and rolling and thereby reduced leakage. However, the P-bulbs lacked resilience, as indicated by increased leakage when P-bulb compression was reduced. The best P-bulb design tested included an antifriction interface bonded to a flat surface molded into the P-bulb.
White light Sagnac interferometer—a common (path) tale of light
NASA Astrophysics Data System (ADS)
Schwartz, Eyal
2017-11-01
White or polychromatic light sources are vastly abundant in nature and lie in our most basic understanding of the theory of light, beginning from stars like our Sun and extending to every common household light bulb or street lamp. In this paper, I present concepts of white light interferometery using a common-path Sagnac interferometer, manifested in a straightforward laboratory experiment. I further show the use of this as a Fourier transform spectrometer while presenting a basic overview of the theoretical concepts and spectrum of different light sources obtained experimentally. This work, both experimentally and analytically, is suitable for upper-level undergraduate physics or engineering courses where electromagnetic theory and optics are discussed. The experiment and theory presents important deep concepts and aspects in modern optics and physics that every science student should acquire.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Jain, Prashant K.; Powers, Jeffrey J.
The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments usingmore » equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.« less
[Effects of stereoscopic cultivation on photosynthetic characteristics and growth of Tulipa edulis].
Sun, Yuan; Guo, Qiao-Sheng; Zhu, Zai-Biao; Lin, Jian-Luo; Zhou, Bo-Ya; Zhao, Min-Jie
2016-06-01
The effect of stereoscopic cultivation on the growth, photosynthetic characteristics and yield of Tulipa edulis was studied to explore the feasibility of stereoscopic cultivation on efficient cultivation of T.edulis. Total leaf area and photosynthetic parameters of T.edulis under stereoscopic cultivation (the upper, middle and the lower layers ) and the control were measured using LI-3100 leaf area meter and LI-6400XT photosynthesis system in the growing peak period of T.edulis.Plant biomass and biomass allocation were also determined.In addition, the bulb regeneration and yield of T.edulis were measured in the harvesting time.The results indicated that in the middle layer of stereoscopic cultivation, leaf biomass proportion was the highest, but total bulb fresh and dry weight and output growth (fresh weight) were the lowest among the treatments.And total bulb fresh weight in the middle of stereoscopic cultivation reduced significantly, by 22.84%, compared with the control.Light intensity in the lower layer of stereoscopic cultivation was moderate, in which T.edulis net photosynthetic rate and water use efficiency were higher than those of the other layers of stereoscopic cultivation, and bulb biomass proportion was the highest in all the treatments.No significant difference was detected in the total bulb fresh weight, dry weight and output growth (fresh weight) between the middle layer of stereoscopic cultivation and the control.In general, there was no significant difference in the growth status of T.edulis between stereoscopic cultivation and the control.Stereoscopic cultivation increased the yield of T.edulis by 161.66% in fresh weight and 141.35% in dry weight compared with the control in the condition of the same land area, respectively.In conclusion, stereoscopic cultivation can improve space utilization, increase the production, and achieve the high density cultivation of T.edulis. Copyright© by the Chinese Pharmaceutical Association.
DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Paul Y
2010-12-10
An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.
Lighting: The Killer App of Village Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-01
This paper looks at lighting systems as the major market for village level power generation. To the consumer it is something which is needed, could come from a much friendlier source, and the issues of affordability, convenience, and reliability are important. To the supplier lighting has an enormous range of potential customers, it opens the opportunity for other services, and even small demand can give big returns. Because the efficiency of the light source is critical to the number of lights which a fixed power supply can drive, it is important to pick the proper type of bulb to usemore » in this system. The paper discusses test results from an array of fluorescent and incadescent lamps, compared with a kerosene lamp. Low wattage fluorescents seem to perform the best.« less
Recycled Glass and Dredged Materials
2007-03-01
stations, and is either source-separated or co-mingled with plastics, aluminum cans, ceramics , or colored glass containers. In the United States in...anything other than container glass ). The debris may contain contaminants including ceramics (from dishware, pottery, window glass , light bulbs...ERDC TN-DOER-T8 March 2007 Recycled Glass and Dredged Materials by Landris T. Lee, Jr. PURPOSE: This technical note explores the concepts
Creating Illusions of Knowledge: Learning Errors that Contradict Prior Knowledge
ERIC Educational Resources Information Center
Fazio, Lisa K.; Barber, Sarah J.; Rajaram, Suparna; Ornstein, Peter A.; Marsh, Elizabeth J.
2013-01-01
Most people know that the Pacific is the largest ocean on Earth and that Edison invented the light bulb. Our question is whether this knowledge is stable, or if people will incorporate errors into their knowledge bases, even if they have the correct knowledge stored in memory. To test this, we asked participants general-knowledge questions 2 weeks…
Mary Pickersgill: The Woman Who Sewed the Star-Spangled Banner
ERIC Educational Resources Information Center
Smith, Megan; Wei, Jenny
2013-01-01
Just imagine: you live in a time before electricity. There are no sewing machines, no light bulbs, and certainly no television shows to keep you entertained. You spend six days a week working 12-hours each day inside your small home with four teenage girls and your elderly mother. This was the life of Mary Pickersgill, the woman who sewed the…
Creating a Simple Electric Circuit with Children between the Ages of Five and Six
ERIC Educational Resources Information Center
Kada, Vasiliki; Ravanis, Kostantinos
2016-01-01
This paper presents a study of how preschool-aged children go about creating and operating a simple electric circuit (wires, light bulb, and battery), and how they view the elements that comprise it, particularly how they view the role of the battery. The research involved 108 children aged between five and six, who were individually interviewed.…
16 CFR 503.4 - Net quantity of contents, numerical count.
Code of Federal Regulations, 2010 CFR
2010-01-01
... clearly expresses the fact that only one unit is contained in the package. Thus the unit synthetic sponge... sponge,” “one light bulb,” or “one dry cell battery.” However, there still exists the necessity to.... For example, the synthetic sponge which is packaged, requires dimensions such as “5 in. × 3 in. × 1 in...
ERIC Educational Resources Information Center
Tobia, Ed; Chauvin, Ramona; Lewis, Dale; Hammel, Patti
2011-01-01
Sometimes partners find one another when they're not looking. In South Carolina, education leaders at Georgetown County School District were seeking only information when they attended a workshop sponsored by the South Carolina Department of Education. The two-day learning experience, provided by SEDL, a nonprofit organization based in Austin,…
Tielemans, M; Compere, Ph; Geerts, S O; Lamy, M; Limme, M; De Moor, R J G; Delmé, K I M; Bertrand, M F; Rompen, E; Nammour, S
2009-01-01
In this study, we compared the microleakage of composite fillings cured with halogen bulb, LED and argon ion laser (488 nm). Twenty-four extracted human molars were divided randomly in three groups. Six cavities were prepared on the coronal part of each tooth. Standard cavities (1.7 x 2 mm) were prepared. Cavities were acid etched, sealed with Scotch Bond 1 and filled by a hybrid composite. Cavities were exposed to one light source, thermocycled and immersed in a 2% methylene blue dye solution. Dye penetration in the leakage of cavities was recorded using a digital optical microscope. Mean values of percentage of dye penetrations in microleakages of cavities were 49.303 +/- 5.178% for cavities cured with LED, 44.486 +/- 6.075% with halogen bulb and 36.647 +/- 5.936% for those cured by argon laser. Statistically significant difference exists between cavities cured by halogen vs LED (P < 0.01), halogen vs laser (P < 0.001) and LED vs laser (P < 0.001). The lowest microleakage was observed in the cavities and composites cured with argon ion laser.
OLED-based physiologically-friendly very low-color temperature illumination for night
NASA Astrophysics Data System (ADS)
Jou, Jwo-Huei; Shen, Shih-Ming; Tang, Ming-Chun; Chen, Pin-Chu; Chen, Szu-Hao; Wang, Yi-Shan; Chen, Chien-Chih; Wang, Ching-Chun; Hsieh, Chun-Yu; Lin, Chin-Chiao; Chen, Chien-Tien
2012-09-01
Numerous medical research studies reveal intense white or blue light to drastically suppress at night the secretion of melatonin (MLT), a protective oncostatic hormone. Lighting devices with lower color-temperature (CT) possess lesser MLT suppression effect based on the same luminance, explaining why physicians have long been calling for the development of lighting sources with low CT or free from blue emission for use at night to safeguard human health. We will demonstrate in the presentation the fabrication of OLED devices with very-low CT, especially those with CT much lower than that of incandescent bulbs (2500K) or even candles (2000K). Without any light extraction method, OLEDs with an around 1800K CT are easily obtainable with an efficacy of 30 lm/W at 1,000 nits. To also ensure high color-rendering to provide visual comfort, low CT OLEDs composing long wavelength dominant 5-spectrum emission have been fabricated. While keeping the color-rendering index as high as 85 and CT as low as 2100K, the resulting efficacy can also be much greater than that of incandescent bulbs (15 lm/W), proving these low CT OLED devices to be also capable of being energy-saving and high quality. The color-temperature can be further decreased to 1700K or lower upon removing the undesired short wavelength emission but on the cost of losing some color rendering index. It is hoped that the devised energy-saving, high quality low CT OLED could properly echo the call for a physiologically-friendly illumination for night, and more attention could be drawn to the development of MLT suppression-less non-white light.
ERIC Educational Resources Information Center
Primack, Joel
1975-01-01
The reactor safety controversy is reviewed in light of the United States Atomic Energy Commission's Reactor Safety Study and the Report to the American Physical Society by the Study Group on Light Water Reactor Safety. Areas of agreement and disagreement are identified and implications for national policy are explored. (BT)
Neutrino scattering and the reactor antineutrino anomaly
NASA Astrophysics Data System (ADS)
Garcés, Estela; Cañas, Blanca; Miranda, Omar; Parada, Alexander
2017-12-01
Low energy threshold reactor experiments have the potential to give insight into the light sterile neutrino signal provided by the reactor antineutrino anomaly and the gallium anomaly. In this work we analyze short baseline reactor experiments that detect by elastic neutrino electron scattering in the context of a light sterile neutrino signal. We also analyze the sensitivity of experimental proposals of coherent elastic neutrino nucleus scattering (CENNS) detectors in order to exclude or confirm the sterile neutrino signal with reactor antineutrinos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loflin, Leonard; McRimmon, Beth
2014-12-18
This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Tao; Letoquin, Ronan; Keller, Bernd
An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and a remote planar phosphor carrier having at least one conversion material. The phosphor carrier can be remote to the light sources and mounted to the heat sink so that heat from the phosphor carrier spreads into the heat sink. The phosphor carrier can comprise a thermally conductive transparent material and a phosphor layer, with an LED based light source mounted to the heat sink such that light from the light source passes through the phosphor carrier. At least some of the LED lightmore » is converted by the phosphor carrier, with some lamp embodiments emitting a white light combination of LED and phosphor light. The phosphor arranged according to the present invention can operate at lower temperature to thereby operate at greater phosphor conversion efficiency and with reduced heat related damage to the phosphor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichman, K.; Tsao, J.; Mayfield, M.
The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRCmore » and the International Piping Integrity Research Group is also briefly summarized.« less
77 FR 55877 - Initial Test Program of Condensate and Feedwater Systems for Light-Water Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
...-492- 3668; email: [email protected] . NRC's Agencywide Documents Access and Management System... Systems for Light-Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Systems for Boiling Water Reactor Power Plants.'' This regulatory guide is being revised to: (1) Expand...
1975-06-16
dry -bulb temperature, means and standard d~viatinne nf eirg-hiiih- wM~e-.h,lh (y DD 1473 ~ UNCLASSIFIED SECURIS- CLASSIFICATION OF THIS PAGE(Ifnon...Val. Entoted) 19. Percentqge frequency of distribution tables Dry -bulb temperature versus wet-bulb temperature Cumulative percentage frequency of...ATMOSPHERIC PHENOMENA EXTREME MAX & MIN TEMP PART B PRECIPITATION PSYCHROMETRIC- DRY VS WET BULB SNOWFALL MEAN & STD DEV - ( DRY BULB, WET BULB, & DEW
Photoenhanced uptakes of NO2 by indoor surfaces: A new HONO source
NASA Astrophysics Data System (ADS)
Gligorovski, S.; Bartolomei, V.; Soergel, M.; Gomez Alvarez, E.; Zetzsch, C.; Wortham, H.
2012-12-01
Nitrous acid (HONO) is a known household pollutant that can lead to human respiratory tract irritation. HONO acts as the nitrosating agent, e.g. by the formation of the so-called third-hand smoke after wall reactions of HONO with nicotine (1). HONO can be generated indoors directly during combustion processes or indirectly via heterogeneous NO2 reactions with adsorbed water on diverse surfaces (2). Recently a new source was identified as another path of HONO formation in the troposphere (3). Namely, the light-induced heterogeneous reaction of NO2 with adsorbed organics (known as photosensitizers) on various surfaces such as roads, buildings, rocks or plants leads to enhanced HONO production. The detected values of HONO indoors vary in the range between 2 and 25 parts per billion (ppb). However, like outdoors, the processes leading to HONO formation indoors are not completely understood (4). Indoor photolysis radiation sources include exterior sunlight (λ>350 nm) that enters typically through the windows and indoor illumination sources, i.e., rare gas/mercury fluorescent light bulbs and tungsten and tungsten/halogen light bulbs among others. The present work is showing the importance of indoor sources of HONO recently identified or postulated. We have tested a number of common household chemical agents commonly used for cleaning purposes or coatings of domestic surfaces to better identify different indoor HONO sources. We used a heterogeneous flow tube technique to test the HONO production potentials of these household chemical agents under different experimental conditions, namely with and without light and at different relative humidity levels and different NO2 concentrations. We report uptake kinetics measurements of the heterogeneous reaction of gas phase NO2 with lacquer and paint coated on the walls of the reactor. The flow tube was irradiated with four near-ultraviolet (UV) emitting lamps (range of wavelengths 300-420nm). We observed that the heterogeneous conversion of NO2 to HONO on lacquer surfaces and on white wall paints is substantially enhanced in the presence of light and at higher relative humidity (RH = 60%). In runs carried out applying experimental conditions typically found indoors, i.e., NO2 mixing ratios of 25 ppb and 60% RH%, the observed NO2 uptakes on a surface coated with lacquer and paint showed an enhancement of one order of magnitude in the presence of light as compared to the uptake observed in the dark. Our results indicate, contrary to other study that claimed that humidity does not influence the NO2 reactions with adsorbed organics, that actually both postulated HONO sources combined i.e. heterogeneous NO2 reactions with adsorbed organics (photosensitizers) in presence of elevated humidity leads to even more pronounced HONO production. Reference: 1. M., Sleiman, L. A., Gundel, J. F., Pankow, P., Jacob, B. C., Singer, H., Destaillats, P. Natl. Acad. Sci. USA, 107, 6576 (2010). 2. B. J. Finlayson-Pitts, L. M. Wingen, A. L. Sumner, D. Syomin, K. A. Ramazan, Phys. Chem. Chem. Phys. 5, 223 (2003). 3. K., Stemmler, M., Ammann, C., Donders, J., Kleffmann, C., George, Nature 440, 195 (2006). 4. E. Gomez Alvarez, H. Wortham, R. Strekowski, C. Zetzsch, S. Gligorovski, Environ. Sci. Technol., 46, 1955 (2012).
Nitric oxide fumigation for control of bulb mites on flower bulbs and tubers
USDA-ARS?s Scientific Manuscript database
Nitric oxide fumigation was studied for efficacy to control bulb mites in the genus Rhizoglyphus and effects on germination and growth of flower bulbs and tubers. Bulb mites on infested peanuts were fumigated with nitric oxide at different concentrations under ultralow oxygen conditions in 1.9L jar...
Lemasters, John J; Ramshesh, Venkat K; Lovelace, Gregory L; Lim, John; Wright, Graham D; Harland, Duane; Dawson, Thomas L
2017-07-01
Little is known about the energetics of growing hair follicles, particularly in the mitochondrially abundant bulb. Here, mitochondrial and oxidative metabolism was visualized by multiphoton and light sheet microscopy in cultured bovine hair follicles and plucked human hairs. Mitochondrial membrane potential (ΔΨ), cell viability, reactive oxygen species (ROS), and secretory granules were assessed with parameter-indicating fluorophores. In growing follicles, lower bulb epithelial cells had high viability, and mitochondria were polarized. Most epithelially generated ROS co-localized with polarized mitochondria. As the imaging plane captured more central and distal cells, ΔΨ disappeared abruptly at a transition to a nonfluorescent core continuous with the hair shaft. Approaching the transition, ΔΨ and ROS increased, and secretory granules disappeared. ROS and ΔΨ were strongest in a circumferential paraxial ring at putative sites for formation of the outer cortex/cuticle of the hair shaft. By contrast, polarized mitochondria in dermal papillar fibroblasts produced minimal ROS. Plucked hairs showed a similar abrupt transition of degranulation/depolarization near sites of keratin deposition, as well as an ROS-generating paraxial ring of fire. Hair movement out of the follicle appeared to occur independently of follicular bulb bioenergetics by a tractor mechanism involving the inner and outer root sheaths. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Light and electron microscopic immunocytochemical localization of two major proteins in garlic bulb.
Wen, G Y; Mato, A; Wisniewski, H M; Malik, M N; Jenkins, E C; Sheikh, A M; Kim, K S
1995-08-01
Garlic is known as a potent spice and a medicine with broad therapeutic properties ranging from antibacterial to anticancer, antidiabetic, and anticoagulant. Two major proteins of 40 KD and 14 KD constituting approximately 96% of total garlic proteins have been recently purified at our Institute. This immunocytochemical and ultrastructural study revealed that the 40 KD protein was localized in the parenchyma sheath cells (PSC) of garlic bulbs, whereas the 14 KD protein was present in the cortical cells (CC). Immunogold electron microscopy study indicated that the 40 KD protein was specifically localized in the globular granules of the cytoplasmic area of PSC. Each globular granule was amorphous and homogenous with membrane limiting its outermost layer. The yellowish color of PSC in freshly cut slices of garlic bulb suggested that PSC may have sulfur-containing compounds such as allicin, the primary contributor of the pungency and medicinal properties of garlic. Ellman's reagent test quantitatively revealed that there were 17.8 n moles sulfhydryl (SH)/ml of 40 KD garlic protein. Microtubule tubulin in mitotic figures from PHA-stimulated human short-term whole blood cultures reacted strongly with antitubulin antibody but reacted negatively with anti-40 KD garlic protein antibodies and therefore was not related to the 40 KD garlic protein immunocytochemically.
Denker, Elsa; Manuel, Michaël; Leclère, Lucas; Le Guyader, Hervé; Rabet, Nicolas
2008-03-01
Nematogenesis, the production of stinging cells (nematocytes) in Cnidaria, can be considered as a model neurogenic process. Most molecular data concern the freshwater polyp Hydra, in which nematocyte production is scattered throughout the body column ectoderm, the mature cells then migrating to the tentacles. We have characterized tentacular nematogenesis in the Clytia hemisphaerica hydromedusa and found it to be confined to the ectoderm of the tentacle bulb, a specialized swelling at the tentacle base. Analysis by a variety of light and electron microscope techniques revealed that while cellular aspects of nematogenesis are similar to Hydra, the spatio-temporal characteristics are markedly more ordered. The tentacle bulb nematogenic ectoderm (TBE) was found to be polarized, with a clear progression of successive nematoblast stages from a proximal zone (comprising a majority of undifferentiated cells) to the distal end where the tentacle starts. Pulse-chase labelling experiments demonstrated a continuous displacement of differentiating nematoblasts towards the tentacle tip, and that nematogenesis proceeds more rapidly in Clytia than in Hydra. Compact expression domains of orthologues of known nematogenesis-associated genes (Piwi, dickkopf-3, minicollagens and NOWA) were correspondingly staggered along the TBE. These distinct characteristics make the Clytia TBE a promising experimental system for understanding the mechanisms regulating nematogenesis.
Tam, Shu K.E.; Hasan, Sibah; Brown, Laurence A.; Jagannath, Aarti; Hankins, Mark W.; Foster, Russell G.; Vyazovskiy, Vladyslav V.
2017-01-01
Circadian rhythms optimize physiology and behavior to the varying demands of the 24 h day. The master circadian clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and it regulates circadian oscillators in tissues throughout the body to prevent internal desynchrony. Here, we demonstrate for the first time that, under standard 12 h:12 h light/dark (LD) cycles, object, visuospatial, and olfactory recognition performance in C57BL/6J mice is consistently better at midday relative to midnight. However, under repeated exposure to constant light (rLL), recognition performance becomes desynchronized, with object and visuospatial performance better at subjective midday and olfactory performance better at subjective midnight. This desynchrony in behavioral performance is mirrored by changes in expression of the canonical clock genes Period1 and Period2 (Per1 and Per2), as well as the immediate-early gene Fos in the SCN, dorsal hippocampus, and olfactory bulb. Under rLL, rhythmic Per1 and Fos expression is attenuated in the SCN. In contrast, hippocampal gene expression remains rhythmic, mirroring object and visuospatial performance. Strikingly, Per1 and Fos expression in the olfactory bulb is reversed, mirroring the inverted olfactory performance. Temporal desynchrony among these regions does not result in arrhythmicity because core body temperature and exploratory activity rhythms persist under rLL. Our data provide the first demonstration that abnormal lighting conditions can give rise to temporal desynchrony between autonomous circadian oscillators in different regions, with different consequences for performance across different sensory domains. Such a dispersed network of dissociable circadian oscillators may provide greater flexibility when faced with conflicting environmental signals. SIGNIFICANCE STATEMENT A master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus regulates physiology and behavior across the 24 h day by synchronizing peripheral clocks throughout the brain and body. Without the SCN, these peripheral clocks rapidly become desynchronized. Here, we provide a unique demonstration that, under lighting conditions in which the central clock in the SCN is dampened, peripheral oscillators in the hippocampus and olfactory bulb become desynchronized, along with the behavioral processes mediated by these clocks. Multiple clocks that adopt different phase relationships may enable processes occurring in different brain regions to be optimized to specific phases of the 24 h day. Moreover, such a dispersed network of dissociable circadian clocks may provide greater flexibility when faced with conflicting environmental signals (e.g., seasonal changes in photoperiod). PMID:28264977
EXTENSION OF STORAGE LIFE OF GARLIC BULBS BY $gamma$-IRRADIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, P.B.
1963-12-01
Garlic bulbs were packaged in polyethylene bags and irradiated with 5 krad of Co/sup 60/ gamma rays. Irradiated and control bulbs were stored at 11- 12 deg C. Weight loss, number of bulbs sprouted, and number of bulbs decayed were greater in the control group than in the irradiated group. No adverse effect on the taste, flavor, texture, or pungency of irradiated garlic bulbs was determined organo-leptically at the end of seven months storage. (H.M.G.)
Microwave lamp with multi-purpose rotary motor
Ury, Michael G.; Turner, Brian; Wooten, Robert D.
1999-01-01
In a microwave powered electrodeless lamp, a single rotary motor is used to a) rotate the bulb and b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooling for providing cooler gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement.
MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter
2001-01-01
A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.
ERIC Educational Resources Information Center
Whitaker, Robert J.
2009-01-01
One of Paul Hewitt's "Figuring Physics" that appeared in this journal dealt with the heating of a motor. This phenomenon can be demonstrated with a miniature motor and a bulb as part of a series of activities with "batteries and bulbs." Students examine the effect on the brightness of a single bulb when a second, identical bulb is placed in series…
Quick Critics: Speeding up the Publication of Reviews from Years to Months
ERIC Educational Resources Information Center
Howard, Jennifer
2009-01-01
In metabolic terms, publishing in the humanities is more couch potato than sprinter. An idea can take years to move from light-bulb stage to manuscript to finished book. Add another year, or two or three, before an author can expect to see reviews of that book in academic journals. That slows down an already glutted system. "It's just appalling…
Rank the Voltage across Light Bulbs … Then Set up the Live Experiment
ERIC Educational Resources Information Center
Jacobs, Greg C.
2018-01-01
The Tasks Inspired by Physics Education Research (TIPERS) workbooks pose questions in styles quite different from the end-of-chapter problems that those of us of a certain age were assigned back in the days before Netscape. My own spin on TIPERS is not just to do them on paper, but to have students set up the situations in the laboratory to…
ERIC Educational Resources Information Center
Malott, Richard W.
2010-01-01
In the provocatively titled "I'll Save the World from Global Warming--Tomorrow," Dick Malott says that although we all want to do the right thing to help the environment, whether it's buying and installing compact fluorescent light bulbs (CFLs) or replacing an energy-guzzling appliance with a more efficient one, we put it off because there's no…
Stochastic digital holography for visualizing inside strongly refracting transparent objects.
Desse, Jean-Michel; Picart, Pascal
2015-01-01
This paper presents a digital holographic method to visualize and measure refractive index variations, convection currents, or thermal gradients, occurring inside a transparent and refracting object. The proof of principle is provided through the visualization of refractive index variation inside a lighting bulb. Comparison with transmission and reflection holography is also provided. A very good agreement is obtained, thus validating the proposed approach.
2009-06-01
bricks a day, for which they are paid $3. To cover their daily expenses—including food, electricity for a single 60-watt light bulb, and medical care...parties, such as medical and social service providers, who paid for services required as a result of the crime. But beyond providing for these... Medical School study found that children in gold mining communities in Ecuador showed neurological abnormalities resulting from mercury and cyanide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Poore, III, Willis P.; Brown, Nicholas R.
2017-03-01
This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-basedmore » description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.« less
Visible light photocatalysis as a greener approach to photochemical synthesis.
Yoon, Tehshik P; Ischay, Michael A; Du, Juana
2010-07-01
Light can be considered an ideal reagent for environmentally friendly, 'green' chemical synthesis; unlike many conventional reagents, light is non-toxic, generates no waste, and can be obtained from renewable sources. Nevertheless, the need for high-energy ultraviolet radiation in most organic photochemical processes has limited both the practicality and environmental benefits of photochemical synthesis on industrially relevant scales. This perspective describes recent approaches to the use of metal polypyridyl photocatalysts in synthetic organic transformations. Given the remarkable photophysical properties of these complexes, these new transformations, which use Ru(bpy)(3)(2+) and related photocatalysts, can be conducted using almost any source of visible light, including both store-bought fluorescent light bulbs and ambient sunlight. Transition metal photocatalysis thus represents a promising strategy towards the development of practical, scalable industrial processes with great environmental benefits.
Calibrating excitation light fluxes for quantitative light microscopy in cell biology
Grünwald, David; Shenoy, Shailesh M; Burke, Sean; Singer, Robert H
2011-01-01
Power output of light bulbs changes over time and the total energy delivered will depend on the optical beam path of the microscope, filter sets and objectives used, thus making comparison between experiments performed on different microscopes complicated. Using a thermocoupled power meter, it is possible to measure the exact amount of light applied to a specimen in fluorescence microscopy, regardless of the light source, as the light power measured can be translated into a power density at the sample. This widely used and simple tool forms the basis of a new degree of calibration precision and comparability of results among experiments and setups. Here we describe an easy-to-follow protocol that allows researchers to precisely estimate excitation intensities in the object plane, using commercially available opto-mechanical components. The total duration of this protocol for one objective and six filter cubes is 75 min including start-up time for the lamp. PMID:18974739
Study on light and thermal energy of illumination device for plant factory design
NASA Astrophysics Data System (ADS)
Yoshida, A.; Moriuchi, K.; Ueda, Y.; Kinoshita, S.
2018-01-01
To investigate the effect of illumination devices on the yield of crops cultivated in a plant factory, it is necessary to measure the actual cultivation environmental factors related to the plant growth and understand the distribution ratio of light and thermal energy to the electrical energy injected into the illumination device. Based on cultivation results, we found that light intensity greatly affected the growth of plant weight. Regarding the selection of illumination device, its spectral components also affected the morphological change. Lighting experiments using a high frequency (Hf) fluorescent lamp and a light emitting diode (LED) bulb were performed. A certain difference was found in the distribution ratio of light energy to electrical energy between Hf and LED. It was showed that by placing the safety equipment or internal circuits outside the cultivated site, the air conditioning load could be reduced.
Femtowatt incoherent image conversion from mid-infrared light to near-infrared light
NASA Astrophysics Data System (ADS)
Huang, Nan; Liu, Hongjun; Wang, Zhaolu; Han, Jing; Zhang, Shuan
2017-03-01
We report on the experimental conversion imaging of an incoherent continuous-wave dim source from mid-infrared light to near-infrared light with a lowest input power of 31 femtowatt (fW). Incoherent mid-infrared images of light emission from a heat lamp bulb with an adjustable power supply at window wavelengths ranging from 2.9 µm to 3.5 µm are used for upconversion. The sum-frequency generation is realized in a laser cavity with the resonant wavelength of 1064 nm pumped by an LD at 806 nm built around a periodically poled lithium niobate (PPLN) crystal. The converted infrared image in the wavelength range ~785 nm with a resolution of about 120 × 70 is low-noise detected using a silicon-based camera. By optimizing the system parameters, the upconversion quantum efficiency is predicted to be 28% for correctly polarized, on-axis and phase-matching light.
Auditory and visual localization accuracy in young children and adults.
Martin, Karen; Johnstone, Patti; Hedrick, Mark
2015-06-01
This study aimed to measure and compare sound and light source localization ability in young children and adults who have normal hearing and normal/corrected vision in order to determine the extent to which age, type of stimuli, and stimulus order affects sound localization accuracy. Two experiments were conducted. The first involved a group of adults only. The second involved a group of 30 children aged 3 to 5 years. Testing occurred in a sound-treated booth containing a semi-circular array of 15 loudspeakers set at 10° intervals from -70° to 70° azimuth. Each loudspeaker had a tiny light bulb and a small picture fastened underneath. Seven of the loudspeakers were used to randomly test sound and light source identification. The sound stimulus was the word "baseball". The light stimulus was a flashing of a light bulb triggered by the digital signal of the word "baseball". Each participant was asked to face 0° azimuth, and identify the location of the test stimulus upon presentation. Adults used a computer mouse to click on an icon; children responded by verbally naming or walking toward the picture underneath the corresponding loudspeaker or light. A mixed experimental design using repeated measures was used to determine the effect of age and stimulus type on localization accuracy in children and adults. A mixed experimental design was used to compare the effect of stimulus order (light first/last) and varying or fixed intensity sound on localization accuracy in children and adults. Localization accuracy was significantly better for light stimuli than sound stimuli for children and adults. Children, compared to adults, showed significantly greater localization errors for audition. Three-year-old children had significantly greater sound localization errors compared to 4- and 5-year olds. Adults performed better on the sound localization task when the light localization task occurred first. Young children can understand and attend to localization tasks, but show poorer localization accuracy than adults in sound localization. This may be a reflection of differences in sensory modality development and/or central processes in young children, compared to adults. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Jones, N B; Riley, C; Sheya, M S; Hosseinmardi, M M
1984-01-01
A need for a colorimeter with low capital and maintenance costs has been suggested for countries with foreign exchange problems and no local medical instrumentation industry. This paper puts forward a design for such a device based on a domestic light-bulb, photographic filters and photovoltaic cells. The principle of the design is the use of a balancing technique involving twin light paths for test solution and reference solution and an electronic bridge circuit. It is shown that proper selection of the components will allow the cost objectives to be met and also provide acceptable linearity, precision, accuracy and repeatability.
Microwave lamp with multi-purpose rotary motor
Ury, M.G.; Turner, B.; Wooten, R.D.
1999-02-02
In a microwave powered electrodeless lamp, a single rotary motor is used to (a) rotate the bulb and (b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooler for providing cooling gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement. 8 figs.
Airado, Carmen; Gómez, Carmela; Recio, Javier S; Baltanás, Fernando C; Weruaga, Eduardo; Alonso, José R
2008-12-01
Zinc ions are selectively accumulated in certain neurons (zinc-enriched neurons). The mouse olfactory bulb is richly innervated by zinc-enriched terminals. Here, the plasticity of the zincergic system was studied in the olfactory bulb of the Purkinje Cell Degeneration mutant mouse, an animal with specific postnatal neurodegeneration of the main projection neurons of the olfactory bulb. The analysis focused particularly on the anterior olfactory nucleus since most centrifugal afferents coming to the olfactory bulb arise from this structure. Zinc-enriched terminals in the olfactory bulb and zinc-enriched somata in the anterior olfactory nucleus were visualized after selenite injections. Immunohistochemistry against the vesicular zinc transporter was also carried out to confirm the distribution pattern of zinc-enriched terminals in the olfactory bulb. The mutant mice showed a clear reorganization of zincergic centrifugal projections from the anterior olfactory nucleus to the olfactory bulb. First, all zincergic contralateral neurons projecting to the olfactory bulb were absent in the mutant mice. Second, a significant increase in the number of stained somata was detected in the ipsilateral anterior olfactory nucleus. Since no noticeable changes were observed in the zinc-enriched terminals in the olfactory bulb, it is conceivable that mitral cell loss could induce a reorganization of zinc-enriched projections coming from the anterior olfactory nucleus, probably directed at balancing the global zincergic centrifugal modulation. These results show that zincergic anterior olfactory nucleus cells projecting to the olfactory bulb undergo plastic changes to adapt to the loss of mitral cells in the olfactory bulb of Purkinje Cell Degeneration mutant mice.
Light Sources and Ballast Circuits
NASA Astrophysics Data System (ADS)
Yorifuji, Takashi; Sakai, Makoto; Yasuda, Takeo; Maehara, Akiyoshi; Okada, Atsunori; Gouriki, Takeshi; Mannami, Tomoaki
According to the machinery statistics by Ministry of Economy, Trade and Industry (METI), the total of domestic light bulb production in 2006 was 1,101 million (88.5% year-on-year). Production for general purpose illumination light bulbs and halogen light bulbs accounted for 122 million (99.2% y/y) and 45 million (96.3% y/y), respectively. The total of fluorescent lamp production was 988 million (114.9%) and the production of general purpose fluorescent lamps excluding backlights accounted for 367 million (101.7% y/y). Further, HID lamp production was 10 million (106.3% y/y). What is noteworthy regarding such lamp production is that, similar to the previous year, the sales volume (amount) of lamps for general illumination exceeded 100% against the previous year, indicating a steady shift to high value added products. Major lighting exhibitions in 2006 included the Light + Building Trade Fair held in Frankfurt in April and the Light Fair International 2006 held in Las Vegas, U.S.A. in May, both of which demonstrated signs of acceleration toward energy saving, high efficiency and resource saving. As for incandescent lamps, products filled with larger atomic weight gases aiming at higher efficiency/longer life are becoming the mainstream. As for new technologies, it was experimentally demonstrated that infrared radiation can be suppressed by processing micro cavities to metal plates made of tungsten, tantalum, etc. For fluorescent lamps, straight and circular fluorescent lamps achieving a longer life/higher luminous flux maintenance factor continued to be widely developed/launched again this year. For compact fluorescent lamps, energy saving/high efficiency products, multifunctional type products combined with LED and new shaped products were launched. As to HID lamps, ceramic metal halide lamps with high efficiency, improved color rendering, longer life and higher luminous flux maintenance factor were commercialized one after another. Numerous studies and analyses, on discharge models were reported. Further, studies on ultra high-pressure mercury lamps as light sources for projectors are becoming the mainstream of HID lamp related researches. For high-pressure sodium lamps, many studies on plant growing and pest control utilizing low insect attracting aspects were also reported in 2006. Additionally, for discharge lamps, the minimum sustaining electric power for arc tubes employed in electrode-less compact fluorescent lamps was investigated. For Hg-free rare-gas fluorescent lamps, a luminance of 10,000cd/m2 was attained by a 1 meter-long external duplex spiral electrode prototype using Xe/Ne barrier discharge. As to startup circuits, the commercialization of energy saving and high value added products mainly associated with fluorescent lamps and HID lamps are becoming common. Further, the miniaturization of startup circuits for self electronic-ballasted lamps has advanced. Speaking of the overall light sources and startup circuits in 2006 and with the enforcement of RoHS in Europe in July, the momentum toward hazardous substance-free and energy saving initiatives has been enhanced from the perspective of protecting the global environment. It is anticipated that similar restrictions will be globally enforced in the future.
Extension of the TRANSURANUS burnup model to heavy water reactor conditions
NASA Astrophysics Data System (ADS)
Lassmann, K.; Walker, C. T.; van de Laar, J.
1998-06-01
The extension of the light water reactor burnup equations of the TRANSURANUS code to heavy water reactor conditions is described. Existing models for the fission of 235U and the buildup of plutonium in a heavy water reactor are evaluated. In order to overcome the limitations of the frequently used RADAR model at high burnup, a new model is presented. After verification against data for the radial distributions of Xe, Cs, Nd and Pu from electron probe microanalysis, the model is used to analyse the formation of the high burnup structure in a heavy water reactor. The new model allows the analysis of light water reactor fuel rod designs at high burnup in the OECD Halden Heavy Water Reactor.
Aratchige, N S; Lesna, I; Sabelis, M W
2004-01-01
Although odour-mediated interactions among plants, spider mites and predatory mites have been extensively studied above-ground, belowground studies are in their infancy. In this paper, we investigate whether feeding by rust mites (Aceria tulipae) cause tulip bulbs to produce odours that attract predatory mites (Neoseiulus cucumeris). Since our aim was to demonstrate such odours and not their relevance under soil conditions, the experiments were carried out using a classic Y-tube olfactometer in which the predators moved on a Y-shaped wire in open air. We found that food-deprived female predators can discriminate between odours from infested bulbs and odours from uninfested bulbs or artificially wounded bulbs. No significant difference in attractiveness to predators was found between clean bulbs and bulbs either wounded 30 min or 3 h before the experiment. These results indicate that it may not be simply the wounding of the bulbs, but rather the feeding by rust mites, which causes the bulb to release odours that attract N. cucumeris. Since bulbs are belowground plant structures, the olfactometer results demonstrate the potential for odour-mediated interactions in the soil. However, their importance in the actual soil medium remains to be demonstrated.
The effect of obturator bulb height on speech in maxillectomy patients.
Kwon, H B; Chang, S W; Lee, S H
2011-03-01
The purpose of this study was to compare the speech function of low height bulb obturators with that of high height bulb obturators. Thirteen maxillectomy patients, who underwent post-operative prosthodontic rehabilitations, were included. Two obturators of the same design except for different bulb heights were fabricated for each maxillectomy patient. One of the two obturators had high bulb design and the other had low bulb design. After one of the obturators was used for a period of 3 weeks, the patient's speaking functions were evaluated by measuring nasalance scores, formant frequencies, and vowel working space areas. The same procedures were repeated with the second obturator following another 3-week period of usage. In addition, the effect of delivery sequence and anatomic conditions related to maxillectomy were analysed. The results demonstrated that the nasalance scores with the low bulb obturators were significantly higher than those with the high bulb obturators. There were no significant differences in formant frequencies based on the bulb height of the obturators. The vowel working spaces for the two obturators were similar in shape and there were no significant differences between the vowel working space areas created by the two obturators. The delivery sequence affected the results. However, there were no significant differences related to the other anatomical variables. Although low bulb obturators might function similarly with high bulb obturators in terms of the articulation of speech, they would exhibit a difficulty in controlling hypernasality in maxillectomy patients. © 2010 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Lima de Azevedo, Ines Margarida
Energy efficiency and conservation is a very promising part of a portfolio of the needed strategies to mitigate climate change. Several technologies and energy efficiency measures in the residential sector offer potential for large energy savings. However, while energy efficiency options are currently considered as a means of reducing carbon emissions, there is still large uncertainty about the effect of such measures on overall carbon savings. The first part of this thesis provides a national assessment of the energy efficiency potential in the residential sector under several different scenarios, which include the perspectives of different economic agents (consumers, utilities, ESCOs, and a society). The scenarios also include maximizing energy, electricity or carbon dioxide savings. The second part of this thesis deals with a detailed assessment of the potential for white-light LEDs for energy and carbon dioxide savings in the U.S. commercial and residential sectors. Solid-state lighting shows great promise as a source of efficient, affordable, color-balanced white light. Indeed, assuming market discount rates, the present work demonstrates that white solid-state lighting already has a lower levelized annual cost (LAC) than incandescent bulbs and that it will be lower than that of the most efficient fluorescent bulbs by the end of this decade. However, a large literature indicates that households do not make their decisions in terms of simple expected economic value. The present analysis shows that incorporating the findings from literature on high implicit discount rates from households when performing decisions towards efficient technologies delays the adoption of white LEDs by a couple of years. After a review of the technology, the present work compares the electricity consumption, carbon emissions and cost-effectiveness of current lighting technologies, when accounting for expected performance evolution through 2015. Simulations of lighting electricity consumption and implicit greenhouse gases emissions for the U.S. residential and commercial sectors through 2015 under different policy scenarios (voluntary solid-state lighting adoption, implementation of lighting standards in new construction and rebate programs or equivalent subsidies) are also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Andrena
The Ida H. Goode Gymnasium was constructed in 1964 to serve as a focal point for academics, student recreation, and health and wellness activities. This 38,000 SF building contains a gymnasium with a stage, swimming pool, eight classrooms, a weight room, six offices and auxiliary spaces for the athletic programs. The gym is located on a 4-acre greenfield, which is slated for improvement and enhancement to future athletics program at Bennett College. The available funding for this project was used to weatherize the envelope of the gymnasium, installation of a new energy-efficient mechanical system, and a retrofit of the existingmore » lighting systems in the building’s interior. The envelope weatherization was completed without disturbing the building’s historic preservation eligibility. The existing heating system was replaced with a new high efficiency condensing system. The new heating system also includes a new Building Automation System which provides additional monitoring. Proper usage of this system will provide additional energy savings. Most of the existing interior lighting fixtures and bulbs were replaced with new LED and high efficiency T-8 bulbs and fixtures. Occupancy sensors were installed in applicable areas. The Ida Goode Gymnasium should experience high electricity and natural gas savings as well as operational/maintenance efficiency increases. The aesthetics of the building was maintained and the overall safety was improved.« less
An hourglass model for the flare of HST-1 in M87
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wen-Po; Zhao, Guang-Yao; Chen, Yong Jun
To explain the multi-wavelength light curves (from radio to X-ray) of HST-1 in the M87 jet, we propose an hourglass model that is a modified two-zone system of Tavecchio and Ghisellini (hereafter TG08): a slow hourglass-shaped or Laval-nozzle-shaped layer connected by two revolving exponential surfaces surrounding a fast spine through which plasma blobs flow. Based on the conservation of magnetic flux, the magnetic field changes along the axis of the hourglass. We adopt the result of TG08—the high-energy emission from GeV to TeV can be produced through inverse Compton by the two-zone system, and the photons from radio to X-raymore » are mainly radiated by the fast inner zone system. Here, we only discuss the light curves of the fast inner blob from radio to X-ray. When a compressible blob travels down the axis of the first bulb in the hourglass, because of magnetic flux conservation, its cross section experiences an adiabatic compression process, which results in particle acceleration and the brightening of HST-1. When the blob moves into the second bulb of the hourglass, because of magnetic flux conservation, the dimming of the knot occurs along with an adiabatic expansion of its cross section. A similar broken exponential function could fit the TeV peaks in M87, which may imply a correlation between the TeV flares of M87 and the light curves from radio to X-ray in HST-1. The Very Large Array (VLA) 22 GHz radio light curve of HST-1 verifies our prediction based on the model fit to the main peak of the VLA 15 GHz radio one.« less
High-irradiance reactor design with practical unfolded optics
NASA Astrophysics Data System (ADS)
Feuermann, Daniel; Gordon, Jeffrey M.
2008-08-01
In the design of high-temperature chemical reactors and furnaces, as well as high-radiance light projection applications, reconstituting the ultra-high radiance of short-arc discharge lamps at maximum radiative efficiency constitutes a significant challenge. The difficulty is exacerbated by the high numerical aperture necessary at both the source and the target. Separating the optic from both the light source and the target allows practical operation, control, monitoring, diagnostics and maintenance. We present near-field unfolded aplanatic optics as a feasible solution. The concept is illustrated with a design customized to a high-temperature chemical reactor for nano-material synthesis, driven by an ultra-bright xenon short-arc discharge lamp, with near-unity numerical aperture for both light input and light output. We report preliminary optical measurements for the first prototype, which constitutes a double-ellipsoid solution. We also propose compound unfolded aplanats that collect the full angular extent of lamp emission (in lieu of light recycling optics) and additionally permit nearly full-circumference irradiation of the reactor.
Uchida, Sae; Kagitani, Fusako
2017-05-12
The olfactory bulb receives cholinergic basal forebrain input, as does the neocortex; however, the in vivo physiological functions regarding the release of extracellular acetylcholine and regulation of regional blood flow in the olfactory bulb are unclear. We used in vivo microdialysis to measure the extracellular acetylcholine levels in the olfactory bulb of urethane-anesthetized rats. Focal chemical stimulation by microinjection of L-glutamate into the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, which is the main source of cholinergic input to the olfactory bulb, increased extracellular acetylcholine release in the ipsilateral olfactory bulb. When the regional cerebral blood flow was measured using laser speckle contrast imaging, the focal chemical stimulation of the HDB did not significantly alter the blood flow in the olfactory bulb, while increases were observed in the neocortex. Our results suggest a functional difference between the olfactory bulb and neocortex regarding cerebral blood flow regulation through the release of acetylcholine by cholinergic basal forebrain input.
Mechanical design of a light water breeder reactor
Fauth, Jr., William L.; Jones, Daniel S.; Kolsun, George J.; Erbes, John G.; Brennan, John J.; Weissburg, James A.; Sharbaugh, John E.
1976-01-01
In a light water reactor system using the thorium-232 -- uranium-233 fuel system in a seed-blanket modular core configuration having the modules arranged in a symmetrical array surrounded by a reflector blanket region, the seed regions are disposed for a longitudinal movement between the fixed or stationary blanket region which surrounds each seed region. Control of the reactor is obtained by moving the inner seed region thus changing the geometry of the reactor, and thereby changing the leakage of neutrons from the relatively small seed region into the blanket region. The mechanical design of the Light Water Breeder Reactor (LWBR) core includes means for axially positioning of movable fuel assemblies to achieve the neutron economy required of a breeder reactor, a structure necessary to adequately support the fuel modules without imposing penalties on the breeding capability, a structure necessary to support fuel rods in a closely packed array and a structure necessary to direct and control the flow of coolant to regions in the core in accordance with the heat transfer requirements.
Very low color-temperature organic light-emitting diodes for lighting at night
NASA Astrophysics Data System (ADS)
Jou, Jwo-Huei; Tang, Ming-Chun; Chen, Pin-Chu; Chen, Szu-Hao; Shen, Shih-Ming; Chen, Chien-Chih; Wang, Ching-Chiun; Chen, Chien-Tien
2011-12-01
Light sources with low color temperature (CT) are essential for their markedly less suppression effect on the secretion of melatonin, and high power efficiency is crucial for energy-saving. To provide visual comfort, the light source should also have a reasonably high color rendering index (CRI). In this report, we demonstrate the design and fabrication of low CT and high efficiency organic light-emitting diodes. The best resultant device exhibits a CT of 1,880 K, much lower than that of incandescent bulbs (2,000-2,500 K) and even as low as that of candles, (1,800-2,000 K), a beyond theoretical limit external quantum efficiency 22.7 %, and 36.0 lm/W at 100 cd/m 2. The high efficiency of the proposed device may be attributed to its interlayer, which helps effectively distribute the entering carriers into the available recombination zones.
[Energy saving and LED lamp lighting and human health].
Deĭnego, V N; Kaptsov, V A
2013-01-01
The appearance of new sources of high-intensity with large proportion of blue light in the spectrum revealed new risks of their influence on the function of the eye and human health, especially for children and teenagers. There is an urgent need to reconsider the research methods of vision hygiene in conditions of energy-saving and LED bulbs lighting. On the basis of a systematic approach and knowledge of the newly discovered photosensitive receptors there was built hierarchical model of the interaction of "light environment - the eye - the system of formation of visual images - the hormonal system of the person - his psycho-physiological state." This approach allowed us to develop a range of risk for the negative impact of spectrum on the functions of the eye and human health, as well as to formulate the hygiene requirements for energy-efficient high-intensity light sources.
New treatment of vertigo caused by jugular bulb abnormalities.
Hitier, Martin; Barbier, Charlotte; Marie-Aude, Thenint; Moreau, Sylvain; Courtheoux, Patrick; Patron, Vincent
2014-08-01
Jugular bulb abnormalities can induce tinnitus, hearing loss, or vertigo. Vertigo can be very disabling and may need surgical treatments with risk of hearing loss, major bleeding or facial palsy. Hence, we have developed a new treatment for vertigo caused by jugular bulb anomalies, using an endovascular technique. Three patients presented with severe vertigos mostly induced by high venous pressure. One patient showed downbeat vertical nystagmus during the Valsalva maneuver. The temporal-bone computed tomography scan showed a high rising jugular bulb or a jugular bulb diverticulum with dehiscence and compression of the vestibular aqueduct in all cases. We plugged the upper part of the bulb with coils, and we used a stent to maintain the coils and preserving the venous permeability. After 12- to 24-month follow-up, those patients experienced no more vertigo, allowing return to work. The 3-month arteriographs showed good permeability of the sigmoid sinus and jugular bulb through the stent, with complete obstruction of the upper part of the bulb in all cases. Disabling vertigo induced by jugular bulb abnormalities can be effectively treated by an endovascular technique. This technique is minimally invasive with a probable greater benefit/risk ratio compare with surgery. © The Author(s) 2013.
Characteristics of ultraviolet light and radicals formed by pulsed discharge in water
NASA Astrophysics Data System (ADS)
Sun, Bing; Kunitomo, Shinta; Igarashi, Chiaki
2006-09-01
In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.
Cho, Jungeun; Lee, Eun Jin; Yoo, Kil Sun; Lee, Seung Koo
2012-01-30
Lachrymatory factor (LF) synthase in onion bulbs reacts with S-1-propenyl-L-cysteine sulfoxide (1-PeCSO), a key compound in garlic greening. In this study, freeze-dried onion powder containing LF synthase was used in treatments to control garlic greening. Prior to the use of freeze-dried onion powder to treat greening garlic bulbs, model reactions were conducted to confirm the reactivity of 1-PeCSO in onion bulbs to garlic greening. While pink pigments were generated from 1-PeCSO, green pigments were produced from the combination of 1-PeCSO and S-2-propenyl-L-cysteine sulfoxide (2-PeCSO). However, pigments were formed in the systems containing 1-PeCSO, amino acid and alliinase. Even non-greening garlic bulbs stored at 20 °C turned green with the reaction of 200 g L(-1) 1-PeCSO; therefore 1-PeCSO isolated from onion bulbs had the same role as 1-PeCSO in garlic bulbs in terms of greening. Onion bulbs turned green after the addition of 600 g L(-1) 2-PeCSO. The addition of freeze-dried onion powder inhibited garlic greening, and treatment with 15 g kg(-1) onion powder gave the best storage stability of crushed garlic bulbs. The addition of freeze-dried onion powder inhibited the greening in crushed garlic bulbs, and treatment with 15 g kg(-1) onion powder gave the best storage stability of crushed garlic bulbs. Copyright © 2011 Society of Chemical Industry.
Khan, M Nisa
2015-07-20
Light-emitting diode (LED) technologies are undergoing very fast developments to enable household lamp products with improved energy efficiency and lighting properties at lower cost. Although many LED replacement lamps are claimed to provide similar or better lighting quality at lower electrical wattage compared with general-purpose incumbent lamps, certain lighting characteristics important to human vision are neglected in this comparison, which include glare-free illumination and omnidirectional or sufficiently broad light distribution with adequate homogeneity. In this paper, we comprehensively investigate the thermal and lighting performance and trade-offs for several commercial LED replacement lamps for the most popular Edison incandescent bulb. We present simulations and analyses for thermal and optical performance trade-offs for various LED lamps at the chip and module granularity levels. In addition, we present a novel, glare-free, and production-friendly LED lamp design optimized to produce very desirable light distribution properties as demonstrated by our simulation results, some of which are verified by experiments.
Ury, M.; Sowers, F.; Harper, C.; Love, W.
1998-11-24
A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector secured at the juncture of the two sections to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. The reflector is mounted in the cavity by tabs formed in the screen unit and bendable into the cavity to define support planes abutting respective surfaces of the reflector. The mesh section and tabs are preferably formed by etching a thin metal sheet. 7 figs.
Ury, Michael; Sowers, Frank; Harper, Curt; Love, Wayne
1998-01-01
A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector secured at the juncture of the two sections to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. The reflector is mounted in the cavity by tabs formed in the screen unit and bendable into the cavity to define support planes abutting respective surfaces of the reflector. The mesh section and tabs are preferably formed by etching a thin metal sheet.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... Increase the Maximum Reactor Power Level, Florida Power & Light Company, St. Lucie, Units 1 and 2 AGENCY... amendment for Renewed Facility Operating License Nos. DPR-67 and NPF-16, issued to Florida Power & Light... St. Lucie County, Florida. The proposed license amendment would increase the maximum thermal power...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellesen, C.; Grape, S.; Haakanson, A.
2013-07-01
Fertile blankets can be used in fast reactors to enhance the breeding gain as well as the passive safety characteristics. However, such blankets typically result in the production of weapons grade plutonium. For this reason they are often excluded from Generation IV reactor designs. In this paper we demonstrate that using blankets manufactured directly from spent light water (LWR) reactor fuel it is possible to produce a plutonium product with non-proliferation characteristics on a par with spent LWR fuel of 30-50 MWd/kg burnup. The beneficial breeding and safety characteristics are retained. (authors)
Preliminary Comparison of Radioactive Waste Disposal Cost for Fusion and Fission Reactors
NASA Astrophysics Data System (ADS)
Seki, Yasushi; Aoki, Isao; Yamano, Naoki; Tabara, Takashi
1997-09-01
The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a fission reactor has been evaluated and compared. Possible radwaste disposal scenario of fusion radwaste in Japan is considered. The exposure doses were evaluated for the skyshine of gamma-ray during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical light water fission reactor was evaluated using the same methodology as for the fusion reactors. It is found that radwaste from the fusion reactors using F82H and SiC/SiC composites without impurities could be disposed by the shallow land disposal presently applied to the low level waste in Japan. The disposal cost of radwaste from five fusion power reactors and a typical light water reactor were roughly evaluated and compared.
Ponlawat, Alongkot; Khongtak, Patcharee; Jaichapor, Boonsong; Pongsiri, Arissara; Evans, Brian P
2017-08-07
Sampling for adult mosquito populations is a means of evaluating the efficacy of vector control operations. The goal of this study was to evaluate and identify the most efficacious mosquito traps and combinations of attractants for malaria vector surveillance along the Thai-Myanmar border. In the first part of the study, the BG-Sentinel™ Trap (BGS Trap) and Centers for Disease Control and Prevention miniature light trap (CDC LT) baited with different attractants (BG-lure® and CO 2 ) were evaluated using a Latin square experimental design. The six configurations were BGS Trap with BG-lure, BGS Trap with BG-lure plus CO 2 , BGS Trap with CO 2 , CDC LT with BG-lure, CDC LT with BG lure plus CO 2 , and CDC LT with CO 2 . The second half of the study evaluated the impact of light color on malaria vector collections. Colors included the incandescent bulb, ultraviolet (UV) light-emitting diode (LED), green light stick, red light stick, green LED, and red LED. A total of 8638 mosquitoes consisting of 42 species were captured over 708 trap-nights. The trap types, attractants, and colored lights affected numbers of female anopheline and Anopheles minimus collected (GLM, P < 0.01). Results revealed that BGS Trap captured many anophelines but was significantly less than the CDC LT. The CDC LT, when baited with BG-lure plus CO 2 captured the greatest number of anopheline females with a catch rate significantly higher than the CDC LT baited with BG-lure or CO 2 alone (P < 0.05). The number of anopheline females collected from the CDC LT baited with CO 2 was greater than the CDC LT baited with BG-lure (646 vs 409 females). None of the alternative lights evaluated exceeded the performance of the incandescent light bulb in terms of the numbers of anopheline and An. minimus collected. We conclude that the CDC LT augmented with an incandescent light shows high potential for malaria vector surveillance when baited with CO 2 and the BG-lure in combination and can be effectively used as the new gold standard technique for collecting malaria vectors in Thailand.
A Fan-tastic Alternative to Bulbs: Learning Circuits with Fans
ERIC Educational Resources Information Center
Ekey, Robert; Edwards, Andrea; McCullough, Roy; Reitz, William; Mitchell, Brandon
2017-01-01
The incandescent bulb has been a useful tool for teaching basic electrical circuits, as brightness is related to the current or power flowing through a bulb. This has led to the development of qualitative pedagogical treatments for examining resistive combinations in simple circuits using bulbs and batteries, which were first introduced by James…
Exogenous ethylene inhibits sprout growth in onion bulbs
Bufler, Gebhard
2009-01-01
Background and Aims Exogenous ethylene has recently gained commercial interest as a sprouting inhibitor of onion bulbs. The role of ethylene in dormancy and sprouting of onions, however, is not known. Methods A cultivar (Allium cepa ‘Copra’) with a true period of dormancy was used. Dormant and sprouting states of onion bulbs were treated with supposedly saturating doses of ethylene or with the ethylene-action inhibitor 1-methylcyclopropene (1-MCP). Initial sprouting was determined during storage at 18 °C by monitoring leaf blade elongation in a specific size class of leaf sheaths. Changes in ATP content and sucrose synthase activity in the sprout leaves, indicators of the sprouting state, were determined. CO2 and ethylene production of onion bulbs during storage were recorded. Key results Exogenous ethylene suppressed sprout growth of both dormant and already sprouting onion bulbs by inhibiting leaf blade elongation. In contrast to this growth-inhibiting effect, ethylene stimulated CO2 production by the bulbs about 2-fold. The duration of dormancy was not significantly affected by exogenous ethylene. However, treatment of dormant bulbs with 1-MCP caused premature sprouting. Conclusions Exogenous ethylene proved to be a powerful inhibitor of sprout growth in onion bulbs. The dormancy breaking effect of 1-MCP indicates a regulatory role of endogenous ethylene in onion bulb dormancy. PMID:18940850
Exogenous ethylene inhibits sprout growth in onion bulbs.
Bufler, Gebhard
2009-01-01
Exogenous ethylene has recently gained commercial interest as a sprouting inhibitor of onion bulbs. The role of ethylene in dormancy and sprouting of onions, however, is not known. A cultivar (Allium cepa 'Copra') with a true period of dormancy was used. Dormant and sprouting states of onion bulbs were treated with supposedly saturating doses of ethylene or with the ethylene-action inhibitor 1-methylcyclopropene (1-MCP). Initial sprouting was determined during storage at 18 degrees C by monitoring leaf blade elongation in a specific size class of leaf sheaths. Changes in ATP content and sucrose synthase activity in the sprout leaves, indicators of the sprouting state, were determined. CO(2) and ethylene production of onion bulbs during storage were recorded. Exogenous ethylene suppressed sprout growth of both dormant and already sprouting onion bulbs by inhibiting leaf blade elongation. In contrast to this growth-inhibiting effect, ethylene stimulated CO(2) production by the bulbs about 2-fold. The duration of dormancy was not significantly affected by exogenous ethylene. However, treatment of dormant bulbs with 1-MCP caused premature sprouting. Exogenous ethylene proved to be a powerful inhibitor of sprout growth in onion bulbs. The dormancy breaking effect of 1-MCP indicates a regulatory role of endogenous ethylene in onion bulb dormancy.
Progressions of Qualitative Models as a Foundation for Intelligent Learning Environments
1986-05-01
knowledge form is that in addition to being efficient and powerul knowledge structures for studeiis to possess, they are also efficient and powerful ...reason "on their feet" about circuit behavibr, and is potentially a very powerful instructional task. Conventionally, however, troubleshooting is preceded...also be applied to a light bulb. 4. Kowledge differentiation -- The student learns about the differences &1 r 41 between two concepts. For instance
High Energy Density Polymer Film Capacitors
2006-10-01
abandoned when, under vacuum, a noticeable output frequency drift was observed, even when the tube ripple frequency was rejected by integrating over one...only minor circuitry and software changes. The selection of the light source proved more difficult. An earlier attempt to use a florescent tube was...bulb, which of course, led to a frequency drift interpretation by the sensor array (see graph 2). Even if the "self sputtering" behavior had not 14 been
Nervus terminalis innervation of the goldfish retina and behavioral visual sensitivity.
Davis, R E; Kyle, A; Klinger, P D
1988-08-31
The possibility that axon terminals of the nervus terminalis in the goldfish retina regulate visual sensitivity was examined psychophysically. Fish were classically conditioned to respond in darkness to a diffuse red light conditioned stimulus. Bilateral ablation of the olfactory bulb and telencephalon had no significant effect on response threshold which was measured by a staircase method. Retinopetal nervus terminalis fibres thus appear to play no role in maintaining scotopic photosensitivity.
Sixteenth ARPA Systems and Technology Symposium
1993-06-22
10:1 weight reduction over existing MILSTAR feed networks. 0 • In addition, EMS has demonstrated their dedication to ARPA and this technology bY cost...Corporation Computing Devices International DynCorp-Meridian COMSAT Laboratories E-Systems Inc. Context Systems Eastman Kodak Company Contraves Inc. EG&G CTA...were outstanding mathematicians and said, "Your first project is to compute how much volume and weight of water would fill the light bulb." He gave
Laryngoscope illuminance in a tertiary children's hospital: implications for quality laryngoscopy.
Volsky, Peter G; Murphy, Michael K; Darrow, David H
2014-07-01
Laryngoscopes are used by otolaryngologists in a variety of hospital emergency and critical care settings. However, only rarely have quality-related aspects of laryngoscope function and application been studied. To compare the illuminance of laryngoscopes commonly used in a hospital setting to established standards and to assess the potential effects of maintenance practices on laryngoscope illuminance. Observational study of laryngoscope light output and cross-sectional survey of individuals charged with laryngoscope maintenance in a tertiary care children's hospital. Illuminance was chosen as the unit of measurement (lux). Laryngoscopes in the operating room, emergency department, and pediatric intensive care unit were tested according to a standard technique. Illuminance standards for laryngoscopes, published by the International Organization for Standardization (ISO) (500 lux) and in the medical literature (867 lux) were used as benchmarks. Mean laryngoscope illuminance by type of laryngoscope and light source and percentage of laryngoscopes with illuminance below established standards as well as nonfunctioning units. Maintenance practices were evaluated as a secondary outcome. A total of 319 laryngoscopes were tested; 283 were incandescent bulb units used by anesthesiologists, emergency physicians, and intensivists and 36 were xenon light units used by otolaryngologists. Mean (SD) illuminance was 1330 (1160) lux in the incandescent group and 16,600 (13,000) lux in the xenon group (P < .001). Substandard illuminance was observed only in the incandescent group, in 29% to 43% of laryngoscopes; 5% of the incandescent group did not turn on at all. Maintenance of laryngoscopes was performed on a reactive rather than a preventive basis. At our facility, approximately one-third of incandescent laryngoscopes exhibited substandard light output. On the basis of these findings, our hospital has converted all of its incandescent laryngoscopes to light-emitting diode (LED) devices. Such changes, as well as the institution of a quality-control program including scheduled laryngoscope inspection and battery and bulb replacement for incandescent laryngoscopes, may reduce adverse events associated with poor-quality direct laryngoscopy.
Sodium leak detection system for liquid metal cooled nuclear reactors
Modarres, Dariush
1991-01-01
A light source is projected across the gap between the containment vessel and the reactor vessel. The reflected light is then analyzed with an absorption spectrometer. The presence of any sodium vapor along the optical path results in a change of the optical transmissivity of the media. Since the absorption spectrum of sodium is well known, the light source is chosen such that the sensor is responsive only to the presence of sodium molecules. The optical sensor is designed to be small and require a minimum of amount of change to the reactor containment vessel.
Advantages of liquid fluoride thorium reactor in comparison with light water reactor
NASA Astrophysics Data System (ADS)
Bahri, Che Nor Aniza Che Zainul; Majid, Amran Ab.; Al-Areqi, Wadeeah M.
2015-04-01
Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.
Advantages of liquid fluoride thorium reactor in comparison with light water reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahri, Che Nor Aniza Che Zainul, E-mail: anizazainul@gmail.com; Majid, Amran Ab.; Al-Areqi, Wadeeah M.
2015-04-29
Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclearmore » waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.« less
Touitou, Yvan; Touitou, David; Reinberg, Alain
2016-11-01
Although sleep is a key element in adolescent development, teens are spending increasing amounts of time online with health risks related to excessive use of electronic media (computers, smartphones, tablets, consoles…) negatively associated with daytime functioning and sleep outcomes. Adolescent sleep becomes irregular, shortened and delayed in relation with later sleep onset and early waking time due to early school starting times on weekdays which results in rhythm desynchronization and sleep loss. In addition, exposure of adolescents to the numerous electronic devices prior to bedtime has become a great concern because LEDs emit much more blue light than white incandescent bulbs and compact fluorescent bulbs and have therefore a greater impact on the biological clock. A large number of adolescents move to evening chronotype and experience a misalignment between biological and social rhythms which, added to sleep loss, results in e.g. fatigue, daytime sleepiness, behavioral problems and poor academic achievement. This paper on adolescent circadian disruption will review the sensitivity of adolescents to light including LEDs with the effects on the circadian system, the crosstalk between the clock and the pineal gland, the role of melatonin, and the behavior of some adolescents(media use, alcohol consumption, binge drinking, smoking habits, stimulant use…). Lastly, some practical recommendations and perspectives are put forward. The permanent social jet lag resulting in clock misalignment experienced by a number of adolescents should be considered as a matter of public health. Copyright © 2017 Elsevier Ltd. All rights reserved.
FY16 Status Report for the Uranium-Molybdenum Fuel Concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Wendy D.; Doherty, Ann L.; Henager, Charles H.
2016-09-22
The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal yearmore » 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.« less
Functional organization of glomerular maps in the mouse accessory olfactory bulb
Hammen, Gary F.; Turaga, Diwakar; Holy, Timothy E.; Meeks, Julian P.
2014-01-01
Summary The mammalian accessory olfactory system (AOS) extracts information about species, sex, and individual identity from social odors, but its functional organization remains unclear. We imaged presynaptic Ca2+ signals in vomeronasal inputs to the accessory olfactory bulb (AOB) during peripheral stimulation using light sheet microscopy. Urine- and steroid-responsive glomeruli densely innervated the anterior AOB. Glomerular activity maps for sexually mature female mouse urine overlapped maps for juvenile and/or gonadectomized urine of both sexes, whereas maps for sexually mature male urine were highly distinct. Further spatial analysis revealed a complicated organization involving selective juxtaposition and dispersal of functionally-grouped glomerular classes. Glomeruli that were similarly tuned to urines were often closely associated, whereas more disparately tuned glomeruli were selectively dispersed. Maps to a panel of sulfated steroid odorants identified tightly-juxtaposed groups that were disparately tuned and dispersed groups that were similarly tuned. These results reveal a modular, non-chemotopic spatial organization in the AOB. PMID:24880215
Solvent refined coal reactor quench system
Thorogood, Robert M.
1983-01-01
There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.
Solvent refined coal reactor quench system
Thorogood, R.M.
1983-11-08
There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.
Design, experimentation, and modeling of a novel continuous biodrying process
NASA Astrophysics Data System (ADS)
Navaee-Ardeh, Shahram
Massive production of sludge in the pulp and paper industry has made the effective sludge management increasingly a critical issue for the industry due to high landfill and transportation costs, and complex regulatory frameworks for options such as sludge landspreading and composting. Sludge dewatering challenges are exacerbated at many mills due to improved in-plant fiber recovery coupled with increased production of secondary sludge, leading to a mixed sludge with a high proportion of biological matter which is difficult to dewater. In this thesis, a novel continuous biodrying reactor was designed and developed for drying pulp and paper mixed sludge to economic dry solids level so that the dried sludge can be economically and safely combusted in a biomass boiler for energy recovery. In all experimental runs the economic dry solids level was achieved, proving the process successful. In the biodrying process, in addition to the forced aeration, the drying rates are enhanced by biological heat generated through the microbial activity of mesophilic and thermophilic microorganisms naturally present in the porous matrix of mixed sludge. This makes the biodrying process more attractive compared to the conventional drying techniques because the reactor is a self-heating process. The reactor is divided into four nominal compartments and the mixed sludge dries as it moves downward in the reactor. The residence times were 4-8 days, which are 2-3 times shorter than the residence times achieved in a batch biodrying reactor previously studied by our research group for mixed sludge drying. A process variable analysis was performed to determine the key variable(s) in the continuous biodrying reactor. Several variables were investigated, namely: type of biomass feed, pH of biomass, nutrition level (C/N ratio), residence times, recycle ratio of biodried sludge, and outlet relative humidity profile along the reactor height. The key variables that were identified in the continuous biodrying reactor were the type of biomass feed and the outlet relative humidity profiles. The biomass feed is mill specific and since one mill was studied for this study, the nutrition level of the biomass feed was found adequate for the microbial activity, and hence the type of biomass is a fixed parameter. The influence of outlet relative humidity profile was investigated on the overall performance and the complexity index of the continuous biodrying reactor. The best biodrying efficiency was achieved at an outlet relative humidity profile which controls the removal of unbound water at the wet-bulb temperature in the 1st and 2nd compartments of the reactor, and the removal of bound water at the dry-bulb temperature in the 3rd and 4th compartments. Through a systematic modeling approach, a 2-D model was developed to describe the transport phenomena in the continuous biodrying reactor. The results of the 2-D model were in satisfactory agreement with the experimental data. It was found that about 30% w/w of the total water removal (drying rate) takes place in the 1st and 2nd compartments mainly under a convection dominated mechanism, whereas about 70% w/w of the total water removal takes place in the 3rd and 4th compartments where a bioheat-diffusion dominated mechanism controls the transport phenomena. The 2-D model was found to be an appropriate tool for the estimation of the total water removal rate (drying rate) in the continuous biodrying reactor when compared to the 1-D model. A dimensionless analysis was performed on the 2-D model and established the preliminary criteria for the scale-up of the continuous biodrying process. Finally, a techno-economic assessment of the continuous biodrying process revealed that there is great potential for the implementation of the biodrying process in Canadian pulp and paper mills. The techno-economic results were compared to the other competitive existing drying technologies. It was proven that the continuous biodrying process results in significant economic benefits and has great potential to address the current industrial problems associated with sludge management.
Status report on the fusion breeder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moir, R.W.
1980-12-12
The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW m/sup -2/, and the hybrid should cost lessmore » than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are unusually rapid.« less
Flowering pathway is regulated by bulb size in Lilium longiflorum (Easter lily).
Lazare, S; Zaccai, M
2016-07-01
Lilium longiflorum (Easter lily) vegetative propagation occurs through production of underground bulbs containing apical and axillary meristems. In addition, sexual reproduction is achieved by flowering of elongated shoots above the bulb. It is generally accepted that L. longiflorum has an obligatory requirement for vernalisation and that long day (LD) regime hastens flowering. However, the effect of bulb size and origin, with respect to axillary or apical meristems on flowering, as well as the interactions between these meristems are largely unknown. The aim of this study was to explore the effect of bulb size, vernalisation and photoperiod on L. longiflorum flowering. To this end, we applied vernalisation and photoperiod treatments to the different bulb sizes and used a system of constant ambient temperature of 25 °C, above vernalisation spectrum, to avoid cold-dependent floral induction during plant growth. Vernalisation and LD hasten flowering in all bulbs. Large, non-vernalised bulbs invariably remained at a vegetative stage. However, small non-vernalised bulbs flowered under LD conditions. These results demonstrate for the first time that cold exposure is not an obligatory prerequisite for L. longiflorum flowering, and that an alternative flowering pathway can bypass vernalisation in small bulbs. We suggest that apical dominance interactions determine the distinct flowering pathways of the apical and axillary meristems. Similar floral induction is achieved in propagated bulblets from scaling. These innovative findings in the field of geophyte floral induction represent valuable applicative knowledge for lily production. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Design and implementation of a simple acousto optic dual control circuit
NASA Astrophysics Data System (ADS)
Li, Biqing; Li, Zhao
2017-04-01
This page proposed a simple light control circuit which designed by using power supply circuit, sonic circuits, electric circuit and delay circuit four parts. The main chip for CD4011, have inside of the four and to complete the sonic or circuit, electric, delay logic circuit. During the day, no matter how much a pedestrian voice, is ever shine light bulb. Dark night, circuit in a body to make the microphone as long as testing noise, and will automatically be bright for pedestrians lighting, several minutes after the automatic and put out, effective energy saving. Applicable scope and the working principle of the circuit principle diagram and given device parameters selection, power saving effect is obvious, at the same time greatly reduce the maintenance quantity, saving money, use effect is good.
Archer, G S
2018-05-01
Light-emitting diode (LED) light bulbs are becoming more prevalent in broiler production as they are dimmable and more energy efficient than compact fluorescent lamps. Although there is some research on how spectrum of light can affect production, little has been conducted on how it may affect stress, and behavior. To determine how different spectrum of light produced by LED lights could affect production, stress and behavior we raised broilers under either 2700 K (WARM) or 5000 K (COOL) color temperature LED bulbs. To determine stress susceptibility bilateral asymmetry (ASYM, n=128), plasma corticosterone concentrations (CORT, n=40) and heterophil/lymphocyte ratios (HL, n=80) were measured. Fear was measured using tonic immobility (TI, n=128), inversion (INV, n=128) and isolation (ISO, n=128). Weight gain and feed conversion ratio (FCR) were also determined. The COOL birds had lower ASYM (1.65±0.08 mm, P=0.001), CORT (5.8±1.2 ng/dl, P=0.01) and HL (0.16±0.01, P=0.03) than the WARM birds (2.38±0.14 mm, 13.4±2.7 ng/dl and 0.21±0.02, respectively). The COOL birds righted faster during TI (136.2±11.1 s, P=0.001), flapped less intensely during INV (4.1±0.1 flaps/s, P<0.001) and vocalized less during ISO (45.3±2.8 vocalizations, P=0.005) when compared with WARM birds (207.2±15.8 s, 4.9±0.1 flaps/s and 56.5±2.9 vocalizations). The COOL birds (2.89±0.03 kg, P=0.02) grew to a heavier weight at the end of 42 day then WARM birds (2.79±0.03 kg). The COOL birds (1.54±0.03) had better FCR (P=0.02) than WARM birds (1.61±0.01). These results demonstrate that raising broilers under 5000 K LED lights can reduce their stress, fear and increase weight gain when compared with 2700 K. These results indicate that the spectrum of light used for rearing of broilers is not only important for production, but also for welfare of the birds.
USDA-ARS?s Scientific Manuscript database
Approximately 1.6 million metric tons of onion bulbs are produced annually in the Pacific Northwest USA. Bulb decay can be a major problem and is caused by a variety of plant pathogens. Onion bulbs exhibiting symptoms of bacterial rot were sampled to determine the causal agents. Enterobacter cloacae...
[Introduction of hexaploid of Chinese narcissus and analysis of its chromosome change].
Wang, Rui; Zhang, Ya Nan; Wang, Ya Ying; Tian, Hui Qiao
2007-06-01
Anthers of Chinese narcissus (Narcissus tazetta L. var chinesis Roem) were used as explants for callus induction and plant regeneration. About 80% anthers produced callus and 28% of the callus differentiated out bulbs, making a good experiment system of tissue culture of Chinese narcissus for further cellular and gene engineering. The 700 callus were treated by 0.5% colchicin for 5-6 days and then transformed into a MS medium containing 3 mg/L 6-BA to induce differentiation. 90 bulbs were obtained and 55 bulbs among them were checked the chromosome number from their root tips for three times. 29 bulbs (53%, 29/55) still kept triploidy and the most cells of root tips contained 30 chromosomes. 22 bulbs (40%, 22/55) displayed aneuploidy and the most cells of its root tips contained 10-50 chromosomes. 4 bulbs displayed hexaploidy and contained 60 chromosomes. After three months growing, the cells of root tips containing aneuploidy chromosomes disappeared, and the bulbs became triploidy. The chromosomes of 4 hexaploidy bulbs did not changed during three checks. The origin and disappearance of aneuploidy cells of Chinese narcissus after treated by colchicin were discussed.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power... light-water-cooled nuclear power reactors licensed under 10 CFR part 50 or part 52 of this chapter. The...
Code of Federal Regulations, 2012 CFR
2012-01-01
... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power... light-water-cooled nuclear power reactors licensed under 10 CFR part 50 or part 52 of this chapter. The...
Code of Federal Regulations, 2014 CFR
2014-01-01
... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power... light-water-cooled nuclear power reactors licensed under 10 CFR part 50 or part 52 of this chapter. The...
Code of Federal Regulations, 2010 CFR
2010-01-01
... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...
World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)
One piece microwave container screens for electrodeless lamps
Turner, Brian; Ury, Michael
1998-01-01
A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. Replacing mesh material by solid metal material as part of the screen unit significantly reduces leakage of microwave energy from the lamp. The solid section has multiple compliant fingers defined therein for engaging the periphery of a flange on the waveguide unit so that a hose clamp can easily secure the screen to the assembly. Screen units of this type having different mesh section configurations can be interchanged in the lamp assembly to produce different respective illumination patterns.
Code of Federal Regulations, 2012 CFR
2012-01-01
...—Temperature Conditions Internal Temperatures (cooled space within the envelope) Cooler Dry Bulb Temperature 35...) Freezer and Cooler Dry Bulb Temperatures 75 °F. Subfloor Temperatures Freezer and Cooler Dry Bulb...,int,dp = dry-bulb air temperature internal to the cooler or freezer, °F, as prescribed in Table A.1...
Code of Federal Regulations, 2013 CFR
2013-01-01
...—Temperature Conditions Internal Temperatures (cooled space within the envelope) Cooler Dry Bulb Temperature 35...) Freezer and Cooler Dry Bulb Temperatures 75 °F. Subfloor Temperatures Freezer and Cooler Dry Bulb...,int,dp = dry-bulb air temperature internal to the cooler or freezer, °F, as prescribed in Table A.1...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-30
... Application for Emergency Exemption for Use on Dry Bulb Onions in Minnesota, Solicitation of Public Comment.... 203313-25-1) to treat up to 275 acres of dry bulb onions to control thrips. The applicant sought the use... on dry bulb onions to control thrips. Information in accordance with 40 CFR part 166 was submitted as...
Stennis Space Center observes 2009 Energy Awareness Day
NASA Technical Reports Server (NTRS)
2009-01-01
Stennis Space Center employees Maria Etheridge (l to r), Linda Sauland Maurice Prevost visit a Coast Electric Power Association display featuring energy-efficient light bulbs during 2009 Energy Awareness Day activities on Oct. 20. The exhibit was one of several energy-efficiency and energy-awareness displays on-site for employees to visit. Vendors included Mississippi Power Company, Coast Electric Power Association, Mississippi Development Authority - Energy Division,Jacobs FOSC Environmental, Southern Energy Technologies, and Siemens Building Technologies.
The Naval Flight Surgeon’s Pocket Reference to Aircraft Mishap Investigation. Fifth Edition
2001-01-01
plant was developing thrust. h. If and when ejection was attempted. 58 i. Phase of flight at impact (e.g., recovery, stall, spin, inverted). 21...illuminated light bulbs at impact. j. Trim settings. k. Power plant malfunctions. l. Thrust at impact (demanded versus actual). m. Propeller RPM...carboxyhemoglobin. Carboxyhemoglobin levels in nonsmokers (in a minimally polluted area) range from 0.5% to 0.8%. 2. CO levels in the blood (assuming
Stennis Space Center observes 2009 Energy Awareness Day
2009-10-20
Stennis Space Center employees Maria Etheridge (l to r), Linda Sauland Maurice Prevost visit a Coast Electric Power Association display featuring energy-efficient light bulbs during 2009 Energy Awareness Day activities on Oct. 20. The exhibit was one of several energy-efficiency and energy-awareness displays on-site for employees to visit. Vendors included Mississippi Power Company, Coast Electric Power Association, Mississippi Development Authority - Energy Division,Jacobs FOSC Environmental, Southern Energy Technologies, and Siemens Building Technologies.
Coping Flexibility: Influencing Appraisals of Stress
1992-09-25
organism was exposed to fear- inducing stimuli (Cannon and de la Paz, 1911 ). The substance Wsympathin", later to be named epinephrine, was identified...coping repertoire must playa role in this process. Rigid application of problem-focused coping across controllable and uncontrollable situations may...cabbage :e a splice C a steak D a paper box .::. a fish 3. To stop severe bleeding A a razor blade B a lima bean C a light bulb D a shoe E
Acierno, Mark J; Mitchell, Mark A; Roundtree, Marlana K; Zachariah, Trevor T
2006-12-01
To determine whether there are increased concentrations of 25-hydroxyvitaminn D(3) in red-eared slider turtles (Trachemys scripta elegans) after exposure to UV radiation. 12 yearling turtles recently removed from aestivation. Turtles were randomly allocated to 2 groups (6 turtles/group). An initial blood sample was collected from all turtles for measurement of 25-hydroxyvitamin D(3) concentrations. Turtles of 1 group were then provided no supplemental lighting, whereas turtles of the other group were exposed to full-spectrum coil bulbs at a distance of 22.86 cm. The UV-A and UV-B radiation generated by the supplemental lighting was measured by use of a radiometer-photometer at weekly intervals. Measurements were collected 2.54 and 22.86 cm from the bulb surface. The study was continued for a 4-week period. At the end of the study, a second blood sample was collected from all turtles for measurement of 25-hydroxyvitamin D(3). Mean +/- SD 25-hydroxyvitamin D(3) concentrations differed significantly between turtles provided supplemental UV radiation (71.7 +/- 46.9 nmol/L) and those not provided UV radiation (31.4 +/- 13.2 nmol/L). Appropriate husbandry recommendations for raising and maintaining red-eared slider turtles should include use of sunlight that is unobstructed by UV-B filtering material or provision of an artificial source of UV-B radiation.
From X-Rays to MRI: Physics in GE
NASA Astrophysics Data System (ADS)
Schmitt, Roland W.
2004-03-01
The GE Research Laboratory, founded in 1900, became the first laboratory of scientific research in U.S. industry. William Coolidge, a physicist, joined the laboratory in 1905 and produced two advances of immense importance. The first, ductile tungsten, is still the heart of every incandescent light bulb. The second, the "Coolidge" X-Ray tube, remains an essential tool of modern medicine. In the process, Coolidge explored two main approaches of physics in industry. One addresses a commercial problem or opportunity (better light bulbs) and finds interesting physics. The other explores interesting physics (X-rays) and creates a commercial opportunity. This paper addresses the mix of these approaches during GE's years as an "electric" (and therefore physics-based) company. Episodes include the following: the work of Irving Langmuir (1932 Nobel laureate in chemistry, but as much physicist as chemist); the post-World War II "golden age of industrial physics" when the endless frontier offered opportunities from nuclear power to diamond making to superconductivity; the Nobel-prize winning work of Ivar Giaever; and interdisciplinary efforts that enabled GE to become a world business leader in two medical diagnostic technologies it did not invent: computed tomography and magnetic resonance imaging. I will speculate on whether this mix of problem-driven and opportunity-driven effort is as relevant to the 21st century as it was to the 20th.
Growth kinetics of the photosynthetic bacterium Chlorobium thiosulfatophilum in a fed-batch reactor.
Kim, B W; Chang, H N; Kim, I K; Lee, K S
1992-08-01
Hydrogen sulfide dissolved in water can be converted to elementary sulfur or sulfate by the photosynthetic bacterium Chlorobium thiosulfatophilum. Substrate inhibition occurred at sulfide concentrations above 5.7 mM. Light inhibition was found at average light intensities of 40,000 lux in a sulfide concentration of 5 mM, where no substrate inhibition occurred. Light intensity, the most important growth parameter, was attenuated through both scattering by sulfur particles and absorption by the cells. Average cell and sulfur particle sizes were 1.1 and 9.4 microm, respectively. Cells contributed 10 times as much to the turbidity as sulfur particles of the same weight concentration. The light attenuation factor was mathematically modeled, considering both the absorption and scattering effects based on the Beer-Lambert law and the Rayleigh theory, which were introduced to the cell growth model. Optimal operational conditions relating feed rate vs. light intensity were obtained to suppress the accumulation of sulfate and sulfide and save light energy for 2- and 4-L fed-batch reactors. Light intensity should be greater for the same performance (H(2)S removal rate/unit cell concentration) in larger reactors due to the scaleup effect on light transmission. Knowledge of appropriate growth kinetics in photosynthetic fed-batch reactors was essential to increase feed rate and light intensity and therefore cell growth. A mathematical model was developed that describes the cell growth by considering the light attenuation factor due to scattering and absorption and the crowding effect of the cells. This model was in good agreement with the experimental results. (c) 1992 John Wiley & Sons, Inc.
A novel reactor for the simulation of gas and ash interactions in volcanic eruption plumes
NASA Astrophysics Data System (ADS)
Ayris, Paul M.; Cimarelli, Corrado; Delmelle, Pierre; Dingwell, Donald B.
2014-05-01
The chemical interactions between volcanic ash and the atmosphere, hydrosphere, pedosphere, cryosphere and biosphere are initially the result of rapid mobilisation of soluble salts and aqueous acids from wetted particle surfaces. Such surface features are attributable to the scavenging of sulphur and halide species by ash during its transport through the eruption plume and volcanic cloud. It has been historically considered (e.g., Rose, 1977) that the primary mechanism driving scavenging of sulphur and halide species is via condensation of acid aerosols onto ash surfaces within the cold volcanic cloud. However, for large explosive eruptions, insights from new experimental highlight the potential for scavenging via adsorption onto ash within the high-temperature eruption plume. In previous investigations on simple SO2 (Ayris et al. 2013a) and HCl systems (Ayris et al. 2013b), we identified ash composition, and the duration and temperature of gas-ash interaction as key determinants of adsorption-mode scavenging. However, the first generation of gas-ash reactors could not fully investigate the interactions between ash and the hydrous volcanic atmosphere; we have therefore developed an Advanced Gas Ash Reactor (AGAR), which can be fluxed with varying proportions of H2O, CO2, SO2 and HCl. The AGAR consists of a longitudinally-rotating quartz glass reaction bulb contained within a horizontal, three-stage tube furnace operating at temperatures of 25-900° C. A sample mass of up to 100 g can traverse a thermal gradient via manual repositioning of the reaction bulb within the furnace. In combination with existing melt synthesis capabilities in our laboratories, this facility permits a detailed investigation of the effects of ash and gas composition, and temperature on in-plume scavenging of SO2 and HCl. Additionally, the longitudinal rotation enables particle-particle interaction under an 'in-plume' atmosphere, and may yield insight into the effects of gas-ash interaction on aggregation processes. Large quantities of material can be processed in the AGAR. We invite discussions regarding collaboration with 'downstream' projects that would benefit from use of such materials, or from access to and further development of, the advanced gas-ash reactor. References Ayris, P. M., Lee, A. F., Wilson, K., Kueppers, U., Dingwell, D. B., & Delmelle, P. (2013a). SO2 sequestration in large volcanic eruptions: high-temperature scavenging by tephra. Geochimica et Cosmochimica Acta. Ayris, P. M., Delmelle, P., Maters, E., & Dingwell, D. B. (2013b). Quantifying HCl and SO2 adsorption by tephra in volcanic eruptions. In EGU General Assembly Conference Abstracts (Vol. 15, p. 2780). Rose, W. I. (1977). Scavenging of volcanic aerosol by ash: atmospheric and volcanologic implications. Geology, 5(10), 621-624.
Maślanka, Małgorzata; Bach, Anna
2014-01-01
A protocol for obtaining bulbs via in vitro organogenesis was developed for tarda tulip ( Tulipa tarda Stapf). Scale explants were obtained from bulbs formed at the base of seedlings or from adventitious bulbs that developed from callus tissue forming on stolons or on germinating seeds. Some explants were subjected to chilling at 5°C for 12 wk. The culture media contained 3 or 6% sucrose and was supplemented with either no growth regulators, either 0.5 μM 6-benzyl-aminopurine (BAP) or 18.9 or 94.6 μM abscisic acid (ABA). Cultures were maintained in the dark at 20°C. Callus tissue developed mainly on media without growth regulators or with BAP. Callus was formed from up to 96% of explants derived from non-chilled adventitious bulbs that were treated with 3% sucrose and 0.5 μM BAP. Less callus was formed from chilled explants compared with non-chilled explants. Newly formed adventitious bulbs appeared on the explants via direct and indirect organogenesis. The media with BAP promoted the formation of adventitious bulbs at a rate of 56-92% from non-chilled explants, whereas a maximum rate of 36% was observed from chilled explants. ABA inhibited the induction of adventitious bulbs and callus. The adventitious bulbs obtained in these experiments contained a meristem, which was evidence that they had developed properly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Was, Gary; Leonard, Keith J.; Tan, Lizhen
Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) Light Water Reactor Sustainability Program to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to identify and develop advanced alloys with superiormore » degradation resistance in light water reactor (LWR)-relevant environments by 2024.« less
Cunningham, A B; Brinckmann, J A; Pei, S-J; Luo, P; Schippmann, U; Long, X; Bi, Y-F
2018-09-15
Fritillaria cirrhosa D. Don bulbs contain alkaloids and are one of the most intensively exploited alpine Himalayan medicinal species. In terms of proprietary medicines, our study shows that 210 F. cirrhosa products are offered by 46 suppliers, most of which (44) are situated in China and two in Nepal. A widespread commercial use is as one of the main ingredients in cough syrups. A well known example is "Nin Jiom Pei Pa Koa Herbal Cough & Throat Syrup", which typically contains more F. cirrhosa than any other herbal ingredient in the formulation. The biggest market for F. cirrhosa bulbs is China, where demand exceeds supply of this wild harvested species for use in traditional Chinese medicine (TCM). Cross-border trade from Nepal to China occurs in significant quantities. Bhutan also imports F. cirrhosa bulbs from Nepal. In addition, F. cirrhosa is registered as an active ingredient in traditional herbal medicinal preparations in Australia, Canada, Hong Kong SAR, Malaysia, Republic of Korea, Singapore and Taiwan. There is also an export trade in F. cirrhosa to Europe. Assessing how much F. cirrhosa is traded is complex, however, due to a "look-alike" challenge, as nine Chinese Fritillaria species are traded in Europe (Fritillaria cirrhosa, F. delavayi, F. hupehensis, F. pallidiflora, F. przewalskii, F. thunbergii, F. unibracteata, F. ussuriensis and F. walujewii). The aims of this review were to assess the scale of the global trade in F. cirrhosa, and to synthesise studies of the impacts of wild harvest on F. cirrhosa populations and on the extent of emerging cultivation initiatives as an alternative to wild harvest. Firstly, we reviewed published information on studies on impacts of wild F. cirrhosa harvest from across the geographic range of this species. Secondly, global trade data for F. cirrhosa were analysed. The principal demand for F. cirrhosa bulbs is in China, where hundreds of different companies produce Fritillaria preparations. Trade data also show that in 2013, China exported over 44 tonnes of F. cirrhosa bulbs to Taiwan and 26.7 tonnes to the Republic of Korea. Extensive commercial use and limited wild stocks result in a high price (2000 - 3800 CNY per kg (around US$ 303 -560 per kg in 2017)) for F. cirrhosa bulbs. Prices of cultivated Fritillaria bulbs are much lower (600-680 CNY per kg in 2017) than wild harvested bulbs. But due to very specific growth requirements of F. cirrhosa, cultivation is not yet able to meet total demand. The consequence is continued exploitation of wild stocks. At the same time, however, an increasing proportion of the demand is met by cultivation of alternative Fritillaria species that are easier to grow than F. cirrhosa. The air-dry mass of F. cirrhosa bulbs varies between 0.0917 and 0.1116 g per bulb. This represents 8960 - 10,900 bulbs/kg or 8.9 - 10.9 million bulbs per tonne. Current demand therefore represents billions of bulbs per year. Demand for F. cirrhosa bulbs, particularly from China, makes this species one of the most intensively harvested alpine Himalayan medicinal bulbs. Although F. cirrhosa is listed as a Class III protected species in China, billions of these tiny, wild harvested bulbs are sold per year. Due to demand exceeding supply, the price of F. cirrhosa bulbs has increased dramatically. Between 2002 and 2017, for example, the price of wild harvested F. cirrhosa bulbs increased over nine-fold, from the equivalent of US$60 in 2002 to US$560 per kg in 2017. To date, cultivation has been unable to meet the entire market demand for F. cirrhosa bulbs, although other Fritillaria species are successfully cultivated on a larger scale. Copyright © 2018 Elsevier B.V. All rights reserved.
76 FR 79229 - Advisory Committee on Reactor Safeguards; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-21
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards; Notice of Meeting In... Advisory Committee on Reactor Safeguards (ACRS) will hold a meeting on January 19-20, 2012, 11545 Rockville... Cooling Systems for Light- Water Nuclear Power Reactors'' (Open)--The Committee will hear presentations by...
Why do aged fluorescent tubes flicker?
NASA Astrophysics Data System (ADS)
Plihon, Nicolas; Ferrand, Jérémy; Guyomar, Tristan; Museur, Flavien; Taberlet, Nicolas
2017-11-01
Our everyday experience of aged and defective fluorescent tubes or bulbs informs us that they may flicker and emit a clicking sound while struggling to light up. In this article, the physical mechanisms controlling the initial illumination of a functioning fluorescent tube are investigated using a simple and affordable experimental setup. Thermionic emission from the electrodes of the tube controls the startup of fluorescent tubes. The origin of the faulty startup of aged fluorescent tubes is discussed and flickering regimes using functional tubes are artificially produced using a dedicated setup that decreases electron emission by the thermionic effect in a controlled manner. The physical parameters controlling the occurrence of flickering light are discussed, and their temporal statistics are reported.
Non-contact local temperature measurement inside an object using an infrared point detector
NASA Astrophysics Data System (ADS)
Hisaka, Masaki
2017-04-01
Local temperature measurement in deep areas of objects is an important technique in biomedical measurement. We have investigated a non-contact method for measuring temperature inside an object using a point detector for infrared (IR) light. An IR point detector with a pinhole was constructed and the radiant IR light emitted from the local interior of the object is photodetected only at the position of pinhole located in imaging relation. We measured the thermal structure of the filament inside the miniature bulb using the IR point detector, and investigated the temperature dependence at approximately human body temperature using a glass plate positioned in front of the heat source.
Abouziena, H F; El-Saeid, Hamed M
2013-10-15
Balady cultivar and six Chinese lines were planted to study their developmental growth, yield and essential oil variations. Bulb of Balady cultivar had more two folds of cloves number per bulb than the Chinese lines. On the contrary Balady cv had the lowest clove weight compared to all Chinese lines. Chinese lines significantly surppassed the Balady cultivar in the bulb yield ha(-1). The bulb yield ha(-1) could be arrangement in descending order as follow Line B > Line F > Line D > Line C > Line A > Line E > Balady cv. Line B significantly surpassed the other tested lines in oil yield and had 7 folds oil yield plant(-1) than the local cultivar. The main compound in the bulb was found to be methylallay disulfide in both Chinese lines and Balady cultivar. Some components which found in the garlic bulbs at the age 150 days disappeared at the maturity time. Chinese Line B recorded the highest bulb yield and volatile oil content comparing with other lines.
Gadegaard, Jesper; Jensen, Thøger Kari; Jørgensen, Dennis Thykjær; Kristensen, Peter Kjær; Søndergaard, Thomas; Pedersen, Thomas Garm; Pedersen, Kjeld
2016-02-20
In the stage lighting and entertainment market, light engines (LEs) for lighting fixtures are often based on high-intensity discharge (HID) bulbs. Switching to LED-based light engines gives possibilities for fast switching, additive color mixing, a longer lifetime, and potentially, more energy-efficient systems. The lumen output of a single LED is still not sufficient to replace an HID source in high-output profile fixtures, but combining multiple LEDs can create an LE with a similar output, but with added complexity. This paper presents the results of modeling and testing such a light engine. Custom ray-tracing software was used to design a high-output red, green and blue LED-based light engine with twelve CBT-90 LEDs using a dual-reflector principle. The simulated optical system efficiency was 0.626 with a perfect (R=1) reflector coating for light delivered on a target surface through the entire optical system. A profile lighting fixture prototype was created, and provided an output of 6744 lumen and an efficiency of 0.412. The lower efficiency was mainly due to a non-optimal reflector coating, and the optimized design is expected to reach a significantly higher efficiency.
Modeling the wet bulb globe temperature using standard meteorological measurements.
Liljegren, James C; Carhart, Richard A; Lawday, Philip; Tschopp, Stephen; Sharp, Robert
2008-10-01
The U.S. Army has a need for continuous, accurate estimates of the wet bulb globe temperature to protect soldiers and civilian workers from heat-related injuries, including those involved in the storage and destruction of aging chemical munitions at depots across the United States. At these depots, workers must don protective clothing that increases their risk of heat-related injury. Because of the difficulty in making continuous, accurate measurements of wet bulb globe temperature outdoors, the authors have developed a model of the wet bulb globe temperature that relies only on standard meteorological data available at each storage depot for input. The model is composed of separate submodels of the natural wet bulb and globe temperatures that are based on fundamental principles of heat and mass transfer, has no site-dependent parameters, and achieves an accuracy of better than 1 degree C based on comparisons with wet bulb globe temperature measurements at all depots.
DANSS Neutrino Spectrometer: Detector Calibration, Response Stability, and Light Yield
NASA Astrophysics Data System (ADS)
Alekseev, I. G.; Belov, V. V.; Danilov, M. V.; Zhitnikov, I. V.; Kobyakin, A. S.; Kuznetsov, A. S.; Machikhiliyan, I. V.; Medvedev, D. V.; Rusinov, V. Yu.; Svirida, D. N.; Skrobova, N. A.; Starostin, A. S.; Tarkovsky, E. I.; Fomina, M. V.; Shevchik, E. A.; Shirchenko, M. V.
2018-05-01
Apart from monitoring nuclear reactor parameters, the DANSS neutrino experiment is aimed at searching for sterile neutrinos through a detailed analysis of the ratio of reactor antineutrino spectra measured at different distances from the reactor core. The light collection system of the detector is dual, comprising both the vacuum photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs). In this paper, the techniques developed to calibrate the responses of these photodetectors are discussed in detail. The long-term stability of the key parameters of the detector and their dependences on the ambient temperature are investigated. The results of detector light yield measurements, performed independently with PMTs and SiPMs are reported.
Li, Kun; Hogan, Nathaniel J; Kale, Matthew J; Halas, Naomi J; Nordlander, Peter; Christopher, Phillip
2017-06-14
Efficient photocatalysis requires multifunctional materials that absorb photons and generate energetic charge carriers at catalytic active sites to facilitate a desired chemical reaction. Antenna-reactor complexes are an emerging multifunctional photocatalytic structure where the strong, localized near field of the plasmonic metal nanoparticle (e.g., Ag) is coupled to the catalytic properties of the nonplasmonic metal nanoparticle (e.g., Pt) to enable chemical transformations. With an eye toward sustainable solar driven photocatalysis, we investigate how the structure of antenna-reactor complexes governs their photocatalytic activity in the light-limited regime, where all photons need to be effectively utilized. By synthesizing core@shell/satellite (Ag@SiO 2 /Pt) antenna-reactor complexes with varying Ag nanoparticle diameters and performing photocatalytic CO oxidation, we observed plasmon-enhanced photocatalysis only for antenna-reactor complexes with antenna components of intermediate sizes (25 and 50 nm). Optimal photocatalytic performance was shown to be determined by a balance between maximized local field enhancements at the catalytically active Pt surface, minimized collective scattering of photons out of the catalyst bed by the complexes, and minimal light absorption in the Ag nanoparticle antenna. These results elucidate the critical aspects of local field enhancement, light scattering, and absorption in plasmonic photocatalyst design, especially under light-limited illumination conditions.
Billings, Jay Jay; Deyton, Jordan H.; Forest Hull, S.; ...
2015-07-17
Building new fission reactors in the United States presents many technical and regulatory challenges. Chief among the technical challenges is the need to share and present results from new high- fidelity, high- performance simulations in an easily consumable way. In light of the modern multi-scale, multi-physics simulations can generate petabytes of data, this will require the development of new techniques and methods to reduce the data to familiar quantities of interest with a more reasonable resolution and size. Furthermore, some of the results from these simulations may be new quantities for which visualization and analysis techniques are not immediately availablemore » in the community and need to be developed. Our paper describes a new system for managing high-performance simulation results in a domain-specific way that naturally exposes quantities of interest for light water and sodium-cooled fast reactors. It enables easy qualitative and quantitative comparisons between simulation results with a graphical user interface and cross-platform, multi-language input- output libraries for use by developers to work with the data. One example comparing results from two different simulation suites for a single assembly in a light-water reactor is presented along with a detailed discussion of the system s requirements and design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleischman, R.M.; Goldsmith, S.; Newman, D.F.
1981-09-01
The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are toomore » costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.« less
Pope, K.E.
1959-12-15
This device is primarily useful as a switch which is selectively operable to actuate in response to either absolute or differential predetermined pressures. The device generally comprises a pressure-tight housing divided by a movable impermeable diaphragm into two chambers, a reference pressure chamber and a bulb chamber containing the switching means and otherwise filled with an incompressible non-conducting fluid. The switch means comprises a normally collapsed bulb having an electrically conductive outer surface and a vent tube leading to the housing exterior. The normally collapsed bulb is disposed such that upon its inflation, respensive to air inflow from the vent, two contacts fixed within the bulb chamber are adapted to be electrically shorted by the conducting outer surface of the bulb.
Mechanisms of Metal Release From Contaminated Coastal Sediments
2005-09-01
help while writing my thesis and is a wonderful friend and great handstand coach . Most of all I want to thank my family; my mother, father and sister...as soon as possible. The dried sediment samples were then disaggregated in an agate mortar and pestle and counted with a GeLi detector for 2 1°Pb and...sub-sampled and half the sample was subjected to 5 hours of ultra-violet light (Ace Glass Inc , 1200 W Hg vapor bulb) in the Moffett Laboratory. The UV
Dilation of the olfactory bulb cavity concurrent with hydrocephalus in four small breed dogs
Kim, Jung-Hyun; Jeon, Hyo-Won; Woo, Eung-Je
2009-01-01
Four small breed dogs were admitted with seizures. Magnetic resonance imaging (MRI) of the brain revealed dilation of the olfactory bulb cavity as well as enlargement of the lateral ventricles. These findings demonstrate that dilation of the olfactory bulb cavity can occur concurrent with hydrocephalus. This is the first description of the clinical and MRI features of dilation of the olfactory bulb cavity concurrent with hydrocephalus in dogs. PMID:19461216
Isotopic signature of atmospheric xenon released from light water reactors.
Kalinowski, Martin B; Pistner, Christoph
2006-01-01
A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The isotopic activity ratios of (135)Xe, (133m)Xe, (133)Xe and (131m)Xe are of interest for distinguishing nuclear explosion sources from civilian releases. Simulations of light water reactor (LWR) fuel burn-up through three operational reactor power cycles are conducted to explore the possible xenon isotopic signature of nuclear reactor releases under different operational conditions. It is studied how ratio changes are related to various parameters including the neutron flux, uranium enrichment and fuel burn-up. Further, the impact of diffusion and mixing on the isotopic activity ratio variability are explored. The simulations are validated with reported reactor emissions. In addition, activity ratios are calculated for xenon isotopes released from nuclear explosions and these are compared to the reactor ratios in order to determine whether the discrimination of explosion releases from reactor effluents is possible based on isotopic activity ratios.
Catalog of experimental projects for a fissioning plasma reactor
NASA Technical Reports Server (NTRS)
Lanzo, C. D.
1973-01-01
Experimental and theoretical investigations were carried out to determine the feasibility of using a small scale fissioning uranium plasma as the power source in a driver reactor. The driver system is a light water cooled and moderated reactor of the MTR type. The eight experiments and proposed configurations for the reactor are outlined.
The Development of Visible-Light Photoredox Catalysis in Flow.
Garlets, Zachary J; Nguyen, John D; Stephenson, Corey R J
2014-04-01
Visible-light photoredox catalysis has recently emerged as a viable alternative for radical reactions otherwise carried out with tin and boron reagents. It has been recognized that by merging photoredox catalysis with flow chemistry, slow reaction times, lower yields, and safety concerns may be obviated. While flow reactors have been successfully applied to reactions carried out with UV light, only recent developments have demonstrated the same potential of flow reactors for the improvement of visible-light-mediated reactions. This review examines the initial and continuing development of visible-light-mediated photoredox flow chemistry by exemplifying the benefits of flow chemistry compared with conventional batch techniques.
The Development of Visible-Light Photoredox Catalysis in Flow
Garlets, Zachary J.; Nguyen, John D.
2014-01-01
Visible-light photoredox catalysis has recently emerged as a viable alternative for radical reactions otherwise carried out with tin and boron reagents. It has been recognized that by merging photoredox catalysis with flow chemistry, slow reaction times, lower yields, and safety concerns may be obviated. While flow reactors have been successfully applied to reactions carried out with UV light, only recent developments have demonstrated the same potential of flow reactors for the improvement of visible-light-mediated reactions. This review examines the initial and continuing development of visible-light-mediated photoredox flow chemistry by exemplifying the benefits of flow chemistry compared with conventional batch techniques. PMID:25484447
Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo
2012-06-01
Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification.
Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo
2012-01-01
Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification. PMID:22474185
Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning
Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David
2015-11-04
We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less
Methods for natural gas and heavy hydrocarbon co-conversion
Kong, Peter C [Idaho Falls, ID; Nelson, Lee O [Idaho Falls, ID; Detering, Brent A [Idaho Falls, ID
2009-02-24
A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.
Nonthermal plasma systems and methods for natural gas and heavy hydrocarbon co-conversion
Kong, Peter C.; Nelson, Lee O.; Detering, Brent A.
2005-05-24
A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.
Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David
We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less
LED-based high-speed visible light communications
NASA Astrophysics Data System (ADS)
Chi, Nan; Shi, Meng; Zhao, Yiheng; Wang, Fumin; Shi, Jianyang; Zhou, Yingjun; Lu, Xingyu; Qiao, Liang
2018-01-01
We are seeing a growing use of light emitting diodes (LEDs) in a range of applications including lighting, TV and backlight board screen, display etc. In comparison with the traditional incandescent and fluorescent light bulbs, LEDs offer long life-space, much higher energy efficiency, high performance cost ratio and above all very fast switching capability. LED based Visible Light Communications (VLC) is an emerging field of optical communications that focuses on the part of the electromagnetic spectrum that humans can see. Depending on the transmission distance, we can divide the whole optical network into two categories, long haul and short haul. Visible light communication can be a promising candidate for short haul applications. In this paper, we outline the configuration of VLC, its unique benefits, and describe the state of the art research contributions consisting of advanced modulation formats including adaptive bit loading OFDM, carrierless amplitude and phase (CAP), pulse amplitude modulation (PAM) and single carrier Nyquist, linear equalization and nonlinear distortion mitigation based on machine learning, quasi-balanced coding and phase-shifted Manchester coding. These enabling technologies can support VLC up to 10Gb/s class free space transmission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paratte, J.M.; Pelloni, S.; Grimm, P.
1991-04-01
This paper analyzes the capability of various code systems and JEF-1-based nuclear data libraries to compute light water reactor lattices by comparing calculations with results from thermal reactor benchmark experiments TRX and BAPL and with previously published values. With the JEF-1 evaluation, eigenvalues are generally well predicted within 8 mk (1 mk = 0.001) or less by all code systems, and all methods give reasonable results for the measured reaction rate ratios within, or not too far from, the experimental uncertainty.
Nuclear reactor for breeding U.sup.233
Bohanan, Charles S.; Jones, David H.; Raab, Jr., Harry F.; Radkowsky, Alvin
1976-01-01
A light-water-cooled nuclear reactor capable of breeding U.sup.233 for use in a light-water breeder reactor includes physically separated regions containing U.sup.235 fissile material and U.sup.238 fertile material and Th.sup.232 fertile material and Pu.sup.239 fissile material, if available. Preferably the U.sup.235 fissile material and U.sup.238 fertile material are contained in longitudinally movable seed regions and the Pu.sup.239 fissile material and Th.sup.232 fertile material are contained in blanket regions surrounding the seed regions.
Electrophysiological mapping of the accessory olfactory bulb of the rabbit (Oryctolagus cuniculus).
van Groen, T; Ruardy, L; da Silva, F H
1986-07-01
Field potentials elicited by electrical stimulation of the vomeronasal nerve were measured in the accessory olfactory bulb of the rabbit. Maps were made of the distribution of surface field potentials and of the corresponding depth profiles. The surface maps followed closely the contours of the accessory olfactory bulb: at the frontal border the field potential tended to zero and at the center of the structure the field potential attained a maximum. Depth profiles of the field potentials through the accessory olfactory bulb presented a surface-negative wave and, in depth, a positive wave. The polarity reversal occurred at the deep part of the granule cell layer. The zero equipotential line followed closely the curvature of the granule cell layer. Current source density analysis of the depth profiles revealed a main sink at the external plexiform and granule cell layers. This indicates that the main activity in the accessory olfactory bulb is generated by the synapses between the mitral cells and the granule cells as is found in the main olfactory bulb.
Cortical Feedback Control of Olfactory Bulb Circuits
Boyd, Alison M.; Sturgill, James F.; Poo, Cindy; Isaacson, Jeffry S.
2013-01-01
SUMMARY Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. PMID:23259951
Cortical feedback control of olfactory bulb circuits.
Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S
2012-12-20
Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.
First report of Nerine yellow stripe virus in Amaryllis in the United States
USDA-ARS?s Scientific Manuscript database
Ornamental flower bulbs (including true bulbs, bulbils, corms, tubers and rhizomes) are increasingly important floriculture crops. Amaryllis is a small genus of flowering bulbs, with two species. The South African native, Amaryllis belladonna, also known as belladonna lily, Jersey lily, naked lady,...
Introducing Filters and Amplifiers Using a Two-Channel Light Organ
NASA Astrophysics Data System (ADS)
Zavrel, Erik; Sharpsteen, Eric
2015-11-01
In an era when many students carry iPods, iPhones, and iPads, physics teachers are realizing that in order to continue to inspire and convey the amazing things made possible by a few fundamental principles, they must expand laboratory coverage of electricity and circuits beyond the conventional staples of constructing series and parallel arrangements of light bulbs and confirming Kirchhoff's laws. Indeed, physics teachers are already incorporating smartphones into their laboratory activities in an effort to convey concepts in a more contemporary and relatable manner. As part of Cornell's Learning Initiative in Medicine and Bioengineering (CLIMB), we set out to design and implement an engaging curriculum to introduce high school physics students to filters and amplifiers.
NASA Astrophysics Data System (ADS)
Klein, P.; Hirth, M.; Gröber, S.; Kuhn, J.; Müller, A.
2014-07-01
Smartphones and tablets are used as experimental tools and for quantitative measurements in two traditional laboratory experiments for undergraduate physics courses. The Doppler effect is analyzed and the speed of sound is determined with an accuracy of about 5% using ultrasonic frequency and two smartphones, which serve as rotating sound emitter and stationary sound detector. Emphasis is put on the investigation of measurement errors in order to judge experimentally derived results and to sensitize undergraduate students to the methods of error estimates. The distance dependence of the illuminance of a light bulb is investigated using an ambient light sensor of a mobile device. Satisfactory results indicate that the spectrum of possible smartphone experiments goes well beyond those already published for mechanics.
Magnetic resonance imaging of the rat Harderian gland
Sbarbati, Andrea; Calderan, Laura; Nicolato, Elena; Marzola, Pasquina; Lunati, Ernesto; Donatella, Benati; Bernardi, Paolo; Osculati, Francesco
2002-01-01
The intra-orbital lachrymal gland (Harderian gland, or HG) of the female rat was studied by magnetic resonance imaging (MRI) to evaluate whether MRI can be used to visualize the gland in vivo and localized-1H-spectroscopy detect its lipid content. The results were correlated with post-mortem anatomical sections, and with light and electron microscopy. On MRI, HG presented as a mass located between the ocular bulb and the orbit. In strongly T2W sequences the secretory structures had a reduced signal while intraparenchymal connective tissue was visible. T2-quantitative maps values of HG (60.12 ± 8.15 ms, mean ± SD) were different from other tissues (i.e. muscular tissue, T2 = 44.79 ± 3.43 ms and olfactory bulb, T2 = 79.26 ± 4.25 ms). In contrast-enhanced-MRI, HG had a signal-intensity-drop of 0.074 ± 0.072 (mean ± SD), after injection of AMI-25, significantly different from the muscle (0.17 ± 0.10). Localized MRI spectra gave a large part of the signal originating from fat protons, but with a significant percentage from water protons. At light and electron microscopy the lipid deposition appeared to be composed of low-density material filling a large part of the cytoplasm, and the porphyrin aggregates were easily recognizable. The data demonstrate that an in vivo study of the HG was feasible and that high-field MRI allowed analysis of the gross anatomy detecting the lipid content of the gland. PMID:12363274
Oka, Y
1983-04-01
The local neuronal circuitry of goldfish olfactory bulb was analyzed in Golgi preparations combining light- and electron-microscopy, as well as in routinely prepared ultrastructural preparations. Mitral cells were identified with the light-microscope in Golgi-impregnated thick sections according to the following criteria: (1) cell bodies were distributed irregularly in a wide layer between 100 and 200 micrometer from the surface, (2) cell bodies were larger than other neurons (10-20 micrometer in diameter), and (3) the dendrites were directed toward the superficially-located olfactory nerve layer where they ended as highly branched glomerular tufts. These impregnated cells were examined by electron-microscopy in serial section. The results demonstrate synaptic organization in relation to the mitral cells. (1) Glomerular tufts received afferent input from primary olfactory axons which made Gray's Type I synaptic contacts. These dendrites also had reciprocal dendrodendritic synapses with dendrites of certain non-mitral cells. (2) Dendritic shafts of mitral cells made reciprocal dendritic synapses with dendrites of certain non-mitral cells. (3) Cell bodies and their initial axon segments had reciprocal synapses with certain dendrites but occurred infrequently. In reciprocal synapses, the direction of the Gray Type I (asymmetrical) is away from the mitral cell while those with Gray Type II synapses (symmetrical) are toward the mitral cell. Assuming that the type I synapse is excitatory and Type II is inhibitory, these findings explain the electrophysiological demonstration of self-inhibition discharge found in mitral cells.
First Report of Nerine latent virus in Ornamental Crinum in the United States
USDA-ARS?s Scientific Manuscript database
Ornamental flower bulbs (including true bulbs, bulbils, corms, tubers and rhizomes) are increasingly important floriculture crops. Crinum is a large genus of herbaceous perennial flowering bulbs in the family Amaryllidaceae. Most of the Crinum species are grown in the summer and have large, showy, w...
A flow reactor setup for photochemistry of biphasic gas/liquid reactions
Schachtner, Josef; Bayer, Patrick
2016-01-01
Summary A home-built microreactor system for light-mediated biphasic gas/liquid reactions was assembled from simple commercial components. This paper describes in full detail the nature and function of the required building elements, the assembly of parts, and the tuning and interdependencies of the most important reactor and reaction parameters. Unlike many commercial thin-film and microchannel reactors, the described set-up operates residence times of up to 30 min which cover the typical rates of many organic reactions. The tubular microreactor was successfully applied to the photooxygenation of hydrocarbons (Schenck ene reaction). Major emphasis was laid on the realization of a constant and highly reproducible gas/liquid slug flow and the effective illumination by an appropriate light source. The optimized set of conditions enabled the shortening of reaction times by more than 99% with equal chemoselectivities. The modular home-made flow reactor can serve as a prototype model for the continuous operation of various other reactions at light/liquid/gas interfaces in student, research, and industrial laboratories. PMID:27829887
Code of Federal Regulations, 2010 CFR
2010-01-01
... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power Reactor Effluents SECTION I. Introduction. Section 50.34a provides that an application for a construction...
Code of Federal Regulations, 2011 CFR
2011-01-01
... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power Reactor Effluents SECTION I. Introduction. Section 50.34a provides that an application for a construction...
Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragusa, Jean; Vierow, Karen
2011-09-01
The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzedmore » advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.« less
SPERT Destructive Test - I on Aluminum, Highly Enriched Plate Type Core
None
2018-01-16
SPERT - Special Power Excursion Reactor Tests Destructive Test number 1 On Aluminum, Highly Enriched Plate Type Core. A test studying the behavior of the reactor under destructive conditions on a light water moderated pool-type reactor with a plate-type core.
Nuclear Reactor Safety--The APS Submits its Report
ERIC Educational Resources Information Center
Physics Today, 1975
1975-01-01
Presents the summary section of the American Physical Society (APS) report on the safety features of the light-water reactor, reviews the design, construction, and operation of a reactor and outlines the primary engineered safety features. Summarizes the major recommendations of the study group. (GS)
Corrosion and Corrosion Control in Light Water Reactors
NASA Astrophysics Data System (ADS)
Gordon, Barry M.
2013-08-01
Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.
Shift Verification and Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Tara M.; Evans, Thomas M.; Davidson, Gregory G
2016-09-07
This documentation outlines the verification and validation of Shift for the Consortium for Advanced Simulation of Light Water Reactors (CASL). Five main types of problems were used for validation: small criticality benchmark problems; full-core reactor benchmarks for light water reactors; fixed-source coupled neutron-photon dosimetry benchmarks; depletion/burnup benchmarks; and full-core reactor performance benchmarks. We compared Shift results to measured data and other simulated Monte Carlo radiation transport code results, and found very good agreement in a variety of comparison measures. These include prediction of critical eigenvalue, radial and axial pin power distributions, rod worth, leakage spectra, and nuclide inventories over amore » burn cycle. Based on this validation of Shift, we are confident in Shift to provide reference results for CASL benchmarking.« less
Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worrall, Andrew; Todosow, Michael
2016-01-01
Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include:more » increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance metrics for a small modular reactor are compared to a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. Metrics performance for a small modular reactor are degraded for mass of spent nuclear fuel and high level waste disposed, mass of depleted uranium disposed, land use per energy generated, and carbon emission per energy generated« less
REACTIVITY MEASUREMENT FACILITY. CAMERA LOOKS DOWN INTO MTR CANAL. REACTOR ...
REACTIVITY MEASUREMENT FACILITY. CAMERA LOOKS DOWN INTO MTR CANAL. REACTOR IS FUELED AS AN ETR MOCK-UP. LIGHTS DANGLE BELOW WATER LEVEL. CONTROL RODS AND OTHER APPARATUS DESCEND FROM ABOVE WATER LEVEL. INL NEGATIVE NO. 56-900. Jack L. Anderson, Photographer, 3/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Geraskin, N. I.; Glebov, V. B.
2017-01-01
The results of implementation of European educational projects CORONA and CORONA II dedicated to preserving and further developing nuclear knowledge and competencies in the area of technologies of light-water nuclear reactors are analyzed. Present article addresses issues of design and implementation of the program for specialized training in the branch of technologies of light-water nuclear reactors. The systematic approach has been used to construct the program for students of nuclear specialties, which corresponding to IAEA standards and commonly accepted nuclear principles recognized in the European Union. Possibilities of further development of the international cooperation between countries and educational institutions are analyzed. Special attention is paid to e-learning/distance training, nuclear knowledge preservation and interaction with European Nuclear Education Network.
7 CFR 319.37-6 - Specific treatment and other requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., Roots, Bulbs, Seeds, and Other Plant Products 1,2 § 319.37-6 Specific treatment and other requirements. (a) The following seeds and bulbs may be imported into the United States from designated countries... this chapter. Seeds and bulbs treated prior to importation outside the United States must be treated in...
7 CFR 319.37-6 - Specific treatment and other requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., Roots, Bulbs, Seeds, and Other Plant Products 1,2 § 319.37-6 Specific treatment and other requirements. (a) The following seeds and bulbs may be imported into the United States from designated countries... this chapter. Seeds and bulbs treated prior to importation outside the United States must be treated in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry
This article for a building trade magazine describes a national design competition for energy efficient lighting sponsored by the U.S. Department of Energy, the American Lighting Association, and the Consortium for Energy Efficiency, with winners announced at ALA's Annual Conference May 14, 2004, in Tucson. The Lighting for Tomorrow competition was the first national lighting fixture design competition focusing on energy-efficient residential lighting. The competition invited fixture manufacturers and designers to come up with beautiful, functional lighting fixtures that also happen to be energy efficient. Fixtures were required to use a ''dedicated'' energy-efficient light source, such as a pin-based fluorescentmore » lamp that cannot be replaced with a screw-in incandescent bulb. Fixtures also had to meet a minimum energy efficiency level that eliminated use of incandescent and halogen lamps, leaving the door open only to fluorescent sources and LEDs. More than 150 paper designs were submitted in the first phase of the competition, in 2003. Of those, 24 finalists were invited to submit working prototypes in 2004, and the winners were announced in May. The Grand Prize of $10,000 went to American Fluorescent of Waukegan, Illinois, for its ''Salem'' chandelier. Some winning fixtures are already available through Lowe's Home Improvement Centers.« less
Roybon, Laurent; Mastracci, Teresa L; Li, Joyce; Stott, Simon R W; Leiter, Andrew B; Sussel, Lori; Brundin, Patrik; Li, Jia-Yi
2015-01-01
Production of olfactory bulb neurons occurs continuously in the rodent brain. Little is known, however, about cellular diversity in the glutamatergic neuron subpopulation. In the central nervous system, the basic helix-loop-helix transcription factor NeuroD1 (ND1) is commonly associated with glutamatergic neuron development. In this study, we utilized ND1 to identify the different subpopulations of olfactory bulb glutamategic neurons and their progenitors, both in the embryo and postnatally. Using knock-in mice, transgenic mice and retroviral transgene delivery, we demonstrate the existence of several different populations of glutamatergic olfactory bulb neurons, the progenitors of which are ND1+ and ND1- lineage-restricted, and are temporally and regionally separated. We show that the first olfactory bulb glutamatergic neurons produced - the mitral cells - can be divided into molecularly diverse subpopulations. Our findings illustrate the complexity of neuronal diversity in the olfactory bulb and that seemingly homogenous neuronal populations can consist of multiple subpopulations with unique molecular signatures of transcription factors and expressing neuronal subtype-specific markers.
Evaluation of a 6-wire thermocouple psychrometer for determination of in-situ water potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loskot, C.L.; Rousseau, J.P.; Kurzmack, M.A.
1994-12-31
A 6-wire, Peltier-type thermocouple psychrometer was designed and evaluated by the U.S. Geological Survey for monitoring in-situ water potentials in dry-drilled boreholes in the unsaturated zone at Yucca Mountain, Nye County, Nevada. The psychrometer consists of a wet-bulb, chromel-constantan, sensing junction and a separate dry-bulb, copper-constantan, reference junction. Two additional reference junctions are formed where the chromel and constantan wires of the wet-bulb sensing junction are soldered to separate, paired, copper, lead wires. In contrast, in the standard 3-wire thermocouple psychrometer, both the wet bulb and dry bulb share a common wire. The new design has resulted in a psychrometermore » that has an expanded range and greater reliability, sensitivity, and accuracy compared to the standard model.« less
Single-cell computational analysis of light harvesting in a flat-panel photo-bioreactor.
Loomba, Varun; Huber, Gregor; von Lieres, Eric
2018-01-01
Flat-panel photo-bioreactors (PBRs) are customarily applied for investigating growth of microalgae. Optimal design and operation of such reactors is still a challenge due to complex non-linear combinations of various impact factors, particularly hydrodynamics, light irradiation, and cell metabolism. A detailed analysis of single-cell light reception can lead to novel insights into the complex interactions of light exposure and algae movement in the reactor. The combined impacts of hydrodynamics and light irradiation on algae cultivation in a flat-panel PBR were studied by tracing the light exposure of individual cells over time. Hydrodynamics and turbulent mixing in this air-sparged bioreactor were simulated using the Eulerian approach for the liquid phase and a slip model for the gas phase velocity profiles. The liquid velocity was then used for tracing single cells and their light exposure, using light intensity profiles obtained from solving the radiative transfer equation at different wavelengths. The residence times of algae cells in defined dark and light zones of the PBR were statistically analyzed for different algal concentrations and sparging rates. The results indicate poor mixing caused by the reactor design which can be only partially improved by increased sparging rates. The results provide important information for optimizing algal biomass productivity by improving bioreactor design and operation and can further be utilized for an in-depth analysis of algal growth by using advanced models of cell metabolism.
High performance incandescent lighting using a selective emitter and nanophotonic filters
NASA Astrophysics Data System (ADS)
Leroy, Arny; Bhatia, Bikram; Wilke, Kyle; Ilic, Ognjen; Soljačić, Marin; Wang, Evelyn N.
2017-09-01
Previous approaches for improving the efficiency of incandescent light bulbs (ILBs) have relied on tailoring the emitted spectrum using cold-side interference filters that reflect the infrared energy back to the emitter while transmitting the visible light. While this approach has, in theory, potential to surpass light-emitting diodes (LEDs) in terms of luminous efficiency while conserving the excellent color rendering index (CRI) inherent to ILBs, challenges such as low view factor between the emitter and filter, high emitter (>2800 K) and filter temperatures and emitter evaporation have significantly limited the maximum efficiency. In this work, we first analyze the effect of non-idealities in the cold-side filter, the emitter and the view factor on the luminous efficiency. Second, we theoretically and experimentally demonstrate that the loss in efficiency associated with low view factors can be minimized by using a selective emitter (e.g., high emissivity in the visible and low emissivity in the infrared) with a filter. Finally, we discuss the challenges in achieving a high performance and long-lasting incandescent light source including the emitter and filter thermal stability as well as emitter evaporation.
LED Street Lighting Solutions: Flagstaff, Arizona as a Case Study
NASA Astrophysics Data System (ADS)
Hall, Jeffrey C.
2018-01-01
Dark-sky protection in Flagstaff, Arizona extends back to 1958, with the first ordinance in the City banning advertising floodlights. The current ordinance, adopted in 1989, is comprehensive and has played a critical role in maintaining the quality of the night sky for astronomy, tourism, public enjoyment, and other purposes. Flagstaff, like many communities around the world, is now working on a transition from legacy bulb-based technology to LED for its outdoor lighting. The City, Lowell Observatory, the U. S. Naval Observatory, and the Flagstaff Dark Skies Coalition have been working intensively for two years to identify an LED-based street lighting solution that will preserve the City's dark skies while meeting municipal needs. We will soon be installing test fixtures for an innovative solution incorporating narrow-band amber LED and modest amounts of low-CCT white LED. In this talk, I will review the types of LEDs available for outdoor lighting and discuss the plans for Flagstaff's street lighting in the LED era, which we hope will be a model for communities worldwide.
Visible light communication applications in healthcare.
Muhammad, Shoaib; Qasid, Syed Hussain Ahmed; Rehman, Shafia; Rai, Aitzaz Bin Sulltan
2016-01-01
With the development in science, methods of communication are also improved, replacing old ones with new advanced ways in an attempt to make data transfer more secure, safer for health, and time as well as cost efficient. One of such methods is Visible Light Communication, as the name implies data is transferred through a light equipment such as incandescent or florescent bulb having speed of 10 Kb/s or LEDs approaching speed of 500 Mb/s [1]. VLC uses visible light between 384 and 789 THz [2,3]. Though range is limitation of VLC, however data transfer up-to distance of 1 to 2 km although at lower transfer rate has been reached.The VLC system comprises of light source like LED and receiver equipment, however, with advancement, now LEDs are used for both sending and receiving data. LED remains on all the time, and there is no change in brightness level during the whole process, making it safe for eyes. Currently, VLC system is facing some serious technical challenges before it could be applied in daily life.
Neuroprotective Dose Response in RCS Rats Implanted with Microphotodiode Arrays
Pardue, Machelle T.; Kim, Moon K.; Walker, Tiffany A.; Faulkner, Amanda E.; Chow, Alan Y.; Ciavatta, Vincent T.
2012-01-01
Purpose Neuropreservation of retinal function and structure in RCS rats following implantation of a microphotodiode array (MPA) has been shown in previous studies(Pardue et al. 2005a; Pardue et al. 2005b). Since microphotodiodes produce electrical currents in proportion to the intensity of incident light, increased light exposure may result in greater neuroprotective effects. Our previous studies suggested that the frequency of light exposure to electroretinogram (ERG) flash stimuli might provide increased neuroprotection. Thus, in this study, we examined the dose response of subretinal electrical stimulation by exposing RCS rats implanted with MPAs to variable durations and combinations of two different lighting regimens: pulsing incandescent bulbs and xenon stimuli from an ERG Ganzfeld. While incandescent light regimens did not produce any significant differences in ERG function, we found significantly greater dark-adapted ERG b-wave amplitudes in RCS rats that received weekly versus biweekly ERGs over the course of 8 weeks of follow-up. These results suggest that subretinal electrical stimulation may be optimized to produce greater neuroprotective effects by dosing with periodic higher current. PMID:22183323
Effect of Atmospheric Press on Wet Bulb Depression
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.; Stasiak, Michael A.; Lawson, Jamie; Wehkamp, Cara Ann P.; Dixon, Michael A.
2008-01-01
Our measurements of wet bulb depression at different pressures matched the modeled adiabatic saturation temps reasonably well. At a dry bulb temp of 25 C, the normal wet bulb temp for 30% RH and 100 kPa is approx.15 C, but this dropped to approx.8 C at 10 kPa. The results suggest that psychrometers need direct calibration at the target pressures or that pressure corrected charts are required. For a given vapour pressure deficit, any moist surfaces, including transpiring plant leaves, will be cooler at lower pressures due to the increased evaporation rates.
NASA Astrophysics Data System (ADS)
Ashenfelter, J.; Balantekin, B.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bowes, A.; Brodsky, J. P.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Commeford, K.; Davee, D.; Dean, D.; Deichert, G.; Diwan, M. V.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Goddard, B. W.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Langford, T. J.; Littlejohn, B. R.; Martinez Caicedo, D. A.; McKeown, R. D.; Mendenhall, M. P.; Mueller, P.; Mumm, H. P.; Napolitano, J.; Neilson, R.; Norcini, D.; Pushin, D.; Qian, X.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Sheets, S.; Stemen, N. T.; Surukuchi, P. T.; Varner, R. L.; Viren, B.; Wang, W.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y. R.; Zangakis, G.; Zhang, C.; Zhang, X.
2015-11-01
A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.
Light Converting Inorganic Phosphors for White Light-Emitting Diodes
Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi
2010-01-01
White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.
NASA Astrophysics Data System (ADS)
Lizotte, Todd
2010-08-01
Recent events concerning H1N1 "swine flu", have demonstrated to the world the significant potential of rapid increases in death and illness among all age groups and even among the healthy population [1] when a highly infectious influenza virus is introduced. In terms of mass casualties due to a pandemic, preparedness and response planning must be done. One course of action to prevent a pandemic outbreak or reduce the impact of a bioterrorist event is the use of isolation or quarantine facilities. The first level of isolation or quarantine is within the personal residence of the person exposed or infected. In the case where, the specific virus is extremely contagious and its onset of symptoms is rapid and severe, there will be a need for the deployment and setup of larger self contained quarantine facilities. Such facilities are used to house infectious individuals to minimize the exposure of susceptible individuals to contagious individuals, especially when specialized care or treatment is required and during the viral shedding period (5 to 7 days). These types of facilities require non-shared air conditioning, heating and ventilating systems where 100% of air is vented to the outside through a series of disinfection systems and staged filters. Although chemical disinfection is possible, there is a desire to incorporate intense UV radiation as a means to deactivate and disinfect airborne virus within hospital settings and isolated mass scale quarantine facilities. UV radiation is also being considered for disinfection of contaminated surfaces, such as table tops, walls and floors in hospitals and temporary quarantine facilities. In such applications the use of UV bulb technology can create many problems, for instance bulb technology requires numerous bulbs to treat a large volume of air, generates significant heat, uses significant power and does not produce large fluxes of UV light efficiently. This paper provides several methods of creating quarantine level disinfection systems using high intensity UV laser sources instead of UV bulb techniques by using laser beam shaping optics in conjunction with traditional optical laser beam delivery techniques.
The Coast Artillery Journal. Volume 74, Number 4, May-June 1931
1931-06-01
large city. The cooperation of the j;"rench Cluthol’ities was eSI)(’ciall~’ commendable and the hospitality of thc cities was most cordia I. .\\ t St...electric light bulbs to turn in to the authorities? In response to govl’rnment requests we planted "war gardens" and abandoned the practice of hoarding...conditions in the mines. \\\\T orse npws still in steel. The most signal failure, per- haps, occurred at the Stalin grad tractor plant , scheo.- nled to
Rank the voltage across light bulbs … then set up the live experiment
NASA Astrophysics Data System (ADS)
Jacobs, Greg C.
2018-02-01
The Tasks Inspired by Physics Education Research (TIPERS) workbooks pose questions in styles quite different from the end-of-chapter problems that those of us of a certain age were assigned back in the days before Netscape. My own spin on TIPERS is not just to do them on paper, but to have students set up the situations in the laboratory to verify—or contradict —their paper solutions. The circuits unit is particularly conducive to creating quick-and-dirty lab setups that demonstrate the result of conceptually framed problems.
In search of the dimensions of an incandescent light bulb filament
NASA Astrophysics Data System (ADS)
Ladino, Luis A.; Rondón, Hermilda S.
2018-05-01
The purpose of this paper is to present and discuss an alternative solution to an experimental problem given to high school students in the XXII Ibero-American Physics Olympiad held by Colombia this year. From the measurements of electric current and potential difference across a small tungsten filament lamp students should find the dimensions of its filament. The results obtained are compared with the ones measured directly. This challenging and low-cost experiment can be easily implemented and carried out in any introductory physics laboratory courses.
Feasibility of ultraviolet-light-emitting diodes as an alternative light source for photocatalysis.
Levine, Lanfang H; Richards, Jeffrey T; Coutts, Janelle L; Soler, Robert; Maxik, Fred; Wheeler, Raymond M
2011-09-01
The objective of this study was to determine whether ultraviolet-light-emitting diodes (UV-LEDs) could serve as an efficient photon source for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A (lambda max = 365 nm) LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp for a bench scale annular reactor packed with silica-titania composite (STC) pellets. Lighting and thermal properties of the module were characterized to assess its uniformity and total irradiance. A forward current (I(F)) of 100 mA delivered an average irradiance of 4.0 mW cm(-2) at a distance of 8 mm, which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED and BLB reactors were tested for the oxidization of ethanol (50 ppm(v)) in a continuous-flow-through mode with 0.94 sec residence time. At the same average irradiance, the UV-A LED reactor resulted in a lower CO2 production rate (19.8 vs. 28.6 nmol L(-1) s(-1)), lower ethanol removal (80% vs. 91%), and lower mineralization efficiency (28% vs. 44%) than the UV-A BLB reactor. Ethanol mineralization was enhanced with the increase of the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED reactor relative to the BLB reactor at the same average irradiance could be attributed to the nonuniform irradiance over the photocatalyst, that is, a portion of the catalyst was exposed to less than the average irradiance. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off" feature for periodic irradiation. Nevertheless, our results also showed that the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB, demonstrating that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.
77 FR 8741 - Spirotetramat; Pesticide Tolerances for Emergency Exemptions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... on onion, dry bulb under section 408(l)(6) of the Federal Food, Drug, and Cosmetic Act (FFDCA), 21 U... pesticide on dry bulb onions. This regulation establishes a maximum permissible level for residues of... degradates, in or on onion, dry bulb at 0.3 parts per million (ppm). This time-limited tolerance expires on...
77 FR 12282 - Notice Soliciting Scoping Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
...-megawatt (MW) horizontal Kaplan bulb turbine/generator unit; (4) a 2,300-foot-long, 13.2-kilovolt (kV... Kaplan bulb turbine/generator unit; (4) a 3.0 mile-long, 34.5-kV overhead transmission line leading from... the downstream Pool No. 4 of the Red River; (3) a 28.1-MW horizontal Kaplan bulb turbine/generator...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloy, Stuart Andrew
In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.
Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor
NASA Astrophysics Data System (ADS)
Carmack, W. J.; Todosow, M.; Meyer, M. K.; Pasamehmetoglu, K. O.
2006-06-01
Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is 'burning' the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification.
The lipoxygenase pathway in tulip (Tulipa gesneriana): detection of the ketol route.
Grechkin, A N; Mukhtarova, L S; Hamberg, M
2000-12-01
The in vitro metabolism of [1-(14)C]linoleate, [1-(14)C]linolenate and their 9(S)-hydroperoxides was studied in cell-free preparations from tulip (Tulipa gesneriana) bulbs, leaves and flowers. Linoleate and its 9-hydroperoxide were converted by bulb and leaf preparations into three ketols: (12Z)-9-hydroxy-10-oxo-12-octadecadienoic acid (alpha-ketol), (11E)-10-oxo-13-hydroxy-11-octadecadienoic acid (gamma-ketol) and a novel compound, (12Z)-10-oxo-11-hydroxy-12-octadecadienoic acid (10,11-ketol), in the approximate molar proportions of 10:3:1. The corresponding 15, 16-dehydro alpha- and gamma-ketols were the main metabolites of [1-(14)C]linolenate and its 9-hydroperoxide. Thus bulbs and leaves possessed 9-lipoxygenase and allene oxide synthase activities. Incubations with flower preparations gave alpha-ketol hydro(pero)xides as predominant metabolites. Bulb and leaf preparations possessed a novel enzyme activity, gamma-ketol reductase, which reduces gamma-ketol to 10-oxo-13-hydroxyoctadecanoic acid (dihydro-gamma-ketol) in the presence of NADH. Exogenous linolenate 13(S)-hydroperoxide was converted mostly into chiral (9S,13S)-12-oxo-10-phytodienoate (99.5% optical purity) by bulb preparations, while [1-(14)C]linolenate was a precursor for ketols only. Thus tulip bulbs possess abundant allene oxide cyclase activity, the substrate for which is linolenate 13(S)-hydroperoxide, even though 13(S)-lipoxygenase products were not detectable in the bulbs. The majority of the cyclase activity was found in the microsomes (10(5) g pellet). Cyclase activity was not found in the other tissues examined, but only in the bulbs. The ketol route of the lipoxygenase pathway, mediated by 9-lipoxygenase and allene oxide synthase activities, has not been detected previously in the vegetative organs of any plant species.
Yang, Xiao-Hua; Guo, Qiao-Sheng; Zhu, Zai-Biao; Lin, Jian-Luo; Miao, Yuan-Yuan; Sun, Yuan
2016-02-01
The optimum harvest time of Tulipa edulis was explored based on biomass accumulation and medicinal quality evaluation. Samples were taken from bud stage (Feb 13th) to dormancy stage (May 14th) and the growth indexes, organs biomasses, drying rate, contents of water-soluble extract and polysaccharides were determined. The results showed that biomass distribution of T. edulis varied with growth center and the bulb gained maximum biomass allocation in the whole growth period. The total biomass accumulation and bulb biomass accumulation increased in the whole growth period and peaked in fructescence stage. No differences were observed in bulb biomass among fructescence stage, withering stage and dormancy stage. The correlation between bulb biomass allocation and other morphological indexes varied with the harvest time. Bulb dry weight biomass had negative correlation with some morphological indexes of aerial part of T. edulis at bud stage, flower stage and fructescence and had significant positive (P<0.05) or extremely significant positive correlation(P<0.01)with other morphological indexes except for root at bearing fruits stage. The drying rate of bulb of T. edulis increased with the extension of harvest time and peaked in dormancy stage. The water-soluble extract of T. edulis bulb was the highest in pre-growing-stage. The tendency of polysaccharides contents showed a W-shape variation during the harvesting period. The polysaccharides content was the lowest in fructescence stage and was the highest in dormancy stage. Considering the yield and medicinal quality of T. edulis bulb, the optimum harvest time of T. edulis is in the withering stage or early stage of dormancy. Copyright© by the Chinese Pharmaceutical Association.
The lipoxygenase pathway in tulip (Tulipa gesneriana): detection of the ketol route.
Grechkin, A N; Mukhtarova, L S; Hamberg, M
2000-01-01
The in vitro metabolism of [1-(14)C]linoleate, [1-(14)C]linolenate and their 9(S)-hydroperoxides was studied in cell-free preparations from tulip (Tulipa gesneriana) bulbs, leaves and flowers. Linoleate and its 9-hydroperoxide were converted by bulb and leaf preparations into three ketols: (12Z)-9-hydroxy-10-oxo-12-octadecadienoic acid (alpha-ketol), (11E)-10-oxo-13-hydroxy-11-octadecadienoic acid (gamma-ketol) and a novel compound, (12Z)-10-oxo-11-hydroxy-12-octadecadienoic acid (10,11-ketol), in the approximate molar proportions of 10:3:1. The corresponding 15, 16-dehydro alpha- and gamma-ketols were the main metabolites of [1-(14)C]linolenate and its 9-hydroperoxide. Thus bulbs and leaves possessed 9-lipoxygenase and allene oxide synthase activities. Incubations with flower preparations gave alpha-ketol hydro(pero)xides as predominant metabolites. Bulb and leaf preparations possessed a novel enzyme activity, gamma-ketol reductase, which reduces gamma-ketol to 10-oxo-13-hydroxyoctadecanoic acid (dihydro-gamma-ketol) in the presence of NADH. Exogenous linolenate 13(S)-hydroperoxide was converted mostly into chiral (9S,13S)-12-oxo-10-phytodienoate (99.5% optical purity) by bulb preparations, while [1-(14)C]linolenate was a precursor for ketols only. Thus tulip bulbs possess abundant allene oxide cyclase activity, the substrate for which is linolenate 13(S)-hydroperoxide, even though 13(S)-lipoxygenase products were not detectable in the bulbs. The majority of the cyclase activity was found in the microsomes (10(5) g pellet). Cyclase activity was not found in the other tissues examined, but only in the bulbs. The ketol route of the lipoxygenase pathway, mediated by 9-lipoxygenase and allene oxide synthase activities, has not been detected previously in the vegetative organs of any plant species. PMID:11085944
NASA Technical Reports Server (NTRS)
Coutts, Janelle L.; Hintze, Paul E.; Meier, Anne; Shah, Malay G.; Devor, Robert W.; Surma, Jan M.; Maloney, Phillip R.; Bauer, Brint M.; Mazyck, David W.
2016-01-01
In recent years, the alteration of titanium dioxide to become visible-light-responsive (VLR) has been a major focus in the field of photocatalysis. Currently, bare titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Hg-vapor fluorescent light sources are used in photocatalytic oxidation (PCO) reactors to provide adequate levels of ultraviolet light for catalyst activation; these mercury-containing lamps, however, hinder the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. VLR-TiO2 would allow for use of ambient visible solar radiation or highly efficient visible wavelength LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Over the past three years, Kennedy Space Center has developed a VLR Ag-doped TiO2 catalyst with a band gap of 2.72 eV and promising photocatalytic activity. Catalyst immobilization techniques, including incorporation of the catalyst into a sorbent material, were examined. Extensive modeling of a reactor test bed mimicking air duct work with throughput similar to that seen on the International Space Station was completed to determine optimal reactor design. A bench-scale reactor with the novel catalyst and high-efficiency blue LEDs was challenged with several common volatile organic compounds (VOCs) found in ISS cabin air to evaluate the system's ability to perform high-throughput trace contaminant removal. The ultimate goal for this testing was to determine if the unit would be useful in pre-heat exchanger operations to lessen condensed VOCs in recovered water thus lowering the burden of VOC removal for water purification systems.
Duodenal Bulb Adenocarcinoma Benefitted from Neoadjuvant Chemotherapy: A Case Report.
Zhang, Geng-Yuan; Mao, Jie; Zhao, Bin; Long, Bo; Zhan, Hao; Zhang, Jun-Qiang; Zhou, Hui-Nian; Guo, Ling-Yun; Jiao, Zuo-Yi
2017-01-01
Duodenal bulb adenocarcinoma is an extremely rare malignancy in the alimentary tract which has a low incidence rate and nonspecific symptoms. It is difficult to diagnose early, and the misdiagnosis rate is high. CT, MRI, upper gastrointestinal endoscopy, and other advanced imaging modalities should be combined to make a comprehensive evaluation. The diagnostic confirmation of this tumor type mainly depends on the pathological examination. The combination of surgery with other treatment modalities is effective. A review of reports on duodenal bulb adenocarcinoma with chemotherapy revealed 6 cases since 1990. However, there are few reports on neoadjuvant chemotherapy for the disease. In this report, preoperative S-1 in combination with oxaliplatin neoadjuvant chemotherapy achieved a complete pathological response in the treatment of duodenal bulb adenocarcinoma. Neoadjuvant chemotherapy shows a better clinical efficacy in the treatment of duodenal bulb adenocarcinoma, but its value needs to be further verified. © 2017 S. Karger AG, Basel.
CANDU in-reactor quantitative visual-based inspection techniques
NASA Astrophysics Data System (ADS)
Rochefort, P. A.
2009-02-01
This paper describes two separate visual-based inspection procedures used at CANDU nuclear power generating stations. The techniques are quantitative in nature and are delivered and operated in highly radioactive environments with access that is restrictive, and in one case is submerged. Visual-based inspections at stations are typically qualitative in nature. For example a video system will be used to search for a missing component, inspect for a broken fixture, or locate areas of excessive corrosion in a pipe. In contrast, the methods described here are used to measure characteristic component dimensions that in one case ensure ongoing safe operation of the reactor and in the other support reactor refurbishment. CANDU reactors are Pressurized Heavy Water Reactors (PHWR). The reactor vessel is a horizontal cylindrical low-pressure calandria tank approximately 6 m in diameter and length, containing heavy water as a neutron moderator. Inside the calandria, 380 horizontal fuel channels (FC) are supported at each end by integral end-shields. Each FC holds 12 fuel bundles. The heavy water primary heat transport water flows through the FC pressure tube, removing the heat from the fuel bundles and delivering it to the steam generator. The general design of the reactor governs both the type of measurements that are required and the methods to perform the measurements. The first inspection procedure is a method to remotely measure the gap between FC and other in-core horizontal components. The technique involves delivering vertically a module with a high-radiation-resistant camera and lighting into the core of a shutdown but fuelled reactor. The measurement is done using a line-of-sight technique between the components. Compensation for image perspective and viewing elevation to the measurement is required. The second inspection procedure measures flaws within the reactor's end shield FC calandria tube rolled joint area. The FC calandria tube (the outer shell of the FC) is sealed by rolling its ends into the rolled joint area. During reactor refurbishment, the original FC calandria tubes are removed, potentially scratching the rolled joint area and, thereby, compromising the seal with the new FC calandria tube. The procedure involves delivering an inspection module having a radiation-resistant camera, standard lighting, and a structured lighting projector. The surface is inspected by rotating the module within the rolled joint area. If a flaw is detected, its depth and width are gauged from the profile variation of the structured lighting in a captured image. As well, the diameter profile of the area is measured from the analysis of a series of captured circumferential images of the structured lighting profiles on the surface.
Photodynamic therapy in the prophylactic management of bladder cancer
NASA Astrophysics Data System (ADS)
Nseyo, Unyime O.; Lundahl, Scott L.; Merrill, Daniel C.
1991-06-01
Nine patients were treated with red light whole bladder photodynamic therapy (WBPDT): five had mucosal involvement (Ta) and four submucosal invasion (T1). Patients received slow intravenous injection with 2mg/kg body weight of photofrin 48-72 hours before undergoing global light treatment via a 22-French cystoscope with a 400-micron quartz fiber bulb (isotropic) tip fiber. Three months after PDT, eight of the patients had normal cystoscopy, and negative biopsy and urine cytology. Two patients who had recurrences at six and twelve months were retreated with a higher dose (20 J/cm2). They had no increased morbidity and no evidence of recurrent disease six months later. WBPDT should be considered as an important alternative treatment for patients who have recurrent or refractory superficial bladder cancer.
USDA-ARS?s Scientific Manuscript database
Crop loss of onion bulbs during storage carries an exceptionally high economic impact since a large portion of the production expenses have been expended before storage occurs. Because of this, it is important to define practices that can reduce onion bulb losses caused by storage rots. This study...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... No. 203313-25-1) to treat onion, dry bulb to control thrips. The applicants are proposing the use of... for the use of spirotetramat (CAS No. 203313-25-1) on onion, dry bulb, to control thrips. Information... first-time exemption requests for the use of spirotetramat on dry bulb onions to control thrips. Based...
[Study on good agricultural practice for Tulipa edulis--planting density and sowing depth tests].
Bing, Qi-Zhong; Zhang, Ben-Gang; Zhang, Zhao; Chen, Zi-Hong
2008-11-01
To study optimum planting density and sowing depth of Tulipa edulis. The effects of different planting densities, sowing depth and thin plastic film cover were studied on yield, rate of increase, bulb weight increased multiples, and proliferation rate of bulb. Under 30-200 bulbs per squremeter density range, the yield increased with the density increasing, and reached significance level. In 5-20 centimeter depth range, the yield and the number of harvested bulbs enhanced along with the sowing depth increasing, and the best sowing depth was 20 cm. Thin plastic film cover showed no effect on the growth.
Maurer, Martin H; Feldmann, Robert E; Bürgers, Heinrich F; Kuschinsky, Wolfgang
2008-01-16
Neural progenitor cells can be isolated from various regions of the adult mammalian brain, including the forebrain structures of the subventricular zone and the olfactory bulb. Currently it is unknown whether functional differences in these progenitor cell populations can already be found on the molecular level. Therefore, we compared protein expression profiles between progenitor cells isolated from the subventricular zone and the olfactory bulb using a proteomic approach based on two-dimensional gel electrophoresis and mass spectrometry. The subventricular zone and the olfactory bulb are connected by the Rostral Migratory Stream (RMS), in which glial fibrillary acidic protein (GFAP)-positive cells guide neuroblasts. Recent literature suggested that these GFAP-positive cells possess neurogenic potential themselves. In the current study, we therefore compared the cultured neurospheres for the fraction of GFAP-positive cells and their morphology of over a prolonged period of time. We found significant differences in the protein expression patterns between subventricular zone and olfactory bulb neural progenitor cells. Of the differentially expressed protein spots, 105 were exclusively expressed in the subventricular zone, 23 showed a lower expression and 51 a higher expression in the olfactory bulb. The proteomic data showed that more proteins are differentially expressed in olfactory bulb progenitors with regard to proteins involved in differentiation and microenvironmental integration, as compared to the subventricular zone progenitors. Compared to 94% of all progenitors of the subventricular zone expressed GFAP, nearly none in the olfactory bulb cultures expressed GFAP. Both GFAP-positive subpopulations differed also in morphology, with the olfactory bulb cells showing more branching. No differences in growth characteristics such as doubling time, and passage lengths could be found over 26 consecutive passages in the two cultures. In this study, we describe differences in protein expression of neural progenitor populations isolated from two forebrain regions, the subventricular zone and the olfactory bulb. These subpopulations can be characterized by differential expression of marker proteins. We isolated fractions of progenitor cells with GFAP expression from both regions, but the GFAP-positive cells differed in number and morphology. Whereas in vitro growth characteristics of neural progenitors are preserved in both regions, our proteomic and immunohistochemical data suggest that progenitor cells from the two regions differ in morphology and functionality, but not in their proliferative capacity.
Effect of Processed Onions on the Plasma Concentration of Quercetin in Rats and Humans.
Kashino, Yasuaki; Murota, Kaeko; Matsuda, Namiko; Tomotake, Muneaki; Hamano, Takuya; Mukai, Rie; Terao, Junji
2015-11-01
Onion is a major dietary source of the bioactive flavonoid, quercetin. Quercetin aglycone (QA) is exclusively distributed in the onion peel, although quercetin-4'-β-O-glucoside (Q4'G) is present in both the peel and the bulb, and quercetin-3,4'-β-O-diglucoside (Q3,4'diG) is present only the bulb. The bioavailability of flavonoids from fruits and vegetables is frequently affected by the manufacturing process and related conditions. The present study aimed to estimate the effect of food processing on the bioavailability of onion QA and its glucosides, Q4'G and Q3,4'diG, provided through the consumption of onion products. Rats were fed onion peel and onion bulb products-mixed meal or pure QA/Q4'G+Q3,4'diG-mixed meal at 5 mg QA equivalent/kg body weight. A comparison of the blood plasma concentrations strongly suggested that quercetin glucosides (Q4'G and Q3,4'diG) are superior or at least equal to QA in their bioavailability, when each purified compound is mixed with the meal. The intake of a peel powder-containing meal provided a significantly higher increase of plasma quercetin concentration than the peel extract, bulb powder, bulb extract, and bulb sauté containing meals at each period tested. A human ingestion study confirmed the superiority of onion peel powder to onion peel extract. The difference of log P for QA between peel powder and peel extract indicated that a food matrix improves the bioavailability of QA in onion peel products. These results demonstrated that the bioavailability of quercetin provided by not the onion bulb but the onion peel is significantly affected by food processing. Onion is a popular source of antioxidative flavonoid quercetin and its vascular function attracts considerable attention in relation to anti-atherosclerotic effect. The present study estimated the effect of food processing on the bioavailability of onion quercetin aglycone and its glucosides provided through the consumption of onion products. The intake of a peel powder-containing meal showed a significantly higher bioavailability than the peel extract, bulb powder, bulb extract, and bulb sauté containing meals. Hence, food processing of onion peel may enhance the health impact of onion quercetin by elevating its bioavailability. © 2015 Institute of Food Technologists®
Feasibility of Ultraviolet Light Emitting Diodes as an Alternative Light Source for Photocatalysis
NASA Technical Reports Server (NTRS)
Levine, Langanf H.; Richards, Jeffrey T.; Soler, Robert; Maxik, Fred; Coutts, Janelle; Wheeler, Raymond M.
2011-01-01
The objective of this study was to determine whether ultraviolet light emitting diodes (UV-LEDs) could serve as an alternative photon source efficiently for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp in a Silica-Titania Composite (STC) packed bed annular reactor. Lighting and thermal properties were characterized to assess the uniformity and total irradiant output. A forward current of (I(sub F)) 100 mA delivered an average irradiance of 4.0 m W cm(exp -2), which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED- and BLB-reactors were tested for the oxidization of 50 ppmv ethanol in a continuous flow-through mode with 0.94 sec space time. At the same irradiance, the UV-A LED reactor resulted in a lower PCO rate constant than the UV-A BLB reactor (19.8 vs. 28.6 nM CO2 sec-I), and consequently lower ethanol removal (80% vs. 91%) and mineralization efficiency (28% vs. 44%). Ethanol mineralization increased in direct proportion to the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED- reactor could be traced to uneven irradiance over the photocatalyst, leaving a portion of the catalyst was under-irradiated. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off' feature for periodic irradiation. Nevertheless, the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB. These results demonstrated that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.
Krigel, A; Berdugo, M; Picard, E; Levy-Boukris, R; Jaadane, I; Jonet, L; Dernigoghossian, M; Andrieu-Soler, C; Torriglia, A; Behar-Cohen, F
2016-12-17
To save energy, the European directives from the Eco-design of Energy Using Products (2005/32/CE) have recommended the replacement of incandescent lamps by more economic devices such as Light Emitting Diodes (LEDs). However, the emission spectrum of these devices is enriched in blue radiations, known to be potentially dangerous to the retina. Recent studies showed that light exposure contributes to the onset of early stages of age-related macular degeneration (AMD). Here, we investigate, in albinos and pigmented rats, the effects of different exposure protocols. Twenty-four hours exposure at high luminance was compared to a cyclic (dark/light) exposure at domestic levels for 1week and 1month, using different LEDs (Cold-white, blue and green), as well as fluorocompact bulbs and fluorescent tubes. The data suggest that the blue component of the white-LED may cause retinal toxicity at occupational domestic illuminance and not only in extreme experimental conditions, as previously reported. It is important to note that the current regulations and standards have been established on the basis of acute light exposure and do not take into account the effects of repeated exposure. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Akers, Katherine G; Kushner, Steven A; Leslie, Ana T; Clarke, Laura; van der Kooy, Derek; Lerch, Jason P; Frankland, Paul W
2011-07-07
Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavioral alterations during adulthood. Mice drank a 10% ethanol solution throughout pregnancy. When fetal alcohol-exposed offspring reached adulthood, we used high resolution MRI to conduct a brain-wide screen for structural changes and found that the largest reduction in volume occurred in the olfactory bulbs. Next, we tested adult mice in an associative olfactory task and found that fetal alcohol exposure impaired discrimination between similar odors but left odor memory intact. Finally, we investigated olfactory bulb neurogenesis as a potential mechanism by performing an in vitro neurosphere assay, in vivo labeling of new cells using BrdU, and in vivo labeling of new cells using a transgenic reporter system. We found that fetal alcohol exposure decreased the number of neural precursor cells in the subependymal zone and the number of new cells in the olfactory bulbs during the first few postnatal weeks. Using a combination of techniques, including structural brain imaging, in vitro and in vivo cell detection methods, and behavioral testing, we found that fetal alcohol exposure results in smaller olfactory bulbs and impairments in odor discrimination that persist into adulthood. Furthermore, we found that these abnormalities in olfactory bulb structure and function may arise from deficits in the generation of new olfactory bulb neurons during early postnatal development.
Carbohydrate Status of Tulip Bulbs during Cold-Induced Flower Stalk Elongation and Flowering.
Lambrechts, H.; Rook, F.; Kolloffel, C.
1994-01-01
The effect of a cold treatment on the carbohydrate status of the scales and flower stalk of Tulipa gesneriana L. cv Apeldoorn bulbs during growth after planting was studied and compared with bulbs not given cold treatment. Bulbs were stored dry for 12 weeks at 5[deg]C (precooled) or 17[deg]C (noncooled). Only the 5[deg]C treatment led to rapid flower stalk elongation and flowering following planting at higher temperatures. Precooling enhanced mobilization of starch, fructans, and sucrose in the scales. The cold-stimulated starch breakdown was initially accompanied by increased [alpha]-amylase activity per scale. In noncooled bulbs, [alpha]-amylase activity slightly decreased or remained more or less constant. Cold-induced flower stalk elongation was partially accompanied by a decrease in the sucrose content and an increase in the glucose content and invertase activity per g dry weight. The starch content in internodes initially decreased and subsequently increased; [alpha]-amylase activity per g dry weight of the lowermost internode showed a peak pattern during starch breakdown and increased thereafter. The internodes of noncooled bulbs, on the contrary, accumulated sucrose. Their glucose content and invertase activity per g dry weight remained low. Starch breakdown was not found and [alpha]-amylase activity per g dry weight of the lowermost internode remained at a low level. Precooling of tulip bulbs thus favors reserve mobilization in the scales and flower stalk and glucose accumulation in the elongating internodes. PMID:12232100
77 FR 42771 - License Renewal for the Dow Chemical TRIGA Research Reactor
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-20
... Chemical Company in Midland, MI and is a part of the Analytical Sciences Laboratory. The reactor is housed...-Radiological Impacts The Dow TRIGA Research Reactor core is cooled by a light water primary system consisting... provided by the volume of primary coolant allows several hours of full-power operation without any...
10 CFR 50.63 - Loss of all alternating current power.
Code of Federal Regulations, 2014 CFR
2014-01-01
... information defined below to the Director of the Office of Nuclear Reactor Regulation by April 17, 1989. For... Office of Nuclear Reactor Regulation, by 270 days after the date of license issuance. For each light... accordance with paragraph (c)(3) of this section, submit to the Director of the Office of Nuclear Reactor...
10 CFR 50.63 - Loss of all alternating current power.
Code of Federal Regulations, 2012 CFR
2012-01-01
... information defined below to the Director of the Office of Nuclear Reactor Regulation by April 17, 1989. For... Office of Nuclear Reactor Regulation, by 270 days after the date of license issuance. For each light... accordance with paragraph (c)(3) of this section, submit to the Director of the Office of Nuclear Reactor...
10 CFR 50.63 - Loss of all alternating current power.
Code of Federal Regulations, 2013 CFR
2013-01-01
... information defined below to the Director of the Office of Nuclear Reactor Regulation by April 17, 1989. For... Office of Nuclear Reactor Regulation, by 270 days after the date of license issuance. For each light... accordance with paragraph (c)(3) of this section, submit to the Director of the Office of Nuclear Reactor...
10 CFR 50.63 - Loss of all alternating current power.
Code of Federal Regulations, 2011 CFR
2011-01-01
... information defined below to the Director of the Office of Nuclear Reactor Regulation by April 17, 1989. For... Office of Nuclear Reactor Regulation, by 270 days after the date of license issuance. For each light... accordance with paragraph (c)(3) of this section, submit to the Director of the Office of Nuclear Reactor...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhasish; Soppet, William; Majumdar, Saurin
This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable under the work package for environmentally assisted fatigue as part of DOE’s Light Water Reactor Sustainability Program. In a previous report (September 2015), we presented tensile and fatigue test data and related hardening material properties for 508 low-alloys steel base metal and other reactor metals. In this report, we present thermal-mechanical stress analysis of the reactor pressure vessel and its hot-leg and cold-leg nozzles based on estimated material properties. We also present results frommore » thermal and thermal-mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting cracks in the reactor nozzles (axial or circumferential crack). In addition, results from validation stress analysis based on tensile and fatigue experiments are reported.« less
NASA Astrophysics Data System (ADS)
Palmiste, Ü.; Voll, H.
2017-10-01
The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.; Bentz, J.H.; Bergeron, K.D.
1994-04-01
The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ``flooded cavity``, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array canmore » deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications.« less
Olfactory dysfunction, olfactory bulb pathology and urban air pollution
Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R.; Doty, Richard L
2010-01-01
Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC / 25 controls 21.2 ±2.7 y. MC subjects had significantly lower UPSIT scores: 34.24 ± 0.42 versus controls 35.76 ± 0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE ε 4 carriers failed 2.4 ± 0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36 ± 0.16 items, p = 0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid βA42 (29/35) and/or α-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. PMID:19297138
Ashenfelter, J.; Jaffe, D.; Diwan, M. V.; ...
2015-11-06
A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. As a result, key design features for optimizing MeV-scale response and background rejection capabilities are identified.
75 FR 56897 - S-metolachlor; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-17
... 13-07B at 0.15 ppm; onion, bulb, subgroup 3-07A at 0.1 ppm; and onion, green, subgroup 3-07B at 2.0... removing a tolerance, under Sec. 180.368(a)(2), established at 0.10 ppm for garlic; onion, bulb; and... established by this action for bulb onion subgroup 3-07A at 0.10 ppm. Additionally, concomitant with the...
75 FR 767 - Extension of Tolerances for Emergency Exemptions (Multiple Chemicals)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-06
... authorized under FIFRA section 18 the use of avermectin on bulb onions for control of thrips in Colorado (40... insecticide avermectin B 1 and its delta-8,9-isomer in or on bulb onions at 0.005 parts per million (ppm) for....449 [Amended] 0 5. In Sec. 180.449, in the table to paragraph (b), amend the entry for onion, bulb by...
Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J. R.; Bergeron, A.; Dionne, B.
2015-12-01
BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux ofmore » 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.« less
Experimental Testing of a Metamaterial Slow Wave Structure for High-Power Microwave Generation
NASA Astrophysics Data System (ADS)
Shipman, K.; Prasad, S.; Andreev, D.; Fisher, D. M.; Reass, D. B.; Schamiloglu, E.; Gilmore, M.
2017-10-01
A high-power L band source has been developed using a metamaterial (MTM) to produce a double negative slow wave structure (SWS) for interaction with an electron beam. The beam is generated by a 700 kV, 6 kA short pulse (10 ns) accelerator. The design of the SWS consists of a cylindrical waveguide, loaded with alternating split-rings that are arrayed axially down the waveguide. The beam is guided down the center of the rings, where electrons interact with the MTM-SWS producing radiation. Power is extracted axially via a circular waveguide, and radiated by a horn antenna. Microwaves are characterized by an external detector placed in a waveguide. Mode characterization is performed using a neon bulb array. The bulbs are lit by the electric field, resulting in an excitation pattern that resembles the field pattern. This is imaged using an SLR camera. The MTM structure has electrically small features so breakdown is a concern. In addition to high speed cameras, a fiber-optic-fed, sub-ns photomultiplier tube array diagnostic has been developed and used to characterize breakdown light. Work supported by the Air Force Office of Scientific Research, MURI Grant FA9550-12-1-0489.
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] Click on image for audio animation This animation illustrates how a light echo works, and how an optical illusion of material moving outward is created. A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The animation starts by showing the explosion of a star, which results in a flash of light that moves outward in all directions. The direction of our line of sight from Earth is indicated by the blue arrow. When the light flash reaches surrounding dust, shown here as three dark clouds, the dust is heated up, creating infrared light that begins to travel toward Earth (indicated by the red arrows). Dust closest to the explosion lights up first, while the explosion's shock wave takes longer to reach more distant material. This results in light from different parts of the cloud reaching Earth at different times, creating the illusion of motion over time. As the animation shows, the inclination of the cloud toward our line of sight can result in the material seeming to move both away from and toward the central star.A Geometric Model for Specularity Prediction on Planar Surfaces with Multiple Light Sources.
Morgand, Alexandre; Tamaazousti, Mohamed; Bartoli, Adrien
2018-05-01
Specularities are often problematic in computer vision since they impact the dynamic range of the image intensity. A natural approach would be to predict and discard them using computer graphics models. However, these models depend on parameters which are difficult to estimate (light sources, objects' material properties and camera). We present a geometric model called JOLIMAS: JOint LIght-MAterial Specularity, which predicts the shape of specularities. JOLIMAS is reconstructed from images of specularities observed on a planar surface. It implicitly includes light and material properties, which are intrinsic to specularities. This model was motivated by the observation that specularities have a conic shape on planar surfaces. The conic shape is obtained by projecting a fixed quadric on the planar surface. JOLIMAS thus predicts the specularity using a simple geometric approach with static parameters (object material and light source shape). It is adapted to indoor light sources such as light bulbs and fluorescent lamps. The prediction has been tested on synthetic and real sequences. It works in a multi-light context by reconstructing a quadric for each light source with special cases such as lights being switched on or off. We also used specularity prediction for dynamic retexturing and obtained convincing rendering results. Further results are presented as supplementary video material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TVCG.2017.2677445.
A new device for evacuating air from the cardiac chambers.
Zhong, B T
1993-01-01
A new device has been developed to provide complete de-airing of the heart after cardiopulmonary bypass. The apparatus consists of a special aspiration needle threaded to the bottom of a transparent bulb. A 1-way flutter valve is mounted at the top of the bulb, which creates a vacuum when the bulb is squeezed. This device has been used in 4 adults and 2 children, for both congenital and acquired heart disease. Preliminary results have shown that this device's active suctioning of air results in effective removal of air from the cardiac chambers; the transparent bulb enables the surgeon to visually determine that the de-airing procedure is complete. PMID:8219828
Molecular Ecology of Bacterial Populations in Environmental Hazardous Chemical Control
1991-11-30
Reactor Figure 1. A schematic drawing of the bioreactor system for on-line studies of naphthalene degradation and light production by bioluminescent...the bioluminescent monitoring section. The reactor system consisted of a L. H. Fermentation Series 500 continuous flow bioreactor with a 1 L glass... studied the expression of the upper pathway operon of NAH7. Light induction in response to naphthalene in the strain HK44 was comparable in both
Fuel assembly for the production of tritium in light water reactors
Cawley, W.E.; Trapp, T.J.
1983-06-10
A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.
Fuel assembly for the production of tritium in light water reactors
Cawley, William E.; Trapp, Turner J.
1985-01-01
A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.
The effect of ambient lighting on Laser Doppler Imaging of a standardized cutaneous injury model.
Pham, Alan Chuong Q; Hei, Erik La; Harvey, John G; Holland, Andrew Ja
2017-01-01
The aim of this study was to investigate the potential confounding effects of four different types of ambient lighting on the results of Laser Doppler Imaging (LDI) of a standardized cutaneous injury model. After applying a mechanical stimulus to the anterior forearm of a healthy volunteer and inducing a wheal and arteriolar flare (the Triple response), we used a Laser Doppler Line Scanner (LDLS) to image the forearm under four different types of ambient lighting: light-emitting-diode (LED), compact fluorescent lighting (CFL), halogen, daylight, and darkness as a control. A spectrometer was used to measure the intensity of light energy at 785 nm, the wavelength used by the scanner for measurement under each type of ambient lighting. Neither the LED nor CFL bulbs emitted detectable light energy at a wavelength of 785 nm. The color-based representation of arbitrary perfusion unit (APU) values of the Triple response measured by the scanner was similar between darkness, LED, and CFL light. Daylight emitted 2 mW at 785 nm, with a slight variation tending more towards lower APU values compared to darkness. Halogen lighting emitted 6 mW of light energy at 785 nm rendering the color-based representation impossible to interpret. Halogen lighting and daylight have the potential to confound results of LDI of cutaneous injuries whereas LED and CFL lighting did not. Any potential sources of daylight should be reduced and halogen lighting completely covered or turned off prior to wound imaging.
O'Neal Tugaoen, Heather; Garcia-Segura, Sergi; Hristovski, Kiril; Westerhoff, Paul
2018-02-01
A key barrier to implementing photocatalysis is delivering light to photocatalysts that are in contact with aqueous pollutants. Slurry photocatalyst systems suffer from poor light penetration and require post-treatment to separate the catalyst. The alternative is to deposit photocatalysts on fixed films and deliver light onto the surface or the backside of the attached catalysts. In this study, TiO 2 -coated quartz optical fibers were coupled to light emitting diodes (OF/LED) to improve in situ light delivery. Design factors and mechanisms studied for OF/LEDs in a flow-through reactor included: (i) the influence of number of LED sources coupled to fibers and (ii) the use of multiple optical fibers bundled to a single LED. The light delivery mechanism from the optical fibers into the TiO 2 coatings is thoroughly discussed. To demonstrate influence of design variables, experiments were conducted in the reactor using the chlorinated pollutant para-chlorobenzoic acid (pCBA). From the degradation kinetics of pCBA, the quantum efficiencies (Φ) of oxidation and electrical energies per order (E EO ) were determined. The use of TiO 2 coated optical fiber bundles reduced the energy requirements to deliver photons and increased available surface area, which improved Φ and enhanced oxidative pollutant removal performance (E EO ). Copyright © 2017 Elsevier B.V. All rights reserved.
Uncertainty Analysis in Humidity Measurements by the Psychrometer Method
Chen, Jiunyuan; Chen, Chiachung
2017-01-01
The most common and cheap indirect technique to measure relative humidity is by using psychrometer based on a dry and a wet temperature sensor. In this study, the measurement uncertainty of relative humidity was evaluated by this indirect method with some empirical equations for calculating relative humidity. Among the six equations tested, the Penman equation had the best predictive ability for the dry bulb temperature range of 15–50 °C. At a fixed dry bulb temperature, an increase in the wet bulb depression increased the error. A new equation for the psychrometer constant was established by regression analysis. This equation can be computed by using a calculator. The average predictive error of relative humidity was <0.1% by this new equation. The measurement uncertainty of the relative humidity affected by the accuracy of dry and wet bulb temperature and the numeric values of measurement uncertainty were evaluated for various conditions. The uncertainty of wet bulb temperature was the main factor on the RH measurement uncertainty. PMID:28216599
Uncertainty Analysis in Humidity Measurements by the Psychrometer Method.
Chen, Jiunyuan; Chen, Chiachung
2017-02-14
The most common and cheap indirect technique to measure relative humidity is by using psychrometer based on a dry and a wet temperature sensor. In this study, the measurement uncertainty of relative humidity was evaluated by this indirect method with some empirical equations for calculating relative humidity. Among the six equations tested, the Penman equation had the best predictive ability for the dry bulb temperature range of 15-50 °C. At a fixed dry bulb temperature, an increase in the wet bulb depression increased the error. A new equation for the psychrometer constant was established by regression analysis. This equation can be computed by using a calculator. The average predictive error of relative humidity was <0.1% by this new equation. The measurement uncertainty of the relative humidity affected by the accuracy of dry and wet bulb temperature and the numeric values of measurement uncertainty were evaluated for various conditions. The uncertainty of wet bulb temperature was the main factor on the RH measurement uncertainty.
Kumar, Sandeep; Baranwal, V K; Joshi, Subodh; Arya, Meenakshi; Majumder, S
2010-06-01
Reduced seed production in onion is associated with Onion yellow dwarf virus (OYDV), a filamentous Potyvirus. Onion is also infected with other filamentous virus particles suspected to be Allexivirus. RT-PCR was used to detect mixed infection of both the viruses in leaves and bulbs. A duplex RT-PCR was developed, which simultaneously detected the presence of these two viruses in winter (Rabi) onion bulb. In summer (Kharif) onion bulbs only Allexivirus was detected. The absence of OYDV in summer crop is discussed. The sequencing of RT-PCR amplified products confirmed the identity of OYDV and Allexivirus, the latter showing closer identity to Garlic virus C (GVC)/Garlic mite-borne mosaic virus. This makes the first detection of an Allexivirus in onion crop in India. The duplex RT-PCR to detect these viruses (OYDV and Allexivirus) would be an improvement for indexing of viruses in onion bulbs for seed production.
NASA Astrophysics Data System (ADS)
Renaud, Rémi; Bendahmane, Mounir; Chery, Romain; Martin, Claire; Gurden, Hirac; Pain, Frederic
2012-06-01
Wide field multispectral imaging of light backscattered by brain tissues provides maps of hemodynamics changes (total blood volume and oxygenation) following activation. This technique relies on the fit of the reflectance images obtain at two or more wavelengths using a modified Beer-Lambert law1,2. It has been successfully applied to study the activation of several sensory cortices in the anesthetized rodent using visible light1-5. We have carried out recently the first multispectral imaging in the olfactory bulb6 (OB) of anesthetized rats. However, the optimization of wavelengths choice has not been discussed in terms of cross talk and uniqueness of the estimated parameters (blood volume and saturation maps) although this point was shown to be crucial for similar studies in Diffuse Optical Imaging in humans7-10. We have studied theoretically and experimentally the optimal sets of wavelength for multispectral imaging of rodent brain activation in the visible. Sets of optimal wavelengths have been identified and validated in vivo for multispectral imaging of the OB of rats following odor stimulus. We studied the influence of the wavelengths sets on the magnitude and time courses of the oxy- and deoxyhemoglobin concentration variations as well as on the spatial extent of activated brain areas following stimulation. Beyond the estimation of hemodynamic parameters from multispectral reflectance data, we observed repeatedly and for all wavelengths a decrease of light reflectance. For wavelengths longer than 590 nm, these observations differ from those observed in the somatosensory and barrel cortex and question the basis of the reflectance changes during activation in the OB. To solve this issue, Monte Carlo simulations (MCS) have been carried out to assess the relative contribution of absorption, scattering and anisotropy changes to the intrinsic optical imaging signals in somatosensory cortex (SsC) and OB model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-09-15
This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...
Quasi-static Design of Electrically Small Ultra-Wideband Antennas
2017-02-01
this design reduces the width of the antenna, which implies that the bulb shape can be non -spherical at high frequencies. The stored energy in an...conclusion. The Quasi-static Antenna Design Algorithm generates three UWB non -spherical bulb shapes. The non -spherical bulb shape performs as well...TECHNICAL REPORT 3056 February 2017 Quasi-static Design of Electrically Small Ultra-Wideband Antennas Thomas O. Jones III Approved for public
Didigov, M T; Durleshter, V M; Kliuchnikov, O Iu
2014-01-01
It was proposed the method of organ-preserving surgical treatment of chronic ulcers of back wall of duodenal bulb complicated by decompensated stenosis and penetration in intrapancreatic part of common bile duct (RF patent number 2476164 from 27.02.2013). 12 patients were operated by using of this technique. One patient had post-operative pancreatitis. There were not lethal outcomes.
Production and characterization of tearless and non-pungent onion.
Kato, Masahiro; Masamura, Noriya; Shono, Jinji; Okamoto, Daisaku; Abe, Tomoko; Imai, Shinsuke
2016-04-06
The onion lachrymatory factor (LF) is produced from trans-S-1-propenyl-L-cysteine sulfoxide (PRENCSO) through successive reactions catalyzed by alliinase (EC 4.4.1.4) and lachrymatory factor synthase (LFS), and is responsible for the tear inducing-property and the pungency of fresh onions. We developed tearless, non-pungent onions non-transgenically by irradiating seeds with neon-ion at 20 Gy. The bulbs obtained from the irradiated seeds and their offspring bulbs produced by selfing were screened by organoleptic assessment of tear-inducing property or HPLC analysis of LF production. After repeated screening and seed production by selfing, two tearless, non-pungent bulbs were identified in the third generation (M3) bulbs. Twenty M4 bulbs obtained from each of them showed no tear-inducing property or pungency when evaluated by 20 sensory panelists. The LF production levels in these bulbs were approximately 7.5-fold lower than those of the normal onion. The low LF production levels were due to reduction in alliinase activity, which was a result of low alliinase mRNA expression (less than 1% of that in the normal onion) and consequent low amounts of the alliinase protein. These tearless, non-pungent onions should be welcomed by all who tear while chopping onions and those who work in facilities where fresh onions are processed.
Flow Patterns in the Jugular Veins of Pulsatile Tinnitus Patients
Kao, Evan; Kefayati, Sarah; Amans, Matthew R.; Faraji, Farshid; Ballweber, Megan; Halbach, Van; Saloner, David
2017-01-01
Pulsatile Tinnitus (PT) is a pulse-synchronous sound heard in the absence of an external source. PT is often related to abnormal flow in vascular structures near the cochlea. One vascular territory implicated in PT is the internal jugular vein (IJV). Using computational fluid dynamics (CFD) based on patient-specific Magnetic Resonance Imaging (MRI), we investigated the flow within the IJV of seven subjects, four symptomatic and three asymptomatic of PT. We found that there were two extreme anatomic types classified by the shape and position of the jugular bulbs: elevated and rounded. PT patients had elevated jugular bulbs that led to a distinctive helical flow pattern within the proximal internal jugular vein. Asymptomatic subjects generally had rounded jugular bulbs that neatly redirected flow from the sigmoid sinus directly into the jugular vein. These two flow patterns were quantified by calculating the length-averaged streamline curvature of the flow within the proximal jugular vein: 130.3 ± 8.1 m-1 for geometries with rounded bulbs, 260.7 ± 29.4 m-1 for those with elevated bulbs (P < 0.005). Our results suggest that variations in the jugular bulb geometry lead to distinct flow patterns that are linked to PT, but further investigation is needed to determine if the vortex pattern is causal to sound generation. PMID:28057349
Odor-Induced Neuronal Rhythms in the Olfactory Bulb Are Profoundly Modified in ob/ob Obese Mice
Chelminski, Yan; Magnan, Christophe; Luquet, Serge H.; Everard, Amandine; Meunier, Nicolas; Gurden, Hirac; Martin, Claire
2017-01-01
Leptin, the product of the Ob(Lep) gene, is a peptide hormone that plays a major role in maintaining the balance between food intake and energy expenditure. In the brain, leptin receptors are expressed by hypothalamic cells but also in the olfactory bulb, the first central structure coding for odors, suggesting a precise function of this hormone in odor-evoked activities. Although olfaction plays a key role in feeding behavior, the ability of the olfactory bulb to integrate the energy-related signal leptin is still missing. Therefore, we studied the fate of odor-induced activity in the olfactory bulb in the genetic context of leptin deficiency using the obese ob/ob mice. By means of an odor discrimination task with concomitant local field potential recordings, we showed that ob/ob mice perform better than wild-type (WT) mice in the early stage of the task. This behavioral gain of function was associated in parallel with profound changes in neuronal oscillations in the olfactory bulb. The distribution of the peaks in the gamma frequency range was shifted toward higher frequencies in ob/ob mice compared to WT mice before learning. More notably, beta oscillatory activity, which has been shown previously to be correlated with olfactory discrimination learning, was longer and stronger in expert ob/ob mice after learning. Since oscillations in the olfactory bulb emerge from mitral to granule cell interactions, our results suggest that cellular dynamics in the olfactory bulb are deeply modified in ob/ob mice in the context of olfactory learning. PMID:28154537
2011-01-01
Background Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavioral alterations during adulthood. Results Mice drank a 10% ethanol solution throughout pregnancy. When fetal alcohol-exposed offspring reached adulthood, we used high resolution MRI to conduct a brain-wide screen for structural changes and found that the largest reduction in volume occurred in the olfactory bulbs. Next, we tested adult mice in an associative olfactory task and found that fetal alcohol exposure impaired discrimination between similar odors but left odor memory intact. Finally, we investigated olfactory bulb neurogenesis as a potential mechanism by performing an in vitro neurosphere assay, in vivo labeling of new cells using BrdU, and in vivo labeling of new cells using a transgenic reporter system. We found that fetal alcohol exposure decreased the number of neural precursor cells in the subependymal zone and the number of new cells in the olfactory bulbs during the first few postnatal weeks. Conclusions Using a combination of techniques, including structural brain imaging, in vitro and in vivo cell detection methods, and behavioral testing, we found that fetal alcohol exposure results in smaller olfactory bulbs and impairments in odor discrimination that persist into adulthood. Furthermore, we found that these abnormalities in olfactory bulb structure and function may arise from deficits in the generation of new olfactory bulb neurons during early postnatal development. PMID:21736737
Nasalance and nasality at experimental velopharyngeal openings in palatal prosthesis: a case study
LIMA-GREGIO, Aveliny Mantovan; MARINO, Viviane Cristina de Castro; PEGORARO-KROOK, Maria Inês; BARBOSA, Plinio Almeida; AFERRI, Homero Carneiro; DUTKA, Jeniffer de Cassia Rillo
2011-01-01
The use of prosthetic devices for correction of velopharyngeal insufficiency (VPI) is an alternative treatment for patients with conditions that preclude surgery and for those individuals with a hypofunctional velopharynx (HV) with a poor prognosis for the surgical repair of VPI. Understanding the role and measuring the outcome of prosthetic treatment of velopharyngeal dysfunction requires the use of tools that allow for documenting pre- and post-treatment outcomes. Experimental openings in speech bulbs have been used for simulating VPI in studies documenting changes in aerodynamic, acoustic and kinematics aspects of speech associated with the use of palatal prosthetic devices. The use of nasometry to document changes in speech associated with experimental openings in speech bulbs, however, has not been described in the literature. Objective This single-subject study investigated nasalance and nasality at the presence of experimental openings drilled through the speech bulb of a patient with HV. Material and Methods Nasometric recordings of the word "pato" were obtained under 4 velopharyngeal conditions: no-opening (control condition), no speech bulb, speech bulb with a 20 mm2 opening, and speech bulb with 30 mm2 opening. Five speech-language pathologists performed auditory-perceptual ratings while the subject read an oral passage under all conditions. Results Kruskal-Wallis test showed significant difference among conditions (p=0.0002), with Scheffé post hoc test indicating difference from the no-opening condition. Conclusion The changes in nasalance observed after drilling holes of known sizes in a speech bulb suggest that nasometry reflect changes in transfer of sound energy related to different sizes of velopharyngeal opening. PMID:22230996
Impact of conversion to mixed-oxide fuels on reactor structural components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yahr, G.T.
1997-04-01
The use of mixed-oxide (MOX) fuel to replace conventional uranium fuel in commercial light-water power reactors will result in an increase in the neutron flux. The impact of the higher flux on the structural integrity of reactor structural components must be evaluated. This report briefly reviews the effects of radiation on the mechanical properties of metals. Aging degradation studies and reactor operating experience provide a basis for determining the areas where conversion to MOX fuels has the potential to impact the structural integrity of reactor components.
A circadian clock in the olfactory bulb anticipates feeding during food anticipatory activity.
Nolasco, Nahum; Juárez, Claudia; Morgado, Elvira; Meza, Enrique; Caba, Mario
2012-01-01
Rabbit pups ingest food, in this case milk, once a day with circadian periodicity and are a natural model of food anticipatory activity. During nursing, several sensory systems receive information about properties of the food, one of them being the olfactory system, which has received little attention in relation to synchronization by food. In addition, the olfactory bulb has a circadian pacemaker that exhibits rhythms independently of the suprachiasmatic nucleus, but the biological functions of these rhythms are largely unknown. In the present contribution, we hypothesized that circadian suckling of milk synchronizes rhythms in the olfactory bulb. To this aim we explored by immunohistochemistry, rhythms of FOS and PER1 proteins, as indicators of activation and reporter of oscillations, respectively, through a complete 24-h cycle in periglomerular, mitral and granular cell layers of both the main and the accessory olfactory bulb. Subjects were 7-day-old rabbit pups scheduled to nurse during the night (02:00 h) or day (10:00 h), and also fasted subjects, to explore the possible persistence of oscillations. In the three layers of the main olfactory bulb, FOS was high at time of nursing, then further increased 1.5 h afterward, and then decreased to increase again in advance of the next nursing bout. This pattern persisted, without the postprandial increase, in fasted subjects with a shift in subjects nursed at 02:00. PER1 was increased 2-8 h after nursing and this increase persisted in most cell layers, with a shift, in fasted subjects. In the accessory olfactory bulb we only observed a consistent pattern of FOS expression in the mitral cell layer of nursed subjects, similar to that of the main olfactory bulb. We conclude that the main olfactory bulb is synchronized during milk ingestion, but during fasting its oscillations perhaps are modulated by the suprachiasmatic nucleus, as proposed for rodents.
The olfactory gonadotropin-releasing hormone immunoreactive system in mouse.
Jennes, L
1986-10-29
The olfactory gonadotropin-releasing hormone (GnRH) system in mice was studied with immunofluorescence in combination with lesions of the olfactory bulb and retrograde transport of horseradish peroxidase (HRP) which was administered intravascularly, intranasally or into the subarachnoid space. GnRH-positive neurons were located in the two major branches forming the septal roots of the nervus terminalis, in the ganglion terminale, within the fascicles of the nervus terminalis throughout its extent, in a conspicuous band which connects the ventral neck of the caudal olfactory bulb with the accessory olfactory bulb and in the nasal mucosa. GnRH-positive fibers were seen in all areas in which neurons were found, i.e. in the rostral septum, the ganglion and nervus terminalis and in the nasal subepithelium. In addition, a broad bundle of fibers was observed to surround the entire caudal olfactory bulb, connecting the rostral sulcus rhinalis with the ventrocaudal olfactory bulb. Fibers were seen in close association with the main and accessory olfactory bulb, with the fila olfactoria and with the nasal mucosa. Throughout the olfactory bulb and the nasal epithelium, an association of GnRH fibers with blood vessels was apparent. Intravascular and intranasal injection of HRP resulted in labeling of certain GnRH neurons in the septal roots of the nervus terminalis, the ganglion terminale, the nervus terminalis, the caudal ventrodorsal connection and in the accessory olfactory bulb. After placement of HRP into the subarachnoid space dorsal to the accessory olfactory bulb, about 50% of the GnRH neurons in the accessory olfactory bulb and in the ventrodorsal connection were labeled with HRP. Also, a few GnRH neurons in the rostral septum, the ganglion terminale and in the fascicles of the nervus terminalis had taken up the enzyme. Lesions of the nervus terminalis caudal to the ganglion terminale resulted in sprouting of GnRH fibers at both sites of the knife cut. Lesions rostral to the ganglion terminale induced sprouting mostly at the distal site of the knife cut while most but not all GnRH fibers proximal to the lesion had disappeared. The results of the present study indicate that the olfactory GnRH system is mostly associated with the nervus terminalis. This cranial nerve apparently projects to the central nervous system as well as the periphery. The results of the HRP uptake studies suggest that the GnRH neurons in the nervus terminalis have access to fenestrated capillaries in the subepithelial connective tissue of the nasal mucosa, to the nasal epithelium proper, and to the subarachnoid space.(ABSTRACT TRUNCATED AT 400 WORDS)
UV testing of INTELSAT-7, 7A, and 8 solar cells
NASA Technical Reports Server (NTRS)
Meulenberg, A.
1994-01-01
A 4000 hour experiment, conducted in late 1992 through mid 1993, confirmed earlier results on the ultraviolet damage effects in covered solar cells of various types being used, or proposed for use, in INTELSAT programs. Two different UV test systems were used to identify systematic errors and to study the effects of UV source-bulb age on degradation rate. After correction for contamination and UV source-bulb aging, the extrapolated degradation rates for irradiated and unirradiated INTELSAT-5, -6 single AR(SAR) coated cells and INTELSAT-7, -7A, -8 double layer AR(DAR) coated cells in both the 1993 tests confirm the following hypotheses resulting from the 1992 experiment. (a) Irradiated cells display significantly more UV degradation than do the unirradiated cells for tests exceeding 2000 hours. The new data indicates that degradation effects from electron irradiation are proportional to t(exp 2) (the square of the UV hours), at least for times less than or equal to 3000 hours. (b) This difference does not depend upon entire reflective coating, cell resistivity, or manufacturer within the sensitivity and reproducibility of the experiment. (c) There is a clear difference in degradation rate between single AR coated cells (TiO(x)) and double layer AR coated cells (SiO(x) and Al2O3?). At 100,000 hours (11.4 years) the DAR coated cells display more degradation than do the SAR coated cells, even though at 1,000 hours the DAR cells display less degradation. (d) UV degradation rates, to modern covered silicon solar cells, at the beginning of bulb life drop from approximately 2 times the average rate to near zero after 2000 hours (average end-of-life for the xenon short-arc lamps used in the tests). The effects of 1 MeV electron irradiation (10(exp 15) e(-)/sq cm) prior to UV exposure are clearly indicated in the plot of percent change in cell open circuit voltage (Voc) versus percent change in short circuit current (Isc) during the UV test and post-test cleanup of the cells. Clearly, extended UV testing produces a permanent photo-induced redegradation of previously irradiated cells. However, this photo-induced redegradation may be caused by the long-wavelength light, not the UV light.
Microcontroller based spectrophotometer using compact disc as diffraction grid
NASA Astrophysics Data System (ADS)
Bano, Saleha; Altaf, Talat; Akbar, Sunila
2010-12-01
This paper describes the design and implementation of a portable, inexpensive and cost effective spectrophotometer. The device combines the use of compact disc (CD) media as diffraction grid and 60 watt bulb as a light source. Moreover it employs a moving slit along with stepper motor for obtaining a monochromatic light, photocell with spectral sensitivity in visible region to determine the intensity of light and an amplifier with a very high gain as well as an advanced virtual RISC (AVR) microcontroller ATmega32 as a control unit. The device was successfully applied to determine the absorbance and transmittance of KMnO4 and the unknown concentration of KMnO4 with the help of calibration curve. For comparison purpose a commercial spectrophotometer was used. There are not significant differences between the absorbance and transmittance values estimated by the two instruments. Furthermore, good results are obtained at all visible wavelengths of light. Therefore, the designed instrument offers an economically feasible alternative for spectrophotometric sample analysis in small routine, research and teaching laboratories, because the components used in the designing of the device are cheap and of easy acquisition.
Atmospheric Science Data Center
2015-11-25
... Buoy Instrument: Barometer Sonic Anemometer Thermistor Spatial Coverage: (34.60, ... Earthdata Search Parameters: Dry Bulb Temperature Pressure Sea Surface Temperature Wet Bulb Temperature ...
THE COOLING REQUIREMENTS AND PROCESS SYSTEMS OF THE SOUTH AFRICAN RESEARCH REACTOR, SAFARI 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colley, J.R.
1962-12-01
The SAFARI 1 research reactor is cooled and moderated by light water. There are three process systems, a primary water system which cools the reactor core and surroundings, a pool water system, and a secondary water system which removes the heat from the primary and pool systems. The cooling requirements for the reactor core and experimental facilities are outlined, and the cooling and purification functions of the three process systems are described. (auth)
Campus as a Living Laboratory for Sustainability: The Physics Connection
NASA Astrophysics Data System (ADS)
Lindstrom, Timothy; Middlecamp, Catherine
2018-04-01
One of us is a physicist. The other is a chemist. For the past four years, we have been teaching a large introductory environmental science course that uses our campus as a lens through which to explore issues relating to sustainability. Our students "ask questions about the energy we use to heat and cool our buildings, the food we eat, the air we breathe, the electricity to run light bulbs and appliances, the goods we purchase, and the waste we create." This course fits in the genre of using "campus as a living laboratory," a term we will discuss later.
Music through the skin—simple demonstration of human electrical conductivity
NASA Astrophysics Data System (ADS)
Vollmer, M.; Möllmann, K. P.
2016-05-01
The conduction of electricity is an important topic for any basic physics course. Issues of safety often results in teacher demonstration experiments in front of the class or in extremely simple though—for students—not really fascinating (not to say boring) hands on activities for everybody using 1.5 V batteries, cables and light bulbs etc. Here we briefly review some basic facts about conduction of electricity through the human body and report a simple, safe, and awe inspiring electrical conduction experiment which can be performed with little preparation by a teacher involving the whole class of say 20 students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deru, Michael
According to the U.S. Energy Information Administration, HVAC accounts for approximately 38 percent of U.S. commercial buildings' primary energy consumption and a slightly higher percentage of their greenhouse-gas emissions. We have seen incredible gains made with lighting, going from incandescent and T12 fluorescent bulbs to high-efficiency LEDS, but there are even greater advances to be made with HVAC. Gains of 20 percent to 30 percent easily can be made by replacing older degraded equipment with new high-efficiency equipment. Even more savings are possible with an integrated engineering approach yielding optimized system designs combined with highly efficient controls.
Hogan, Kathleen; Wallace, Hal; Ivestor, Rob
2018-01-16
As Edison vs. Tesla week heats up at the Energy Department, we are exploring the rivalry between Thomas Edison and Nikola Tesla and how their work is still impacting the way we use energy today. Whether you're on Team Tesla or Team Edison, both inventors were key players in creating things like batteries, power plants and wireless technologies -- all innovations we still use today. And as we move toward a clean energy future, energy efficient lighting, like LED bulbs, and more efficient electric motors not only help us save money on electricity costs but help combat climate change. For this, Tesla and Edison both deserve our recognition.
Visible light communication technology for fine-grained indoor localization
NASA Astrophysics Data System (ADS)
Vieira, M.; Vieira, M. A.; Louro, P.; Fantoni, A.; Vieira, P.
2018-02-01
This paper focuses on designing and analysing a visible light based communication and positioning system. The indoor positioning system uses trichromatic white Light Emitting Diodes (LEDs), both for illumination purposes and as transmitters, and an optical processor, based on a-SiC:H technology, as mobile receiver. On-Off Keying (OOK) modulation scheme is used, proving a good trade-off between system performance and implementation complexity. In the following, the relationship between the transmitted data and the received output levels is decoded. LED bulbs work as transmitters, sending information together with different identifiers, IDs, related to their physical locations. Square and diamond topologies for the unit cell are analyzed, and a 2D localization design, demonstrated by a prototype implementation, is presented. Fine-grained indoor localization is tested. The received signal is used in coded multiplexing techniques for supporting communications and navigation concomitantly on the same channel. The location and motion information is found by mapping the position and estimating the location areas.
Highly efficient low color temperature organic LED using blend carrier modulation layer
NASA Astrophysics Data System (ADS)
Hsieh, Yao-Ching; Chen, Szu-Hao; Shen, Shih-Ming; Wang, Ching-Chiun; Chen, Chien-Chih; Jou, Jwo-Huei
2012-10-01
Color temperature (CT) of light has great effect on human physiology and psychology, and low CT light, minimizing melatonin suppression and decreasing the risk of breast, colorectal, and prostate cancer. We demonstrates the incorporation of a blend carrier modulation interlayer (CML) between emissive layers to improve the device performance of low CT organic light emitting diodes, which exhibits an external quantum efficiency of 22.7% and 36 lm W-1 (54 cd A-1) with 1880 K at 100 cd m-2, or 20.8% and 29 lm W-1 (50 cd A-1) with 1940 K at 1000 cd m-2. The result shows a CT much lower than that of incandescent bulbs, which is 2500 K with 15 lmW-1 efficiency, and even as low as that of candles, which is 2000 K with 0.1 lmW-1. The high efficiency of the proposed device may be attributed to its CML, which helps effectively distribute the entering carriers into the available recombination zones.
System Security And Monitoring On Smart Home Using Android
NASA Astrophysics Data System (ADS)
Romadhon, A. S.
2018-01-01
Home security system is needed for homeowners who have a lot of activities, as a result, they often leave the house without locking the door and even leave the house in a state of lights that are not lit. In order to overcome this case, a system that can control and can monitor the state of the various devices contained in the house or smart home system is urgently required. The working principle of this smart home using android is when the homeowner sends a certain command using android, the command will be forwarded to the microcontroller and then it will be executed based on the parameters that have been determined. For example, it can turn off and on the light using android app. In this study, testing was conducted to a smart home prototype which is equipped with light bulbs, odour sensors, heat sensors, ultrasonic sensors, LDR, buzzer and camera. The test results indicate that the application has been able to control all the sensors of home appliances well.
Barefoot running does not affect simple reaction time: an exploratory study
Snow, Nicholas J.; Blair, Jason F.L.; MacDonald, Graham Z.
2018-01-01
Background Converging evidence comparing barefoot (BF) and shod (SH) running highlights differences in foot-strike patterns and somatosensory feedback, among others. Anecdotal evidence from SH runners attempting BF running suggests a greater attentional demand may be experienced during BF running. However, little work to date has examined whether there is an attentional cost of BF versus SH running. Objective This exploratory study aimed to examine whether an acute bout of BF running would impact simple reaction time (SRT) compared to SH running, in a sample of runners naïve to BF running. Methods Eight male distance runners completed SRT testing during 10 min of BF or SH treadmill running at 70% maximal aerobic speed (17.9 ± 1.4 km h−1). To test SRT, participants were required to press a hand-held button in response to the flash of a light bulb placed in the center of their visual field. SRT was tested at 1-minute intervals during running. BF and SH conditions were completed in a pseudo-randomized and counterbalanced crossover fashion. SRT was defined as the time elapsed between the light bulb flash and the button press. SRT errors were also recorded and were defined as the number of trials in which a button press was not recorded in response to the light bulb flash. Results Overall, SRT later in the exercise bouts showed a statistically significant increase compared to earlier (p < 0.05). Statistically significant increases in SRT were present at 7 min versus 5 min (0.29 ± 0.02 s vs. 0.27 ± 0.02 s, p < 0.05) and at 9 min versus 2 min (0.29 ± 0.03 s vs. 0.27 ± 0.03 s, p < 0.05). However, BF running did not influence this increase in SRT (p > 0.05) or the number of SRT errors (17.6 ± 6.6 trials vs. 17.0 ± 13.0 trials, p > 0.05). Discussion In a sample of distance runners naïve to BF running, there was no statistically significant difference in SRT or SRT errors during acute bouts of BF and SH running. We interpret these results to mean that BF running does not have a greater attentional cost compared to SH running during a SRT task throughout treadmill running. Literature suggests that stride-to-stride gait modulation during running may occur predominately via mechanisms that preclude conscious perception, thus potentially attenuating effects of increased somatosensory feedback experienced during BF running. Future research should explore the present experimental paradigm in a larger sample using over-ground running trials, as well as employing different tests of attention. PMID:29666760
1986-05-23
Kraftwerk Union Power Plant... DER SPIEGEL: ...a 100-percent Siemens daughter enterprise... Kaske: ...to companies which are participating in the...major competitor, Kraftwerk Union AG (KWU) at Muelheim on the Ruhr, with its mass-produced light-water reactors. The High Temperature Reactor
Safety and core design of large liquid-metal cooled fast breeder reactors
NASA Astrophysics Data System (ADS)
Qvist, Staffan Alexander
In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.
Apparatus and methods for direct conversion of gaseous hydrocarbons to liquids
Kong, Peter C.; Lessing, Paul A.
2006-04-25
A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.
Method for direct conversion of gaseous hydrocarbons to liquids
Kong, Peter C.; Lessing, Paul A.
2006-03-07
A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.
NASA Technical Reports Server (NTRS)
Turner, Mark; Zhou, Wei-Jia; Doty, Laura (Technical Monitor)
2000-01-01
To maximize the use of available resources provided onboard the International Space Station, the development of an efficient lighting 1 system is critical to the overall performance of the CPBF. Not only is it important to efficiently generate photon energy, but thermal loads on the CPBF Temperature and Humidity Control System must be minimized. By utilizing optical coatings designed to produce highly diffuse reflectance in the visible wavelengths while minimizing reflectance in the infrared region, the design of the fluorescent light module for the CPBF is optimized for maximum photon flux, spatial uniformity and energy efficiency. Since the Fluorescent Light Module must be fully enclosed to meet (ISS) requirements for containment of particulates and toxic materials, heat removal from the lights presented some unique design challenges. By using the Express Rack moderate C, temperature-cooling loop, heat is rejected by means of a liquid/air coolant manifold. Heat transfer to the manifold is performed by conduction using copper fins, by forced air convection using miniature fans, and by radiation using optically selective coatings that absorb in the infrared wavelengths. Using this combination of heat transfer mechanisms builds in redundancy to prevent thermal build up and premature bulb failure.
Studying colours with a smartphone
NASA Astrophysics Data System (ADS)
Rosi, T.; Malgieri, M.; Onorato, P.; De Ambrosis, , A.; Oss, S.
2017-03-01
We show how a low-cost spectrometer, based on the use of inexpensive diffraction transmission gratings coupled with a smartphone photo camera, can be assembled and employed to obtain quantitative measurements of spectra from different sources. The analysis of spectra emitted by different light sources (incandescent bulb, fluorescent lamp, gas lamps, LEDs) helps students understand the different physical mechanisms which govern the production of light. Measurements of emission and transmission spectra allow students to focus on the differences between additive and subtractive models of colour formation. For this purpose the spectra of RGB colours emitted from an LCD screen and the transmission spectra of CMY pigments of a laser printer have been studied, using our low-cost spectroscope. A sequence of experimental activities was designed, and proposed to undergraduate students and secondary school teachers in order to study the feasibility and educational potential.
Burke, Mark W; Inyatkin, Alexey; Ptito, Maurice; Ervin, Frank R; Palmour, Roberta M
2016-10-27
Fetal alcohol exposure (FAE) alters hippocampal cell numbers in rodents and primates, and this may be due, in part, to a reduction in the number or migration of neuronal progenitor cells. The olfactory bulb exhibits substantial postnatal cellular proliferation and a rapid turnover of newly formed cells in the rostral migratory pathway, while production and migration of postnatal neurons into the dentate gyrus may be more complex. The relatively small size of the olfactory bulb, compared to the hippocampus, potentially makes this structure ideal for a rapid analysis. This study used the St. Kitts vervet monkey ( Chlorocebus sabeus ) to (1) investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2) determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years). Using design-based stereology, we found an age-related decrease of actively proliferating cells in the olfactory bulb and dentate gyrus for both control and FAE groups. Furthermore, at the neonatal time point, the FAE group had fewer actively proliferating cells as compared to the control group. These data are unique with respect to fetal ethanol effects on progenitor proliferation in the primate brain and suggest that the olfactory bulb may be a useful structure for studies of cellular proliferation.
Production and characterization of tearless and non-pungent onion
Kato, Masahiro; Masamura, Noriya; Shono, Jinji; Okamoto, Daisaku; Abe, Tomoko; Imai, Shinsuke
2016-01-01
The onion lachrymatory factor (LF) is produced from trans-S-1-propenyl-L-cysteine sulfoxide (PRENCSO) through successive reactions catalyzed by alliinase (EC 4.4.1.4) and lachrymatory factor synthase (LFS), and is responsible for the tear inducing-property and the pungency of fresh onions. We developed tearless, non-pungent onions non-transgenically by irradiating seeds with neon-ion at 20 Gy. The bulbs obtained from the irradiated seeds and their offspring bulbs produced by selfing were screened by organoleptic assessment of tear-inducing property or HPLC analysis of LF production. After repeated screening and seed production by selfing, two tearless, non-pungent bulbs were identified in the third generation (M3) bulbs. Twenty M4 bulbs obtained from each of them showed no tear-inducing property or pungency when evaluated by 20 sensory panelists. The LF production levels in these bulbs were approximately 7.5-fold lower than those of the normal onion. The low LF production levels were due to reduction in alliinase activity, which was a result of low alliinase mRNA expression (less than 1% of that in the normal onion) and consequent low amounts of the alliinase protein. These tearless, non-pungent onions should be welcomed by all who tear while chopping onions and those who work in facilities where fresh onions are processed. PMID:27048847
Heat shock protein responses to aging and proteotoxicity in the olfactory bulb
Posimo, Jessica M.; Mason, Daniel M.; Broeren, Matthew T.; Heinemann, Scott D.; Wipf, Peter; Brodsky, Jeffrey L.; Leak, Rehana K.
2015-01-01
The olfactory bulb is one of the most vulnerable brain regions in age-related proteinopathies. Proteinopathic stress is mitigated by the heat shock protein (Hsp) family of chaperones. Here we describe age-related decreases in Hsc70 in the olfactory bulb of the female rat and higher levels of Hsp70 and Hsp25 in middle and old age than at 2-4 months. In order to model proteotoxic and oxidative stress in the olfactory bulb, primary olfactory bulb cultures were treated with the proteasome inhibitors lactacystin and MG132 or the pro-oxidant paraquat. Toxin-induced increases were observed in Hsp70, Hsp25, and Hsp32. In order to determine the functional consequences of the increase in Hsp70, we attenuated Hsp70 activity with two mechanistically distinct inhibitors. The Hsp70 inhibitors greatly potentiated the toxicity of sublethal lactacystin or MG132 but not of paraquat. Although ubiquitinated protein levels were unchanged with aging in vivo or with sublethal MG132 in vitro, there was a large, synergistic increase in ubiquitinated proteins when proteasome and Hsp70 functions were simultaneously inhibited. Our study suggests that olfactory bulb cells rely heavily on Hsp70 chaperones to maintain homeostasis during mild proteotoxic, but not oxidative insults, and that Hsp70 prevents the accrual of ubiquitinated proteins in these cells. PMID:25640060
Transuranic inventory reduction in repository by partitioning and transmutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, C.H.; Kazimi, M.S.
1992-01-01
The promise of a new reprocessing technology and the issuance of Environmental Protection Agency (EPA) and U.S. Nuclear Regulatory Commission regulations concerning a geologic repository rekindle the interest in partitioning and transmutation of transuranic (TRU) elements from discharged reactor fuel as a high level waste management option. This paper investigates the TRU repository inventory reduction capability of the proposed advanced liquid metal reactors (ALMRs) and integral fast reactors (IFRs) as well as the plutonium recycled light water reactors (LWRs).
21 CFR 173.325 - Acidified sodium chlorite solutions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and processed root, tuber, bulb, legume, fruiting (i.e., eggplant, groundcherry, pepino, pepper... leafy vegetables (i.e., vegetables other than root, tuber, bulb, legume, fruiting, and cucurbit...
Temperature Regulation of Endogenous Gibberellin Activity and Development of Tulipa gesneriana L. 1
Aung, L. H.; De Hertogh, A. A.; Staby, G.
1969-01-01
The changes in the contents of free and bound gibberellin-like activity (GA) of Tulipa gesneriana L. cv. Ralph during development under 2 temperature conditions were studied. The results show that the content of free GA of bulbs grown at 18° increased by 67% over the initial level during development. The bound GA showed a slight initial increase and was followed by a rapid decrease. In contrast, bulbs treated at 13° showed a marked decline in free GA and a 2-fold increase in the content of bound GA. However, after the transfer of these bulbs from 13° to 18° the free GA increased to the initial level while the bound GA decreased to a low level. The rate of floral shoot and root development and time of flowering were accelerated at 18° as compared to 13°. From the data obtained, it was suggested that a temperature-sensitive interconversion mechanism between free and bound GA exists in tulip bulbs and that there is apparent synthesis or transformation of these phytohormones during development of the bulbs. PMID:16657075
Wang, Tsu-Wei; Zhang, Huailin; Gyetko, Margaret R.; Parent, Jack M.
2011-01-01
Neural progenitor cells persist throughout life in the forebrain subventricular zone (SVZ). They generate neuroblasts that migrate to the olfactory bulb and differentiate into interneurons, but mechanisms underlying these processes are poorly understood. Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic factor that influences cell motility, proliferation and morphogenesis in neural and non-neural tissues. HGF and its receptor, c-Met, are present in the rodent SVZ-olfactory bulb pathway. Using in vitro neurogenesis assays and in vivo studies of partially HGF-deficient mice, we find that HGF promotes SVZ cell proliferation and progenitor cell maintenance, while slowing differentiation and possibly altering cell fate choices. HGF also acts as a chemoattractant for SVZ neuroblasts in co-culture assays. Decreased HGF signaling induces ectopic SVZ neuroblast migration and alters the timing of migration to the olfactory bulb. These results suggest that HGF influences multiple steps in postnatal forebrain neurogenesis. HGF is a mitogen for SVZ neural progenitors, and regulates their differentiation and olfactory bulb migration. PMID:21683144
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibunnisa; Mathur, P.B.; Bano, Z.
1971-11-01
Effect of cobalt-60 gamma rays at a dose-rate of 6 krad on the storage behavior of garlic bulbs packaged individually and in lots of eight in perforated polyethylene bags of 200 gauge was investigated at room temperature (75 to 90 deg F) and cold temperature (32 to 35 deg F) under relative humidity 85 to 90%. Irradiation was immediately followed by an increase in the rate of respiration in the garlic bulbs followed by a decrease in the rate of respiration towards the later part of the storage period. At room temperature, sprouting was inhibited to a considerable extent, whilemore » in cold storage after a storage period of 9 months sprouting was completely prevented. The percentage sprouting was more in large size garlic bulbs than in small sized ones. For extension of storage life, packaging singly in polyethylene bags, selection of small sized garlic bulbs, storage at 32 to 35 deg F and irradiation with 6 krad of cobalt 60 gamma rays are recommended. (INIS)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallbert, Bruce Perry; Thomas, Kenneth David
2015-10-01
Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.
Catalysts for synthesizing various short chain hydrocarbons
Colmenares, Carlos
1991-01-01
Method and apparatus (10), including novel photocatalysts, are disclosed for the synthesis of various short chain hydrocarbons. Light-transparent SiO.sub.2 aerogels doped with photochemically active uranyl ions (18) are fluidized in a fluidized-bed reactor (12) having a transparent window (16), by hydrogen and CO, C.sub.2 H.sub.4 or C.sub.2 H.sub.6 gas mixtures (20), and exposed to radiation (34) from a light source (32) external to the reactor (12), to produce the short chain hydrocarbons (36).
Dhakal, Radhika; Park, Euiho; Lee, Se-Weon; Baek, Kwang-Hyun
2015-01-01
Specific wavelengths of light can exert various physiological changes in plants, including effects on responses to disease incidence. To determine whether specific light wavelength had effects on rotting disease caused by Pseudomonas putida 229, soybean sprouts were germinated under a narrow range of wavelengths from light emitting diodes (LEDs), including red (650–660), far red (720–730) and blue (440–450 nm) or broad range of wavelength from daylight fluorescence bulbs. The controls were composed of soybean sprouts germinated in darkness. After germination under different conditions for 5 days, the soybean sprouts were inoculated with P. putida 229 and the disease incidence was observed for 5 days. The sprouts exposed to red light showed increased resistance against P. putida 229 relative to those grown under other conditions. Soybean sprouts germinated under red light accumulated high levels of salicylic acid (SA) accompanied with up-regulation of the biosynthetic gene ICS and the pathogenesis- related (PR) gene PR-1, indicating that the resistance was induced by the action of SA via de novo synthesis of SA in the soybean sprouts by red light irradiation. Taken together, these data suggest that only the narrow range of red light can induce disease resistance in soybean sprouts, regulated by the SA-dependent pathway via the de novo synthesis of SA and up-regulation of PR genes. PMID:25679808
Mboera LEG; Knols BGJ; Braks MAH; Takken, W
2000-09-01
For collecting mosquitoes (Diptera: Culicidae) the outdoor catching efficiency of four types of trapping devices baited with carbon dioxide (CO2, 300 ml/ min) was evaluated and compared in two areas of Tanzania. The types of traps employed were: the CDC miniature trap with the incandescent light bulb switched on or off; electric nets (ENT) and a Counterflow Geometry (CFG) trap. In Njage, southeast Tanzania, Anopheles gambiae Giles sensu stricto was the most abundant of the seven mosquito species obtained, comprising of 74.3% of the total number caught (n=2,171). In Muheza, north-east Tanzania, Culex quinquefasciatus Say was the predominant species (90.9%) among 1,080 caught. At both localities the CFG trap was superior to the CDC trap with light-on or light-off for sampling both An. gambiae and Cx. quinquefasciatus. Efficiency of the CFG trap and ENT were similar for sampling these species of mosquitoes (P > 0.05). However, ENT was superior to the CDC trap with light-off for collecting both species. Significantly more (P < 0.05) Cx. quinquefasciatus were obtained by the CDC trap with light-off than with light-on, especially outdoors. It is concluded that both ENT and the CFG are effective tools for sampling populations of An. gambiae and Cx. quinquefasciatus outdoors.
The United Arab Emirates Nuclear Program and Proposed U.S. Nuclear Cooperation
2009-10-28
global efforts to prevent nuclear proliferation” and, “the establishment of reliable sources of nuclear fuel for future civilian light water reactors ...nuclear reactor or on handling spent reactor fuel. (...continued) May 4, 2008; and, Chris...related to the UAE’s proposed nuclear program has already taken place. In August 2008, Virginia’s Thorium Power Ltd. signed two consulting and
The United Arab Emirates Nuclear Program and Proposed U.S. Nuclear Cooperation
2009-07-17
global efforts to prevent nuclear proliferation” and, “the establishment of reliable sources of nuclear fuel for future civilian light water reactors ...planned nuclear reactor or on handling spent reactor fuel. (...continued) May 4, 2008...contracting between U.S. firms and the UAE related to the UAE’s proposed nuclear program has already taken place. In August 2008, Virginia’s Thorium Power
The effect of ambient lighting on Laser Doppler Imaging of a standardized cutaneous injury model
Pham, Alan Chuong Q; Hei, Erik La; Harvey, John G; Holland, Andrew JA
2017-01-01
Objective: The aim of this study was to investigate the potential confounding effects of four different types of ambient lighting on the results of Laser Doppler Imaging (LDI) of a standardized cutaneous injury model. Methods: After applying a mechanical stimulus to the anterior forearm of a healthy volunteer and inducing a wheal and arteriolar flare (the Triple response), we used a Laser Doppler Line Scanner (LDLS) to image the forearm under four different types of ambient lighting: light-emitting-diode (LED), compact fluorescent lighting (CFL), halogen, daylight, and darkness as a control. A spectrometer was used to measure the intensity of light energy at 785 nm, the wavelength used by the scanner for measurement under each type of ambient lighting. Results: Neither the LED nor CFL bulbs emitted detectable light energy at a wavelength of 785 nm. The color-based representation of arbitrary perfusion unit (APU) values of the Triple response measured by the scanner was similar between darkness, LED, and CFL light. Daylight emitted 2 mW at 785 nm, with a slight variation tending more towards lower APU values compared to darkness. Halogen lighting emitted 6 mW of light energy at 785 nm rendering the color-based representation impossible to interpret. Conclusions: Halogen lighting and daylight have the potential to confound results of LDI of cutaneous injuries whereas LED and CFL lighting did not. Any potential sources of daylight should be reduced and halogen lighting completely covered or turned off prior to wound imaging. PMID:29348978
Morris, J.M.
1958-11-01
A vlsual alarm system, particularly a system incorporating a gas-fllled diode glow bulb, for indicating a minor alarm and also a major alarm is presented. In operation, the disclosed system responds to a signal indlcative of a caution condition by applying a d-c voltage across the glow bulb to induce a glow at one electrode. If a signal indicative of a critlcal condition is received, the system applies an a-c voltage across tbe glow bulb to produce a glow discharge at each electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, P. J.; Qu, J.; Lu, R.
One significant concern in the operation of light water nuclear reactors is the fretting wear damage to fuel cladding from flow-induced vibrations. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. Furthermore, the multi-stage model accounts for oxide layers and wear rate transitions. Our paper describes themore » basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.« less
Blau, P. J.; Qu, J.; Lu, R.
2016-09-21
One significant concern in the operation of light water nuclear reactors is the fretting wear damage to fuel cladding from flow-induced vibrations. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. Furthermore, the multi-stage model accounts for oxide layers and wear rate transitions. Our paper describes themore » basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.« less
Sabuncuoglu, Kübra Melis; Korkmaz, Firdevs; Gürcan, Eser Kemal; Narinç, Dogan; Saml X, Hasan Ersin
2018-04-14
Lighting is crucial in poultry rearing and the subjects with light intensity, source, and color having been addressed in numerous studies. Numerous studies with monochromatic light from light-emitting diode (LED) bulbs have been reported. In the current study, fertile Japanese quail eggs were exposed to a dark environment (Control) or monochromatic green (560 nm) and blue (480 nm) lighting throughout incubation. There were no significant differences in hatch weight, hatchability, total embryonic mortality, hatch time, growth performance, and slaughter-carcass traits in the study (P > 0.05). Furthermore, the lowest mean in terms of early embryonic mortalities (12.37%) was determined in the group treated with green LED lighting (P < 0.05), whereas it was discovered that the lowest mean in terms of late embryonic mortalities (13.59%) was in the group treated with blue LED lighting (P < 0.05). During the test time, the green LED group showed higher averages in terms of the number of peeps and first defecation time as response to environmental stimuli (P < 0.05). The highest mean for jumping (7.6 times) was detected in the group treated with blue LED lighting (P < 0.05). In conclusion, it was revealed that the blue and green LED lighting applied to the Japanese quail eggs in incubation had no effects on incubation traits, growth, and slaughter-carcass traits but had positive effects on some behavioral traits.
[Clinical and MRI Findings in Patients with Congenital Anosmia].
Ogawa, Takao; Kato, Tomohisa; Ono, Mayu; Shimizu, Takeshi
2015-08-01
The clinical characteristics of 16 patients with congenital anosmia were examined retrospectively. MRI (magnetic resonance imaging) was used to assess the morphological changes in the olfactory bulbs and olfactory sulci according to the method of P. Rombaux (2009). Congenital anosmia was divided into two forms: syndromic forms in association with a syndrome, and isolated forms without evidence of other defects. Only three patients (19%) in our series had syndromic forms of congenital anosmia, such as the Kallmann syndrome. Most cases (13 patients, 81%) had isolated congenital anosmia. Psychophysical testing of the olfactory function included T&T olfactometry and the intravenous Alinamin test, which are widely used in Japan. In T&T olfactometry, detection and recognition thresholds for the five odorants are used to assign a diagnostic category representing the level of olfactory function. Most cases (14 patients, 88%) showed off-scale results on T&T olfactometry, and the Alinamin test resulted in no response in all 11 patients who underwent the test. Abnormal MRI findings of the olfactory bulbs and sulci were detected in 15 of 16 patients (94%). Olfactory bulbs were bilaterally absent in nine patients (56%), and two patients (13%) had unilateral olfactory bulbs. Four patients (25%) had bilateral hypoplastic olfactory bulbs, and only one patient had normal olfactory bulbs (6%). The olfactory sulcus was unilaterally absent in one patient (6%), and nine patients (56%) had bilaterally hypoplastic olfactory sulci. Two patients (13%) had a unilateral normal olfactory sulcus and hypoplastic olfactory sulcus. Three patients (19%) had normal olfactory sulci. Quantitative analysis showed that the volume of olfactory bulbs varied from 0 mm3 to 63.5 mm3, with a mean volume of 10.20 ± 18 mm3, and the mean depth of the olfactory sulcus varied from 0 mm to 12.22 mm, with a mean length of 4.85 ± 4.1 mm. Currently, there is no effective treatment for congenital anosmia. However, diagnosis of congenital anosmia is important, as its presence can lead to dangerous situations. Careful examination for hypogonadism is also required in people with anosmia. MRI examinations of the olfactory bulbs and sulci were useful for the diagnosis of congenital anosmia.
Preliminary design of high temperature ultrasonic transducers for liquid sodium environments
NASA Astrophysics Data System (ADS)
Prowant, M. S.; Dib, G.; Qiao, H.; Good, M. S.; Larche, M. R.; Sexton, S. S.; Ramuhalli, P.
2018-04-01
Advanced reactor concepts include fast reactors (including sodium-cooled fast reactors), gas-cooled reactors, and molten-salt reactors. Common to these concepts is a higher operating temperature (when compared to light-water-cooled reactors), and the proposed use of new alloys with which there is limited operational experience. Concerns about new degradation mechanisms, such as high-temperature creep and creep fatigue, that are not encountered in the light-water fleet and longer operating cycles between refueling intervals indicate the need for condition monitoring technology. Specific needs in this context include periodic in-service inspection technology for the detection and sizing of cracking, as well as technologies for continuous monitoring of components using in situ probes. This paper will discuss research on the development and evaluation of high temperature (>550°C; >1022°F) ultrasonic probes that can be used for continuous monitoring of components. The focus of this work is on probes that are compatible with a liquid sodium-cooled reactor environment, where the core outlet temperatures can reach 550°C (1022°F). Modeling to assess sensitivity of various sensor configurations and experimental evaluation have pointed to a preferred design and concept of operations for these probes. This paper will describe these studies and ongoing work to fabricate and fully evaluate survivability and sensor performance over extended periods at operational temperatures.
10 CFR 50.48 - Fire protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... suppression systems; and (iii) The means to limit fire damage to structures, systems, or components important...) Standard 805, “Performance-Based Standard for Fire Protection for Light Water Reactor Electric Generating... pressurized-water reactors (PWRs) is not permitted. (iv) Uncertainty analysis. An uncertainty analysis...