Science.gov

Sample records for light diffraction ellipsometry

  1. Diffraction Ellipsometry Studies of Skeletal Muscle Structure

    NASA Astrophysics Data System (ADS)

    Kerr, William Lloyd

    Many of the techniques used to study the structure and contraction mechanism of muscle rely on the interaction of light or other electromagnetic radiation with the muscle. Some of the most important of these techniques are light and electron microscopy, x-ray diffraction, spectroscopy of muscle fibers "labelled" with spin or fluorescent probes, visible spectrum diffraction, and transmission birefringence. Chapter I of this dissertation reviews these techniques, focussing on what they have to tell us about muscle structure. In Chapter II, we discuss experiments in which the microstructural features of relaxed, skinned fibers compressed with polyvinylpyrollidone were examined by optical diffraction ellipsometry. The change in polarization state of light after interacting with the muscle is described by the differential field ratio (DFR) and birefringence (Deltan). Compression of single fibers with 0%-21% PVP caused an increase in up to 23% and 31% for DFR and Deltan, respectively. Theoretical modelling suggests that the average S-1 tilt angle may be reduced upon compression of the filament lattice. This is supported by experiments in which S-1 was cleaved with alpha-chymotrypsin. Experiments comparing fibers with intact membranes and skinned fibers compressed to an equivalent lattice spacing showed little difference in DFR or Deltan. Chapter III deals with experiments on contracting, intact fibers. The differential field ratio (DFR) was monitored for tetanically contracting muscle fibers subject to rapid (<0.4 msec) release or stretch. Upon stimulation, DFR decreases 14% from its resting value; the half-time for the decrease leads that of tension rise by 10 msecs. This suggests that the movement of cross -bridges precedes tension development and that the average cross-bridge angle is more perpendicular in the contracting state. Upon rapid release of 0.5% of the fiber length, DFR decreases 9.5% further simultaneous with the length step. Rapid and slow recovery phases

  2. Diffraction Ellipsometry Studies on Insect Flight Muscle

    NASA Astrophysics Data System (ADS)

    Shen, Sui

    Characterization of the orientation and distribution of myosin cross-bridge at rigor, relax, low ionic strength (36 mM) and activation (pCa 4.3) conditions are of great interest since these states have been proposed to be transient steps in the cyclical interaction of myosin heads with actin during contraction. Measurements sensitive to the cross-bridge orientation in chemically skinned single muscle fibers of the insect, Lethocerus collossicus have been performed under various physiological conditions using laser diffraction ellipsometry. Determination of both the total birefringence, Deltan, and the differential field ratio, rm DFR (defined as {E_parallel -E_|over E_parallel-E _|}),is necessary for complete characterization of the optical polarization state. For rigor insect fiber, the birefringence value was close to the value we obtained from chemically skinned frog muscle fibers. However, the differential field ratio, DFR, was a negative value for insect fiber, while we always measured a positive value from frog muscle fibers. Polarization states of light diffracted from fibers exhibited a dependence on configurations of structural proteins at different conditions: fluid index matching using o-toluidine, alpha -chymotrypsin cleavage, KCl myosin extraction, rigor state, relaxed state, exogenous S-1 binding on rigor fiber, low ionic strength state, activation state at resting or stretched length. Results of our data analysis suggested that: (1) the negative DFR value of the insect flight muscle was contributed by alpha-actinin arranged perpendicular to the fiber axis in the Z-line, (2) in rigor fiber, 70% of myosin heads are doubly bound (45^circ and 90^ circ) while the rest of 30% are in single head binding configuration (90^circ), (3) myosin heads are randomly oriented in relaxed fiber, (4) mean axial angle is about 62^ circ for exogenous myosin heads binding on rigor fiber, (5) at low ionic strength, 25% of the total myosin heads are weakly attached to actin

  3. Diffraction light analysis method for a diffraction grating imaging lens.

    PubMed

    Ando, Takamasa; Korenaga, Tsuguhiro; Suzuki, Masa-aki; Tanida, Jun

    2014-04-10

    We have developed a new method to analyze the amount and distribution of diffraction light for a diffraction grating lens. We have found that diffraction light includes each-order diffraction light and striped diffraction light. In this paper, we describe characteristics of striped diffraction light and suggest a way to analyze diffraction light. Our analysis method, which considers the structure of diffraction grating steps, can simulate the aberrations of an optical system, each-order diffraction light, and striped diffraction light simultaneously with high accuracy. A comparison between the simulation and experimental results is presented, and we also show how our analysis method can be used to optimize a diffraction grating lens with low flare light.

  4. Light shifts in atomic Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Giese, E.; Friedrich, A.; Abend, S.; Rasel, E. M.; Schleich, W. P.

    2016-12-01

    Bragg diffraction of an atomic wave packet in a retroreflective geometry with two counterpropagating optical lattices exhibits a light shift induced phase. We show that the temporal shape of the light pulse determines the behavior of this phase shift: In contrast to Raman diffraction, Bragg diffraction with Gaussian pulses leads to a significant suppression of the intrinsic phase shift due to a scaling with the third power of the inverse Doppler frequency. However, for box-shaped laser pulses, the corresponding shift is twice as large as for Raman diffraction. Our results are based on approximate but analytical expressions as well as a numerical integration of the corresponding Schrödinger equation.

  5. Fraunhofer diffraction of light by human enamel.

    PubMed

    O'Brien, W J

    1988-02-01

    Fraunhofer diffraction patterns of human enamel samples were photographed with a helium-neon laser beam (lambda = 633 nm). The first-order diffraction angle was in reasonable agreement with a prediction based upon enamel prisms acting as a two-dimensional grating. These results support the hypothesis that enamel diffracts light because of the periodic structure of enamel prisms with interprismatic spaces, which act as slits.

  6. White-Light Diffraction with a CD

    ERIC Educational Resources Information Center

    Ivanov, Dragia Trifonov; Nikolaev, Stefan

    2010-01-01

    Various wave optics experiments can be carried out using an ordinary compact disc. The CD is suitable for use as a diffraction grating. For instance, a standard CD (700 MB) has 625 lines/mm. In this article, the authors describe two white-light diffraction demonstrations for a large audience, realizable using a CD (as reflection or transmission…

  7. Light diffraction by concentrator Fresnel lenses.

    PubMed

    Hornung, Thorsten; Nitz, Peter

    2014-05-05

    Fresnel lenses are widely used in concentrating photovoltaic (CPV) systems as primary optical elements focusing sunlight onto small solar cells or onto entrance apertures of secondary optical elements attached to the solar cells. Calculations using the Young-Maggi-Rubinowicz theory of diffraction yield analytical expressions for the amount of light spilling outside these target areas due to diffraction at the edges of the concentrator Fresnel lenses. Explicit equations are given for the diffraction loss due to planar Fresnel lenses with small prisms and due to arbitrarily shaped Fresnel lenses. Furthermore, the cases of illumination by monochromatic, polychromatic, totally spatially coherent and partially spatially coherent light (e.g. from the solar disc) are treated, resulting in analytical formulae. Examples using realistic values show losses due to diffraction of up to several percent.

  8. Hair treatment device for providing dispersed colors by light diffraction

    DOEpatents

    Lamartine, Bruce Carvell; Orler, Bruce E.; Sutton, Richard Matthew Charles; Song, Shuangqi

    2016-01-26

    Hair was coated with polymer-containing fluid and then hot pressed to form a composite of hair and a polymer film imprinted with a nanopattern. Polychromatic light incident on the nanopattern is diffracted into dispersed colored light.

  9. Hair treatment process providing dispersed colors by light diffraction

    DOEpatents

    Lamartine, Bruce Carvell; Orler, E. Bruce; Sutton, Richard Matthew Charles; Song, Shuangqi

    2013-12-17

    Hair was coated with polymer-containing fluid and then hot pressed to form a composite of hair and a polymer film imprinted with a nanopattern. Polychromatic light incident on the nanopattern is diffracted into dispersed colored light.

  10. Hair treatment process providing dispersed colors by light diffraction

    SciTech Connect

    Lamartine, Bruce Carvell; Orler, E. Bruce; Sutton, Richard Matthew Charles; Song, Shuangqi

    2014-11-11

    Hair was coated with polymer-containing fluid and then hot pressed to form a composite of hair and a polymer film imprinted with a nanopattern. Polychromatic light incident on the nanopattern is diffracted into dispersed colored light.

  11. Diffraction of entangled particles by light gratings

    SciTech Connect

    Sancho, Pedro

    2015-04-15

    We analyze the diffraction regime of the Kapitza–Dirac effect for particles entangled in momentum. The detection patterns show two-particle interferences. In the single-mode case we identify a discontinuity in the set of joint detection probabilities, associated with the disconnected character of the space of non-separable states. For Gaussian multi-mode states we derive the diffraction patterns, providing an example of the dependence of the light–matter interaction on entanglement. When the particles are identical, we can explore the relation between exchange and entanglement effects. We find a complementary behavior between overlapping and Schmidt’s number. In particular, symmetric entanglement can cancel the exchange effects. - Highlights: • Kapitza–Dirac diffraction of entangled particles shows multiparticle interference. • There is a discontinuity in the set of joint detection patterns of entangled states. • We find a complementary behavior between overlapping and Schmidt’s number. • Symmetric entanglement can cancel the exchange effects.

  12. Fraunhofer Diffraction Patterns from Apertures Illuminated with Nonparallel Light.

    ERIC Educational Resources Information Center

    Klingsporn, Paul E.

    1979-01-01

    Discusses several aspects of Fraunhofer diffraction patterns from apertures illuminated by diverging light. Develops a generalization to apertures of arbitrary shape which shows that the sizes of the pattern are related by a simple scale factor. Uses the Abbe theory of image formation by diffraction to discuss the intensity of illumination of the…

  13. Diffractive optical element with same diffraction pattern for multicolor light-emitting diodes.

    PubMed

    Chen, Mengzhu; Wang, Qixia; Gu, Huarong; Tan, Qiaofeng

    2016-01-01

    The wavelength-division multiplexing technique can be utilized in visible light communication to increase the channel capacity when a multicolor mixed white LED is used as light source. In such an application, the illumination area of LEDs should be invariant to the incident wavelength, so as to decrease interference within the adjacent regions. Diffractive optical elements (DOEs) can be used in the optical transmitter system to shape the diffraction patterns into polygons. However, traditional DOEs illuminated by a multicolor mixed white LED would result into diffraction patterns with unequal sizes. In this paper, a hybrid algorithm which combines particle swarm optimization with a genetic algorithm is proposed for multicolor oriented DOEs design. A DOE is designed and fabricated for blue and red LEDs, and experimental results show that diffraction patterns with rather good uniformity as well as quasi-equal size for red and blue LEDs are obtained.

  14. Anomalous light propagation and diffraction control in waveguide arrays

    NASA Astrophysics Data System (ADS)

    Braeuer, Andreas H.; Streppel, Ulrich; Pertsch, Thomas; Peschel, Ulf; Lederer, Falk L.

    2002-11-01

    The understanding of light propagation primarily derives from studies of isotropic media. The law of refraction predicts that the tilt of a beam traversing an interface between two media will monotonously grow with the angle of incidence. The law of diffraction predicts beam spreading being completely determined by the ratio of wavelength and width, only slightly affected by the refractive index and independent of the tilt. In this paper, we demonstrate anomalies in light refraction and diffraction in evanescently coupled waveguide arrays ('discrete' refraction and diffraction). We have studied the propagation of beams in these arrays. It turned out that refraction and diffraction exhibit strong anomalies as they depend periodically on the initial beam tilt. In contrast to isotropic systems we found that transverse energy transport cannot exceed a certain maximum velocity and that the diffractive spreading depends on the direction of propagation, i.e., by varying the angle of incidence, size and sign of diffraction can be controlled and it can even be arrested. For particular initial tilts the array can undo beam spreading. The experiments were performed on homogeneous arrays of 75 waveguides in an inorganic-organic polymer on thermally oxidized silicon wafers. The 6 cm long samples were fabricated by UV-lithography on 4" wafers. Each waveguide provided low loss single mode waveguiding (<0.5 dB/cm) at λ= 633 nm. The uniform separation of adjacent guides was chosen for efficient evanescent coupling. The theoretical explanation of the measured effects was done based on coupled mode theory.

  15. Light bullets by synthetic diffraction-dispersion matching.

    PubMed

    Lobanov, Valery E; Kartashov, Yaroslav V; Torner, Lluis

    2010-07-16

    We put forward a new approach to generate stable, fully three-dimensional light bullets, which is based on the matching of the intrinsic material dispersion with a suitable effective diffraction. The matching is achieved in adequate waveguide arrays whose refractive index is periodically modulated along the direction of light propagation. We show that by using nonconventional, out-of-phase longitudinal modulation of the refractive index of neighboring channels, it is possible to tune the effective diffraction to match the intrinsic material group velocity dispersion. Three-dimensional light bullets are shown to form at reduced energy levels, in settings where the dispersion would be far too weak to generate bullets in the absence of array.

  16. Light Diffraction by Large Amplitude Ultrasonic Waves in Liquids

    NASA Technical Reports Server (NTRS)

    Adler, Laszlo; Cantrell, John H.; Yost, William T.

    2016-01-01

    Light diffraction from ultrasound, which can be used to investigate nonlinear acoustic phenomena in liquids, is reported for wave amplitudes larger than that typically reported in the literature. Large amplitude waves result in waveform distortion due to the nonlinearity of the medium that generates harmonics and produces asymmetries in the light diffraction pattern. For standing waves with amplitudes above a threshold value, subharmonics are generated in addition to the harmonics and produce additional diffraction orders of the incident light. With increasing drive amplitude above the threshold a cascade of period-doubling subharmonics are generated, terminating in a region characterized by a random, incoherent (chaotic) diffraction pattern. To explain the experimental results a toy model is introduced, which is derived from traveling wave solutions of the nonlinear wave equation corresponding to the fundamental and second harmonic standing waves. The toy model reduces the nonlinear partial differential equation to a mathematically more tractable nonlinear ordinary differential equation. The model predicts the experimentally observed cascade of period-doubling subharmonics terminating in chaos that occurs with increasing drive amplitudes above the threshold value. The calculated threshold amplitude is consistent with the value estimated from the experimental data.

  17. White-light diffraction tomography of unlabelled live cells

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Zhou, Renjie; Mir, Mustafa; Babacan, S. Derin; Carney, P. Scott; Goddard, Lynford L.; Popescu, Gabriel

    2014-03-01

    We present a technique called white-light diffraction tomography (WDT) for imaging microscopic transparent objects such as live unlabelled cells. The approach extends diffraction tomography to white-light illumination and imaging rather than scattering plane measurements. Our experiments were performed using a conventional phase contrast microscope upgraded with a module to measure quantitative phase images. The axial dimension of the object was reconstructed by scanning the focus through the object and acquiring a stack of phase-resolved images. We reconstructed the three-dimensional structures of live, unlabelled, red blood cells and compared the results with confocal and scanning electron microscopy images. The 350 nm transverse and 900 nm axial resolution achieved reveals subcellular structures at high resolution in Escherichia coli cells. The results establish WDT as a means for measuring three-dimensional subcellular structures in a non-invasive and label-free manner.

  18. Hair treatment process providing dispersed colors by light diffraction

    SciTech Connect

    Sutton, Richard Matthew Charles; Lamartine, Bruce Carvell; Orler, E. Bruce; Song, Shuangqi

    2015-12-22

    A hair treatment process for providing dispersed colors by light diffraction including (a) coating the hair with a material comprising a polymer, (b) pressing the hair with a pressing device including one or more surfaces, and (c) forming a secondary nanostructured surface pattern on the hair that is complementary to the primary nanostructured surface pattern on the one or more surfaces of the pressing device. The secondary nanostructured surface pattern diffracts light into dispersed colors that are visible on the hair. The section of the hair is pressed with the pressing device for from about 1 to 55 seconds. The polymer has a glass transition temperature from about 55.degree. C. to about 90.degree. C. The one or more surfaces include a primary nanostructured surface pattern.

  19. Achromatic correction of diffractive dispersion in white light SLM imaging.

    PubMed

    Bouchal, Zdeněk; Chlup, Vladimír; Celechovský, Radek; Bouchal, Petr; Nistor, Ioan Cristian

    2014-05-19

    In contemporary optics, the spatial light modulator (SLM) is effectively used as a flexible optoelectronic device playing the key role in a number of experiments of science and technology. Its operation is optimal when using almost monochromatic light but an extremely strong diffractive dispersion occurs when white light is applied. In this paper, the design concepts are proposed resulting in optimization and implementation of a refractive corrector cooperating with the SLM. The corrector maintains the operation of the SLM unchanged for the central wavelength of light and ensures an achromatic dispersion compensation throughout the visible region in applications based on a lens-pattern formation. A significant improvement of the imaging performance of the achromatic SLM was proved by the computer simulation and measurement of the chromatic focal shift and the image contrast of the resolution target.

  20. Enhanced light absorption of solar cells and photodetectors by diffraction

    DOEpatents

    Zaidi, Saleem H.; Gee, James M.

    2005-02-22

    Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ion etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.

  1. Laue diffraction protein crystallography at the National Synchrotron Light Source

    SciTech Connect

    Getzoff, E.D.; McRee, D.; Jones, K.W.; Spanne, P.; Sweet, R.M.; Moffat, K.; Ng, K.; Rivers, M.L.; Schildkamp, W.; Teng, T.Y.; Singer, P.T.; Westbrook, E.M.

    1992-12-31

    A new facility for the study of protein crystal structure using Laue diffraction has been established at the X26 beam line of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The characteristics of the beam line and diffraction apparatus are described. Selected results of some of the initial experiments are discussed briefly by beam line users to illustrate the scope of the experimental program. Because the Laue method permits the recording of large data sets in a single shot, one goal in establishing this facility has been to develop the means to study time-resolved structures within protein crystals. Systems being studied include: the reactions catalyzed by trypsin; photolysis of carbonmonoxy myoglobin; and the photocycle of photoactive yellow protein.

  2. Laue diffraction protein crystallography at the National Synchrotron Light Source

    SciTech Connect

    Getzoff, E.D.; McRee, D. ); Jones, K.W.; Spanne, P.; Sweet, R.M. ); Moffat, K.; Ng, K.; Rivers, M.L.; Schildkamp, W.; Teng, T.Y. ); Singer, P.T.; Westbrook, E.M. )

    1992-01-01

    A new facility for the study of protein crystal structure using Laue diffraction has been established at the X26 beam line of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The characteristics of the beam line and diffraction apparatus are described. Selected results of some of the initial experiments are discussed briefly by beam line users to illustrate the scope of the experimental program. Because the Laue method permits the recording of large data sets in a single shot, one goal in establishing this facility has been to develop the means to study time-resolved structures within protein crystals. Systems being studied include: the reactions catalyzed by trypsin; photolysis of carbonmonoxy myoglobin; and the photocycle of photoactive yellow protein.

  3. Microscopic theory of diffraction of light from a small hole

    NASA Astrophysics Data System (ADS)

    Jung, Jesper; Keller, Ole

    2014-10-01

    On the basis of the Maxwell-Lorentz local-field equations and nonlocal linear response theory, a self-consistent microscopic Green function theory of diffraction of light from a single hole in a thin and plane metallic screen is established. By subtracting the scattering of identical incident fields from screens with and without a hole, a causal effective optical aperture response tensor is introduced. An approximate expression is derived for the aperture response tensor in the limit where the screen behaves like an electric-dipole absorber and radiator. In this limit the internal electron dynamics is that of a quantum well. For a screen so thin that its bound electron motion can be described by a single quantum level, a approach for a quantum mechanical calculation of the aperture response tensor is presented. When the linear dimensions of the hole become sufficiently small the so-called aperture field, defined as the difference between the prevailing electric field with and that without a hole, becomes identical to the field from an incident-field-induced electric dipole with anisotropic linear polarizability. Our theory is formulated in such a manner that preknowledge only of (i) the incident electromagnetic field and (ii) the light-unperturbed optical electron properties (the microscopic conductivity tensor) of the screen with the geometrically given hole is needed. Since the microscopic theory allows for the presence of an (oscillating) component of the sheet current density perpendicular to the plane of the screen, a generalization of (i) the standard jump conditions of the field across the sheet and (ii) the reflection symmetries of the various fields in the plane of the screen is worked out. As our theory deviates radically from the approach of all classical diffraction theories, which are based on the macroscopic Maxwell equations and some kind of pheno-menological expression for the screen conductivity σ (often just σ →∞), we give a brief review of

  4. Super-resolution optical telescopes with local light diffraction shrinkage

    PubMed Central

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  5. Super-resolution optical telescopes with local light diffraction shrinkage.

    PubMed

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-18

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  6. Super-resolution optical telescopes with local light diffraction shrinkage

    NASA Astrophysics Data System (ADS)

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  7. Anomalous behaviors of the Fraunhofer diffraction patterns for a class of partially coherent light.

    PubMed

    Pu, Jixiong; Nemoto, Shojiro

    2003-02-24

    In this paper, we investigate the Fraunhofer diffraction of a class of partially coherent light diffracted by a circular aperture. It is shown that by the illumination of partially coherent light of the special spatial correlation function, the anomalous behaviors of the diffraction patterns are found. We find that the decrease of the spatial coherence of the light in the aperture leads to the drastic changes of the diffraction pattern. Specifically, when the light in the aperture is fully coherent, the diffraction pattern is just an Airy disc. However, as the coherence decreases, the diffraction pattern becomes an annulus, and the radius of the annulus increases with the decrease of the coherence. Flattened annuli can be achieved, when the parameters characterizing the correlation of the partially coherent light are chosen with suitable values. Potential applications of modulating the coherence to achieve desired diffraction patterns are discussed.

  8. Numerical simulation of Fresnel and Fraunhofer diffractions of monochromatic and white light

    NASA Astrophysics Data System (ADS)

    Qian, Heng; Lin, Wenbin; Qi, Xiexing

    2016-08-01

    We describe a computer simulation technique for generating the monochromatic light diffraction from arbitrary apertures. For the Fresnel diffraction of rectangular and circular apertures, a simple form of equation for the light intensity distribution is derived. A method for displaying the color of monochromatic light on the monitor is presented. On this basis, we implement the diffraction simulation of white light formed via mixing three monochromatic lights of λ=700,546.1,435.8 nm with the same ratio in the RGB color space of CIE1931 system.

  9. Diffraction-dependent spin splitting in spin Hall effect of light on reflection.

    PubMed

    Qiu, Xiaodong; Xie, Linguo; Qiu, Jiangdong; Zhang, Zhiyou; Du, Jinglei; Gao, Fuhua

    2015-07-27

    We report on a diffraction-dependent spin splitting of the paraxial Gaussian light beams on reflection theoretically and experimentally. In the case of horizontal incident polarization, the spin splitting is proportional to the diffraction length of light beams near the Brewster angle. However, the spin splitting is nearly independent with the diffraction length for the vertical incident polarization. By means of the angular spectrum theory, we find that the diffraction-dependent spin splitting is attributed to the first order expansion term of the reflection coefficients with respect to the transverse wave-vector which is closely related to the diffraction length.

  10. Forward light scattering for arbitrary sharp-edged convex crystals in Fraunhofer and anomalous diffraction approximations.

    PubMed

    Heffels, C; Heitzmann, D; Hirleman, E D; Scarlett, B

    1995-10-01

    Fraunhofer diffraction is a well-known physical model for describing forward light scattering from opaque particles much larger than the wavelength of the light. Analytical expressions exist for diffraction from circular- or rectangular-shaped apertures. An expression is derived for diffraction by apertures of a general polygonal shape. From this expression the exact solution for anomalous diffraction by arbitrary convex crystals is calculated. These expressions are useful in characterizing crystal size and shape, by laser diffraction instruments, when measured in a solution.

  11. Teaching Diffraction of Light and Electrons: Classroom Analogies to Classic Experiments

    ERIC Educational Resources Information Center

    Velentzas, Athanasios

    2014-01-01

    Diffraction and interference are phenomena that demonstrate the wave nature of light and of particles. Experiments relating to the diffraction/interference of light can easily be carried out in an educational lab, but it may be impossible to perform experiments involving electrons because of the lack of specialized equipment needed for such…

  12. Light diffraction by a particle on an optically smooth surface.

    PubMed

    Johnson, B R

    1997-01-01

    The differential cross section for radiation scattered by a particle that is large compared to the wavelength, and resting on an optically smooth surface, is characterized by an intense, narrow peak in the direction of the reflected beam. This peak is shown to be due mainly to Fraunhofer diffraction by the overlapping projections of the particle and its image on a plane perpendicular to the reflected beam. Results calculated with this simple diffraction theory are compared with accurate results calculated by the multipole expansion method. Simple analytic formulas are derived that characterize the width and height of the central diffraction peak.

  13. Fine structures in the light diffraction pattern of striated muscle.

    PubMed

    Leung, A F

    1984-10-01

    Single skeletal muscle fibres of frog were illuminated with a He-Ne, argon-ion or rhodamine 6G dye laser. The fine structures lying within the diffraction columns moved parallel to the fibre axis without changing their pattern when either the wavelength or the incident angle of the laser beam was varied, or when the fibre was stretched slightly. However, their pattern remained nearly constant when the fibre was submerged in hypotonic or hypertonic solution. As the illumination of about 1 mm or 0.1 mm width scanned along the length of the fibre, new structures emerged while others faded away giving rise to the notion that the diffraction columns were moving in the direction of the scan. A decrease in the illumination width caused the structures lying on the periphery of the diffraction column to disappear and the width of the remaining structures to increase. Measurements rule out the existence of large diffraction planes in these muscles. In addition, they indicate that the fine structures come from the diffraction of the whole rather than independent components of the illuminated volume. The origin of the fine structures is explained by two diffraction models.

  14. Diffracted light from latent images in photoresist for exposure control

    DOEpatents

    Bishop, Kenneth P.; Brueck, Steven R. J.; Gaspar, Susan M.; Hickman, Kirt C.; McNeil, John R.; Naqvi, S. Sohail H.; Stallard, Brian R.; Tipton, Gary D.

    1997-01-01

    In microelectronics manufacturing, an arrangement for monitoring and control of exposure of an undeveloped photosensitive layer on a structure susceptible to variations in optical properties in order to attain the desired critical dimension for the pattern to be developed in the photosensitive layer. This is done by ascertaining the intensities for one or more respective orders of diffracted power for an incident beam of radiation corresponding to the desired critical dimension for the photosensitive layer as a function of exposure time and optical properties of the structure, illuminating the photosensitive layer with a beam of radiation of one or more frequencies to which the photosensitive layer is not exposure-sensitive, and monitoring the intensities of the orders of diffracted radiation due to said illumination including at least the first order of diffracted radiation thereof, such that when said predetermined intensities for the diffracted orders are reached during said illumination of photosensitive layer, it is known that a pattern having at least approximately the desired critical dimension can be developed on the photosensitive layer.

  15. Microscopic ellipsometry image of microspheres on a substrate

    NASA Astrophysics Data System (ADS)

    Hsiao, F.-C.; Chen, Yu-Da; Ngo, Trong H. B.; Xie, Huai-Yi; Chang, Yia-Chung

    2015-08-01

    We performed experimental measurements and theoretical simulation based on an efficient half-space Green's function method to investigate the diffraction patterns of light scattering from silicon and ZnO microspheres on a substrate. The microscopic ellipsometry image for s- and p-polarized reflectance and their phase difference (Rs, Rp, and Δ) was taken by a modified Optrel MULTISKOP system with rotating compensator configuration for various angles of incidence and wavelengths ranging from 450nm to 750nm. An 80X objective was used and the pixel size for our image is around 200nm. The images obtained display clear diffraction patterns, which is analyzed by an efficient full-wave simulation based on half-space Green's function method. The near-field distributions obtained theoretically are then converted to far-field images by filtering out the evanescent waves and propagating waves which cannot reach the objective. The experimental results are then compared with simulated images to gain better understanding of the image patterns. Some prominent peaks are observed and attributed to resonances related to whispering gallery modes.

  16. Doppler shift generated by a moving diffraction grating under incidence by polychromatic diffuse light.

    PubMed

    Dossou, Kokou B

    2016-05-20

    We consider the spectral response of moving diffraction gratings, in which the incident light extends over a broad angular range and where the diffracted light is observed from a specific angle. We show that the dispersion relation between the frequency perceived by an observer who is looking at a moving grating and the incident frequency can exhibit some unique features, such as a flat band (i.e., a local minimum). An observer can see the light diffracted into a nonspecular diffraction order from a multitude of incident light rays, and the angle of incidence of each ray is frequency dependent; as a consequence, when the grating is moving, each incident ray experiences a Doppler shift in frequency that depends on its angle of incidence. We find that remarkable features appear near a Wood anomaly where the angle of incidence, for a given diffraction angle, can change very quickly with frequency. This means that light of multiple frequencies and incident from multiple angles can be mixed by the motion of the grating into the same diffracted ray and their frequencies can be compressed into a narrower range. The existence of a flat band means that a moving grating can be used as a device to increase the intensity of the perceived diffracted light due to spectral compression. The properties of a grating in motion in sunlight can also be relevant to the study of naturally occurring gratings which are typically in oscillatory motion.

  17. Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction.

    PubMed

    Streekstra, G J; Hoekstra, A G; Nijhof, E J; Heethaar, R M

    1993-05-01

    In the present literature on ektacytometry, small angle light scattering by ellipsoidal red blood cells is commonly approximated by Fraunhofer diffraction. Calculations on a sphere with the size and relative refractive index of a red cell, however, show that Fraunhofer diffraction deviates significantly from exact Mie theory. Anomalous diffraction is found to be a much better approximation. The anomalous diffraction theory is used to calculate the intensity distribution of the light scattered by an ellipsoidally deformed red blood cell. The derived expression shows that the ellipticity of isointensity curves in forward scattered light are equal to the ellipticity of the red blood cell. The theoretical expression is fitted to the intensity patterns measured with an ektacytometer. For the small observation angles used in ektacytometry, the experimental results confirm the validity of the anomalous diffraction approach.

  18. Verification of the Uncertainty Principle by Using Diffraction of Light Waves

    ERIC Educational Resources Information Center

    Nikolic, D.; Nesic, Lj

    2011-01-01

    We described a simple idea for experimental verification of the uncertainty principle for light waves. We used a single-slit diffraction of a laser beam for measuring the angular width of zero-order diffraction maximum and obtained the corresponding wave number uncertainty. We will assume that the uncertainty in position is the slit width. For the…

  19. Diffraction calculation of occultation light curves in the presence of an isothermal atmosphere

    NASA Technical Reports Server (NTRS)

    French, R. G.; Gierasch, P. J.

    1976-01-01

    From diffraction theory, light curves are calculated for stellar occultations by a planetary body with an isothermal atmosphere. The character of the resulting curves is determined by the scale height H, the Fresnel zone size l, the surface atmospheric refractivity, and the planetary radius. An exact general solution and two approximations are presented which are valid when H is much greater than l. The importance is assessed of accounting for diffraction effects of the limb when deducing atmospheric parameters from occultation light curves

  20. Diamond anvil cell radial x-ray diffraction program at the National Synchrotron Light Source.

    PubMed

    Hu, J Z; Mao, H K; Shu, J F; Guo, Q Z; Liu, H Z

    2006-06-28

    During the past decade, the radial x-ray diffraction method using a diamond anvil cell (DAC) has been developed at the X17C beamline of the National Synchrotron Light Source. The detailed experimental procedure used with energy dispersive x-ray diffraction is described. The advantages and limitations of using the energy dispersive method for DAC radial diffraction studies are also discussed. The results for FeO at 135 GPa and other radial diffraction experiments performed at X17C are discussed in this report.

  1. Small modulation ellipsometry

    NASA Technical Reports Server (NTRS)

    Ducharme, Stephen P. (Inventor); El Hajj, Hassanayn M. (Inventor); Johs, Blaine D. (Inventor); Woollam, John A. (Inventor)

    1995-01-01

    In an ellipsometer, a phase-modulated, polarized light beam is applied to a sample, electrical signals are obtained representing the orthogonal planes of polarization of the light after it has interacted with the sample and the constants of the sample are calculated from the two resulting electrical signals. The phase modulation is sufficiently small so that the calibration errors are negligible. For this purpose, the phase modulator phase modulates the light within a range of no more than ten degrees modulations peak to peak. The two electrical signals are expanded by Fourier analysis and the coefficients thereof utilized to calculate psi and delta.

  2. Measurement of sarcomere shortening in skinned fibers from frog muscle by white light diffraction.

    PubMed Central

    Goldman, Y E

    1987-01-01

    A new optical-electronic method has been developed to detect striation spacing of single muscle fibers. The technique avoids Bragg-angle and interference-fringe effects associated with laser light diffraction by using polychromatic (white) light. The light is diffracted once by an acousto-optical device and then diffracted again by the muscle fiber. The double diffraction reverses the chromatic dispersion normally obtained with polychromatic light. In frog skinned muscle fibers, active and passive sarcomere shortening were smooth when observed by white light diffraction, whereas steps and pauses occurred in the striation spacing signals obtained with laser illumination. During active contractions skinned fibers shortened at high rates (3-5 microns/s per half sarcomere, 0-5 degrees C) at loads below 5% of isometric tension. Compression of the myofibrillar lateral filament spacing using osmotic agents reduced the shortening velocity at low loads. A hypothesis is presented that high shortening velocities are observed with skinned muscle fibers because the cross-bridges cannot support compressive loads when the filament lattice is swollen. Images FIGURE 2 PMID:3496924

  3. General algorithm to optimize the diffraction efficiency of a phase-type spatial light modulator.

    PubMed

    Cibula, Matthew A; McIntyre, David H

    2013-08-01

    We present a general approach for optimizing the diffraction efficiency of a phase-type spatial light modulator (SLM). While the SLM displays a one-dimensional phase grating, the phase shift of one pixel in the grating is varied and the first-order diffraction efficiency is measured. This is repeated pixel-by-pixel to find the optimum phase encoding for the device that maximizes the diffraction efficiency. This method compensates for nonlinearity of the modulator phase response and is especially useful for optimizing modulators with less than 2π phase shift.

  4. Complex-valued acquisition of the diffraction imaging by incoherent quasimonochromatic light without a support constraint

    SciTech Connect

    Zhang Minghui; Xu Jianfei; Wang Xianfu; Wei Qing

    2010-10-15

    A scheme for complex-valued acquisition of the diffraction imaging with quasimonochromatic incoherent light is theoretically proposed. The main idea is to project the real and the imaginary parts of a Fraunhofer diffraction field on intensity distributions, respectively, with the use of a {pi}/2 phase-changing plate. The whole procedure is iterative algorithm free and needs no a priori knowledge of an arbitrary object. A numerical experiment and a quantitative confirmation are also given. To our knowledge, it was the first physical proposal for the complex-valued acquisition of a diffraction imaging by two-dimensional coherent patterns with thermal illumination.

  5. Effect of spectral correlations on spectral switches in the diffraction of partially coherent light.

    PubMed

    Pu, Jixiong; Nemoto, Shojiro; Lü, Baida

    2003-10-01

    The subject is the spectral characteristics of partially coherent light whose spectral degree of coherence satisfies or violates the scaling law in diffraction by a circular aperture. Three kinds of spectral correlations of the incident light are considered. It is shown that no matter whether the partially coherent light satisfies or violates the scaling law, a spectral switch defined as a rapid transition of spectral shifts is always found in the diffraction field. Different spectral correlations of the incident field in the aperture result in different points at which the spectral switch occurs. With an increment in the correlations, the position at which the spectral switch takes place moves toward the point at which the phase of the center frequency component omega0 becomes singular for illumination by spatially fully coherent light. For light that satisfies the scaling law, the spectral switch is attributed to the diffraction-induced spectral changes; for partially coherent light that violates the scaling law, the spectral switch is attributed to both the diffraction-induced spectral changes and the correlation-induced spectral changes.

  6. Calculating the Fresnel diffraction of light from a shifted and tilted plane.

    PubMed

    Yamamoto, Kenji; Ichihashi, Yasuyuki; Senoh, Takanori; Oi, Ryutaro; Kurita, Taiichiro

    2012-06-04

    We propose a technique for calculating the diffraction of light in the Fresnel region from a plane that is the light source (source plane) to a plane at which the diffracted light is to be calculated (destination plane). When the wavefield of the source plane is described by a group of points on a grid, this technique can be used to calculate the wavefield of the group of points on a grid on the destination plane. The positions of both planes may be shifted, and the plane normal vectors of both planes may have different directions. Since a scaled Fourier transform is used for the calculation, it can be calculated faster than calculating the diffraction by a Fresnel transform at each point. This technique can be used to calculate and generate planar holograms from computer graphics data.

  7. Highly Effective Light Beam Diffraction on Holographic PDLC Photonic Structure, Controllable by the Spatially Inhomogeneous Electric Field

    NASA Astrophysics Data System (ADS)

    Semkin, A. O.; Sharangovich, S. N.

    In this work the highly effiective light beam diffraction on holographic photonic structure formed in polymer-dispersed liquid crystal (PDLCs) is theoretically described. The ability to manage its diffraction characteristics by the spatially inhomogeneous electric field is also shown.

  8. Diffraction-free light droplets for axially-resolved volume imaging.

    PubMed

    Antonacci, G; Domenico, G Di; Silvestri, S; DelRe, E; Ruocco, G

    2017-12-01

    An ideal direct imaging system entails a method to illuminate on command a single diffraction-limited region in a generally thick and turbid volume. The best approximation to this is the use of large-aperture lenses that focus light into a spot. This strategy fails for regions that are embedded deep into the sample, where diffraction and scattering prevail. Airy beams and Bessel beams are solutions of the Helmholtz Equation that are both non-diffracting and self-healing, features that make them naturally able to outdo the effects of distance into the volume but intrinsically do not allow resolution along the propagation axis. Here, we demonstrate diffraction-free self-healing three-dimensional monochromatic light spots able to penetrate deep into the volume of a sample, resist against deflection in turbid environments, and offer axial resolution comparable to that of Gaussian beams. The fields, formed from coherent mixtures of Bessel beams, manifest a more than ten-fold increase in their undistorted penetration, even in turbid milk solutions, compared to diffraction-limited beams. In a fluorescence imaging scheme, we find a ten-fold increase in image contrast compared to diffraction-limited illuminations, and a constant axial resolution even after four Rayleigh lengths. Results pave the way to new opportunities in three-dimensional microscopy.

  9. Light Diffraction of Aligned Polymer Fibers Periodically Dispersed by Phase Separation of Liquid Crystal and Polymer

    NASA Astrophysics Data System (ADS)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2004-12-01

    We have confirmed light diffraction of aligned polymer fibers obtained by a phase separation of an anisotropic-phase solution of liquid crystal and polymer. He—Ne laser light passing through the polymer fibers was scattered in the axis vertical to the fibers, and had two peaks of light intensity symmetrical to the center of the transmitting laser spot. The two peaks were found to be caused by light diffraction due to the periodic polymer-fiber dispersion because the peaks corresponded to values calculated by intervals between the fibers. The periodical fiber networks are considered to be formed by anisotropic spinodal decomposition. This effect can be used to measure the dispersion order of the polymer fibers.

  10. Evidence for inhibited diffraction of light propagating through nanolaminate metallodielectric material.

    PubMed

    Roberts, M J; Guenthner, Andrew; Feng, Simin

    2007-09-17

    We report the fabrication and characterization of laterally continuous silver layers alternated with glassy amorphous polycarbonate films with the thickness of each layer much less than the wavelength. Such films exhibit physical phenomena associated with the coupled plasmon resonances. We have characterized light propagation through the resulting metal-dielectric (MD) periodic structures using collection mode Near Field Scanning Optical Microscopy (NSOM). In agreement with published theoretical models, our experiments provide evidence that diffraction can be inhibited for light propagating through metallodielectric nanolaminate.

  11. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT

    NASA Astrophysics Data System (ADS)

    Hoyer, Patrick; de Medeiros, Gustavo; Balázs, Bálint; Norlin, Nils; Besir, Christina; Hanne, Janina; Kräusslich, Hans-Georg; Engelhardt, Johann; Sahl, Steffen J.; Hell, Stefan W.; Hufnagel, Lars

    2016-03-01

    We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and below the focal plane are transferred to a nonfluorescent state at each scanning step. LS-RESOLFT nanoscopy offers wide-field 3D imaging of living biological specimens with low light dose and axial resolution far beyond the diffraction barrier. We demonstrate optical sections that are thinner by 5-12-fold compared with their conventional diffraction-limited LS analogs.

  12. Polarization sensitivity of light diffraction for periodic array of anisotropic gold nanoparticles

    SciTech Connect

    Tsai, Ming-shan Liu, Tung-kai; Tsen, Chun-yu; Ting, Chen-ching

    2015-06-15

    This article aims to analyze the first order diffraction intensity of the incident polarized light which is diffracted by the gold nanoparticles array in terms of the surface plasmon effect. The inspected gold nanoparticles array films are built in grating pattern with stripe thickness of 4 μm and diameters of gold nanoparticles ca. 10–56 nm, which are formed by annealing at temperatures of 400, 450, 500, and 550 °C, respectively. The probing light is linearly polarized with wavelengths of 450–800 nm and counterclockwise turns its polarization direction from 0° to 90° during measurements. The results show that the diffraction intensity depends on the anisotropic configuration samples which gold nanoparticles are orientated by analyzing the scanning electron microscope images. It results that the localized surface plasmon effect induced by incident field depends on orientation and causes the sample polarization-sensitive.

  13. Geometrical Reasoning in Wave Situations: The Case of Light Diffraction and Coherent Illumination Optical Imaging

    ERIC Educational Resources Information Center

    Maurines, Laurence

    2010-01-01

    This particular study is part of a research programme on the difficulties encountered by students when learning about wave phenomena in a three-dimensional medium in the absence or presence of obstacles. It focuses on how students reason in situations in which wave optics need to be used: diffraction of light by an aperture, imaging in the…

  14. Adaptive Fraunhofer diffraction particle sizing instrument using a spatial light modulator.

    PubMed

    Hirleman, E D; Dellenback, P A

    1989-11-15

    Integration of a magnetooptic spatial light modulator into a Fraunhofer diffraction particle sizing instrument is proposed and demonstrated theoretically and experimentally. The concept gives the instrument the ability to reconfigure a detector array on-line and thereby adapt to the measurement context.

  15. Automatic null ellipsometry with an interferometer

    SciTech Connect

    Watkins, Lionel R.

    2009-11-10

    A new approach to automatic null ellipsometry is described in which the analyzer of a traditional polarizer compensator sample analyzer (PCSA) null ellipsometer is replaced with a heterodyne Michelson interferometer. One arm of this interferometer is modified such that it produces a fixed, linearly polarized reference beam, irrespective of the input polarization state. This beam is recombined interferometrically with the measurement beam and spatially separated into its p and s polarizations. The relative phase of the resulting temporal fringes is a linear function of the polarizer azimuthal angle P, and thus this component can be driven to its null position without iteration. Once at null, the azimuthal angle of the reflected, linearly polarized light is trivially determined from the relative amplitude of the fringes. Measurements made with this instrument on a native oxide film on a silicon wafer were in excellent agreement with those made with a traditional PCSA null ellipsometer.

  16. Teaching Diffraction of Light and Electrons: Classroom Analogies to Classic Experiments

    NASA Astrophysics Data System (ADS)

    Velentzas, Athanasios

    2014-11-01

    Diffraction and interference are phenomena that demonstrate the wave nature of light and of particles. Experiments relating to the diffraction/interference of light can easily be carried out in an educational lab, but it may be impossible to perform experiments involving electrons because of the lack of specialized equipment needed for such experiments. It would, however, be possible for students to analyze data from scientific experiments by analogy to experiments they themselves had performed. Based on this rationale, this paper describes two pairs of experiments that may be of interest to teachers aiming to teach the wave nature of light and of particles to upper secondary school (or to college) students. Specifically, students are asked to (i) carry out a double-slit experiment by using monochromatic light, thus repeating in a way the historical experiment of Young,1 and then analyze real data from Jönsson's2-3 scientific double-slit experiment with electrons, and (ii) perform an experiment involving diffraction of monochromatic light using a compact disc (CD) as a reflection grating, and then by analogy analyze data from the experiment of Davisson and Germer.4 The proposed real experiments are not original, and different versions of them have been wi dely described in the literature.5,6 The educational value of the present work lies in the use of the analogy between experiments carried out in the school lab and experiments performed in the scientific lab.

  17. Uniformity of reshaped beam by diffractive optical elements with light-emitted diode illumination

    NASA Astrophysics Data System (ADS)

    Chen, Mengzhu; Gu, Huarong; Wang, Qixia; Tan, Qiaofeng

    2015-10-01

    Due to its low energy consumption, high efficiency and fast switching speed, light-emitted diode (LED) has been used as a new light source in optical wireless communication. To ensure uniform lighting and signal-to-noise ratio (SNR) during the data transmission, diffractive optical elements (DOEs) can be employed as optical antennas. Different from laser, LED has a low temporal and spatial coherence. And its impacts upon the far-field diffraction patterns of DOEs remain unclear. Thus the mathematical models of far-field diffraction intensity for LED with a spectral bandwidth and source size are first derived in this paper. Then the relation between source size and uniformity of top-hat beam profile for LEDs either considering the spectral bandwidth or not are simulated. The results indicate that when the size of LED is much smaller than that of reshaped beam, the uniformity of reshaped beam obtained by light source with a spectral bandwidth is significantly better than that by a monochromatic light. However, once the size is larger than a certain threshold value, the uniformity of reshaped beam of two LED models are almost the same, and the influence introduced by spectral bandwidth can be ignored. Finally the reshaped beam profiles are measured by CCD camera when the areas of LED are 0.5×0.5mm2 and 1×1mm2. And the experimental results agree with the simulations.

  18. A fast multispectral light synthesiser based on LEDs and a diffraction grating

    PubMed Central

    Belušič, Gregor; Ilić, Marko; Meglič, Andrej; Pirih, Primož

    2016-01-01

    Optical experiments often require fast-switching light sources with adjustable bandwidths and intensities. We constructed a wavelength combiner based on a reflective planar diffraction grating and light emitting diodes with emission peaks from 350 to 630 nm that were positioned at the angles corresponding to the first diffraction order of the reversed beam. The combined output beam was launched into a fibre. The spacing between 22 equally wide spectral bands was about 15 nm. The time resolution of the pulse-width modulation drivers was 1 ms. The source was validated with a fast intracellular measurement of the spectral sensitivity of blowfly photoreceptors. In hyperspectral imaging of Xenopus skin circulation, the wavelength resolution was adequate to resolve haemoglobin absorption spectra. The device contains no moving parts, has low stray light and is intrinsically capable of multi-band output. Possible applications include visual physiology, biomedical optics, microscopy and spectroscopy. PMID:27558155

  19. A fast multispectral light synthesiser based on LEDs and a diffraction grating

    NASA Astrophysics Data System (ADS)

    Belušič, Gregor; Ilić, Marko; Meglič, Andrej; Pirih, Primož

    2016-08-01

    Optical experiments often require fast-switching light sources with adjustable bandwidths and intensities. We constructed a wavelength combiner based on a reflective planar diffraction grating and light emitting diodes with emission peaks from 350 to 630 nm that were positioned at the angles corresponding to the first diffraction order of the reversed beam. The combined output beam was launched into a fibre. The spacing between 22 equally wide spectral bands was about 15 nm. The time resolution of the pulse-width modulation drivers was 1 ms. The source was validated with a fast intracellular measurement of the spectral sensitivity of blowfly photoreceptors. In hyperspectral imaging of Xenopus skin circulation, the wavelength resolution was adequate to resolve haemoglobin absorption spectra. The device contains no moving parts, has low stray light and is intrinsically capable of multi-band output. Possible applications include visual physiology, biomedical optics, microscopy and spectroscopy.

  20. Light trapping by backside diffraction gratings in silicon solar cells revisited.

    PubMed

    Wellenzohn, Markus; Hainberger, Rainer

    2012-01-02

    This numerical study investigates the influence of rectangular backside diffraction gratings on the efficiency of silicon solar cells. Backside gratings are used to diffract incident light to large propagation angles beyond the angle of total internal reflection, which can significantly increase the interaction length of long wavelength photons inside the silicon layer and thus enhance the efficiency. We investigate the influence of the silicon thickness on the optimum grating period and modulation depth by a simulation method which combines a 2D ray tracing algorithm with rigorous coupled wave analysis (RCWA) for calculating the grating diffraction efficiencies. The optimization was performed for gratings with period lengths ranging from 0.25 µm to 1.5 µm and modulation depths ranging from 25 nm to 400 nm under the assumption of normal light incidence. This study shows that the achievable efficiency improvement of silicon solar cells by means of backside diffraction gratings strongly depends on the proper choice of the grating parameters for a given silicon thickness. The relationship between the optimized grating parameters resulting in maximum photocurrent densities and the silicon thickness is determined. Moreover, the thicknesses of silicon solar cells with and without optimized backside diffraction gratings providing the same photocurrent densities are compared.

  1. LIGHT MODULATION: Wide-aperture diffraction of unpolarised radiation in a system of two acousto-optic filters

    NASA Astrophysics Data System (ADS)

    Magdich, L. N.; Yushkov, K. B.; Voloshinov, V. B.

    2009-04-01

    Light diffraction is studied in two tandem acousto-optic cells filtering unpolarised radiation with a wide angular spectrum. It is shown that the side lobes of the ultrasonic radiation pattern of a piezoelectric transducer produce side diffraction intensity maxima at the output of the system consisting of two filters. Diffraction in paratellurite filters is studied experimentally at 1.06 μm.

  2. Bragg diffraction for normal and obliquely circularly polarized light due a new chiral mixture

    NASA Astrophysics Data System (ADS)

    Castro-Garay, P.; Manzanares-Martinez, J.; Corella-Madueño, A.; Rosas-Burgos, A.; Lizola, Josue; Clark, Marielena; Palma, Lillian

    2015-09-01

    We have found experimentally the transmittance of normal incident circularly polarized light due to new chiral mixture that was distorted by electric field. The chiral mixture was achieved by mixtures of two nematic liquid crystals (5OCB and 5CB) and S-1-bromo-2-methylbutane. We have found a regime of circular Bragg diffraction for certain values of concentrations and thickness. Optical diffraction phenomenon have received particular attention in research for optical and electro-optical applications, such as low -voltage modulators, reflective phase gratings and smart reflectors.

  3. Nonreciprocal diffraction of light based on double-transition-assisted photonic Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Li, Yanfeng

    2016-10-01

    We propose a nonreciprocal diffraction system based on the photonic Aharonov-Bohm effect. The implementation utilizes the simultaneous up and down photonic transition of Bloch modes in a dielectric grating created by time-harmonic dielectric constant modulation. This double transition process generates opposite effective magnetic fluxes for photons in symmetric and antisymmetric modes, which gives rise to nonreciprocal spatial interference between them. With the broken time-reversal symmetry, this system is possible to exhibit unidirectional highly efficient diffraction, which enables grating-based nonmagnetic isolation and circulation of free space light, and integrates the functions of gratings and isolators.

  4. White-light diffraction phase microscopy at doubled space-bandwidth product.

    PubMed

    Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel

    2016-12-12

    White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.

  5. Development of biosensor based on imaging ellipsometry and its applications

    NASA Astrophysics Data System (ADS)

    Jin, Gang

    2011-03-01

    We have reviewed the development of the biosensor based on imaging ellipsometry including its principle, methodology and general engineering model structure, mainly compared experimental setups between the previous one and the recently developed one. It's obvious that the sensitivity and the signal to noise ratio has been improved by a various spectroscopic light source, the optimization of polarized components setting and a cool CCD, especially the contribution of the CCD, which makes the biosensor available in more and more biomedical applications.

  6. Analysis of beam steering by diffraction and the scattering of light by turbulence

    NASA Astrophysics Data System (ADS)

    Tsui, Jing M.

    This thesis addresses two problems. The first is the performance of non-mechanical beam steering devices based on diffractive optics, and the second is the problem of the scattering of light by turbulence. Two beam steering devices namely holographic optical elements and optical phased arrays are analyzed. Of particular interest are the wavelength selectivity of the uniform volume holographic grating and the impact of dispersion on the spatial and temporal fidelity of an optically transmitted communication signal through both beamsteering devices. Longitudinal refractive index modulation (apodization) in photosensitive glass is used to improve sidelobe. Theoretical methods are developed to model both devices. For uniform grating, it is shown that the temporal dispersion due to the diffraction increase with beam diameter yielding a higher power penalty for large diffraction angles and aperture sizes. For an optical phased array, it is shown the power penalty increase as the diffraction angles and diameters increase. In addition, the scattering of light in turbulent medium is investigated. Of particular interest is to determine region of validity of the Born approximation which is used to compute the scattering field. Pade approximants are used to analyze the propagation through a media having strong turbulent intensity. It is shown that the region of convergence of Born approximation increases as the outer scale of the turbulence decreases. In the case of the strong turbulence, the Born approximation does not capture the correct angular distribution of the scattering intensity.

  7. Immobilization of biomolecules onto surfaces according to ultraviolet light diffraction patterns

    SciTech Connect

    Bjoern Petersen, Steffen; Kold di Gennaro, Ane; Neves-Petersen, Maria Teresa; Skovsen, Esben; Parracino, Antonietta

    2010-10-01

    We developed a method for immobilization of biomolecules onto thiol functionalized surfaces according to UV diffraction patterns. UV light-assisted molecular immobilization proceeds through the formation of free, reactive thiol groups that can bind covalently to thiol reactive surfaces. We demonstrate that, by shaping the pattern of the UV light used to induce molecular immobilization, one can control the pattern of immobilized molecules onto the surface. Using a single-aperture spatial mask, combined with the Fourier transforming property of a focusing lens, we show that submicrometer (0.7 {mu}m) resolved patterns of immobilized prostate-specific antigen biomolecules can be created. If a dual-aperture spatial mask is used, the results differ from the expected Fourier transform pattern of the mask. It appears as a superposition of two diffraction patterns produced by the two apertures, with a fine structured interference pattern superimposed.

  8. Diffraction of Laser Light as a Probe of Ordered Tissue Structure

    NASA Astrophysics Data System (ADS)

    Stewart, Cody; Forrester, Kevin; Frank, C. B.; Irvine-Halliday, David; Muldrew, Ken; Shrive, Nigel; Thompson, Robert

    2002-05-01

    Laser light transmitted through thin slices of ordered tissue, such as tendon and ligament, forms a diffraction pattern elongated in the direction perpendicular to the alignment direction of the tissue fibers. The degree of elongation provides information on the degree of order in the tissue sample and thus provides a probe of the presence of scar tissue since, when damaged, collagen fibers reform more randomly than in healthy tissue. Small Angle Light Scattering (SALS) is an established technique that utilizes the diffraction properties of ordered tissue to determine bulk properties such as angle and degree of fiber orientation. This presentation will present experimental data that appears to dispute certain basic assumptions inherent in the method, as well as a basic theoretical explanation for why these assumptions may be inadequate under some experimental conditions.

  9. Diffraction Free Light Source for Ghost Imaging of Objects Viewed Through Obscuring Media

    DTIC Science & Technology

    2010-02-01

    Ghost Imaging ( QGI ) to exploit quantum optical information. This research experimentally demonstrated the ability of diffraction free light sources to...the capability of QGI to reveal images of objects through partial obstructions of the illumination. The results of this effort also demonstrated the... QGI ) to exploit quantum optical information. QGI increases versatility in imaging objects of interest to the warfighter. The Army fights in all

  10. Fraunhofer diffraction of light with orbital angular momentum by a slit.

    PubMed

    Ferreira, Queila S; Jesus-Silva, Alcenísio J; Fonseca, Eduardo J S; Hickmann, Jandir M

    2011-08-15

    We study the Fraunhofer diffraction problem while taking into account the orbital angular momentum of light. In this case, the phase singularity of the light beam is incident on the slit in two different cases: in one, it is incident slightly above the slit, and in the other it is centered on the slit. We observed that the symmetry and the fringe formation in the interference pattern strongly depend on the amount of orbital angular momentum and the slit position in relation to the beam.

  11. Evaluation of photoelectric processes in photorefractive crystals via the exposure characteristics of light diffraction.

    PubMed

    Kadys, A; Gudelis, V; Sudzius, M; Jarasiunas, K

    2005-01-12

    We demonstrate a novel way to analyse carrier recombination and transport processes in photorefractive semiconductors via the exposure characteristics of light induced diffraction. The results of a picosecond four-wave mixing on free carrier gratings in semi-insulating GaAs crystals at various grating periods and modulation depths of a light interference pattern are discussed. The role of a deep-trap recharging in carrier diffusion and recombination is sensitively revealed through a feedback effect of a space-charge field to non-equilibrium carrier transport.

  12. Peculiarities of propagation of quasi-diffraction-free light beams in strongly scattering absorbing media

    SciTech Connect

    Katsev, I L; Prikhach, A S; Kazak, N S; Kroening, M

    2006-04-30

    Based on the relation between the theory of light field coherence and theory of radiation transfer in scattering media, a method is proposed for calculating the illumination distribution produced by coherent quasi-diffraction-free beams at different penetration depths of radiation into scattering media such as biological tissues. The method uses the optical transfer function or the point spread function (PSF) of the medium. A simple and convenient analytic PSF model is described. Examples of the illumination distribution produced by a Bessel light beam in a medium with optical parameters typical of real biological tissues are presented. It is shown that the half-width of the axial maximum of a Bessel light beam scattered due to scattering almost does not increase up to optical depths where the contribution of multiple scattering is already considerable. (light beams)

  13. Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave

    SciTech Connect

    Machikhin, A S; Pozhar, V E

    2015-02-28

    We consider the problem of determining the spatial and spectral image distortions arising from anisotropic diffraction by ultrasonic waves in crystals with ordinary polarised light (o → e). By neglecting the small-birefringence approximation, we obtain analytical solutions that describe the dependence of the diffraction angles and wave mismatch on the acousto-optic (AO) interaction geometry and crystal parameters. The formulas derived allow one to calculate and analyse the magnitude of diffraction-induced spatial and spectral image distortions and to identify the main types of distortions: chromatic compression and trapezoidal deformation. A comparison of the values of these distortions in the diffraction of ordinary and extraordinary polarised light shows that they are almost equal in magnitude and opposite in signs, so that consistent diffraction (o → e → o or e → o → e) in two identical AO cells rotated through 180° in the plane of diffraction can compensate for these distortions. (diffraction of radiation)

  14. LIGHT BEAMS: Peculiarities of propagation of quasi-diffraction-free light beams in strongly scattering absorbing media

    NASA Astrophysics Data System (ADS)

    Katsev, I. L.; Prikhach, A. S.; Kazak, N. S.; Kroening, M.

    2006-04-01

    Based on the relation between the theory of light field coherence and theory of radiation transfer in scattering media, a method is proposed for calculating the illumination distribution produced by coherent quasi-diffraction-free beams at different penetration depths of radiation into scattering media such as biological tissues. The method uses the optical transfer function or the point spread function (PSF) of the medium. A simple and convenient analytic PSF model is described. Examples of the illumination distribution produced by a Bessel light beam in a medium with optical parameters typical of real biological tissues are presented. It is shown that the half-width of the axial maximum of a Bessel light beam scattered due to scattering almost does not increase up to optical depths where the contribution of multiple scattering is already considerable.

  15. Linear discrete diffraction and transverse localization of light in two-dimensional backbone lattices.

    PubMed

    Qi, Yiling; Zhang, Guoquan

    2010-09-13

    We study the linear discrete diffraction characteristics of light in two-dimensional backbone lattices. It is found that, as the refractive index modulation depth of the backbone lattice increases, high-order band gaps become open and broad in sequence, and the allowed band curves of the Floquet-Bloch modes become flat gradually. As a result, the diffraction pattern at the exit face converges gradually for both the on-site and off-site excitation cases. Particularly, when the refractive index modulation depth of the backbone lattice is high enough, for example, on the order of 0.01 for a square lattice, the light wave propagating in the backbone lattice will be localized in transverse dimension for both the on-site and off-site excitation cases. This is because only the first several allowed bands with nearly flat band curves are excited in the lattice, and the transverse expansion velocities of the Floquet-Bloch modes in these flat allowed bands approach to zero. Such a linear transverse localization of light may have potential applications in navigating light propagation dynamics and optical signal processing.

  16. The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source

    PubMed Central

    Bergamaschi, Anna; Cervellino, Antonio; Dinapoli, Roberto; Gozzo, Fabia; Henrich, Beat; Johnson, Ian; Kraft, Philipp; Mozzanica, Aldo; Schmitt, Bernd; Shi, Xintian

    2010-01-01

    The MYTHEN single-photon-counting silicon microstrip detector has been developed at the Swiss Light Source for time-resolved powder diffraction experiments. An upgraded version of the detector has been installed at the SLS powder diffraction station allowing the acquisition of diffraction patterns over 120° in 2θ in fractions of seconds. Thanks to the outstanding performance of the detector and to the calibration procedures developed, the quality of the data obtained is now comparable with that of traditional high-resolution point detectors in terms of FWHM resolution and peak profile shape, with the additional advantage of fast and simultaneous acquisition of the full diffraction pattern. MYTHEN is therefore optimal for time-resolved or dose-critical measurements. The characteristics of the MYTHEN detector together with the calibration procedures implemented for the optimization of the data are described in detail. The refinements of two known standard powders are discussed together with a remarkable application of MYTHEN to organic compounds in relation to the problem of radiation damage. PMID:20724787

  17. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications.

    PubMed

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-09-14

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm.

  18. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications

    PubMed Central

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-01-01

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm. PMID:26365754

  19. I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source.

    PubMed

    Nowell, Harriott; Barnett, Sarah A; Christensen, Kirsten E; Teat, Simon J; Allan, David R

    2012-05-01

    The dedicated small-molecule single-crystal X-ray diffraction beamline (I19) at Diamond Light Source has been operational and supporting users for over three years. I19 is a high-flux tunable-wavelength beamline and its key details are described in this article. Much of the work performed on the beamline involves structure determination from small and weakly diffracting crystals. Other experiments that have been supported to date include structural studies at high pressure, studies of metastable species, variable-temperature crystallography, studies involving gas exchange in porous materials and structural characterizations that require analysis of the diffuse scattering between Bragg reflections. A range of sample environments to facilitate crystallographic studies under non-ambient conditions are available as well as a number of options for automation. An indication of the scope of the science carried out on the beamline is provided by the range of highlights selected for this paper.

  20. Theoretical Fraunhofer light diffraction patterns calculated from three-dimensional sarcomere arrays imaged from isolated cardiac cells at rest.

    PubMed

    Roos, K P; Leung, A F

    1987-08-01

    Sarcomere striation positions have been obtained throughout the volumes of calcium-tolerant resting heart cells by direct computer interfaced high-resolution optical imaging. Each sarcomere position is stored in a three-dimensional (3-D) matrix array from which Fraunhofer light diffraction patterns have been calculated using numerical methods based on Fourier transforms. Diffraction patterns have been calculated from heart cell data arrays oriented normal to a theoretical laser beam. Twelve characteristic features have been identified and described from these diffraction patterns that correlate to diffraction phenomena observed from both cardiac and skeletal muscle. This numerical approach provides the means to directly assess diffraction pattern formulation, the precision of layer line angular separation, layer-line intensity and angular asymmetries, line widths and fine structures in terms of the known diffracting source structures. These results confirm that theoretical calculations can predict real muscle diffraction patterns and their asymmetries.

  1. Total internal reflection ellipsometry: principles and applications.

    PubMed

    Arwin, Hans; Poksinski, Michal; Johansen, Knut

    2004-05-20

    A concept for a measurement technique based on ellipsometry in conditions of total internal reflection is presented. When combined with surface plasmon resonance (SPR) effects, this technique becomes powerful for monitoring and analyzing adsorption and desorption on thin semitransparent metal films as well as for analyzing the semitransparent films themselves. We call this technique total internal reflection ellipsometry (TIRE). The theory of ellipsometry under total internal reflection combined with SPR is discussed for some simple cases. For more advanced cases and to prove the concept, simulations are performed with the Fresnel formalism. The use of TIRE is exemplified by applications in protein adsorption, corrosion monitoring, and adsorption from opaque liquids on metal surfaces. Simulations and experiments show greatly enhanced thin-film sensitivity compared with ordinary ellipsometry.

  2. Efficient photonic reformatting of celestial light for diffraction-limited spectroscopy

    NASA Astrophysics Data System (ADS)

    MacLachlan, D. G.; Harris, R. J.; Gris-Sánchez, I.; Morris, T. J.; Choudhury, D.; Gendron, E.; Basden, A. G.; Spaleniak, I.; Arriola, A.; Birks, T. A.; Allington-Smith, J. R.; Thomson, R. R.

    2017-02-01

    The spectral resolution of a dispersive astronomical spectrograph is limited by the trade-off between throughput and the width of the entrance slit. Photonic guided wave transitions have been proposed as a route to bypass this trade-off, by enabling the efficient reformatting of incoherent seeing-limited light collected by the telescope into a linear array of single modes: a pseudo-slit which is highly multimode in one axis but diffraction-limited in the dispersion axis of the spectrograph. It is anticipated that the size of a single-object spectrograph fed with light in this manner would be essentially independent of the telescope aperture size. A further anticipated benefit is that such spectrographs would be free of `modal noise', a phenomenon that occurs in high-resolution multimode fibre-fed spectrographs due to the coherent nature of the telescope point spread function (PSF). We seek to address these aspects by integrating a multicore fibre photonic lantern with an ultrafast laser inscribed three-dimensional waveguide interconnect to spatially reformat the modes within the PSF into a diffraction-limited pseudo-slit. Using the CANARY adaptive optics (AO) demonstrator on the William Herschel Telescope, and 1530 ± 80 nm stellar light, the device exhibits a transmission of 47-53 per cent depending upon the mode of AO correction applied. We also show the advantage of using AO to couple light into such a device by sampling only the core of the CANARY PSF. This result underscores the possibility that a fully optimized guided-wave device can be used with AO to provide efficient spectroscopy at high spectral resolution.

  3. Spin-to-orbit conversion at acousto-optic diffraction of light: conservation of optical angular momentum.

    PubMed

    Skab, Ihor; Vlokh, Rostyslav

    2012-04-01

    Acousto-optic diffraction of light in optically active cubic crystals is analyzed from the viewpoint of conservation of optical angular momentum. It is shown that the availability of angular momentum in the diffracted optical beam can be necessarily inferred from the requirements of angular momentum conservation law. As follows from our analysis, a circularly polarized diffracted wave should bear an orbital angular momentum. The efficiency of the spin-to-orbit momentum conversion is governed by the efficiency of acousto-optic diffraction.

  4. Toward efficient light diffraction and intensity variations by using wide bandwidth surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Lee, Young Ok; Chen, Fu; Lee, Kee Keun

    2016-06-01

    We have developed acoustic-optic (AO) based display units for implementing a handheld hologram display by modulating light deflection through wide bandwidth surface acoustic wave (SAW). The developed AO device consists of a metal layer, a ZnS waveguide layer, SAW inter digital transducers (IDTs), and a screen for display. When RF power with a particular resonant frequency was applied to IDTs, SAW was radiated and interfered with confined beam propagating along ZnS waveguide layer. The AO interacted beam was deflected laterally toward a certain direction depending on Bragg diffraction condition, exited out of the waveguide layer and then directed to the viewing screen placed at a certain distance from the device to form a single pixel. The deflected angles was adjusted by modulating the center frequency of the SAW IDT (SAW grating), the RF power of SAW, and the angles between propagating light beam path along waveguide and radiating SAW. The diffraction efficiency was also characterized in terms of waveguide thickness, SAW RF input power, and aperture length. Coupling of mode (COM) modeling was fulfilled to find optimal device parameters prior to fabrication. All the parameters affecting the deflection angle and efficiency to form a pixel for a three-dimensional (3D) hologram image were characterized and then discussed.

  5. Interaction of light with a metal wedge: the role of diffraction in shaping energy flow.

    PubMed

    Xi, Yonggang; Jung, Yun Suk; Kim, Hong Koo

    2010-02-01

    When a light wave hits a metal wedge structure, the metal surfaces respond to the incident light by generating both free-space and surface-bound waves. Here we present a physical model that elucidates electromagnetic interactions of an incoming planar wave with a simple semi-infinite 90 degrees metal wedge. We show that a metal wedge structure possesses an intrinsic capability of directing the incident power around the corner into the forward direction. Interplay of the boundary diffraction wave and the incident and reflection waves in the near field region of a metal corner is found to form a basis of the funneling phenomena that are commonly observed in metal nanoslit structures. Theory and experiment reveal that the incident wave propagating parallel to the sidewall destructively interferes with the boundary diffraction wave forming a depleted-energy-flow region along the glancing angle direction. A physical understanding of various electromagnetic phenomena associated with a metal wedge structure confirms rich potential of the simple structure as an elemental building block of complex metal nanostructures.

  6. Three-dimensional shape measurement based on light patterns projection using diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Twardowski, P.; Serio, B.; Raulot, V.; Guilhem, M.

    2010-05-01

    We propose a structured light micro-opto electromechanical system (MOEMS) projector specially designed to display successively a set of patterns in order to extract the 3-D shape of an object using a CCD cameras module and a small ARM-based computer for control, registration and numerical analysis. This method consists in a temporal codification using a modified Gray code combined with a classical phase shifting technique. Our approach is to combine the unambiguous and robust codification of the Gray code method with the high resolution of the phase shifting method to result in highly accurate 3D reconstructions. The proposed MOEMS is based on an array of vertical-cavity surface-emitting laser (VCSEL) combined with two planar static diffractive optical elements (DOEs) arrays. DOEs masters on quartz substrate have been fabricated using photolithography therefore replication in polycarbonate is possible at low cost. The first DOE array is designed to collimate the VCSEL light (Fresnel-type element) and the second one to project the codification patterns. DOEs have been designed and fabricated by surface etching to achieve a good diffraction efficiency using four phase levels. First we introduce the MEOMS principle and the features of the different components. We present the layout design of the DOEs and describe the issues related to the micro-fabrication process. An experimental study of the topography of the DOEs is presented and discussed. We then discuss fabrication aspects including the DOEs integration and packaging.

  7. Quantum-mechanical diffraction theory of light from a small hole: Extinction-theorem approach

    NASA Astrophysics Data System (ADS)

    Jung, Jesper; Keller, Ole

    2015-07-01

    In a recent paper [Phys. Rev. A 90, 043830 (2014), 10.1103/PhysRevA.90.043830] it was shown that the so-called aperture response tensor is the central concept in the microscopic quantum theory of light diffraction from a small hole in a flat screen. It was further shown that the quantum mechanical theory of diffraction only requires a preknowledge of the incident field plus the electronic properties of identical screens with and without a hole. Starting from the quantum mechanical expression for the linear conductivity tensor, we study the related causal conductivity tensor paying particular attention to diamagnetic electron dynamics. Using a nonlocal-potential separation assumption, we present a calculation of the diamagnetic causal surface conductivity for a jellium quantum-well screen using a two-dimensional Hartree-Fock model. In the diamagnetic case the difference between the light-unperturbed electron densities for screens with (n0) and without (n∞0) holes are the primary quantities for the diffraction theory. In a central part (Sec. IV) of this article we determine n0 via a quantum-mechanical two-dimensional extinction-theorem approach related to elastic electron scattering from a hole with an electronic selvedge. For heuristic purposes we illustrate aspects of the extinction-theorem theory by applying the approach for an infinitely high potential barrier to the vacuum hole. Finally, we calculate and discuss the aperture response tensor in the small hole limit and in the zeroth-order Born approximation. Our final result for the aperture response tensor establishes the bridge to the anisotropic electric dipole polarizability tensor of the hole. It turns out that the effective optical aperture (hole) size relates closely to the extension of the relevant electronic wave functions scattered from the hole.

  8. Generalized phase contrast-enhanced diffractive coupling to light-driven microtools

    NASA Astrophysics Data System (ADS)

    Villangca, Mark; Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2015-11-01

    We have previously demonstrated on-demand dynamic coupling to optically manipulated microtools coined as wave-guided optical waveguides using diffractive techniques on a "point and shoot" approach. These microtools are extended microstructures fabricated using two-photon photopolymerization and function as free-floating optically trapped waveguides. Dynamic coupling of focused light via these structures being moved in three-dimensional space is done holographically. However, calculating the necessary holograms is not straightforward when using counter-propagating trapping geometry. The generation of the coupling spots is done in real time following the position of each microtool with the aid of an object tracking routine. This approach allows continuous coupling of light through the microtools which can be useful in a variety of biophotonics applications. To complement the targeted-light delivery capability of the microtools, the applied spatial light modulator has been illuminated with a properly matched input beam cross section based on the generalized phase contrast method. Our results show a significant gain in the output at the tip of each microtool as measured from the fluorescence signal of the trapping medium. The ability to switch from on-demand to continuous addressing with efficient illumination leverages our microtools for potential applications in stimulation and near-field-based biophotonics on cellular scales.

  9. Progress on the prevention of stray light and diffraction effects on the Thai National Telescope

    NASA Astrophysics Data System (ADS)

    Buisset, Christophe; Prasit, Apirat; Leckngam, Apichat; Lépine, Thierry; Poshyajinda, Saran; Soonthornthum, Boonrucksar; Irawati, Puji; Richichi, Andrea; Sawangwit, Utane; Dhillon, Vik; Hardy, Liam K.

    2015-09-01

    The 2.4-m Thai National Telescope (TNT) is the main facility of the Thai National Observatory located on the Doi Inthanon, Thailand's highest mountain. The first astronomical images obtained at the TNT suffered from diffraction and stray light problems: bright spikes spread from bright stellar images over few arcminutes in the focal plane, and the images taken during observations in bright moon conditions were contaminated by high levels of stray light. We performed targeted investigations to identify the origin of these problems. In a first time, these investigations consisted of analyzing the irradiance distribution of defocused stellar images and of identifying the contributors. We concluded that these bright spikes around the bright stellar images were due to the chamfer and the wavefront error at the mirror edge. We thus installed an annular mask along the edge of the primary mirror that fully suppressed these spikes and we quantified the improvement by observing the double star Sirius. In a second time, we identified the contributors to the stray light by placing a pinhole camera at the TNT focal plane. Then, we designed a new baffle to improve the stray light rejection. The final design of the baffle comprises 21 diaphragms, is painted with an ordinary black paint and was designed, developed and installed on the TNT in less than 8 months. We assessed the improvement on the performance by measuring the variation of the stray light signal before and after installing the baffle in the telescope structure. These steps significantly improved the image quality and enhanced the rejection of the stray light at the focal plane level. In this paper, we present our investigations, we describe the method used to design the TNT baffle, and we present the improvement in quantitative terms.

  10. Determining Concentration of Nanoparticles from Ellipsometry

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa; Kempen, Lothar U.; Chipman, Russell

    2008-01-01

    A method of using ellipsometry or polarization analysis of light in total internal reflection of a surface to determine the number density of gold nanoparticles on a smooth substrate has been developed. The method can be modified to enable determination of densities of sparse distributions of nanoparticles in general, and is expected to be especially useful for measuring gold-nanoparticle-labeled biomolecules on microarrays. The method is based on theoretical calculations of the ellipsometric responses of gold nanoparticles. Elements of the calculations include the following: For simplicity, the gold nanoparticles are assumed to be spherical and to have the same radius. The distribution of gold nanoparticles is assumed to be a sub-monolayer (that is, sparser than a monolayer). The optical response of the sub-monolayer is modeled by use of a thin-island-film theory, according to which the polarizabilities parallel and perpendicular to the substrate are functions of the wavelength of light, the dielectric functions (permittivities expressed as complex functions of frequency or wavelength) of the gold and the suspending medium (in this case, the suspending medium is air), the fraction of the substrate area covered by the nanoparticles, and the radius of the nanoparticles. For the purpose of the thin-island-film theory, the dielectric function of the gold nanoparticles is modeled as the known dielectric function of bulk gold plus a correction term that is necessitated by the fact that the mean free path length for electrons in gold decreases with decreasing radius, in such a manner as to cause the imaginary part of the dielectric function to increase with decreasing radius (see figure). The correction term is a function of the nanoparticle radius, the wavelength of light, the mean free path and the Fermi speed of electrons in bulk gold, the plasma frequency of gold, and the speed of light in a vacuum. These models are used to calculate ellipsometric responses for

  11. Sound Velocity and Diffraction Intensity Measurements Based on Raman-Nath Theory of the Interaction of Light and Ultrasound

    ERIC Educational Resources Information Center

    Neeson, John F.; Austin, Stephen

    1975-01-01

    Describes a method for the measurement of the velocity of sound in various liquids based on the Raman-Nath theory of light-sound interaction. Utilizes an analog computer program to calculate the intensity of light scattered into various diffraction orders. (CP)

  12. Coherent EUV light from high-order harmonic generation: Enhancement and applications to lensless diffractive imaging

    NASA Astrophysics Data System (ADS)

    Paul, Ariel J.

    2007-12-01

    The first half of this thesis presents the first demonstration of quasi-phase matching in the coherent high-order harmonic conversion of ultrafast laser pulses into the EUV region of the spectrum. To achieve this quasi-phase matching, a novel method of fabricating hollow waveguides with a modulated inner diameter was developed. This technique lead to significant enhancements of EUV flux at wavelengths shorter than were previously accessible by known phase-matching techniques. In the second half of this thesis, the first tabletop demonstration of lensless diffractive imaging with EUV light is presented using HHG in a gas-filled hollow waveguide to provide coherent illumination. This tabletop microscope shows a spatial resolution of ˜ 200 nm and a large depth of field. Furthermore, the technique is easily scalable to shorter wavelengths of interest to biological imaging.

  13. Modular sub-wavelength diffractive light modulator for high-definition holographic displays

    NASA Astrophysics Data System (ADS)

    Stahl, Richard; Rochus, Veronique; Rottenberg, Xavier; Cosemans, Stefan; Haspeslagh, Luc; Severi, Simone; Van der Plas, Geert; Lafruit, Gauthier; Donnay, Stephane

    2013-02-01

    Holography is undoubtedly the ultimate 3D visualization technology, offering true 3D experience with all the natural depth cues, without the undesirable side-effects of current stereoscopic systems (uncomfortable glasses, strained eyes, fatiguing experience). Realization of a high-definition holographic display however requires a number of breakthroughs from existing prototypes. One of the main challenges lies in technology scaling, as holography is based on light diffraction and interference - to achieve wide viewing angles, the light-modulating pixels need to be spaced close to or below the wavelength of the used visible light. Furthermore, achieving high 3D image quality, hundreds of millions of such individually programmable pixels are needed. As a solution, we develop a modular sub-wavelength light modulator, consisting of three main sub-systems: the optical sub-system, comprising a 2D array of sub-wavelength pixels; the driver sub-system for individual pixel control, and the holographic computational engine. Based on conclusions from our state-of-the art studies, numerous experiments and holographic demonstrators, we have focused on reflective phase-modulating MEMS-based system and its scaling beyond 500nm pitch. We have devised a unique binary-programmable phase-modulating pixel architecture realizing vertical pixel displacement of up to 150nm at 500nm by 500nm pixel pitch, while sustaining low operating voltages compatible with CMOS driver circuitry. IMEC SiGe MEMS technology enables integration of the CMOS pixel-line drivers, scan-line drivers and I/O circuits underneath the 2D MEMS array, resulting in a compact and modular single-chip system design. Refresh rates of few hundred frames per second are achieved using our patented segmented driver-array architecture. Integrated circuits implementing parallel holographic computational engines can be added to the module using advanced 3D stacking technology. Herein we further report on our progress in realizing

  14. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides.

    PubMed

    Villangca, Mark; Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2014-07-28

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements.

  15. Light beam diffraction on inhomogeneous holographic photonic PDLC structures under the influence of spatially non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Semkin, A. O.; Sharangovich, S. N.

    2016-08-01

    In this work the theoretical model of two-dimensional Bragg diffraction of quasimonochromatic light beams on amplitude- and phase- inhomogeneous holographic photonic PDLC structures under the impact of spatially non-uniform electric field is proposed. The selfconsistent solutions for the light diffraction on PDLC structure with uniform amplitude and quasi-quadratic profiles are obtained for the case of influence of linearly varying electric field. The possibility to compensate the PDLC structure response inhomogeneity by the impact of non-unifrom external field is shown.

  16. Intensity of light diffraction from striated muscle as a function of incident angle.

    PubMed Central

    Baskin, R J; Lieber, R L; Oba, T; Yeh, Y

    1981-01-01

    In a recently developed theory of light diffraction by single striated muscle fibers, we considered only the case of normal beam incidence. The present investigation represents both an experimental and theoretical extension of the previous work to arbitrary incident angle. Angle scan profiles over a 50 degrees range of incident angle (+25 degrees to -25 degrees) were obtained at different sarcomere lengths. Left and right first-order scan peak separations were found to be a function of sarcomere length (separation angle = 2 theta B), and good agreement was found between theory and experiment. Our theoretical analysis further showed that a myofibrillar population with a single common skew angle can yield an angle scan profile containing many peaks. Thus, it is not necessary to associate each peak with a different skew population. Finally, we have found that symmetry angle, theta s, also varies with sarcomere length, but not in a regular manner. Its value at a given sarcomere length is a function of a particular region of a given fiber and represents the average skew angle of all the myofibril populations illuminated. The intensity of a diffraction order line is considered to be principally the resultant of two interference phenomena. The first is a volume-grating phenomenon which results from the periodic A-I band structure of the fiber (with some contribution from Z bands and H zones). The second is Bragg reflection from skew planes, if the correct relation between incident angle and skew angle is met. This may result in intensity asymmetry between the left and right first order lines. PMID:6976802

  17. Rotatable broadband retarders for far infrared spectroscopic ellipsometry

    SciTech Connect

    Kang, T.D.; Carr, G.; Zhou, T.; Kotelyanskii, M.; Sirenko, A.A.

    2010-12-09

    Rotatable retarders have been developed for applications in spectroscopic, full Mueller Matrix ellipsometry in the far-IR spectral range. Several materials, such as silicon, KRS-5, and a commercial polymer plastic (TOPAS) have been utilized to achieve a fully adjustable retardation between 0{sup o} and 90{sup o}. Experimental characteristics of the rotatable retarders that utilize three- and four-bounce designs are compared with calculations. We discuss the effect of light focusing on the performance of these rotatable retarders. Broadband optical retarders are required for spectroscopic ellipsometry in its full Mueller matrix (MM) realization. Performance of the MM ellipsometer depends on the capability to produce substantially linearly-independent Stokes vectors for the light incident onto the sample. As has been shown, the errors in the measuredMMof the sample are proportional to the condition number of the 4 x 4 matrix composed of the Stokes vectors of four polarization states incident at the sample. It can be proven that it is impossible to cover the Poincare sphere with linearly-independent Stokes vectors by only changing the linear polarization at the input surface of a stationary retarder. As we will illustrate further in this paper, total coverage of the Poincare sphere is possible by rotating a tandem of a linear polarizer and a retarder with a retardation of 90{sup o}. It is this goal that we are trying to achieve in the retarder designs described in this paper.

  18. Photochromism and diffraction grating in cyanoazobenzene polymer films

    NASA Astrophysics Data System (ADS)

    Serwadczak, M.; Wübbenhorst, M.; Kucharski, S.

    2006-08-01

    Two series of photochromic copolymathacrylates containing cyanoazobenzene chromophores as side chains were described. The series with shorter ethylene spacer between mesogen and main polymethacrylate chain was amorphous, whereas the second one with longer ethoxyethylene spacer was liquid crystalline forming smectic C mesophase above Tg. The materials were deposited on glass substrates via spin coating and casting technique to provide thin transparent films. The reversible change of refractive index of the films on illumination with white light was determined by ellipsometry. The difference of real part of the refractive index of the sample was in the range 0.0067-0.0210 depending on the polymer. Formation of diffraction grating was achieved by two beam coupling arrangement using a 532 nm laser diode . The diffraction efficiency for the first order diffraction was in the range of 1.5-2.1% for the homopolymers.

  19. Thermo-driven light controller by using thermal modulation of diffraction wavelength in holographic polymer dispersed liquid crystal grating

    NASA Astrophysics Data System (ADS)

    Ogiwara, Akifumi; Kakiuchida, Hiroshi

    2014-02-01

    A microperiodic structure composed of polymer and liquid crystal (LC) phases, called holographic polymer dispersed liquid crystal (HPDLC), was fabricated based on a photo-induced phase separation technique by laser interferometric exposure. The diffraction wavelength of HPDLC gratings formed by different LC composites and grating structures was experimentally investigated by spectroscopic measurements as a function of temperature at around 30 °C. The HPDLC gratings composed of nematic LC having low nematic to isotropic temperature (TNI) and film thickness of 25 μm showed the switch of diffraction wavelength between visible and infrared lights by the change of temperature. The optical characteristics achieved in HPDLC gratings are expected to be applicable for the basis of diffractive type of thermodriven light controller which can supply visibility constantly for solar-ray control windows.

  20. High throughput imaging of blood smears using white light diffraction phase microscopy

    NASA Astrophysics Data System (ADS)

    Majeed, Hassaan; Kandel, Mikhail E.; Bhaduri, Basanta; Han, Kevin; Luo, Zelun; Tangella, Krishnarao; Popescu, Gabriel

    2015-03-01

    While automated blood cell counters have made great progress in detecting abnormalities in blood, the lack of specificity for a particular disease, limited information on single cell morphology and intrinsic uncertainly due to high throughput in these instruments often necessitates detailed inspection in the form of a peripheral blood smear. Such tests are relatively time consuming and frequently rely on medical professionals tally counting specific cell types. These assays rely on the contrast generated by chemical stains, with the signal intensity strongly related to staining and preparation techniques, frustrating machine learning algorithms that require consistent quantities to denote the features in question. Instead we opt to use quantitative phase imaging, understanding that the resulting image is entirely due to the structure (intrinsic contrast) rather than the complex interplay of stain and sample. We present here our first steps to automate peripheral blood smear scanning, in particular a method to generate the quantitative phase image of an entire blood smear at high throughput using white light diffraction phase microscopy (wDPM), a single shot and common path interferometric imaging technique.

  1. Multimodal Spectral Imaging of Cells Using a Transmission Diffraction Grating on a Light Microscope

    PubMed Central

    Isailovic, Dragan; Xu, Yang; Copus, Tyler; Saraswat, Suraj; Nauli, Surya M.

    2011-01-01

    A multimodal methodology for spectral imaging of cells is presented. The spectral imaging setup uses a transmission diffraction grating on a light microscope to concurrently record spectral images of cells and cellular organelles by fluorescence, darkfield, brightfield, and differential interference contrast (DIC) spectral microscopy. Initially, the setup was applied for fluorescence spectral imaging of yeast and mammalian cells labeled with multiple fluorophores. Fluorescence signals originating from fluorescently labeled biomolecules in cells were collected through triple or single filter cubes, separated by the grating, and imaged using a charge-coupled device (CCD) camera. Cellular components such as nuclei, cytoskeleton, and mitochondria were spatially separated by the fluorescence spectra of the fluorophores present in them, providing detailed multi-colored spectral images of cells. Additionally, the grating-based spectral microscope enabled measurement of scattering and absorption spectra of unlabeled cells and stained tissue sections using darkfield and brightfield or DIC spectral microscopy, respectively. The presented spectral imaging methodology provides a readily affordable approach for multimodal spectral characterization of biological cells and other specimens. PMID:21639978

  2. Creation of Sub-diffraction Longitudinally Polarized Spot by Focusing Radially Polarized Light with Binary Phase Lens.

    PubMed

    Yu, An-Ping; Chen, Gang; Zhang, Zhi-Hai; Wen, Zhong-Quan; Dai, Lu-Ru; Zhang, Kun; Jiang, Sen-Lin; Wu, Zhi-Xiang; Li, Yu-Yan; Wang, Chang-Tao; Luo, Xian-Gang

    2016-12-12

    The generation of a sub-diffraction longitudinally polarized spot is of great interest in various applications, such as optical tweezers, super-resolution microscopy, high-resolution Raman spectroscopy, and high-density optical data storage. Many theoretical investigations have been conducted into the tight focusing of a longitudinally polarized spot with high-numerical-aperture aplanatic lenses in combination with optical filters. Optical super-oscillation provides a new approach to focusing light beyond the diffraction limit. Here, we propose a planar binary phase lens and experimentally demonstrate the generation of a longitudinally polarized sub-diffraction focal spot by focusing radially polarized light. The lens has a numerical aperture of 0.93 and a long focal length of 200λ for wavelength λ = 632.8 nm, and the generated focal spot has a full-width-at-half-maximum of about 0.456λ, which is smaller than the diffraction limit, 0.54λ. A 5λ-long longitudinally polarized optical needle with sub-diffraction size is also observed near the designed focal point.

  3. Image quality affected by diffraction of aperture structure arrangement in transparent active-matrix organic light-emitting diode displays.

    PubMed

    Tsai, Yu-Hsiang; Huang, Mao-Hsiu; Jeng, Wei-de; Huang, Ting-Wei; Lo, Kuo-Lung; Ou-Yang, Mang

    2015-10-01

    Transparent display is one of the main technologies in next-generation displays, especially for augmented reality applications. An aperture structure is attached on each display pixel to partition them into transparent and black regions. However, diffraction blurs caused by the aperture structure typically degrade the transparent image when the light from a background object passes through finite aperture window. In this paper, the diffraction effect of an active-matrix organic light-emitting diode display (AMOLED) is studied. Several aperture structures have been proposed and implemented. Based on theoretical analysis and simulation, the appropriate aperture structure will effectively reduce the blur. The analysis data are also consistent with the experimental results. Compared with the various transparent aperture structure on AMOLED, diffraction width (zero energy position of diffraction pattern) of the optimize aperture structure can be reduced 63% and 31% in the x and y directions in CASE 3. Associated with a lenticular lens on the aperture structure, the improvement could reach to 77% and 54% of diffraction width in the x and y directions. Modulation transfer function and practical images are provided to evaluate the improvement of image blurs.

  4. Creation of Sub-diffraction Longitudinally Polarized Spot by Focusing Radially Polarized Light with Binary Phase Lens

    NASA Astrophysics Data System (ADS)

    Yu, An-Ping; Chen, Gang; Zhang, Zhi-Hai; Wen, Zhong-Quan; Dai, Lu-Ru; Zhang, Kun; Jiang, Sen-Lin; Wu, Zhi-Xiang; Li, Yu-Yan; Wang, Chang-Tao; Luo, Xian-Gang

    2016-12-01

    The generation of a sub-diffraction longitudinally polarized spot is of great interest in various applications, such as optical tweezers, super-resolution microscopy, high-resolution Raman spectroscopy, and high-density optical data storage. Many theoretical investigations have been conducted into the tight focusing of a longitudinally polarized spot with high-numerical-aperture aplanatic lenses in combination with optical filters. Optical super-oscillation provides a new approach to focusing light beyond the diffraction limit. Here, we propose a planar binary phase lens and experimentally demonstrate the generation of a longitudinally polarized sub-diffraction focal spot by focusing radially polarized light. The lens has a numerical aperture of 0.93 and a long focal length of 200λ for wavelength λ = 632.8 nm, and the generated focal spot has a full-width-at-half-maximum of about 0.456λ, which is smaller than the diffraction limit, 0.54λ. A 5λ-long longitudinally polarized optical needle with sub-diffraction size is also observed near the designed focal point.

  5. Creation of Sub-diffraction Longitudinally Polarized Spot by Focusing Radially Polarized Light with Binary Phase Lens

    PubMed Central

    Yu, An-ping; Chen, Gang; Zhang, Zhi-hai; Wen, Zhong-quan; Dai, Lu-ru; Zhang, Kun; Jiang, Sen-lin; Wu, Zhi-xiang; Li, Yu-yan; Wang, Chang-tao; Luo, Xian-gang

    2016-01-01

    The generation of a sub-diffraction longitudinally polarized spot is of great interest in various applications, such as optical tweezers, super-resolution microscopy, high-resolution Raman spectroscopy, and high-density optical data storage. Many theoretical investigations have been conducted into the tight focusing of a longitudinally polarized spot with high-numerical-aperture aplanatic lenses in combination with optical filters. Optical super-oscillation provides a new approach to focusing light beyond the diffraction limit. Here, we propose a planar binary phase lens and experimentally demonstrate the generation of a longitudinally polarized sub-diffraction focal spot by focusing radially polarized light. The lens has a numerical aperture of 0.93 and a long focal length of 200λ for wavelength λ = 632.8 nm, and the generated focal spot has a full-width-at-half-maximum of about 0.456λ, which is smaller than the diffraction limit, 0.54λ. A 5λ-long longitudinally polarized optical needle with sub-diffraction size is also observed near the designed focal point. PMID:27941852

  6. Degeneration of Fraunhofer diffraction on bacterial colonies due to their light focusing properties examined in the digital holographic microscope system.

    PubMed

    Buzalewicz, Igor; Liżewski, Kamil; Kujawińska, Małgorzata; Podbielska, Halina

    2013-11-04

    The degeneration of Fraunhofer diffraction conditions in the optical system with converging spherical wave illumination for bacteria species identification based on diffraction patterns is analyzed by digital holographic methods. The obtained results have shown that the colonies of analyzed bacteria species act as biological lenses with the time-dependent light focusing properties, which are characterized and monitored by means of phase retrieval from sequentially captured digital holograms. This significantly affects the location of Fraunhofer patterns observation plane, which is continuously shifted across optical axis in time.

  7. The study of diffractive lenses displayed in a phase-only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Ma, Si-jin; Panezai, Spozmai; Wang, Da-yong; Wang, Yun-xin; Rong, Lu

    2013-08-01

    Phase-only spatial light modulator (SLM) based on liquid crystal on silicon (LCOS) is a kind of device based on electrically controlled birefringence effect to realize phase modulation. Due to its low cost, programmable, high resolution, fast response time, LCOS has been widely used in multi-channel imaging, adaptive optics, diffraction optical elements (DOEs), dynamic holographic, optical tweezers and other fields. It is necessary to numerically evaluate the modulation characterization of LCOS before application. Firstly, the phase modulation characterization of the LCOS (PLUTO HED6010XXX by Holoeye Company) was measured based on the Twyman-Green interferometer, and the curves of both phase shift and normalized intensity as grey level functions were obtained. Experimental results indicated that phase modulation of the LCOS could be achieved to 3.99π, and the root-mean-square value (RMS) of normalized intensity was less than 0.01, which demonstrated that LCOS could be regarded as a phase-only modulation device. This method is also suitable for the evaluation of modulation characterization of other LCOS devices. Secondly, a phase pattern of thin lens written onto LCOS was demonstrated. Because of the pixel structure of LCOS, the theory of discretization of lenses was studied. Both simulation and experimental results were obtained. The experimental results proved that the convergence character of the lens written onto LCOS was similar to optical lenses. In the experiment, the measured focal length was in a good agreement to the theoretical deduction, and the relative error (RE) of which was below 1%. Both simulation and experimental results showed that LCOS could be used as lens to converge the plane wave, and replace the optical lens successfully.

  8. IN SITU ELLIPSOMETRY FOR SHOCK COMPRESSION MEASUREMENTS

    SciTech Connect

    Bakshi, L.; Eliezer, S.; Appelbaum, G.; Nissim, N.; Perelmutter, L.; Mond, M.

    2009-12-28

    Knowledge about the optical properties of materials at high pressure and high temperature is needed for EOS research. Ellipsometry measures the change in the polarization of a probe beam reflected from a surface. From the change in polarization, the real and imaginary parts of the time dependent complex index of refraction can be extracted. From the measured optical properties, fundamental physical properties of the material, such as emissivity, phase transitions, and electrical conductivity can be extracted. A dynamic ellipsometry measurement system with nanosecond resolution was built in order to measure all four stocks parameters. Gas gun was used to accelerate the impact flyer. Our experiments concentrated on the optical properties of 1020 steel targets with impact pressure range of 40-250 kbar. Although there are intrinsic difficulties with dynamic ellipsometric measurements, distinct changes were observed for 1020 steel under shock compression larger than 130 kbar, the alpha->epsilon phase transition.

  9. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

    PubMed Central

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J.; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N.; Daurer, Benedikt J.; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F.; Higashiura, Akifumi; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Reddy, Hemanth K.N.; Lan, Ti-Yen; Larsson, Daniel S.D.; Liu, Haiguang; Loh, N. Duane; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M. Marvin; Sellberg, Jonas A.; Sierra, Raymond G.; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A.; Westphal, Daniel; Wiedorn, Max O.; Williams, Garth J.; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-01-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here. PMID:27478984

  10. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source.

    PubMed

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N; Daurer, Benedikt J; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F; Higashiura, Akifumi; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Reddy, Hemanth K N; Lan, Ti-Yen; Larsson, Daniel S D; Liu, Haiguang; Loh, N Duane; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M Marvin; Sellberg, Jonas A; Sierra, Raymond G; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A; Westphal, Daniel; Wiedorn, Max O; Williams, Garth J; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-08-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.

  11. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

    PubMed Central

    Bergmair, Michael; Bruno, Giovanni; Cattelan, Denis; Cobet, Christoph; de Martino, Antonello; Fleischer, Karsten; Dohcevic-Mitrovic, Zorana; Esser, Norbert; Galliet, Melanie; Gajic, Rados; Hemzal, Dušan; Hingerl, Kurt; Humlicek, Josef; Ossikovski, Razvigor; Popovic, Zoran V.; Saxl, Ottilia

    2009-01-01

    This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures. PMID:21170135

  12. Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes.

    PubMed

    Moon, Yoon-Jong; Moon, Daeyoung; Jang, Jeonghwan; Na, Jin-Young; Song, Jung-Hwan; Seo, Min-Kyo; Kim, Sunghee; Bae, Dukkyu; Park, Eun Hyun; Park, Yongjo; Kim, Sun-Kyung; Yoon, Euijoon

    2016-05-11

    Two-dimensional high-index-contrast dielectric gratings exhibit unconventional transmission and reflection due to their morphologies. For light-emitting devices, these characteristics help guided modes defeat total internal reflections, thereby enhancing the outcoupling efficiency into an ambient medium. However, the outcoupling ability is typically impeded by the limited index contrast given by pattern media. Here, we report strong-diffraction, high-index-contrast cavity engineered substrates (CESs) in which hexagonally arranged hemispherical air cavities are covered with a 80 nm thick crystallized alumina shell. Wavelength-resolved diffraction measurements and Fourier analysis on GaN-grown CESs reveal that the high-index-contrast air/alumina core/shell patterns lead to dramatic excitation of the low-order diffraction modes. Large-area (1075 × 750 μm(2)) blue-emitting InGaN/GaN light-emitting diodes (LEDs) fabricated on a 3 μm pitch CES exhibit ∼39% enhancement in the optical power compared to state-of-the-art, patterned-sapphire-substrate LEDs, while preserving all of the electrical metrics that are relevant to LED devices. Full-vectorial simulations quantitatively demonstrate the enhanced optical power of CES LEDs and show a progressive increase in the extraction efficiency as the air cavity volume is expanded. This trend in light extraction is observed for both lateral- and flip-chip-geometry LEDs. Measurements of far-field profiles indicate a substantial beaming effect for CES LEDs, despite their few-micron-pitch pattern. Near-to-far-field transformation simulations and polarization analysis demonstrate that the improved extraction efficiency of CES LEDs is ascribed to the increase in emissions via the top escape route and to the extraction of transverse-magnetic polarized light.

  13. Reverse color sequence in the diffraction of white light by the wing of the male butterfly Pierella luna (Nymphalidae: Satyrinae).

    PubMed

    Vigneron, Jean Pol; Simonis, Priscilla; Aiello, Annette; Bay, Annick; Windsor, Donald M; Colomer, Jean-François; Rassart, Marie

    2010-08-01

    The butterfly Pierella luna (Nymphalidae) shows an intriguing rainbow iridescence effect: the forewings of the male, when illuminated along the axis from the body to the wing tip, decompose a white light beam as a diffraction grating would do. Violet light, however, emerges along a grazing angle, near the wing surface, while the other colors, from blue to red, exit respectively at angles progressively closer to the direction perpendicular to the wing plane. This sequence is the reverse of the usual decomposition of light by a grating with a periodicity parallel to the wing surface. It is shown that this effect is produced by a macroscopic deformation of the entire scale, which curls in such a way that it forms a "vertical" grating, perpendicular to the wing surface, and functions in transmission instead of reflection.

  14. Tunable diffraction grating using ultraviolet-light-induced spatial phase modulation in dual-frequency liquid crystal

    SciTech Connect

    Lin, P.-T.; Liang Xiao; Ren Hongwen; Wu, S.-T.

    2004-08-16

    An electrically tunable diffraction phase grating using ultraviolet (UV)-light-induced spatial dielectric modulation of a dual-frequency liquid crystal (DFLC) cell is demonstrated. A photomask with transparent and opaque stripes was used for fabricating the grating. In the UV-exposed stripes, the negative dielectric anisotropy ({delta}{epsilon}) tolane compound of the DFLC mixture is partially polymerized resulting in a decreased threshold voltage as compared to that of the unexposed region. Upon applying a constant voltage, the phase difference between the adjacent pixels is produced. The first-order diffraction efficiency reaches {approx}60% which agrees well with the simulation results. Due to the dual-frequency addressing at 30 V{sub rms}, the response time of the DFLC phase grating was measured to be {approx}1 ms at room temperature.

  15. Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression.

    PubMed

    Liang, Jinyang; Wu, Sih-Ying; Fatemi, Fredrik K; Becker, Michael F

    2012-06-01

    Phase compression is used to suppress the on-axis zero-order diffracted (ZOD) beam from a pixelated phase-only spatial light modulator (SLM) by a simple modification to the computer generated hologram (CGH) loaded onto the SLM. After CGH design, the phase of each SLM element is identically compressed by multiplying by a constant scale factor and rotated on the complex unit-circle to produce a cancellation beam that destructively interferes with the ZOD beam. Experiments achieved a factor of 3 reduction of the ZOD beam using two different liquid-crystal SLMs. Numerical simulation analyzed the reconstructed image quality and diffraction efficiency versus degree of phase compression and showed that phase compression resulted in little image degradation or power loss.

  16. Mueller matrix imaging ellipsometry for nanostructure metrology.

    PubMed

    Liu, Shiyuan; Du, Weichao; Chen, Xiuguo; Jiang, Hao; Zhang, Chuanwei

    2015-06-29

    In order to achieve effective process control, fast, inexpensive, nondestructive and reliable nanometer scale feature measurements are extremely useful in high-volume nanomanufacturing. Among the possible techniques, optical scatterometry is relatively ideal due to its high throughput, low cost, and minimal sample damage. However, this technique is inherently limited by the illumination spot size of the instrument and the low efficiency in construction of a map of the sample over a wide area. Aiming at these issues, we introduce conventional imaging techniques to optical scatterometry and combine them with Mueller matrix ellipsometry based scatterometry, which is expected to be a powerful tool for the measurement of nanostructures in future high-volume nanomanufacturing, and propose to apply Mueller matrix imaging ellipsometry (MMIE) for nanostructure metrology. Two kinds of nanostructures were measured using an in-house developed Mueller matrix imaging ellipsometer in this work. The experimental results demonstrate that we can achieve Mueller matrix measurement and analysis for nanostructures with pixel-sized illumination spots by using MMIE. We can also efficiently construct parameter maps of the nanostructures over a wide area with pixel-sized lateral resolution by performing parallel ellipsometric analysis for all the pixels of interest.

  17. Application of diffraction tomography theory to determine size and shape of spheroidal particles from light scattering

    NASA Astrophysics Data System (ADS)

    Ding, Chizhu; Yang, Kecheng; Li, Wei; Guo, Wenping; Zhang, Xiaohui; Xia, Min

    2014-10-01

    Discerning the geometry of spheroidal scatterers of micron order is an important topic in identifying marine microbes. Optical diffraction tomography theory indicates that under the first-order Born approximation for weak scattering, scattering amplitude in the far zone and scattering potential of the scatterer have a Fourier relationship. In this paper, we describe a method based on diffraction tomography theory and determine the size and the shape of spheroidal scatterers by reconstructing the distribution of scattering potential from angular resolved scattered field. As a demonstration of this method, the scattering from spheroidal particles with equal-volume-sphere radii of 0.5429, 1.00, and 2.00 μm and an aspect ratio that varies from 0.4 to 1.5 was modeled by using T-matrix theory and used as test data. Simulation results show that in the case of low contrast, size and shape determination can be achieved with sub-wavelength precision.

  18. Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light

    SciTech Connect

    Adachi, Hiroto; Akahoshi, Shin; Miyakawa, Kenji

    2007-06-15

    We investigate arrays and rotation of spherical microparticles trapped by focusing a circularly polarized Gaussian beam just above the top coverslip-water interface. Particles are trapped in various patterns due to a Fresnel diffraction, such as rings and close-packed structures. We find that rings of particles orbit around the beam axis, whereas close-packed arrays spin in the opposite sense on the beam axis. The sense of the orbiting, as well as that of the spinning, is determined by the input circular polarization handedness. The results are interpreted on the assumption that the spin angular momentum carried by a circularly polarized beam is converted into the orbital angular momentum in the optical process by which the focused Gaussian beam's shape is transformed due to diffraction.

  19. The photoelectric effect and study of the diffraction of light: Two new experiments in UNILabs virtual and remote laboratories network

    NASA Astrophysics Data System (ADS)

    Pedro Sánchez, Juan; Sáenz, Jacobo; de la Torre, Luis; Carreras, Carmen; Yuste, Manuel; Heradio, Rubén; Dormido, Sebastián

    2016-05-01

    This work describes two experiments: "study of the diffraction of light: Fraunhofer approximation" and "the photoelectric effect". Both of them count with a virtual, simulated, version of the experiment as well as with a real one which can be operated remotely. The two previous virtual and remote labs (built using Easy Java(script) Simulations) are integrated in UNILabs, a network of online interactive laboratories based on the free Learning Management System Moodle. In this web environment, students can find not only the virtual and remote labs but also manuals with related theory, the user interface description for each application, and so on.

  20. Temperature dependent x-ray diffraction study of lightly doped Na{sub x}WO{sub 3}

    SciTech Connect

    Paul, Sanhita; Mukherjee, G. D.; Ghosh, Anirudha; Raj, Satyabrata; Oishi, S.

    2011-03-21

    Temperature dependent x-ray diffraction studies have been carried out on nonstoichiometric lightly doped sodium tungsten bronze (Na{sub x}WO{sub 3} for x=0.025). The investigation reveals a structural modification around 230 K. Although the high and low temperature phases are monoclinic but at low temperature the corner sharing WO{sub 6} octahedra get significantly distorted due to displacement of tungsten and oxygen atoms from its mean position. This structural modification induces polaron formation in Na{sub 0.025}WO{sub 3} below 230 K.

  1. Optical properties of InN studied by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Chunya, Ye; Wei, Lin; Jin, Zhou; Shuping, Li; Li, Chen; Heng, Li; Xiaoxuan, Wu; Songqing, Liu; Junyong, Kang

    2016-10-01

    With recently developed InN epitaxy via a controlling In bilayer, spectroscopic ellipsometry (SE) measurements had been carried out on the grown InN and the measured ellipsometric spectra were fitted with the Delta Psi2 software by using a suitable model and the dispersion rule. The thickness was measured by a scanning electron microscope (SEM). Insight into the film quality of InN and the lattice constant were gained by X-ray diffraction (XRD). By fitting the SE, the thickness of the InN film is consistent with that obtained by SEM cross-sectional thickness measurement. The optical bandgap of InN was put forward to be 1.05 eV, which conforms to the experimental results measured by the absorption spectrum and cathodoluminescence (CL). The refractive index and the extinction coefficient of interest were represented for InN, which is useful to design optoelectronic devices. Project supported by the State Key Development Program for Basic Research of China (No. 2012CB619301), the National High Technology Research and Development Program of China (No. 2014AA032608), the National Natural Science Foundation of China (Nos. 11204254, 11404271), and the Fundamental Research Funds for the Central Universities (Nos. 2012121014, 20720150027).

  2. Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays.

    PubMed

    Lu, Zhengang; Wang, Heyan; Tan, Jiubin; Ma, Limin; Lin, Shen

    2016-05-01

    We provide theoretical and experimental evidence that introducing metallic rings and sub-rings in mesh unit cells significantly decreases the high-order diffraction energy. Moreover, rotating the sub-rings results in increased uniformity in the diffraction distribution without affecting the transmittance. Experiments show that the triangular ring mesh with rotated sub-rings exhibits a normalized visible transmittance greater than 95% as well as an ultra-uniform diffraction pattern of stray light, whose maximal normalized high-order diffraction energy is lower than 0.0167%. This kind of metallic mesh will be favorable in transparent electromagnetic interference shielding devices and touch screens.

  3. Characterization on Smart Optics Using Ellipsometry

    NASA Technical Reports Server (NTRS)

    Song, Kyo D.

    2002-01-01

    Recently, NASA Langley Research Center developed a smart active optical concept to filter narrow band pass or to control optical intensity. To characterize developed smart optics materials, we have measured thickness and reflection properties of the materials using a WVASE32 ellipsometry. This project allowed us to: (1) prepare the smart optical materials for measurement of thickness and optical properties at NASA Langley Research Center; (2) measure thickness and optical properties of the smart optical materials; (3) evaluate the measured properties in terms of applications for narrow band-pass filters. The outcomes of this research provide optical properties and physical properties of the smart optics on a selected spectral range. The applications of this development were used for field-controlled spectral smart filters.

  4. Optimization of Light-Diffracting Photonic-Crystals for High Extraction Efficiency LEDs

    NASA Astrophysics Data System (ADS)

    David, Aurélien; Benisty, Henri; Weisbuch, Claude

    2007-06-01

    Photonic-crystal (PhC)-assisted light extraction is a promising method for ultrahigh efficiency, planar light-emitting diodes (LEDs). However, modeling of such structures is challenging due to the variety of their parameters and the heavy computational burden they represent. We present a thorough theoretical discussion of the optimization of PhC LEDs, which relies both on approximate treatments and on rigorous 3-D calculations. Two material systems (GaAs and GaN) are investigated, leading to quite different optimal regimes. Notably, it appears that besides the properties of the 2-D PhC itself, design of the vertical structure plays a major role in optimization.

  5. Diffraction-Enhanced Computed Tomographic Imaging of Growing Piglet Joints by Using a Synchrotron Light Source

    PubMed Central

    Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M

    2015-01-01

    The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464

  6. OPTICAL WAVEPACKETS (OPTICAL BULLETS): A NEW DIFFRACTION FREE FORM OF LIGHT TRAVEL

    SciTech Connect

    D. FUNK; J. NICHOLSON; ET AL

    1999-09-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We conducted studies of the propagation of self-confined packets of light or ''Optical Bullets'' through air. These packets are self-forming and require no active optics. At the present time, theoretical explanations provide an incomplete description of this process. Generation of these pulses requires a light source of sufficient energy and with a short enough pulse-width that the intensity exceeds a critical wavelength dependent value. We used a Ti:Sapphire based system to generate the pulses and we observed pulse-splitting and chirp-dependent control of the formation of these filaments. In addition, we developed a novel algorithm for extracting the phase and electric field of these pulses using Frequency Resolved Optical Gating coupled to genetic algorithms for pulse retrieval.

  7. Controllable light diffraction in woodpile photonic crystals filled with liquid crystal

    SciTech Connect

    Ho, Chih-Hua; Zeng, Hao; Wiersma, Diederik S.; Cheng, Yu-Chieh; Maigyte, Lina; Trull, Jose; Cojocaru, Crina; Staliunas, Kestutis

    2015-01-12

    An approach to switching between different patterns of light beams transmitted through the woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern transmitted through the photonic structure. The transmission profiles in the nematic phase also show polarization sensibility due to refractive index dependence on the field polarization. The experimental results are consistent with a numerical calculation by Finite Difference Time Domain method.

  8. Light

    NASA Astrophysics Data System (ADS)

    Vernon, C. G.

    2016-09-01

    Preface; 1. Historical; 2. Waves and wave-motion; 3. The behaviour of ripples; 4. The behaviour of light; 5. Refraction through glass blocks and prisms; 6. The imprinting of curvatures; 7. Simple mathematical treatment; 8. More advanced mathematical treatment; 9. The velocity of light; 10. The spectrum and colour; 11. Geometrical optics; 12. The eye and optical instruments; 13. Sources of light; 14. Interference, diffraction and polarisation; 15. Suggestions for class experiments; Index.

  9. Hybrid refractive/diffractive optical system design for light and compact uncooled longwave infrared imager

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Bai, Yu; Luo, Jianjun

    2012-10-01

    Compares with traditional optics,the difractive optical element(DOE) has unique property of minus dispersion.The special state can be used in the optical system to improve performance,lighten weight and reduce volume effectively.In the paper,an infrared optical system with DOE for LWIR thermal imager is proposed.The primary optical parameters of thermal imager are wavelength range 8.0- 12.0μm,effective focal length (EFL) 150 mm,f/numbe 1.0 and field of view 8.58 degrees.The system uses uncooled infrared detector with 320×240 pixels and 45μm pixel size. The f/number matches the sensitivity range of detector array. The infrared optical system is designed by CODE-V optical design software.It is consisted of two lens,the materials of the two lenses are Germanium.The DOE is fabricated on the convex of the first lens and it can be fabricated by diamond turning technology.The imaging quafity of the optical system approached to diffraction limit.The value of modulation transfer function (MTF) at Nyquist frequency(11lp/mm) is great than 0.78.

  10. Development of a Compact Optical-MEMS Scanner with Integrated VCSEL Light Source and Diffractive Optics

    SciTech Connect

    Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven; Smith, James H.; Warren, Mial; Sweatt, William; Blum-Spahn, Olga; Wendt, Joel R.; Asbill, Randy

    1999-06-30

    In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOEs) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysilicon gold-coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 500 {micro}m x 1000 {micro}m shuttle is extremely low, with a maximum deflection of only 0.18{micro}m over an 800 {micro}m span for an unmetallized case and a deflection of 0.56{micro}m for the metallized case. A conservative estimate for the scan range is {approximately}{+-}4{degree}, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.

  11. Tomographic incoherent phase imaging, a diffraction tomography alternative for any white-light microscope

    NASA Astrophysics Data System (ADS)

    Bon, Pierre; Aknoun, Shérazade; Savatier, Julien; Wattellier, Benoit; Monneret, Serge

    2013-02-01

    In this paper, we discuss the possibility of making tomographic reconstruction of the refractive index of a microscopic sample using a quadriwave lateral shearing interferometer, under incoherent illumination. A Z-stack is performed and the acquired incoherent elecromagnetic fields are deconvoluted before to retrieve in a quantitative manner the refractive index. The results are presented on polystyrene beads and can easily be expanded to biological samples. This technique is suitable to any white-light microscope equipped with nanometric Z-stack module.

  12. Improvement of diffraction efficiency of three-dimensional magneto-optic spatial light modulator with magnetophotonic crystal

    SciTech Connect

    Nakamura, K.; Takagi, H. Lim, P. B.; Inoue, M.; Goto, Taichi; Horimai, H.; Yoshikawa, H.; Bove, V. M.

    2016-01-11

    We have developed three-dimensional magneto-optic spatial light modulators (3D-MOSLMs) that use magnetic domains as submicron scale pixels to represent holograms. Our display system uses a submicron-scale magnetic pixel array on an amorphous TbFe film to create a wide viewing angle hologram. However, in previous work the reconstructed images had a low intensity and a low optical contrast; brightness of the reconstructed image was 4.4 × 10{sup −2 }cd/m{sup 2} with 532 nm illumination light at 10.8 mW/cm{sup 2}, while display standard ISO13406 recommends 100 cd/m{sup 2} or more. In this paper, we describe our development of a 3D-MOSLM composed of an artificial magnetic lattice structure of magnetophotonic crystals (MPCs). The MPCs enhance the diffraction efficiency of reconstructed 3D images and reduce the power consumption for controlling the magnetic pixels by a light localization effect. We demonstrate reconstructed 3D images using the MPC and show significant brightness improvement.

  13. Ultrafast dynamic ellipsometry and spectroscopies of laser shocked materials

    SciTech Connect

    Mcgrane, Shawn David; Bolme, Cindy B; Whitley, Von H; Moore, David S

    2010-01-01

    Ultrafast ellipsometry and transient absorption spectroscopies are used to measure material dynamics under extreme conditions of temperature, pressure, and volumetric compression induced by shock wave loading with a chirped, spectrally clipped shock drive pulse.

  14. Time dependent diffraction ring patterns in bromothymol blue dye doped PMMA film under irradiation with continuous wave green laser light

    NASA Astrophysics Data System (ADS)

    Al-Saymari, F. A.; Badran, H. A.; Al-Ahmad, A. Y.; Emshary, C. A.

    2013-11-01

    Diffraction ring patterns are generated in bromothymol blue (BTB) doped poly methyl methacrylate (PMMA) film with the aid of visible light from a solid state laser of Gaussian distribution. Temporal evolution of patterns i.e. the number of rings increases as time elapse is observed. Based on the experimental findings, change in refractive index ( ∆n) effective nonlinear refractive index ( n 2) and variation of refractive index with temperature ( dn/ dT) have been obtained as 0.0025, 1.45 × 10-6 cm2 W-1, 1.69 × 10-5 K-1 respectively. Obtained results suggest the possibility of using BTB doped PMMA in data storage, recording and holography.

  15. Implementation of single-shot ellipsometry on gas gun experiments

    NASA Astrophysics Data System (ADS)

    Grant, Sean; Ao, Tommy; Bernstein, Aaron; Ditmire, Todd; Dolan, Dan; Lin, Jung-Fu; Seagle, Chris; Davis, Jean-Paul

    2017-01-01

    We have built and implemented a time-resolved ellipsometry diagnostic for dynamic material properties experiments at Sandia National Laboratories. This diagnostic measures the complex dielectric value of a sample experiencing dynamic compression, with a time resolution of a few nanoseconds. We show and discuss the dynamic ellipsometry measurements taken from shock loading experiments on a gas gun. This work is relevant to geophysical materials at high pressure-temperature conditions.

  16. Coupling the normal incident light into waveguide modes of DBR mirrors via a diffraction grating

    PubMed Central

    Yang, Wenhong; Sun, Shang; Zhang, Chen; Li, Jiankai; Duan, Zonghui; Song, Qinghai; Xiao, Shumin

    2016-01-01

    Here we numerically and experimentally demonstrate the conversion of normally incident light into the guiding modes of distributed Bragg reflector (DBRs) mirror. By fabricating a gold grating onto a 7.5 pairs TiO2/SiO2 DBR mirror, a series of asymmetrical resonances have been formed at the bandgap range of the DBR mirror. The detailed numerical calculations show that these Fano resonances are attributed to the coupling of incident waves into guiding modes of the DBR mirror. Compared with the other resonances, this coupling mechanism can be simply realized and it has also been revealed to be quite robust to the environmental changes, making the conversion between propagating waves and guiding waves to be practically interesting for many applications. PMID:27958336

  17. Coupling the normal incident light into waveguide modes of DBR mirrors via a diffraction grating

    NASA Astrophysics Data System (ADS)

    Yang, Wenhong; Sun, Shang; Zhang, Chen; Li, Jiankai; Duan, Zonghui; Song, Qinghai; Xiao, Shumin

    2016-12-01

    Here we numerically and experimentally demonstrate the conversion of normally incident light into the guiding modes of distributed Bragg reflector (DBRs) mirror. By fabricating a gold grating onto a 7.5 pairs TiO2/SiO2 DBR mirror, a series of asymmetrical resonances have been formed at the bandgap range of the DBR mirror. The detailed numerical calculations show that these Fano resonances are attributed to the coupling of incident waves into guiding modes of the DBR mirror. Compared with the other resonances, this coupling mechanism can be simply realized and it has also been revealed to be quite robust to the environmental changes, making the conversion between propagating waves and guiding waves to be practically interesting for many applications.

  18. Beyond crystallography: Diffractive imaging using coherent x-ray light sources

    SciTech Connect

    Miao, J.; Ishikawa, T.; Robinson, I. K.; Murnane, M. M.

    2015-04-30

    X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their three-dimensional structures are not accessible by traditional x-ray crystallography. Overcoming this hurdle has required the development of new coherent imaging methods to harness new coherent x-ray light sources. Here we review the revolutionary advances that are transforming x-ray sources and imaging in the 21st century.

  19. Creation of vector beams from a polarization diffraction grating using a programmable liquid crystal spatial light modulator and a q-plate

    NASA Astrophysics Data System (ADS)

    Badham, Katherine Emily

    This thesis presents the ability of complete polarization control of light to create a polarization diffraction grating (PDG). This system has the ability to create diffracted light with each order having a separate high-order polarization state in one location on the optical axis. First, an external Excel program is used to create a grating phase profile from userspecified target diffraction orders. High-order vector beams in this PDG are created using a combination of two devices---a liquid crystal spatial light modulator (LC-SLM) manufactured by Seiko Epson, and a tunable q -plate from Citizen Holdings Co. The transmissive SLM is positioned in an optical setup with a reflective architecture allowing control over both the horizontal and vertical components of the laser beam. The SLM has its LC director oriented vertically only affecting the vertically polarized state, however, the optical setup allows modulation of both vertical and horizontal components by the use of a quarter-wave plate (QWP) and a mirror to rotate the polarizations 90 degrees. Each half of the SLM is encoded with an anisotropic phase-only diffraction grating which are superimposed to create a select number of orders with the desired polarization states and equally distributed intensity. The technique of polarimetry is used to confirm the polarization state of each diffraction order. The q-plate is an inhomogeneous birefringent waveplate which has the ability to convert zero-order vector beams into first-order vector beams. The physical placement of this device into the system converts the orders with zero-order polarization states to first-order polarization states. The light vector patterns of each diffraction order confirm which first-order polarization state of is produced. A specially made PDG sextuplicator is encoded onto the SLM to generate six diffraction orders with separate states of polarization.

  20. Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating.

    PubMed

    Fuentes, José Luis Martínez; Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo

    2016-06-27

    An auto-referenced interferometric method for calibrating phase modulation of parallel-aligned liquid crystal (PAL) spatial light modulators (SLM) is described. The method is experimentally straightforward, robust, and requires solely of a collimated beam, with no need of additional optics. This method uses the SLM itself to create a tilted plane wave and a reference wave which mutually interfere. These waves are codified by means of a binary diffraction grating and a uniformly distributed gray level area (piston) into the SLM surface. Phase shift for each gray level addressed to the piston section can then be evaluated. Phase modulation on the SLM can also be retrieved with the proposed method over spatially resolved portions of the surface. Phase information obtained with this novel method is compared to other well established calibration procedures, requiring extra elements and more elaborated optical set-ups. The results show a good agreement with previous methods. The advantages of the new method include high mechanical stability, faster performance, and a significantly easier practical implementation.

  1. Spectroscopic ellipsometry as a sensitive monitor of materials contamination

    NASA Technical Reports Server (NTRS)

    Hale, Jeffrey S.; Hilfiker, James N.; Spady, Blaine; Synowicki, R.; Woollam, John A.

    1995-01-01

    Spectroscopic ellipsometry is demonstrated to be extremely sensitive to contamination layers in the thickness range from 0.1 nm to 10 microns. In the present experiments we deposit either a thin lubricating oil (WD-40) or mineral oil continuously onto Ir, Cu, Al, Au, and V substrates from a bubbler, and monitor its thickness growth from sub-nanometer to tens of nanometers as a function of time. Re-evaporation of contaminant oils is also monitored in real-time by ellipsometry.

  2. Optical characteristics of pulsed laser deposited Ge-Sb-Te thin films studied by spectroscopic ellipsometry

    SciTech Connect

    Nemec, P.; Prikryl, J.; Frumar, M.; Nazabal, V.

    2011-04-01

    Pulsed laser deposition technique was used for the fabrication of (GeTe){sub 1-x}(Sb{sub 2}Te{sub 3}){sub x} (x = 0, 0.33, 0.50, 0.66, and 1) amorphous thin films. Scanning electron microscopy with energy-dispersive x-ray analysis, x-ray diffraction, optical reflectivity, and sheet resistance temperature dependences as well as variable angle spectroscopic ellipsometry measurements were used to characterize as-deposited (amorphous) and annealed (rocksaltlike) layers. In order to extract optical functions of the films, the Cody-Lorentz model was applied for the analysis of ellipsometric data. Fitted sets of Cody-Lorentz model parameters are discussed in relation with chemical composition and the structure of the layers. The GeTe component content was found to be responsible for the huge optical functions and thickness changes upon amorphous-to-fcc phase transition.

  3. Microstructural Changes in MBE Growth of Low-Temperature Gallium Arsenide Observed by in Situ Ellipsometry

    NASA Astrophysics Data System (ADS)

    Eyink, Kurt Gerard

    1995-01-01

    An ellipsometer system has been developed for in-situ monitoring of III-V semiconductor growth using molecular beam epitaxy. Included as part of this work, a software package was developed for the calibration, acquisition, display and modeling of ellipsometry data. This calibration software addresses the arbitrary orientations of the analyzer and polarizer components that are present in the mounting of the ellipsometer on the MBE system. In addition, this package calculated the trajectory followed during the growth of a homogeneous film. The materials used in the modeling are restricted to either an isotropic material or a uniaxial material with the optic axis oriented normal to the surface. External to the real-time software package, a general scheme for the analysis of ellipsometric data was developed using MATLAB. The ellipsometer described above was utilized to reproducibly grow and monitor the growth of low temperature (LT) GaAs films in-situ. In particular the capping of GaAs(001) with As was monitored and a method was developed which could be used to characterize the growth temperature of GaAs in the vicinity of 190^circ C. This method utilizes the temperature for the formation of a thin film of As on GaAs(001). Using this technique to set the growth conditions, LT-GaAs films were grown and monitored in real-time with the ellipsometer and characterized ex-situ with X-ray diffraction (XRD) and transmission electron microscopy (TEM.) The ellipsometry data allowed for the observation of the formation of the epitaxial LT-GaAs film and a subsequent region of changing dielectric properties. These results are correlated with observation in double crystal X-ray diffraction (DXRD) and TEM analysis, showing that the refractive index can be used to indicate the composition of the LT-GaAs films and that the ellipsometer can observe the breakdown in the crystallinity of the LT-GaAs layers.

  4. Photon diffraction

    NASA Astrophysics Data System (ADS)

    Hodge, John

    2009-11-01

    In current light models, a particle-like model of light is inconsistent with diffraction observations. A model of light is proposed wherein photon inferences are combined with the cosmological scalar potential model (SPM). That the photon is a surface with zero surface area in the travel direction is inferred from the Michelson-Morley experiment. That the photons in slits are mathematically treated as a linear antenna array (LAA) is inferred from the comparison of the transmission grating interference pattern and the single slit diffraction pattern. That photons induce a LAA wave into the plenum is inferred from the fractal model. Similarly, the component of the photon (the hod) is treated as a single antenna radiating a potential wave into the plenum. That photons are guided by action on the surface of the hod is inferred from the SPM. The plenum potential waves are a real field (not complex) that forms valleys, consistent with the pilot waves of the Bohm interpretation of quantum mechanics. Therefore, the Afshar experiment result is explained, supports Bohm, and falsifies Copenhagen. The papers may be viewed at http://web.citcom.net/˜scjh/.

  5. The optical characterization of organometallic complex thin films by spectroscopic ellipsometry and photovoltaic diode application

    SciTech Connect

    Özaydın, C.; Güllü, Ö.; Pakma, O.; Ilhan, S.; Akkılıç, K.

    2016-05-15

    Highlights: • Optical properties and thickness of the A novel organometallic complex (OMC) film were investigated by spectroscopic ellipsometry (SE). • Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated • This paper presents the I–V analysis of Au/OMC/n-Si MIS diode. • Current–voltage and photovoltaic properties of the diode were investigated. - Abstract: In this work, organometallic complex (OMC) films have been deposited onto glass or silicon substrates by spin coating technique and their photovoltaic application potential has been investigated. Optical properties and thickness of the film have been investigated by spectroscopic ellipsometry (SE). Also, transmittance spectrum has been taken by UV/vis spectrophotometer. The optical method has been used to determine the band gap value of the films. Also, Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated. Current–voltage and photovoltaic properties of the structure were investigated. The ideality factor (n) and barrier height (Φ{sub b}) values of the diode were found to be 2.89 and 0.79 eV, respectively. The device shows photovoltaic behavior with a maximum open-circuit voltage of 396 mV and a short circuit current of 33.8 μA under 300 W light.

  6. Fine characterization of ITO layers by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Defranoux, Christophe; Piel, Jean-Philippe; Stehle, Jean-Louis P.; Suzuki, Y.

    1996-08-01

    Indium tin oxide films (ITO) are characterized precisely by spectroscopic ellipsometry which determines not only the thickness of the layers but also the optical indices in a large spectral range. The quality of the ITO films is checked by the transparency of the layers in the visible range 0.4 to 0.6 micrometers . Indeed, target degradation is detected by the occurrence of an absorption band in this region. The electrical conductivity of the layer can also be deduced by the Drude model applied to the absorption in the infrared region. Moreover, spectroscopic ellipsometry can give all these information on all the surface of the panels, checking at the same time the homogeneity and the stability of the deposition process. Different experimental examples will be presented and discussed.

  7. Diffraction-Based Optical Switch

    NASA Technical Reports Server (NTRS)

    Sperno, Stevan M. (Inventor); Fuhr, Peter L. (Inventor); Schipper, John F. (Inventor)

    2005-01-01

    Method and system for controllably redirecting a light beam, having a central wavelength lambda, from a first light-receiving site to a second light-receiving site. A diffraction grating is attached to or part of a piezoelectric substrate, which is connected to one or two controllable voltage difference sources. When a substrate voltage difference is changed and the diffraction grating length in each of one or two directions is thereby changed, at least one of the diffraction angle, the diffraction order and the central wavelength is controllably changed. A diffracted light beam component, having a given wavelength, diffraction angle and diffraction order, that is initially received at a first light receiving site (e.g., a detector or optical fiber) is thereby controllably shifted or altered and can be received at a second light receiving site. A polynomially stepped, chirped grating is used in one embodiment. In another embodiment, an incident light beam, having at least one of first and second wavelengths, lambda1 and lambda2, is received and diffracted at a first diffraction grating to provide a first diffracted beam. The first diffracted beam is received and diffracted at a second diffraction grating to produce a second diffracted beam. The second diffracted beam is received at a light-sensitive transducer, having at least first and second spaced apart light detector elements that are positioned so that, when the incident light beam has wavelength lambda1 or lambda2 (lambda1 not equal to lambda2), the second diffracted beam is received at the first element or at the second element, respectively; change in a selected physical parameter at the second grating can also be sensed or measured. A sequence of spaced apart light detector elements can be positioned along a linear or curvilinear segment with equal or unequal spacing.

  8. New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers

    NASA Astrophysics Data System (ADS)

    Hoffmann, B.; Bashouti, M. Y.; Feichtner, T.; Mačković, M.; Dieker, C.; Salaheldin, A. M.; Richter, P.; Gordan, O. D.; Zahn, D. R. T.; Spiecker, E.; Christiansen, S.

    2016-02-01

    High-quality fabrication of plasmonic devices often relies on wet-chemically grown ultraflat, presumably single-crystalline gold flakes due to their superior materials properties. However, important details about their intrinsic structure and their optical properties are not well understood yet. In this study, we present a synthesis routine for large flakes with diameters of up to 70 μm and an in-depth investigation of their structural and optical properties. The flakes are precisely analyzed by transmission electron microscopy, electron backscatter diffraction and micro-ellipsometry. We found new evidence for the existence of twins extending parallel to the Au flake {111} surfaces which have been found to not interfere with the presented nanopatterning. Micro-Ellipsometry was carried out to determine the complex dielectric function and to compare it to previous measurements of bulk single crystalline gold. Finally, we used focused ion beam milling to prepare smooth crystalline layers and high-quality nanostructures with desired thickness down to 10 nm to demonstrate the outstanding properties of the flakes. Our findings support the plasmonics and nano optics community with a better understanding of this material which is ideally suited for superior plasmonic nanostructures.High-quality fabrication of plasmonic devices often relies on wet-chemically grown ultraflat, presumably single-crystalline gold flakes due to their superior materials properties. However, important details about their intrinsic structure and their optical properties are not well understood yet. In this study, we present a synthesis routine for large flakes with diameters of up to 70 μm and an in-depth investigation of their structural and optical properties. The flakes are precisely analyzed by transmission electron microscopy, electron backscatter diffraction and micro-ellipsometry. We found new evidence for the existence of twins extending parallel to the Au flake {111} surfaces which have

  9. Modeling of the diffraction efficiency and polarization sensitivity for a liquid crystal 2D spatial light modulator for reconfigurable beam steering.

    PubMed

    James, Richard; Fernández, F Aníbal; Day, Sally E; Komarcević, Milos; Crossland, William A

    2007-08-01

    A nematic liquid crystal spatial light modulator used as a phase-modulating device and operating in the reflective mode is analyzed using three-dimensional modeling. Two configurations, which differ in their electrode placement relative to a fixed quarter-wave plate, are considered across a range of steering directions, with the grating conformal and in some cases oblique to the pixel grid. For each steering direction the sensitivity of the diffraction orders to the polarization state of the incident wavefront is studied. Optimal alignment of the liquid crystal is suggested to reduce this sensitivity.

  10. Correlation between intensity fluctuations of light generated by scattering of Young’s diffractive electromagnetic waves by a quasi-homogeneous, anisotropic medium

    NASA Astrophysics Data System (ADS)

    Li, Jia; Chen, Feinan

    2016-11-01

    Based on the first-order Born approximation, formulas are derived for the correlation between intensity fluctuations (CIF) of light generated by a Young’s diffractive electromagnetic wave scattered by a spatially quasi-homogeneous (QH), anisotropic medium. It is shown that the CIF of the scattered field can be written as the summation of the Fourier transforms of the strengths and normalized correlation coefficients (NCCs) of the scattering potentials. The differences between our results and those obtained in the previous literature are discussed. Our results might be important in investigating the high-order intensity correlation of an electromagnetic wave scattered from a 3D anisotropic object.

  11. Mueller-matrix ellipsometry studies of optically active structures in scarab beetles

    NASA Astrophysics Data System (ADS)

    Järrendahl, K.; Landin, J.; Arwin, H.

    2010-06-01

    The complexity of multilayers, photonic crystals, metamaterials and other artificial materials has promoted the use of spectroscopic, variable angle, generalized and Mueller-matrix ellipsometry. Naturally occurring structures may show even higher complexity than artificial structures but with a more narrow range of constituent materials. Fascinating reflection properties result from intricate photonic structures in, for instance, the wing scales and cuticles of insects. Currently there is a large interest to explore such functional supramolecular architectures for exploitation in nanotechnology. In this study, Mueller-matrix spectroscopic ellipsometry is applied in the spectral range of 250 to 1000 nm to investigate optical response and structures of the cuticle of Scarab beetles of the Cetoniinae subfamily. The cuticle of Cetonia aurata (the rose chafer, la cétoine dorée) is green with a metallic appearance and reflects left-handed circular/elliptically polarized light. It has been suggested that the polarization of this metallic gloss is caused by a helical structure in the chitinous cuticle. We find that the polarization effect is limited to the narrow spectral range 470-550 nm whereas for shorter or longer wavelengths the reflection properties are similar to those from a near-dielectric material. Model calculations and parameterization of the nanostructure employing a heliocoidal structure are discussed. As a comparison the polarization effects from light reflected from two other beetles will be presented. Coptomia laevis has a similar appearance as Cetonia aurata but has very different polarization properties. The golden Plusiotis argentiola has very interesting properties showing both left and right-handed polarization depending on incidence angle and wavelength.

  12. Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries--the influence of diffraction and interference.

    PubMed

    Qin, Yuan; Michalowski, Andreas; Weber, Rudolf; Yang, Sen; Graf, Thomas; Ni, Xiaowu

    2012-11-19

    Ray-tracing is the commonly used technique to calculate the absorption of light in laser deep-penetration welding or drilling. Since new lasers with high brilliance enable small capillaries with high aspect ratios, diffraction might become important. To examine the applicability of the ray-tracing method, we studied the total absorptance and the absorbed intensity of polarized beams in several capillary geometries. The ray-tracing results are compared with more sophisticated simulations based on physical optics. The comparison shows that the simple ray-tracing is applicable to calculate the total absorptance in triangular grooves and in conical capillaries but not in rectangular grooves. To calculate the distribution of the absorbed intensity ray-tracing fails due to the neglected interference, diffraction, and the effects of beam propagation in the capillaries with sub-wavelength diameter. If diffraction is avoided e.g. with beams smaller than the entrance pupil of the capillary or with very shallow capillaries, the distribution of the absorbed intensity calculated by ray-tracing corresponds to the local average of the interference pattern found by physical optics.

  13. Diffraction-based optical correlator

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan M. (Inventor); Fuhr, Peter L. (Inventor); Schipper, John F. (Inventor)

    2005-01-01

    Method and system for wavelength-based processing of a light beam. A light beam, produced at a chemical or physical reaction site and having at least first and second wavelengths, ?1 and ?2, is received and diffracted at a first diffraction grating to provide first and second diffracted beams, which are received and analyzed in terms of wavelength and/or time at two spaced apart light detectors. In a second embodiment, light from first and second sources is diffracted and compared in terms of wavelength and/or time to determine if the two beams arise from the same source. In a third embodiment, a light beam is split and diffracted and passed through first and second environments to study differential effects. In a fourth embodiment, diffracted light beam components, having first and second wavelengths, are received sequentially at a reaction site to determine whether a specified reaction is promoted, based on order of receipt of the beams. In a fifth embodiment, a cylindrically shaped diffraction grating (uniform or chirped) is rotated and translated to provide a sequence of diffracted beams with different wavelengths. In a sixth embodiment, incident light, representing one or more symbols, is successively diffracted from first and second diffraction gratings and is received at different light detectors, depending upon the wavelengths present in the incident light.

  14. Reflective diffraction grating

    DOEpatents

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  15. Evaluation of the SEI using a multilayer spectroscopic ellipsometry model

    DOE PAGES

    Dufek, Eric J.

    2014-08-28

    A multilayer spectroscopic ellipsometry (SE) model has been developed to characterize SEI formation. The model, which consists of two Cauchy layers, is constructed with an inner layer meant to model primarily inorganic compounds adjacent to an electrode and an outer layer which mirrors polymeric, organic constituents on the exterior of the SEI. Comparison of 1:1 EC:EMC and 1:4 EC:EMC with 1.0 M LiPF₆ shows distinct differences in the two modeled layers. The data suggest that the thickness of both layers change over a wide potential range. These changes have been linked with other reports on the growth of the SEI.

  16. Annotated bibliography of ellipsometry and optical properties of solids

    NASA Astrophysics Data System (ADS)

    Christensen, T. M.

    1985-05-01

    This bibliography is a partial listing of articles on various aspects of ellipsometry and the optical properties of solids. Additional references can be found in the review articles listed in the first section. The comments about the articles represent the author's particular interest in the article and are by no means intended as complete summaries or even statements of the author's key point in the article. The lack of comments on many of the articles represents the author's inconsistent note-taking or the completeness of the author's title in describing the article. The papers are divided into 10 topical sections and are alphabetized within each section.

  17. Antifreeze glycopeptide adsorption on single crystal ice surfaces using ellipsometry

    PubMed Central

    Wilson, P. W.; Beaglehole, D.; DeVries, A. L.

    1993-01-01

    Antarctic fishes synthesise antifreeze proteins which can effectively inhibit the growth of ice crystals. The mechanism relies on adsorption of these proteins to the ice surface. Ellipsometry has been used to quantify glycopeptide antifreeze adsorption to the basal and prism faces of single ice crystals. The rate of accumulation was determined as a function of time and at concentrations between 0.0005 and 1.2 mg/ml. Estimates of packing density at saturation coverage have been made for the basal and prism faces. PMID:19431902

  18. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    SciTech Connect

    Bolme, Cynthia A; Mc Grane, Shawn D; Dang, Nhan C; Whitley, Von H; Moore, David S.

    2011-01-20

    Ultrafast dynamic ellipsometry is used to measure the material motion and changes in the optical refractive index of laser shock compressed materials. This diagnostic has shown us that the ultrafast laser driven shocks are the same as shocks on longer timescales and larger length scales. We have added spectroscopic diagnostics of infrared absorption, ultra-violet - visible transient absorption, and femtosecond stimulated Raman scattering to begin probing the initiation chemistry that occurs in shock reactive materials. We have also used the femtosecond stimulated Raman scattering to measure the vibrational temperature of materials using the Stokes gain to anti-Stokes loss ratio.

  19. Spectral ellipsometry studying of iron's optical and electronic properties

    NASA Astrophysics Data System (ADS)

    Chernukha, Yevheniia; Stashchuk, Vasyl S.; Polianska, Olena; Oshtuk, Olexsandr

    2014-05-01

    Fe's optical and electronic properties were investigated at room temperature in different structural states. The sample's surface was explored in wide spectral range λ = 0,23-17,0 μm (E = 4,96 - 0,07 еV ) by the Beatty's spectral ellipsometry method. While an experiment was carried out ellipsometry parameters Δ and ψ were measure near the principal angle of incidence. The refraction index R , permittivity Ɛ and optical conductivity σ( hν ) , that is proportional to the interband density of electronic states, were calculated using these parameters. Fe's optical conductivities in liquid, amorphous and crystalline states were compared in this work. The optical conductivity was calculated using the published data of the iron's density of electronic states in crystalline, amorphous and liquid states for the comparison of the experimental and theoretical results. It is shown that, at structural transformations "amorphous, liquid state- crystalline state", the optical properties of metallic iron are determined, in the first turn, by the nearest neighborhood, and the electronic structure is not subjected to significant modifications.

  20. Critical dimension uniformity control with combined ellipsometry and reflectometry

    NASA Astrophysics Data System (ADS)

    Opsal, Jon; Leng, Jingmin; Cao, Xuelong

    2005-05-01

    In the 90nm node and beyond, Critical Dimension Uniformity (CDU) control is essential for today's high performance IC devices. The desired control of CDU is just under 2nm (3 sigma) across a 300mm wafer with 577 die. In this study we used an Opti-Probe 7341 RT/CD system that combines broadband (190-840 nm) spectroscopic ellipsometry (SE), spectroscopic reflectometry (BB), single wavelength (673 nm) beam profile reflectometry (BPR) and single wavelength (633nm) absolute ellipsometry (AE). All of the above technologies were used to characterize the optical dispersions of the individual films in the stack of interest, resist/barc/sion/poly/oxide/silicon. We then used these dispersion results and the SE and BB technologies to characterize the CDU of the patterned wafer. With the SE technology we measured CDU's in the range of 1.9-2.0 nm compared with BB measured CDU's in the range of 4-5 nm, both SE and BB wavelength were in the range of 240 nm-780 nm. However, if the wavelength range of SE and BB were extended to 190nm-840 nm, the CDU with SE stayed at the same level while that of BB reduced a factor of 2 to about 2.0-2.5 nm.

  1. Study of biological reaction in cancer cell with spectroscopic imaging ellipsometry

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Da; Hsu, Hao Yun; Khaleel, Mai Ibrahim; Chang, Yia-Chung; Wu, Chien-Hsun; Wu, Han-Chung

    2016-09-01

    We present experimental studies of live cancer cells via microscopic imaging ellipsometry (MIE). The Rotating Compensator Ellipsometry (RCE) is used for our measurements. Ellipsometry spectra with signals integrated over a 20μm×20μm area in visible range (450nm to 750nm) are obtained with the Optrel MULTISKOP system for both specular reflection and off-specular scattering. The microscopic ellipsometry (ME) images at a few fixed wavelengths within the same range were also analyzed. Dielectric constants for glass slide, culture fluid, and glass cover plate were firstly characterized by spectroscopic ellipsometry measurements, which can be used in the simulation for MIE measurements of cancer cells embedded in the culture fluid and sandwiched between a glass slide and cover plate. The measured ME spectra and images of cancer cells before and after medicine injection are measured and analyzed.

  2. Cryogenic coherent X-ray diffraction imaging of biological samples at SACLA: a correlative approach with cryo-electron and light microscopy.

    PubMed

    Takayama, Yuki; Yonekura, Koji

    2016-03-01

    Coherent X-ray diffraction imaging at cryogenic temperature (cryo-CXDI) allows the analysis of internal structures of unstained, non-crystalline, whole biological samples in micrometre to sub-micrometre dimensions. Targets include cells and cell organelles. This approach involves preparing frozen-hydrated samples under controlled humidity, transferring the samples to a cryo-stage inside a vacuum chamber of a diffractometer, and then exposing the samples to coherent X-rays. Since 2012, cryo-coherent diffraction imaging (CDI) experiments have been carried out with the X-ray free-electron laser (XFEL) at the SPring-8 Ångstrom Compact free-electron LAser (SACLA) facility in Japan. Complementary use of cryo-electron microscopy and/or light microscopy is highly beneficial for both pre-checking samples and studying the integrity or nature of the sample. This article reports the authors' experience in cryo-XFEL-CDI of biological cells and organelles at SACLA, and describes an attempt towards reliable and higher-resolution reconstructions, including signal enhancement with strong scatterers and Patterson-search phasing.

  3. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers.

    PubMed

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2012-09-15

    In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power significantly. By combining two distributed Bragg reflector tapered diode lasers we achieve a 2.5-3.2 fold increase in power and a maximum of 3.9 W of diffraction-limited green light. At this power level, green diode laser systems have a high application potential, e.g., within the biomedical field. Our concept can be expanded combining multiple diode lasers to increase the power even further.

  4. Visual acuity and patient satisfaction at varied distances and lighting conditions after implantation of an aspheric diffractive multifocal one-piece intraocular lens

    PubMed Central

    Chang, Daniel H

    2016-01-01

    Purpose The aim of the study is to evaluate the visual acuity and patient satisfaction at varied distances under photopic and mesopic lighting conditions in patients bilaterally implanted with aspheric diffractive multifocal one-piece intraocular lenses. Methods In this retrospective–prospective study, 16 patients with a mean age of 66.2±9.2 years (range: 50–81 years) who had undergone bilateral phacoemulsification surgery with implantation of a Tecnis multifocal one-piece intraocular lens (ZMB00) were evaluated. Monocular and binocular uncorrected and distance-corrected visual acuities were measured at distance (20 ft), intermediate (70–80 cm), and near (35–40 cm) under photopic (85 cd/m2) and mesopic (3 cd/m2) lighting conditions and were compared using the paired t-test. All patients also completed a subjective questionnaire. Results At a mean follow-up of 9.5±3.9 months, distance, near, and intermediate visual acuity improved significantly from preoperative acuity. Under photopic and mesopic conditions, 93.8% and 62.5% of patients, respectively, had binocular uncorrected intermediate visual acuity of 20/40 or better, and 62.5% and 31.3% of patients had binocular uncorrected near visual acuity of 20/20 or better. All patients were satisfied with their overall vision without using glasses and/or contact lenses when compared with before surgery. A total of 87.5% of patients reported no glare and 68.8% of patients reported no halos around lights at night. Conclusion Tecnis multifocal one-piece intraocular lenses provide good distance, intermediate, and near visual acuity under photopic as well as mesopic lighting conditions. High levels of spectacle independence with low levels of photic phenomenon were achieved, resulting in excellent patient satisfaction. PMID:27536061

  5. Nucleation and growth of MgO atomic layer deposition: A real-time spectroscopic ellipsometry study

    SciTech Connect

    Wang, Han; Fu, Kan

    2013-11-15

    The atomic layer deposition (ALD) of MgO thin films from bis(cyclopentadienyl) magnesium and H{sub 2}O was studied using in-situ real-time spectroscopic ellipsometry (SE), ex-situ x-ray photoelectron spectroscopy, and grazing-incidence x-ray diffraction. It is found that the initial growth is not linear during the first ten cycles, and magnesium silicate forms spontaneously on the SiO{sub 2}/Si substrates at 250 °C. Submonolayer sensitivity of SE is demonstrated by the analysis of each half-cycle and self-limiting adsorption, revealing characteristic features of hetero- and homo-MgO ALD processes.

  6. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy

    SciTech Connect

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R.; Steenbergen, E. H.

    2015-12-28

    The structural and optical properties of lattice-matched InAs{sub 0.911}Sb{sub 0.089} bulk layers and strain-balanced InAs/InAs{sub 1−x}Sb{sub x} (x ∼ 0.1–0.4) superlattices grown on (100)-oriented GaSb substrates by molecular beam epitaxy are examined using X-ray diffraction, spectroscopic ellipsometry, and temperature dependent photoluminescence spectroscopy. The photoluminescence and ellipsometry measurements determine the ground state bandgap energy and the X-ray diffraction measurements determine the layer thickness and mole fraction of the structures studied. Detailed modeling of the X-ray diffraction data is employed to quantify unintentional incorporation of approximately 1% Sb into the InAs layers of the superlattices. A Kronig-Penney model of the superlattice miniband structure is used to analyze the valence band offset between InAs and InAsSb, and hence the InAsSb band edge positions at each mole fraction. The resulting composition dependence of the bandgap energy and band edge positions of InAsSb are described using the bandgap bowing model; the respective low and room temperature bowing parameters for bulk InAsSb are 938 and 750 meV for the bandgap, 558 and 383 meV for the conduction band, and −380 and −367 meV for the valence band.

  7. Anomalous diffraction approximation limits

    NASA Astrophysics Data System (ADS)

    Videen, Gorden; Chýlek, Petr

    It has been reported in a recent article [Liu, C., Jonas, P.R., Saunders, C.P.R., 1996. Accuracy of the anomalous diffraction approximation to light scattering by column-like ice crystals. Atmos. Res., 41, pp. 63-69] that the anomalous diffraction approximation (ADA) accuracy does not depend on particle refractive index, but instead is dependent on the particle size parameter. Since this is at odds with previous research, we thought these results warranted further discussion.

  8. Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale.

    PubMed

    Mivelle, Mathieu; Viktorovitch, Pierre; Baida, Fadi I; El Eter, Ali; Xie, Zhihua; Vo, Than-Phong; Atie, Elie; Burr, Geoffrey W; Nedeljkovic, Dusan; Rauch, Jean-Yves; Callard, Ségolène; Grosjean, Thierry

    2014-06-16

    We show that the near-field coupling between a photonic crystal microlaser and a nano-antenna can enable hybrid photonic systems that are both physically compact (free from bulky optics) and efficient at transferring optical energy into the nano-antenna. Up to 19% of the laser power from a micron-scale photonic crystal laser cavity is experimentally transferred to a bowtie aperture nano-antenna (BNA) whose area is 400-fold smaller than the overall emission area of the microlaser. Instead of a direct deposition of the nano-antenna onto the photonic crystal, it is fabricated at the apex of a fiber tip to be accurately placed in the microlaser near-field. Such light funneling within a hybrid structure provides a path for overcoming the diffraction limit in optical energy transfer to the nanoscale and should thus open promising avenues in the nanoscale enhancement and confinement of light in compact architectures, impacting applications such as biosensing, optical trapping, local heating, spectroscopy, and nanoimaging.

  9. A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics

    SciTech Connect

    Boschini, F.; Hedayat, H.; Piovera, C.; Dallera, C.; Gupta, A.; Carpene, E.

    2015-01-15

    A versatile experimental setup for femtosecond time-resolved ellipsometry and magneto-optical Kerr effect measurements in the visible light range is described. The apparatus is based on the pump-probe technique and combines a broad-band probing beam with an intense near-infrared pump. According to Fresnel scattering matrix formalism, the analysis of the reflected beam at different polarization states of the incident probe light allows one to determine the diagonal and the off-diagonal elements of the dielectric tensor in the investigated sample. Moreover, the pump-probe method permits to study the dynamics of the dielectric response after a short and intense optical excitation. The performance of the experimental apparatus is tested on CrO{sub 2} single crystals as a benchmark.

  10. Imaging Mie ellipsometry: dynamics of nanodust clouds in an argon-acetylene plasma

    NASA Astrophysics Data System (ADS)

    Greiner, Franko; Carstensen, Jan; Köhler, Nils; Pilch, Iris; Ketelsen, Helge; Knist, Sascha; Piel, Alexander

    2012-12-01

    For the in situ analysis of nano-sized particles in a laboratory plasma, Mie ellipsometry is a well established technique. We present a simple setup with two CCD cameras to gain online spatiotemporal resolved information of the growth dynamics of particles which are produced by plasma chemical processes in an argon-acetylene plasma. Imaging Mie ellipsometry proves to be a powerful technique to study the growth processes of nanodust in all its details.

  11. Light-induced isomerization causes an increase in the chromophore tilt in the M intermediate of bacteriorhodopsin: a neutron diffraction study.

    PubMed Central

    Hauss, T; Büldt, G; Heyn, M P; Dencher, N A

    1994-01-01

    Bacteriorhodopsin (BR) was regenerated with two selectively deuterated retinals, one with 11 deuterons in the beta-ionone ring (D11) and the other with 5 deuterons (D5) at the end of the polyene chain closest to the Schiff base at carbon atoms C-14, C-15, and C-20. Both label positions (centers of deuteration) were obtained from difference Fourier maps of projections onto the plane of the membrane by neutron diffraction at 90 K, both in the light-adapted ground-state BR568 and in the photocycle intermediate M412. To retard the decay of M412, purple membrane films were soaked in 0.1 M or 1 M guanidine hydrochloride at pH 9.6. M412 was produced by illuminating oriented membrane films at physiological temperature (278 K), followed by rapid cooling to 90 K in the absence of light. The results show that in the projected structure the ring position is unaltered during the transition from BR568 to M412, whereas the position of the D5 label shifts by 1.4 +/- 0.9 A toward the ring. The shortened interlabel distance in the projected structure for the M412 state implies that as a result of the all-trans/13-cis isomerization, the C-5 to C-13 part of the polyene chain tilts out of the plane of the membrane toward the cytoplasm by about 11 degrees +/- 6 degrees. Pairwise comparison of data sets with the same retinal for the two photocycle states M412 and BR568 leads to four difference-density maps for the protein, which are in agreement with previous work. They show changes in the protein density near helices G and F. PMID:7991546

  12. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, Antonio J.; Butler, Michael A.; Sinclair, Michael B.; Senturia, Stephen D.

    1998-01-01

    An electrically-programmable diffraction grating. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers).

  13. B-spline parametrization of the dielectric function applied to spectroscopic ellipsometry on amorphous carbon

    SciTech Connect

    Weber, J. W.; Hansen, T. A. R.; Sanden, M. C. M. van de; Engeln, R.

    2009-12-15

    The remote plasma deposition of hydrogenated amorphous carbon (a-C:H) thin films is investigated by in situ spectroscopic ellipsometry (SE). The dielectric function of the a-C:H film is in this paper parametrized by means of B-splines. In contrast with the commonly used Tauc-Lorentz oscillator, B-splines are a purely mathematical description of the dielectric function. We will show that the B-spline parametrization, which requires no prior knowledge about the film or its interaction with light, is a fast and simple-to-apply method that accurately determines thickness, surface roughness, and the dielectric constants of hydrogenated amorphous carbon thin films. Analysis of the deposition process provides us with information about the high deposition rate, the nucleation stage, and the homogeneity in depth of the deposited film. Finally, we show that the B-spline parametrization can serve as a stepping stone to physics-based models, such as the Tauc-Lorentz oscillator.

  14. Optical dielectric response of gallium nitride studied by variable angle spectroscopy ellipsometry

    SciTech Connect

    Yao, H.; Yan, C.H.; Jenkinson, H.A.; Zavada, J.M.; Speck, J.S.; Denbaars, S.P.

    1997-12-31

    Variable angle spectroscopic ellipsometry (VASE) and transmission measurements have been employed to study the dielectric response of gallium nitride (GaN) thin films -- an important material for light emitting diodes (LEDs) and laser diodes applications. The GaN films were grown by atmosphere pressure metal organic chemical vapor deposition (MOCVD) on c-plane sapphire substrates ({alpha}-Al{sub 2}O{sub 3}). Room temperature VASE measurements were made, in the range of 0.75 to 5.5eV, at the angle of incidence of 73, 75, and 77 degree, respectively. Evidence of anisotropy is observed especially in the spectral range under the band gap ({approximately}3.4 eV), reflecting the nature of wurtzite crystal structure of GaN. The ordinary dielectric function {var_epsilon}{sub {perpendicular}}({omega}) of GaN were obtained through the analysis of transmission and VASE data in the range below and above the band gap. The thickness of these GaN films is also determined via the analysis.

  15. Imaging spectroscopic ellipsometry of MoS2

    NASA Astrophysics Data System (ADS)

    Funke, S.; Miller, B.; Parzinger, E.; Thiesen, P.; Holleitner, A. W.; Wurstbauer, U.

    2016-09-01

    Micromechanically exfoliated mono- and multilayers of molybdenum disulfide (MoS2) are investigated by spectroscopic imaging ellipsometry. In combination with knife edge illumination, MoS2 flakes can be detected and classified on arbitrary flat and also transparent substrates with a lateral resolution down to 1-2 µm. The complex dielectric functions from mono- and trilayer MoS2 are presented. They are extracted from a multilayer model to fit the measured ellipsometric angles employing an anisotropic and an isotropic fit approach. We find that the energies of the critical points of the optical constants can be treated to be independent of the utilized model, whereas the magnitude of the optical constants varies with the used model. The anisotropic model suggests a maximum absorbance for a MoS2 sheet supported by sapphire of about 14% for monolayer and of 10% for trilayer MoS2. Furthermore, the lateral homogeneity of the complex dielectric function for monolayer MoS2 is investigated with a spatial resolution of 2 µm. Only minor fluctuations are observed. No evidence for strain, for a significant amount of disorder or lattice defects can be found in the wrinkle-free regions of the MoS2 monolayer from complementary µ-Raman spectroscopy measurements. We assume that the minor lateral variation in the optical constants are caused by lateral modification in the van der Waals interaction presumably caused by the preparation using micromechanical exfoliation and viscoelastic stamping.

  16. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-08-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  17. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-06-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effect of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that, after a 20-sec 9:1 HF dip without rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed, in an ultrahigh vacuum chamber (UHV), and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface layer, after being heated to about 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  18. Photomask CD and LER characterization using Mueller matrix spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Heinrich, A.; Dirnstorfer, I.; Bischoff, J.; Meiner, K.; Ketelsen, H.; Richter, U.; Mikolajick, T.

    2014-10-01

    Critical dimension and line edge roughness on photomask arrays are determined with Mueller matrix spectroscopic ellipsometry. Arrays with large sinusoidal perturbations are measured for different azimuth angels and compared with simulations based on rigorous coupled wave analysis. Experiment and simulation show that line edge roughness leads to characteristic changes in the different Mueller matrix elements. The influence of line edge roughness is interpreted as an increase of isotropic character of the sample. The changes in the Mueller matrix elements are very similar when the arrays are statistically perturbed with rms roughness values in the nanometer range suggesting that the results on the sinusoidal test structures are also relevant for "real" mask errors. Critical dimension errors and line edge roughness have similar impact on the SE MM measurement. To distinguish between both deviations, a strategy based on the calculation of sensitivities and correlation coefficients for all Mueller matrix elements is shown. The Mueller matrix elements M13/M31 and M34/M43 are the most suitable elements due to their high sensitivities to critical dimension errors and line edge roughness and, at the same time, to a low correlation coefficient between both influences. From the simulated sensitivities, it is estimated that the measurement accuracy has to be in the order of 0.01 and 0.001 for the detection of 1 nm critical dimension error and 1 nm line edge roughness, respectively.

  19. Inversion of ellipsometry data using constrained spline analysis.

    PubMed

    Gilliot, Mickaël

    2017-02-01

    Ellipsometry is a highly sensitive and powerful optical technique of thin film characterization. However, the indirect and nonlinear character of the ellipsometric equations requires numerical extraction of interesting information, such as thicknesses and optical constants of unknown layers. A method is described to perform the inversion of ellipsometric spectra for the simultaneous determination of thickness and optical constants without requiring particular assumptions about the shape of a model dielectric function like in the traditional method of data fitting. The method is based on a Kramers-Kronig consistent description of the imaginary part of the dielectric function using a set of points joined by pieces of third-degree polynomials. Particular connection relations constrain the shape of the constructed curve to a physically meaningful curve avoiding oscillations of natural cubic splines. The connection ordinates conditioning the shape of the dielectric function can be used, together with unknown thickness or roughness, as fitting parameters with no restriction on the material nature. Typical examples are presented concerning metal and semiconductors.

  20. Structural investigations of human hairs by spectrally resolved ellipsometry

    NASA Astrophysics Data System (ADS)

    Chan, Danny; Schulz, Benjamin; Rübhausen, Michael; Wessel, Sonya; Wepf, Roger

    2006-01-01

    Human hair is a biological layered system composed of two major layers, the cortex and the cuticle. We show spectrally resolved ellipsometry measurements of the ellipsometric parameters Ψ and Δ of single human hairs. The spectra reflect the layered nature of hair and the optical anisotropy of the hair's structure. In addition, measurements on strands of human hair show a high reproducibility of the ellipsometric parameters for different hair fiber bundles from the same person. Based on the measurements, we describe a dielectric model of hair that explains the spectra in terms of the dielectric properties of the major parts of hair and their associated layer thicknesses. In addition, surface roughness effects modeled by a roughness layer with a complex refractive index given by an effective medium approach can be seen to have a significant effect on the measurements. We derive values for the parameters of the cuticle surface roughness layer of the thickness dACu=273 to 360 nm and the air inclusion fA=0.6 to 5.7%.

  1. Structural investigations of human hairs by spectrally resolved ellipsometry

    NASA Astrophysics Data System (ADS)

    Schulz, Benjamin; Chan, D.; Ruebhausen, M.; Wessel, S.; Wepf, R.

    2006-03-01

    Human hair is a biological layered system composed of two major layers, the cortex and the cuticle. We show spectrally resolved ellipsometry measurements of the ellipsometric parameters ψ and δ of single human hairs. The spectra reflect the layered nature of hair and the optical anisotropy of the hair’s structure. In addition, measurements on strands of human hair show a high reproducibility of the ellipsometric parameters for different hair fiber bundles from the same person. Based on the measurements, we develop a model of the dielectric function of hair that explains the spectra. This model includes the dielectric properties of the cuticle and cortex as well as their associated layer thicknesses. In addition, surface roughness effects modelled by a roughness layer with an complex refractive index given by an effective medium approach can have a significant effect on the measurements. We derive values for the parameters of the cuticle surface roughness layer of the thickness dACu= 273-360 nm and the air inclusion fA= 0.6 -5.7%. [1] accepted for publication in J. Biomed Opt., 2005

  2. Characterization by spectroscopic Ellipsometry, the physical properties of silver nanoparticles.

    NASA Astrophysics Data System (ADS)

    Coanga, Jean-Maurice

    2013-04-01

    Physicists are able to change their minds through their experiments. I think it is time to go kick the curse and go further in research if we want a human future. I work in the Nano-Optics and Plasmonics research. I defined with ellipsomètrie the structure of new type of Nano particles of silver. It's same be act quickly to replace the old dirty leaded electronic-connexion chip and by the other hand to find a new way for the heath care of cancer disease by nanoparticles the next killers of bad cells. Silver nanoparticle layers are obtained by Spark Plasma Sintering are investigated as an alternative to lead alloy based material for solder joint in power mechatronics modules. These layers are characterized by mean of conventional techniques that is the dilatometry technique, the resistivity measurement through the van der Pauw method, and the flash laser technique. Furthermore, the nanoparticles of silver layer are deeply studied by UV-Visible spectroscopic ellipsometry. Spectroscopic angles parameters are determined in function of temperature and dielectric constants are deduced and analyzed through an optical model which takes into account a Drude and a Lorentz component within the Bruggeman effective medium approximation (EMA). The relaxation times and the electrical conductivity are plot in function of temperature. The obtained electrical conductivity give significant result in good agreement to those reported by four points electrical measurement method.

  3. Polypeptide multilayer self-assembly studied by ellipsometry.

    PubMed

    Craig, Marina; Holmberg, Krister; Le Ru, Eric; Etchegoin, Pablo

    2014-01-01

    A polypeptide nanofilm made by layer-by-layer (LbL) self-assembly was built on a surface that mimics nonwoven, a material commonly used in wound dressings. Poly-L-lysine (PLL) and poly-L-glutamic acid (PLGA) are the building blocks of the nanofilm, which is intended as an enzymatically degradable lid for release of bactericides to chronic wounds. Chronic wounds often carry infection originating from bacteria such as Staphylococcus aureus and a release system triggered by the degree of infection is of interest. The dry nanofilm was studied with ellipsometry. The thickness of the nanofilm was 60% less in its dry state than in its wet state. The measurements showed that a primer was not necessary to build a stable nanofilm, which is practically important in our case because a nondegradable primer is highly unwanted in a wound care dressing. Added V8 (glutamyl endopeptidase) enzymes only showed adsorption on the nanofilm at room temperature, indicating that the PLL/PLGA "lid" may remain intact until the dressing has been filled with wound exudate at the elevated temperature typical of that of the wound.

  4. Fresnel diffraction plates are simple and inexpensive

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.

    1967-01-01

    Fresnel plate demonstrates diffraction phenomena simply and inexpensively. A large number of identical diffracting apertures are made in random orientation on photographic film. When a small source of light is viewed through the plate, the diffraction pattern typical of the diffracting aperture is readily seen.

  5. Diffractive optical elements designed for highly precise far-field generation in the presence of artifacts typical for pixelated spatial light modulators

    NASA Astrophysics Data System (ADS)

    Milewski, Gabriel; Engström, David; Bengtsson, Jörgen

    2007-01-01

    Diffractive optical elements (DOEs) realized by spatial light modulators (SLMs) often have features that distinguish them from most conventional, static DOEs: strong coupling between phase and amplitude modulation, a modulation versus steering parameter characteristic that may not be precisely known (and may vary with, e.g., temperature), and deadspace effects and interpixel cross talk. For an optimal function of the DOE, e.g. as a multiple-beam splitter, the DOE design must account for these artifacts. We present an iterative design method in which the optimal setting of each SLM pixel is carefully chosen by considering the SLM artifacts and the design targets. For instance, the deadspace-interpixel effects are modeled by dividing the pixel to be optimized, and its nearest neighbors, into a number of subareas, each with its unique response and far-field contribution. Besides the customary intensity control, the design targets can also include phase control of the optical field in one or more of the beams in the beam splitter. We show how this can be used to cancel a strong unwanted zeroth-order beam, which results from using a slightly incorrect modulation characteristic for the SLM, by purposely sending a beam in the same direction but with the opposite phase. All the designs have been implemented on the 256 × 256 central pixels of a reflective liquid crystal on silicon SLM with a selected input polarization state and a direction of transmission axis of the output polarizer such that for the available different pixel settings a phase modulation of ˜2π rad could be obtained, accompanied by an intensity modulation depth as high as >95%.

  6. Spectral ellipsometry of GaSb: Experiment and modelling

    SciTech Connect

    Charache, G.W.; Mu {tilde n}oz, M.; Wei, K.; Pollak, F.H.; Freeouf, J.L.

    1999-05-01

    The optical constants {epsilon}(E)[{equals}{epsilon}{sub 1}(E) + i{epsilon}{sub 2}(E)] of single crystal GaSb at 300K have been measured using spectral ellipsometry in the range of 0.3--5.3 eV. The {epsilon}(E) spectra displayed distinct structures associated with critical points (CPs) at E{sub 0}(direct gap), spin-orbit split E{sub 0} + {Delta}{sub 0} component, spin-orbit split (E{sub 1}), E{sub 1} + {Delta}{sub 1} and (E{sub 0}{prime}), E{sub 0}{prime} + {Delta}{sub 0}{prime} doublets, as well as E{sub 2}. The experimental data over the entire measured spectral range (after oxide removal) has been fit using the Holden model dielectric function [Phys.Rev.B 56, 4037 (1997)] based on the electronic energy-band structure near these CPs plus excitonic and band-to-band Coulomb enhancement effects at E{sub 0}, E{sub 0} + {Delta}{sub 0}and the E{sub 1}, E{sub 1} + {Delta}{sub 1} doublet. In addition to evaluating the energies of these various band-to-band CPs, information about the binding energy (R{sub 1}) of the two-dimensional exciton related to the E{sub 1}, E{sub 1} + {Delta}{sub 1} CPS was obtained. The value of R{sub 1} was in good agreement with effective mass/{rvec k} {center_dot} {rvec p} theory. The ability to evaluate R{sub 1} has important ramifications for recent first-principles band structure calculations which include exciton effects at E{sub 0}, E{sub 1}, and E{sub 2}.

  7. Investigation Of Far-Field Diffraction

    NASA Technical Reports Server (NTRS)

    Wang, Yaujen; Scholl, Marija S.

    1993-01-01

    Report describes experimental investigation of far-field diffracton by normally illuminated circular apertures with diameters of several wavelengths of incident light. Purpose of investigation to determine whether Keller's "geometrical" theory of diffraction valid for diffraction phenomena of this kind.

  8. Study of optical Laue diffraction

    SciTech Connect

    Chakravarthy, Giridhar E-mail: aloksharan@email.com; Allam, Srinivasa Rao E-mail: aloksharan@email.com; Satyanarayana, S. V. M. E-mail: aloksharan@email.com; Sharan, Alok E-mail: aloksharan@email.com

    2014-10-15

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known.

  9. Study of optical Laue diffraction

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Giridhar; Allam, Srinivasa Rao; Satyanarayana, S. V. M.; Sharan, Alok

    2014-10-01

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known.

  10. Comparison of in vitro methods of measuring mucoadhesion: ellipsometry, tensile strength and rheological measurements.

    PubMed

    Ivarsson, David; Wahlgren, Marie

    2012-04-01

    In this work three in vitro methods for the measurement of mucoadhesion have been compared: ellipsometry, tensile strength and rheology. The conditions used for the three methods have been as similar as possible. Six different polymers were investigated: sodium carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), chitosan, polyvinyl pyrrolidone (PVP) and two cross-linked polyacrylic acids, Noveon (hydrophobically modified) and Carbopol. The results showed that PVP did not exhibit mucoadhesion according to any of the methods used. Chitosan, Noveon, Carbopol, CMC and HEC showed good mucoadhesion in the tensile strength and the rheological measurements, but not in the ellipsometry investigation. Chitosan was the only polymer showing good mucoadhesion with the ellipsometry method. No two methods gave the same ranking of mucoadhesive strength of the polymers. The conflicting results obtained with the different methods underline the need for further improvements in existing experimental techniques and theoretical concepts for the correct assessment of mucoadhesive properties.

  11. Spectroscopic rotating compensator ellipsometry in the infrared: retarder design and measurement

    NASA Astrophysics Data System (ADS)

    den Boer, J. H. W. G.; Kroesen, G. M. W.; de Hoog, F. J.

    1997-05-01

    Rotating compensator ellipsometry (RCE) is an approach to ellipsometry that is superior to the widely used rotating analyser ellipsometry (RAE). An essential component in RCE is a retarder that generates a retardance close to 0957-0233/8/5/004/img1. In contrast to RCE at a single wavelength, spectroscopic RCE requires a retarder that performs well over a wide range of the used spectrum. The designed retarder is capable of this and works on the principle of total internal reflection. Making use of this retarder, RCE is tested by measuring the optical characteristics of a Teflon-like layer on an aluminium substrate. The results show good agreement with similar RAE measurements, as well as data calculated from an ellipsometric model.

  12. Characterization of Liquid Crystal Layer and Cholesteric Film by Renormalized Spectroscopic Ellipsometry

    NASA Astrophysics Data System (ADS)

    Kimura, Munehiro; Kamada, Hirokazu; Onuma, Toshihiko; Akahane, Tadashi

    2009-03-01

    Renormalized transmission spectroscopic ellipsometry (RTSE) is used to evaluate the device parameters of liquid crystal display (LCD). To determine the reduced dielectric and elastic constants, threshold voltage, pretilt angle, cell gap, and surface polar anchoring energy coefficient, symmetrically oblique incidence transmission ellipsometry (SOITE) was applied to vertical-alignment (VA) LCD. It is suggested that the rubbing process on the alignment films for VA LCD does not disturb the measurement of the genuine surface polar anchoring energy coefficient. RTSE is also applicable to the determination of the total twist angle of the cholesteric film.

  13. Spectroscopic ellipsometry on Si/SiO{sub 2}/graphene tri-layer system exposed to downstream hydrogen plasma: Effects of hydrogenation and chemical sputtering

    SciTech Connect

    Eren, Baran; Fu, Wangyang; Marot, Laurent Calame, Michel; Steiner, Roland; Meyer, Ernst

    2015-01-05

    In this work, the optical response of graphene to hydrogen plasma treatment is investigated with spectroscopic ellipsometry measurements. Although the electronic transport properties and Raman spectrum of graphene change after plasma hydrogenation, ellipsometric parameters of the Si/SiO2/graphene tri-layer system do not change. This is attributed to plasma hydrogenated graphene still being electrically conductive, since the light absorption of conducting 2D materials does not depend on the electronic band structure. A change in the light transmission can only be observed when higher energy hydrogen ions (30 eV) are employed, which chemically sputter the graphene layer. An optical contrast is still apparent after sputtering due to the remaining traces of graphene and hydrocarbons on the surface. In brief, plasma treatment does not change the light transmission of graphene; and when it does, this is actually due to plasma damage rather than plasma hydrogenation.

  14. Reflectometry-Ellipsometry Reveals Thickness, Growth Rate, and Phase Composition in Oxidation of Copper.

    PubMed

    Diaz Leon, Juan J; Fryauf, David M; Cormia, Robert D; Zhang, Min-Xian Max; Samuels, Kathryn; Williams, R Stanley; Kobayashi, Nobuhiko P

    2016-08-31

    The oxidation of copper is a complicated process. Copper oxide develops two stable phases at room temperature and standard pressure (RTSP): cuprous oxide (Cu2O) and cupric oxide (CuO). Both phases have different optical and electrical characteristics that make them interesting for applications such as solar cells or resistive switching devices. For a given application, it is necessary to selectively control oxide thickness and cupric/cuprous oxide phase volume fraction. The thickness and composition of a copper oxide film growing on the surface of copper widely depend on the characteristics of as-deposited copper. In this Research Article, two samples, copper films prepared by two different deposition techniques, electron-beam evaporation and sputtering, were studied. As the core part of the study, the formation of the oxidized copper was analyzed routinely over a period of 253 days using spectroscopic polarized reflectometry-spectroscopic ellipsometry (RE). An effective medium approximation (EMA) model was used to fit the RE data. The RE measurements were complemented and validated by using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and X-ray diffraction (XRD). Our results show that the two samples oxidized under identical laboratory ambient conditions (RTSP, 87% average relative humidity) developed unique oxide films following an inverse-logarithmic growth rate with thickness and composition different from each other over time. Discussion is focused on the ability of RE to simultaneously extract thickness (i.e., growth rate) and composition of copper oxide films and on plausible physical mechanisms responsible for unique oxidation habits observed in the two copper samples. It appears that extended surface characteristics (i.e., surface roughness and grain boundaries) and preferential crystalline orientation of as-deposited polycrystalline copper films control the growth kinetics of the copper oxide film. Analysis based on a noncontact

  15. Photoelectron diffraction

    NASA Astrophysics Data System (ADS)

    Fadley, Charles S.

    1987-01-01

    The use of core-level photoelectron diffraction for structural studies of surfaces and epitaxial overlayers is discussed. Photoelectron diffraction is found to provide several direct and rather unique types of structural information, including the sites and positions of adsorbed atoms; the orientations of small molecules or fragments bound to surfaces; the orientations, layer thicknesses, vertical lattice constants, and degrees of short-range order of epitaxial or partially-epitaxial overlayers; and the presence of short-range spin order in magnetic materials. Specific systems considered are the reaction of oxygen with Ni(001), the growth of epitaxial Cu on Ni(001), the well-defined test case S on Ni(001), and short-range spin order in the antiferromagnet KMnF3. A rather straightforward single scattering cluster (SSC) model also proves capable of quantitatively describing such data, particularly for near-surface species and with corrections for spherical-wave scattering effects and correlated vibrational motion. Promising new directions in such studies also include measurements with high angular resolution and the expanded use of synchrotron radiation.

  16. Quantifying protein adsorption on combinatorially sputtered Al-, Nb-, Ta- and Ti-containing films with electron microprobe and spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Byrne, T. M.; Lohstreter, L.; Filiaggi, M. J.; Bai, Zhijun; Dahn, J. R.

    2009-04-01

    Although metallic biomaterials are widely used, systematic studies of protein adsorption onto such materials are generally lacking. Combinatorial binary libraries of Al 1-xNb x, Al 1-xTa x, Al 1-xTi x, Nb 1-xTa x, Nb 1-xTi x, and Ta 1-xTi x (0 ⩽ x ⩽ 1) and a ternary library of Al 1-xTi xTa y (0 ⩽ x ⩽ 1 and 0 ⩽ y ⩽ 0.7), along with their corresponding pure element films were sputtered onto glass substrates using a unique magnetron sputtering technique. Films were characterized with wavelength-dispersive spectroscopy (WDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Fibrinogen and albumin adsorption amounts were measured by wavelength-dispersive spectroscopy (WDS) and spectroscopic ellipsometry (SE) equipment, both high throughput techniques with automated motion stage capabilities. Protein adsorption onto these films was found to be closely correlated to the alumina surface fraction, with high alumina content at the surface leading to low amounts of adsorbed fibrinogen and albumin. Protein adsorption amounts obtained with WDS and SE were in good agreement for all films.

  17. Ellipsometry with polarisation analysis at cryogenic temperatures inside a vacuum chamber

    SciTech Connect

    Bauer, S.; Grees, B.; Spitzer, D.; Beck, M.; Bottesch, R.; Ortjohann, H.-W.; Schäfer, T.; Wegmann, A.; Zbořil, M.; Weinheimer, C.; Ostrick, B.; Telle, H. H.

    2013-12-15

    In this paper we describe a new variant of null ellipsometry to determine thicknesses and optical properties of thin films on a substrate at cryogenic temperatures. In the PCSA arrangement of ellipsometry the polarizer and the compensator are placed before the substrate and the analyzer after it. Usually, in the null ellipsometry the polarizer and the analyzer are rotated to find the searched minimum in intensity. In our variant we rotate the polarizer and the compensator instead, both being placed in the incoming beam before the substrate. Therefore the polarisation analysis of the reflected beam can be realized by an analyzer at fixed orientation. We developed this method for investigations of thin cryogenic films inside a vacuum chamber where the analyzer and detector had to be placed inside the cold shield at a temperature of T≈ 90 K close to the substrate. All other optical components were installed at the incoming beam line outside the vacuum chamber, including all components which need to be rotated during the measurements. Our null ellipsometry variant has been tested with condensed krypton films on a highly oriented pyrolytic graphite substrate (HOPG) at a temperature of T≈ 25 K. We show that it is possible to determine the indices of refraction of condensed krypton and of the HOPG substrate as well as thickness of krypton films with reasonable accuracy.

  18. Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation

    NASA Astrophysics Data System (ADS)

    Hofmann, T.; Schade, U.; Herzinger, C. M.; Esquinazi, P.; Schubert, M.

    2006-06-01

    We report on the first setup and experimental verification of terahertz frequency domain magneto-optic generalized ellipsometry using a combination of highly brilliant terahertz synchrotron and conventional blackbody radiation sources. The polarizer-sample-rotating-analyzer ellipsometry principle is employed to measure the three normalized Stokes vector elements excluding depolarization information, and the upper left 3×3 block of the normalized 4×4 Mueller matrix accordingly for wave numbers from 30to650cm-1 (0.9-20THz). We discuss setup, measurement, and data analysis procedures specific to the use of synchrotron radiation for terahertz ellipsometry. Two sample systems with different free-charge-carrier properties were studied and are presented here to illustrate terahertz ellipsometry and data analysis. The first example is low-chlorine-doped ZnMnSe, a dilute magnetic semiconductor. Analysis of the normalized Mueller matrix elements using the Drude magneto-optic dielectric function tensor model over the entire spectral range from 30to650cm-1 allowed the independent determination of the free-charge-carrier properties effective mass, concentration, and mobility. We further present and discuss Mueller matrix spectra obtained from highly oriented pyrolytic graphite at low temperatures. The spectra of this second example, a two-dimensionally confined charge carrier system, reveal distinct fingerprints of chiral electronic transitions between Landau levels.

  19. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, A.J.; Butler, M.A.; Sinclair, M.B.; Senturia, S.D.

    1998-05-26

    An electrically-programmable diffraction grating is disclosed. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers). 14 figs.

  20. Strain and lattice orientation distribution in SiN/Ge complementary metal–oxide–semiconductor compatible light emitting microstructures by quick x-ray nano-diffraction microscopy

    SciTech Connect

    Chahine, G. A.; Schülli, T. U.; Zoellner, M. H.; Guha, S.; Reich, C.; Zaumseil, P.; Capellini, G.; Richard, M.-I.; Schroeder, T.

    2015-02-16

    This paper presents a study of the spatial distribution of strain and lattice orientation in CMOS-fabricated strained Ge microstripes using high resolution x-ray micro-diffraction. The recently developed model-free characterization tool, based on a quick scanning x-ray diffraction microscopy technique can image strain down to levels of 10{sup −5} (Δa/a) with a spatial resolution of ∼0.5 μm. Strain and lattice tilt are extracted using the strain and orientation calculation software package X-SOCS. The obtained results are compared with the biaxial strain distribution obtained by lattice parameter-sensitive μ-Raman and μ-photoluminescence measurements. The experimental data are interpreted with the help of finite element modeling of the strain relaxation dynamics in the investigated structures.

  1. Diffraction-induced coherence levels.

    PubMed

    Tavrov, Alexander; Schmit, Joanna; Kerwien, Norbert; Osten, Wolfgang; Tiziani, Hans

    2005-04-10

    We examined the influence of complex diffraction effects on low-coherence fringes created for high-aspect depth-to-width ratio structures called trenches. The coherence function was analyzed for these micrometer-wide trenches and was registered with a white-light interference microscope. For some types of surface structure we observed that additional low-coherence fringes that do not correspond directly to the surface topology are formed near the sharp edges of the structures. These additional coherence fringes were studied by rigorous numerical evaluations of vector diffractions, and these simulated interference fields were then compared with experimental results that were obtained with a white-light interference microscope.

  2. Microsecond-resolved SDR-based cavity ring down ellipsometry.

    PubMed

    Sofikitis, D; Spiliotis, A K; Stamataki, K; Katsoprinakis, G E; Bougas, L; Samartzis, P C; Loppinet, B; Rakitzis, T P; Surligas, M; Papadakis, S

    2015-06-20

    We present an experimental apparatus that allows microsecond-resolved ellipsometric and absorption measurements. The apparatus is based on an optical cavity containing a Dove prism, in which light undergoes total internal reflection (TIR), while the data acquisition is based on software defined radio technology and custom-built drivers. We demonstrate the ability to sense rapid variations in the refractive index above the TIR interface for arbitrarily long times with a temporal resolution of at least 2 μs.

  3. Birefringent coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Karpov, Dmitry; dos Santos Rolo, Tomy; Rich, Hannah; Kryuchkov, Yuriy; Kiefer, Boris; Fohtung, E.

    2016-10-01

    Directional dependence of the index of refraction contains a wealth of information about anisotropic optical properties in semiconducting and insulating materials. Here we present a novel high-resolution lens-less technique that uses birefringence as a contrast mechanism to map the index of refraction and dielectric permittivity in optically anisotropic materials. We applied this approach successfully to a liquid crystal polymer film using polarized light from helium neon laser. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of emergent brilliant X-ray sources. Applications of this novel imaging technique are in disruptive technologies, including novel electronic devices, in which both charge and spin carry information as in multiferroic materials and photonic materials such as light modulators and optical storage.

  4. Modeling Ellipsometry Measurements of Molecular Thin-Film Contamination on Genesis Array Samples

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    The discovery of a molecular thin-film contamination on Genesis flown array samples changed the course of preliminary assessment strategies. Analytical techniques developed to measure solar wind elemental abundances must now compensate for a thin-film contamination. Currently, this is done either by experimental cleaning before analyses or by depth-profiling techniques that bypass the surface contamination. Inside Johnson Space Center s Genesis dedicated ISO Class 4 (Class 10) cleanroom laboratory, the selection of collector array fragments allocated for solar wind analyses are based on the documentation of overall surface quality, visible surface particle contamination greater than 1 m, and the amount of thin film contamination measured by spectroscopic ellipsometry. Documenting the exact thickness, surface topography, and chemical composition of these contaminates is also critical for developing accurate cleaning methods. However, the first step in characterization of the molecular film is to develop accurate ellipsometry models that will determine an accurate thickness measurement of the contamination film.

  5. Note: Grazing incidence small and wide angle x-ray scattering combined with imaging ellipsometry

    SciTech Connect

    Koerstgens, V.; Meier, R.; Ruderer, M. A.; Guo, S.; Chiang, H.-Y.; Mueller-Buschbaum, P.; Perlich, J.; Roth, S. V.; Gehrke, R.

    2012-07-15

    The combination of grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) with optical imaging ellipsometry is presented as an upgrade of the available measurement techniques at the wiggler beamline BW4 of the Hamburger Synchrotronstrahlungslabor. The instrument is introduced with the description of the alignment procedure to assure the measurement of imaging ellipsometry and GISAXS/GIWAXS on the same sample spot. To demonstrate the possibilities of the new instrument examples of morphological investigation on films made of poly(3-hexylthiophene) and [6,6]-phenyl-C{sub 61} butyric acid methyl ester as well as textured poly(9,9-dioctylfluorene-alt-benzo-thia-diazole) are shown.

  6. Single shot ultrafast dynamic ellipsometry (UDE) of laser-driven shocks in single crystal explosives

    SciTech Connect

    Whitley, Von H; Mcgrane, Shawn D; Moore, David S; Eakins, Dan E; Bolme, Cindy A

    2009-01-01

    We report on the first experiments to measure states in shocked energetic single crystals with dynamic ellipsometry. We demonstrate that these ellipsometric techniques can produce reasonable Hugoniot values using small amounts of crystalline RDX and PETN. Pressures, particle velocities and shock velocities obtained using shocked ellipsometry are comparable to those found using gas-gun flyer plates and molecular dynamics calculations. The adaptation of the technique from uniform thin films of polymers to thick non-perfect crystalline materials was a significant achievement. Correct sample preparation proved to be a crucial component. Through trial and error, we were able to resolve polishing issues, sample quality problems, birefringence effects and mounting difficulties that were not encountered using thin polymer films.

  7. Development of Calibration-Free Imaging Ellipsometry Using Dual-Rotation of Polarizer and Analyzer

    NASA Astrophysics Data System (ADS)

    Cheon, Hyuknyeong; Bak, Heung-Jin; Oh, Hyekeun; Lee, Eun-Kyu; An, Ilsin

    2007-08-01

    Imaging ellipsometry is developed in the dual-rotation mode of a polarizer and an analyzer. In this system, the polarizer and analyzer are rotated by a stepping motor at 1:1 ratio and the offset between the azimuths of both elements is kept constant. For data reduction, a two-dimensional array detector collects multiple intensity images during rotation and waveform analysis is performed for each pixel. This system generates second and fourth harmonics in intensity waveform and \\{Δ, \\Psi\\} images are deduced from the amplitudes of these harmonics without considering their phases, which leads to calibration-free imaging ellipsometry. This system works well with an offset between two elements but it becomes less susceptible to an offset-setting error with a smaller offset. Besides the ease of operation, this system is simple to construct as no complicated control mechanism is required for each component.

  8. Thin-film hermeticity - A quantitative analysis of diamondlike carbon using variable angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Orzeszko, S.; De, Bhola N.; Woollam, John A.; Pouch, John J.; Alterovitz, Samuel A.

    1988-01-01

    This paper reports on the successful application of variable-angle spectroscopic ellipsometry to quantitative thin-film hermeticity evaluation. It is shown that, under a variety of film preparations and moisture introduction conditions, water penetrates only a very thin diamondlike carbon (DLC) top surface-roughness region. Thus, DLC is an excellent candidate for use as protective coatings in adverse chemical and aqueous environments.

  9. Study of the Dielectric Function of Graphene from Spectroscopic Ellipsometry and Electron Energy Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Florence

    For more than 60 years, semiconductor research has been advancing up the periodic table. The first transistor was made from germanium. This later gave way to silicon-based devices due to the latter's ability to form an excellent interface with thermally-grown oxide. Now for the last ˜8 years, the focus has moved up one more row to carbon for post-CMOS devices in order to comply with the scaling limitations of Moore's law. However, for each of these, the measurements of film properties and dimensions have always been required for technological applications. These measurement methods often incorporate the use of light or electrons in order to take advantage of a wavelength that is on the order of, or smaller than, the feature sizes of interest. This thesis compares the dielectric function of graphene measured by an optical method to that obtained from an electron energy loss method in order to observe the effect of contamination and substrate on the optical properties of graphene exposed to the environment. Whether viewed in terms of how light affects a material (dielectric function) or how a material affects light (refractive index), the optical response is a quantity that may be used to obtain information about a film's thickness, energy structure, and the types of excitations that are responsible for energy loss. The three main experimental methods used in this thesis work are spectroscopic ellipsometry (SE), scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). SE is commonly used in clean-room environments for optical measurement over the energy range of ˜0-5 eV. This method is used to study graphene's dielectric function from the ultraviolet (UV) through infrared (IR) regions through use of an oscillator dispersion model. A nearly constant absorbance over the IR and into the visible region is observed due to vertical transitions between graphene's linearly dispersed pi-bands at the Dirac points. An exciton

  10. Structure and Thermotropic phase Behavior of Fluorinated Phospholipid Bilayers: A combined Attenuated Total Reflection FTIR Spectroscopy and Imaging Ellipsometry Study

    PubMed Central

    Schuy, Steffen; Faiss, Simon; Yoder, Nicholas C.; Kalsani, Venkateshwarlu; Kumar, Krishna; Janshoff, Andreas; Vogel, Reiner

    2008-01-01

    Lipid bilayers consisting of lipids with terminally perfluoroalkylated chains have remarkable properties. They exhibit increased stability and phase-separated nanoscale patterns in mixtures with nonfluorinated lipids. In order to understand the bilayer properties that are responsible for this behavior, we have analyzed the structure of solid-supported bilayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and of a DPPC analogue with 6 terminal perfluorinated methylene units (F6-DPPC). Polarized attenuated total reflection Fourier-transform infrared spectroscopy indicates that for F6-DPPC, the tilt of the lipid acyl chains to the bilayer normal is increased to 39° as compared to 21° for native DPPC, for both lipids in the gel phase. This substantial increase of the tilt angle is responsible for a decrease of the bilayer thickness from 5.4 nm for DPPC to 4.5 nm for F6-DPPC, as revealed by temperature-controlled imaging ellipsometry on microstructured lipid bilayers and solution atomic force microscopy. During the main phase transition from the gel to the fluid phase, both the relative bilayer thickness change and the relative area change are substantially smaller for F6-DPPC than for DPPC. In light of these structural and thermotropic data, we propose a model in which the higher acyl-chain tilt angle in F6-DPPC is the result of a conformational rearrangement to minimize unfavorable fluorocarbon–hydrocarbon interactions in the center of the bilayer due to chain staggering. PMID:18563929

  11. Broadband beam shaping with harmonic diffractive optics.

    PubMed

    Singh, Manisha; Tervo, Jani; Turunen, Jari

    2014-09-22

    We consider spatial shaping of broadband (either stationary or pulsed) spatially coherent light, comparing refractive, standard diffractive, and harmonic diffractive (modulo 2πM) elements. Considering frequency-integrated target profiles we show that, contrary to common belief, standard diffractive (M = 1) elements work reasonably well for, e.g., Gaussian femtosecond pulses and spatially coherent amplified-spontaneous-emission sources such as superluminescent diodes. It is also shown that harmonic elements with M ≥ 5 behave in essentially the same way as refractive elements and clearly outperform standard diffractive elements for highly broadband light.

  12. Shock induced chemistry in liquids studied with ultrafast dynamic ellipsometry and visible transient absorption spectroscopy.

    PubMed

    Dang, N C; Bolme, C A; Moore, D S; McGrane, S D

    2012-10-25

    The response to ultrafast laser shock loading of nine liquids was monitored in an effort to reveal evidence of chemical changes occurring during the first 350 ps following the shock front. In an effort to compare molecular structures possessing a variety of common bonding patterns, data were acquired for the liquids: cyclohexane, cyclohexene, 1,3-cyclohexadiene, benzene, water, acetonitrile, acrylonitrile, tert-butylacetylene, and phenylacetylene. Transient absorption spectra were measured in the spectral region from 440 to 780 nm over shock stress states from 7 to 20 GPa. Ultrafast dynamic ellipsometry was used to measure the shock and particle velocity as well as the shocked refractive index. Significant transient absorption attributed to chemical reaction was observed for shocked phenylacetylene and acrylonitrile. Evidence of volume decreasing chemical reactions was also observed in the ultrafast dynamic ellipsometry data for phenylacetylene and acrylonitrile. The liquid 1,3-cyclohexadiene exhibited volume decreasing reaction in the ultrafast dynamic ellipsometry data but did not exhibit an increase in the transient absorption spectra. There was no evidence of chemical reaction in cyclohexane, cyclohexene, benzene, water, acetonitrile, or tert-butylacetylene in the first 350 ps, despite the application of shock stress that was in many cases well above the reaction threshold observed at microsecond time scales.

  13. Multiple annular linear diffractive axicons.

    PubMed

    Bialic, Emilie; de la Tocnaye, Jean-Louis de Bougrenet

    2011-04-01

    We propose a chromatic analysis of multiple annular linear diffractive axicons. Large aperture axicons are optical devices providing achromatic nondiffracting beams, with an extended depth of focus, when illuminated by a white light source, due to chromatic foci superimposition. Annular apertures introduce chromatic foci separation, and because chromatic aberrations result in focal segment axial shifts, polychromatic imaging properties are partially lost. We investigate here various design parameters that can be used to achieve color splitting, filtering, and combining using these properties. In order to improve the low-power efficiency of a single annular axicon, we suggest a spatial multiplexing of concentric annular axicons with different sizes and periods we call multiple annular aperture diffractive axicons (MALDAs). These are chosen to maintain focal depths while enabling color imaging with sufficient diffraction efficiency. Illustrations are given for binary phase diffractive axicons, considering technical aspects such as grating design wavelength and phase dependence due to the grating thickness.

  14. Fingerprinting ordered diffractions in multiply diffracted waves

    NASA Astrophysics Data System (ADS)

    Meles, Giovanni Angelo; Curtis, Andrew

    2014-09-01

    We show how to `fingerprint' individual diffractors inside an acoustic medium using interrogative wave energy from arrays of sources and receivers. For any recorded multiply diffracted wave observed between any source and any receiver, the set of such fingerprints is sufficient information to identify all diffractors involved in the corresponding diffraction path, and the sequential order in which diffractors are encountered. The method herein thus decomposes complex, multiply diffracted wavefields into constituent, single-diffraction interactions.

  15. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  16. Sub-diffraction limit resolution in microscopy

    NASA Technical Reports Server (NTRS)

    Cheng, Ming (Inventor); Chen, Weinong (Inventor)

    2007-01-01

    A method and apparatus for visualizing sub-micron size particles employs a polarizing microscope wherein a focused beam of polarized light is projected onto a target, and a portion of the illuminating light is blocked from reaching the specimen, whereby to produce a shadow region, and projecting diffracted light from the target onto the shadow region.

  17. Evaluation of Diffraction by a Rounded Surface

    NASA Technical Reports Server (NTRS)

    Rabin, Douglas M.

    2011-01-01

    Wide-angle heliospheric imagers such as those carried on the SMEI and STEREO spacecraft require highly effective baffle systems to exclude diffracted light from the solar disk as well as other sources of stray light. Buffington (2000, Appl. Opt. 39, 2683-2686) has proposed replacing multi-vane baffle systems with a curved surface that can be thought of as the limiting case of closely spaced vanes. Buffington s experimental data showed that the diffractive performance of a continuous baffle is consistent with the limiting form expected from multi-vane diffraction on dimensional grounds, but a detailed prediction was not possible because multi-vane diffraction calculations assume that the diffractive edges act independently, an assumption that breaks down for a continuous surface. I describe analytic calculations of diffraction from a smooth rounded surface based on the approach of Vogler (1985, Radio Sci. 20, 582-590).

  18. Real-Time Ellipsometry-Based Transmission Ultrasound Imaging

    SciTech Connect

    Kallman, J S; Poco, J F; Ashby, A E

    2007-02-14

    -Perot system has never been fully implemented for area imaging, and the critical angle modulation system is not sensitive enough for medical imaging. We proposed an entirely new way of using acoustic pressure to modulate a light beam. This new technology should be sensitive enough to be useful for medical imaging and have a large enough aperture to speed acquisition by orders of magnitude over point sampling. Unfortunately, we were unable to bring this technology to fruition.

  19. Anomalous diffraction in hyperbolic materials

    NASA Astrophysics Data System (ADS)

    Alberucci, Alessandro; Jisha, Chandroth P.; Boardman, Allan D.; Assanto, Gaetano

    2016-09-01

    We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, i.e., spatial analog of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a negative (positive) nonlinearity.

  20. Intensity Measurements in a Fresnel Diffraction Pattern

    ERIC Educational Resources Information Center

    Boyer, R.; Fortin, E.

    1972-01-01

    Describes an undergraduate optics laboratory experiment to verify the law of intensity in the Fesnel diffraction of a thin wire. A gas laser as light source and a photocell as detector scan the diffraction pattern. The agreement with the theoretical pattern is remarkably good. (Author/TS)

  1. Diffraction from a liquid crystal phase grating.

    PubMed

    Kashnow, R A; Bigelow, J E

    1973-10-01

    The diffraction of light by a sinusoidal perturbation of the optic axis in a nematic liquid crystal is discussed. This corresponds to experiments at the electrohydrodynamic instability thresholds. An interesting qualitative feature appears: The diffraction pattern exhibits a contribution at half of the expected spatial frequency, corresponding to nonorthogonal traversals of the thick phase grating.

  2. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  3. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  4. Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry

    NASA Astrophysics Data System (ADS)

    Chang, You-Chia; Liu, Chang-Hua; Liu, Che-Hung; Zhong, Zhaohui; Norris, Theodore B.

    2014-06-01

    A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical conductivity of mono- and bilayer chemical-vapor-deposited graphene. We model graphene as a truly two-dimensional (2D) material with a sheet conductivity, rather than a phenomenological effective refractive index as has been used in the literature. This technique measures both the real and imaginary part of the optical conductivity, which is important for graphene optoelectronics and metamaterials. Using this method, we obtain broadband measurements of the complex optical conductivity for mono- and bilayer graphene from ultraviolet to mid-infrared wavelengths. We also study how chemical doping with nitric acid modifies the complex optical conductivity.

  5. Modeled optical properties of SiGe and Si layers compared to spectroscopic ellipsometry measurements

    NASA Astrophysics Data System (ADS)

    Kriso, C.; Triozon, F.; Delerue, C.; Schneider, L.; Abbate, F.; Nolot, E.; Rideau, D.; Niquet, Y.-M.; Mugny, G.; Tavernier, C.

    2017-03-01

    The optical response of strained SiGe alloys, as well as thin Si layers, is analyzed using a sp3d5s∗ tight-binding model within the independent particle approximation. The theoretical results are compared to measurements obtained on samples with various Ge content and layer thicknesses. The dielectric function is extracted from spectroscopic ellipsometry allowing a separation of its real and imaginary parts. Theory and simulation show similar trends for the variation of the dielectric function of SiGe with varying Ge content. Variations are also well reproduced for thin Si layers with varying thickness and are attributed to quantum confinement.

  6. Ionization of covalent immobilized poly(4-vinylphenol) monolayers measured by ellipsometry, QCM and SPR

    NASA Astrophysics Data System (ADS)

    Uppalapati, Suji; Kong, Na; Norberg, Oscar; Ramström, Olof; Yan, Mingdi

    2015-07-01

    Covalently immobilized poly(4-vinylphenol) (PVP) monolayer films were fabricated by spin coating PVP on perfluorophenyl azide (PFPA)-functionalized surfaces followed by UV irradiation. The pH-responsive behavior of these PVP ultrathin films was evaluated by ellipsometry, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). By monitoring the responses of these films to pH in situ, the ionization constant of the monolayer thin films was obtained. The apparent pKa value of these covalently immobilized PVP monolayers, 13.4 by SPR, was 3 units higher than that of the free polymer in aqueous solution.

  7. Electronic and structural properties of molybdenum thin films as determined by real-time spectroscopic ellipsometry

    SciTech Connect

    Walker, J. D.; Khatri, H.; Ranjan, V.; Li Jian; Collins, R. W.; Marsillac, S.

    2009-04-06

    Real-time spectroscopic ellipsometry (RTSE) is shown to be an effective contactless probe of radio frequency magnetron sputtered molybdenum thin films used as the back electrode in chalcopyrite [Cu(In,Ga)Se{sub 2}] solar cells. A series of Mo thin films was sputtered onto soda-lime glass substrates at Ar pressures ranging from 4 to 20 mTorr. RTSE measurements reveal how Ar pressure affects the nucleation and growth mechanisms that influence the films' ultimate grain structure and properties. Determinations of the free electron relaxation times at optical frequencies reveal that higher pressures lead to a smaller average grain size and increased void volume fraction.

  8. Metal island film-based structures for sensing using spectrophotometry and ellipsometry

    NASA Astrophysics Data System (ADS)

    Janicki, V.; Sancho-Parramon, J.; Bosch, S.; Zorc, H.; Belarre, F. J.; Arbiol, J.

    2014-05-01

    Metal island films (MIF) are good candidates for sensors due to the strong sensitivity of the localised surface plasmon resonance to the environment refractive index. The strong near field enhancement in the vicinity of the island surface can be even higher if a metal layer (ML) is placed close to a MIF. Structures containing MIF with and without ML are prepared and sensitivities of spectrophotometric and ellipsometric features of the measurements are compared. It is shown that simple MIF is preferable for ellipsometry-based sensing and the one including ML in the case of spectrophotometric measurements.

  9. Surface roughness evolution in the growth of a-Si: H thin films studied by ellipsometry

    NASA Astrophysics Data System (ADS)

    Canillas, A.; Campmany, J.; Andújar, J. L.; Bertran, E.; Morenza, J. L.

    1991-07-01

    In situ real time ellipsometry at 3.4 eV photon energy has been used to analyze the deposition of hydrogenated amorphous silicon (a-Si:H) thin films obtained by RF glow discharge decomposition of silane gas. The study is focused on the evolution of the microstructure during the films growth. The results are explained considering a theoretical model which assumes a homogeneous growth of the a-Si:H below a surface roughness layer which increases 0.5-0.7 nm in thickness during the first 400 nm of film growth. The bulk layer microstructure appears to be homogeneous within 1% of density variations.

  10. Total internal reflection ellipsometry and SPR detection of low molecular weight environmental toxins

    NASA Astrophysics Data System (ADS)

    Nabok, A. V.; Tsargorodskaya, A.; Hassan, A. K.; Starodub, N. F.

    2005-06-01

    The environmental toxins, such as herbicides simazine and atrazine, and T2 mycotoxin were registered with the optical methods of surface plasmon resonance (SPR) and recently developed total internal reflection ellipsometry (TIRE). The immune assay approach was exploited for in situ registration of the above low molecular weight toxins with specific antibodies immobilised onto the gold surface via (poly)allylamine hydrochloride layer using electrostatic self-assembly (ESA) technique. The comparison of two methods of SPR and TIRE shows a higher sensitivity of the latter.

  11. Calculation of the diffraction efficiency on concave gratings based on Fresnel-Kirchhoff's diffraction formula.

    PubMed

    Huang, Yuanshen; Li, Ting; Xu, Banglian; Hong, Ruijin; Tao, Chunxian; Ling, Jinzhong; Li, Baicheng; Zhang, Dawei; Ni, Zhengji; Zhuang, Songlin

    2013-02-10

    Fraunhofer diffraction formula cannot be applied to calculate the diffraction wave energy distribution of concave gratings like plane gratings because their grooves are distributed on a concave spherical surface. In this paper, a method based on the Kirchhoff diffraction theory is proposed to calculate the diffraction efficiency on concave gratings by considering the curvature of the whole concave spherical surface. According to this approach, each groove surface is divided into several limited small planes, on which the Kirchhoff diffraction field distribution is calculated, and then the diffraction field of whole concave grating can be obtained by superimposition. Formulas to calculate the diffraction efficiency of Rowland-type and flat-field concave gratings are deduced from practical applications. Experimental results showed strong agreement with theoretical computations. With the proposed method, light energy can be optimized to the expected diffraction wave range while implementing aberration-corrected design of concave gratings, particularly for the concave blazed gratings.

  12. Single Photon diffraction and interference

    NASA Astrophysics Data System (ADS)

    Hodge, John

    2015-04-01

    A previous paper based on the Scalar Theory of Everything studied photon diffraction and interference (IntellectualArchive, Vol.1, No. 3, P. 20, Toronto, Canada July 2012. http://intellectualarchive.com/?link=item&id=597). Several photons were required in the experiment at the same time. Interference experiments with one photon in the experiment at a time also showed interference patterns. The previous paper with the Bohm Interpretation, models of the screen and mask, and the Transaction Interpretation of Quantum Mechanics were combined. The reverse wave required by the Transaction Interpretation was provided by a reflected plenum wave rather than a reverse time wave. The speed of the plenum wave was assumed to be much faster than the speed of photons/light. Using the assumptions of Fraunhofer diffraction resulted in the same equation for the photon distribution on a screen as the intensity pattern of the Fraunhofer diffraction. (http://myplace.frontier.com/ ~ jchodge/)

  13. Diffractive parameric colors.

    PubMed

    Orava, Joni; Heikkila, Noora; Jaaskelainen, Timo; Parkkinen, Jussi

    2008-12-01

    A method of producing inkless parameric color pairs is studied. In this method, colors are formed additively using diffraction gratings with differing grating periods as primary colors. Gratings with different grating periods reflect different spectral radiance peaks of a fluorescent lamp to the desired viewing angle, according to the grating equation. Four spectral peaks of a 4000 K fluorescent lamp--red, green, cyan, and blue-are used as the primary colors. The colors are mixed additively by fixing the relative areas of different grating periods inside a pixel. With four primary colors it is possible to mix certain colors with different triplets of primary colors. Thus, it is theoretically possible to produce metameric colors. In this study, three parameric color pairs are fabricated using electron beam lithography, electroplating, and hot embossing. The radiance spectra of the color pairs are measured by spectroradiometer from hot-embossed plastic samples. The CIELAB DeltaE(ab) and CIEDE2000 color differences between radiance spectra of the color pairs are calculated. The CIEDE2000 color differences of color pairs are between 2.6 and 7.2 units in reference viewing conditions. The effects of viewing angle and different light sources are also evaluated. It is found that both the viewing angle and the light source have very strong influences on the color differences of the color pairs.

  14. DIFFRACTION-LIMITED VISIBLE LIGHT IMAGES OF ORION TRAPEZIUM CLUSTER WITH THE MAGELLAN ADAPTIVE SECONDARY ADAPTIVE OPTICS SYSTEM (MagAO)

    SciTech Connect

    Close, L. M.; Males, J. R.; Morzinski, K.; Kopon, D.; Follette, K.; Rodigas, T. J.; Hinz, P.; Wu, Y-L.; Puglisi, A.; Esposito, S.; Riccardi, A.; Pinna, E.; Xompero, M.; Briguglio, R.; Uomoto, A; Hare, T.

    2013-09-10

    We utilized the new high-order (250-378 mode) Magellan Adaptive Optics system (MagAO) to obtain very high spatial resolution observations in ''visible light'' with MagAO's VisAO CCD camera. In the good-median seeing conditions of Magellan (0.''5-0.''7), we find MagAO delivers individual short exposure images as good as 19 mas optical resolution. Due to telescope vibrations, long exposure (60 s) r' (0.63 {mu}m) images are slightly coarser at FWHM = 23-29 mas (Strehl {approx}28%) with bright (R < 9 mag) guide stars. These are the highest resolution filled-aperture images published to date. Images of the young ({approx}1 Myr) Orion Trapezium {theta}{sup 1} Ori A, B, and C cluster members were obtained with VisAO. In particular, the 32 mas binary {theta}{sup 1} Ori C{sub 1} C{sub 2} was easily resolved in non-interferometric images for the first time. The relative positions of the bright trapezium binary stars were measured with {approx}0.6-5 mas accuracy. We are now sensitive to relative proper motions of just {approx}0.2 mas yr{sup -1} ({approx}0.4 km s{sup -1} at 414 pc)-this is a {approx}2-10 Multiplication-Sign improvement in orbital velocity accuracy compared to previous efforts. For the first time, we see clear motion of the barycenter of {theta}{sup 1} Ori B{sub 2} B{sub 3} about {theta}{sup 1} Ori B{sub 1}. All five members of the {theta}{sup 1} Ori B system appear likely to be a gravitationally bound ''mini cluster'', but we find that not all the orbits can be both circular and co-planar. The lowest mass member of the {theta}{sup 1} Ori B system (B{sub 4}; mass {approx}0.2 M{sub Sun }) has a very clearly detected motion (at 4.1 {+-} 1.3 km s{sup -1}; correlation = 99.9%) w.r.t. B{sub 1}. Previous work has suggested that B{sub 4} and B{sub 3} are on long-term unstable orbits and will be ejected from this ''mini cluster''. However, our new ''baseline'' model of the {theta}{sup 1} Ori B system suggests a more hierarchical system than previously thought, and so

  15. Phase-shifting point diffraction interferometer phase grating designs

    DOEpatents

    Naulleau, Patrick

    2001-01-01

    Diffraction phase gratings are employed in phase-shifting point diffraction interferometers to improve the interferometric fringe contrast. The diffraction phase grating diffracts a zeroth-order diffraction of light at a first power level to the test-beam window of a mask that is positioned at the image plane and a first-order diffraction at a second power to the reference-beam pinhole. The diffraction phase grating is preferably selected to yield a desired ratio of the first power level to second power level.

  16. Role of an Oxidant Mixture as Surface Modifier of Porous Silicon Microstructures Evaluated by Spectroscopic Ellipsometry

    NASA Astrophysics Data System (ADS)

    Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; Del Río, J. Antonio; Tagüeña-Martínez, Julia

    2016-04-01

    Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications.

  17. In-situ spectroscopic ellipsometry study of copper selective-area atomic layer deposition on palladium

    SciTech Connect

    Jiang, Xiaoqiang; Wang, Han; Qi, Jie; Willis, Brian G.

    2014-07-01

    Selective area copper atomic layer deposition on palladium seed layers has been investigated with in-situ real-time spectroscopic ellipsometry to probe the adsorption/desorption and reaction characteristics of individual deposition cycles. The reactants are copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate) vapor and hydrogen gas. Self-limiting atomic layer deposition was observed in the temperature range of 135–230 °C in a low pressure reactor. Under optimal conditions, growth occurs selectively on palladium and not on silicon dioxide or silicon nitride layers. Based on in-situ ellipsometry data and supporting experiments, a new mechanism for growth is proposed. In the proposed mechanism, precursor adsorption is reversible, and dissociatively adsorbed hydrogen are the stable surface intermediates between growth cycles. The mechanism is enabled by continuous diffusion of palladium from the seed layer into the deposited copper film and strong H* binding to palladium sites. Less intermixing can be obtained at low growth temperatures and short cycle times by minimizing Cu/Pd inter-diffusion.

  18. Spectroscopic ellipsometry investigations of the optical properties of manganese doped bismuth vanadate thin films

    SciTech Connect

    Kumari, Neelam; Krupanidhi, S.B.; Varma, K.B.R.

    2010-04-15

    The optical properties of Bi{sub 2}V{sub 1-x}Mn{sub x}O{sub 5.5-x} {l_brace}x = 0.05, 0.1, 0.15 and 0.2 at.%{r_brace} thin films fabricated by pulsed laser deposition on platinized silicon substrates were studied in UV-visible spectral region (1.51-4.17 eV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data ({Psi} and {Delta}) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder.

  19. Glass Transition of Polystyrene Thin Films on Silicon Wafer Measured by Dynamic Mechanical Analysis and Ellipsometry

    NASA Astrophysics Data System (ADS)

    Jackson, Catheryn; Lan, Tian; Caporale, Stefan; Torkelson, John

    Measuring the glass transition temperature, Tg, of polymer films in the thickness range of 20-500 nm is non-routine but commercially important for polymer films used in applications such as membranes and electronic circuit boards. Various specialized methods have been used or developed to determine Tg in thin films, including thermal ellipsometry and many others. Differential scanning calorimetry (DSC) is a more conventional method that has been used to measure Tg, but since the thin films must be scraped from the wafer, consolidation and annealing can occur in the pan and may negate effects due to film thickness. Here we report results for polystyrene (PS) spin coated on silicon wafers in the range of 20-500 nm using a benchtop dynamic mechanical analyzer (DMA) in the 3-point bending mode. For the DMA, the peak tan δ temperature is related to the polymer Tg and effects due to confinement as a function of film thickness are compared to literature values. We use thermal ellipsometry as a control method to measure film thickness and Tg in parallel. Low level additives present in commercial PS were observed to strongly affect the results for thin films and are described.

  20. Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry.

    PubMed

    Kim, Se-Hwa; Chegal, Won; Doh, Junsang; Cho, Hyun Mo; Moon, Dae Won

    2011-04-06

    The interaction of cells with extracellular matrix, termed cell-matrix adhesions, importantly governs multiple cellular phenomena. Knowledge of the functional dynamics of cell-matrix adhesion could provide critical clues for understanding biological phenomena. We developed surface plasmon resonance imaging ellipsometry (SPRIE) to provide high contrast images of the cell-matrix interface in unlabeled living cells. To improve the contrast and sensitivity, the null-type imaging ellipsometry technique was integrated with an attenuated total reflection coupler. We verified that the imaged area of SPRIE was indeed a cell-matrix adhesion area by confocal microscopy imaging. Using SPRIE, we demonstrated that three different cell types exhibit distinct features of adhesion. SPRIE was applied to diverse biological systems, including during cell division, cell migration, and cell-cell communication. We imaged the cell-matrix anchorage of mitotic cells, providing the first label-free imaging of this interaction to our knowledge. We found that cell-cell communication can alter cell-matrix adhesion, possibly providing direct experimental evidence for cell-cell communication-mediated changes in cell adhesion. We also investigated shear-stress-induced adhesion dynamics in real time. Based on these data, we expect that SPRIE will be a useful methodology for studying the role of cell-matrix adhesion in important biological phenomena.

  1. Role of an Oxidant Mixture as Surface Modifier of Porous Silicon Microstructures Evaluated by Spectroscopic Ellipsometry

    PubMed Central

    Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J. Antonio; Tagüeña-Martínez, Julia

    2016-01-01

    Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications. PMID:27097767

  2. Role of an Oxidant Mixture as Surface Modifier of Porous Silicon Microstructures Evaluated by Spectroscopic Ellipsometry.

    PubMed

    Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J Antonio; Tagüeña-Martínez, Julia

    2016-04-21

    Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications.

  3. Glutathione immunosensing platform based on total internal reflection ellipsometry enhanced by functionalized gold nanoparticles.

    PubMed

    García-Marín, Antonio; Abad, José M; Ruiz, Eduardo; Lorenzo, Encarnación; Piqueras, Juan; Pau, José L

    2014-05-20

    An immunosensor to detect small molecules, such as glutathione (GSH), has been developed by combination of ellipsometry and Kretschmann surface plasmon resonance (SPR). The Au thin film used for surface plasmon polariton (SPP) excitation is functionalized with anti-GSH to specifically bind GSH. At low concentrations, the small refractive index changes caused by the low molecular weight of GSH induced only negligible shifts in the plasmon resonant energy during GSH binding. To improve sensitivity, gold nanoparticles (AuNPs) are functionalized with glutathione acting as amplifiers of the antigen-antibody interaction. Changes induced by the AuNP adsorption are monitored using Ψ and Δ ellipsometric functions. After performing competitive assays using solutions containing different concentrations of free GSH and a constant amount of functionalized AuNPs, it was concluded that the resonant energy linearly shifts as the relative concentration of free GSH increases. A detection limit for free GSH in the nanomolar range is found, demonstrating the effectiveness of AuNPs to enhance the sensitivity to immunoreactions in total internal reflection ellipsometry.

  4. Probing initial-stages of ALD growth with dynamic in situ spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Muneshwar, Triratna; Cadien, Ken

    2015-02-01

    The initial stages of ALD surface reactions are probed using dynamic in situ spectroscopic ellipsometry (d-iSE) technique during plasma-enhanced ALD of zirconium nitride (ZrN) thin films in spectral range of 0.73-6.4 eV. The measured change in the ellipsometry parameter Δ, with every precursor (TDMAZr) and reactant (forming gas plasma) exposure is interpreted as the combined effect of film growth and change in surface chemistry during ALD. We present application of Bruggeman's effective-medium approximation (B-EMA) in the analysis of d-iSE data to determine fractional surface coverage (θ) of ALD grown film at the end of every deposition cycle. During the deposition of first few ZrN monolayers, d-iSE datasets are analyzed on the basis of surface diffusion enhanced ALD growth, where the surface adsorbed precursor molecules can diffuse over substrate surface to occupy energetically favorable surface sites. The determined surface coverage of ZrN films highlights the effects of substrate enhanced ALD growth.

  5. High-resolution in-die metrology using beam profile reflectometry and ellipsometry

    NASA Astrophysics Data System (ADS)

    Jun, Chungsam; Park, Jangik; Opsal, Jon; Pois, Heath; Kim, In-Kyo; Kim, Jung-Wook; Nicolaides, Lena

    2007-03-01

    A new application for ultra-fast and repeatable in-die determination of CD structures at the ~1 μm length scale using BPR®/BPE® (Beam Profile Reflectometry/Ellipsometry) technologies on an Opti-Probe OP9000 series system, is presented and summarized. Two structures were measured and analyzed, including a poly-silicon CD standard and an advanced poly-silicon recessed structure relevant to advanced memory devices. A focused beam spot (~1 μm) and "fast BPR" data acquisition capability (~17 ms) were utilized to perform high-resolution scans across wafer and within single die regions. Rotating Compensator Spectroscopic Ellipsometry (RCSE®) signals were also used to independently determine and compare to BPR results from data collected over larger areas (~15 μm). The BPR/BPE and SE results for line CD were found to have high correlation. Further, model regression for SE data coupled with an artificial neural network model and fast BPR were utilized to measure and calculate 10,000 points across a 1 mm2 area in a matter of minutes. Overall, the results were found to be repeatable and correlated well to CD-SEM analysis.

  6. Immersion transmission ellipsometry (ITE) for the determination of orientation gradients in photoalignment layers

    NASA Astrophysics Data System (ADS)

    Jung, C. C.; Stumpe, J.

    2014-09-01

    The capability of the method of immersion transmission ellipsometry (ITE) (Jung et al. Int Patent WO, 2004/109260) to not only determine three-dimensional refractive indices in anisotropic thin films (which was already possible in the past), but even their gradients along the z-direction (perpendicular to the film plane) is investigated in this paper. It is shown that the determination of orientation gradients in deep-sub-μm films becomes possible by applying ITE in combination with reflection ellipsometry. The technique is supplemented by atomic force microscopy for measuring the film thickness. For a photo-oriented thin film, no gradient was found, as expected. For a photo-oriented film, which was subsequently annealed in a nematic liquid crystalline phase, an order was found similar to the one applied in vertically aligned nematic displays, with a tilt angle varying along the z-direction. For fresh films, gradients were only detected for the refractive index perpendicular to the film plane, as expected.

  7. Phase function design of a diffraction grating lens for an optical imaging system from a Fraunhofer diffraction perspective.

    PubMed

    Ando, Takamasa; Korenaga, Tsuguhiro; Suzuki, Masa-aki

    2013-09-10

    The potential exists to apply diffraction gratings to optical imaging systems to improve camera resolution and shorten optical length. However, we have noted the generation of striped flare lights, which differ from unnecessary-order diffraction lights, under intense lighting. We have elucidated the generation principle of these new striped lights and have discovered that they are caused by narrow diffraction grating rings. In this paper, using an analysis based on Fraunhofer diffraction, we suggest a way of minimizing them by designing an appropriate phase function structure, and test the efficacy of this design using our own manufactured prototype.

  8. X-ray dynamical diffraction Fraunhofer holography.

    PubMed

    Balyan, Minas

    2013-09-01

    An X-ray dynamical diffraction Fraunhofer holographic scheme is proposed. Theoretically it is shown that the reconstruction of the object image by visible light is possible. The spatial and temporal coherence requirements of the incident X-ray beam are considered. As an example, the hologram recording as well as the reconstruction by visible light of an absolutely absorbing wire are discussed.

  9. Diffraction Revisited: Position of Diffraction Spots upon Rotation of a Transmission Grating

    ERIC Educational Resources Information Center

    Vollmer, Michael

    2005-01-01

    Diffraction gratings are often used in the laboratory to determine the wavelength of laser light. What happens to the spots on the screen if the grating is rotated in this set-up? The answer is nontrivial and instructive.

  10. A high throughput approach to quantify protein adsorption on combinatorial metal/metal oxide surfaces using electron microprobe and spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Byrne, T.; Lohstreter, L.; Filiaggi, M. J.; Bai, Zhijun; Dahn, J. R.

    2008-09-01

    Although metallic biomaterials are widely used, systematic studies of protein adsorption onto such materials are generally lacking. Combinatorial binary films of Al 1-xTi x and Al 1-xNb x (0 ⩽ x ⩽ 1) and corresponding pure element films were produced on glass substrates using a unique magnetron sputtering technique. Fibrinogen and albumin adsorption amounts were measured by wavelength-dispersive spectroscopy (WDS) and spectroscopic ellipsometry (SE) equipment, both high throughput techniques with automated motion stage capabilities. X-ray diffraction revealed that the binary films have crystalline phases present near the ends of the compositional gradient with an amorphous region throughout the interior of the gradient. X-ray photoelectron spectroscopy provided the surface chemistry along the binary films and showed that Al 2O 3 preferentially formed at the surface. Protein adsorption onto these films was found to be closely correlated to the alumina surface fraction, with high alumina content at the surface leading to low amounts of adsorbed fibrinogen and albumin. Protein adsorption amounts obtained with WDS and SE were in excellent agreement for all films. This suggests that this combinatorial materials approach combined with these state-of-the-art, automated high throughput instruments provides a novel way to accurately monitor protein adsorption taking place at the surfaces of these metal/metal oxide materials.

  11. In-situ spectroscopic ellipsometry and structural study of HfO{sub 2} thin films deposited by radio frequency magnetron sputtering

    SciTech Connect

    Cantas, Ayten; Aygun, Gulnur; Basa, Deepak Kumar

    2014-08-28

    We have investigated the reduction of unwanted interfacial SiO{sub 2} layer at HfO{sub 2}/Si interface brought about by the deposition of thin Hf metal buffer layer on Si substrate prior to the deposition of HfO{sub 2} thin films for possible direct contact between HfO{sub 2} thin film and Si substrate, necessary for the future generation devices based on high-κ HfO{sub 2} gate dielectrics. Reactive rf magnetron sputtering system along with the attached in-situ spectroscopic ellipsometry (SE) was used to predeposit Hf metal buffer layer as well as to grow HfO{sub 2} thin films and also to undertake the in-situ characterization of the high-κ HfO{sub 2} thin films deposited on n-type 〈100〉 crystalline silicon substrate. The formation of the unwanted interfacial SiO{sub 2} layer and its reduction due to the predeposited Hf metal buffer layer as well as the depth profiling and also structure of HfO{sub 2} thin films were investigated by in-situ SE, Fourier Transform Infrared spectroscopy, and Grazing Incidence X-ray Diffraction. The study demonstrates that the predeposited Hf metal buffer layer has played a crucial role in eliminating the formation of unwanted interfacial layer and that the deposited high-κ HfO{sub 2} thin films are crystalline although they were deposited at room temperature.

  12. Confinement effects on glass transition temperature, transition breadth, and expansivity: Comparison of ellipsometry and fluorescence measurements on polystyrene films

    NASA Astrophysics Data System (ADS)

    Kim, S.; Hewlett, S. A.; Roth, C. B.; Torkelson, J. M.

    2009-09-01

    Using ellipsometry, we characterized the nanoconfinement effect on the glass transition temperature (T gof supported polystyrene (PS) films employing two methods: the intersection of fits to the temperature (Tdependences of rubbery- and glassy-state thicknesses, and the transition mid-point between rubbery- and glassy-state expansivities. The results demonstrate a strong effect of thickness: ensuremath Tg(bulk)-Tg(23{ nm})= 10 circ C. The T -range needed for accurate measurement increases significantly with decreasing thickness, an effect that arises from the broadening of the transition with confinement and a region below T g where expansivity slowly decreases with decreasing T . As determined from expansivities, the T g breadth triples in going from bulk films to a 21-nm-thick film; this broadening of the transition may be a more dramatic effect of confinement than the T g reduction itself. In contrast, there is little effect of confinement on the rubbery- and glassy-state expansivities. Compared with ellipsometry, T g ’s from fluorescence agree well in bulk films but yield lower values in nanoconfined films: T g(bulk) - T g(23 nm) = 15° C via fluorescence. This small difference in the T g confinement effect reflects differences in how fluorescence and ellipsometry report “average T g ” with confinement. With decreasing nanoscale thickness, fluorescence may slightly overweight the contribution of the free-surface layer while ellipsometry may evenly weight or underweight its contribution. in here

  13. Single shot ultrafast dynamic ellipsometry of laser-driven shocks in single crystal explosives and thin films of metals

    NASA Astrophysics Data System (ADS)

    Whitley, Von; McGrane, Shawn; Moore, David; Eakins, Dan; Bolme, Cynthia

    2009-06-01

    Ultrafast dynamic ellipsometry (UDE) was used to measure the shock conditions of single-crystal energetic materials and metal thin films. Explosive crystals are coated with aluminum, which through frustrated laser ablation acts as a shock drive layer. UDE data on shocked explosives and different potential metal drive layers will be reported and experimental considerations will be discussed.

  14. Optical-diffraction method for determining crystal orientation

    DOEpatents

    Sopori, B.L.

    1982-05-07

    Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.

  15. Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Kaminska, Kate; Amassian, Aram; Martinu, Ludvik; Robbie, Kevin

    2005-01-01

    Using a combination of variable-angle spectroscopic ellipsometry and scanning electron microscopy, we investigated the scaling behavior of uniaxially anisotropic, ultraporous silicon manufactured with glancing angle deposition. We found that both the diameter of the nanocolumns and the spacing between them increase with film thickness according to a power-law relationship consistent with self-affine fractal growth. An ellipsometric model is proposed to fit the optical properties of the anisotropic silicon films employing an effective medium approximation mixture of Tauc-Lorentz oscillator and void. This study shows that the optical response of silicon films made at glancing incidence differs significantly from that of amorphous silicon prepared by other methods due to highly oriented nanocolumn formation and power-law scaling.

  16. Nanotechnologic biosensor ellipsometry and biomarker pattern analysis in the evaluation of atherosclerotic risk profile.

    PubMed

    Siegel, G; Rodríguez, M; Sauer, F; Abletshauser, C; de Mey, C; Schötz, K; Ringstad, L; Malmsten, M; Schäfer, P

    2009-01-01

    A proteoheparan sulfate coated, hydrophobic silica surface serves as lipoprotein receptor at which the Ca(2+)-driven arteriosclerotic nanoplaque formation can be pursued by laser-based ellipsometry. Any lipoprotein from human blood can be very sensitively tested for its atherogenic properties. From the same blood sample, it is possible to determine the concentration and activity of a series of interacting biomarker molecules which, through a pattern analysis, allow to assess the state of health with respect to cardiovascular diseases. These two interlinked and complementary biosensors make a prospective cardio-cerebro-vascular risk stratification feasible, especially the sequelae of an underlying arteriosclerotic disease. Based on these diagnostic tools, an optimized therapy decision for the patient can be taken and the necessary preventive measures for the still healthy person.

  17. In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment

    SciTech Connect

    Kroning, Annika; Furchner, Andreas; Aulich, Dennis; Bittrich, Eva; Rauch, Sebastian; Uhlmann, Petra; Eichhorn, Klaus-Jochen; Seeber, Michael; Luzinov, Igor; Kilbey, S. Michael; Lokitz, Bradley S.; Minko, Sergiy; Hinrichs, Karsten

    2015-02-10

    The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes with high potential for biosensing and biomedical applications are studied by in-situ infrared-spectroscopic ellipsometry (IRSE). IRSE as a highly sensitive non-destructive technique allows us to investigate protein adsorption on polymer brushes in aqueous environment in dependence of external stimuli like temperature and pH. These stimuli are, for instance, relevant in switchable mixed brushes containing poly(N-isopropyl acrylamide) and poly(acrylic acid), respectively. We use such brushes as model surfaces for controlling protein adsorption of human serum albumin and human fibrinogen. IRSE can distinguish between polymer-specific vibrational bands, which yield insights into the hydration state of the brushes, and changes in the protein-specific amide bands, which are related to changes of the protein secondary structure.

  18. In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment

    DOE PAGES

    Kroning, Annika; Furchner, Andreas; Aulich, Dennis; ...

    2015-02-10

    The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes with high potential for biosensing and biomedical applications are studied by in-situ infrared-spectroscopic ellipsometry (IRSE). IRSE as a highly sensitive non-destructive technique allows us to investigate protein adsorption on polymer brushes in aqueous environment in dependence of external stimuli like temperature and pH. These stimuli are, for instance, relevant in switchable mixed brushes containing poly(N-isopropyl acrylamide) and poly(acrylic acid), respectively. We use such brushes as model surfaces for controlling protein adsorption of human serum albumin and human fibrinogen. IRSE can distinguish between polymer-specific vibrational bands, which yield insights intomore » the hydration state of the brushes, and changes in the protein-specific amide bands, which are related to changes of the protein secondary structure.« less

  19. Characterization of the Refractive Index of Strained GaInNAs Layers by Spectroscopic Ellipsometry

    NASA Astrophysics Data System (ADS)

    Kitatani, Takeshi; Kondow, Masahiko; Shinoda, Kazunori; Yazawa, Yoshiaki; Okai, Makoto

    1998-03-01

    We have characterized the refractive index of strained GaInNAs layers. Using spectroscopic ellipsometry (SE), the variation in optical constants of GaInNAs layers, about 6 nm thick with a nitrogen content lower than 1%, can be clearly observed. Analysis of the SE data, including the strain effect in the layer, clarified that the refractive index of GaInNAs increases in proportion to the nitrogen content. While the trend for increase in refractive index with a decrease in the bandgap energy is the same as that observed in conventional III V alloy semiconductors, the rate of increase is found to be much larger than that in GaInAs. This result suggests a large density of states in the conduction band characteristics of this type of material system that includes nitrogen atoms.

  20. Determination of the optical functions of transparent glasses by using spectroscopic ellipsometry

    SciTech Connect

    Jellison, G.E. Jr.; Sales, B.C. )

    1991-10-20

    Two-channel spectroscopic polarization-modulation ellipsometry measurements have been made on four different glasses (fused SiO{sub 2}, fine-annealed BK-7, a lead-indium-phosphate glass, and a germanium-arsenic-selenium glass). We show that this technique is sensitive to thin surface layers and that these surface layers can be modeled by using the Bruggeman effective-medium theory with 50% glass and 50% voids. By correcting the experimental spectra for these surface layers, we determined the refractive index of the sample within an error of {plus minus}0.002 in the transparent region. For wavelength regions where the material is normally opaque, the ellipsometric data can be corrected for this overlayer, thereby increasing the accuracy of the determination of both the refractive index and the extinction coefficient.

  1. Rapid, non-destructive evaluation of ultrathin WSe{sub 2} using spectroscopic ellipsometry

    SciTech Connect

    Eichfeld, Sarah M.; Lin, Yu-Chuan; Hossain, Lorraine; Eichfeld, Chad M.; Robinson, Joshua A.

    2014-09-01

    The utilization of tungsten diselenide (WSe{sub 2}) in electronic and optoelectronic devices depends on the ability to understand and control the process-property relationship during synthesis. We demonstrate that spectroscopic ellipsometry is an excellent technique for accurate, non-destructive determination of ultra-thin (<30 nm) WSe{sub 2} properties. The refractive index (n) and extinction coefficient (k) were found to be independent of thickness down to 1.3 nm, and were used to determine film thickness, which was confirmed to be within 9% of values found via atomic force microscopy. Finally, the optical bandgap was found to closely correlate with thickness, ranging from 1.2 to 1.55 eV as the WSe{sub 2} is thinned to the equivalent of 2 atomic layers.

  2. In situ ellipsometry of Cu surfaces immersed in benzotriazole-hydrogen peroxide solutions

    NASA Astrophysics Data System (ADS)

    Kondoh, Eiichi; Kawakami, Tatsuya; Watanabe, Mitsuhiro; Jin, Lianhua; Hamada, Satomi; Shima, Shohei; Hiyama, Hirokuni

    2016-06-01

    In the chemical mechanical polishing (CMP) of Cu, the Cu surface is oxidized and is concurrently removed by the mechanical function of an abrasive. Surface oxidation can lead to severe surface corrosion, and to prevent this, a corrosion inhibitor is added to slurries. Accurate understanding of the competition between oxidation and passivation is essential for advanced Cu CMP technologies. In this work, layer formation on clean Cu surfaces in benzotriazole (BTA), H2O2, and BTA-H2O2 aqueous solutions was studied by in situ spectroscopic ellipsometry. Time changes of ellipsometric parameters are discussed with respect to BTA and H2O2 concentrations. It was found that the BTA adsorbs onto the Cu surface and the adsorbed BTA transforms into a Cu-BTA complex in about 3 min after the onset of adsorption. The BTA/complex layer passivates the Cu surface against oxidation by H2O2.

  3. Ellipsometry study on gold-nanoparticle-coated gold thin film for biosensing application

    PubMed Central

    Moirangthem, Rakesh Singh; Chang, Yia-Chung; Wei, Pei-Kuen

    2011-01-01

    The amplified plasmonic response from various distributions of gold nanoparticles (AuNPs) coated on top of gold thin film was studied via ellipsometry under total internal reflection mode. The surface plasmon resonance dip can be tuned from the visible to near infrared by simply varying the AuNP concentration. Theoretical modeling based on effective medium theory with a multi-slice model has been employed to fit the experimental results. Additionally, this experimental tool has been further extended to study bio-molecular interactions with metal surfaces as well as in studying protein-protein interaction without any labeling. Hence, this technique could provide a non-destructive way of designing tunable label-free optical biosensors with very high sensitivity. PMID:21991549

  4. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, M. N.; Alshareef, H. N.

    2012-01-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258-133 S cm-1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8-3.2 me), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  5. Mixed polarization in determining the film thickness of a silicon sphere by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Zhang, Ji-Tao; Wu, Xue-Jian; Li, Yan

    2012-01-01

    The effect of a spherical shape on the measurement result of spectroscopic ellipsometry (SE) is analyzed, and a method to eliminate this effect is proposed. Based on the simulation result of the SE measurement on a silicon sphere by ray tracking, we find that the sphere makes the parallel incident beam of the SE be divergent after reflection, and the measurement error of the SE caused by this phenomenon is explained by the mixed polarization theory. By settling an aperture in front of the detector of the SE, we can almost eliminate the error. For the silicon sphere with a diameter of 94 mm used in the Avogadro project, the thickness error of the oxide layer caused by the spherical shape can be reduced from 0.73 nm to 0.04 nm by using the proposed method. The principle of the method and the results of the experimental verification are presented.

  6. Spectroscopic imaging ellipsometry: real-time measurement of single, intact wood pulp fibers

    NASA Astrophysics Data System (ADS)

    Ye, Chun

    2006-12-01

    A nondestructive method based on spectroscopic ellipsometry has been developed and demonstrated for the real-time measurement of a single pulp fiber's microfibril angle and phase retardation, with the latter proportional to the cell wall thickness. The method uses an optical arrangement insensitive to the sample's orientation in combination with a proper spectral analysis of the sample's image. The optical arrangement and the measurement principle of the method are described. To test the new method, equipment functioning as a spectroscopic imaging ellipsometer was constructed according to the arrangement, and measurements were carried out in which single pulp fibers and ordinary wave plates were measured. The test measurements and results are described and presented.

  7. Spectroscopic ellipsometry study of Cu{sub 2}ZnSnSe{sub 4} bulk crystals

    SciTech Connect

    León, M. Lopez, N.; Merino, J. M.; Caballero, R.; Levcenko, S.; Gurieva, G.; Serna, R.; Bodnar, I. V.; Nateprov, A.; Guc, M.; Arushanov, E.; Schorr, S.; Perez-Rodriguez, A.

    2014-08-11

    Using spectroscopic ellipsometry we investigated and analyzed the pseudo-optical constants of Cu{sub 2}ZnSnSe{sub 4} bulk crystals, grown by the Bridgman method, over 0.8–4.5 eV photon energy range. The structures found in the spectra of the complex pseudodielectric functions were associated to E{sub 0}, E{sub 1A}, and E{sub 1B} interband transitions and were analyzed in frame of the Adachi's model. The interband transition parameters such as strength, threshold energy, and broadening were evaluated by using the simulated annealing algorithm. In addition, the pseudo-complex refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity were derived over 0.8–4.5 eV photon energy range.

  8. Spectroscopic ellipsometry for anisotropic nano-layered Al/SiO2 metamaterial with hyperbolic dispersion

    NASA Astrophysics Data System (ADS)

    Kelly, Priscilla; Martin, Andrew C.; Kuznetsova, Lyuba

    2016-09-01

    A special class of nano-layered hyperbolic metamaterials (HMMs) has received special attention recently due to their unique optical property, namely that the dispersion of the dielectric constant for HMMs exhibits a topological transition in the iso-frequency surface from an ellipsoid to a hyperboloid. Using aluminum in metal-dielectric nano-layered structures offers several advantages over currently used noble metals. The plasma frequency of the aluminum is higher than that of gold or silver. As a result, aluminum exhibits metallic characteristics over a broader spectral range than gold and silver. In addition, SiO2 is used as the dielectric for this hyperbolic metamaterial because it could be easily integrated into current CMOS technology and has near-zero losses in the UV region. In this investigation, we use generalized spectroscopic ellipsometry to study the distribution of Al within nano-layered samples fabricated using the RF sputtering technique under varying fabrication parameters with a goal of achieving hyperbolic dispersion. In our work, we developed an approach to analyzing generalized spectroscopic ellipsometry data for anisotropic Al/SiO2 structures with strong absorption, which uses the 4x4 transfer matrix approach, also known as the Berreman-formalism. This developed approach allows obtaining permittivity in all three dimensions and importing theoretical permittivity models which are tailored to the Al/SiO2 material's optical and electrical properties. In this work, we investigate the methods of reducing Al oxidation during fabrication by means of varying the fabrication temperatures and pressure by fitting data from RC2 Ellipsometer (A.C. Woollam Co.), which has dual rotating compensators. Applications for this Al/SiO2 hyperbolic metamaterial will also be discussed.

  9. Expanded beam spectro-ellipsometry for big area on-line monitoring

    NASA Astrophysics Data System (ADS)

    Fried, M.; Major, C.; Juhasz, G.; Petrik, P.; Horvath, Z.

    2015-05-01

    Non-destructive analysing tools are needed at all stages of thin film process-development, especially photovoltaic (PV) development, and on production lines. In the case of thin films, layer thicknesses, micro-structure, composition, layer optical properties, and their uniformity are important parameters. An important focus is to express the dielectric functions of each component material in terms of a handful of wavelength independent parameters whose variation can cover all process variants of that material. With the resulting database, spectroscopic ellipsometry coupled with multilayer analysis can be developed for on-line point-by-point mapping and on-line line-by-line imaging. Off-line point-by-point mapping can be effective for characterization of non-uniformities in full scale PV panels or big area (even 450 mm diameter) Si-wafers in developing labs but it is slow in the on-line mode when only 15 points can be obtained (within 1 min) as a 120 cm long panel moves by the mapping station. Last years [M. Fried et al, Thin Solid Films 519, 2730 (2011)], a new instrumentation was developed that provides a line image of spectroscopic ellipsometry (wl=350- 1000 nm) data. Earlier a single 30 point line image could be collected in 10 s over a 15 cm width of PV material. Recent years we have built a 30, a 45 and a 60 cm width expanded beam ellipsometer which speed is increased by 10x. Now, 1800 points can be mapped in a 1 min traverse of a 60*120 cm PV panel or flexible roll-to-roll substrate.

  10. Algorithmic methods in diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Thibault, Pierre

    Recent diffraction imaging techniques use properties of coherent sources (most notably x-rays and electrons) to transfer a portion of the imaging task to computer algorithms. "Diffraction microscopy" is a method which consists in reconstructing the image of a specimen from its diffraction pattern. Because only the amplitude of a wavefield incident on a detector is measured, reconstruction of the image entails to recovering the lost phases. This extension of the 'phase problem" commonly met in crystallography is solved only if additional information is available. The main topic of this thesis is the development of algorithmic techniques in diffraction microscopy. In addition to introducing new methods, it is meant to be a review of the algorithmic aspects of the field of diffractive imaging. An overview of the scattering approximations used in the interpretation of diffraction datasets is first given, as well as a numerical propagation tool useful in conditions where known approximations fail. Concepts central to diffraction microscopy---such as oversampling---are then introduced and other similar imaging techniques described. A complete description of iterative reconstruction algorithms follows, with a special emphasis on the difference map, the algorithm used in this thesis. The formalism, based on constraint sets and projection onto these sets, is then defined and explained. Simple projections commonly used in diffraction imaging are then described. The various ways experimental realities can affect reconstruction methods will then be enumerated. Among the diverse sources of algorithmic difficulties, one finds that noise, missing data and partial coherence are typically the most important. Other related difficulties discussed are the detrimental effects of crystalline domains in a specimen, and the convergence problems occurring when the support of a complex-valued specimen is not well known. The last part of this thesis presents reconstruction results; an

  11. Optical and Resonant X-Ray Diffraction Studies Confirm a SmC*F12-SmC* Liquid Crystal Sequence Reversal

    SciTech Connect

    Wang,S.; Liu, Z.; McCoy, B.; Pindak, R.; Caleibe, W.; Nguyen, H.; Huang, C.

    2006-01-01

    Employing both null transmission ellipsometry and resonant x-ray diffraction, we confirmed the SmC{sub F12}{sup *}-SmC* phase sequence reversal in one liquid crystal compound and specially prepared binary mixtures. This phase sequence reversal was predicted by two recent theoretical advances. Moreover, the temperature range for the SmC{sub F12}{sup *} phase increases significantly in the mixture suggesting that such a phase sequence may exist in other compounds.

  12. Novel Aspects of Hard Diffraction in QCD

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2005-12-14

    Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, and nuclear shadowing and antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency.

  13. Robustness of Cantor diffractals.

    PubMed

    Verma, Rupesh; Sharma, Manoj Kumar; Banerjee, Varsha; Senthilkumaran, Paramasivam

    2013-04-08

    Diffractals are electromagnetic waves diffracted by a fractal aperture. In an earlier paper, we reported an important property of Cantor diffractals, that of redundancy [R. Verma et. al., Opt. Express 20, 8250 (2012)]. In this paper, we report another important property, that of robustness. The question we address is: How much disorder in the Cantor grating can be accommodated by diffractals to continue to yield faithfully its fractal dimension and generator? This answer is of consequence in a number of physical problems involving fractal architecture.

  14. Mapping the double-slit diffraction pattern

    NASA Astrophysics Data System (ADS)

    Selvaggi, Richard; Rogers, Charles; Richardson, Clay

    2010-10-01

    A red laser, movable double-slit, movable micrometer mounted single-slit light block, and CCD were utilized to map out the single and double-slit diffraction patterns between 0 and 30 millimeters. The three dimensional mapping results demonstrate that the double-slit troughs similarly redirect the electromagnetic energy and light particles. The measured alternating path of the electromagnetic energy and light particles in the double-slit diffraction pattern is different than the theoretic path of light waves defined by destructive interference and indicates that theoretical light waves do not always have electromagnetic energy. George Monk's 1937 and Richard Feynman's 1964 finding of conservation of electromagnetic energy in the double-slit light experiment present the following questions: 1) What are the mass-less and energy-less destructive interference light waves found in the double-slit troughs? 2) What force is applied to and what energy is consumed by the work of redistributing the electromagnetic energy and light particles in the double-slit diffraction pattern? 3) Is this unknown force and unknown energy the result of dark matter found in the double-slit troughs?

  15. Diffraction Results from CDF

    SciTech Connect

    Goulianos, Konstantin

    2012-04-01

    We present final results by the CDF II collaboration on diffractive W and Z production, report on the status of ongoing analyses on diffractive dijet production and on rapidity gaps between jets, and briefly summarize results obtained on exclusive production pointing to their relevance to calibrating theoretical models used to predict exclusive Higgs-boson production at the LHC.

  16. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  17. Thickness Dispersion of Surface Plasmon of Ag Nano-thin Films: Determination by Ellipsometry Iterated with Transmittance Method

    NASA Astrophysics Data System (ADS)

    Gong, Junbo; Dai, Rucheng; Wang, Zhongping; Zhang, Zengming

    2015-03-01

    Effective optical constants of Ag thin films are precisely determined with effective thickness simultaneously by using an ellipsometry iterated with transmittance method. Unlike the bulk optical constants in Palik's database the effective optical constants of ultrathin Ag films are found to strongly depend on the thickness. According to the optical data two branches of thickness dispersion of surface plasmon energy are derived and agreed with theoretical predication. The thickness dispersion of bulk plasmon is also observed. The influence of substrate on surface plasmon is verified for the first time by using ellipsometry. The thickness dependent effective energy loss function is thus obtained based on this optical method for Ag ultrathin films. This method is also applicable to other ultrathin films and can be used to establish an effective optical database for ultrathin films.

  18. Thickness Dispersion of Surface Plasmon of Ag Nano-thin Films: Determination by Ellipsometry Iterated with Transmittance Method

    PubMed Central

    Gong, Junbo; Dai, Rucheng; Wang, Zhongping; Zhang, Zengming

    2015-01-01

    Effective optical constants of Ag thin films are precisely determined with effective thickness simultaneously by using an ellipsometry iterated with transmittance method. Unlike the bulk optical constants in Palik's database the effective optical constants of ultrathin Ag films are found to strongly depend on the thickness. According to the optical data two branches of thickness dispersion of surface plasmon energy are derived and agreed with theoretical predication. The thickness dispersion of bulk plasmon is also observed. The influence of substrate on surface plasmon is verified for the first time by using ellipsometry. The thickness dependent effective energy loss function is thus obtained based on this optical method for Ag ultrathin films. This method is also applicable to other ultrathin films and can be used to establish an effective optical database for ultrathin films. PMID:25797217

  19. IN SITU Analysis Of The Growth Of Semiconductor Materials By Phase Modulated Ellipsometry From UV To IR

    NASA Astrophysics Data System (ADS)

    Drevillon, Bernard

    1990-02-01

    Examples of applications of in situ spectroscopic polarization techniques (from UV to IR) to the study of the growth of semiconductor materials are presented. The high sensitivity of these in situ diagnostics is emphasized. In particular, the ability of kinetic ellipsometry in the UV range, to study interfaces involving reactive processes like plasma deposition, with submonolayer resolution, is described. In the UV-visible range, it is shown that reflectance-difference spectroscopy (RDS) allows the real-time characterization of crystalline III-V materials and heterojunctions. In the infrared, ellipsometry appears particularly well adapted for performing detailed analysis of the vibrational properties and the growth processes of amorphous thin films. Such sensitivity to film deposition mechanisms illustrates the capacity of real-time optical diagnostics for fundamental studies and in situ control process.

  20. Spurious electro-optic coefficients inferred from modulation ellipsometry measurements in the presence of an air cavity

    NASA Astrophysics Data System (ADS)

    Quilty, J. W.

    2017-04-01

    This paper describes how thin air gaps in multilayer polymer thin film structures can lead to unexpectedly large signals in modulation ellipsometry experiments, which can then be misinterpreted as the electro-optic effect. The contributions from the electro-optic effect and polarisation on reflection from the air cavity are indistinguishable and the reflection contribution can be on the order of 100 times that of the electro-optic effect. Caution must thus be exercised in any attempt to measure electro-optic coefficients with modulation ellipsometry in the presence of air gaps, to avoid spuriously high results. Thin film multilayer structures containing air gaps may be suitable for some of the same applications as electro-optic reflectance modulators.

  1. Mueller matrix ellipsometry studies of the optical phonons and crystal field excitations in multiferroic orthoferrites RFeO3 (R=Tb,Dy)

    NASA Astrophysics Data System (ADS)

    Martinez, V. A.; Stanislavchuk, T. N.; Sirenko, A. A.; Litvinchuk, A. P.; Wang, Yazhong; Cheong, S. W.

    Optical properties of multiferroic orthoferrites RFeO3 (R=Tb,Dy) bulk crystals have been studied in the far-infrared range from 50 to 1000 cm-1 and temperatures from 7 K to 300 K. Mueller matrix and rotating analyzer ellipsometry measurements were carried out at the U4IR beamline of the National Synchrotron Light Source at Brookhaven National Lab. Optical phonon spectra and crystal field excitations were measured for all three orthorhombic axes of RFeO3. In the experimental temperature dependencies of the phonon frequencies we found non-Grüneisen behavior caused by the electron-phonon and spin-phonon interactions. We determined the symmetries and selection rules for the crystal field transitions in Tb3+ and Dy3+ ions. Magnetic field dependencies of the optical spectra allowed us to determine anisotropy of the crystal field g-factors for Tb3+ and Dy3+ ions. This Project is supported by collaborative DOE Grant DE-FG02-07ER46382 between Rutgers U. and NJIT. Use of NSLS-BNL was supported by DOE DE-AC02-98CH10886. V.A. Martinez was supported by NEU NSF-1343716.

  2. Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry.

    PubMed

    Löper, Philipp; Stuckelberger, Michael; Niesen, Bjoern; Werner, Jérémie; Filipič, Miha; Moon, Soo-Jin; Yum, Jun-Ho; Topič, Marko; De Wolf, Stefaan; Ballif, Christophe

    2015-01-02

    The complex refractive index (dielectric function) of planar CH3NH3PbI3 thin films at room temperature is investigated by variable angle spectroscopic ellipsometry and spectrophotometry. Knowledge of the complex refractive index is essential for designing photonic devices based on CH3NH3PbI3 thin films such as solar cells, light-emitting diodes, or lasers. Because the directly measured quantities (reflectance, transmittance, and ellipsometric spectra) are inherently affected by multiple reflections, the complex refractive index has to be determined indirectly by fitting a model dielectric function to the experimental spectra. We model the dielectric function according to the Forouhi-Bloomer formulation with oscillators positioned at 1.597, 2.418, and 3.392 eV and achieve excellent agreement with the experimental spectra. Our results agree well with previously reported data of the absorption coefficient and are consistent with Kramers-Kronig transformations. The real part of the refractive index assumes a value of 2.611 at 633 nm, implying that CH3NH3PbI3-based solar cells are ideally suited for the top cell in monolithic silicon-based tandem solar cells.

  3. Combined atomic force microscopy and spectroscopic ellipsometry applied to the analysis of lipid-protein thin films.

    PubMed

    Finot, Eric; Markey, Laurent; Hane, Francis; Amrein, Mathias; Leonenko, Zoya

    2013-04-01

    Pulmonary surfactant is a complex mixture of phospholipids and proteins and forms a thin film at the lung alveolar interface separating air from liquid environment. The film reduces the work of breathing during repeatable compressions of the alveoli which form a characteristic multilayer upon compression. In this work, we investigated the structure of bovine lipid extract surfactant (BLES). We analysed the BLES films by atomic force microscopy (AFM) and spectroscopic ellipsometry (SE) in order to provide combined characterization of both morphology and thickness of surfactant films. We show how the spectroscopic ellipsometry can be used to supplement the data obtained by AFM. We demonstrate that indium tin oxide (ITO) substrate used for spectroscopic ellipsometry is preferable over glass substrate to enhance the optical contrast. An optical model was proposed to account for non-uniform film morphology. We obtained good correlations between the multilayer surface coverage, determined by both AFM and SE. SE measures the thickness of the first uniform monolayer as 2.6 nm that cannot be achieved by AFM imaging alone.

  4. In situ optical characterizations of the annealing effects upon SnO2:F films by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Yuan, Guangzhong; Wang, Kangkai; Li, Ming; Gao, Qian; Liu, Yong; Jia, Shaohui; Song, Chenlu; Han, Gaorong

    2016-10-01

    In situ study of the annealing effects, up to 600 °C, upon the optical performance of SnO2:F films have been successfully conducted with spectroscopic ellipsometry. The thickness and optical parameters were obtained by the regression of the measured ellipsometry parameters using a five-layer model. The results show that the re-densification of the SnO2:F layers occurs at above 200 °C, resulting in an irreversible thickness reducing from about 326 nm to about 321 nm. The refractive index of the SnO2:F layer increases with temperature and decreases in the cooling period. The in situ temperature dependence of the average refractive index has a good agreement with the sheet resistance measurement results, not only verifying the annealing process deteriorates the low-emissivity performance, but also demonstrates that spectroscopic ellipsometry method is a suitable optical characterization technique to adjust the on-line coating process of float glass.

  5. Residual Stress Relaxation and Stiffness-Confinement Effects in Polymer Films: Characterization by Non-Contact Ellipsometry and Fluorescence Techniques

    NASA Astrophysics Data System (ADS)

    Askar, Shadid; Torkelson, John

    2015-03-01

    The relaxation of residual stresses in spin-coated polymer films is characterized using two optical techniques: ellipsometry and fluorescence. Both techniques show that residual stresses relax over hours at several tens of degrees above the film glass transition temperature (Tg). Ellipsometry shows that thickness can increase or decrease during residual stress relaxation depending on thermal history of the film. However, the presence or relaxation of stresses has no measurable effect on Tg as measured by ellipsometry. We have adapted the well-known sensitivity of the pyrene dye fluorescence spectral shape to local environment polarity in order to characterize stress relaxation and to monitor stiffness-confinement effects. The spectral shape of the pyrene fluorescence spectrum shows similar stress relaxation regardless of whether relaxation is accompanied by increases or decreases in film thickness. Fluorescence also indicates that single-layer polystyrene films supported on silica stiffen with decreasing nanoscale thickness. For the first time, stiffness gradients as a function of distance from interfaces are demonstrated using pyrene label fluorescence in conjunction with multilayer films.

  6. Issues in Optical Diffraction Theory.

    PubMed

    Mielenz, Klaus D

    2009-01-01

    This paper focuses on unresolved or poorly documented issues pertaining to Fresnel's scalar diffraction theory and its modifications. In Sec. 2 it is pointed out that all thermal sources used in practice are finite in size and errors can result from insufficient coherence of the optical field. A quarter-wave criterion is applied to show how such errors can be avoided by placing the source at a large distance from the aperture plane, and it is found that in many cases it may be necessary to use collimated light as on the source side of a Fraunhofer experiment. If these precautions are not taken the theory of partial coherence may have to be used for the computations. In Sec. 3 it is recalled that for near-zone computations the Kirchhoff or Rayleigh-Sommerfeld integrals are applicable, but fail to correctly describe the energy flux across the aperture plane because they are not continuously differentiable with respect to the assumed geometrical field on the source side. This is remedied by formulating an improved theory in which the field on either side of a semi-reflecting screen is expressed as the superposition of mutually incoherent components which propagate in the opposite directions of the incident and reflected light. These components are defined as linear combinations of the Rayleigh-Sommerfeld integrals, so that they are rigorous solutions of the wave equation as well as continuously differentiable in the aperture plane. Algorithms for using the new theory for computing the diffraction patterns of circular apertures and slits at arbitrary distances z from either side of the aperture (down to z = ± 0.0003 λ) are presented, and numerical examples of the results are given. These results show that the incident geometrical field is modulated by diffraction before it reaches the aperture plane while the reflected field is spilled into the dark space. At distances from the aperture which are large compared to the wavelength λ these field expressions are reduced

  7. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  8. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  9. Zeno dynamics in wave-packet diffraction spreading

    SciTech Connect

    Porras, Miguel A.; Luis, Alfredo; Gonzalo, Isabel; Sanz, Angel S.

    2011-11-15

    We analyze a simple and feasible practical scheme displaying Zeno, anti-Zeno, and inverse-Zeno effects in the observation of wave-packet spreading caused by free evolution. The scheme is valid both in spatial diffraction of classical optical waves and in time diffraction of a quantum wave packet. In the optical realization, diffraction spreading is observed by placing slits between a light source and a light-power detector. We show that the occurrence of Zeno or anti-Zeno effects depends just on the frequency of observations between the source and detector. These effects are seen to be related to the diffraction mode theory in Fabry-Perot resonators.

  10. Magneto-optical coupling in ferromagnetic thin films investigated by vector-magneto-optical generalized ellipsometry

    NASA Astrophysics Data System (ADS)

    Mok, K.; Kovács, G. J.; McCord, J.; Li, L.; Helm, M.; Schmidt, H.

    2011-09-01

    We performed generalized Mueller matrix ellipsometry measurements in a magnetic field of arbitrary orientation and magnitude up to 400 mT at room temperature and probed the magneto-optical response of capped, ferromagnetic Fe, Ni20Fe80, Co, Ni80Fe20, and Ni thin films on ZnO substrates in the spectral range from 300 to 1100 nm. We determined the off-diagonal elements in the magneto-optical dielectric tensor under saturated magnetization conditions in the sample surface plane via a model analysis. The off-diagonal elements depend on the net spin polarization and the electronic band structure of the ferromagnetic thin films. For the pure ferromagnetic metals Fe, Co, and Ni, the converted off-diagonal elements agree well with the reported experimental optical conductivity data. As a result we use the extracted wavelength-dependent magneto-optical coupling constant to predict the wavelength-dependent magneto-optical response of different Ni/Fe multilayer structures.

  11. In situ spectroscopic ellipsometry during electrochemical treatment of zinc in alkaline carbonate electrolyte

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Erbe, Andreas

    2013-01-01

    In situ spectroscopic ellipsometry (SE, 297-820 nm, 4.4-1.5 eV) during electrochemical oxidation/reduction of zinc in alkaline carbonate electrolyte was performed using a specially designed optical-electrochemical cell. The growth and shrinkage of the interfacial layer on Zn was analysed on the basis of Lekner's first order perturbation theory. For non-absorbing thin films on metal surfaces, an algorithm has been derived to extract the thickness of a surface film directly from ellipsometric data without the need of optical modelling. During cyclic voltammetry (CV), a rapid decrease/increase in the layer thickness in the reduction/oxidation peak has been found. In the potential regime where the surface is oxide-covered, the layer thickness increases/decreases linearly with potential in anodic/cathodic scans. The density of the interfacial region in this regime is constant. During chronoamperometric experiments, a fast correlating jump in thickness was found after potential jumps. An ageing of the films is observed in the absorption spectrum (from the ellipsometric parameter Ψ), which shows changes until ≈ 30 min after potential jumps. Analysis of the current transients points to continuous dissolution of Zn.

  12. Optical properties of Yeast Cytochrome c monolayer on gold: an in situ spectroscopic ellipsometry investigation.

    PubMed

    Toccafondi, Chiara; Prato, Mirko; Maidecchi, Giulia; Penco, Amanda; Bisio, Francesco; Cavalleri, Ornella; Canepa, Maurizio

    2011-12-01

    The adsorption of Yeast Cytochrome c (YCC) on well defined, flat gold substrates has been studied by Spectroscopic Ellipsometry (SE) in the 245-1000 nm wavelength range. The investigation has been performed in aqueous ambient at room temperature, focusing on monolayer-thick films. In situ δΨ and δΔ difference spectra have shown reproducibly well-defined features related to molecular optical absorptions typical of the so-called heme group. The data have been reproduced quantitatively by a simple isotropic optical model, accounting for the molecular absorption spectrum and film-substrate interface effects. The simulations allowed a reliable estimate of the film thickness and the determination of the position and the shape of the so-called Soret absorption peak that, within the experimental uncertainty, is the same found for molecules in liquid. These findings suggest that YCC preserves its native structure upon adsorption. The same optical model was able to reproduce also ex situ results on rinsed and dried samples, dominated by the spectral features associated to the polypeptide chain that tend to overwhelm the heme absorption features.

  13. Glass transition in thin supported polystyrene films probed by temperature-modulated ellipsometry in vacuum.

    PubMed

    Efremov, Mikhail Yu; Kiyanova, Anna V; Last, Julie; Soofi, Shauheen S; Thode, Christopher; Nealey, Paul F

    2012-08-01

    Glass transition in thin (1-200 nm thick) spin-cast polystyrene films on silicon surfaces is probed by ellipsometry in a controlled vacuum environment. A temperature-modulated modification of the method is used alongside a traditional linear temperature scan. A clear glass transition is detected in films with thicknesses as low as 1-2 nm. The glass transition temperature (T(g)) shows no substantial dependence on thickness for coatings greater than 20 nm. Thinner films demonstrate moderate T(g) depression achieving 18 K for thicknesses 4-7 nm. Less than 4 nm thick samples are excluded from the T(g) comparison due to significant thickness nonuniformity (surface roughness). The transition in 10-20 nm thick films demonstrates excessive broadening. For some samples, the broadened transition is clearly resolved into two separate transitions. The thickness dependence of the glass transition can be well described by a simple 2-layer model. It is also shown that T(g) depression in 5 nm thick films is not sensitive to a wide range of experimental factors including molecular weight characteristics of the polymer, specifications of solvent used for spin casting, substrate composition, and pretreatment of the substrate surface.

  14. Probing the carrier concentration profiles in phosphorus-implanted germanium using infrared spectroscopic ellipsometry

    SciTech Connect

    D'Costa, Vijay Richard Yeo, Yee-Chia

    2015-02-21

    Spectroscopic ellipsometry with photon energy in the 0.045–0.65 eV range was used to investigate germanium samples implanted with 30 keV phosphorus ions and annealed at 700 °C. The infrared response of implanted layers is dominated by free carrier absorption which is modeled using a Drude oscillator. The carrier concentration profiles were modeled using an error function, and compared with those obtained by electrochemical capacitance-voltage profiling and secondary ion mass spectrometry. In the flat region of the carrier concentration profile, average carrier concentration and mobility of 1.40 × 10{sup 19} cm{sup −3} and 336 cm{sup 2}V{sup −1}s{sup −1}, respectively, were obtained. A phosphorus diffusivity of ∼1.2 × 10{sup −13} cm{sup 2}/s was obtained. The mobility versus carrier concentration relationships obtained for the implanted samples are close to the empirical relationship for bulk Ge.

  15. High temperature phase transitions and critical exponents of Samarium orthoferrite determined by in situ optical ellipsometry

    NASA Astrophysics Data System (ADS)

    Berini, B.; Fouchet, A.; Popova, E.; Scola, J.; Dumont, Y.; Franco, N.; da Silva, R. M. C.; Keller, N.

    2012-03-01

    Determining phase transitions has always been a great challenge in material science due to their important fundamental and technological aspects. Recently, iron-based perovskites (RFeO3), exhibiting phase transitions at high temperatures, have attracted much interest for their functional properties at room temperature, such as multiferroicity (BiFeO3) and ultrafast spin dynamics (TmFeO3). In this family of materials, Samarium orthoferrite (SmFeO3) is a weak ferromagnet, ordering at high temperatures and exhibiting an intrinsic spin reorientation transition above room temperature, which is "hidden" in macroscopic magnetization measurements in polycrystalline samples. In the present article, we show that the related magnetic high temperature phase transitions can be studied through their dielectric functions by spectroscopic ellipsometry in situ and without any need for an applied external magnetic field. The presence of this intrinsic spin reorientation transition is demonstrated for textured SmFeO3 films and we have determined a critical exponent of β = 0.45 ± 0.01 for the magnetic phase transition, coherently from optical, magneto-optical, and structural investigations.

  16. New method for determination of the photoresist Dill parameters using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Defranoux, Christophe; Piel, Jean-Philippe; Stehle, Jean-Louis P.

    1999-04-01

    In this paper a new method to determine photoresist Dill parameters is presented. Based on spectroscopic ellipsometry (SE) measurements, this new method is more precise than standard techniques based on transmittance measurements. Indeed, compared to photometry, SE technique is a self calibrated technique which provide directly two independent parameters Tan (Psi) and Cos (Delta) which can be used to extract directly thickness but also optical indices of a layer inside a multilayer structure. Moreover, the wavelength dependence introduces more restrictions for the data analysis since thickness and optical indices can be deduced directly in many cases. We apply this technique to different kinds of photoresist designed for 365nm and 248nm. At each wavelength ellipsometric parameters are simulated directly versus the exposure dose without any assumption on the thickness and on the index of refraction evolution. On 365nm photoresist this new method provides Dill parameters in good agreement with the standard method. On 248nm photoresist we show that the influence of the exposure is more important on the refractive index and on the thickness of the layer than on its absorption.

  17. New method for determination of the photoresist Dill parameters using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Defranoux, Christophe; Piel, Jean-Philippe; Stehle, Jean-Louis P.

    1999-06-01

    In this paper a new method to determine photoresist DIll parameters is presented. Based on spectroscopic ellipsometry (SE) measurements, this new method is more precise than standard techniques based on transmittance measurements. Indeed, compared to photometry, SE technique is a self calibrated technique which provide directly two independent parameters Tan (Psi) and Cos (Delta) which can be used to extract directly thickness but also optical indices of a layer inside a multilayer structure. Moreover, the wavelength dependence introduces more restrictions for the data analysis since thickness and optical indices can be deduced directly in many cases. We apply this technique to different kinds of photoresist designed for 365nm and 248nm. At each wavelength ellipsometric parameters are simulate directly versus the exposure dose without any assumption on the thickness and on the index of refraction evolution. On 365nm photoresist this new method provides Dill parameters in good agreement with the standard method. On 248nm photoresist we show that the influence of the exposure is more important on the refractive index and on the thickness of the layer than on its absorption.

  18. The electrochemical behaviour of copper in alkaline solutions containing fluoride, studied by in situ ellipsometry

    NASA Astrophysics Data System (ADS)

    Berlouis, L. E. A.; Mamman, D. A.; Azpuru, I. G.

    1998-06-01

    In situ ellipsometry has been used to reveal a number of interesting features in the growth of passivating films on Cu in 0.1 M KOH containing KF. Fluoride ions are shown to affect the growth of the oxide layer and enhanced dissolution of copper as the Cu II species occurs as a result of stress corrosion cracking. A restructuring of the oxide film within the passive region is attributed to loss of water and this effect becomes less distinct with increasing F - ion concentration in the electrolyte and disorder in the oxide layer. The enhanced reduction of the conductively inhibited bulk CuO/Cu(OH) 2 layer back to copper found in alkaline solutions containing fluoride would indicate that the formation of this layer is the dominant one for passivation of copper in this medium. The difference between the start and the end Δ- Ψ values of the metal surface of the cyclic voltammogram at -1.5 V versus SCE indicates either roughening arising from the oxide formation/reduction or the presence of a residual surface oxide.

  19. Silicon fin line edge roughness determination and sensitivity analysis by Mueller matrix spectroscopic ellipsometry based scatterometry

    NASA Astrophysics Data System (ADS)

    Dixit, Dhairya; O'Mullane, Samuel; Sunkoju, Sravan; Hosler, Erik R.; Kamineni, Vimal; Preil, Moshe; Keller, Nick; Race, Joseph; Muthinti, Gangadhara Raja; Diebold, Alain C.

    2015-03-01

    Measurement and control of line edge roughness (LER) is one of the most challenging issues facing patterning technology. As the critical dimensions (CD) of patterned structures decrease, LER of only a few nanometers can negatively impact device performance. Here, Mueller matrix spectroscopic ellipsometry (MMSE) based scatterometry is used to determine LER in periodic line-space structures in 28 nm pitch Si fin samples fabricated by directed selfassembly (DSA) patterning. The optical response of the Mueller matrix (MM) elements is influenced by structural parameters like pitch, CD, height, and side-wall angle (SWA), as well as the optical properties of the materials. Evaluation and decoupling MM element response to LER from other structural parameters requires sensitivity analysis using simulations of optical models that include LER. Here, an approach is developed that quantifies Si fin LER by comparing the optical responses generated by systematically varying the grating shape and measurement conditions. Finally, the validity of this approach is established by comparing the results obtained from top down scanning electron microscope (SEM) images and cross-sectional TEM image of the 28 nm pitch Si fins.

  20. Fast IR laser mapping ellipsometry for the study of functional organic thin films.

    PubMed

    Furchner, Andreas; Sun, Guoguang; Ketelsen, Helge; Rappich, Jörg; Hinrichs, Karsten

    2015-03-21

    Fast infrared mapping with sub-millimeter lateral resolution as well as time-resolved infrared studies of kinetic processes of functional organic thin films require a new generation of infrared ellipsometers. We present a novel laboratory-based infrared (IR) laser mapping ellipsometer, in which a laser is coupled to a variable-angle rotating analyzer ellipsometer. Compared to conventional Fourier-transform infrared (FT-IR) ellipsometers, the IR laser ellipsometer provides ten- to hundredfold shorter measurement times down to 80 ms per measured spot, as well as about tenfold increased lateral resolution of 120 μm, thus enabling mapping of small sample areas with thin-film sensitivity. The ellipsometer, equipped with a HeNe laser emitting at about 2949 cm(-1), was applied for the optical characterization of inhomogeneous poly(3-hexylthiophene) [P3HT] and poly(N-isopropylacrylamide) [PNIPAAm] organic thin films used for opto-electronics and bioapplications. With the constant development of tunable IR laser sources, laser-based infrared ellipsometry is a promising technique for fast in-depth mapping characterization of thin films and blends.

  1. Ultrafast chemical reactions in shocked nitromethane probed with dynamic ellipsometry and transient absorption spectroscopy.

    PubMed

    Brown, Kathryn E; McGrane, Shawn D; Bolme, Cynthia A; Moore, David S

    2014-04-10

    Initiation of the shock driven chemical reactions and detonation of nitromethane (NM) can be sensitized by the addition of a weak base; however, the chemical mechanism by which sensitization occurs remains unclear. We investigated the shock driven chemical reaction in NM and in NM sensitized with diethylenetriamine (DETA), using a sustained 300 ps shock driven by a chirped Ti:sapphire laser. We measured the solutions' visible transient absorption spectra and measured interface particle and shock velocities of the nitromethane solutions using ultrafast dynamic ellipsometry. We found there to be a volume-increasing reaction that takes place around interface particle velocity up = 2.4 km/s and up = 2.2 km/s for neat NM and NM with 5% DETA, respectively. The rate at which transient absorption increases is similar in all mixtures, but with decreasing induction times for solutions with increasing DETA concentrations. This result supports the hypothesis that the chemical reaction mechanisms for shocked NM and NM with DETA are the same. Data from shocked NM are compared to literature experimental and theoretical data.

  2. Diblock copolymer adsorption onto a solid surface as revealed by evanescent wave ellipsometry

    SciTech Connect

    Kim, M.W. ); Russell, T.P. . Almaden Research Center); Moses, T.; Chen, W.; Shen, Y.R. . Center for Advanced Materials Univ. of California, Berkeley, CA . Dept. of Physics)

    1994-12-05

    The interfacial behavior of diblock copolymers play an important role in many practical applications, for example, polymer compatibilization, adhesion, and colloid stabilization. There has been considerable theoretical and experimental effort to understand the adsorption behavior of diblock copolymers from a solution onto a solid surface. Recent neutron reflectivity measurements on solutions of symmetric diblock copolymers of polystyrene and poly(methyl methacrylate), denoted P(S-b-MMA), near a quartz wall have shown that the PMMA segments adsorb preferentially onto the quartz forming a dense layer. However, the segmental concentration of polystyrene (PS) was too low to be observable. Evanescent wave ellipsometry, EWE, on the other hand, allows one to determine the density of molecules adsorbed onto a surface without labeling the segments with deuterium. Here, EWE results on P(S-b-MMA) adsorbed onto a solid substrate are presented as a function of molecular weight. It is shown that the adsorbed amount of copolymer is maximized for a particular molecular weight. This result contradicts theoretical predictions, and a possible origin of this discrepancy is provided.

  3. Adsorption from black tea and red wine onto in vitro salivary pellicles studied by ellipsometry.

    PubMed

    Joiner, Andrew; Muller, Dries; Elofsson, Ulla M; Malmsten, Martin; Arnebrant, Thomas

    2003-10-01

    The adsorption of black tea and red wine components onto a pellicle-like protein layer formed in vitro by adsorption from whole unstimulated saliva on hydroxyapatite discs were studied by in situ ellipsometry. It was found that components from black tea readily adsorbed to the pellicle. Subsequent exposure to saliva led to further adsorption of salivary components to give an overall increase in the amounts adsorbed. The amounts adsorbed increased still further following a third tea and saliva exposure. Components of red wine gave significantly greater amounts of adsorption to the pellicle than black tea. The adsorption of components of black tea gave a concomitant increase in colour or stain as measured by a reflectance chromameter. In all cases, the black tea- and red wine-modified pellicles were not eluted by either phosphate buffer or sodium dodecyl sulphate (SDS) rinses. Thus, black tea and red wine components have been shown to have a profound effect on in vitro pellicle maturation, causing thickened layers of stained material to build up, which are not readily removed.

  4. Spectroscopic ellipsometry as a process control tool for manufacturing cadmium telluride thin film photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Smith, Westcott P.

    In recent decades, there has been concern regarding the sustainability of fossil fuels. One of the more promising alternatives is Cadmium Telluride (CdTe) thin-film photovoltaic (PV) devices. Improved quality measurement techniques may aid in improving this existing technology. Spectroscopic ellipsometry (SE) is a common, non-destructive technique for measuring thin films in the silicon wafer industry. SE results have also been tied to properties believed to play a role in CdTe PV device efficiency. A study assessing the potential of SE for use as a quality measurement tool had not been previously reported. Samples of CdTe devices produced by both laboratory and industrial scale processes were measured by SE and Scanning Electron Microscopy (SEM). Mathematical models of the optical characteristics of the devices were developed and fit to SE data from multiple angles and locations on each sample. Basic statistical analysis was performed on results from the automated fits to provide an initial evaluation of SE as a quantitative quality measurement process. In all cases studied, automated SE models produced average stack thickness values within 10% of the values produced by SEM, and standard deviations for the top bulk layer thickness were less than 1% of the average values.

  5. In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment.

    PubMed

    Kroning, Annika; Furchner, Andreas; Aulich, Dennis; Bittrich, Eva; Rauch, Sebastian; Uhlmann, Petra; Eichhorn, Klaus-Jochen; Seeber, Michael; Luzinov, Igor; Kilbey, S Michael; Lokitz, Bradley S; Minko, Sergiy; Hinrichs, Karsten

    2015-06-17

    The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes containing poly(N-isopropylacrylamide) and poly(acrylic acid) with high potential for biosensing and biomedical applications are studied by in situ infrared-spectroscopic ellipsometry (IRSE). IRSE is a highly sensitive nondestructive technique that allows protein adsorption on polymer brushes to be investigated in an aqueous environment as external stimuli, such as temperature and pH, are varied. These changes are relevant to conditions for regulation of protein adsorption and desorption for biotechnology, biocatalysis, and bioanalytical applications. Here brushes are used as model surfaces for controlling protein adsorption of human serum albumin and human fibrinogen. The important finding of this work is that IRSE in the in situ experiments in protein solutions can distinguish between contributions of polymer brushes and proteins. The vibrational bands of the polymers provide insights into the hydration state of the brushes, whereas the protein-specific amide bands are related to changes of the protein secondary structure.

  6. Vanadium oxide-carbon nanotube composite films characterized by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    He, Qiong; Xu, Xiangdong; Gu, Yu; Wang, Meng; Yao, Jie; Jiang, Yadong; Sun, Minghui; Ao, Tianhong; Lian, Yuxiang; Wang, Fu; Li, Xinrong

    2016-10-01

    Spectroscopic ellipsometry (SE) is utilized to characterize the vanadium oxide (VO x )-single walled carbon nanotube (SWCNT) composite films prepared by sol-gel. Five Tauc-Lorentz oscillators model is employed to describe the dispersions in the optical responses of VO x and VO x -SWCNT thin films. Results reveal that if the SWCNT concentration in the composite film is increased, the refractive index is decreased, while the extinction coefficient is increased. Moreover, higher SWCNT content leads to lower optical band gap (E g) but larger localized state (E e). Interestingly, both E g and E e values reach saturated at a SWCNT content of ~8 wt%. Particularly, the peak transition energies of the 5 Tauc-Lorentz oscillators have been assigned to the specific transitions according to the band structures of VO x . This work reveals the feasibility of investigating the optical properties and microstructures of VO x -SWCNT composite films by SE. These experimental results will be helpful for better understanding the VO x -SWCNT composite films, and promoting future characterizations of other SWCNT-based composites by SE.

  7. Coherent Diffractive Imaging at LCLS

    NASA Astrophysics Data System (ADS)

    Schulz, Joachim

    2010-03-01

    Soft x-ray FEL light sources produce ultrafast x-ray pulses with outstanding high peak brilliance. This might enable the structure determination of proteins that cannot be crystallized. The deposited energy would destroy the molecules completely, but owing to the short pulses the destruction will ideally only happen after the termination of the pulse. In order to address the many challenges that we face in attempting molecular diffraction, we have carried out experiments in coherent diffraction from protein nanocrystals at the Linac Coherent Light Source (LCLS) at SLAC. The periodicity of these objects gives us much higher scattering signals than uncrystallized proteins would. The crystals are filtered to sizes less than 2 micron, and delivered to the pulsed X-ray beam in a liquid jet. The effects of pulse duration and fluence on the high-resolution structure of the crystals have been studied. Diffraction patterns are recorded at a repetition rate of 30 Hz with pnCCD detectors. This allows us to take 108,000 images per hour. With 2-mega-pixel-detectors this gives a data-rate of more than 400 GB per hour. The automated sorting and evaluation of hundreds of thousands images is another challenge of this kind of experiments. Preliminary results will be presented on our first LCLS experiments. This work was carried out as part of a collaboration, for which Henry Chapman is the spokesperson. The collaboration consists of CFEL DESY, Arizona State University, SLAC, Uppsala University, LLNL, The University of Melbourne, LBNL, the Max Planck Institute for Medical Research, and the Max Planck Advanced Study Group (ASG) at the CFEL. The experiments were carried out using the CAMP apparatus, which was designed and built by the Max Planck ASG at CFEL. The LCLS is operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.

  8. Fraunhofer Diffraction and Polarization.

    ERIC Educational Resources Information Center

    Fortin, E.

    1979-01-01

    Describes an experiment for the intermediate undergraduate optics laboratory designed to illustrate simultaneously some aspects of the phenomena of diffraction; interference, coherence, apodization, the Fresnel-Arago law; as well as of the interrelations between these concepts. (HM)

  9. Diffraction with CMS

    SciTech Connect

    Pereira, Antonio Vilela

    2011-07-15

    The observation of diffraction at LHC with the CMS detector at {radical}(s) = 900 and 2360 GeV is presented, along with a comparison of the data with the predictions of the PYTHIA and PHOJET generators.

  10. Fresnel Coherent Diffractive Imaging

    SciTech Connect

    Williams, G. J.; Quiney, H. M.; Dhal, B. B.; Tran, C. Q.; Nugent, K. A.; Peele, A. G.; Paterson, D.; Jonge, M. D. de

    2006-07-14

    We present an x-ray coherent diffractive imaging experiment utilizing a nonplanar incident wave and demonstrate success by reconstructing a nonperiodic gold sample at 24 nm resolution. Favorable effects of the curved beam illumination are identified.

  11. Diffraction as tunneling

    NASA Technical Reports Server (NTRS)

    Nussenzveig, H. M.; Wiscombe, W. J.

    1987-01-01

    A new approximation to the short-wavelength scattering amplitude from an impenetrable sphere is presented. It is uniform in the scattering angle and it is more accurate than previously known approximations (including Fock's theory of diffraction) by up to several orders of magnitude. It remains valid in the transition to long-wavelength scattering. It leads to a new physical picture of diffraction, as tunneling through an inertial barrier.

  12. Polarizing binary diffraction grating beam splitter.

    PubMed

    Davis, Jeffrey A; Evans, Garrett H

    2004-07-01

    We report a polarizing beam splitter that uses binary phase gratings written onto a liquid-crystal spatial light modulator. These gratings produce several linearly polarized diffracted orders and a zeroth-order beam whose polarization state can be completely controlled. Experimental results are shown.

  13. Optically nonlinear Bragg diffracting nanosecond optical switches

    NASA Astrophysics Data System (ADS)

    Pan, Guisheng

    We prepared low refractive index crystalline colloidal arrays (CCA) from highly charged fluorinated monodisperse spherical particles synthesized by emulsion polymerization of 1H,1H-heptafluorobutyl methacrylate. We have also covalently attached dyes to the fluorinated particles to prepare absorbing CCA. We photopolymerized these dyed CCA within a polyacrylamide matrix to form a polymerized crystalline colloidal array (PCCA). These semi-solid PCCA can withstand vibrations, ionic impurity addition and thermal shocks while maintaining the CCA ordering. The medium within the PCCA can easily be exchanged to exactly refractive index match the CCA. Thus, we were able to prepare a material where the real part of the refractive index was matched, while preserving a periodic modulation of the imaginary part of the refractive index. Under low light intensities the CCA is refractive index matched to the medium and does not diffract. However, high incident intensity illumination within the dye absorption band heats the particles within nsec to decrease their refractive index. This results in a mesoscopically periodic refractive index modulation with the periodicity of the CCA lattice. The array 'pops up' to diffract light within 2.5 nsec. These intelligent CCA hydrogels may have applications in optical limiting, optical computing and nsec fast optical switching devices, etc. We have also measured the polarization dependence of the Bragg diffraction efficiency of a CCA and compared the experimental results to that predicted by theory. The diffraction efficiency is maximized for σ polarization light at Bragg angle (θB) of 90o and minimized to zero for π polarized light at θB=45o. Our experimental diffraction and transmission results quantitatively agree with the predictions of Dynamical Diffraction Theory.

  14. Fraunhofer diffraction of coherent and incoherent nuclear matter waves by complementary screens

    NASA Astrophysics Data System (ADS)

    da Silveira, R.; Leclercq-Willain, Ch.

    2013-06-01

    The analogy between Fraunhofer diffraction effects observed in nuclear and subnuclear collisions and those observed with light diffracted by complementary screens is revisited. Emphasis will be put on the collision mechanisms playing a role analogous to that of an aperture in light diffraction. These analogies are illustrated with examples involving coherent and incoherent nuclear matter waves.

  15. Multipath analysis diffraction calculations

    NASA Technical Reports Server (NTRS)

    Statham, Richard B.

    1996-01-01

    This report describes extensions of the Kirchhoff diffraction equation to higher edge terms and discusses their suitability to model diffraction multipath effects of a small satellite structure. When receiving signals, at a satellite, from the Global Positioning System (GPS), reflected signals from the satellite structure result in multipath errors in the determination of the satellite position. Multipath error can be caused by diffraction of the reflected signals and a method of calculating this diffraction is required when using a facet model of the satellite. Several aspects of the Kirchhoff equation are discussed and numerical examples, in the near and far fields, are shown. The vector form of the extended Kirchhoff equation, by adding the Larmor-Tedone and Kottler edge terms, is given as a mathematical model in an appendix. The Kirchhoff equation was investigated as being easily implemented and of good accuracy in the basic form, especially in phase determination. The basic Kirchhoff can be extended for higher accuracy if desired. A brief discussion of the method of moments and the geometric theory of diffraction is included, but seems to offer no clear advantage in implementation over the Kirchhoff for facet models.

  16. Temperature-Dependent Ellipsometry Measurements of Partial Coulomb Energy in Superconducting Cuprates

    NASA Astrophysics Data System (ADS)

    Levallois, J.; Tran, M. K.; Pouliot, D.; Presura, C. N.; Greene, L. H.; Eckstein, J. N.; Uccelli, J.; Giannini, E.; Gu, G. D.; Leggett, A. J.; van der Marel, D.

    2016-07-01

    We performed an experimental study of the temperature and doping dependence of the energy-loss function of the bilayer and trilayer bismuth cuprates family. The primary aim is to obtain information on the energy stored in the Coulomb interaction between the conduction electrons, on the temperature dependence thereof, and on the change of Coulomb interaction when Cooper pairs are formed. We performed temperature-dependent ellipsometry measurements on several Bi2 Sr2 CaCu2 O8 -x single crystals: underdoped with Tc=60 , 70, and 83 K; optimally doped with Tc=91 K ; overdoped with Tc=84 , 81, 70, and 58 K; as well as optimally doped Bi2 Sr2 Ca2 Cu3 O10 +x with Tc=110 K . Our first observation is that, as the temperature drops through Tc, the loss function in the range up to 2 eV displays a change of temperature dependence as compared to the temperature dependence in the normal state. This effect at—or close to—Tc depends strongly on doping, with a sign change for weak overdoping. The size of the observed change in Coulomb energy, using an extrapolation with reasonable assumptions about its q dependence, is about the same size as the condensation energy that has been measured in these compounds. Our results therefore lend support to the notion that the Coulomb energy is an important factor for stabilizing the superconducting phase. Because of the restriction to small momentum, our observations do not exclude a possible significant contribution to the condensation energy of the Coulomb energy associated with the region of q around (π ,π ).

  17. Spectral ellipsometry of GaSb and GaInAsSb: Experiment and modeling

    SciTech Connect

    Charache, G.W.; Mu {tilde n}oz, M.; Wei, K.; Pollak, F.H.; Freeouf, J.L.

    1999-06-30

    The optical constants {epsilon}(E)[={epsilon}{sub 1}(E)+i{epsilon}{sub 2}(E)] of single-crystal GaSb at 300K have been measured using spectral ellipsometry in the range of 0.3-5.3 eV. The {epsilon}(E) spectra displayed distinct structures associated with critical points (CPs) at E{sub 0} (direct gap), spin-orbit split E{sub 0}+{Delta}{sub 0} component, spin-orbit split (E{sub 1}, E{sub 1}+{Delta}{sub 1}) and (E{sub 0}{prime}, E{sub 0}{prime}+{Delta}{sub 0}{prime}) doublets, as well as E{sub 2}. The experimental data over the entire measured spectral range (after oxide removal) has been fit using the Holden model dielectric function based on the electronic energy-band structure near these CPs plus excitonic and band-to-band Coulomb enhancement effects at E{sub 0}, E{sub 0}+{Delta}{sub 0} and the E{sub 1}, E{sub 1}+{Delta}{sub 1} doublet. In addition to evaluating the energies of these various band-to-band CPs, information about the binding energy (R{sub 1}) of the two-dimensional exciton related to the E{sub 1}, E{sub 1}+{Delta}{sub 1} CPs was obtained. The value of R{sub 1} was in good agreement with effective mass/k{sup {rightharpoonup}}{center_dot}p{sup {rightharpoonup}} theory. The ability to evaluate R{sub 1} has important ramifications for recent first-principles band structure calculations which include exciton effects at E{sub 0}, E{sub 1}, and E{sub 2}. The experimental results were compared to other evaluations of the optical constants of GaSb.

  18. Multichannel Spectroscopic Ellipsometry for CdTe Photovoltaics: from Materials and Interfaces to Solar Cells

    NASA Astrophysics Data System (ADS)

    Koirala, Prakash

    Spectroscopic ellipsometry (SE) in the mid-infrared to ultraviolet range has been implemented in order to develop and evaluate optimization procedures for CdTe solar cells at the different stages of fabrication. In this dissertation research, real time SE (RT-SE) has been applied during the fabrication of the as-deposited CdS/CdTe solar cell. Two areas of background research were addressed before undertaking the challenging RT-SE analysis procedures. First, optical functions were parameterized versus temperature for the glass substrate and its overlayers, including three different SnO2 layers. This database has applications not only for RT-SE analysis but also for on-line monitoring of the coated glass itself at elevated temperature. Second, post-deposition modifications of substrate have been studied by infrared spectroscopic ellipsometry (IR-SE) prior to the RT-SE analysis in order to evaluate the need for such modification in the analysis. With support from these background studies, RT-SE has been implemented in analyses of the evolution of the thin film structural properties during sputter deposition of polycrystalline CdS/CdTe solar cells on the transparent conducting oxide (TCO) coated glass substrates. The real time optical spectra collected during CdS/CdTe deposition were analyzed using the optical property database for all substrate components as a function of measurement temperature. RT-SE enables characterization of the filling process of the surface roughness modulations on the top-most SnO2 substrate layer, commonly referred to as the high resistivity transparent (HRT) layer. In this filling process, the optical properties of this surface layer are modified in accordance with an effective medium theory. In addition to providing information on interface formation to the substrate during film growth, RT-SE also provides information on the bulk layer CdS growth, its surface roughness evolution, as well as overlying CdTe interface formation and bulk layer

  19. Observation of discrete diffraction patterns in an optically induced lattice.

    PubMed

    Sheng, Jiteng; Wang, Jing; Miri, Mohammad-Ali; Christodoulides, Demetrios N; Xiao, Min

    2015-07-27

    We have experimentally observed the discrete diffraction of light in a coherently prepared multi-level atomic medium. This is achieved by launching a probe beam into an optical lattice induced from the interference of two coupling beams. The diffraction pattern can be controlled through the atomic parameters such as two-photon detuning and temperature, as well as orientations of the coupling and probe beams. Clear diffraction patterns occur only near the two-photon resonance.

  20. Single molecule diffraction.

    PubMed

    Spence, J C H; Doak, R B

    2004-05-14

    For solving the atomic structure of organic molecules such as small proteins which are difficult to crystallize, the use of a jet of doped liquid helium droplets traversing a continuous high energy electron beam is proposed as a means of obtaining electron diffraction patterns (serial crystallography). Organic molecules (such as small proteins) within the droplet (and within a vitreous ice jacket) may be aligned by use of a polarized laser beam. Iterative methods for solving the phase problem are indicated. Comparisons with a related plan for pulsed x-ray diffraction from single proteins in a molecular beam are provided.

  1. Biopolymer holographic diffraction gratings

    NASA Astrophysics Data System (ADS)

    Savić Šević, Svetlana; Pantelić, Dejan

    2008-03-01

    Surface-relief diffraction gratings are holographically recorded in dextran sensitized with ammonium dichromate (DCD). DCD was exposed with single-frequency 200 mW diode pumped ND-YAG laser, at 532 nm. The diffraction grating profiles were analyzed by atomic force microscopy (AFM). It was found that different surface profiles could be obtained. Gratings with 330 lines/mm spatial frequencies were made. Existence of higher harmonics in Fourier Transform of non-sinusoidal profiles shows that DCD is capable of recording spatial frequencies up to 1320 lines/mm (four times fundamental frequency). The measured maximum relief depth of the DCD grating is 402 nm.

  2. Measuring Slit Width and Separation in a Diffraction Experiment

    ERIC Educational Resources Information Center

    Gan, K. K.; Law, A. T.

    2009-01-01

    We present a procedure for measuring slit width and separation in single- and double-slit diffraction experiments. Intensity spectra of diffracted laser light are measured with an optical sensor (PIN diode). Slit widths and separations are extracted by fitting to the measured spectra. We present a simple fitting procedure to account for the…

  3. Diffractive element in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Ray-Chaudhurl, Avijit K.

    2000-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  4. Diffractive element in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Ray-Chaudhuri, Avijit

    2001-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  5. The Heisenberg Uncertainty Principle Demonstrated with An Electron Diffraction Experiment

    ERIC Educational Resources Information Center

    Matteucci, Giorgio; Ferrari, Loris; Migliori, Andrea

    2010-01-01

    An experiment analogous to the classical diffraction of light from a circular aperture has been realized with electrons. The results are used to introduce undergraduate students to the wave behaviour of electrons. The diffraction fringes produced by the circular aperture are compared to those predicted by quantum mechanics and are exploited to…

  6. Fabrication and applications of large aperture diffractive optics

    SciTech Connect

    Dixit, S; Britten, J B; Hyde, R; Rushford, M; Summers, L; Toeppen, J

    2002-02-19

    Large aperture diffractive optics are needed in high power laser applications to protect against laser damage during operation and in space applications to increase the light gathering power and consequently the signal to noise. We describe the facilities we have built for fabricating meter scale diffractive optics and discuss several examples of these.

  7. Explanation and observability of diffraction in time

    SciTech Connect

    Torrontegui, E.; Muga, J. G.; Munoz, J.; Ban, Yue

    2011-04-15

    Diffraction in time (DIT) is a fundamental phenomenon in quantum dynamics due to time-dependent obstacles and slits. It is formally analogous to diffraction of light, and is expected to play an increasing role in the design of coherent matter wave sources, as in the atom laser, to analyze time-of-flight information and emission from ultrafast pulsed excitations, and in applications of coherent matter waves in integrated atom-optical circuits. We demonstrate that DIT emerges robustly in quantum waves emitted by an exponentially decaying source and provide a simple explanation of the phenomenon, as an interference of two characteristic velocities. This allows for its controllability and optimization.

  8. Computational imaging using lightweight diffractive-refractive optics.

    PubMed

    Peng, Yifan; Fu, Qiang; Amata, Hadi; Su, Shuochen; Heide, Felix; Heidrich, Wolfgang

    2015-11-30

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  9. Diffract, then destroy

    NASA Astrophysics Data System (ADS)

    Ball, Philip

    2016-09-01

    A new implementation of X-ray diffraction using free-electron lasers can take snapshots of biological molecules that are inaccessible via X-ray crystallography. As Philip Ball reports, the technique can even be used to create stop-motion films of dynamic molecular processes

  10. DIFFRACTION FROM MODEL CRYSTALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although calculating X-ray diffraction patterns from atomic coordinates of a crystal structure is a widely available capability, calculation from non-periodic arrays of atoms has not been widely applied to cellulose. Non-periodic arrays result from modeling studies that, even though started with at...

  11. Calculating cellulose diffraction patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...

  12. Inclusive diffraction at HERA

    SciTech Connect

    Favart, Laurent

    2011-07-15

    Results are reported on recent measurements, performed by the H1 and ZEUS Collaborations, of the cross section of the diffractive deep-inelastic process ep{yields}eXp using different experimental methods. In particular, first results using the Very Forward Proton Spectrometer of H1 are discussed.

  13. Impedance Matched to Vacuum, Invisible Edge, Diffraction Suppressed Mirror

    NASA Technical Reports Server (NTRS)

    Hagopian, John G. (Inventor); Roman, Patrick A. (Inventor); Shiri, Sharham (Inventor); Wollack, Edward J. (Inventor)

    2015-01-01

    Diffraction suppressed mirrors having an invisible edge are disclosed for incident light at both targeted wavelengths and broadband incident light. The mirrors have a first having at least one discontiguous portion having a plurality of nanostructured apertures. The discontiguous mirror portion impedance matches a relatively high impedance portion of the mirror to a relatively low impedance portion of the mirror, thereby reducing the diffraction edge effect otherwise present in a conventional mirror.

  14. Diffractive flat panel solar concentrators of a novel design.

    PubMed

    de Jong, Ties M; de Boer, Dick K G; Bastiaansen, Cees W M

    2016-07-11

    A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the principles of nonimaging optics, while the thickness of the device is minimized due to the use of total internal reflection.

  15. In situ assessment of the contact angles of nanoparticles adsorbed at fluid interfaces by multiple angle of incidence ellipsometry.

    PubMed

    Stocco, Antonio; Su, Ge; Nobili, Maurizio; In, Martin; Wang, Dayang

    2014-09-28

    Here multiple angle of incidence ellipsometry was successfully applied to in situ assess the contact angle and surface coverage of gold nanoparticles as small as 18 nm, coated with stimuli-responsive polymers, at water-oil and water-air interfaces in the presence of NaCl and NaOH, respectively. The interfacial adsorption of the nanoparticles was found to be very slow and took days to reach a fairly low surface coverage. For water-oil interfaces, in situ nanoparticle contact angles agree with the macroscopic equilibrium contact angles of planar gold surfaces with the same polymer coatings, whilst for water-air interfaces, significant differences have been observed.

  16. Corrosion under argon irradiation of titanium in the low MeV range: A study coupling AFM and Spectroscopic Ellipsometry

    NASA Astrophysics Data System (ADS)

    Do, Ngoc-Long; Garcia-Caurel, Enric; Bérerd, Nicolas; Moncoffre, Nathalie; Gorse-Pomonti, Dominique

    2014-05-01

    This paper reports on a recent study of the corrosion under argon ion irradiation of titanium in the low MeV range (1-9 MeV), associating AFM and Spectroscopic Ellipsometry. Irradiation with MeV Arn+ (n = 1, 3) ions produces damages on the titanium surface. Large craters form on the oxidized titanium surface whose characteristics vary as a function of the argon energy between 2 and 9 MeV. The superficial oxide grows thicker under irradiation over the same energy range, especially near 3 MeV. It is suggested that collisions cascades play a significant role in the overall damage process.

  17. Nonlocal Interactions between Two Spatially Divided Light Fluxes

    NASA Astrophysics Data System (ADS)

    Sargsyan, R. Sh.; Karamyan, G. G.; Gevorkyan, A. S.; Manukyan, A. M.; Va rdanyan, V. T.; Nikoghosyan, A. G.; Sargsyan, V. R.

    2011-03-01

    Experiments with light scattering from diffraction slit are carried out. The changes in light intensities were observed when light was propagated through the remote coil of optical fiber in vicinity of diffraction slit. The time dependencies of intensities of scattered light in different diffraction zones are measured and analyzed. The qualitative interpretation of observed effects is proposed.

  18. Coherent x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Pitney, John Allen

    Conventional x-ray diffraction has historically been done under conditions such that the measured signal consists of an incoherent addition of scattering which is coherent only on a length scale determined by the properties of the beam. The result of the incoherent summation is a statistical averaging over the whole illuminated volume of the sample, which yields certain kinds of information with a high degree of precision and has been key to the success of x-ray diffraction in a variety of applications. Coherent x-ray scattering techniques, such as coherent x-ray diffraction (CXD) and x-ray intensity fluctuation spectroscopy (XIFS), attempt to reduce or eliminate any incoherent averaging so that specific, local structures couple to the measurement without being averaged out. In the case of XIFS, the result is analogous to dynamical light scattering, but with sensitivity to length scales less than 200 nm and time scales from 10-3 s to 103 s. When combined with phase retrieval, CXD represents an imaging technique with the penetration, in situ capabilities, and contrast mechanisms associated with x-rays and with a spatial resolution ultimately limited by the x-ray wavelength. In practice, however, the spatial resolution of CXD imaging is limited by exposure to about 100 A. This thesis describes CXD measurements of the binary alloy Cu3Au and the adaptation of phase retrieval methods for the reconstruction of real-space images of Cu3Au antiphase domains. The theoretical foundations of CXD are described in Chapter 1 as derived from the kinematical formulation for x-ray diffraction and from the temporal and spatial coherence of radiation. The antiphase domain structure of Cu 3Au is described, along with the associated reciprocal-space structure which is measured by CXD. CXD measurements place relatively stringent requirements on the coherence properties of the beam and on the detection mechanism of the experiment; these requirements and the means by which they have been

  19. Analysis and optimization of thin film photovoltaic materials and device fabrication by real time spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Li, Jian; Stoke, Jason A.; Podraza, Nikolas J.; Sainju, Deepak; Parikh, Anuja; Cao, Xinmin; Khatri, Himal; Barreau, Nicolas; Marsillac, Sylvain; Deng, Xunming; Collins, Robert W.

    2007-09-01

    Methods of spectroscopic ellipsometry (SE) have been applied to investigate the growth and properties of the material components used in the three major thin film photovoltaics technologies: (1) hydrogenated silicon (Si:H); (2) cadmium telluride (CdTe); and (3) copper indium-gallium diselenide (CuIn 1-xGa xSe2 or CIGS). In Si:H technology, real time SE (RTSE) has been applied to establish deposition phase diagrams that describe very high frequency (vhf) plasmaenhanced chemical vapor deposition (PECVD) processes for hydrogenated silicon (Si:H) and silicon-germanium alloy (Si 1-xGe x:H) thin films. This study has reaffirmed that the highest efficiencies for a-Si:H and a-Si 1-xGe x:H component solar cells of multijunction devices are obtained when the i-layers are prepared under maximal H II dilution conditions. In CdTe technology, the magnetron sputter deposition of polycrystalline CdTe, CdS, and CdTe 1-xS x thin films as well as the formation of CdS/CdTe and CdTe/CdS heterojunctions has been studied. The nucleation and growth behaviors of CdTe and CdS show strong variations with deposition temperature, and this influences the ultimate grain size. The dielectric functions ɛ of the CdTe 1-xS x alloys have been deduced in order to set up a database for real time investigation of inter-diffusion at the CdS/CdTe and CdTe/CdS interfaces. In CIGS technology, strong variations in ɛ of the Mo back contact during sputter deposition have been observed, and these results have been understood applying a Drude relaxation time that varies with the Mo film thickness. Ex-situ SE measurements of a novel In IIS 3 window layer have shown critical point structures at 2.77+/-0.08 eV, 4.92+/-0.005 eV, and 5.64+/-0.005 eV, as well as an absorption tail with an onset near 1.9 eV. Simulations of solar cell performance comparing In IIS 3 and the conventional CdS have revealed similar quantum efficiencies, suggesting the possibility of a Cd-free window layer in CIGS technology.

  20. Fabrication techniques for very fast diffractive lenses

    NASA Technical Reports Server (NTRS)

    Tai, Anthony M.; Marron, Joseph C.

    1993-01-01

    Aspheric lenses with arbitrary phase functions can be fabricated on thin light weight substrates via the binary optics fabrication technique. However, it is difficult and costly to fabricate a fast lens (f/number less than 1) for use as the shorter wavelengths. The pitch of the masks and the alignment accuracy must be very fine. For a large lens, the space-bandwidth product of the element can also become impractically large. In this paper, two alternate approaches for the fabrication of fast aspheric diffractive lenses are described. The first approach fabricates the diffractive lens interferometrically, utilizing a spherical wavefront to provide the optical power of the lens and a computer generated hologram to create the aspheric components. The second approach fabricates the aspheric diffractive lens in the form if a higher order kinoform which trades groove profile fidelity for coarser feature size. The design and implementation issues for these two fabrication techniques are discussed.

  1. Diffraction manipulation by four-wave mixing.

    PubMed

    Katzir, Itay; Ron, Amiram; Firstenberg, Ofer

    2015-03-09

    We suggest a scheme to manipulate paraxial diffraction by utilizing the dependency of a four-wave mixing process on the relative angle between the light fields. A microscopic model for four-wave mixing in a Λ-type level structure is introduced and compared to recent experimental data. We show that images with feature size as low as 10 μm can propagate with very little or even negative diffraction. The mechanism is completely different from that conserving the shape of spatial solitons in nonlinear media, as here diffraction is suppressed for arbitrary spatial profiles. At the same time, the gain inherent to the nonlinear process prevents loss and allows for operating at high optical depths. Our scheme does not rely on atomic motion and is thus applicable to both gaseous and solid media.

  2. Diffractive elements performance in chromatic confocal microscopy

    NASA Astrophysics Data System (ADS)

    Garzón, J.; Duque, D.; Alean, A.; Toledo, M.; Meneses, J.; Gharbi, T.

    2011-01-01

    The Confocal Laser Scanning Microscopy (CLSM) has been widely used in the semiconductor industry and biomedicine because of its depth discrimination capability. Subsequent to this technique has been developed in recent years Chromatic Confocal Microscopy. This method retains the same principle of confocal and offers the added advantage of removing the axial movement of the moving system. This advantage is usually accomplished with an optical element that generates a longitudinal chromatic aberration and a coding system that relates the axial position of each point of the sample with the wavelength that is focused on each. The present paper shows the performance of compact chromatic confocal microscope when some different diffractive elements are used for generation of longitudinal chromatic aberration. Diffractive elements, according to the process and manufacturing parameters, may have different diffraction efficiency and focus a specific wavelength in a specific focal position. The performance assessment is carried out with various light sources which exhibit an incoherent behaviour and a broad spectral width.

  3. Adaptable Diffraction Gratings With Wavefront Transformation

    NASA Technical Reports Server (NTRS)

    Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.

    2010-01-01

    Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength. Traditional diffraction gratings have static planar, concave, or convex surfaces. However, if they could be made so that they can change the surface curvature at will, then they would be able to focus on particular segments, self-calibrate, or perform fine adjustments. This innovation creates a diffraction grating on a deformable surface. This surface could be bent at will, resulting in a dynamic wavefront transformation. This allows for self-calibration, compensation for aberrations, enhancing image resolution in a particular area, or performing multiple scans using different wavelengths. A dynamic grating gives scientists a new ability to explore wavefronts from a variety of viewpoints.

  4. FLC diffraction grating: Efficiency enhancement by SWCNT doping

    NASA Astrophysics Data System (ADS)

    Gupta, Swadesh Kumar; Singh, Dharmendra Pratap; Manohar, Rajiv

    2013-06-01

    At present, Ferroelectric liquid crystals (FLCs) are well known for their use as a switchable grating in surface stabilized mode. The efficiency of such gratings is not attractive enough to be used in devices. An approach that uses an electro-optically tunable phase grating to enhance the diffraction efficiency is proposed here. The doping of Single wall carbon nanotubes (SWCNTs) in pure FLC has shown improved diffraction efficiency. The observations indicate towards the phase diffraction phenomenon. The enhanced efficiency of first order diffraction suggests the use of present system in holography and different spatial light modulators.

  5. Optical laue diffraction on photonic structures designed by laser lithography

    NASA Astrophysics Data System (ADS)

    Samusev, K. B.; Rybin, M. V.; Lukashenko, S. Yu.; Limonov, M. F.

    2016-06-01

    Two-dimensional photonic crystals with square symmetry C 4v were obtained using the laser lithography method. The structure of these samples was studied by scanning electron microscopy. Optical Laue diffraction for monochromatic light was studied experimentally depending on the incidence angle of laser beam and lattice constant. Interpretation of the observed diffraction patterns is given in the framework of the Laue diffraction mechanism for an one-dimensional chain of scattering elements. Red thresholds for different diffraction orders were determined experimentally and theoretically. The results of calculations are in an excellent agreement with experiment.

  6. Diffraction of three-colour radiation on an acoustic wave

    SciTech Connect

    Kotov, V M

    2015-07-31

    We study acousto-optic Bragg diffraction of three-colour radiation having wavelengths of 488, 514 and 633 nm on a single acoustic wave propagating in a TeO{sub 2} crystal. A technique is developed that allows one to find diffraction regimes with a proportional change in the intensity of all radiations by varying the acoustic power. According to the technique, radiation with a maximum wavelength has to be in strict Bragg synchronism with the acoustic wave, while other radiations diffract during the synchronism detuning. The results obtained using this technique are experimentally confirmed. (diffraction of light)

  7. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  8. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    SciTech Connect

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  9. Central Diffraction in ALICE

    SciTech Connect

    Schicker, R.

    2011-07-15

    The ALICE experiment consists of a central barrel in the pseudorapidity range -0.9<{eta}<0.9 and of additional detectors covering about 3 units of pseudorapidity on either side of the central barrel. Such a geometry allows the tagging of single and double gap events. The status of the analysis of such diffractive events in proton-proton collisions at {radical}(s) = 7 TeV is presented.

  10. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    NASA Technical Reports Server (NTRS)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  11. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    NASA Technical Reports Server (NTRS)

    Guo, Junpeng (Inventor)

    2015-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  12. Design of infrared diffractive telescope imaging optical systems

    NASA Astrophysics Data System (ADS)

    Zhang, ZhouFeng; Hu, BingLiang; Yin, QinYe; Xie, YongJun; Kang, FuZeng; Wang, YanJun

    2015-10-01

    Diffractive telescope is an updated imaging technology, it differs from conventional refractive and reflective imaging system, which is based on the principle of diffraction image. It has great potential for developing the larger aperture and lightweight telescope. However, one of the great challenges of design this optical system is that the diffractive optical element focuses on different wavelengths of light at different point in space, thereby distorting the color characteristics of image. In this paper, we designs a long-wavelength infrared diffractive telescope imaging system with flat surface Fresnel lens and cancels the infrared optical system chromatic aberration by another flat surface Fresnel lens, achieving broadband light(from 8μm-12μm) to a common focus with 4.6° field of view. At last, the diffuse spot size and MTF function provide diffractive-limited performance.

  13. Diffraction before destruction

    PubMed Central

    Chapman, Henry N.; Caleman, Carl; Timneanu, Nicusor

    2014-01-01

    X-ray free-electron lasers have opened up the possibility of structure determination of protein crystals at room temperature, free of radiation damage. The femtosecond-duration pulses of these sources enable diffraction signals to be collected from samples at doses of 1000 MGy or higher. The sample is vaporized by the intense pulse, but not before the scattering that gives rise to the diffraction pattern takes place. Consequently, only a single flash diffraction pattern can be recorded from a crystal, giving rise to the method of serial crystallography where tens of thousands of patterns are collected from individual crystals that flow across the beam and the patterns are indexed and aggregated into a set of structure factors. The high-dose tolerance and the many-crystal averaging approach allow data to be collected from much smaller crystals than have been examined at synchrotron radiation facilities, even from radiation-sensitive samples. Here, we review the interaction of intense femtosecond X-ray pulses with materials and discuss the implications for structure determination. We identify various dose regimes and conclude that the strongest achievable signals for a given sample are attained at the highest possible dose rates, from highest possible pulse intensities. PMID:24914146

  14. Polychromatic diffraction contrast tomography

    SciTech Connect

    King, A.; Reischig, P.; Adrien, J.; Peetermans, S.; Ludwig, W.

    2014-11-15

    This tutorial review introduces the use of polychromatic radiation for 3D grain mapping using X-ray diffraction contrast tomography. The objective is to produce a 3D map of the grain shapes and orientations within a bulk, millimeter-sized polycrystalline sample. The use of polychromatic radiation enables the standard synchrotron X-ray technique to be applied in a wider range of contexts: 1) Using laboratory X-ray sources allows a much wider application of the diffraction contrast tomography technique. 2) Neutron sources allow large samples, or samples containing high Z elements to be studied. 3) Applied to synchrotron sources, smaller samples may be treated, or faster measurements may be possible. Challenges and particularities in the data acquisition and processing, and the limitations of the different variants, are discussed. - Highlights: • We present a tutorial review of polychromatic diffraction contrast tomography techniques. • The use of polychromatic radiation allows the standard synchrotron DCT technique to be extended to a range of other sources. • The characteristics and limitations of all variants of the techniques are derived, discussed and compared. • Examples using laboratory X-ray and cold neutron radiation are presented. • Suggestions for the future development of these techniques are presented.

  15. Calculation of optical band gaps of a-Si:H thin films by ellipsometry and UV-Vis spectrophotometry

    NASA Astrophysics Data System (ADS)

    Qiu, Yijiao; Li, Wei; Wu, Maoyang; Fu, Junwei; Jiang, Yadong

    2010-10-01

    Hydrogenated amorphous silicon (a-Si:H) thin films doped with Phosphorus (P) and Nitrogen (N) were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). The optical band gaps of the thin films obtained through either changing the gas pressure (P-doped only) or adulterating nitrogen concentration (with fixed P content) were investigated by means of Ellipsometric and Ultraviolet-Visible (UV-Vis) spectroscopy, respectively. Tauc formula was used in calculating the optical band gaps of the thin films in both methods. The results show that Ellipsometry and UV-Vis spectrophotometry can be applied in the research of the optical properties of a-Si:H thin films experimentally. Both methods reflect the variation law of the optical band gaps caused by CVD process parameters, i.e., the optical band gap of the a-Si:H thin films is increased with the rise of the gas pressure or the nitrogen concentration respectively. The difference in optical band gaps of the doped a-Si:H thin films calculated by Ellipsometry or UV-Vis spectrophotometry are not so great that they both can be used to measure the optical band gaps of the thin films in practical applications.

  16. Spectroscopic Ellipsometry and Fluorescence Study of Thermochromism in an Ultrathin Poly(diacetylene) Film: Reversibility and Transition Kinetics

    SciTech Connect

    CARPICK,R.W.; MAYER,THOMAS M.; SASAKI,DARRYL Y.; BURNS,ALAN R.

    2000-01-18

    We have investigated the thermochromic transition of an ultrathin poly(diacetylene) film. The Langmuir film is composed of three layers of polymerized 10,12-pentacosadiynoic acid [CH{sub 3}(CH{sub 2}){sub 11}C{triple_bond}CC{triple_bond}C(CH{sub 2}){sub 8}COOH] (poly-PCDA) organized into crystalline domains on a silicon substrate. Spectroscopic ellipsometry and fluorescence intensity measurements are obtained with in-situ temperature control. Poly-PCDA films exhibit a reversible thermal transition between the initial blue form and an intermediate ''purple'' form that exists only at elevated temperature (between 303-333 K), followed by an irreversible transition to the red form after annealing above 320 K. We propose that the purple form is thermally distorted blue poly-PCDA, and may represent a transitional configuration in the irreversible conversion to red. This hypothesis is supported by the appearance of unique features in the absorption spectra for each form as derived from the ellipsometry measurements. Significant fluorescence emission occurs only with the red form, and is reduced at elevated temperatures while the absorption remains unchanged. Reduced emission is likely related to thermal fluctuations of the hydrocarbon side chains. Time-resolved fluorescence measurements of the irreversible transition have been performed. Using a first-order kinetic analysis of these measurements we deduce an energy barrier of 17.6 {+-} 1.1 kcal mol{sup -1} between the blue and red forms.

  17. Time-resolved ellipsometry for studies of heat transfer at liquid/solid and gas/solid interfaces

    NASA Astrophysics Data System (ADS)

    Min, Chang-Ki; Cahill, David G.; Granick, Steve

    2010-07-01

    We describe a sensitive method for measuring time-dependent changes in refractive index within ˜5 μm of an interface using off-null time-resolved ellipsometry and a dual-cavity femtosecond laser. The sensitivity to changes in refractive index is two orders of magnitude higher than conventional picosecond interferometry. A thin metal film on a sapphire substrate is heated by ˜10 K using an ultrafast optical pump pulse; the subsequent changes of the phase difference δΔ between p̂ and ŝ polarized reflectivity are tracked using off-null ellipsometry using a time-delayed probe pulse. We demonstrate a sensitivity of δΔ ≈3×10-7 deg/√Hz using interfaces between Au and water, and Au and various gases including R134a, a common refrigerant. Our data for the damping rate of ≈200 MHz frequency acoustic waves in O2, N2, and Ar at atmospheric pressure agree well with prior results obtained at much lower pressures and frequencies.

  18. Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity

    NASA Astrophysics Data System (ADS)

    Losurdo, M.; Giangregorio, M.; Capezzuto, P.; Bruno, G.; de Rosa, R.; Roca, F.; Summonte, C.; Plá, J.; Rizzoli, R.

    2002-01-01

    Indium-tin-oxide (ITO) films deposited by sputtering and e-gun evaporation on both transparent (Corning glass) and opaque (c-Si, c-Si/SiO2) substrates and in c-Si/a-Si:H/ITO heterostructures have been analyzed by spectroscopic ellipsometry (SE) in the range 1.5-5.0 eV. Taking the SE advantage of being applicable to absorbent substrate, ellipsometry is used to determine the spectra of the refractive index and extinction coefficient of the ITO films. The effect of the substrate surface on the ITO optical properties is focused and discussed. To this aim, a parametrized equation combining the Drude model, which considers the free-carrier response at the infrared end, and a double Lorentzian oscillator, which takes into account the interband transition contribution at the UV end, is used to model the ITO optical properties in the useful UV-visible range, whatever the substrate and deposition technique. Ellipsometric analysis is corroborated by sheet resistance measurements.

  19. Programmable diffractive lens for ophthalmic application

    NASA Astrophysics Data System (ADS)

    Millán, María S.; Pérez-Cabré, Elisabet; Romero, Lenny A.; Ramírez, Natalia

    2014-06-01

    Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements, particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. We explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of refractive errors (myopia, hypermetropia, astigmatism) and presbyopia. The principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. For the proof of concept, a series of experiments with artificial eye in optical bench are conducted. We analyze the compensation precision in terms of optical power and compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.

  20. Single Hit Energy-resolved Laue Diffraction

    SciTech Connect

    Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.; Ciricosta, Orlando; Wark, Justin S.; Higginbotham, Andrew; Hawreliak, James A.; Collins, Gilbert W.; Eggert, Jon H.; Comley, Andrew J.; Foster, John M.

    2015-05-15

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation.

  1. Digital phase-shifting point diffraction interferometer.

    PubMed

    Akondi, Vyas; Jewel, A R; Vohnsen, Brian

    2014-03-15

    A digital phase-shifting (PS) point diffraction interferometer is demonstrated with a transmitting liquid crystal spatial light modulator. This novel wavefront sensor allows tunability in the choice of pinhole size and eliminates the need for mechanically moving parts to achieve PS. It is shown that this wavefront sensor is capable of sensing Zernike aberrations introduced with a deformable mirror. The results obtained are compared with those of a commercial Hartmann-Shack wavefront sensor.

  2. Diffraction method of vocal chord oscillation sensing

    NASA Astrophysics Data System (ADS)

    Kuzmin, Sergey Y.; Tuchin, Valery V.

    1996-04-01

    A method of small-amplitude biovibrations detection is presented in the paper. The method uses a dependence of properties of speckle-structures formed by focused coherent light field diffraction from rough surfaces on the statistics and movement parameters of the surface. With the help of computer modeling the different components of skin surface vibration were analyzed and their influence on speckles dynamics was studied. Human vocal chord oscillations spectrum was monitored using the developed technique.

  3. Focusing Diffraction Grating Element with Aberration Control

    NASA Technical Reports Server (NTRS)

    Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.

    2010-01-01

    Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength in a single plane, called dispersion plane. Traditional gratings on flat substrates do not perform wavefront transformation in the plane perpendicular to the dispersion plane. The device proposed here exhibits regular diffraction grating behavior, dispersing light. In addition, it performs wavelength transformation (focusing or defocusing) of diffracted light in a direction perpendicular to the dispersion plane (called sagittal plane). The device is composed of a diffraction grating with the grooves in the form of equidistant arcs. It may be formed by defining a single arc or an arc approximation, then translating it along a certain direction by a distance equal to a multiple of a fixed distance ("grating period") to obtain other groove positions. Such groove layout is nearly impossible to obtain using traditional ruling methods, such as mechanical ruling or holographic scribing, but is trivial for lithographically scribed gratings. Lithographic scribing is the newly developed method first commercially introduced by LightSmyth Technologies, which produces gratings with the highest performance and arbitrary groove shape/spacing for advanced aberration control. Unlike other types of focusing gratings, the grating is formed on a flat substrate. In a plane perpendicular to the substrate and parallel to the translation direction, the period of the grating and, therefore, the projection of its k-vector onto the plane is the same for any location on the grating surface. In that plane, no waveform transformation by the grating k-vector occurs, except of simple redirection.

  4. Physics issues in diffraction limited storage ring design

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Bai, ZhengHe; Gao, WeiWei; Feng, GuangYao; Li, WeiMin; Wang, Lin; He, DuoHui

    2012-05-01

    Diffraction limited electron storage ring is considered a promising candidate for future light sources, whose main characteristics are higher brilliance, better transverse coherence and better stability. The challenge of diffraction limited storage ring design is how to achieve the ultra low beam emittance with acceptable nonlinear performance. Effective linear and nonlinear parameter optimization methods based on Artificial Intelligence were developed for the storage ring physical design. As an example of application, partial physical design of HALS (Hefei Advanced Light Source), which is a diffraction limited VUV and soft X-ray light source, was introduced. Severe emittance growth due to the Intra Beam Scattering effect, which is the main obstacle to achieve ultra low emittance, was estimated quantitatively and possible cures were discussed. It is inspiring that better performance of diffraction limited storage ring can be achieved in principle with careful parameter optimization.

  5. Optical scattering analysis of the diffraction distortion of a two-dimensional reflection grating.

    PubMed

    Teng, Shuyun; Zhang, Junchao; Cheng, Chuanfu

    2009-08-10

    Theoretical and experimental studies of the diffraction of a two-dimensional reflection grating are performed in this paper. Based on the theory of optical scattering, the light field in the Fraunhofer diffraction region is deduced, and the general expression of the diffraction field is given in the form of the wave vectors of the diffracted wave and the incident wave. Then the coordinate of the diffraction order is obtained. The calculation results show that the diffraction distortion of the grating appears when the grating is illuminated by the oblique incident light wave and the distortion is restricted on the diffraction of the grids varying along the direction perpendicular to the plane of incidence. The orbit equation satisfied by the distortion diffraction orders is presented. The experimental results verify adequately this diffraction distortion rule of the grating, and they agree very well with the theoretical results.

  6. Shifted Fresnel diffraction for computational holography.

    PubMed

    Muffoletto, Richard P; Tyler, John M; Tohline, Joel E

    2007-04-30

    Fourier-based approaches to calculate the Fresnel diffraction of light provide one of the most efficient algorithms for holographic computations because this permits the use of the fast Fourier transform (FFT). This research overcomes the limitations on sampling imposed by Fourier-based algorithms by the development of a fast shifted Fresnel transform. This fast shifted Fresnel transform is used to develop a tiling approach to hologram construction and reconstruction, which computes the Fresnel propagation of light between parallel planes having different resolutions.

  7. Diffractive acoustic elements for laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Clark, M.; Sharples, S. D.; Somekh, M. G.

    2000-05-01

    In a laser based surface acoustic wave (SAW) system the initial wavefront of the SAW is determined by the distribution of generating light on the sample surface. In our usual system the generating light is focussed into an arc or concentric arcs which spatially focus and temporally filter the SAWs. We have developed acoustic diffractive elements (DAEs) which, like diffractive optical elements, can shape the SAW distribution by diffraction. These DAEs are, like their optical analogues, highly dispersive and special consideration has to be made at the design stage in order to accommodate and utilize this dispersion. We demonstrate DAEs that produce well controlled multiple focii, frequency suppression and frequency selection. We also show that these complex acoustic elements can be accurately modelled using a simple angular spectrum technique. The DAEs are produced by computer generated holograms which control the generating distribution of light. These DAEs have applications in multi-frequency acoustic, harmonic acoustic imaging, SAW wavefront control and imaging on curved surfaces.

  8. Hands-on Fourier analysis by means of far-field diffraction

    NASA Astrophysics Data System (ADS)

    Ceffa, Nicolo' Giovanni; Collini, Maddalena; D'Alfonso, Laura; Chirico, Giuseppe

    2016-11-01

    Coherent sources of light are easily available to university undergraduate laboratory courses and the demonstration of electro-magnetic wave diffraction is typically made with light. However, the construction of arbitrary patterns for the study of light diffraction is particularly demanding due to the small linear scale needed when using sub-micrometer wavelengths, limiting the possibility to thoroughly investigate diffraction experimentally. We describe and test a simple and affordable method to develop arbitrary light diffraction patterns with first year undergraduate or last year high school students. This method is exploited to investigate experimentally the connection between diffraction and the Fourier transform, leading to the development of the concept of spectral analysis of a (2D) signal. We therefore discuss the possibility of building a teaching unit for first year undergraduate or last year high school students on the interdisciplinary topic of spectral analysis starting from an experimental approach to light diffraction.

  9. Optical Metrology for Directed Self-assembly Patterning Using Mueller Matrix Spectroscopic Ellipsometry Based Scatterometry

    NASA Astrophysics Data System (ADS)

    Dixit, Dhairya J.

    The semiconductor industry continues to drive patterning solutions that enable devices with higher memory storage capacity, faster computing performance, lower cost per transistors, and higher transistor density. These developments in the field of semiconductor manufacturing along with the overall minimization of the size of transistors require cutting-edge metrology tools for characterization. Directed self-assembly (DSA) patterning process can be used to fabricate nanoscale line-space patterns and contact holes via thermodynamically driven micro-phase separation of block copolymer (BCP) films with boundary constraints from guiding templates. Its main advantages are high pattern resolution (~10 nm), high throughput, no requirement of a high-resolution mask, and compatibility with standard fab-equipment and processes. Although research into DSA patterning has demonstrated a high potential as a nanoscale patterning process, there are critical challenges that must be overcome before transferring DSA into high volume manufacturing, including achievement of low defect density and high process stability. For this, advances in critical dimension (CD) and overlay measurement as well as rapid defect characterization are required. Both scatterometry and critical dimension-scanning electron microscopy (CD-SEM) are routinely used for inline dimensional metrology. CD-SEM inspection is limited, as it does not easily provide detailed line-shape information, whereas scatterometry has the capability of measuring important feature dimensions including: line-width, line-shape, sidewall-angle, and thickness of the patterned samples quickly and non-destructively. The present work describes the application of Mueller matrix spectroscopic ellipsometry (MMSE) based scatterometry to optically characterize DSA patterned line- space grating and contact hole structures fabricated with phase-separated polystyrene-b-polymethylmethacrylate (PS-b-PMMA) at various integration steps of BCP DSA

  10. Diffraction of a Laser Beam.

    ERIC Educational Resources Information Center

    Jodoin, Ronald E.

    1979-01-01

    Investigates the effect of the nonuniform irradiance across a laser beam on diffraction of the beam, specifically the Fraunhofer diffraction of a laser beam with a Gaussian irradiance profile as it passes through a circular aperture. (GA)

  11. Diffractive Alvarez lens

    SciTech Connect

    Barton, Ian M.; Dixit, Sham N.; Summers, Leslie J.; Thompson, Charles A.; Avicola, Kenneth; Wilhelmsen, Julia

    2000-01-01

    A diffractive Alvarez lens is demonstrated that consists of two separate phase plates, each having complementary 16-level surface-relief profiles that contain cubic phase delays. Translation of these two components in the plane of the phase plates is shown to produce a variable astigmatic focus. Both spherical and cylindrical phase profiles are demonstrated with good accuracy, and the discrete surface-relief features are shown to cause less than {lambda}/10 wave-front aberration in the transmitted wave front over a 40 mmx80 mm region. (c) 2000 Optical Society of America.

  12. Transurethral Ultrasound Diffraction Tomography

    DTIC Science & Technology

    2007-03-01

    transmitter. These are then 7 Fourier transformed into the frequency domain data. The clock rate is 33 MHz, and the FFT is performed after 1536 time...B. Yazgan and O.K. Ersoy, Multistage parallel algorithm for diffraction tomography, Applied Optica , vol. 34, pp, 1426-1431, 1995. [9] J. Wiskin, D.T...J1k0a2. Note that Eq. 34 reflects the well-known fact that in the Born approxi- mation the Fourier frequencies of the object are confined within a

  13. Six Classes of Diffraction-Based Optoelectronic Instruments

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan; Fuhr, Peter; Schipper, John

    2003-01-01

    Six classes of diffraction-based optoelectronic instruments have been invented as means for wavelength-based processing of light. One family of anticipated applications lies in scientific instrumentation for studying chemical and physical reactions that affect and/or are affected differently by light of different wavelengths or different combinations of wavelengths. Another family of anticipated applications lies in optoelectronic communication systems.

  14. Electron diffraction from cylindrical nanotubes

    SciTech Connect

    Qin, L.C. )

    1994-09-01

    Electron diffraction intensities from cylindrical objects can be conveniently analyzed using Bessel functions. Analytic formulas and geometry of the diffraction patterns from cylindrical carbon nanotubes are presented in general forms in terms of structural parameters, such as the pitch angle and the radius of a tubule. As an example the Fraunhofer diffraction pattern from a graphitic tubule of structure [18,2] has been simulated to illustrate the characteristics of such diffraction patterns. The validity of the projection approximation is also discussed.

  15. Design the diffractive optical element with large diffraction angle

    NASA Astrophysics Data System (ADS)

    Pang, Hui; Yin, Shaoyun; Zheng, Guoxing; Deng, Qiling; Shi, Lifang; Du, Chunlei

    2014-11-01

    In this paper, a quite effective method is proposed for designing the diffractive optical element (DOE) to generate a pattern with large diffraction angle. Through analyze the difference between the non-paraxial Rayleigh Sommerfeld integral and the paraxial Fraunhofer diffraction integral, we modify the desired output intensity distribution with coordinate transformation and intensity adjustment. Then the paraxial Fraunhofer diffraction integral can be used to design the DOE, which adopts the fast-Fourier-transform (FFT) algorithm to accelerate the computation. To verify our method, the simulation and the experiments are taken. And the result shows that our method can effectively rectify the pillow distortion and can achieve the exact diffraction angle.

  16. Aberrations of diffracted wave fields. II. Diffraction gratings.

    PubMed

    Mahajan, V N

    2000-12-01

    The Rayleigh-Sommerfeld theory is applied to diffraction of a spherical wave by a grating. The grating equation is obtained from the aberration-free diffraction pattern, and its aberrations are shown to be the same as the conventional aberrations obtained by using Fermat's principle. These aberrations are shown to be not associated with the diffraction process. Moreover, it is shown that the irradiance distribution of a certain diffraction order is the Fraunhofer diffraction pattern of the grating aperture as a whole aberrated by the aberration of that order.

  17. WOW: light print, light propel, light point

    NASA Astrophysics Data System (ADS)

    Glückstad, Jesper; Bañas, Andrew; Aabo, Thomas; Palima, Darwin

    2012-10-01

    We are presenting so-called Wave-guided Optical Waveguides (WOWs) fabricated by two-photon polymerization and capable of being optically manipulated into any arbitrary orientation. By integrating optical waveguides into the structures we have created freestanding waveguides which can be positioned anywhere in a sample at any orientation using real-time 3D optical micromanipulation with six degrees of freedom. One of the key aspects of our demonstrated WOWs is the change in direction of in-coupled light and the marked increase in numerical aperture of the out-coupled light. Hence, each light propelled WOW can tap from a relatively broad incident beam and generate a much more tightly confined light at its tip. The presentation contains both numerical simulations related to the propagation of light through a WOW and preliminary experimental demonstrations on our BioPhotonics Workstation. In a broader context, this research shows that optically trapped micro-fabricated structures can potentially help bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the sub-wavelength domain.

  18. Diffractive physics results at CDF

    SciTech Connect

    Michele Gallinaro

    2003-12-18

    Forward detectors are described together with the first physics results from Run II. Using new data and dedicated diffractive triggers, a measurement of single diffractive dijet production rate, with particular focus on the diffractive structure function of the antiproton, is discussed. Upper limits on the exclusive dijet and {chi}{sub c}{sup 0} production cross sections are also presented.

  19. Spectral diffraction efficiency characterization of broadband diffractive optical elements.

    SciTech Connect

    Choi, Junoh; Cruz-Cabrera, Alvaro Augusto; Tanbakuchi, Anthony

    2013-03-01

    Diffractive optical elements, with their thin profile and unique dispersion properties, have been studied and utilized in a number of optical systems, often yielding smaller and lighter systems. Despite the interest in and study of diffractive elements, the application has been limited to narrow spectral bands. This is due to the etch depths, which are optimized for optical path differences of only a single wavelength, consequently leading to rapid decline in efficiency as the working wavelength shifts away from the design wavelength. Various broadband diffractive design methodologies have recently been developed that improve spectral diffraction efficiency and expand the working bandwidth of diffractive elements. We have developed diffraction efficiency models and utilized the models to design, fabricate, and test two such extended bandwidth diffractive designs.

  20. Optical diffraction analysis of petrographic thin sections.

    PubMed

    Power, P C; Pincus, H J

    1974-10-18

    contain only elements of low spatial frequency that will not generate diffraction dots far enough radially from the central spot to be resolvable. More study will be needed to establish the precision of spatial frequency measurements from diffraction patterns generated directly by thin sections with the microscope system. Experiments with a variety of film types and sources of illumination will, in all likelihood, lead to a reduction in the exposure times used to record diffraction patterns with the microscope (9). A complete ODA system must have directional and frequency-filtering capabilities. In order to establish these capabilities for the microscope system, components will need to be designed and fabricated and the microscope body may have to be modified. The possibility of applying the microscope technique in reflected light on a real-time basis should be investigated. This would be a valuable tool in the quantitative analysis of microfracture initiation and propagation and the analysis of overall fabric changes during experimental deformation of rock both in situ and in the laboratory. The technique presented here can be used with a less expensive microscope, if it has a focusable Bertrand lens. Our experiments with relatively inexpensive microscopes indicated that the only major problem is alignment of the illuminating system (light-filter-condenser).

  1. Optical constants and band gap determination of Pb0.95La0.05Zr0.54Ti0.46O3 thin films using spectroscopic ellipsometry and UV-visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Batra, Vaishali; Kotru, Sushma; Varagas, M.; Ramana, C. V.

    2015-11-01

    We report the structural evolution and optical properties of lanthanum doped lead zirconate titanate (PLZT) thin films prepared on Pt/TiO2/SiO2/Si substrates by chemical solution deposition. X-ray diffraction demonstrates the post-deposition annealing induced crystallization for PLZT films annealed in a temperature (Ta) range of 550-750 °C. PLZT films annealed at higher temperature exhibit polycrystalline structure along with larger grain size. Optical band gap (Eg) values determined from UV-visible spectroscopy and spectroscopic ellipsometry (SE) for PLZT films were found to be in the range of 3.5-3.8 eV. Eg decreases with increasing Ta. The optical constants and their dispersion profiles for PLZT films were also determined from SE analyses. PLZT films show an index of refraction in the range of 2.46-2.50 (λ = 632.8 nm) with increase in Ta. The increase in refractive index at higher Ta is attributed to the improved packing density and crystallinity with the temperature.

  2. Dual-domain point diffraction interferometer

    DOEpatents

    Naulleau, Patrick P.; Goldberg, Kenneth Alan

    2000-01-01

    A hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI is provided. The dual-domain PS/PDI combines the separate noise-suppression capabilities of the widely-used phase-shifting and Fourier-transform fringe pattern analysis methods. The dual-domain PS/PDI relies on both a more restrictive implementation of the image plane PS/PDI mask and a new analysis method to be applied to the interferograms generated and recorded by the modified PS/PDI. The more restrictive PS/PDI mask guarantees the elimination of spatial-frequency crosstalk between the signal and the scattered-light noise arising from scattered-reference-light interfering with the test beam. The new dual-domain analysis method is then used to eliminate scattered-light noise arising from both the scattered-reference-light interfering with the test beam and the scattered-reference-light interfering with the "true" pinhole-diffracted reference light. The dual-domain analysis method has also been demonstrated to provide performance enhancement when using the non-optimized standard PS/PDI design. The dual-domain PS/PDI is essentially a three-tiered filtering system composed of lowpass spatial-filtering the test-beam electric field using the more restrictive PS/PDI mask, bandpass spatial-filtering the individual interferogram irradiance frames making up the phase-shifting series, and bandpass temporal-filtering the phase-shifting series as a whole.

  3. LED color mixing with diffractive structures

    NASA Astrophysics Data System (ADS)

    Bonenberger, Theresa; Baumgart, Jörg; Wendel, Simon; Neumann, Cornelius

    2013-03-01

    Lighting solutions with colored LEDs provide many opportunities for illumination. One of these opportunities is to create a color tunable light source. In this way different kinds of white light (color temperature) as well as discrete colors may be realized. This opens the field for applications as mood lighting. But there is always a spatial separation of the distinct LEDs that might get converted into an angular separation by any collimating optics. This angular separation causes such problems like color fringes and colored shadows that cannot be accepted in most applications. Conventional methods to solve these problems include e.g. mixing rods or dichroic filters. A new approach is the use of the dispersive effect of a diffractive structure to compensate the angular separation of the different colors. In this contribution the potential and limitations of diffractive structures in LED color mixing applications are discussed. Ray tracing simulations were performed to analyze such important parameters like efficiency, color performance and the cross section of the color mixing optics. New means for the estimation of color mixing performance were developed. A software tool makes it possible to detect the color distribution within ray trace data and it provides a quality factor to estimate the color mixing performance. It can be shown that the spectral band width has a large influence on the mixing process. Ray tracing simulations are compared with results of an experimental setup such that both measured as well as simulated data is presented.

  4. Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry

    SciTech Connect

    Tripura Sundari, S. Ramaseshan, R.; Jose, Feby; Dash, S.; Tyagi, A. K.

    2014-01-21

    The temperature dependence of optical constants of titanium nitride thin film is investigated using Spectroscopic Ellipsometry (SE) between 1.4 and 5 eV in the temperature range of 300 K to 650 K in steps of 50 K. The real and imaginary parts of the dielectric functions ε{sub 1}(E) and ε{sub 2}(E) marginally increase with increase in temperature. A Drude Lorentz dielectric analysis based on free electron and oscillator model are carried out to describe the temperature behavior. With increase in temperature, the unscreened plasma frequency and broadening marginally decreased and increased, respectively. The parameters of the Lorentz oscillator model also showed that the relaxation time decreased with temperature while the oscillator energies increased. This study shows that owing to the marginal change in the refractive index with temperature, titanium nitride can be employed for surface plasmon sensor applications even in environments where rise in temperature is imminent.

  5. Using electrochemistry - total internal refection imaging ellipsometry to monitor biochemical oxygen demand on the surface tethered polyelectrolyte modified electrode

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Meng; Lv, Bei'er; Chen, YanYan; Ma, Hongwei; Jin, Gang

    2015-03-01

    Our previous work has proposed an electrochemistry - total internal reflection imaging ellipsometry (EC-TIRIE) technique to observe the dissolved oxygen (DO) reduction on Clark electrode since high interface sensitivity makes TIRIE a useful tool to study redox reactions on the electrode surface. To amplify the optical signal noise ratio (OSNR), a surface tethered weak polyelectrolyte, carboxylated poly(oligo(ethylene glycol) methacrylate-random- 2-hydroxyethylmethacrylate) (abbreviated as carboxylated poly(OEGMA-r-HEMA)), has been introduced on the electrode surface. Since Clark electrode is widely used in biochemical oxygen demand (BOD) detection, we use this technique to measure BOD in the sample. The dynamic range of the system is from 0 ˜ 25 mg/L. Two samples have been measured. Compared with the conventional method, the deviation of both optical and electrical signals are less than 10%.

  6. Effect of free surface roughness on the apparent glass transition temperature in thin polymer films measured by ellipsometry.

    PubMed

    Efremov, Mikhail Yu

    2014-12-01

    Ellipsometry is one of the standard methods for observation of glass transition in thin polymer films. This work proposes that sensitivity of the method to surface morphology can complicate manifestation of the transition in a few nm thick samples. Two possible mechanisms of free surface roughening in the vicinity of glass transition are discussed: roughening due to lateral heterogeneity and roughening associated with thermal capillary waves. Both mechanisms imply an onset of surface roughness in the glass transition temperature range, which affects the experimental data in a way that shifts apparent glass transition temperature. Effective medium approximation models are used to introduce surface roughness into optical calculations. The results of the optical modeling for a 5 nm thick polystyrene film on silicon are presented.

  7. Multiple angle of incidence, spectroscopic, plasmon-enhanced, internal reflection ellipsometry for the characterization of solid-liquid interface processes

    NASA Astrophysics Data System (ADS)

    Petrik, P.; Agocs, E.; Kalas, B.; Kozma, P.; Fodor, B.; Nador, J.; Major, C.; Fried, M.

    2015-05-01

    A semi-cylindrical lens in Kretschmann geometry combined with a flow cell was designed for a commercial rotating compensator ellipsometer to perform internal reflection spectroscopic ellipsometry measurements, while allowing the use of multiple angles of incidence. A thin glass slide covered with a gold film was mounted between the half-cylindrical lens and a small-volume flow cell ensuring an improved sensitivity for protein adsorption experiments. The performance of the system was investigated depending on the angle of incidence, wavelength range and thickness of the gold films for surface plasmon resonance enhanced ellipsometric measurements, and a sensitivity increase was revealed compared to ellipsometric measurements with standard flow cells, depending on the measurement parameters and configuration. The sensitivity increase was demonstrated for fibrinogen adsorption.

  8. Optical constants of neat liquid-chemical warfare agents and related materials measured by infrared spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Yang, C. S.-C.; Williams, B. R.; Hulet, M. S.; Tiwald, T. E.; Miles, R. W., Jr.; Samuels, A. C.

    2011-05-01

    We studied various liquids using a vertical attenuated total reflection (ATR) liquid sampling assembly in conjunction with Infrared Variable Angle Spectroscopic Ellipsometry (IR-VASE), to determine the infrared optical constants of several bulk liquids related to chemical warfare. The index of refraction, n, and the extinction coefficient, k, of isopropyl methylphosphonofluoridate (Sarin or GB), isopropyl alcohol (IPA) (a precursor of GB), and dimethyl methylphosphonate (DMMP)-a commonly employed simulant for GB, measured by our vertical ATR IR-VASE setup are closely matched to those found in other studies. We also report the optical constants of cyclohexyl methylphosphonofluoridate (GF), 2-(diisopropylamino)ethyl methylphosphonothioate (VX), bis-(2-chloroethyl) sulfide (HD), and 2-chlorovinyl dichloroarsine (L, Lewisite). The ATR IR-VASE technique affords an accurate measurement of the optical constants of these hazardous compounds.

  9. Study of InGaAs-based modulation doped field effect transistor structures using variable-angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. M.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1991-01-01

    Variable-angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs-based modulation doped field effect transistor structures. Strained and unstrained InGaAs channels were made by molecular beam epitaxy (MBE) on InP substrates and by metal-organic chemical vapor deposition on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10% of the growth-calibration results. The MBE-made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice-matched concentration.

  10. Temperature dependence of the electronic transitions in BiFeO{sub 3} thin film studied by spectroscopic ellipsometry

    SciTech Connect

    Kang, T. D.; Jeon, B. C.; Moon, S. J.

    2015-04-07

    The temperature dependence of the electronic response of BiFeO{sub 3} thin film grown on a SrTiO{sub 3} substrate is investigated using spectroscopic ellipsometry. By analyzing the pseudodielectric function, we identify two d-d crystal field transitions of Fe{sup 3+} ions in the energy region between 1 and 2 eV. The d-d transitions show abnormal temperature dependence that cannot be attributed to conventional electron-phonon interactions. The origin of the abnormal temperature dependence is discussed in terms of spin-charge coupling. The temperature dependence of the charge transfer transitions located above 2.5 eV is characterized by standard critical point model analysis of the 2nd derivatives of the dielectric function. This analysis provides detailed information of the critical point parameters for charge transfer transitions.

  11. In situ real-time spectroscopic ellipsometry measurement for the investigation of molecular orientation in organic amorphous multilayer structures

    NASA Astrophysics Data System (ADS)

    Yokoyama, Daisuke; Adachi, Chihaya

    2010-06-01

    To investigate molecular orientation in organic amorphous films, in situ real-time spectroscopic ellipsometry measurements were performed during vacuum deposition. Three materials with different molecular shapes were adopted to confirm the generality of the molecular orientation. In all three cases, more than 200 000 values for the ellipsometric parameters measured during deposition were well simulated simultaneously over the entire spectral range and measurement period using a simple model where the films possessed homogeneous optical anisotropy. This demonstrated the homogeneity of the molecular orientation in the direction of film thickness. The molecular orientation can be controlled by the substrate temperature even in multilayer structures. It is also demonstrated that a "multilayer structure" can be fabricated using only one material, where each layer has different optical and electrical properties.

  12. Two Simultaneous Mechanisms Causing Glass Transition Temperature Reductions in High Molecular Weight Freestanding Polymer Films as Measured by Transmission Ellipsometry

    NASA Astrophysics Data System (ADS)

    Pye, Justin E.; Roth, Connie B.

    2011-12-01

    We study the glass transition in confined polymer films and present the first experimental evidence indicating that two separate mechanisms can act simultaneously on the film to propagate enhanced mobility from the free surface into the material. Using transmission ellipsometry, we have measured the thermal expansion of ultrathin, high molecular-weight (MW), freestanding polystyrene films over an extended temperature range. For two different MWs, we observed two distinct reduced glass transition temperatures (Tg’s), separated by up to 60 K, within single films with thicknesses h less than 70 nm. The lower transition follows the expected MW dependent, linear Tg(h) behavior previously seen in high MW freestanding films. We also observe a much stronger upper transition with no MW dependence that exhibits the same Tg(h) dependence as supported and low MW freestanding polymer films.

  13. Thermal treatment effects imposed on solid DNA cationic lipid complex with hexadecyltrimethylammonium chloride, observed by variable angle spectroscopic ellipsometry

    SciTech Connect

    Nizioł, Jacek

    2014-12-21

    DNA cationic lipid complexes are materials of properties required for applications in organic electronics and optoelectronics. Often, their thermal stability demonstrated by thermogravimetry is cited in the literature as important issue. However, little is known about processes occurring in heated solid DNA cationic lipid complexes. In frame of this work, thin films of Deoxyribonucleic acid-hexadecyltrimethylammonium chloride (DNA-CTMA) were deposited on silicon wafers. Samples were thermally annealed, and simultaneously, their optical functions were measured by spectroscopic ellipsometry. At lower temperatures, thermal expansion coefficient of solid DNA-CTMA was negative, but at higher temperatures positive. Thermally induced modification of absorption spectrum in UV-vis was observed. It occurred at a range of temperatures higher than this of DNA denaturation in solution. The observed phenomenon was irreversible, at least in time scale of the experiment (one day)

  14. When holography meets coherent diffraction imaging.

    PubMed

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner

    2012-12-17

    The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the

  15. Diffraction and Unitarity

    NASA Astrophysics Data System (ADS)

    Dremin, I. M.

    I begin with a tribute to V.N. Gribov and then come to a particular problem which would be of interest for him. His first paper on reggeology was devoted to elastic scatterings of hadrons. Here, using the unitarity relation in combination with experimental data about the elastic scattering in the diffraction cone, I show how the shape and the darkness of the interaction region of colliding protons change with the increase of their energies. In particular, the collisions become fully absorptive at small impact parameters at LHC energies that results in some special features of inelastic processes as well. The possible evolution with increasing energy of the shape from the dark core at the LHC to the fully transparent one at higher energies is discussed. It implies that the terminology of the black disk would be replaced by the black torus.

  16. Diffraction and unitarity

    NASA Astrophysics Data System (ADS)

    Dremin, I. M.

    2016-10-01

    I begin with a tribute to V.N. Gribov and then come to a particular problem which would be of interest for him. His first paper on reggeology was devoted to elastic scatterings of hadrons. Here, using the unitarity relation in combination with experimental data about the elastic scattering in the diffraction cone, I show how the shape and the darkness of the interaction region of colliding protons change with the increase of their energies. In particular, the collisions become fully absorptive at small impact parameters at LHC energies that results in some special features of inelastic processes as well. The possible evolution with increasing energy of the shape from the dark core at the LHC to the fully transparent one at higher energies is discussed. It implies that the terminology of the black disk would be replaced by the black torus.

  17. Multilayer diffraction grating

    SciTech Connect

    Barbee, T.W., Jr.

    1988-10-18

    This invention is for a reflection diffraction grating that functions at x-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages. 2 figs.

  18. Multilayer diffraction grating

    DOEpatents

    Barbee, T.W. Jr.

    1990-04-10

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages. 2 figs.

  19. Multilayer diffraction grating

    DOEpatents

    Barbee, Jr., Troy W.

    1990-01-01

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages.

  20. Dichroic coherent diffractive imaging.

    PubMed

    Tripathi, Ashish; Mohanty, Jyoti; Dietze, Sebastian H; Shpyrko, Oleg G; Shipton, Erik; Fullerton, Eric E; Kim, Sang Soo; McNulty, Ian

    2011-08-16

    Understanding electronic structure at the nanoscale is crucial to untangling fundamental physics puzzles such as phase separation and emergent behavior in complex magnetic oxides. Probes with the ability to see beyond surfaces on nanometer length and subpicosecond time scales can greatly enhance our understanding of these systems and will undoubtedly impact development of future information technologies. Polarized X-rays are an appealing choice of probe due to their penetrating power, elemental and magnetic specificity, and high spatial resolution. The resolution of traditional X-ray microscopes is limited by the nanometer precision required to fabricate X-ray optics. Here we present a novel approach to lensless imaging of an extended magnetic nanostructure, in which a scanned series of dichroic coherent diffraction patterns is recorded and numerically inverted to map its magnetic domain configuration. Unlike holographic methods, it does not require a reference wave or precision optics. In addition, it enables the imaging of samples with arbitrarily large spatial dimensions, at a spatial resolution limited solely by the coherent X-ray flux, wavelength, and stability of the sample with respect to the beam. It can readily be extended to nonmagnetic systems that exhibit circular or linear dichroism. We demonstrate this approach by imaging ferrimagnetic labyrinthine domains in a Gd/Fe multilayer with perpendicular anisotropy and follow the evolution of the domain structure through part of its magnetization hysteresis loop. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of the new generation of phenomenally brilliant X-ray sources.

  1. Spectroscopic ellipsometry and fluorescence study of thermochromism in an ultrathin poly(diacetylene) film: Reversibility and transition kinetics

    SciTech Connect

    Carpick, R.W.; Mayer, T.M.; Sasaki, D.Y.; Burns, A.R.

    2000-05-16

    The authors have investigated the thermochromic transition of an ultrathin poly(diacetylene)film. The Langmuir film is composed of three layers of polymerized 10,12-pentacosadiynoic acid [Ch{sub 3}(CH{sub 2}){sub 11}C{triple_bond}CC{triple_bond}C(CH{sub 2}){sub 8}COOH] (poly-PCDA) organized into crystalline domains on a silicon substrate. Spectroscopic ellipsometry and fluorescence intensity measurements are obtained with in situ temperature control. Poly-PCDA films exhibit a reversible thermal transition between the initial blue form and an intermediate purple form that exists only at elevated temperature (between 303 and 333 K), followed by an irreversible transition to the red form after annealing above 320 K. The authors propose that the purple form is thermally distorted blue poly-PCDA and may represent a transitional configuration in the irreversible conversion to red. This hypothesis is supported by the appearance of unique features in the absorption spectra for each form as derived from the ellipsometry measurements. Significant fluorescence emission occurs only with the red form and is reduced at elevated temperatures while the absorption remains unchanged. Reduced emission is likely related to thermal fluctuations of the hydrocarbon side chains. Time-resolved fluorescence is likely related to thermal fluctuations of the hydrocarbon side chains. Time-resolved fluorescence measurements of the irreversible transition have been performed. Using a first-order kinetic analysis of these measurements, the authors deduce an energy barrier of 17.6 {+-} 1.1 kcal mol{sup {minus}1} between the blue and red forms.

  2. Exploration of optical behavior of Cd1-xNixTe thin films by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Mahmood, Arshad; Aziz, U.; Rashid, R.; Shah, A.; Ali, Zahid; Raza, Qaiser; Raffi, M.; Shakir, Imran

    2014-12-01

    We report on the tunability over the optical behavior of e-beam evaporated nanocrystalline thin films of Cd1-xNixTe (0 ≤ x ≤ 0.15). X-ray diffraction analysis reveals the polycrystalline nature of the film having zinc blend structure with a preferred growth direction along (111) plane parallel to the substrate. X-ray diffraction results also indicate that the grain size of the films decreases from 27.13 nm to 16.23 nm with an increase in Ni concentration from 0 to 15 at%. The compositional analysis of the film was carried out by energy dispersive x-ray analysis (EDX) which confirms the successful inclusion of Ni in CdTe matrix. Spectroscopic ellipsometery (SE) results demonstrate that the band gap of the grown films increases from 1.48 eV to 1.86 eV while refractive index (n) and extinction coefficient (k) decrease with the increasing Ni concentration. The increase in band gap energy of Cd1-xNixTe films as a function of Ni concentration was confirmed by spectrophotometric analysis.

  3. Optical diffraction tomography for high resolution live cell imaging.

    PubMed

    Sung, Yongjin; Choi, Wonshik; Fang-Yen, Christopher; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S

    2009-01-05

    We report the experimental implementation of optical diffraction tomography for quantitative 3D mapping of refractive index in live biological cells. Using a heterodyne Mach-Zehnder interferometer, we record complex field images of light transmitted through a sample with varying directions of illumination. To quantitatively reconstruct the 3D map of complex refractive index in live cells, we apply optical diffraction tomography based on the Rytov approximation. In this way, the effect of diffraction is taken into account in the reconstruction process and diffraction-free high resolution 3D images are obtained throughout the entire sample volume. The quantitative refractive index map can potentially serve as an intrinsic assay to provide the molecular concentrations without the addition of exogenous agents and also to provide a method for studying the light scattering properties of single cells.

  4. Shedding Light on the Photochemistry of Coinage-Metal Phosphorescent Materials: A Time-Resolved Laue Diffraction Study of an AgI-CuI Tetranuclear Complex

    SciTech Connect

    Jarzembska, Katarzyna N.; Kami,; #324; ski, Radoslaw; Fournier, Bertrand; Trzop, El; #380; bieta,; Sokolow, Jesse D.; Henning, Robert; Chen, Yang; Coppens, Philip

    2014-11-14

    The triplet excited state of a new crystalline form of a tetranuclear coordination d10–d10-type complex, Ag2Cu2L4 (L = 2-diphenylphosphino-3-methylindole ligand), containing AgI and CuI metal centers has been explored using the Laue pump–probe technique with ≈80 ps time resolution. The relatively short lifetime of 1 μs is accompanied by significant photoinduced structural changes, as large as the Ag1···Cu2 distance shortening by 0.59(3) Å. The results show a pronounced strengthening of the argentophilic interactions and formation of new Ag···Cu bonds on excitation. Theoretical calculations indicate that the structural changes are due to a ligand-to-metal charge transfer (LMCT) strengthening the Ag···Ag interaction, mainly occurring from the methylindole ligands to the silver metal centers. QM/MM optimizations of the ground and excited states of the complex support the experimental results. Comparison with isolated molecule optimizations demonstrates the restricting effect of the crystalline matrix on photoinduced distortions. The work represents the first time-resolved Laue diffraction study of a heteronuclear coordination complex and provides new information on the nature of photoresponse of coinage metal complexes, which have been the subject of extensive studies.

  5. Quasi-periodic gratings: diffraction orders accelerate along curves.

    PubMed

    Gao, Nan; Li, Hailiang; Zhu, Xiaoli; Hua, Yilei; Xie, Changqing

    2013-08-01

    Light diffracting to different diffraction orders of a periodic grating generally propagates along a set of straight trajectories. Here we show that certain quasi-periodic gratings can produce curved diffraction orders. These curved lobes are created by the caustic interference of the originally straight diffraction orders and manifest themselves as accelerating beams. Both numerical simulations and experimental results demonstrate the validity of multiple accelerating beam generation with a single binary grating. Our work makes a quantitative link between the quasi-periodicity of a grating and the resulting caustic diffraction orders. Furthermore, the use of binary devices has important applications in acoustics, x-ray optics, and electron beam engineering and is also useful when high optical power is needed.

  6. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  7. Wide-aperture diffraction of unpolarised radiation in a system of two acousto-optic filters

    SciTech Connect

    Magdich, L N; Yushkov, K B; Voloshinov, V B

    2009-04-30

    Light diffraction is studied in two tandem acousto-optic cells filtering unpolarised radiation with a wide angular spectrum. It is shown that the side lobes of the ultrasonic radiation pattern of a piezoelectric transducer produce side diffraction intensity maxima at the output of the system consisting of two filters. Diffraction in paratellurite filters is studied experimentally at 1.06 {mu}m. (light modulation)

  8. Multi foci with diffraction limited resolution.

    PubMed

    Waller, Erik H; von Freymann, Georg

    2013-09-09

    The generation of multi foci is an established method for high-speed parallel direct laser writing, scanning microscopy and for optical tweezer arrays. However, the quality of multi foci reduces with increasing resolution due to interference effects. Here, we report on a spatial-light-modulator-based method that allows for highly uniform, close to Gaussian spots with diffraction limited resolution using a wavelength of 780 nm. We introduce modifications of a standard algorithm that calculates a field distribution on the entrance pupil of a high numerical aperture objective splitting the focal volume into a multitude of spots. Our modified algorithm compares favourably to a commonly used algorithm in full vectorial calculations as well as in point-spread-function measurements. The lateral and axial resolution limits of spots generated by the new algorithm are found to be close to the diffraction limit.

  9. Precision atomic gravimeter based on Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Altin, P. A.; Johnsson, M. T.; Negnevitsky, V.; Dennis, G. R.; Anderson, R. P.; Debs, J. E.; Szigeti, S. S.; Hardman, K. S.; Bennetts, S.; McDonald, G. D.; Turner, L. D.; Close, J. D.; Robins, N. P.

    2013-02-01

    We present a precision gravimeter based on coherent Bragg diffraction of freely falling cold atoms. Traditionally, atomic gravimeters have used stimulated Raman transitions to separate clouds in momentum space by driving transitions between two internal atomic states. Bragg interferometers utilize only a single internal state, and can therefore be less susceptible to environmental perturbations. Here we show that atoms extracted from a magneto-optical trap using an accelerating optical lattice are a suitable source for a Bragg atom interferometer, allowing efficient beamsplitting and subsequent separation of momentum states for detection. Despite the inherently multi-state nature of atom diffraction, we are able to build a Mach-Zehnder interferometer using Bragg scattering which achieves a sensitivity to the gravitational acceleration of Δg/g = 2.7 × 10-9 with an integration time of 1000 s. The device can also be converted to a gravity gradiometer by a simple modification of the light pulse sequence.

  10. Design of multifunctional diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Anand; Bhattacharya, Shanti

    2015-02-01

    Diffractive optics has traditionally been used to transform a parallel beam of light into a pattern with a desired phase and intensity distribution. One of the advantages of using diffractive optics is the fact that multiple functions can be integrated into one element. Although, in theory, several functions can be combined, the efficiency is reduced with each added function. Also, depending on the nature of each function, feature sizes could get finer. Optical lithography with its 1 μm limit becomes inadequate for fabrication and sophisticated tools such as e-beam lithography and focused ion beam milling are required. Two different techniques, namely, a modulo-2π phase addition technique and an analog technique for design and fabrication of composite elements are studied. A comparison of the beams generated in both cases is presented. In order to be able to compare methods, specific functions of ring generation and focusing have been added in all cases.

  11. Optical loss due to diffraction by concentrator Fresnel lenses

    SciTech Connect

    Hornung, Thorsten Nitz, Peter

    2014-09-26

    Fresnel lenses are widely used in concentrating photovoltaic (CPV) systems as a primary optical element. They focus sunlight on small solar cells or on the entrance apertures of secondary optical elements. A Fresnel lens consists of several prism rings and diffraction by these prism rings is unavoidable. Some of the light that would reach a designated target area according to geometric optics will miss it due to diffraction. This diffraction loss may be of relevant magnitude for CPV applications. The results of published analytical calculations are evaluated, discussed, and compared to computer simulations and measurements.

  12. Nonlinear diffraction from high-order Hermite-Gauss beams.

    PubMed

    Kalinowski, Ksawery; Shapira, Asia; Libster-Hershko, Ana; Arie, Ady

    2015-01-01

    We investigate experimentally and theoretically the nonlinearly diffracted second harmonic light from the first-order Hermite-Gauss beam. We investigate the cases of loosely and tightly focused beams in a periodically poled lithium niobate crystal in the temperature range near the birefringent phase matching. Unlike the case of fundamental Gaussian beam, the nonlinear diffracted beam is spatially structured. Its shape depends on the focusing conditions and on the crystal temperature. Furthermore, for the case of tight focusing, the diffracted beam structure depends on the beam's position with respect to the domain wall.

  13. Diffraction pattern of triangular grating in the resonance domain.

    PubMed

    Hoshino, Tetsuya; Banerjee, Saswatee; Itoh, Masahide; Yatagai, Toyohiko

    2009-03-01

    We propose a combination of ray optics and Fraunhofer multiple-slit diffraction theory for calculating the two-dimensional triangular periodic grating in the resonance domain. The peak of the envelope pattern of angular distribution of diffraction efficiency is calculated by ray optics while the peak width is calculated using Fraunhofer theory. It was clarified, using rigorous coupled-wave analysis and a nonstandard-finite-difference time-domain method, that the envelope pattern of the diffraction of the grating could be calculated easily and understood intuitively for the design of displays and lighting.

  14. Efficiency and bandwidth analysis of holographic glazing materials in the conical diffraction configuration

    SciTech Connect

    Tholl, H.D.

    1994-12-31

    The redirection of light by holographic glazing is based on diffraction. The intensity and the color of the redirected light depend strongly on the direction of the diffracted waves. The paper presents a model for the design of volume holograms as light directing elements which takes into account the three-dimensional character of the diffraction process. Formulas for the Bragg-wavelength, the bandwidth, and the diffraction efficiency are given. It is shown how to use conventional photometric formulas in order to calculate the illuminance and the color distribution on surfaces illuminated by the diffracted light. Finally, the design method is demonstrated for a single volume grating incorporated into a window as a light directing element.

  15. Five-degrees-of-freedom diffractive laser encoder

    SciTech Connect

    Liu, Chien-Hung; Huang, Hsueh-Liang; Lee, Hau-Wei

    2009-05-10

    Linear laser encoders have been widely used for precision positioning control of a linear stage. We develop a five-degrees-of-freedom (5-DOF) laser linear encoder to simultaneously measure the position, straightness, pitch, roll, and yaw errors along one moving axis. This study integrates the circular polarized interferometric technique with the three-dimensional diffracted ray-tracing method to develop a novel laser encoder with 5-DOF. The phases encoded within the +1 and -1 order diffraction lights reflected from the diffraction grating are decoded by the circular polarized interferometric technique to measure the linear displacement when the diffraction grating moves. The three-dimensional diffracted ray tracing of the +1- and -1-order diffraction lights induced by the motion errors of the moved grating were analyzed to calculate the other motion errors based on the detection of light spots on two quadrant photodiode detectors. The period of the grating is 0.83 {mu}m and the experimental results show that the measurement accuracy was better than {+-}0.3 {mu}m/{+-}41 {mu}m for straightness, {+-}1 arc sec.

  16. Diffraction at HFIR

    SciTech Connect

    Chakoumakos, Bryan C; Fernandez-Baca, Jaime A; Garlea, Vasile O; Hubbard, Camden R; Wang, Xun-Li

    2008-01-01

    Of the planned suite of powder and single-crystal diffractometers for the HFIR, only two are currently operating, the Neutron Residual Stress Mapping Facility (NRSF2) diffractometer, and the Wide Angle Neutron Diffractometer (WAND). The NSRF2 was recently upgraded and is available to external users via the High Temperature Materials Laboratory (HTML) User Program for studies of stress, texture and phase mapping. The WAND is a flat-cone geometry diffractometer equipped with a curve 1-D PSD, suitable for high intensity powder diffraction (e.g., kinetics, high pressure) and diffuse scattering studies of single-crystals. A rebuild of the old HFIR powder diffractometer, originally located at HB-4 station is now underway, and is expected to begin commissioning by summer 2008. This instrument has a Debye-Scherrer geometry, with a detector bank consisting of 44 3He tubes each with 6' Soller collimators. A four-circle single-crystal diffractometer is located at the HB-3A station, and is slowly being brought back to life after the long hiatus connected to the reactor upgrade. A Letter of Intent to build a quasi-Laue diffractometer, called IMAGINE, in the HFIR Cold Guide Hall has been presented to and endorsed by the Neutron Scattering Science Advisory Committee.

  17. Phase-diffractive coating for daylight control on smart window

    NASA Astrophysics Data System (ADS)

    Perennes, Frederic; Twardowski, Patrice J.; Gesbert, D.; Meyrueis, Patrick

    1992-11-01

    Daylight can be processed by a smart window in a transmission, reflective, refractive, and diffractive mode. In the future an optimization will be realized by a mixing of these approaches depending on the applied cases. Non-imaging diffractive optics has its roots in the work done in holographic diffractive coating for head up displays (HUD) and helmet mounted displays. For having globally good results on smart window with diffractive coating, a very high diffraction efficiency must be reached close to 100% without having a too important lowering of the control of other parameters of the light processed by a smart window (direction and frequency control essentially). We propose a method for designing, realizing, and using diffractive coating for a smart window that is based on a new organic material and diffractive model that were already validated in HUD. Potential low cost is possible for mass production on a large surface with an adapted investment. We describe the present technology and its limits and the ones that can be reached in the future. In this work, we present a holographic way to modify the slant of sun rays through a window, and to filter infrared radiations by using dichromated gelatin material. In this way it would be able to ensure a more uniform lighting and a more pleasant temperature inside buildings or vehicles, without using dye or photochromics glasses.

  18. Muscle diffraction theory. Relationship between diffraction subpeaks and discrete sarcomere length distributions.

    PubMed Central

    Judy, M M; Summerour, V; LeConey, T; Roa, R L; Templeton, G H

    1982-01-01

    A theoretical discussion is presented that describes the diffraction on monochromatic light by a three-dimensional sarcomere array having the following properties. The basic repetitive diffracting unit is the sarcomere. The contiguous arrangement of physically attached serial sarcomeres in the myofibril is contained within the model so that relative position of sarcomeres depend upon the lengths of intervening ones. Sarcomere length is described by a distribution function. This function may be discrete or continuous and contain one or more subpopulations. Two arrangements of sarcomeres are considered: (a) when sarcomeres of different lengths are arranged randomly in myofibrils the amplitude and width of mth order (m greater than or equal to 1) peaks and associated secondary diffraction maxima decrease and increase monotonically, respectively, as the standard deviation of the length distribution increases. No subpeaks are present regardless of the number of subpopulations within the distribution function. This behavior is shown to follow from the dependence of sarcomere position on the length of intervening sarcomeres. (b) When sarcomeres belonging to the same length subpopulation are arranged in serial contiguous fashion to form domains and more than one length subpopulation is present, then mth order diffraction peaks split to form subpeaks. The theoretical basis for this behavior is developed for the first time and may explain the subpeaks evident in diffraction patterns from cardiac and skeletal muscle. PMID:7059651

  19. Diffractive Measurements at the LHC: Elastic and Inelastic Soft Diffraction

    SciTech Connect

    Orava, Risto

    2011-07-15

    A short review of four topics was presented: (1) Photon bremsstrahlung in elastic proton-proton scattering, (2) Low mass Single Diffraction (SD), (3) Low mass Central Exclusive Diffraction (CED), and (4) Event classification of the pp interactions at the LHC. This article summarizes topic (1).

  20. A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry

    SciTech Connect

    Goldberg, K.A. |; Tejnil, E.; Bokor, J. |

    1995-12-01

    A 3-D electromagnetic field simulation is used to model the propagation of extreme ultraviolet (EUV), 13-nm, light through sub-1500 {Angstrom} dia pinholes in a highly absorptive medium. Deviations of the diffracted wavefront phase from an ideal sphere are studied within 0.1 numerical aperture, to predict the accuracy of EUV point diffraction interferometersused in at-wavelength testing of nearly diffraction-limited EUV optical systems. Aberration magnitudes are studied for various 3-D pinhole models, including cylindrical and conical pinhole bores.

  1. Lessons from LHC elastic and diffractive data

    SciTech Connect

    Martin, A.D.; Khoze, V.A.; Ryskin, M.G.

    2015-04-10

    In the light of LHC data, we discuss the global description of all high-energy elastic and diffractive data, using a one-pomeron model, but including multi-pomeron interactions. The LHC data indicate the need of a k{sub t}(s) behaviour, where k{sub t} is the gluon transverse momentum along the partonic ladder structure which describes the pomeron. We also discuss tensions in the data, as well as the t dependence of the slope of dσ{sub el}/dt in the small t domain.

  2. Tolerance analysis on diffraction efficiency and polychromatic integral diffraction efficiency for harmonic diffractive optics

    NASA Astrophysics Data System (ADS)

    Shan, Mao

    2016-10-01

    In this dissertation, the mathematical model of effect of manufacturing errors including microstructure relative height error and relative width error on diffraction efficiency for the harmonic diffractive optical elements (HDEs) is set up. According to the expression of the phase delay and diffraction efficiency of the HDEs, the expression of diffraction efficiency of refraction and diffractive optical element with the microstructure height and periodic width errors in fabrication process is presented in this paper. Furthermore, the effect of manufacturing errors on diffraction efficiency for the harmonic diffractive optical elements is studied, and diffraction efficiency change is analyzed as the relative microstructure height-error in the same and in the opposite sign as well as relative width-error in the same and in the opposite sign. Example including infrared wavelength with materials GE has been discussed in this paper. Two kinds of manufacturing errors applied in 3.7 4.3um middle infrared and 8.7-11.5um far infrared optical system which results in diffraction efficiency and PIDE of HDEs are studied. The analysis results can be used for manufacturing error control in micro-structure height and periodic width. Results can be used for HDEs processing.

  3. Computer Simulation of Diffraction Patterns.

    ERIC Educational Resources Information Center

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  4. Inelastic diffraction at the LHC

    NASA Astrophysics Data System (ADS)

    Troshin, S. M.; Tyurin, N. E.

    2017-03-01

    The relativistic scattering was one of the scientific fields where Academician V.G. Kadyshevsky has made an important and highly cited contribution [1]. In this paper we discuss the high-energy dependencies of diffractive and non-diffractive inelastic cross-sections in view of the recent LHC data which reveal a presence of the reflective scattering mode.

  5. Ptychographic Fresnel coherent diffractive imaging

    SciTech Connect

    Vine, D. J.; Williams, G. J.; Nugent, K. A.; Abbey, B.; Pfeifer, M. A.; Clark, J. N.; Peele, A. G.; Jonge, M. D. de; McNulty, I.

    2009-12-15

    This paper reports improved reconstruction of complex wave fields from extended objects. The combination of ptychography with Fresnel diffractive imaging results in better reconstructions with fewer iterations required to convergence than either method considered separately. The method is applied to retrieve the projected thickness of a gold microstructure and comparative results using ptychography and Fresnel diffractive imaging are presented.

  6. X-ray diffraction and ellipsometric studies of zinc sulfide thin films grown by atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Oikkonen, Markku

    1988-05-01

    The microstructure of ZnS thin films grown by atomic layer epitaxy (ALE) is investigated using X-ray diffraction and a single-line technique. Crystal structure, preferred orientation, crystallinity, crystallite size, crystallite size distribution, and microstrain are determined. Complex refractive indexes of the films are determined in the wavelength range 400 to 600 nm using spectroscopic ellipsometry. A two-layer model is employed, where the uppermost layer takes into account the surface roughness. Density of ZnS thin films is determined using ellipsometry and He(+)-ion backscattering spectrometry. In the first tens of nanometers of an ALE ZnS thin film the crystallinity and void content strongly depend on the substrate properties. Most of the films were grown on soda glass. It is found that after the bottom layer, at the distances from 50 to 100 nm to 300 to 400 nm from the substrate the crystallinity is good, crystallites are large, the specific orientation is strong, the void content is low, and the optical properties resemble those of bulk ZnS. At distances larger than 300 to 400 nm the surface roughness and the void content in the upper parts of the film increase because of the more and more randomly packed large crystallites. Substrate temperature and source materials affect the growth of all parts of the films.

  7. Application theory of scattering and coupled mode analysis for liquid crystal diffractive grating.

    PubMed

    Kreymerman, Grigoriy

    2010-07-19

    This work presents a detailed analysis of a liquid crystal (LC) phase diffraction grating based on a approach combining vector theory of scattering and coupled mode analysis. In general, the coupled mode analysis gives a solution for the diffracted field regardless of aperture and the polarization state of the incident light. However, the aperture of the incident light defines the angular selectivity of the diffraction grating as well as the distribution of the intensity of the diffractive maximums. The solution of the vector theory of scattering in combination with the coupled mode analysis for diffraction of the light beam with finite aperture has allowed one to optimize the parameters of the high efficiency diffractive LC grating. The analytic solutions here were verified with experimental results for a reverse-twisted LC grating and a comparison with the standard Gooch-Tarry's method, which typically applied for a twisted nematic LC display.

  8. Spectroscopic Ellipsometry Studies of Ag and ZnO Thin Films and Their Interfaces for Thin Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Sainju, Deepak

    Many modern optical and electronic devices, including photovoltaic devices, consist of multilayered thin film structures. Spectroscopic ellipsometry (SE) is a critically important characterization technique for such multilayers. SE can be applied to measure key parameters related to the structural, optical, and electrical properties of the components of multilayers with high accuracy and precision. One of the key advantages of this non-destructive technique is its capability of monitoring the growth dynamics of thin films in-situ and in real time with monolayer level precision. In this dissertation, the techniques of SE have been applied to study the component layer materials and structures used as back-reflectors and as the transparent contact layers in thin film photovoltaic technologies, including hydrogenated silicon (Si:H), copper indium-gallium diselenide (CIGS), and cadmium telluride (CdTe). The component layer materials, including silver and both intrinsic and doped zinc oxide, are fabricated on crystalline silicon and glass substrates using magnetron sputtering techniques. These thin films are measured in-situ and in real time as well as ex-situ by spectroscopic ellipsometry in order to extract parameters related to the structural properties, such as bulk layer thickness and surface roughness layer thickness and their time evolution, the latter information specific to real time measurements. The index of refraction and extinction coefficient or complex dielectric function of a single unknown layer can also be obtained from the measurement versus photon energy. Applying analytical expressions for these optical properties versus photon energy, parameters that describe electronic transport, such as electrical resistivity and electron scattering time, can be extracted. The SE technique is also performed as the sample is heated in order to derive the effects of annealing on the optical properties and derived electrical transport parameters, as well as the

  9. Mid-infrared reflectivity and ellipsometry measurements on single-crystal YBa2Cu3O7 and Bi2Sr2CuO6+y

    NASA Astrophysics Data System (ADS)

    Watanabe, Yukio; Wang, Z. Z.; Lyon, S. A.; Tsui, D. C.; Ong, N. P.; Tarascon, J. M.; Barboux, P.

    1989-10-01

    We have measured the room-temperature reflectivity of ``90-K'' single crystals YBa2Cu3O7 in the frequency range 600-9000 cm-1. The reflectivity R in these highly conducting samples (ρab=150 μΩ cm at 290 K) is found to be higher than in previous reports. We fit R to a simple Drude-Lorentz model and compare the fit parameters with the dc transport values. (The effective-mass ratio of the carriers is found to be 2.0, and the scattering rate ħ/τ is 3.1kBT at room temperature.) Ellipsometry measurements have also been performed using transverse-electric and transverse-magnetic polarizations. The dielectric dispersion derived from ellipsometry shows some important deviations from the Drude-Lorentz model. Reflectivity data from nonsuperconducting crystals of Bi2Sr2CuO6+y are also reported.

  10. Micron-scale lens array having diffracting structures

    DOEpatents

    Goldberg, Kenneth A

    2013-10-29

    A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.

  11. Optical microscopy beyond the diffraction limit

    PubMed Central

    Smolyaninov, Igor I.

    2008-01-01

    Over the past century the resolution of far-field optical microscopes, which rely on propagating optical modes, was widely believed to be limited because of diffraction to a value on the order of a half-wavelength λ∕2 of the light used. Although immersion microscopes had slightly improved resolution on the order of λ∕2n, the increased resolution was limited by the small range of refractive indices, n, of available transparent materials. We are experiencing quick demolition of the diffraction limit in optical microscopy. Over the past few years numerous nonlinear optical microscopy techniques based on photoswitching and saturation of fluorescence demonstrated far-field resolution of 20 to 30 nm. The latest exciting example of these techniques has been demonstrated by Huang et al. [Science 319, 810–813 (2008)]. Moreover, recent progress in metamaterials indicates that artificial optical media can be created, which do not exhibit the diffraction limit. Resolution of linear “immersion” microscopes based on such metamaterials appears limited only by losses, which can be compensated by gain media. Thus, optical microscopy is quickly moving towards the 10 nm resolution scale, which should bring about numerous revolutionary advances in biomedical imaging. PMID:19404465

  12. Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, Roderick Allen

    1998-04-20

    A very large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass ''aiming'' at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The magnifying glass includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the magnifying glass, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets.

  13. Structural studies on Si:H network before and after solid phase crystallization using spectroscopic ellipsometry: Correlation with Raman spectroscopy and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Goswami, Romyani; Ray, Swati

    2013-10-01

    The structure of hydrogenated silicon films (Si:H) before and after solid phase crystallization (SPC) has been investigated by detailed study of spectroscopic ellipsometry (SE). The Si:H films have been deposited by radio frequency plasma enhanced chemical vapor deposition (RF PECVD) system varying deposition power density from 0.03 W/cm2 to 0.46 W/cm2, just below the onset of amorphous to nano-crystalline transition region. Solid phase crystallization of the Si:H network has been done by thermal annealing of the films in a vacuum furnace. Different bulk compositions of the as deposited Si:H network and annealed (polycrystalline) films have been calculated from the fitted parameters obtained from the simulation of the ellipsometry data by Bruggeman effective medium approximation (BEMA) method. More compact and void free structure in the bulk layer of the as deposited films has been observed at low power deposition region. Whereas void fraction in the bulk and surface roughness layer has increased with increase of deposition power density. For the annealed films higher crystallinity at the bulk layer with fewer voids has been observed at the low power region but in the surface roughness layer void fraction dominates in all the low and high power deposited films. The results obtained from the spectroscopic ellipsometry study have been correlated with Raman spectroscopy and transmission electron microscopy for both the as deposited and annealed films.

  14. Diffraction Gratings for High-Intensity Laser Applications

    SciTech Connect

    Britten, J

    2008-01-23

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy have further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.

  15. Diffraction dissociation at the LHC

    SciTech Connect

    Jenkovszky, Laszlo; Orava, Risto; Salii, Andrii

    2013-04-15

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  16. Arbitrary shape surface Fresnel diffraction.

    PubMed

    Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2012-04-09

    Fresnel diffraction calculation on an arbitrary shape surface is proposed. This method is capable of calculating Fresnel diffraction from a source surface with an arbitrary shape to a planar destination surface. Although such calculation can be readily calculated by the direct integral of a diffraction calculation, the calculation cost is proportional to O(N²) in one dimensional or O(N⁴) in two dimensional cases, where N is the number of sampling points. However, the calculation cost of the proposed method is O(N log N) in one dimensional or O(N² log N) in two dimensional cases using non-uniform fast Fourier transform.

  17. Interplay of electron correlations and localization in disordered β-tantalum films: Evidence from dc transport and spectroscopic ellipsometry study

    SciTech Connect

    Kovaleva, N. N.; Chvostova, D.; Dejneka, A.; Bagdinov, A. V.; Petrova, M. G.; Demikhov, E. I.; Pudonin, F. A.

    2015-02-02

    We report the dc transport (5 K ≲ T ≲ 380 K) and spectroscopic ellipsometry (0.8 eV ≤ hν ≤ 8.5 eV, T ≃ 300 K) study of β-Ta films prepared by rf sputtering deposition as a function of their thickness in the range 2.5 nm ≲ d ≲ 200 nm. The dc transport of the β-Ta films with a thickness d ≳ 25 nm is characterized by negative temperature coefficient of resistivity (TCR) caused by localization effects peculiar of highly disordered metals. Their dielectric function spectra display non-metallic-like behavior due to the presence of the pronounced band at 2 eV. We found that with increasing TCR absolute value, specifying elevated degree disorder, the optical spectral weight (SW) of free charge carriers decreases. The associated SW is recovered in the range of Mott-Hubbard transitions, indicating the mechanism of localization enhancement by electronic correlations in disordered metals.

  18. Interplay of electron correlations and localization in disordered β-tantalum films: Evidence from dc transport and spectroscopic ellipsometry study

    NASA Astrophysics Data System (ADS)

    Kovaleva, N. N.; Chvostova, D.; Bagdinov, A. V.; Petrova, M. G.; Demikhov, E. I.; Pudonin, F. A.; Dejneka, A.

    2015-02-01

    We report the dc transport (5 K ≲ T ≲ 380 K) and spectroscopic ellipsometry (0.8 eV ≤ hν ≤ 8.5 eV, T ≃ 300 K) study of β-Ta films prepared by rf sputtering deposition as a function of their thickness in the range 2.5 nm ≲ d ≲ 200 nm. The dc transport of the β-Ta films with a thickness d ≳ 25 nm is characterized by negative temperature coefficient of resistivity (TCR) caused by localization effects peculiar of highly disordered metals. Their dielectric function spectra display non-metallic-like behavior due to the presence of the pronounced band at 2 eV. We found that with increasing TCR absolute value, specifying elevated degree disorder, the optical spectral weight (SW) of free charge carriers decreases. The associated SW is recovered in the range of Mott-Hubbard transitions, indicating the mechanism of localization enhancement by electronic correlations in disordered metals.

  19. Spectroscopic Ellipsometry, Auger and STM Characterization of Epitaxial Graphene grown on 6H-SiC (0001)

    NASA Astrophysics Data System (ADS)

    Nelson, Florence; Diebold, Alain C.; Sandin, Andreas; Dougherty, Dan; Aspnes, Dave; Rowe, Jack

    2012-02-01

    Graphene grown by the thermal decomposition of SiC has become of interest to the semiconductor industry due to its unique, high-mobility electronic structure. The growth is of a more scalable nature when compared to exfoliated flakes produced from the ``scotch tape'' method. The resulting film rests on a ``buffer layer'' separating the graphene from the underlying substrate, which is thought to consist of a mixture of sp^2 and non-sp^2 bonding due to the sp^3 bonding of the SiC substrate. The mobilities of the graphene layer have previously been shown to differ from that of the interface layer. We investigate the difference in the optical response of the two layers using Spectroscopic Ellipsometry and find a red-shift of the ˜4.5 eV absorbance found in graphene due to the exciton-domianted transition at the M point of the Brilloun Zone. The structural characterization of the films are performed through Auger and STM on substrates which were cleaned by CMP and chemical etching methods prior to the epitaxial growth in UHV.

  20. Spectroscopic ellipsometry studies of GaN films deposited by reactive rf sputtering of GaAs target

    SciTech Connect

    Biswas, A.; Bhattacharyya, D.; Sahoo, N. K.; Yadav, Brajesh S.; Major, S. S.; Srinivasa, R. S.

    2008-04-15

    GaN films have been deposited by reactive rf sputtering of GaAs target in 100% nitrogen ambient on quartz substrates at different substrate temperatures ranging from room temperature to 700 deg. C. A series of films, from arsenic-rich amorphous to nearly arsenic-free polycrystalline hexagonal GaN, has been obtained. The films have been characterized by phase modulated spectroscopic ellipsometry to obtain the optical parameters, viz., fundamental band gap, refractive index, and extinction coefficient, and to understand their dependence on composition and microstructure. A generalized optical dispersion model has been used to carry out the ellipsometric analysis for amorphous and polycrystalline GaN films and the variation of the optical parameters of the films has been studied as a function of substrate temperature. The refractive index values of polycrystalline films with preferred orientation of crystallites are slightly higher (2.2) compared to those for amorphous and randomly oriented films. The dominantly amorphous GaN film shows a band gap of 3.47 eV, which decreases to 3.37 eV for the strongly c-axis oriented polycrystalline film due to the reduction in amorphous phase content with increase in substrate temperature.

  1. Characterization of Si (sub X)Ge (sub 1-x)/Si Heterostructures for Device Applications Using Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.; Tanner, M.; Wang, K. L.; Mena, R. A.; Young, P. G.

    1993-01-01

    Spectroscopic ellipsometry (SE) characterization of several complex Si (sub X)Ge (sub 1-x)/Si heterostructures prepared for device fabrication, including structures for heterojunction bipolar transistors (HBT), p-type and n-type heterostructure modulation doped field effect transistors, has been performed. We have shown that SE can simultaneously determine all active layer thicknesses, Si (sub X)Ge (sub 1-x) compositions, and the oxide overlayer thickness, with only a general knowledge of the structure topology needed a priori. The characterization of HBT material included the SE analysis of a Si (sub X)Ge (sub 1-x) layer deeply buried (600 nanometers) under the silicon emitter and cap layers. In the SE analysis of n-type heterostructures, we examined for the first time a silicon layer under tensile strain. We found that an excellent fit can be obtained using optical constants of unstrained silicon to represent the strained silicon conduction layer. We also used SE to measure lateral sample homogeneity, providing quantitative identification of the inhomogeneous layer. Surface overlayers resulting from prior sample processing were also detected and measured quantitatively. These results should allow SE to be used extensively as a non-destructive means of characterizing Si (sub X)Ge (sub 1-x)/Si heterostructures prior to device fabrication and testing.

  2. Contact angle hysteresis: study by dynamic cycling contact angle measurements and variable angle spectroscopic ellipsometry on polyimide.

    PubMed

    Hennig, A; Eichhorn, K-J; Staudinger, U; Sahre, K; Rogalli, M; Stamm, M; Neumann, A W; Grundke, K

    2004-08-03

    The phenomenon of contact angle hysteresis was studied on smooth films of polyimide, a polymer type used in the microelectronic industry, by dynamic cycling contact angle measurements based on axisymmetric drop shape analysis-profile in combination with variable angle spectroscopic ellipsometry (VASE). It was found that both advancing and receding contact angles became smaller with increasing the number of cycles and are, therefore, not a property of the dry solid alone. The changes of the wetting behavior during these dynamic cycling contact angle measurements are attributed mainly to swelling and/or liquid retention. To reveal the water-induced changes of the polymer film, the polyimide surface was studied before and after the contact with a water droplet by VASE. Both the experimental ellipsometric spectrum for Delta and that for Psi as well as the corresponding simulations show characteristic shifts due to the contact with water. The so-called effective medium approximation was applied to recover information about the thickness and effective optical constants of the polymer layer from the ellipsometrically measured values of Delta and Psi. On the basis of these results, the swelling and retention behavior of the polyimide films in contact with water droplets were discussed.

  3. A view of the implanted SiC damage by Rutherford backscattering spectroscopy, spectroscopic ellipsometry, and transmission electron microscopy

    SciTech Connect

    Battistig, G.; Khanh, N. Q.; Petrik, P.; Lohner, T.; Dobos, L.; Pecz, B.; Garcia Lopez, J.; Morilla, Y.

    2006-11-01

    4H-SiC single crystalline substrates were implanted at room temperature with 150 keV Al{sup +} ions using fluences of 4x10{sup 14}, 1x10{sup 15}, and 2x10{sup 15} cm{sup -2} with current density of 2.5 {mu}A cm{sup -2}. The samples were subsequently annealed at 1100 deg. C in N{sub 2} for 1 h in order to analyze their structural recovery. The disorder induced in both sublattices by the Al{sup +} ions was studied by backscattering spectrometry in channeling geometry with a 3.5 MeV He{sup 2+} beam. The results were compared with the optical properties of the samples measured by spectroscopic ellipsometry. In a previous work, we concluded that during the postimplantation annealing of a highly damaged SiC crystalline material the short distance order can be recovered, while the long distance disorder remains. We also presented the possibility to have grains of different polytypes oriented faraway from the original direction. Now, this alternative is confirmed by the cross-sectional transmission and high resolution electron microscopy studies, carried out to obtain information about the crystal structure.

  4. Tg-Confinement Effects in Polymer Thin Films, Nanotubes, and Nanospheres as Measured by DSC, Ellipsometry and Fluorescence

    NASA Astrophysics Data System (ADS)

    Torkelson, John; Tan, Anthony; Chen, Lawrence

    The effect of nanoscale confinement on the glass transition temperature (Tg) of supported and free-standing polymer films has been studied for two decades by various techniques. However, conventional DSC, which is the most common method for measuring Tg of bulk polymers, is not well suited for such measurements. Here, we demonstrate that Tg-confinement effects measured by conventional DSC in nanotubes of polymer supported in anodic aluminum oxide (AAO) templates compare well with with Tg-confinement effects measured in supported polymer films by ellipsometry and fluorescence. We further show that Tg-confinement effect data for nanotubes obtained by fluorescence agree well with data obtained by DSC. Finally, we draw comparisons between the Tg-confinement behavior of nanoprecipitated polymer nanospheres as measured by fluorescence to Tg-confinement effects for both supported and free-standing polymer films. The roles, if any, of confinement dimensionality (1-D vs 2-D vs 3-D) and measurement technique on the observed Tg-confinement effect will be discussed.

  5. Determination of the optical properties and size dispersion of Si nanoparticles within a dielectric matrix by spectroscopic ellipsometry

    SciTech Connect

    Keita, A.-S.; Naciri, A. En Battie, Y.; Delachat, F.; Carrada, M.; Ferblantier, G.; Slaoui, A.

    2014-09-14

    We report on a comparative study between dielectric functions of Si nanoparticles (Si-NPs) obtained from Bruggeman effective medium approximation (BEMA), Maxwell-Garnett (MG), and a modified Maxwell-Garnett (MMG) models. Unlike BEMA and MG, a size-distribution dependent dielectric function of Si-NPs is considered in the introduced MMG model. We show that the standard deviation σ of a size distribution can be evaluated by analyzing the imaginary part of the dielectric functions of Si-NPs extracted from BEMA and MMG. In order to demonstrate this, several samples composed of Si-NPs embedded in silicon-rich silicon nitride are investigated by spectroscopic ellipsometry over the photon energy range varying between 2 and 4 eV. Assuming a lognormal size distribution of the Si nanoparticles, it is evidenced that the parameter σ ranges between 1.15 and 1.35. The values of size dispersion deduced by this methodology are in good agreement with TEM observations.

  6. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    SciTech Connect

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R.; Steenbergen, E. H.

    2015-02-09

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800 meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780 cm{sup −1} as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  7. Studying the reversal mode of the magnetization vector versus applied field angle using generalized magneto-optical ellipsometry

    SciTech Connect

    Pufall, M. R.; Berger, A.

    1999-10-26

    The authors used the technique of vector Generalized Magneto-optical Ellipsometry to study the behavior of the magnetization vector of a 50 Co thin film as a function of external field magnitude and direction. With this method, which determines the both the direction and magnitude of the magnetization, averaged over the 1 mm incident laser beam, they were able to determine the relative contributions of magnetization rotation and domain formation to the reversal of M. The Co sample had a uniaxial in-plane anisotropy. The authors found that when the angle between the applied field and the easy axis was greater than {approximately} 40 degrees, the reversal occurred primarily by rotation of the magnetization, accompanied by a small reduction of the magnitude of M. In this angular region, the critical field-the field at which there is a large jump in the angle of M -- as a function of applied field angle followed a coherent rotation model. However, at applied field angles less than 40 degrees to the easy axis, they found a larger reduction in {vert_bar}M{vert_bar} occurring before and during the jump in the magnetization angle. The jump also occurred at fields much lower than those predicted by the coherent rotation model, indicating a reversal mode initiated by domain formation.

  8. Spectroscopic ellipsometry study of Pb1-xEuxSe(0⩽x⩽0.45)

    NASA Astrophysics Data System (ADS)

    Kanazawa, Hideyuki; Adachi, Sadao; Yamaguchi, Tsutomu; Murashige, Shinichi; Murakami, Kensuke

    1999-09-01

    We have measured the complex dielectric function, ɛ(E)=ɛ1(E)+iɛ2(E), of Pb1-xEuxSe in the 1.2-5.0 eV photon-energy range by spectroscopic ellipsometry at room temperature. The Pb1-xEuxSe crystals were grown by the conventional Bridgman method (x=0) and by hot-wall epitaxy on (111) BaF2 substrates at 300 °C (0.09⩽x⩽0.45). The measured ɛ(E) data revealed distinct structures at two critical-point (CP) energies, E1 and E2. The second-derivative spectra of the complex dielectric function, d2ɛ(E)/dE2, were analyzed using a theoretical model called the model dielectric function. The CP parameters, such as the CP energy, amplitude, and broadening, as a function of alloy composition x were fit determined from these derivative analyses. This parameterization of the CP parameters enabled us to calculate ɛ(E) and its related optical constants for optional alloy composition and photon energy.

  9. A total internal reflection ellipsometry and atomic force microscopy study of interactions between Proteus mirabilis lipopolysaccharides and antibodies.

    PubMed

    Gleńska-Olender, J; Sęk, S; Dworecki, K; Kaca, W

    2015-07-01

    Specific antigen-antibody interactions play a central role in the human immune system. The objective of this paper is to detect immune complexes using label-free detection techniques, that is, total internal reflection ellipsometry (TIRE) and atomic force microscopy (AFM)-based topography and recognition imaging. Interactions of purified rabbit immunoglobulin G (IgG) antibodies with bacterial endotoxins (Proteus mirabilis S1959 O3 lipopolysaccharides) were studied. Lipopolysaccharide was adsorbed on gold surface for TIRE. In the AFM imaging experiments, LPS was attachment to the PEG linker (AFM tip modification). The mica surface was covered by IgG. In TIRE, the optical parameters Ψ and Δ change when a complex is formed. It was found that even highly structured molecules, such as IgG antibodies (anti-O3 LPS rabbit serum), preserve their specific affinity to their antigens (LPS O3). LPS P. mirabilis O3 response of rabbit serum anti-O3 was also tested by topography and recognition imaging. Both TIRE and AFM techniques were recruited to check for possible detection of antigen-antibody recognition event. The presented data allow for determination of interactions between a variety of biomolecules. In future research, this technique has considerable potential for studying a wide range of antigen-antibody interactions and its use may be extended to other biomacromolecular systems.

  10. Polarization-independent photochromic diffraction in a dye-doped liquid crystal.

    PubMed

    Wang, Yong-Jing; Pei, Manlin; Carlisle, Gene O

    2003-05-15

    We report the observation of polarization-independent photochromic diffraction in an azo-dye-doped liquid crystal. The generation of the phase grating is more than 90% independent of the polarization of the writing beams, and the diffraction by the phase grating is more than 90% independent of the polarization of the probe beam. Unpolarized lamp light was also used to generate real-time phase gratings and self-diffraction. For the first time to our knowledge, photochromic phase modulation and light diffraction that exhibit more than 90% polarization independence for both writing and probe beams were produced in an anisotropic liquid-crystalline material.

  11. Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna

    PubMed Central

    England, Grant; Kolle, Mathias; Kim, Philseok; Khan, Mughees; Muñoz, Philip; Mazur, Eric; Aizenberg, Joanna

    2014-01-01

    Recently, diffraction elements that reverse the color sequence normally observed in planar diffraction gratings have been found in the wing scales of the butterfly Pierella luna. Here, we describe the creation of an artificial photonic material mimicking this reverse color-order diffraction effect. The bioinspired system consists of ordered arrays of vertically oriented microdiffraction gratings. We present a detailed analysis and modeling of the coupling of diffraction resulting from individual structural components and demonstrate its strong dependence on the orientation of the individual miniature gratings. This photonic material could provide a basis for novel developments in biosensing, anticounterfeiting, and efficient light management in photovoltaic systems and light-emitting diodes. PMID:25288730

  12. Optical functions of silicon from reflectance and ellipsometry on silicon-on-insulator and homoepitaxial samples

    SciTech Connect

    Humlíček, J.

    2015-11-21

    The optical properties of silicon have been determined from 0.2 to 6.5 eV at room temperature, using reflectance spectra of silicon-on-insulator (SOI) and ellipsometric spectra of homoepitaxial samples. Optimized Fabry-Perot-type SOI resonators exhibit high finesse even in near ultraviolet. Very high precision values of the real part of the refractive index are obtained in infrared up to a photon energy of 1.3 eV. The spectra of the extinction coefficient, based on observations of light attenuation, extend to 3.2 eV due to measurements on SOI layers as thin as 87 nm. These results allowed us to correct spectroellipsometric data on homoepitaxial samples for the presence of reduced and stabilized surface layers.

  13. Quasi suppression of higher-order diffractions with inclined rectangular apertures gratings

    NASA Astrophysics Data System (ADS)

    Liu, Yuwei; Zhu, Xiaoli; Gao, Yulin; Zhang, Wenhai; Fan, Quanping; Wei, Lai; Yang, Zuhua; Zhang, Qiangqiang; Qian, Feng; Chen, Yong; He, Weihua; Wu, Yinzhong; Yan, Zhuoyang; Hua, Yilei; Zhao, Yidong; Cui, Mingqi; Qiu, Rong; Zhou, Weimin; Gu, Yuqiu; Zhang, Baohan; Xie, Changqing; Cao, Leifeng

    2015-11-01

    Advances in the fundamentals and applications of diffraction gratings have received much attention. However, conventional diffraction gratings often suffer from higher-order diffraction contamination. Here, we introduce a simple and compact single optical element, named inclined rectangular aperture gratings (IRAG), for quasi suppression of higher-order diffractions. We show, both in the visible light and soft x-ray regions, that IRAG can significantly suppress higher-order diffractions with moderate diffraction efficiency. Especially, as no support strut is needed to maintain the free-standing patterns, the IRAG is highly advantageous to the extreme-ultraviolet and soft x-ray regions. The diffraction efficiency of the IRAG and the influences of fabrication constraints are also discussed. The unique quasi-single order diffraction properties of IRAG may open the door to a wide range of photonic applications.

  14. Quasi suppression of higher-order diffractions with inclined rectangular apertures gratings

    PubMed Central

    Liu, Yuwei; Zhu, Xiaoli; Gao, Yulin; Zhang, Wenhai; Fan, Quanping; Wei, Lai; Yang, Zuhua; Zhang, Qiangqiang; Qian, Feng; Chen, Yong; He, Weihua; Wu, Yinzhong; Yan, Zhuoyang; Hua, Yilei; Zhao, Yidong; Cui, Mingqi; Qiu, Rong; Zhou, Weimin; Gu, Yuqiu; Zhang, Baohan; Xie, Changqing; Cao, Leifeng

    2015-01-01

    Advances in the fundamentals and applications of diffraction gratings have received much attention. However, conventional diffraction gratings often suffer from higher-order diffraction contamination. Here, we introduce a simple and compact single optical element, named inclined rectangular aperture gratings (IRAG), for quasi suppression of higher-order diffractions. We show, both in the visible light and soft x-ray regions, that IRAG can significantly suppress higher-order diffractions with moderate diffraction efficiency. Especially, as no support strut is needed to maintain the free-standing patterns, the IRAG is highly advantageous to the extreme-ultraviolet and soft x-ray regions. The diffraction efficiency of the IRAG and the influences of fabrication constraints are also discussed. The unique quasi-single order diffraction properties of IRAG may open the door to a wide range of photonic applications. PMID:26563588

  15. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Scanning

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Chambers, D. M.; Dixit, S. N.; Britten, J. A.; Shore, B. W.; Kavaya, M. J.

    1999-01-01

    The application of specialized rectangular relief transmission gratings to coherent lidar beam scanning is presented. Two types of surface relief transmission grating approaches are studied with an eye toward potential insertion of a constant thickness, diffractive scanner where refractive wedges now exist. The first diffractive approach uses vertically oriented relief structure in the surface of an optical flat; illumination of the diffractive scanner is off-normal in nature. The second grating design case describes rectangular relief structure slanted at a prescribed angle with respect to the surface. In this case, illumination is normal to the diffractive scanner. In both cases, performance predictions for 2.0 micron, circularly polarized light at beam deflection angles of 30 or 45 degrees are presented.

  16. Phase singularity in the diffracted field from Fresnel's double mirror

    NASA Astrophysics Data System (ADS)

    Aalipour, Rasoul; Taghi Tavassoly, M.

    2013-05-01

    It is shown that when a coherent beam of light illuminates a Fresnel's double mirror, Fresnel diffraction becomes appreciable. The subject fundamentally differs from interference. We calculate the diffracted field by applying Fresnel-Kirchhoff integral. We modified the common Fresnel's double mirror by imposing an initial height between the mirrors, as the height is chosen small enough so that the application of Fresnel's double mirror is maintained. We show by simulation and experiment that a phase singularity causes from the initial height and modifies the diffracted field from the Fresnel's double mirror. One can adjust the location of the line singularity by changing the angle between the mirrors. Also, the anomalous behavior of a polychromatic beam diffracted from the modified Fresnel's double mirror at the neighborhood of the line singularity, is investigated by simulation.

  17. Coherent grating x-ray diffraction (CGXD) and its applications

    SciTech Connect

    Shen, Q.

    1996-09-01

    We show that an x-ray interference phenomenon, coherent grating x-ray diffraction (CGXD), can be used to study lateral nanostructure arrays on crystal surfaces and interfaces. Compared to Fraunhofer grating diffraction of visible light, x-ray grating diffraction contains information not only about geometric profiles of the surface but also about the internal crystalline structures and lattice strain distributions in the grating features. The grating diffraction pattern can also be measured in a white-beam Laue method using highly collimated polychromatic synchrotron radiation, which provides a parallel data collection scheme and may be useful in {ital in} {ital situ} studies on evolution of nanostructure arrays. {copyright} {ital 1996 American Institute of Physics.}

  18. Correcting for diffraction in the far-infrared reflectance measurement of rough surfaces

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon M.

    1993-01-01

    The manner in which diffraction can increase the reflectance measured from very rough surfaces is shown by observations of diffracted light within the instrument profile of a far-IR reflectometer system. A correction to the calibration signal based on numerical integration of the diffracted part of the instrument profile is described. Diffraction correction factors as large as 2.94 have been found with small optics at long wavelength (630 microns). The effect of diffraction on diffuse reflectance measurements of a very rough perfect reflector is shown at wavelengths from 56 to 200 microns.

  19. Application of optical diffraction method in designing phase plates

    NASA Astrophysics Data System (ADS)

    Lei, Ze-Min; Sun, Xiao-Yan; Lv, Feng-Nian; Zhang, Zhen; Lu, Xing-Qiang

    2016-11-01

    Continuous phase plate (CPP), which has a function of beam shaping in laser systems, is one kind of important diffractive optics. Based on the Fourier transform of the Gerchberg-Saxton (G-S) algorithm for designing CPP, we proposed an optical diffraction method according to the real system conditions. A thin lens can complete the Fourier transform of the input signal and the inverse propagation of light can be implemented in a program. Using both of the two functions can realize the iteration process to calculate the near-field distribution of light and the far-field repeatedly, which is similar to the G-S algorithm. The results show that using the optical diffraction method can design a CPP for a complicated laser system, and make the CPP have abilities of beam shaping and phase compensation for the phase aberration of the system. The method can improve the adaptation of the phase plate in systems with phase aberrations.

  20. Femtosecond single-electron diffraction

    PubMed Central

    Lahme, S.; Kealhofer, C.; Krausz, F.; Baum, P.

    2014-01-01

    Ultrafast electron diffraction allows the tracking of atomic motion in real time, but space charge effects within dense electron packets are a problem for temporal resolution. Here, we report on time-resolved pump-probe diffraction using femtosecond single-electron pulses that are free from intra-pulse Coulomb interactions over the entire trajectory from the source to the detector. Sufficient average electron current is achieved at repetition rates of hundreds of kHz. Thermal load on the sample is avoided by minimizing the pump-probe area and by maximizing heat diffusion. Time-resolved diffraction from fibrous graphite polycrystals reveals coherent acoustic phonons in a nanometer-thick grain ensemble with a signal-to-noise level comparable to conventional multi-electron experiments. These results demonstrate the feasibility of pump-probe diffraction in the single-electron regime, where simulations indicate compressibility of the pulses down to few-femtosecond and attosecond duration. PMID:26798778

  1. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  2. Fresnel diffraction by spherical obstacles

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1989-01-01

    Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.

  3. Diffraction-controlled backscattering threshold and application to Raman gap

    SciTech Connect

    Rose, Harvey A.; Mounaix, Philippe

    2011-04-15

    In most classic analytical models of linear stimulated scatter, light diffraction is omitted, a priori. However, modern laser optic typically includes a variant of the random phase plate [Y. Kato et al., Phys. Rev. Lett. 53, 1057 (1984)], resulting in diffraction limited laser intensity fluctuations - or localized speckles - which may result in explosive reflectivity growth as the average laser intensity approaches a critical value [H. A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994)]. Among the differences between stimulated Raman scatter (SRS) and stimulated Brillouin scatter is that the SRS scattered light diffracts more strongly than the laser light with increase of electron density. This weakens the tendency of the SRS light to closely follow the most amplified paths, diminishing gain. Let G{sub 0} be the one-dimensional power gain exponent of the stimulated scatter. In this paper we show that differential diffraction gives rise to an increase of G{sub 0} at the SRS physical threshold with increase of electron density up to a drastic disruption of SRS as electron density approaches one fourth of its critical value from below. For three wave interaction lengths not small compared to a speckle length, this is a physically robust Raman gap mechanism.

  4. A Practical Method of Simulating X-Ray Diffraction

    ERIC Educational Resources Information Center

    Brisse, F.; Sundararajan, P. R.

    1975-01-01

    Describes an experiment in which the beam of X-rays is simulated through the use of a laser as a monochromatic light source and the crystal is replaced by photographically prepared masks. A strong diffraction pattern as large as 20 cm. can be obtained. (GS)

  5. Observation of a new interference phenomenon in internal conical diffraction.

    PubMed

    Darcy, R T; Lunney, J G; Donegan, J F

    2015-01-26

    Conical diffraction is observed in biaxial materials when a beam of light is directed along one of the two optic axis directions. When the beam is directed close to but not along an optic axis, a rich interference pattern is observed beyond the material. We observe some of the previously predicted low intensity interference patterns, representing a qualitatively new optical phenomenon in biaxial materials.

  6. Two-Diffraction-Order, Beam-Splitting, Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C.; Burns, Ronald N.

    1995-01-01

    Two-octave imaging spectrometer utilizes light of two harmonically related wavelengths diffracted to harmonically related orders at same angles, followed by separation via dichroic beam splitter before final imaging. Conceptual design of spectrometer calls for minimum number of optical elements to achieve coverage of required visible and near-infrared wavelengths in instrument of reduced size, weight, and cost.

  7. Diffraction imaging characteristics of slit for ultra-short laser pulse

    NASA Astrophysics Data System (ADS)

    Yu, Xiang-yang; Wu, Kun-xi; Lu, Long-zhao

    2015-08-01

    We propose a simple and concise mathematical method based on the Fraunhofer approximation to analyze the imaging characteristics of slit for broadband light sources. Taking Gaussian-shaped ultra-short laser pulse for example, we investigated the diffraction imaging characteristics of ultra-short light sources through a single-slit and a double-slit. We deduced the mathematical expressions of the intensity distribution of far-field diffraction, and conducted numerical calculation and analysis. It turns out the pulse width of the ultra-short light source plays an important role in the diffraction imaging characteristics of slit. We also provide a quantitative criterion to measure the deviation in terms of far-field diffraction intensity distribution between broadband light source and the ideal monochromatic light source.

  8. Diffraction efficiency analysis for multi-level diffractive optical elements

    SciTech Connect

    Erteza, I.A.

    1995-11-01

    Passive optical components can be broken down into two main groups: Refractive elements and diffractive elements. With recent advances in manufacturing technologies, diffractive optical elements are becoming increasingly more prevalent in optical systems. It is therefore important to be able to understand and model the behavior of these elements. In this report, we present a thorough analysis of a completely general diffractive optical element (DOE). The main goal of the analysis is to understand the diffraction efficiency and power distribution of the various modes affected by the DOE. This is critical to understanding cross talk and power issues when these elements are used in actual systems. As mentioned, the model is based on a completely general scenario for a DOE. This allows the user to specify the details to model a wide variety of diffractive elements. The analysis is implemented straightforwardly in Mathematica. This report includes the development of the analysis, the Mathematica implementation of the model and several examples using the Mathematical analysis tool. It is intended that this tool be a building block for more specialized analyses.

  9. Influence of annealing temperature and Sn doping on the optical properties of hematite thin films determined by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    de Souza, Lígia P.; Chaves, Rodrigo O. G.; Malachias, Angelo; Paniago, Roberto; Ferreira, Sukarno O.; Ferlauto, Andre S.

    2016-06-01

    Hematite (α-Fe2O3) thin films were prepared by sol-gel route and investigated for application in H2 generation by photo-assisted water splitting. The photoelectrochemical (PEC) performance was shown to increase significantly for films deposited on SnO2:F/glass subjected to high temperature (T) annealing (>750 °C). Strong correlation was found between photogenerated current, donor concentration, and Sn concentration as determined by Mott-Schottky analysis and X-ray photoelectron spectroscopy. The effects of thermal annealing and Sn addition in the resulting microstructure and optical properties of hematite films deposited on fused silica substrates were determined by a combination of structural characterization techniques and spectroscopic ellipsometry. Thermal annealing (>600 °C) induces a higher optical absorption that is associated directly to film densification and grain growth; however, it promotes no changes in the energy positions of the main Fe2O3 electronic transitions. The band gap energy was found to be 2.21 eV and independent of microstructure and of Sn concentration for all studied films. On the other hand, Sn can be incorporated in the Fe2O3 lattice for concentration up to Sn/Fe ˜2%, leading to an increase in energy split of the main absorption peak, attributed to a distortion of the Fe2O3 lattice. For higher concentrations, Sn incorporation leads to a reduction in absorption, associated with higher porosity and the formation of a secondary Sn-rich phase. In summary, the variation in the optical properties induced by thermal annealing and Sn addition cannot account for the order of magnitude increase of the current density generated by photoanodes annealed at high T (>750 °C); thus, it is concluded that the major contribution for the enhanced PEC performance comes from improved electronic properties induced by the n-type doping caused by Sn diffusion from the SnO2:F substrate.

  10. Ellipsometry and energy characterization of the electron impact polymerization in the range 0-20 eV

    NASA Astrophysics Data System (ADS)

    Zyn, V. I.

    2016-05-01

    The electron impact polymerization of adsorbed vapors of a hydrocarbon vacuum oil with molecular mass 450 Da (C32H66) has been studied in-situ in the range 0-20 eV using ellipsometry and a servo system with the Kelvin's vibrating probe. This allowed registering at the same time the two energy-dependent characteristics (spectra) of the process: the film growth rate and the electrical potential of the irradiated surface. The first spectrum has two resonance maxima near 2.5 and 9.5 eV while the surface potential has only one weak extremum near 9.5 eV. The first growth rate peak at 2.5 eV was connected with a creation of radicals through a resonant process of the dissociative electron attachment and beginning polymerization. The peaks at 9.5 eV in both the spectra mean accelerating polymerization and decreasing surface charge owing to simultaneous birth of highly active radicals and free electrons. The single resonant process controlling both the processes simultaneously is the dissociative attachment of an electron to an anti-bonding molecular orbital, almost the same as at the 2.5 eV but differing by deeper decomposition of the transient anion, among the products of which are now not the radicals only but also free electrons. The kinetic curves obtained in pulsed regimes of the electron bombardment were qualitatively identical for different precursors and were used for calculations of cross sections of these processes.

  11. Generalized ellipsometry analysis of anisotropic nanoporous media: Polymer-infiltrated nanocolumnar and inverse-column polymeric films

    NASA Astrophysics Data System (ADS)

    Liang, Dan

    Characterization of the structural and optical properties is a subject of significance for nanoporous material research. However, it remains a challenge to find non-destructive methods for investigating the anisotropy of porous thin films with three-dimensional nanostructures. In this thesis, a generalized ellipsometry (GE) analysis approach is employed to study two types of anisotropic nanoporous media: slanted columnar thin films (SCTFs) with polymer infiltration and inverse-SCTF polymeric films. The thesis presents the physical properties obtained from GE analysis, including porosity, columnar shape, principal optical constants, birefringence, etc.. The thesis reports on using a GE analysis approach, combining the homogeneous biaxial layer approach (HBLA) and anisotropic Bruggeman effective medium approximation (AB-EMA), to determine the changes in structural and optical properties of highly porous SCTFs upon polymer infiltration. Via spin-coating, poly(-methyl methacrylate) (PMMA) was infiltrated into the permalloy SCTFs prepared by glancing angle deposition (GLAD). The Mueller matrix GE measurements were conducted on the SCTFs before and after PMMA infiltration. The obtained film thickness and columnar slanting angle show changes due to infiltration which are in good agreement with scanning electron microscopy (SEM) analysis. The method effectively identifies the changes in birefringence and dichroism upon infiltration, and provides constituent fractions consistent with the performed experiments. GE analysis is further utilized to characterize the biaxial optical responses of the porous polymer thin films. The porous polymer films with inverse columnar structure (PMMA iSCTFs) were prepared via infiltrating polymer into the voids of the SCTF templates and selectively removing the columns. The AB-EMA was employed to analyze the GE data of the porous polymer films and SCTF templates to determine the structural and anisotropic optical properties. The structural

  12. Integrating SPR-ellipsometry and electrochemical measurements for performance evaluation of label-free thiophene-based biosensor

    NASA Astrophysics Data System (ADS)

    Tsai, Pei-I.; Lee, Shu-Sheng; Chou, Shin-Ting; Chang, Yu-Ting; Lee, Adam Shih-Yuan; Lee, C. K.

    2014-03-01

    The surface plasmon resonance reflectance changes measured with a circularly polarized ellipsometry and an electrochemical impedance spectroscopy were identified to be able to characterize the critical roles of biomolecules for vastly different biological functions and processes. Throughout the course of this study, interferon-gamma (IFN-γ) was chosen as the biomarker to test and to verify the performance of this newly developed system for Tuberculosis detection. The interactions of IFN-γ with immobilized anti-IFN-γ antibody at various concentrations were interrogated both optically and electrochemically. A semi-conductive linker bis-thiophene was thiolated to ensure the cross-linked monoclonal human IFN-γ antibody got self-assembled onto the gold thin film and form a label-free biosensor. The functional features of the bis-thiophene coated-gold film were characterized by cyclic voltammetry and impedance spectroscopy methods. The association of IFN-γ to the bis-thiophene bridging units via antibody-antigen interactions provided the basis for ultrasensitive detection of IFN-γ by tracking the conformation changes in surface-bound protein molecules. The phase shift can be attributed to the average thickness and the real-time index of refraction of the protein layer in different protein layer. Experimental results obtained by impedance spectroscopy and by phase-interrogation SPR showed linear dynamic range. Our experimental results verified that an increase in the concentration of the IFN-γ usually accompanied by phase increase in SPR and an impedance decrease in EIS. These results indicated that our newly developed integrated biosensing system can potentially provide new insight into various conjugate phenomena and interfacial processes for observing molecular conformation changes.

  13. Spatially resolved contrast measurement of diffractive micromirror arrays

    NASA Astrophysics Data System (ADS)

    Sicker, Cornelius; Heber, Jörg; Berndt, Dirk; Rückerl, Florian; Tinevez, Jean-Yves; Shorte, Spencer; Wagner, Michael; Schenk, Harald

    2015-02-01

    Diffractive micromirror arrays (MMA) are a special class of optical MEMS, serving as spatial light modulators (SLM) that control the phase of reflected light. Since the surface profile is the determining factor for an accurate phase modulation, high-precision topographic characterization techniques are essential to reach highest optical performance. While optical profiling techniques such as white-light interferometry are still considered to be most suitable to this task, the practical limits of interferometric techniques start to become apparent with the current state of optical MEMS technology. Light scatter from structured surfaces carries information about their topography, making scatter techniques a promising alternative. Therefore, a spatially resolved scatter measurement technique, which takes advantage of the MMA's diffractive principle, has been implemented experimentally. Spectral measurements show very high contrast ratios (up to 10 000 in selected samples), which are consistent with calculations from micromirror roughness parameters obtained by white-light interferometry, and demonstrate a high sensitivity to changes in the surface topography. The technique thus seems promising for the fast and highly sensitive characterization of diffractive MMAs.

  14. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Deflection

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Dixit, S. N.; Shore, B. W.; Chambers, D. M.; Britten, J. A.; Kavaya, M. J.

    1999-01-01

    LIDAR systems require a light transmitting system for sending a laser light pulse into space and a receiving system for collecting the retro-scattered light, separating it from the outgoing beam and analyzing the received signal for calculating wind velocities. Currently, a shuttle manifested coherent LIDAR experiment called SPARCLE (SPAce Readiness Coherent Lidar Experiment) includes a silicon wedge (or prism) in its design in order to deflect the outgoing beam 30 degrees relative to the incident direction. The intent of this paper is to present two optical design approaches that may enable the replacement of the optical wedge component (in future, larger aperture, post-SPARCLE missions) with a surface relief transmission diffraction grating. Such a grating could be etched into a lightweight, flat, fused quartz substrate. The potential advantages of a diffractive beam deflector include reduced weight, reduced power requirements for the driving scanning motor, reduced optical sensitivity to thermal gradients, and increased dynamic stability.

  15. Twenty Meter Space Telescope Based on Diffractive Fresnel Lens

    SciTech Connect

    Early, J; Hyde, R; Baron, R

    2003-06-26

    Diffractive lenses offer two potential advantages for very large aperture space telescopes; very loose surface-figure tolerances and physical implementation as thin, flat optical elements. In order to actually realize these advantages one must be able to build large diffractive lenses with adequate optical precision and also to compactly stow the lens for launch and then fully deploy it in space. We will discuss the recent fabrication and assembly demonstration of a 5m glass diffractive Fresnel lens at LLNL. Optical performance data from smaller full telescopes with diffractive lens and corrective optics show diffraction limited performance with broad bandwidths. A systems design for a 20m space telescope will be presented. The primary optic can be rolled to fit inside of the standard fairings of the Delta IV vehicle. This configuration has a simple deployment and requires no orbital assembly. A twenty meter visible telescope could have a significant impact in conventional astronomy with eight times the resolution of Hubble and over sixty times the light gathering capacity. If the light scattering is made acceptable, this telescope could also be used in the search for terrestrial planets.

  16. Improved longitudinal resolution in tomographic diffractive microscopy with an ellipsoidal mirror.

    PubMed

    Ding, C; Tan, Z

    2016-04-01

    Tomographic diffractive microscopy is a technique, which is able to image transparent unstained samples with high resolution. The three-dimensional distribution of the complex refractive index can be reconstructed quantitatively from the measured scattered fields under various illumination and detection angles, according to the diffraction tomography theorem. We propose a tomographic diffractive microscopy setup with an ellipsoidal mirror as the light collector. We demonstrate analytically and with numerical simulation that this approach permits to obtain images with drastically improved resolution.

  17. Diabolical point and conical-like diffraction in periodic plasmonic nanostructures.

    PubMed

    Nam, Sung Hyun; Taylor, Antoinette J; Efimov, Anatoly

    2010-05-10

    We present the formation of a singular (diabolical) point in k-space from a periodic metal-dielectric waveguide array. The singularity originates from the balance between alternating normal and anomalous coupling. We numerically demonstrate a strong diffraction anomaly (conical-like diffraction) near the singular point. We also show the evolution of the diffraction pattern with band deformation. The resultant peculiar propagation dynamics of surface plasmon polaritons could provide a new toolset for manipulating light on the nano-scale.

  18. Diffraction of collinear correlated photon pairs by an ultrasonic wave within Raman-Nath and intermediate region.

    PubMed

    Kwiek, Piotr

    2015-03-01

    The phenomenon of collinear correlated photon pairs diffraction by an ultrasonic wave is investigated within Raman-Nath and intermediate region. The numbers of single photons and photon pairs counts in discrete diffraction orders were measured as functions of the Raman-Nath parameter. Similarly, the number of coincidence photon counts in separate diffraction orders was also investigated. It was shown experimentally that the phenomenon of photon pairs diffraction by an ultrasonic wave happens at angles identical to those corresponding to single photons diffraction. It was also demonstrated that in case of Raman-Nath diffraction the number of photon pairs in a selected, n(th), diffraction order varies with the Raman-Nath parameter changes as an n(th) order Bessel function of the first kind, raised to the fourth power. Whilst in the so-called intermediate diffraction zone, the number of diffracted photon pairs varies as squared intensity of a diffracted light beam consisting of single photons. Moreover, it was revealed that correlations between photons in selected diffraction orders change with the Raman-Nath parameter variation as products of relevant intensities of light in the considered diffraction orders. Finally, it should be emphasized that the presented formulae describing diffraction of collinear correlated proton pairs by an ultrasonic wave are in a very good agreement with corresponding experimental data, for both Raman-Nath and intermediate diffraction.

  19. AD, the ALICE diffractive detector

    NASA Astrophysics Data System (ADS)

    Tello, Abraham Villatoro

    2017-03-01

    ALICE is one of the four large experiments at the CERN Large Hadron Collider (LHC). As a complement to its Heavy-Ion physics program, ALICE started during Run 1 of LHC an extensive program dedicated to the study of proton-proton diffractive processes. In order to optimize its trigger efficiencies and purities in selecting diffractive events, the ALICE Collaboration installed a very forward AD detector during the Long Shut Down 1 of LHC. This new forward detector system consists of two stations made of two layers of scintillator pads, one station on each side of the interaction point. With this upgrade, ALICE has substantially increased its forward physics coverage, including the double rapidity gap based selection of central production, as well as the measurements of inclusive diffractive cross sections.

  20. Electron diffraction by plasmon waves

    NASA Astrophysics Data System (ADS)

    García de Abajo, F. J.; Barwick, B.; Carbone, F.

    2016-07-01

    An electron beam traversing a structured plasmonic field is shown to undergo diffraction with characteristic angular patterns of both elastic and inelastic outgoing electron components. In particular, a plasmonic grating (e.g., a standing wave formed by two counterpropagating plasmons in a thin film) produces diffraction orders of the same parity as the net number of exchanged plasmons. Large diffracted beam fractions are predicted to occur for realistic plasmon intensities in attainable geometries due to a combination of phase and amplitude changes locally imprinted on the passing electron wave. Our study opens vistas in the study of multiphoton exchanges between electron beams and evanescent optical fields with unexplored effects related to the transversal component of the electron wave function.

  1. Diffraction studies for microcellular applications

    NASA Astrophysics Data System (ADS)

    Levy, M. F.

    The introduction of Global System for Mobility (GSM) systems, with the use of microcells, has shifted the emphasis in mobile radio propagation modeling towards deterministic models. These models will become more and more relevant with the development of 3-dimensional building databases for most large cities. Ultimately 3-dimensional methods are needed in order to model combined diffraction effects around the sides and over the top of a building, and also to account for backscattering from nearby buildings. However an accurate 2-dimensional model can be very useful for assessment of multiple diffraction effects in a vertical plane. Renewed interest in accurate diffraction models has led to further developments of parabolic equation techniques. In this paper, we present 2-dimensional results obtained with a wide-angle PE code, and some examples of current 3D capabilities. The methods are immediately applicable to the planning of microcellular networks.

  2. Switchable Zero Order Diffraction Gratings as Light Valves.

    DTIC Science & Technology

    1986-03-31

    obtained.) 2. With the 15 kV apparatus tungsten has been deposited starting from a gas of WF6. The deposit was found to contain a significant percentage...a pressure in the 10 - 8 Tort range. 3. Since gold is a less active and does not getter oxygen as readily as tungsten , we have deposited gold films

  3. Diffraction encoded position measuring apparatus

    DOEpatents

    Tansey, Richard J.

    1991-01-01

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection.

  4. Diffraction encoded position measuring apparatus

    DOEpatents

    Tansey, R.J.

    1991-09-24

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection. 3 figures.

  5. High-pressure neutron diffraction

    SciTech Connect

    Xu, Hongwu

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  6. Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor); Forouhar, Siamak (Inventor)

    1994-01-01

    A semiconductor optical integrated circuit for wave division multiplexing has a semiconductor waveguide layer, a succession of diffraction grating points in the waveguide layer along a predetermined diffraction grating contour, a semiconductor diode array in the waveguide layer having plural optical ports facing the succession of diffraction grating points along a first direction, respective semiconductor diodes in the array corresponding to respective ones of a predetermined succession of wavelengths, an optical fiber having one end thereof terminated at the waveguide layer, the one end of the optical fiber facing the succession of diffraction grating points along a second direction, wherein the diffraction grating points are spatially distributed along the predetermined contour in such a manner that the succession of diffraction grating points diffracts light of respective ones of the succession of wavelengths between the one end of the optical fiber and corresponding ones of the optical ports.

  7. Hyperbolic umbilic diffraction catastrophe and rainbow scattering from spheroidal drops

    NASA Technical Reports Server (NTRS)

    Marston, P. L.; Trinh, E. H.

    1984-01-01

    Short-wavelength scattering from drops whose shapes closely approximate that of an oblate spheroid with a vertical short or symmetry axis have been studied. The drops were illuminated by a horizontally propagating gaussian beam with a wavelength of 633 nm. The drops were observed to scatter in the horizontal rainbow region with patterns like those of hyperbolic-umblic (classification D4(+)) diffraction catastrophes. Visible D4(+) diffraction patterns observed previously include light transmitted by frosted glass surfaces and by liquid lenses clinging to tilted glass plates.

  8. Diffractive devices based on blue phase liquid crystals

    NASA Astrophysics Data System (ADS)

    Li, Yan; Huang, Shuaijia; Su, Yikai

    2016-09-01

    Blue phase liquid crystal (BPLC) has been attractive for display and photonic applications for its sub-millisecond response time, no need for surface alignment, and an optically isotropic dark state. Because of these advantages, diffractive devices based on blue phase liquid crystals have great potential for wide applications. In this work, we present several BPLC diffractive devices. The operation principles, fabrication and experimental measurements will be discussed in details for two BPLC gratings realized by holographic method and a BPLC Fresnel lens using a spatial light modulator projector. All of these devices exhibit several attractive features such as sub-millisecond response, relatively high spatial resolution and polarization-independence.

  9. Diffractive digital lensless holographic microscopy with fine spectral tuning.

    PubMed

    Mendoza-Yero, Omel; Tajahuerce, Enrique; Lancis, Jesús; Garcia-Sucerquia, Jorge

    2013-06-15

    We experimentally demonstrate an all-diffractive optical setup for digital lensless holographic microscopy with easy wavelength line selection and micrometric resolution. In the proposed system, an ultrashort laser pulse is focused with a diffractive lens (DL) onto a pinhole of diameter close to its central wavelength to achieve a highly spatially coherent illumination cone as well as a spectral line with narrow width. To scan the complete spectrum of the light source the DL is displaced with respect to the pinhole plane. The proposed microscopy setup allows us to spectrally separate contributions from different sections of a sample, which may be attractive for several applications in life sciences.

  10. Diffractive Higgs Production from Intrinsic Heavy Flavors in the Proton

    SciTech Connect

    Brodsky, Stanley J.; Kopeliovich, Boris; Schmidt, Ivan; Soffer, Jacques

    2006-03-31

    We propose a novel mechanism for exclusive diffractive Higgs production pp {yields} pHp in which the Higgs boson carries a significant fraction of the projectile proton momentum. This mechanism will provide a clear experimental signal for Higgs production due to the small background in this kinematic region. The key assumption underlying our analysis is the presence of intrinsic heavy flavor components of the proton bound state, whose existence at high light-cone momentum fraction x has growing experimental and theoretical support. We also discuss the implications of this picture for exclusive diffractive quarkonium and other channels.

  11. Hand held phase-shifting diffraction Moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1994-09-20

    An interferometer is described in which a coherent beam of light is generated within a remote case and transmitted to a hand held unit tethered to said remote case, said hand held unit having optical elements for directing a pair of mutually coherent collimated laser beams at a diffraction grating. Data from the secondary or diffracted beams are then transmitted to a separate video and data acquisition system for recording and analysis for load induced deformation or for identification purposes. Means are also provided for shifting the phase of one incident beam relative to the other incident beam and being controlled from within said remote case. 4 figs.

  12. Hand held phase-shifting diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1994-01-01

    An interferometer in which a coherent beam of light is generated within a remote case and transmitted to a hand held unit tethered to said remote case, said hand held unit having optical elements for directing a pair of mutually coherent collimated laser beams at a diffraction grating. Data from the secondary or diffracted beams are then transmitted to a separate video and data acquisition system for recording and analysis for load induced deformation or for identification purposes. Means are also provided for shifting the phase of one incident beam relative to the other incident beam and being controlled from within said remote case.

  13. Lensless zoomable holographic projection using scaled Fresnel diffraction.

    PubMed

    Shimobaba, Tomoyoshi; Makowski, Michal; Kakue, Takashi; Oikawa, Minoru; Okada, Naohisa; Endo, Yutaka; Hirayama, Ryuji; Ito, Tomoyoshi

    2013-10-21

    Projectors require a zoom function. This function is generally realized using a zoom lens module composed of many lenses and mechanical parts; however, using a zoom lens module increases the system size and cost, and requires manual operation of the module. Holographic projection is an attractive technique because it inherently requires no lenses, reconstructs images with high contrast and reconstructs color images with one spatial light modulator. In this paper, we demonstrate a lensless zoomable holographic projection. Without using a zoom lens module, this holographic projection realizes the zoom function using a numerical method, called scaled Fresnel diffraction which can calculate diffraction at different sampling rates on a projected image and hologram.

  14. Strong optical diffraction in a nematic liquid crystal with high nonlinearity.

    PubMed

    Durbin, S D; Arakelian, S M; Shen, Y R

    1982-04-01

    Quantitative results of measurements on multiorder diffraction of light from a laser-induced phase grating in a nematic liquid crystal with high optical nonlinearity are presented. Theoretical calculations using a nonperturbative approach show good agreement with experiment.

  15. Printing colour at the optical diffraction limit.

    PubMed

    Kumar, Karthik; Duan, Huigao; Hegde, Ravi S; Koh, Samuel C W; Wei, Jennifer N; Yang, Joel K W

    2012-09-01

    The highest possible resolution for printed colour images is determined by the diffraction limit of visible light. To achieve this limit, individual colour elements (or pixels) with a pitch of 250 nm are required, translating into printed images at a resolution of ∼100,000 dots per inch (d.p.i.). However, methods for dispensing multiple colourants or fabricating structural colour through plasmonic structures have insufficient resolution and limited scalability. Here, we present a non-colourant method that achieves bright-field colour prints with resolutions up to the optical diffraction limit. Colour information is encoded in the dimensional parameters of metal nanostructures, so that tuning their plasmon resonance determines the colours of the individual pixels. Our colour-mapping strategy produces images with both sharp colour changes and fine tonal variations, is amenable to large-volume colour printing via nanoimprint lithography, and could be useful in making microimages for security, steganography, nanoscale optical filters and high-density spectrally encoded optical data storage.

  16. Characterization of Diffraction-Enhanced Imaging

    SciTech Connect

    Kao, T.; Connor, D; Dilmanian, F; Faulconer, L; Liu, T; Parham, C; Pisano, E; Zhong, Z

    2009-01-01

    Diffraction-enhanced imaging (DEI) is a new x-ray imaging modality that has been shown to enhance contrast between normal and cancerous breast tissues. In this study, diffraction-enhanced imaging in computed tomography (DEI-CT) mode was used to quantitatively characterize the refraction contrasts of the organized structures associated with invasive human breast cancer. Using a high-sensitivity Si (3 3 3) reflection, the individual features of breast cancer, including masses, calcifications and spiculations, were observed. DEI-CT yields 14, 5 and 7 times higher CT numbers and 10, 9 and 6 times higher signal-to-noise ratios (SNR) for masses, calcifications and spiculations, respectively, as compared to conventional CT of the same specimen performed using the same detector, x-ray energy and dose. Furthermore, DEI-CT at ten times lower dose yields better SNR than conventional CT. In light of the recent development of a compact DEI prototype using an x-ray tube as its source, these results, acquired at a clinically relevant x-ray energy for which a pre-clinical DEI prototype currently exists, suggest the potential of clinical implementation of mammography with DEI-CT to provide high-contrast, high-resolution images of breast cancer (Parham 2006 PhD Dissertation University of North Carolina at Chapel Hill).

  17. COHERENT LIGHT-RECORDING TECHNIQUES.

    DTIC Science & Technology

    On the basis of diffraction theory, quantum-mechanics and information theory, it is shown that the principle of coherent light recording is the...mechanical, magnetic or electric approaches. Photographic coherent light recording tests were made by the dynamic sweep tests on 16 mm Recordak Micro-File

  18. An Inexpensive LED Light Sensor

    ERIC Educational Resources Information Center

    Kutzner, Mickey; Wright, Richard; Kutzner, Emily

    2010-01-01

    Light irradiance measurements are important for students grappling with abstract optical phenomena such as the inverse square law, polarization, diffraction, interference, and spectroscopy. A variety of commercial light sensors are available from scientific vendors such as the CI-6504A from PASCO scientific and the LS-BTA from Vernier Software and…

  19. Bili lights

    MedlinePlus

    Phototherapy for jaundice; Bilirubin - bili lights; Neonatal care - bili lights; Newborn care - bili lights ... Phototherapy involves shining fluorescent light from the bili lights on bare skin. A specific wavelength of light can break down bilirubin into a form that ...

  20. Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology

    NASA Astrophysics Data System (ADS)

    Kress, B.; Meyrueis, P.

    2000-10-01

    Diffractive optical elements (DOEs) are becoming more and more widely used in a braod range of fields, including telecommunications, optical computing, consumer electronics, laser material processing and the biomedical sciences, to manipulate light through micro-optical systems. In order to get the most out of such DOEs, knowledge of the design process, fabrication, packaging in a particular system, and operation is required. Digital Diffractive Optics discusses in detail the design and simulation of DOEs, before considering the main fabrication techniques. The increasingly important CAD/CAM tool requirements for the production of DOEs are covered, and a chapter is devoted to the crucial area of systematic fabrication error compensation. Finally, the integration and use of DOEs in a number of different systems, including various opto-electronic and opto-mechanical systems, are discussed. Digital Diffractive Optics will be of great interest to all those involved in the fields of optical engineering and photonics. It presents a clear view of the whole process, from design to fabrication and application, without overstressing the, often complex, mathematics, and will thus be accessible to postgraduate students and those entering the field, as well as more experienced engineers and scientists.