Sample records for light guides

  1. Long-distance transmission of light in a scintillator-based radiation detector

    DOEpatents

    Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.

    2017-07-11

    Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.

  2. Flexible liquid core light guide with focusing and light shaping attachments

    DOEpatents

    Kross, B.J.; Majewski, S.; Zorn, C.J.; Majewski, L.A.

    1997-11-04

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. 12 figs.

  3. AMERICAN STANDARD GUIDE FOR SCHOOL LIGHTING.

    ERIC Educational Resources Information Center

    Illuminating Engineering Society, New York, NY.

    THIS IS A GUIDE FOR SCHOOL LIGHTING, DESIGNED FOR EDUCATORS AS WELL AS ARCHITECTS. IT MAKES USE OF RECENT RESEARCH, NOTABLY THE BLACKWELL REPORT ON EVALUATION OF VISUAL TASKS. THE GUIDE BEGINS WITH AN OVERVIEW OF CHANGING GOALS AND NEEDS OF SCHOOL LIGHTING, AND A TABULATION OF COMMON CLASSROOM VISUAL TASKS THAT REQUIRE VARIATIONS IN LIGHTING.…

  4. Light Rail Transit Car Specification Guide

    DOT National Transportation Integrated Search

    1981-12-01

    This Light Rail Transit Car Specification Guide is not a procurement document in itself. It is intended to be used as a guide by light rail transit operators and purchasers of such equipment in the preparation of technical specifications. Because of ...

  5. Effect of inhomogeneity of light from light curing units on the surface hardness of composite resin.

    PubMed

    Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Takahashi, Hideo; Ban, Seiji

    2008-01-01

    This study investigated the characteristics of output light from different types of light curing units, and their effects on polymerization of light-activated composite resin. Three quartz-tungsten-halogen lamps, one plasma arc lamp, and one LED light curing unit were used. Intensity distribution of light emitted from the light guide tip was measured at 1.0-mm intervals across the guide tip. Distribution of Knoop hardness number on the surface of resin irradiated with the light curing units was also measured. For all units, inhomogeneous distribution of light intensity across the guide tip was observed. Minimum light intensity values were 19-80% of the maximum values. In terms of surface hardness, inhomogeneous distribution was also observed for the materials irradiated with the tested units. Minimum values were 53-92% of the maximum values. Our results indicated that markedly inhomogeneous light emitted from light curing unit could result in inhomogeneous polymerization in some areas of the restoration below the light guide tip.

  6. Multi-layered fabrication of large area PDMS flexible optical light guide sheets

    NASA Astrophysics Data System (ADS)

    Green, Robert; Knopf, George K.; Bordatchev, Evgueni V.

    2017-02-01

    Large area polydimethylsiloxane (PDMS) flexible optical light guide sheets can be used to create a variety of passive light harvesting and illumination systems for wearable technology, advanced indoor lighting, non-planar solar light collectors, customized signature lighting, and enhanced safety illumination for motorized vehicles. These thin optically transparent micro-patterned polymer sheets can be draped over a flat or arbitrarily curved surface. The light guiding behavior of the optical light guides depends on the geometry and spatial distribution of micro-optical structures, thickness and shape of the flexible sheet, refractive indices of the constituent layers, and the wavelength of the incident light. A scalable fabrication method that combines soft-lithography, closed thin cavity molding, partial curing, and centrifugal casting is described in this paper for building thin large area multi-layered PDMS optical light guide sheets. The proposed fabrication methodology enables the of internal micro-optical structures (MOSs) in the monolithic PDMS light guide by building the optical system layer-by-layer. Each PDMS layer in the optical light guide can have the similar, or a slightly different, indices of refraction that permit total internal reflection within the optical sheet. The individual molded layers may also be defect free or micro-patterned with microlens or reflecting micro-features. In addition, the bond between adjacent layers is ensured because each layer is only partially cured before the next functional layer is added. To illustrate the scalable build-by-layers fabrication method a three-layer mechanically flexible illuminator with an embedded LED strip is constructed and demonstrated.

  7. Short Course in Highway Lighting.

    ERIC Educational Resources Information Center

    Federal Highway Administration (DOT), Washington, DC.

    This course guide in highway lighting includes an overview of trends in highway lighting, illustrated information on three light sources for today's luminaires, a reference guide to lamp classification, specifications for highway lighting equipment, and instructions for calculating appropriate use. Maintenance notes on highway illumination and…

  8. Illumination of interior spaces by bended hollow light guides: Application of the theoretical light propagation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darula, Stanislav; Kocifaj, Miroslav; Kittler, Richard

    2010-12-15

    To ensure comfort and healthy conditions in interior spaces the thermal, acoustics and daylight factors of the environment have to be considered in the building design. Due to effective energy performance in buildings the new technology and applications also in daylight engineering are sought such as tubular light guides. These allow the transport of natural light into the building core reducing energy consumption. A lot of installations with various geometrical and optical properties can be applied in real buildings. The simplest set of tubular light guide consists of a transparent cupola, direct tube with high reflected inner surface and amore » ceiling cover or diffuser redistributing light into the interior. Such vertical tubular guide is often used on flat roofs. When the roof construction is inclined a bend in the light guide system has to be installed. In this case the cupola is set on the sloped roof which collects sunlight and skylight from the seen part of the sky hemisphere as well as that reflected from the ground and opposite facades. In comparison with the vertical tube some additional light losses and distortions of the propagated light have to be expected in bended tubular light guides. Recently the theoretical model of light propagation was already published and its applications are presented in this study solving illuminance distributions on the ceiling cover interface and further illuminance distribution on the working plane in the interior. (author)« less

  9. Flexible, liquid core light guide with focusing and light shaping attachments

    DOEpatents

    Wojcik, Randolph Frank; Majewski, Stanislaw; Zorn, Carl John; Kross, Brian

    1999-01-01

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs.

  10. Resonant scattering of light from a glass/Ag/MgF2/air system with rough interfaces and supporting guided modes in attenuated total reflection.

    PubMed

    Ramírez-Duverger, Aldo S; Gaspar-Armenta, Jorge A; García-Llamas, Raúl

    2003-08-01

    We report experimental results of the resonant scattering of light from a prism-glass/Ag/MgF2/air system with use of the attenuated total reflection technique for p and s polarized light. Two MgF2 film thicknesses were used. The system with the thinner dielectric layer supports two transverse magnetic (TM) and two transverse electric (TE) guided modes at a wavelength of 632.8 nm, and the system with the thicker dielectric layer supports three TM and three TE guided modes. In both cases we found dips in the specular reflection as a function of incident angle that is due to excitation of guided modes in the MgF2 film. The scattered light shows peaks at angles corresponding to the measured excitation of the guided modes. These peaks are due to single-order scattering and occur for any angle of the incident light. All features in the scattering response are enhanced in resonance conditions, and the efficiency of injecting light into the guide is reduced.

  11. Optical characterization of a light guide for the polymerization of root canal fillers: preliminary results

    NASA Astrophysics Data System (ADS)

    Munin, Egberto; Lupato Conrado, Luis A.; Alves, Leandro P.; Zangaro, Renato A.

    2004-05-01

    The sealing cements used in endodontics are commonly of the type activated by chemical reactions. During polymerization, mechanical contractions are not uncommon, leading to non-perfect sealing or treatment failure. Photopolymerizable cements usually presents superior performance as compared to those chemically activated. However, difficulties in carrying-up the light to difficult-to-reach regions like the dental apex preclude those material of being accepted in the dental office routine. Recently, a novel technique for the light curing of photopolymerizable cements in endodontic applications has been proposed. Such a technique makes use of a polymeric light guide to deliver the curing light to the apex region, for a single step polymerization of the canal filler. For this work, a 28 mm long polymer light-guide, has been produced. The polymer surface was roughened to produce light scattering and allow the light to escape from the guide. The light scattering profile along the body of the guide is an important property for the proposed application. We used an integrating sphere to measure the irradiation profile for the proposed endodontic device. It was found that the experimental data for the amount of light coupled into the integrating sphere as a function of the length of the cone inside the sphere fits to a double exponential model.

  12. Flexible, liquid core light guide with focusing and light shaping attachments

    DOEpatents

    Wojcik, R.F.; Majewski, S.; Zorn, C.J.; Kross, B.

    1999-04-20

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs. 19 figs.

  13. Photoacoustic-guided convergence of light through optically diffusive media.

    PubMed

    Kong, Fanting; Silverman, Ronald H; Liu, Liping; Chitnis, Parag V; Lee, Kotik K; Chen, Y C

    2011-06-01

    We demonstrate that laser beams can be converged toward a light-absorbing target through optically diffusive media by using photoacoustic-guided interferometric focusing. The convergence of light is achieved by shaping the wavefront of the incident light with a deformable mirror to maximize the photoacoustic signal, which is proportional to the scattered light intensity at the light absorber. © 2011 Optical Society of America

  14. Guide for optimizing the effectiveness and the efficiency of roadway lighting.

    DOT National Transportation Integrated Search

    2012-06-01

    The objective of the present project was to develop a simple guide for roadway lighting replacement : approaches using new light source technologies to maintain visibility for safety, while reducing energy use. : Several roadway types were evaluated:...

  15. Optics: Light, Color, and Their Uses. An Educator's Guide with Activities in Science and Mathematics.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This educator's guide from discusses optics, light, color and their uses. Activities include: (1) "Reflection of Light with a Plane (Flat) Mirror--Trace a Star"; (2) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a 90-Degree Angle"; (3) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a Number of…

  16. Reporting guide for laser-light shows and displays (21 CFR 1002)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The guide is to be used for reporting laser-light shows or displays incorporating Class IIIb or Class IV lasers only. Separate reports are not required for shows or displays that incorporate Class I, IIa, II, or IIIa laser-projection systems. Such show descriptions must be included in the user instructions and the report for the laser projector. Laser projectors used in any light shows or displays regardless of the class of the projector must be certified by the manufacturer and reported using the guide titled, Guide for Preparing Initial Reports and Model Change Reports on Lasers and Products Containing Lasers, HHSmore » Publication FDA 86-8259. These guides assist manufacturers in providing the information that the Center for Devices and Radiological Health (CDRH) needs to determine how laser-light-shown projections and laser-light shows comply with the Federal standard for laser products (21 CDR 1040.10 and 1040.11) and with the conditions of an approved variance.« less

  17. Light sources and output couplers for a backlight with switchable emission angles

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Imai, Keita; Takagi, Yoshihiko

    2007-09-01

    For switching viewing angles of a liquid crystal display, we proposed to place a liquid crystal device between an LED and a light-guide of a backlight. The first key component for this configuration is a light source with electronically-controlled emission angles. Here, we construct such a device by stacking an optical film and a polymer-network liquid crystal (PNLC) cell on top of a chip-type LED. The optical film contains opaque parallel plates that limit the LED output in a narrow angular range. The PNLC cell either transmits or scatters the light emerging from the optical film. Experiment using a 15μm-thick PNLC cell shows that the angular distribution becomes 2.3 times wider by turning off the PNLC cell. We place this light source at one end of a light-guide so that the angular distribution of the light propagating inside is controlled. The second key component is some types of micro-strucrures built on the light-guide to out-couple the propagating light. We first attached various optical films on a light-guide surface. Although the angular distribution of the extracted light was switched successfully, light was mostly emitted into an oblique direction, approximately 60° from the plane normal. Next, we used a half-cylinder in place of the optical films. The curved surface of the cylinder was attached to the light-guide with a small amount of matching oil, which constituted an optical window. We measured that the angular distribution of the extracted light decreased to 35° FWHM from 62° FWHM by turning on the PNLC cell.

  18. Lightness, chroma, and hue distributions of a shade guide as measured by a spectroradiometer.

    PubMed

    Lee, Yong-Keun; Yu, Bin; Lim, Ho-Nam

    2010-09-01

    The color attributes of commercially available shade guides have been measured by spectrophotometers (SP), which are designed to measure flat surfaces. However, there is limited information on the color distribution of shade guides as measured by spectroradiometers (SR), which are capable of measuring the color of curved surfaces. The purpose of this study was to determine the distributions of lightness (CIE L*) and chroma (C*(ab)) step intervals between adjacent shade tabs of a shade guide based on the lightness, chroma, and hue attributes measured by an SR. Lightness, chroma, hue angle, and CIE a* and b* values of the shade tabs (n=26) from a shade guide (Vitapan 3D-Master) were measured by an SR under daylight conditions. The distributions of the ratios in lightness and chroma of each tab compared with the lowest lightness tab or the lowest chroma tab were determined. The values for each color parameter were analyzed by a 3-way ANOVA with the factors of lightness, chroma, and hue designations of the shade tabs (alpha=.05). The chroma and CIE a* and b* values were influenced by the lightness, chroma, and hue designations of the shade tabs (P<.001); however, the lightness and hue angle were influenced by the lightness and hue designations, but not by the chroma designation. Distributions for the CIE a* and b* values, in each lightness group, corresponded with the chroma designation. However, the intervals in the lightness and chroma scales between adjacent tabs were not uniform. The intervals in the color parameters between adjacent shade tabs were not uniform based on SR measurements. Therefore, a shade guide in which shade tabs are more equally spaced by the color attributes, based on the values as measured by an SR along with observers' responses with respect to the equality of the intervals, should be devised. Copyright © 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  19. Illuminating system and method for specialized and decorative lighting using liquid light guides

    DOEpatents

    Zorn, C.J.; Kross, B.J.; Majewski, S.; Wojcik, R.F.

    1998-08-25

    The present invention comprises an illumination system for specialized decorative lighting including a light source, a flexible plastic tube sheath for distributing the light to a remote location, a transparent liquid core filling the tube that has an index of refraction greater than that of the plastic tube and an arrangement where light coupled from the light source is caused to leak from the liquid light guide at desired locations for the purposes of specialized lighting, such as underwater illumination in swimming pools. 5 figs.

  20. Illuminating system and method for specialized and decorative lighting using liquid light guides

    DOEpatents

    Zorn, Carl J.; Kross, Brian J.; Majewski, Stanislaw; Wojcik, Randolph F.

    1998-01-01

    The present invention comprises an illumination system for specialized decorative lighting including a light source, a flexible plastic tube sheath for distributing the light to a remote location, a transparent liquid core filling the tube that has an index of refraction greater than that of the plastic tube and an arrangement where light coupled from the light source is caused to leak from the liquid light guide at desired locations for the purposes of specialized lighting, such as underwater illumination in swimming pools.

  1. Optical system and method for gas detection and monitoring

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A. (Inventor); Sinko, John Elihu (Inventor); Korman, Valentin (Inventor); Witherow, William K. (Inventor); Hendrickson, Adam Gail (Inventor)

    2011-01-01

    A free-space optical path of an optical interferometer is disposed in an environment of interest. A light beam is guided to the optical interferometer using a single-mode optical fiber. The light beam traverses the interferometer's optical path. The light beam guided to the optical path is combined with the light beam at the end of the optical path to define an output light. A temporal history of the output light is recorded.

  2. Tolerancing the alignment of large-core optical fibers, fiber bundles and light guides using a Fourier approach.

    PubMed

    Sawyer, Travis W; Petersburg, Ryan; Bohndiek, Sarah E

    2017-04-20

    Optical fiber technology is found in a wide variety of applications to flexibly relay light between two points, enabling information transfer across long distances and allowing access to hard-to-reach areas. Large-core optical fibers and light guides find frequent use in illumination and spectroscopic applications, for example, endoscopy and high-resolution astronomical spectroscopy. Proper alignment is critical for maximizing throughput in optical fiber coupling systems; however, there currently are no formal approaches to tolerancing the alignment of a light-guide coupling system. Here, we propose a Fourier alignment sensitivity (FAS) algorithm to determine the optimal tolerances on the alignment of a light guide by computing the alignment sensitivity. The algorithm shows excellent agreement with both simulated and experimentally measured values and improves on the computation time of equivalent ray-tracing simulations by two orders of magnitude. We then apply FAS to tolerance and fabricate a coupling system, which is shown to meet specifications, thus validating FAS as a tolerancing technique. These results indicate that FAS is a flexible and rapid means to quantify the alignment sensitivity of a light guide, widely informing the design and tolerancing of coupling systems.

  3. Tolerancing the alignment of large-core optical fibers, fiber bundles and light guides using a Fourier approach

    PubMed Central

    Sawyer, Travis W.; Petersburg, Ryan; Bohndiek, Sarah E.

    2017-01-01

    Optical fiber technology is found in a wide variety of applications to flexibly relay light between two points, enabling information transfer across long distances and allowing access to hard-to-reach areas. Large-core optical fibers and light guides find frequent use in illumination and spectroscopic applications; for example, endoscopy and high-resolution astronomical spectroscopy. Proper alignment is critical for maximizing throughput in optical fiber coupling systems, however, there currently are no formal approaches to tolerancing the alignment of a light guide coupling system. Here, we propose a Fourier Alignment Sensitivity (FAS) algorithm to determine the optimal tolerances on the alignment of a light guide by computing the alignment sensitivity. The algorithm shows excellent agreement with both simulated and experimentally measured values and improves on the computation time of equivalent ray tracing simulations by two orders of magnitude. We then apply FAS to tolerance and fabricate a coupling system, which is shown to meet specifications, thus validating FAS as a tolerancing technique. These results indicate that FAS is a flexible and rapid means to quantify the alignment sensitivity of a light guide, widely informing the design and tolerancing of coupling systems. PMID:28430250

  4. Transparent Solar Concentrator for Flat Panel Display

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung

    2012-06-01

    A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.

  5. Silica aerogel core waveguide.

    PubMed

    Grogan, M D W; Leon-Saval, S G; England, R; Birks, T A

    2010-10-11

    We have selectively filled the core of hollow photonic crystal fibre with silica aerogel. Light is guided in the aerogel core, with a measured attenuation of 0.2 dB/cm at 1540 nm comparable to that of bulk aerogel. The structure guides light by different mechanisms depending on the wavelength. At long wavelengths the effective index of the microstructured cladding is below the aerogel index of 1.045 and guidance is by total internal reflection. At short wavelengths, where the effective cladding index exceeds 1.045, a photonic bandgap can guide the light instead. There is a small region of crossover, where both index- and bandgap-guided modes were simultaneously observed.

  6. Design of light guide sleeve on hyperspectral imaging system for skin diagnosis

    NASA Astrophysics Data System (ADS)

    Yan, Yung-Jhe; Chang, Chao-Hsin; Huang, Ting-Wei; Chiang, Hou-Chi; Wu, Jeng-Fu; Ou-Yang, Mang

    2017-08-01

    A hyperspectral imaging system is proposed for early study of skin diagnosis. A stable and high hyperspectral image quality is important for analysis. Therefore, a light guide sleeve (LGS) was designed for the embedded on a hyperspectral imaging system. It provides a uniform light source on the object plane with the determined distance. Furthermore, it can shield the ambient light from entering the system and increasing noise. For the purpose of producing a uniform light source, the LGS device was designed in the symmetrical double-layered structure. It has light cut structures to adjust distribution of rays between two layers and has the Lambertian surface in the front-end to promote output uniformity. In the simulation of the design, the uniformity of illuminance was about 91.7%. In the measurement of the actual light guide sleeve, the uniformity of illuminance was about 92.5%.

  7. Low-Power Light Guiding and Localization in Optoplasmonic Chains Obtained by Directed Self-Assembly

    PubMed Central

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; Reinhard, Björn M.

    2016-01-01

    Optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and, at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth. PMID:26931149

  8. Wireless Occupancy Sensors for Lighting Controls: An Applications Guide for Federal Facility Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This guide provides federal facility managers with an overview of the energy savings potential of wireless lighting occupancy sensors for various room types, cost considerations, key steps to successful installation of wireless sensors, pros and cons of various technology options, light source considerations, and codes and standards.

  9. Optical coupler

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.

    2004-06-15

    In a camera or similar radiation sensitive device comprising a pixilated scintillation layer, a light guide and an array of position sensitive photomultiplier tubes, wherein there exists so-called dead space between adjacent photomultiplier tubes the improvement comprising a two part light guide comprising a first planar light spreading layer or portion having a first surface that addresses the scintillation layer and optically coupled thereto at a second surface that addresses the photomultiplier tubes, a second layer or portion comprising an array of trapezoidal light collectors defining gaps that span said dead space and are individually optically coupled to individual position sensitive photomultiplier tubes. According to a preferred embodiment, coupling of the trapezoidal light collectors to the position sensitive photomultiplier tubes is accomplished using an optical grease having about the same refractive index as the material of construction of the two part light guide.

  10. Medication Guide

    MedlinePlus

    ... Size Small Text Medium Text Large Text Contrast Dark on Light Light on Dark Donate Search Menu Donate What is Glaucoma? Care ... Low Vision Resources Medication Guide Resources on the Web » See All Articles Where the Money Goes Have ...

  11. ARTIFICIAL LIGHTING FOR MODERN SCHOOLS, A GUIDE FOR ADMINISTRATIVE USE.

    ERIC Educational Resources Information Center

    REIDA, GEORGE W.; AND OTHERS

    THE DEVELOPMENT OF GOOD VISUAL ENVIRONMENT AND ECONOMICALLY FEASIBLE LIGHTING INSTALLATIONS IN SCHOOLS IS DISCUSSED IN THIS GUIDE. EIGHTY PERCENT OF ALL SCHOOL LEARNING IS GAINED THROUGH THE EYES AS ESTIMATED BY THE U.S. OFFICE OF EDUCATION. GOOD SCHOOL LIGHTING IS COMFORTABLE, GLAREFREE AND ADEQUATE FOR THE VISUAL TASK. EYE STRAIN AND UNNECESSARY…

  12. [The fabrication and chroma study of a kind of custom shade guide with metal substrate].

    PubMed

    Chen, Ling; Liu, Xian; Xu, Li-qiang; Chao, Yong-lie; Liu, Wen-fang; Chen, Xiao-fang

    2007-06-01

    This study was to explore the chroma of a custom shade guide with metal substrate. A custom shade guide sample was fabricated using the central maxillary incisor as a model,which was corresponding to the colour of VITAPAN shade guide.The colour of each shade tab was measured with PR-650 spectrophotometer when every porcelain was added. From the opaque to glaze, the lightness was decreased and the chroma was increased distinctively; When the body porcelain were baked over their corresponding opaque, the lightness was decreased and the chroma was increased; When the enamel porcelain and the translucent porcelain were added on, the lightness and chroma were decreased slightly; the glaze could increase the lightness. The "add on" porcelain can affect the final color of the restoration, and the effects of each porcelain layer were different from each other.

  13. Low-power light guiding and localization in optoplasmonic chains obtained by directed self-assembly

    DOE PAGES

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; ...

    2016-03-02

    Here, optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and,more » at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth.« less

  14. Development of Gentle Slope Light Guide Structure in a 3.4 μm Pixel Pitch Global Shutter CMOS Image Sensor with Multiple Accumulation Shutter Technology.

    PubMed

    Sekine, Hiroshi; Kobayashi, Masahiro; Onuki, Yusuke; Kawabata, Kazunari; Tsuboi, Toshiki; Matsuno, Yasushi; Takahashi, Hidekazu; Inoue, Shunsuke; Ichikawa, Takeshi

    2017-12-09

    CMOS image sensors (CISs) with global shutter (GS) function are strongly required in order to avoid image degradation. However, CISs with GS function have generally been inferior to the rolling shutter (RS) CIS in performance, because they have more components. This problem is remarkable in small pixel pitch. The newly developed 3.4 µm pitch GS CIS solves this problem by using multiple accumulation shutter technology and the gentle slope light guide structure. As a result, the developed GS pixel achieves 1.8 e - temporal noise and 16,200 e - full well capacity with charge domain memory in 120 fps operation. The sensitivity and parasitic light sensitivity are 28,000 e - /lx·s and -89 dB, respectively. Moreover, the incident light angle dependence of sensitivity and parasitic light sensitivity are improved by the gentle slope light guide structure.

  15. Tunable Light-Guide Image Processing Snapshot Spectrometer (TuLIPSS) for Earth and Moon Observations

    NASA Astrophysics Data System (ADS)

    Tkaczyk, T. S.; Alexander, D.; Luvall, J. C.; Wang, Y.; Dwight, J. G.; Pawlowsk, M. E.; Howell, B.; Tatum, P. F.; Stoian, R.-I.; Cheng, S.; Daou, A.

    2018-02-01

    A tunable light-guide image processing snapshot spectrometer (TuLIPSS) for Earth science research and observation is being developed through a NASA instrument incubator project with Rice University and Marshall Space Flight Center.

  16. Adaptive optics program update at TMT

    NASA Astrophysics Data System (ADS)

    Boyer, C.; Ellerbroek, B.

    2016-07-01

    The TMT first light AO facility consists of the Narrow Field Infra-Red AO System (NFIRAOS), the associated Laser Guide Star Facility (LGSF) and the AO Executive Software (AOESW). Design, fabrication and prototyping activities of the TMT first light AO systems and their components have significantly ramped up in Canada, China, France, and in the US. NFIRAOS is an order 60 x 60 laser guide star (LGS) multi-conjugate AO (MCAO) system, which provides uniform, diffraction-limited performance in the J, H, and K bands over 34 x 34 arc sec fields with 50 per cent sky coverage at the galactic pole, as required to support the TMT science cases. NFIRAOS includes two deformable mirrors, six laser guide star wavefront sensors, one high order Pyramid WFS for natural guide star AO, and up to three low-order, IR, natural guide star on-instrument wavefront sensors (OIWFS) and four on-detector guide windows (ODGW) within each client instrument. The first light LGSF system includes six sodium lasers to generate the NFIRAOS laser guide stars. In this paper, we will provide an update on the progress in designing, prototyping, fabricating and modeling the TMT first light AO systems and their AO components over the last two years. TMT is continuing with detailed AO modeling to support the design and development of the first light AO systems and components. Major modeling topics studied during the last two years include further studies in the area of pyramid wavefront sensing, high precision astrometry, PSF reconstruction for LGS MCAO, LGSF wavefront error budget and sophisticated low order mode temporal filtering.

  17. Self-action of Bessel wave packets in a system of coupled light guides and formation of light bullets

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Mironov, V. A.; Skobelev, S. A.

    2017-01-01

    The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the "kaleidoscopic" picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.

  18. Self-action of Bessel wave packets in a system of coupled light guides and formation of light bullets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com

    The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wavemore » packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidayat, Arif, E-mail: arif.hidayat.fmipa@um.ac.id; Latifah, Eny; Kurniati, Diana

    This study investigated the influence of refraction index strength on the light propagation in refraction index-varied dielectric material. This dielectric material served as photonic lattice. The behavior of light propagation influenced by variation of refraction index in photonic lattice was investigated. Modes of the guiding light were determined numerically using squared-operator iteration method. It was found that the greater the strength of refraction index, the smaller the guiding modes.

  20. Evaluation of degree of conversion and hardness of dental composites photo-activated with different light guide tips.

    PubMed

    Galvão, Marília Regalado; Caldas, Sergei Godeiro Fernandes Rabelo; Bagnato, Vanderlei Salvador; de Souza Rastelli, Alessandra Nara; de Andrade, Marcelo Ferrarezi

    2013-01-01

    The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C═C) was determined from the ratio of absorbance intensities of aliphatic C═C (peak at 1637 cm(-1)) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm(-1)). The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey's test, with a significance level set at 5%. The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness.

  1. Evaluation of degree of conversion and hardness of dental composites photo-activated with different light guide tips

    PubMed Central

    Galvão, Marília Regalado; Caldas, Sergei Godeiro Fernandes Rabelo; Bagnato, Vanderlei Salvador; de Souza Rastelli, Alessandra Nara; de Andrade, Marcelo Ferrarezi

    2013-01-01

    Objective: The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Methods: Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C═C) was determined from the ratio of absorbance intensities of aliphatic C═C (peak at 1637 cm−1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm−1). The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey’s test, with a significance level set at 5%. Results: The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). Conclusions: The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness. PMID:23407620

  2. Fluorescence-guided resection of intracranial VX2 tumor in a preclinical model using 5-aminolevulinic acid (ALA): preliminary results

    NASA Astrophysics Data System (ADS)

    Bogaards, Arjen; Varma, Abhay; Moriyama, Eduardo H.; Lin, Annie; Giles, Anoja; Bisland, Stuart K.; Lilge, Lothar D.; Bilbao, G. M.; Muller, Paul J.; Wilson, Brian C.

    2003-06-01

    Fluorescence-guided brain tumor resection may help the neurosurgeon to identify tumor margins that merge imperceptibly into the normal brain tissue and are difficult to identify under white light illumination even using an operating microscope. We compared the amount of residual tumor after white light resection using an operating microscope versus that after fluorescnece-guided resection of an intracranial VX2 tumor in a preclinical model using our previously developed co-axial fluorscence imaging and spectroscopy system, exciting and detecting PpIX fluorescence at 405nm and 635nm respectively. Preliminary results: No fluorescence was present in 3 non-tumor-bearing animals. Fluorescence was present in all 15 tumor-bearing animals after white light resection was completed. To date in 4 rabbits, a decrease in residual tumor was found when using additional fluorescence guided resection compared to white light resection only. Conclusions: ALA induced PpIX fluorescence detects tumor margins not seen under an operation microscope using while light. Using fluorescence imaging to guide tumor resection resulted in a 3-fold decrease in the amount of residual timor. However, these preliminary results indicate that also an additional amount of normal brain is resected, which will be further investigated.

  3. Fiber optic device for sensing the presence of a gas

    DOEpatents

    Benson, David K.; Bechinger, Clemens S.; Tracy, C. Edwin

    1998-01-01

    A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material's optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment.

  4. LOADED WAVE GUIDES FOR LINEAR ACCELERATORS

    DOEpatents

    Walkinshaw, W.; Mullett, L.B.

    1959-12-01

    A periodically loaded waveguide having substantially coaxially arranged elements which provide an axial field for the acceleration of electrons is described. Radiofrequency energy will flow in the space between the inner wall of an outer guide and the peripheries of equally spaced irises or washes arranged coaxially with each other and with the outer guide, where the loading due to the geometry of the irises is such as to reduce the phase velocity of the r-f energy flowing in the guide from a value greater than that of light to the velocity of light or less.

  5. Atom guidance in the TE01 donut mode of a large-core hollow fiber

    NASA Astrophysics Data System (ADS)

    Pechkis, J. A.; Fatemi, F. K.

    2011-05-01

    We report on our progress towards low-light-level nonlinear optics experiments by optically guiding atoms in the TE01 donut mode of a hollow fiber. Atoms are transported over 12 cm from a ``source'' magneto-optical trap (MOT) through a 100- μm-diameter hollow fiber and are recaptured by a ``collection'' MOT situated directly below the fiber. For red-detuned guiding, we compare the guiding efficiency between the fundamental (Gaussian-like) mode and this donut mode, which has a larger guiding area but lower peak intensity. We also discuss our progress in transporting atoms in the dark core of this mode using blue-detuned light, which has more stringent constraints to atom guidance compared to red-detuned light. This work is supported by ONR.

  6. InGaN directional coupler made with a one-step etching technique

    NASA Astrophysics Data System (ADS)

    Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Zhang, Shuai; Shi, Zheng; Li, Xin; Wang, Yongjin

    2017-06-01

    We propose, fabricate and characterize an on-chip integration of light source, InGaN waveguide, directional coupler and photodiode, in which AlGaN layers are used as top and bottom optical claddings to form an InGaN waveguide for guiding the in-plane emitted light from the InGaN/GaN multiple-quantum-well light-emitting diode (MQW-LED). The difference in etch rate caused by different exposure windows leads to an etching depth discrepancy using the one-step etching technique, which forms the InGaN directional coupler with the overlapped underlying slab. Light propagation results directly confirm effective light coupling in the InGaN directional coupler, which is achieved through high-order guided modes. The InGaN waveguide couples the modulated light from the InGaN/GaN MQW-LED and transfers part of light to the coupled waveguide via the InGaN directional coupler. The in-plane InGaN/GaN MQW-photodiode absorbs the guided light by the coupled InGaN waveguide and induces the photocurrent. The on-chip InGaN photonic integration experimentally demonstrates an in-plane light communication with a data transmission of 50 Mbps.

  7. Side-emitting illuminators using LED sources

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Van Derlofske, John F.

    2003-11-01

    This study investigates illuminators composed of light emitting diode (LED) array sources and side-emitting light guides to provide efficient general illumination. Specifically, new geometries are explored to increase the efficiency of current systems while maintaining desired light distribution. LED technology is already successfully applied in many illumination applications, such as traffic signals and liquid crystal display (LCD) backlighting. It provides energy-efficient, small-package, long-life, and color-adjustable illumination. However, the use of LEDs in general illumination is still in its early stages. Current side-emitting systems typically use a light guide with light sources at one end, an end-cap surface at the other end, and light releasing sidewalls. This geometry introduces efficiency loss that can be as high as 40%. The illuminators analyzed in this study use LED array sources along the longitude of a light guide to increase the system efficiency. These new geometries also provide the freedom of elongating the system without sacrificing system efficiency. In addition, alternative geometries can be used to create white light with monochromatic LED sources. As concluded by this study, the side-emitting illuminators using LED sources gives the possibility of an efficient, distribution-controllable linear lighting system.

  8. Kansas highway LED illumination manual : a guide for the use of LED lighting systems.

    DOT National Transportation Integrated Search

    2015-12-01

    The research project was aimed to assist the Kansas Department of Transportation (KDOT) in the development of a Highway LED Illumination Manual for guiding the upcoming implementation of successful LED roadway lighting systems in Kansas to replace th...

  9. Self-compression of spatially limited laser pulses in a system of coupled light-guides

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.

    2018-04-01

    The self-action features of wave packets propagating in a 2D system of equidistantly arranged fibers are studied analytically and numerically on the basis of the discrete nonlinear Schrödinger equation. Self-consistent equations for the characteristic scales of a Gaussian wave packet are derived on the basis of the variational approach, which are proved numerically for powers P < 10 P_cr , slightly exceeding the critical one for self-focusing. At higher powers, the wave beams become filamented, and their amplitude is limited due to the nonlinear breaking of the interaction between neighboring light-guides. This makes it impossible to collect a powerful wave beam in a single light-guide. Variational analysis shows the possibility of the adiabatic self-compression of soliton-like laser pulses in the process of 3D self-focusing on the central light-guide. However, further increase of the field amplitude during self-compression leads to the development of longitudinal modulation instability and the formation of a set of light bullets in the central fiber. In the regime of hollow wave beams, filamentation instability becomes predominant. As a result, it becomes possible to form a set of light bullets in optical fibers located on the ring.

  10. Open water camouflage via 'leaky' light guides in the midwater squid Galiteuthis.

    PubMed

    Holt, Amanda L; Sweeney, Alison M

    2016-06-01

    Galiteuthis, a midwater squid, has photophores on the ventral surfaces of its eyes. These photophores emit bioluminescence to counter-illuminate the shadows cast by the eyes in downwelling sunlight, thereby hiding the eyes from upward-looking predators. The photophores consist of laminated fibre-like cells with semi-coaxial protein-dense layers around axial cytoplasm. These cells have been suggested to function as light guides: bioluminescence is an isotropic process used to hide in an anisotropic light environment, so any emission must be reshaped to be effective. We found a wide variation in cross-sectional geometries of photophore cells; some were more efficient at light guiding than others. We used a set of optical models to place these photophores in the context of the radiance where Galiteuthis lives and discovered a possible adaptive reason for this variation. In Galiteuthis's horizontal and vertical range, ocean radiance is also quite variable. For complete camouflage, photophores must reproduce this variation in radiance using an isotropic source. Our models show that variation in the geometry of the photophore light guides reproduces the predicted variation in ocean radiance experienced by this species. By selectively activating geometrically distinct populations of photophore cells, the animal may reproduce the angular distribution of light at all positions in its habitat. © 2016 The Author(s).

  11. A beam splitter of natural light guiding system based on dichroic prism for ecological illumination

    NASA Astrophysics Data System (ADS)

    Li, Yu-Chi; Chen, Yi-Yung; Whang, Allen Jong-Woei

    2009-08-01

    In thremmatology, many researches focus on ecological illumination for improving the growing speed of animal or plant. According to the Trichromatic theory, any specific color can be made up of red, green, and blue light. Sunlight has full spectrum so it is the most applicable source. A Natural Light Guiding System includes collecting, transmitting, and lighting parts. In our research, we would like to design a beam splitter in the transmitting part to separate the sunlight into red, green, and blue light for ecological illumination. We use high pass and low pass dichroic coatings in a prism, called dichroic prism, to be the beam splitter to separate the wavelength. For measuring the spectra of the exit beams, we build a space with the Natural Light Guiding System. In the space, the spectra of sunlight outside and inside the space and the exit beams of the beam splitter are measured. Finally, we use prismatic structure to design the beam splitter, and optimize the surface of the element with aspheric surface and Fresnel surface to reduce the beam angle of exit light.

  12. Use of prismatic films to control light distribution

    NASA Technical Reports Server (NTRS)

    Kneipp, K. G.

    1994-01-01

    Piping light for illumination purposes is a concept which has been around for a long time. In fact, it was the subject of an 1881 United States patent which proposed the use of mirrors inside a tube to reflect light from wall to wall down the tube. The use of conventional mirrors for this purpose, however, has not worked because mirrors do not reflect well enough. On the other hand, optical fibers composed of certain glasses or plastics are known to transport light much more efficiently. The light that enters is reflected back and forth within the walls of the fiber until it reaches the other end. This is possible by means of a principle known as 'total internal reflection'. No light escapes through the walls and very little is absorbed in the bulk of the fiber. However, while optical fibers are very efficient in transporting light, they are impractical for transporting large quantities of light. Lorne Whitehead, as a student at the University of British Columbia, recognized that prismatic materials could be used to create a 'prism light guide', a hollow structure that can efficiently transport large quantities of light. This invention is a pipe whose transparent walls are formed on the outside into precise prismatic facets. The facets are efficient total internal reflection mirrors which prevent light travelling down the guide from escaping. Very little light is absorbed by the pipe because light travels primarily in the air space within the hollow guide. And, because the guide is hollow, weight and cost factors are much more favorable than would be the case with very large solid fibers. Recent advances in precision micromachining, polymer processing, and certain other manufacturing technologies have made the development of OLF (Optical Lighting Film) possible. The process is referred to as 'microreplication' and has been found to have broad applicability in a number of diverse product areas.

  13. Kansas highway LED illumination manual : a guide for the use of LED lighting systems : [technical summary].

    DOT National Transportation Integrated Search

    2015-12-01

    The research project was aimed to assist the Kansas Department of Transportation (KDOT) in the development of a Highway LED Illumination Manual for guiding the upcoming implementation of successful LED roadway lighting systems in Kansas to replace th...

  14. Arrays of Segmented, Tapered Light Guides for Use With Large, Planar Scintillation Detectors

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Vaigneur, Keith; Stolin, Alexander V.; Jaliparthi, Gangadhar

    2015-06-01

    Metabolic imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. Our group has previously developed a high-resolution positron emission tomography imaging and biopsy device (PEM-PET) to detect and guide the biopsy of suspicious breast lesions. Initial testing revealed that the imaging field-of-view (FOV) of the scanner was smaller than the physical size of the detector's active area, which could hinder sampling of breast areas close to the chest wall. The purpose of this work was to utilize segmented, tapered light guides for optically coupling the scintillator arrays to arrays of position-sensitive photomultipliers to increase both the active FOV and identification of individual scintillator elements. Testing of the new system revealed that the optics of these structures made it possible to discern detector elements from the complete active area of the detector face. In the previous system the top and bottom rows and left and right columns were not identifiable. Additionally, use of the new light guides increased the contrast of individual detector elements by up to 129%. Improved element identification led to a spatial resolution increase by approximately 12%. Due to attenuation of light in the light guides the detector energy resolution decreased from 18.5% to 19.1%. Overall, these improvements should increase the field-of-view and spatial resolution of the dedicated breast-PET system.

  15. Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons

    PubMed Central

    Yao, Yung-Chi; Hwang, Jung-Min; Yang, Zu-Po; Haung, Jing-Yu; Lin, Chia-Ching; Shen, Wei-Chen; Chou, Chun-Yang; Wang, Mei-Tan; Huang, Chun-Ying; Chen, Ching-Yu; Tsai, Meng-Tsan; Lin, Tzu-Neng; Shen, Ji-Lin; Lee, Ya-Ju

    2016-01-01

    Enhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents. To understand the observations theoretically, the absorption spectra and the electric field distributions of the VLED with and without Ag NPs decorated on ZnO NRs are determined using the finite-difference time-domain (FDTD) method. The results prove that the observation of enhancement of the external quantum efficiency can be attributed to the creation of an extra escape channel for trapped light due to the coupling of the LSP with wave-guided mode light, by which the energy of wave-guided mode light can be transferred to the efficient light scattering center of the LSP. PMID:26935648

  16. Fiber optic device for sensing the presence of a gas

    DOEpatents

    Benson, D.K.; Bechinger, C.S.; Tracy, C.E.

    1998-01-13

    A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material`s optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment. 5 figs.

  17. 77 FR 55877 - Initial Test Program of Condensate and Feedwater Systems for Light-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ...-492- 3668; email: [email protected] . NRC's Agencywide Documents Access and Management System... Systems for Light-Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Systems for Boiling Water Reactor Power Plants.'' This regulatory guide is being revised to: (1) Expand...

  18. Teacher's Guide for Optics. Elementary Science Study.

    ERIC Educational Resources Information Center

    Lange, Robert V.; And Others

    This teacher's guide suggests activities that provide opportunities for upper elementary students to explore, by direct experiment, many of the properties of light. Equipment is listed and construction of a light source is detailed. Instructions are given for setting up a classroom with electrical equipment. Activities are described in units…

  19. Clean Cities 2016 Vehicle Buyer's Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-02-01

    Drivers and fleets are increasingly turning to the hundreds of light-duty, alternative fuel, and advanced technology vehicle models that reduce petroleum use, save on fuel costs, and cut emissions. This guide provides a comprehensive list of the 2016 light-duty models that use alternative fuels or advanced fuel-saving technologies.

  20. Recreating the 1950’s Chesapeake Bay: Use of a Network Model to Guide the Application of a Eutrophication Model

    DTIC Science & Technology

    2009-08-01

    14. Comparison of surface light extinction for base and 1950’ s RMB2 results in the upper, mid, and lower regions of the Chesapeake Bay...Lower Bay Light Extinction Surface 1950 Lower Bay Light Extinction Surface Figure 14. Comparison of surface light extinction for base and 1950’ s RMB2...ER D C/ EL T R -0 9 -9 System-Wide Water Resources Program Recreating the 1950’ s Chesapeake Bay: Use of a Network Model to Guide the

  1. Waveguide detection of right-angle-scattered light in flow cytometry

    DOEpatents

    Mariella, Jr., Raymond P.

    2000-01-01

    A transparent flow cell is used as an index-guided optical waveguide. A detector for the flow cell but not the liquid stream detects the Right-Angle-Scattered (RAS) Light exiting from one end of the flow cell. The detector(s) could view the trapped RAS light from the flow cell either directly or through intermediate optical light guides. If the light exits one end of the flow cell, then the other end of the flow cell can be given a high-reflectivity coating to approximately double the amount of light collected. This system is more robust in its alignment than the traditional flow cytometry systems which use imaging optics, such as microscope objectives.

  2. Pulsed-light imaging for fluorescence guided surgery under normal room lighting.

    PubMed

    Sexton, Kristian; Davis, Scott C; McClatchy, David; Valdes, Pablo A; Kanick, Stephen C; Paulsen, Keith D; Roberts, David W; Pogue, Brian W

    2013-09-01

    Fluorescence guided surgery (FGS) is an emerging technology that has demonstrated improved surgical outcomes. However, dim lighting conditions required by current FGS systems are disruptive to standard surgical workflow. We present a novel FGS system capable of imaging fluorescence under normal room light by using pulsed excitation and gated acquisition. Images from tissue-simulating phantoms confirm visual detection down to 0.25 μM of protoporphyrin IX under 125 μW/cm2 of ambient light, more than an order of magnitude lower than that measured with the Zeiss Pentero in the dark. Resection of orthotopic brain tumors in mice also suggests that the pulsed-light system provides superior sensitivity in vivo.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidane, Getnet S; Desilva, Upul P.; He, Chengli

    A gas turbine includes first and second parts having outer surfaces located adjacent to each other to create an interface where wear occurs. A wear probe is provided for monitoring wear of the outer surface of the first part, and includes an optical guide having first and second ends, wherein the first end is configured to be located flush with the outer surface of the first part. A fiber bundle includes first and second ends, the first end being located proximate to the second end of the optical guide. The fiber bundle includes a transmit fiber bundle comprising a firstmore » plurality of optical fibers coupled to a light source, and a receive fiber bundle coupled to a light detector and configured to detect reflected light. A processor is configured to determine a length of the optical guide based on the detected reflected light.« less

  4. Innovative design of parabolic reflector light guiding structure

    NASA Astrophysics Data System (ADS)

    Whang, Allen J.; Tso, Chun-Hsien; Chen, Yi-Yung

    2008-02-01

    Due to the idea of everlasting green architecture, it is of increasing importance to guild natural light into indoors. The advantages are multifold - to have better color rendering index, excellent energy savings from environments viewpoints and make humans more healthy, etc. Our search is to design an innovative structure, to convert outdoor sun light impinges on larger surfaces, into near linear light beam sources, later convert this light beam into near point sources which enters the indoor spaces then can be used as lighting sources indoors. We are not involved with the opto-electrical transformation, to the guild light into to the building, to perform the illumination, as well as the imaging function. Because non-imaging optics, well known for apply to the solar concentrators, that can use non-imaging structures to fulfill our needs, which can also be used as energy collectors in solar energy devices. Here, we have designed a pair of large and small parabolic reflector, which can be used to collect daylight and change area from large to small. Then we make a light-guide system that is been designed by us use of this parabolic reflector to guide the collection light, can pick up the performance for large surface source change to near linear source and a larger collection area.

  5. Strong transmittance above the light line in mid-infrared two-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraeh, Christian, E-mail: christian.kraeh@tum.de; Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, D-85748 Garching; Martinez-Hurtado, J. L.

    2015-06-14

    The mid-infrared region of the electromagnetic spectrum between 3 and 8 μm hosts absorption lines of gases relevant for chemical and biological sensing. 2D photonic crystal structures capable of guiding light in this region of the spectrum have been widely studied, and their implementation into miniaturized sensors has been proposed. However, light guiding in conventional 2D photonic crystals is usually restricted to a frequency range below the light line, which is the dispersion relation of light in the media surrounding the structures. These structures rely on total internal reflection for confinement of the light in z-direction normal to the lattice plane.more » In this work, 2D mid-infrared photonic crystals consisting of microtube arrays that mitigate these limitations have been developed. Due to their high aspect ratios of ∼1:30, they are perceived as semi-infinite in the z-direction. Light transmission experiments in the 5–8 μm range reveal attenuations as low as 0.27 dB/100 μm, surpassing the limitations for light guiding above the light line in conventional 2D photonic crystals. Fair agreement is obtained between these experiments, 2D band structure and transmission simulations.« less

  6. A method for improving the light intensity distribution in dental light-curing units.

    PubMed

    Arikawa, Hiroyuki; Takahashi, Hideo; Minesaki, Yoshito; Muraguchi, Kouichi; Matsuyama, Takashi; Kanie, Takahito; Ban, Seiji

    2011-01-01

    A method for improving the uniformity of the radiation light from dental light-curing units (LCUs), and the effect on the polymerization of light-activated composite resin are investigated. Quartz-tungsten halogen, plasma-arc, and light-emitting diode LCUs were used, and additional optical elements such as a mixing tube and diffusing screen were employed to reduce the inhomogeneity of the radiation light. The distribution of the light intensity from the light guide tip was measured across the guide tip, as well as the distribution of the surface hardness of the light-activated resin emitted with the LCUs. Although the additional optical elements caused 13.2-25.9% attenuation of the light intensity, the uniformity of the light intensity of the LCUs was significantly improved in the modified LCUs, and the uniformity of the surface hardness of the resin was also improved. Our results indicate that the addition of optical elements to the LCU may be a simple and effective method for reducing inhomogeneity in radiation light from the LCUs.

  7. Model Year 2014 Fuel Economy Guide: EPA Fuel Economy Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been dividedmore » into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.« less

  8. Model Year 2015 Fuel Economy Guide: EPA Fuel Economy Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been dividedmore » into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.« less

  9. Model Year 2016 Fuel Economy Guide: EPA Fuel Economy Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been dividedmore » into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.« less

  10. Current status of the laser guide star adaptive optics system for Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Hayano, Yutaka; Takami, Hideki; Guyon, Olivier; Oya, Shin; Hattori, Masayuki; Saito, Yoshihiko; Watanabe, Makoto; Murakami, Naoshi; Minowa, Yosuke; Ito, Meguru; Colley, Stephen; Eldred, Michael; Golota, Taras; Dinkins, Matthew; Kashikawa, Nobunari; Iye, Masanori

    2008-07-01

    The current status and recent results, since last SPIE conference at Orlando in 2006, for the laser guide star adaptive optics system for Subaru Telescope is presented. We had a first light using natural guide star and succeed to launch the sodium laser beam in October 2006. The achieved Strehl ratio on the 10th magnitude star was around 0.5 at K band. We confirmed that the full-width-half-maximum of the stellar point spread function is smaller than 0.1 arcsec even at the 0.9 micrometer wavelehgth. The size of the artificial guide star by the laser beam tuned at the wavelength of 589 nm was estimated to be 10 arcsec. The obtained blurred artificial guide star is caused by the wavefront error on the laser launching telescope. After the first light and first launch, we found that we need to modify and to fix the components, which are temporarily finished. Also components, which were postponed to fabricate after the first light, are required to build newly. All components used by the natural guide star adaptive optics system are finalized recently and we are ready to go on the sky. Next engineering observation is scheduled in August, 2008.

  11. Conjugation of fiber-coupled wide-band light sources and acousto-optical spectral elements

    NASA Astrophysics Data System (ADS)

    Machikhin, Alexander; Batshev, Vladislav; Polschikova, Olga; Khokhlov, Demid; Pozhar, Vitold; Gorevoy, Alexey

    2017-12-01

    Endoscopic instrumentation is widely used for diagnostics and surgery. The imaging systems, which provide the hyperspectral information of the tissues accessible by endoscopes, are particularly interesting and promising for in vivo photoluminescence diagnostics and therapy of tumour and inflammatory diseases. To add the spectral imaging feature to standard video endoscopes, we propose to implement acousto-optical (AO) filtration of wide-band illumination of incandescent-lamp-based light sources. To collect maximum light and direct it to the fiber-optic light guide inside the endoscopic probe, we have developed and tested the optical system for coupling the light source, the acousto-optical tunable filter (AOTF) and the light guide. The system is compact and compatible with the standard endoscopic components.

  12. 16 CFR 260.4 - Review procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION GUIDES AND TRADE PRACTICE RULES GUIDES FOR THE USE OF ENVIRONMENTAL MARKETING CLAIMS § 260.4 Review procedure. The Commission will review the guides as part of its... to alter or amend these guides in light of substantial new evidence regarding consumer interpretation...

  13. Radiation detection system

    DOEpatents

    Nelson, Melvin A.; Davies, Terence J.; Morton, III, John R.

    1976-01-01

    A radiation detection system which utilizes the generation of Cerenkov light in and the transmission of that light longitudinally through fiber optic wave guides in order to transmit intelligence relating to the radiation to a remote location. The wave guides are aligned with respect to charged particle radiation so that the Cerenkov light, which is generated at an angle to the radiation, is accepted by the fiber for transmission therethrough. The Cerenkov radiation is detected, recorded, and analyzed at the other end of the fiber.

  14. Pulsed-light imaging for fluorescence guided surgery under normal room lighting

    PubMed Central

    Sexton, Kristian; Davis, Scott C.; McClatchy, David; Valdes, Pablo A.; Kanick, Stephen C.; Paulsen, Keith D.; Roberts, David W.; Pogue, Brian W.

    2013-01-01

    Fluorescence guided surgery (FGS) is an emerging technology that has demonstrated improved surgical outcomes. However, dim lighting conditions required bycurrent FGS systems are disruptive to standard surgical workflow. We present a novel FGS system capable of imaging fluorescence under normal room lightby using pulsed excitation and gated acquisition. Images from tissue-simulating phantoms confirm visual detection down to 0.25 μM of protopor-phyrin IX under 125 μW/cm2 of ambient light, more than an order of magnitude lower than that measured with the Zeiss Pentero in the dark. Resection of orthotopic brain tumors in mice also suggests that the pulsed-light system provides superior sensitivity in vivo. PMID:23988926

  15. In situ realization of asymmetric ratchet structures within microchannels by directionally guided light transmission and their directional flow behavior.

    PubMed

    Bae, Won-Gyu; Kim, Sang Moon; Choi, Se-Jin; Oh, Sang Geun; Yoon, Hyunsik; Char, Kookheon; Suh, Kahp Y

    2014-05-01

    An asymmetric ratchet structure within microchannels is demonstrated by directionally guided light transmission for controlled liquid flow. A direct and facile method is presented to realize programmed asymmetric structures, which control the fluid direction and speed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Initial tests of a prototype MRI-compatible PET imager

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5×5×4 cm 3. Each MRI-PET detector module consists of an array of LSO detector elements (2.5×2.5×15 mm 3) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ˜60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ˜85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy .

  17. Update to a guide to standardized highway lighting pole hardware.

    DOT National Transportation Integrated Search

    2013-03-01

    This report describes the development of an updated Online Guide to Luminaire Supports. The Guide is a web-based content : management system for luminaire support systems that allows full viewing, submission, management, and reporting services : to i...

  18. Use of prismatic films to control light distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneipp, K.G.

    1994-12-31

    3M prismatic films are finding increasing utility in the construction of new hollow light guide fixtures which capitalize on the unique ways in which these novel materials interact with light. Often, the resulting systems provide features and end-user benefits which are difficult or impossible to achieve by alternative design or construction methods. It is apparent that the benefits may be applied to a wide variety of end-uses, and that the resulting products being developed will find utility in many diverse market areas. With the recognition that creating hollow light guide products and systems requires a substantial resource investment, and becausemore » of an existing prominent position in the traffic management market, 3M has decided to focus its current efforts in the development, manufacture, and distribution of value-added products for this market. However, through the sale of these prismatic films, a variety of companies have developed and are manufacturing and distributing other unrelated hollow light guide products which capitalize on the unique capabilities of these films in controlling and distributing light. There appears to be little doubt that the potential applications of this technology will grow both in numbers as well as in diversity.« less

  19. Simulation study of PET detector configuration with thick light guide and GAPD array having large-area microcells for high effective quantum efficiency.

    PubMed

    Kang, Jihoon; Choi, Yong

    2016-07-01

    Light sharing PET detector configuration coupled with thick light guide and Geiger-mode avalanche photodiode (GAPD) with large-area microcells was proposed to overcome the energy non-linearity problem and to obtain high light collection efficiency (LCE). A Monte-Carlo simulation was conducted for the three types of LSO block, 4 × 4 array of 3 × 3 × 20 mm(3) discrete crystals, 6 × 6 array of 2 × 2 × 20 mm(3) discrete crystals, and 12 × 12 array of 1 × 1 × 20 mm(3) discrete crystals, to investigate the scintillation light distribution after conversion of the γ-rays in LSO. The incident photons were read out by three types of 4 × 4 array photosensors, which were PSPMT of 25% quantum efficiency (QE), GAPD1 with 50 × 50 µm(2) microcells of 30% photon detection efficiency (PDE) and GAPD2 with 100 × 100 µm(2) of 45% PDE. The number of counted photons in each photosensor was analytically calculated. The LCE, linearity and flood histogram were examined for each PET detector module having 99 different configurations as a function of light guide thickness ranging from 0 to 10 mm. The performance of PET detector modules based on GAPDs was considerably improved by using the thick light guide. The LCE was increased from 24 to 30% and from 14 to 41%, and the linearity was also improved from 0.97 to 0.99 and from 0.75 to 0.99, for GAPD1 and GAPD2, respectively. As expected, the performance of PSPMT based detector did not change. The flood histogram of 12 × 12 array PET detector modules using 3 mm light guide coupled with GAPDs was obtained by simulation, and all crystals of 1 × 1 × 20 mm(3) size were clearly identified. PET detector module coupled with thick light guide and GAPD array with large-area microcells was proposed to obtain high QE and high spatial resolution, and its feasibility was verified. This study demonstrated that the overall PET performance of the proposed design was considerably improved, and this approach will provide opportunities to develop GAPD based PET detector with a high LCE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Wonmi; Zhao, Xin; Hong, Yan

    Here, optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and,more » at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth.« less

  1. Tapered rib fiber coupler for semiconductor optical devices

    DOEpatents

    Vawter, Gregory A.; Smith, Robert Edward

    2001-01-01

    A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.

  2. A Guide to the Librarian's Responsibility in Achieving Quality in Lighting and Ventilation.

    ERIC Educational Resources Information Center

    Mason, Ellsworth

    1967-01-01

    Quality, not intensity, is the keystone to good library lighting. The single most important problem in lighting is glare caused by extremely intense centers of light. Multiple interfiling of light rays is a factor required in library lighting. A fixture that diffuses light well is basic when light emerges from the fixture. It scatters widely,…

  3. Efficient solar-pumped Nd:YAG laser by a double-stage light-guide/V-groove cavity

    NASA Astrophysics Data System (ADS)

    Almeida, Joana; Liang, Dawei

    2011-05-01

    Since the first reported Nd:YAG solar laser, researchers have been exploiting parabolic mirrors and heliostats for enhancing laser output performance. We are now investigating the production of an efficient solar-pumped laser for the reduction of magnesium from magnesium oxide, which could be an alternative solution to fossil fuel. Therefore both high conversion efficiency and excellent beam quality are imperative. By using a single fused silica light guide of rectangular cross section, highly concentrated solar radiation at the focal spot of a stationary parabolic mirror is efficiently transferred to a water-flooded V-groove pump cavity. It allows for the double-pass absorption of pump light along a 4mm diameter, 30mm length, 1.1at% Nd:YAG rod. Optimum pumping parameters and solar laser output power are found through ZEMAXTM non-sequential ray-tracing and LASCADTM laser cavity analysis. 11.0 W of multimode laser output power with excellent beam profile is numerically calculated, corresponding to 6.1W/m2 collection efficiency. To validate the proposed pumping scheme, an experimental setup of the double-stage light-guide/V-groove cavity was built. 78% of highly concentrated solar radiation was efficiently transmitted by the fused silica light guide. The proposed pumping scheme can be an effective solution for enhancing solar laser performances when compared to other side-pump configurations.

  4. Quartz and E-glass fiber self-sensing composites

    NASA Astrophysics Data System (ADS)

    Zolfaghar, K.; Khan, N. A.; Brooks, David; Hayes, Simon A.; Liu, Tonguy; Roca, J.; Lander, J.; Fernando, Gerard F.

    1998-04-01

    This paper reports on developments in the field of self- sensing fiber reinforced composites. The reinforcing fibers have been surface treated to enable them to act as light guides for short distances. The reinforcing fiber light guides were embedded in carbon fiber reinforced epoxy prepregs and processed into composites. The resultant composite was termed the self-sensing composite as any damage to these fibers or its interface would result in the attenuation of the transmitted light. The self-sensing fibers were capable of detecting a 2 J impact.

  5. Zinc Sulphide Overlayer Two-Dimensional Photonic Crystal for Enhanced Extraction of Light from a Micro Cavity Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Mastro, Michael A.; Kim, Chul Soo; Kim, Mijin; Caldwell, Josh; Holm, Ron T.; Vurgaftman, Igor; Kim, Jihyun; Eddy, Charles R., Jr.; Meyer, Jerry R.

    2008-10-01

    A two-dimensional (2D) ZnS photonic crystal was deposited on the surface of a one-dimensional (1D) III-nitride micro cavity light-emitting diode (LED), to intermix the light extraction features of both structures (1D+2D). The deposition of an ideal micro-cavity optical thickness of ≈λ/2 is impractical for III-nitride LEDs, and in realistic multi-mode devices a large fraction of the light is lost to internal refraction as guided light. Therefore, a 2D photonic crystal on the surface of the LED was used to diffract and thus redirect this guided light out of the semiconductor over several hundred microns. Additionally, the employment of a post-epitaxy ZnS 2D photonic crystal avoided the typical etching into the GaN:Mg contact layer, a procedure which can cause damage to the near surface.

  6. A Thousand Lights [and] A Thousand Lights: Teacher and Parent Guide. Brothers Series.

    ERIC Educational Resources Information Center

    Benton, Hope

    This book for children (ages 8 to 14) and the accompanying teacher/parent guide present the story of two brothers, one of whom has a severe hearing impairment, who climb up Mt. Fuji in Japan. Information on the disability is presented subtly and incidentally to encourage the reader to relate more personally and foster a deeper level of acceptance…

  7. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  8. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  9. Development of Light-Activated CRISPR Using Guide RNAs with Photocleavable Protectors.

    PubMed

    Jain, Piyush K; Ramanan, Vyas; Schepers, Arnout G; Dalvie, Nisha S; Panda, Apekshya; Fleming, Heather E; Bhatia, Sangeeta N

    2016-09-26

    The ability to remotely trigger CRISPR/Cas9 activity would enable new strategies to study cellular events with greater precision and complexity. In this work, we have developed a method to photocage the activity of the guide RNA called "CRISPR-plus" (CRISPR-precise light-mediated unveiling of sgRNAs). The photoactivation capability of our CRISPR-plus method is compatible with the simultaneous targeting of multiple DNA sequences and supports numerous modifications that can enable guide RNA labeling for use in imaging and mechanistic investigations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The effect of different brightness conditions on visually and memory guided saccades.

    PubMed

    Felßberg, Anna-Maria; Dombrowe, Isabel

    2018-01-01

    It is commonly assumed that saccades in the dark are slower than saccades in a lit room. Early studies that investigated this issue using electrooculography (EOG) often compared memory guided saccades in darkness to visually guided saccades in an illuminated room. However, later studies showed that memory guided saccades are generally slower than visually guided saccades. Research on this topic is further complicated by the fact that the different existing eyetracking methods do not necessarily lead to consistent measurements. In the present study, we independently manipulated task (memory guided/visually guided) and screen brightness (dark, medium and light) in an otherwise completely dark room, and measured the peak velocity and the duration of the participant's saccades using a popular pupil-cornea reflection (p-cr) eyetracker (Eyelink 1000). Based on a critical reading of the literature, including a recent study using cornea-reflection (cr) eye tracking, we did not expect any velocity or duration differences between the three brightness conditions. We found that memory guided saccades were generally slower than visually guided saccades. In both tasks, eye movements on a medium and light background were equally fast and had similar durations. However, saccades on the dark background were slower and had shorter durations, even after we corrected for the effect of pupil size changes. This means that this is most likely an artifact of current pupil-based eye tracking. We conclude that the common assumption that saccades in the dark are slower than in the light is probably not true, however pupil-based eyetrackers tend to underestimate the peak velocity of saccades on very dark backgrounds, creating the impression that this might be the case. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Design considerations for a backlight with switchable viewing angles

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Takagi, Yoshihiko; Rahadian, Fanny

    2006-08-01

    Small-sized liquid crystal displays are widely used for mobile applications such as cell phones. Electronic control of a viewing angle range is desired in order to maintain privacy for viewing in public as well as to provide wide viewing angles for solitary viewing. Conventionally, a polymer-dispersed liquid crystal (PDLC) panel is inserted between a backlight and a liquid crystal panel. The PDLC layer either transmits or scatters the light from the backlight, thus providing an electronic control of viewing angles. However, such a display system is obviously thick and expensive. Here, we propose to place an electronically-controlled, light-deflecting device between an LED and a light-guide of a backlight. For example, a liquid crystal lens is investigated for other applications and its focal length is controlled electronically. A liquid crystal phase grating either transmits or diffracts an incoming light depending on whether or not a periodic phase distribution is formed inside its liquid crystal layer. A bias applied to such a device will control the angular distribution of the light propagating inside a light-guide. Output couplers built in the light-guide extract the propagating light to outside. They can be V-shaped grooves, pyramids, or any other structures that can refract, reflect or diffract light. When any of such interactions occur, the output couplers translate the changes in the propagation angles into the angular distribution of the output light. Hence the viewing-angle characteristic can be switched. The designs of the output couplers and the LC devices are important for such a backlight system.

  12. Scalable pumping approach for extracting the maximum TEM(00) solar laser power.

    PubMed

    Liang, Dawei; Almeida, Joana; Vistas, Cláudia R

    2014-10-20

    A scalable TEM(00) solar laser pumping approach is composed of four pairs of first-stage Fresnel lens-folding mirror collectors, four fused-silica secondary concentrators with light guides of rectangular cross-section for radiation homogenization, four hollow two-dimensional compound parabolic concentrators for further concentration of uniform radiations from the light guides to a 3 mm diameter, 76 mm length Nd:YAG rod within four V-shaped pumping cavities. An asymmetric resonator ensures an efficient large-mode matching between pump light and oscillating laser light. Laser power of 59.1 W TEM(00) is calculated by ZEMAX and LASCAD numerical analysis, revealing 20 times improvement in brightness figure of merit.

  13. Self-sensing E-glass-fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Brooks, David; Hayes, Simon A.; Khan, N. A.; Zolfaghar, K.; Fernando, Gerard F.

    1997-06-01

    Conventional E-glass fibers were surface treated to enable them to act as light guides for short distances. The reinforcing fiber light guides were embedded in glass fiber reinforced epoxy prepregs and processed into composites. The resultant composite was termed the self-sensing composite as any damage to these fibers or its interface would result in the attenuation of the transmitted light. Epoxy, silicone, fluoropolymer and sol-gel derived cladding materials were evaluated as potential cladding materials. RFLGs with a silicone coating was found to give the best light transmission. The self-sensing fibers were capable of detecting a 0.5 J direct impact. The feasibility of using the RFLGs for impact damage location was also demonstrated successfully as bleeding-light could be seen in the vicinity of the impact.

  14. Field evaluation of unlighted overhead guide signs using older drivers : executive summary report.

    DOT National Transportation Integrated Search

    2003-08-01

    Problem: In the preceding Unlighted Overhead Guide : Sign Feasibility Study, it was determined that : the lighting of overhead guide signs on : freeways could be eliminated if white : microprismatic Type VII or Type IX legends : were used on green be...

  15. Development of a Hybrid Optical Biopsy Probe to Improve Prostate Cancer Diagnosis

    DTIC Science & Technology

    2012-06-01

    can be developed for guiding needle biopsy for prostate cancer diagnosis. Multi-modal optical measurements to be utilized for the study are (1) light...which collect light scattering and auto-fluorescence from the prostate tissue, into a transrectal- ultrasound , needle - biopsy probe. In the...probe can be developed for guiding needle biopsy for prostate cancer diagnosis. Multi-modal optical measurements to be utilized for the study were

  16. Light management in flexible OLEDs

    NASA Astrophysics Data System (ADS)

    Harkema, Stephan; Pendyala, Raghu K.; Geurts, Christian G. C.; Helgers, Paul L. J.; Levell, Jack W.; Wilson, Joanne S.; MacKerron, Duncan

    2014-10-01

    Organic light-emitting diodes (OLEDs) are a promising lighting technology. In particular OLEDs fabricated on plastic foils are believed to hold the future. These planar devices are subject to various optical losses, which requires sophisticated light management solutions. Flexible OLEDs on plastic substrates are as prone to losses related to wave guiding as devices on glass. However, we determined that OLEDs on plastic substrates are susceptible to another loss mode due to wave guiding in the thin film barrier. With modeling of white polymer OLEDs fabricated on PEN substrates, we demonstrate that this loss mode is particularly sensitive to polarized light emission. Furthermore, we investigated how thin film barrier approaches can be combined with high index light extraction layers. Our analysis shows that OLEDs with a thin film barrier consisting of an inorganic/organic/inorganic layer sequence, a low index inorganic negatively affects the OLED efficiency. We conclude that high index inorganics are more suitable for usage in high efficiency flexible OLEDs.

  17. Field evaluation of unlighted overhead guide signs using older drivers : research implementation plan.

    DOT National Transportation Integrated Search

    2006-04-01

    STATEMENT OF NEED: In the preceding Unlighted Overhead Guide Sign Feasibility Study, it was determined that the lighting of overhead : guide signs on freeways could be eliminated if white micro-prismatic Type VII or Type IX legends were used on : gre...

  18. Development of OSL system using two high-density blue LEDs equipped with liquid light guides

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Kim, M. J.; Cheong, C. S.; Hong, D. G.

    2014-03-01

    In recent years, considerable developments in optically stimulated luminescence (OSL) have been made in the fields of radiation dosimetry, age determination, and medical applications. A compact and economical OSL system comprising a precision x-y-z stage for loading 12 samples, a small X-ray generator for radiation dosing, and two powerful blue light emitting diodes (LEDs) for optical stimulation equipped with VIS liquid light guides (VIS-LLGs) has been developed. This paper describes the principal features of the system along with the examples of measurements performed by the system.

  19. Coherent Light induced in Optical Fiber by a Charged Particle

    NASA Astrophysics Data System (ADS)

    Artru, Xavier; Ray, Cédric

    2016-07-01

    Coherent light production in an optical fiber by a charged particle (named PIGL, for particle-induced guided, light) is reviewed. From the microscopic point of view, light is emitted by transient electric dipoles induced in the fiber medium by the Coulomb field of the particle. The phenomenon can also considered as the capture of virtual photons of the particle field by the fiber. Two types of captures are distinguished. Type-I takes place in a uniform part of the fiber; then the photon keeps its longitudinal momentum pz . Type-II takes place near an end or in a non-uniform part of the fiber; then pz is not conserved. Type-I PIGL is not affected by background lights external to the fiber. At grazing incidence it becomes nearly monochromatic. Its circular polarization depends on the angular momentum of the particle about the fiber and on the relative velocity between the particle and the guided wave. A general formula for the yield of Type-II radiation, based on the reciprocity theorem, is proposed. This radiation can be assisted by metallic objects stuck to the fiber, via plasmon excitation. A periodic structure leads to a guided Smith-Purcell radiation. Applications of PIGL in beam diagnostics are considered.

  20. Teaching Guide for the Traffic Signal Light Program: Kindergarten Level.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    This teachers' guide provides materials and suggestions for approximately 125 lessons that are designed to increase kindergarten children's traffic safety skills and knowledge. Most of the guide focuses on (1) lessons about physical structures in the pedestrian environment such as sidewalks, curbs, crosswalks, and intersections, and (2) signal…

  1. Photographic Processes. Curriculum Guide for Technology Education.

    ERIC Educational Resources Information Center

    Lacy, Henry Heston

    This curriculum guide for a 1-semester or 1-year course in photography promotes exploratory study of the following areas: (1) color processing; (2) technical applications in black and white; (3) special effects in lighting techniques; and (4) career opportunities in commercial photography. The guide contains a course outline, competencies (task…

  2. Green Vehicle Guide

    EPA Pesticide Factsheets

    On the Green Vehicle Guide you can search for green vehicles and see information on light duty vehicles, including emerging vehicle technology and alternative fuels. The site also addresses transportation's role in climate change.

  3. SCHOOL LIGHTING APPLICATION DATA. EXCERPTS FROM THE IES LIGHTING HANDBOOK, 3RD EDITION.

    ERIC Educational Resources Information Center

    Illuminating Engineering Society, New York, NY.

    THIS PUBLICATION REGARDING SCHOOL LIGHTING WAS PREPARED AS A USEFUL ADDITION TO THE AMERICAN STANDARD GUIDE FOR SCHOOL LIGHTING. THE MATERIAL HAS BEEN EXTRACTED FROM THE IES LIGHTING HANDBOOK TO INCLUDE A MORE DETAILED TREATMENT OF SUBJECTS TO WHICH THE DESIGNER MUST GIVE IMPORTANT CONSIDERATION. THERE IS A MORE EXTENSIVE TREATMENT OF REFLECTED…

  4. Automated laser guidance of neuronal growth cones using a spatial light modulator.

    PubMed

    Carnegie, David J; Cizmár, Tomás; Baumgartl, Jörg; Gunn-Moore, Frank J; Dholakia, Kishan

    2009-11-01

    The growth cone of a developing neuron can be guided using a focused infra-red (IR) laser beam [1]. In previous setups this process has required a significant amount of user intervention to adjust continuously the laser beam to guide the growing neuron. Previously, a system using an acousto-optical deflector (AOD) has been developed to steer the beam [2]. However, to enhance the controllability of this system, here we demonstrate the use of a computer controlled spatial light modulator (SLM) to steer and manipulate the shape of a laser beam for use in guided neuronal growth. This new experimental setup paves the way to enable a comprehensive investigation into beam shaping effects on neuronal growth and we show neuronal growth initiated by a Bessel light mode. This is a robust platform to explore the biochemistry of this novel phenomenon. (c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  5. Analytical and regression models of glass rod drawing process

    NASA Astrophysics Data System (ADS)

    Alekseeva, L. B.

    2018-03-01

    The process of drawing glass rods (light guides) is being studied. The parameters of the process affecting the quality of the light guide have been determined. To solve the problem, mathematical models based on general equations of continuum mechanics are used. The conditions for the stable flow of the drawing process have been found, which are determined by the stability of the motion of the glass mass in the formation zone to small uncontrolled perturbations. The sensitivity of the formation zone to perturbations of the drawing speed and viscosity is estimated. Experimental models of the drawing process, based on the regression analysis methods, have been obtained. These models make it possible to customize a specific production process to obtain light guides of the required quality. They allow one to find the optimum combination of process parameters in the chosen area and to determine the required accuracy of maintaining them at a specified level.

  6. Real-time alkali monitoring system

    DOEpatents

    Goff, David R.; Romanosky, Robert R.; Hensel, Peter

    1990-01-01

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium emission line, may be detected in the presence of interfering background radiation. A combustion flame is fed by a diverted portion of a process stream and the common end of a bifurcated or quadfurcated fiber optic light guide is adapted to collect light from the flame. The light is guided through the branches of the fiber optic cable to bandpass filters, one of which is adapted to each of the branches of the fiber optic light guide. The bandpass filters are centered at wavelengths corresponding to the emission lines to be detected and two separate filters are required for each species being detected. The first filter has a bandwidth of about 3 nms and the second filter has a bandwidth of about 10 nms. Light detectors are located to view the light passing through the bandpass filters and amplifiers are connected to receive signals from the light detectors. The amplifier corresponding to the bandpass filter having the narrower bandwidth is preset to scale the signal by a factor equal to the ratio of the wide and narrow bandwidths of the bandpass filters. This scaling produces a scaled signal from which the difference between the scaled signal on the other signal can be calculated to produce a signal having an amplitude directly proportional to the concentration of the species of interest and independent of background radiation.

  7. ADASY (Active Daylighting System)

    NASA Astrophysics Data System (ADS)

    Vázquez-Moliní, Daniel; González-Montes, Mario; Fernández-Balbuena, Antonio Á.; Bernabéu, Eusebio; García-Botella, Ángel; García-Rodríguez, Lucas; Pohl, Wilfried

    2009-08-01

    The main objective of ADASY (Active Daylighting System) work is to design a façade static daylighting system oriented to office applications, mainly. The goal of the project is to save energy by guiding daylight into a building for lighting purpose. With this approach we can reduce the electrical load for artificial lighting, completing it with sustainable energy. The collector of the system is integrated on a vertical façade and its distribution guide is always horizontal inside of the false ceiling. ADASY is designed with a specific patent pending caption system, a modular light-guide and light extractor luminaire system. Special care has been put on the final cost of the system and its building integration purpose. The current ADASY configuration is able to illuminate 40 m2 area with a 300lx-400lx level in the mid time work hours; furthermore it has a good enough spatial uniformity distribution and a controlled glare. The data presented in this study are the result of simulation models and have been confirmed by a physical scaled prototype. ADASY's main advantages over regular illumination systems are: -Low maintenance; it has not mobile pieces and therefore it lasts for a long time and require little attention once installed. - No energy consumption; solar light continue working even if there has been a power outage. - High quality of light: the colour rendering of light is very high - Psychological benefits: People working with daylight get less stress and more comfort, increasing productivity. - Health benefits

  8. 76 FR 18262 - Notice of issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... application and processing of stainless steel to avoid severe sensitization that could lead to stress-corrosion cracking. This guide applies to light-water-cooled reactors. II. Further Information In June 2009...

  9. Vocational Carpentry Curriculum Guide.

    ERIC Educational Resources Information Center

    Virginia Polytechnic Inst. and State Univ., Blacksburg. Dept. of Education.

    The carpentry curriculum guide was developed as a basic guide to be used by instructors in formulating their own courses of study. The material is designed for use in vocational carpentry classes at grade levels 10, 11, and 12. Planned as a two-year sequence, it incorporates 1080 class hours of instruction and emphasizes light or residential type…

  10. Optical fiber having wave-guiding rings

    DOEpatents

    Messerly, Michael J [Danville, CA; Dawson, Jay W [Livermore, CA; Beach, Raymond J [Livermore, CA; Barty, Christopher P. J. [Hayward, CA

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  11. Photon collider: a four-channel autoguider solution

    NASA Astrophysics Data System (ADS)

    Hygelund, John C.; Haynes, Rachel; Burleson, Ben; Fulton, Benjamin J.

    2010-07-01

    The "Photon Collider" uses a compact array of four off axis autoguider cameras positioned with independent filtering and focus. The photon collider is two way symmetric and robustly mounted with the off axis light crossing the science field which allows the compact single frame construction to have extremely small relative deflections between guide and science CCDs. The photon collider provides four independent guiding signals with a total of 15 square arc minutes of sky coverage. These signals allow for simultaneous altitude, azimuth, field rotation and focus guiding. Guide cameras read out without exposure overhead increasing the tracking cadence. The independent focus allows the photon collider to maintain in focus guide stars when the main science camera is taking defocused exposures as well as track for telescope focus changes. Independent filters allow auto guiding in the science camera wavelength bandpass. The four cameras are controlled with a custom web services interface from a single Linux based industrial PC, and the autoguider mechanism and telemetry is built around a uCLinux based Analog Devices BlackFin embedded microprocessor. Off axis light is corrected with a custom meniscus correcting lens. Guide CCDs are cooled with ethylene glycol with an advanced leak detection system. The photon collider was built for use on Las Cumbres Observatory's 2 meter Faulks telescopes and currently used to guide the alt-az mount.

  12. A study of optical design of power-saving backlight module with external illuminance

    NASA Astrophysics Data System (ADS)

    Fang, Yi-Chin; Tzeng, Yih-Fong

    2014-05-01

    In backlight modules, the light guide plate (LGP) is a key component for performance and also facilitates access to develop LGPs on its own. In this research, we propose a newly developed method: LEDs with freeform as a lighting source, are employed to integrate and manipulate the specially designed and optimized 3D-like pattern distribution of the micro features in order to obtain the required optical characteristics at maximal performance. In this research propose the concept of Light Guide Film(LGF) at the back side of Back Light Unit(BLU). This new design may induce the exterior light ,then improve the power-saving of existent BLU. Two design models are reseated: One is design for 14 inch LCD monitor of notebook computer, which might improve 21% compared to traditional one. Another is designed for 3.5 inch LCD for mobile phone display ,which might improve 15% compared to traditional one.

  13. Design, implementation and investigation of an image guide-based optical flip-flop array

    NASA Technical Reports Server (NTRS)

    Griffith, P. C.

    1987-01-01

    Presented is the design for an image guide-based optical flip-flop array created using a Hughes liquid crystal light valve and a flexible image guide in a feedback loop. This design is used to investigate the application of image guides as a communication mechanism in numerical optical computers. It is shown that image guides can be used successfully in this manner but mismatch match between the input and output fiber arrays is extremely limiting.

  14. Nematicons and Their Electro-Optic Control: Light Localization and Signal Readdressing via Reorientation in Liquid Crystals

    PubMed Central

    Piccardi, Armando; Alberucci, Alessandro; Assanto, Gaetano

    2013-01-01

    Liquid crystals in the nematic phase exhibit substantial reorientation when the molecules are driven by electric fields of any frequencies. Exploiting such a response at optical frequencies, self-focusing supports transverse localization of light and the propagation of self-confined beams and waveguides, namely “nematicons”. Nematicons can guide other light signals and interact with inhomogeneities and other beams. Moreover, they can be effectively deviated by using the electro-optic response of the medium, leading to several strategies for voltage-controlled reconfiguration of light-induced guided-wave circuits and signal readdressing. Hereby, we outline the main features of nematicons and review the outstanding progress achieved in the last twelve years on beam self-trapping and electro-optic readdressing. PMID:24108367

  15. Study of light backgrounds from relativistic electrons in air light-guides

    NASA Astrophysics Data System (ADS)

    Riordan, S.; Zhao, Y. X.; Baunack, S.; Becker, D.; Clarke, C.; Dehmelt, K.; Deshpande, A.; Gericke, M.; Gläser, B.; Imai, K.; Kutz, T.; Maas, F. E.; McNulty, D.; Pan, J.; Park, S.; Rahman, S.; Souder, P. A.; Wang, P.; Wellman, B.; Kumar, K. S.

    2018-07-01

    The MOLLER experiment proposed at the Thomas Jefferson National Accelerator Facility plans a precision low energy determination of the weak mixing angle via the measurement of the parity-violating asymmetry in the scattering of high energy longitudinally polarized electrons from electrons bound in a liquid hydrogen target (Møller scattering). A relative measure of the scattering rate is planned to be obtained by intercepting the Møller scattered electrons with a circular array of thin fused silica tiles attached to air light guides, which facilitate the transport of Cherenkov photons generated within the tiles to photomultiplier tubes (PMTs). The scattered flux will also pass through the light guides of downstream tiles, generating additional Cherenkov as well as scintillation light and is a potential background. In order to estimate the rate of these backgrounds, a gas-filled tube detector was designed and deployed in an electron beam at the MAMI facility at Johannes Gutenberg University, Mainz, Germany. Described in this paper is the design of a detector to measure separately the scintillation and Cherenkov responses of gas mixtures from relativistic electrons, the results of studies of several gas mixtures with comparisons to simulations, and conclusions about the implications for the design of the MOLLER detector apparatus.

  16. Lighting for Education.

    ERIC Educational Resources Information Center

    Ontario Ministry of Colleges and Universities, Toronto.

    Some of the qualities and quantities that must be juggled to produce good lighting for educational facilities are analyzed with photographs, tables, and drawings. The three categories of lamps used for school lighting (incandescent, fluorescent, and high intensity discharge) are described; a lamp selection guide gives the design characteristics of…

  17. Lighting Control Best Practice Guide: Schools.

    ERIC Educational Resources Information Center

    2002

    This publication offers design, specification, and installation guidance for lighting control appropriate for K-12 educational facilities. It features applications that illustrate the best control practices for a variety of spaces, facilitating lighting control design and application. Each best practice meets the provisions of relevant energy…

  18. A guide to wireless networking by light

    NASA Astrophysics Data System (ADS)

    Haas, Harald; Chen, Cheng; O'Brien, Dominic

    2017-09-01

    The lack of wireless spectrum in the radio frequency bands has led to a rapid growth in research in wireless networking using light, known as LiFi (light fidelity). In this paper an overview of the subsystems, challenges and techniques required to achieve this is presented.

  19. Precision Guided Airdrop for Vertical Replenishment of Naval Vessels

    DTIC Science & Technology

    2009-05-07

    SEQUENTIALLY FLASHED LINEUP LIGHTS 20. EDGE LIGHTS 21. VERTREP LINEUP LIGHTS 22. VERTREP DROPLINE LIGHTS 2 3 4 5 6 7 8 9 14 10 11 12 13 15 16 17 18 19 20...FLOODLIGHT 2. 3. HIFR AREA MARKING 4. VERTREP LINEUP LINE 5. LANDING AREA PERIPHERY LINE 6. LANDING LINEUP LINES 7. TOUCHDOWN CIRCLE 8. LANDING SPOT 9. LSE...HIFR HEADING LIGHTS 14. HOMING BEACON 15. DECK STATUS LIGHTS 16. OVERHEAD FLOODLIGHTS 17. EXTENDED LINEUP LIGHTS 18. LANDING LINEUP LIGHTS

  20. A nanowaveguide platform for collective atom-light interaction

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Lee, J.; Dagenais, M.; Rolston, S. L.

    2015-08-01

    We propose a nanowaveguide platform for collective atom-light interaction through evanescent field coupling. We have developed a 1 cm-long silicon nitride nanowaveguide can use evanescent fields to trap and probe an ensemble of 87Rb atoms. The waveguide has a sub-micrometer square mode area and was designed with tapers for high fiber-to-waveguide coupling efficiencies at near-infrared wavelengths (750 nm to 1100 nm). Inverse tapers in the platform adiabatically transfer a weakly guided mode of fiber-coupled light into a strongly guided mode with an evanescent field to trap atoms and then back to a weakly guided mode at the other end of the waveguide. The coupling loss is -1 dB per facet (˜80% coupling efficiency) at 760 nm and 1064 nm, which is estimated by a propagation loss measurement with waveguides of different lengths. The proposed platform has good thermal conductance and can guide high optical powers for trapping atoms in ultra-high vacuum. As an intermediate step, we have observed thermal atom absorption of the evanescent component of a nanowaveguide and have demonstrated the U-wire mirror magneto-optical trap that can transfer atoms to the proximity of the surface.

  1. 77 FR 60481 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-Accident...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing a revision to Regulatory Guide (RG) 1.52, ``Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-accident Engineered-Safety-Feature Atmosphere Cleanup Systems in Light-Water-Cooled Nuclear Power Plants.'' This guide applies to the design, inspection, and testing of air filtration and iodine adsorption units of engineered-safety-feature (ESF) atmosphere cleanup systems in light-water-cooled nuclear power plants.

  2. 77 FR 15812 - Initial Test Program of Condensate and Feedwater Systems for Light-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ... comments received on or before this date. Although a time limit is given, comments and suggestions in... guides are encouraged at any time. ADDRESSES: You may access information and comment submissions related... Information The NRC is issuing for public comment a draft guide in the NRC's ``Regulatory Guide'' series. This...

  3. People with Increased Risk of Eye Damage from UV Light

    MedlinePlus

    ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...

  4. Roundabouts: An informational Guide (Brochure)

    DOT National Transportation Integrated Search

    2012-09-01

    This assessment evaluates the applicability of the current light vehicle safety applications for use on transit vehicles in revenue service operation. This assessment includes the following elements: A review of light vehicle safety applications ...

  5. Optically guided atom interferometer tuned to magic wavelength

    NASA Astrophysics Data System (ADS)

    Akatsuka, Tomoya; Takahashi, Tadahiro; Katori, Hidetoshi

    2017-11-01

    We demonstrate an atom interferometer operating on the 1S0-3P0 clock transition of 87Sr atoms in a “magic” optical guide, where the light shift perturbations of the guiding potential are canceled. As a proof-of-principle demonstration, a Mach-Zehnder interferometer is set horizontally to map the acceleration introduced by the focused optical guide. This magic guide interferometer on the clock transition is applicable to atomic elements where magic wavelengths can be found. Possible applications of the magic guide interferometer, including a hollow-core fiber interferometer and gradiometer, are discussed.

  6. Oxygen supply (HbO2) in beating hearts of 14 coronary patients obtained by tissue monitoring with optical sensors

    NASA Astrophysics Data System (ADS)

    Frank, Klaus H.; Kloevekorn, P.; Zuendorf, J.; Kessler, Manfred D.

    2002-06-01

    Local intra capillary HbO2 was monitored in beating hearts of 14 patients undergoing coronary bypass surgery. The spectra were measured in the epicardium of the left ventricle, supplied by the left coronary artery (LAD). All selected patients suffered form stenosis or occlusion of two to three vessels. The patients suffered from severe angina and showed hypokinesia in the angiography. Micro-light guide fibers with a diameter of 75micrometers were used for monitoring before and after bypass surgery. These light guides were connected to the Erlanger Micro Light guide Spectro Photometer EMPHO for registration. Local measurements were performed in the epicardium of the left ventricle in 25 areas 2.25cm2 each. Integrated gradient fields were plotted for each of the 14 patients before and after bypass surgery. The mean values of HbO2 in the respective areas were calculated and evaluated against the local value distribution.

  7. Trade Electricity. Lighting--Level 2. Standardized Curriculum.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Occupational and Career Education.

    This curriculum guide consists of nine modules on lighting, one of the three divisions of the standardized trade electricity curriculum in high schools in New York City. The nine modules cover the following subjects: armored cable, rigid conduit, electrical metallic tubing, services and meters, fluorescent lighting, metal molding, wiremold, Romex,…

  8. 40 CFR 60.390 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... to coat plastic body components or all-plastic automobile or light-duty truck bodies on separate...

  9. 40 CFR 60.390 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... to coat plastic body components or all-plastic automobile or light-duty truck bodies on separate...

  10. 40 CFR 60.390 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... to coat plastic body components or all-plastic automobile or light-duty truck bodies on separate...

  11. Liquid argon scintillation detection utilizing wavelength-shifting plates and light guides

    NASA Astrophysics Data System (ADS)

    Howard, B.

    2018-02-01

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this light and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.

  12. Depth perception camera for autonomous vehicle applications

    NASA Astrophysics Data System (ADS)

    Kornreich, Philipp

    2013-05-01

    An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. Since it provides numeric information of the distance from the camera to all points in its field of view it is ideally suited for autonomous vehicle navigation and robotic vision. This eliminates the LIDAR conventionally used for range measurements. The light arriving at a pixel through a convex lens adds constructively only if it comes from the object point in focus at this pixel. The light from all other object points cancels. Thus, the lens selects the point on the object who's range is to be determined. The range measurement is accomplished by short light guides at each pixel. The light guides contain a p - n junction and a pair of contacts along its length. They, too, contain light sensing elements along the length. The device uses ambient light that is only coherent in spherical shell shaped light packets of thickness of one coherence length. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel.

  13. Optically programmable encoder based on light propagation in two-dimensional regular nanoplates.

    PubMed

    Li, Ya; Zhao, Fangyin; Guo, Shuai; Zhang, Yongyou; Niu, Chunhui; Zeng, Ruosheng; Zou, Bingsuo; Zhang, Wensheng; Ding, Kang; Bukhtiar, Arfan; Liu, Ruibin

    2017-04-07

    We design an efficient optically controlled microdevice based on CdSe nanoplates. Two-dimensional CdSe nanoplates exhibit lighting patterns around the edges and can be realized as a new type of optically controlled programmable encoder. The light source is used to excite the nanoplates and control the logical position under vertical pumping mode by the objective lens. At each excitation point in the nanoplates, the preferred light-propagation routes are along the normal direction and perpendicular to the edges, which then emit out from the edges to form a localized lighting section. The intensity distribution around the edges of different nanoplates demonstrates that the lighting part with a small scale is much stronger, defined as '1', than the dark section, defined as '0', along the edge. These '0' and '1' are the basic logic elements needed to compose logically functional devices. The observed propagation rules are consistent with theoretical simulations, meaning that the guided-light route in two-dimensional semiconductor nanoplates is regular and predictable. The same situation was also observed in regular CdS nanoplates. Basic theoretical analysis and experiments prove that the guided light and exit position follow rules mainly originating from the shape rather than material itself.

  14. Sovereignty and Collaboration: Affordable Strategies in Times of Austerity

    DTIC Science & Technology

    2016-10-01

    provide precision-guided bombs and a land-support SOVEREIGNTY—ANALYSIS 26 vehicle were delivered for more than 20 percent below the expenditure ini...weapon Precision-guided bomb Support vehicle Panther command & control vehicle Successor Identification Friend or Foe (IFF) Joint combat aircraft...GLMRS) Multi-role armoured vehicle (MRAV) Next-generation light anti-armoured weapon Precision-guided bomb Support vehicle Panther command & control

  15. Laser fiber-optic sensors for investigation of influences ultra weak cosmic radiation on the people.

    NASA Astrophysics Data System (ADS)

    Rzhavin, Yu.; Ignatiev, A.

    The present work describes investigation of influences ultra weak cosmic radiation on the people, using laser fiber-optic bio sensors. Potential of the people measurements is made on the basis of two Mach-Zender interferometers. The measuring and reference channels of the device are made in the form of signal-mode light guides with w-profile, which retain the polarization of light [1].The effect of measurements leads to axial compression of the w-fiber guides in the measuring channel. The measured signal is recorded by the relative displasement of the structure of the interference pattern, which is caused by phase modulation of a coherent light wave [2] propagating in the measuring channel. The light guides in the measuring channel reeled up on a flat surface on a cirle by a diameter 1.8 meter. Length light guides made 100 meters. The people approached on distance of 0.3 meters to flat surfased. It has been demonstrated that the method based on calculation of the mutual correlation function of the output signals of the interferometers makes it possible to raise the signal/noise ratio of the device by eliminating irregular noise waves and reproducing an accurate shape of the measured signal.As the light source, we have used single-frequency semiconductor injection laser which external resonator was used and one of a resonator mirrors was the w-lightguide end with reflection structure deposited on it .The w-lightguidess had the cup-off wave length 1,1 um, the degree of retention of polarization 99 %. It has been demonstrated experimentally that the of the developed sensor, under constant level of the cosmic radiation measured bio potential of the people was defined from age, weight, and psychological of the condition. REFERENCES 1.Yu.I .Rzhavin et.al. Proceeding SPIE , vol. 2349 , pp.154-157 2. Yu.I.Rzhavin Proceeding SPIE , vol. 4827 , pp.253-257

  16. Eye Drop Tips

    MedlinePlus

    ... Size Small Text Medium Text Large Text Contrast Dark on Light Light on Dark Donate Search Menu Donate What is Glaucoma? Care ... Low Vision Resources Medication Guide Resources on the Web » See All Articles Where the Money Goes Have ...

  17. Primer of School Lighting Lamps and Maintenance.

    ERIC Educational Resources Information Center

    Allphin, Willard

    The basic principles of the most commonly used lamp types and the circuitry which makes them operate are discussed. The two objectives of this book are to serve as a--(1) guide to economical lighting, and (2) a permanent reference source for troubleshooting. Areas dealt with include--(1) lighting fundamentals, (2) incandescent lamps, (3)…

  18. Simple liquid crystal display backlight unit comprising only a single-sheet micropatterned polydimethylsiloxane (PDMS) light-guide plate.

    PubMed

    Lee, Joo-Hyung; Lee, Hong-Seok; Lee, Byung-Kee; Choi, Won-Seok; Choi, Hwan-Young; Yoon, Jun-Bo

    2007-09-15

    A simple liquid crystal display (LCD) backlight unit (BLU) comprising only a single-sheet polydimethylsiloxane (PDMS) light-guide plate (LGP) has been developed. The PDMS LGP, having micropatterns with an inverse-trapezoidal cross section, was fabricated by backside 3-D diffuser lithography followed by PDMS-to-PDMS replication. The fabricated BLU showed an average luminance of 2878 cd/m(2) with 73.3% uniformity when mounted in a 5.08 cm backlight module with four side view 0.85cd LEDs. The developed BLU can greatly reduce the cost and thickness of LCDs, and it can be applied to flexible displays as a flexible light source due to the flexible characteristic of the PDMS itself.

  19. Near-to-eye electroholography via guided-wave acousto-optics for augmented reality

    NASA Astrophysics Data System (ADS)

    Jolly, Sundeep; Savidis, Nickolaos; Datta, Bianca; Smalley, Daniel; Bove, V. Michael

    2017-03-01

    Near-to-eye holographic displays act to directly project wavefronts into a viewer's eye in order to recreate 3-D scenes for augmented or virtual reality applications. Recently, several solutions for near-to-eye electroholography have been proposed based on digital spatial light modulators in conjunction with supporting optics, such as holographic waveguides for light delivery; however, such schemes are limited by the inherent low space-bandwidth product available with current digital SLMs. In this paper, we depict a fully monolithic, integrated optical platform for transparent near-to-eye holographic display requiring no supporting optics. Our solution employs a guided-wave acousto-optic spatial light modulator implemented in lithium niobate in conjunction with an integrated Bragg-regime reflection volume hologram.

  20. Low-loss bloch wave guiding in open structures and highly compact efficient waveguide-crossing arrays

    DOEpatents

    Popovic, Milos

    2011-03-08

    Low-loss waveguide structures may comprise a multimode waveguide supporting a periodic light intensity pattern, and attachments disposed at the waveguide adjacent low-intensity regions of the light intensity pattern.

  1. New Tool to Predict Glaucoma

    MedlinePlus

    ... Size Small Text Medium Text Large Text Contrast Dark on Light Light on Dark Donate Search Menu Donate What is Glaucoma? Care ... Low Vision Resources Medication Guide Resources on the Web » See All Articles Where the Money Goes Have ...

  2. HYDROCARBON SPILL SCREENING MODEL (HSSM) VOLUME 1: USER'S GUIDE

    EPA Science Inventory

    This users guide describes the Hydrocarbon Spill Screening Model (HSSM). The model is intended for simulation of subsurface releases of light nonaqueous phase liquids (LNAPLs). The model consists of separate modules for LNAPL flow through the vadose zone, spreading in the capil...

  3. Barber/Cosmetologist Curriculum. Program Information.

    ERIC Educational Resources Information Center

    Moraine Park Technical Coll., Fond du Lac, WI.

    This guide provides the instructor with materials for a barber/cosmetologist program. Seventeen study guides are provided: anatomy and physiology; applied chemistry; chemical straightening/relaxing; chemical waving; electricity and light therapy; facial services; hair coloring and lightening (bleach); hair cutting; hair, skin, and nail disorders;…

  4. Atmospheric turbulence compensation with laser phase shifting interferometry

    NASA Astrophysics Data System (ADS)

    Rabien, S.; Eisenhauer, F.; Genzel, R.; Davies, R. I.; Ott, T.

    2006-04-01

    Laser guide stars with adaptive optics allow astronomical image correction in the absence of a natural guide star. Single guide star systems with a star created in the earth's sodium layer can be used to correct the wavefront in the near infrared spectral regime for 8-m class telescopes. For possible future telescopes of larger sizes, or for correction at shorter wavelengths, the use of a single guide star is ultimately limited by focal anisoplanatism that arises from the finite height of the guide star. To overcome this limitation we propose to overlap coherently pulsed laser beams that are expanded over the full aperture of the telescope, traveling upwards along the same path which light from the astronomical object travels downwards. Imaging the scattered light from the resultant interference pattern with a camera gated to a certain height above the telescope, and using phase shifting interferometry we have found a method to retrieve the local wavefront gradients. By sensing the backscattered light from two different heights, one can fully remove the cone effect, which can otherwise be a serious handicap to the use of laser guide stars at shorter wavelengths or on larger telescopes. Using two laser beams multiconjugate correction is possible, resulting in larger corrected fields. With a proper choice of laser, wavefront correction could be expanded to the visible regime and, due to the lack of a cone effect, the method is applicable to any size of telescope. Finally the position of the laser spot could be imaged from the side of the main telescope against a bright background star to retrieve tip-tilt information, which would greatly improve the sky coverage of the system.

  5. Waveguide bends from nanometric silica wires

    NASA Astrophysics Data System (ADS)

    Tong, Limin; Lou, Jingyi; Mazur, Eric

    2005-02-01

    We propose to use bent silica wires with nanometric diameters to guide light as optical waveguide bend. We bend silica wires with scanning tunneling microscope probes under an optical microscope, and wire bends with bending radius smaller than 5 μm are obtained. Light from a He-Ne laser is launched into and guided through the wire bends, measured bending loss of a single bend is on the order of 1 dB. Brief introductions to the optical wave guiding and elastic bending properties of silica wires are also provided. Comparing with waveguide bends based on photonic bandgap structures, the waveguide bends from silica nanometric wires show advantages of simple structure, small overall size, easy fabrication and wide useful spectral range, which make them potentially useful in the miniaturization of photonic devices.

  6. Model Year 2013 Fuel Economy Guide: EPA Fuel Economy Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  7. Model Year 2012 Fuel Economy Guide: EPA Fuel Economy Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  8. Model Year 2011 Fuel Economy Guide: EPA Fuel Economy Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  9. Model Year 2017 Fuel Economy Guide: EPA Fuel Economy Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  10. Model Year 2018 Fuel Economy Guide: EPA Fuel Economy Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  11. Generic Medications: Are They the Same?

    MedlinePlus

    ... Size Small Text Medium Text Large Text Contrast Dark on Light Light on Dark Donate Search Menu Donate What is Glaucoma? Care ... Low Vision Resources Medication Guide Resources on the Web » See All Articles Where the Money Goes Have ...

  12. Improved Ecosystem Predictions of the California Current System via Accurate Light Calculations

    DTIC Science & Technology

    2011-09-30

    System via Accurate Light Calculations Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite 107 Bellevue, WA 98005 phone: 425...7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Sequoia Scientific, Inc,2700 Richards Road, Suite 107,Bellevue,WA,98005 8. PERFORMING...EcoLight-S 1.0 Users’ Guide and Technical Documentation. Sequoia Scientific, Inc., Bellevue, WA, 38 pages. Mobley, C. D., 2011. Fast light calculations

  13. Cost effective flat plate photovoltaic modules using light trapping

    NASA Technical Reports Server (NTRS)

    Bain, C. N.; Gordon, B. A.; Knasel, T. M.; Malinowski, R. L.

    1981-01-01

    Work in optical trapping in 'thick films' is described to form a design guide for photovoltaic engineers. A thick optical film can trap light by diffusive reflection and total internal reflection. Light can be propagated reasonably long distances compared with layer thicknesses by this technique. This makes it possible to conduct light from inter-cell and intra-cell areas now not used in photovoltaic modules onto active cell areas.

  14. Advanced methods for light trapping in optically thin silicon solar cells

    NASA Astrophysics Data System (ADS)

    Nagel, James Richard

    2011-12-01

    The field of light trapping is the study of how best to absorb light in a thin film of material when most light either reflects away at the surface or transmits straight through to the other side. This has tremendous application to the field of photovoltaics where thin silicon films can be manufactured cheaply, but also fail to capture all of the available photons in the solar spectrum. Advancements in light trapping therefore bring us closer to the day when photovoltaic devices may reach grid parity with traditional fossil fuels on the electrical energy market. This dissertation advances our understanding of light trapping by first modeling the effects of loss in planar dielectric waveguides. The mathematical framework developed here can be used to model any arbitrary three-layer structure with mixed gain or loss and then extract the total field solution for the guided modes. It is found that lossy waveguides possess a greater number of eigenmodes than their lossless counterparts, and that these "loss guided" modes attenuate much more rapidly than conventional modes. Another contribution from this dissertation is the exploration of light trapping through the use of dielectric nanospheres embedded directly within the active layer of a thin silicon film. The primary benefit to this approach is that the device can utilize a surface nitride layer serving as an antireflective coating while still retaining the benefits of light trapping within the film. The end result is that light trapping and light injection are effectively decoupled from each other and may be independently optimized within a single photovoltaic device. The final contribution from this work is a direct numerical comparison between multiple light trapping schemes. This allows us to quantify the relative performances of various design techniques against one another and objectively determine which ideas tend to capture the most light. Using numerical simulation, this work directly compares the absorption gains due to embedded nanoparticles, surface textures, antireflective coatings, and plasmonic nanospheres. This work also introduces a new mathematical metric for differentiating between index matching and angular scattering at a textured surface. Such information will prove useful in guiding future scientific efforts in the fields of light trapping and light management in thin film photovoltaics.

  15. Observed and Modeled Bio-Optical, Bioluminescent, and Physical Properties during a Coastal Upwelling Event in Monterey Bay, California

    DTIC Science & Technology

    2011-01-27

    users’ guide, report, Sequoia Sei., Inc., Mercer Island, Wash. (Available at http://www. HydroLight. info). Moblcy, C. D., and L. K. Sundman (2001b...HydroLight 4.2 technical doc- umentation, report. Sequoia Sei.. Inc., Mercer Island. Wash. (Available at http://www.HydroLight.info). Molinc, M

  16. Lighting the Gym: A Guide to Illuminating Non-Traditional Spaces.

    ERIC Educational Resources Information Center

    Womack, Jennifer; Nelson, Steve

    2000-01-01

    Covers all the steps needed to light an open, non-traditional performance space--everything from where to locate lights, support towers, and power sources, to cable and dimmer requirements. Covers safety issues, equipment costs, what students should and should not be allowed to do, and how to deal with electricians and rental companies. (SC)

  17. Green Schools Energy Project: A Step-by-Step Manual.

    ERIC Educational Resources Information Center

    Quigley, Gwen

    This publication contains a step-by-step guide for implementing an energy-saving project in local school districts: the installation of newer, more energy-efficient "T-8" fluorescent tube lights in place of "T-12" lights. Eleven steps are explained in detail: (1) find out what kind of lights the school district currently uses;…

  18. A new catheter design for combined radiofrequency ablation and optoacoustic treatment monitoring using copper-coated light-guides

    NASA Astrophysics Data System (ADS)

    Rebling, Johannes; Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luis; Razansky, Daniel

    2018-02-01

    Electrosurgery, i.e. the application of radiofrequency current for tissue ablation, is a frequently used treatment for many cardiac arrhythmias. Electrophysiological and anatomic mapping, as well as careful radiofrequency power control typically guide the radiofrequency ablation procedure. Despite its widespread application, accurate monitoring of the lesion formation with sufficient spatio-temporal resolution remains challenging with the existing imaging techniques. We present a novel integrated catheter for simultaneous radiofrequency ablation and optoacoustic monitoring of the lesion formation in real time and 3D. The design combines the delivery of both electric current and optoacoustic excitation beam in a single catheter consisting of copper-coated multimode light-guides and its manufacturing is described in detail. The electrical current causes coagulation and desiccation while the excitation light is locally absorbed, generating OA responses from the entire treated volume. The combined ablation-monitoring capabilities were verified using ex-vivo bovine tissue. The formed ablation lesions showed a homogenous coagulation while the ablation was monitored in realtime with a volumetric frame rate of 10 Hz over 150 seconds.

  19. Simultaneous MRI and PET imaging of a rat brain

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  20. The effect of infection-control barriers on the light intensity of light-cure units and depth of cure of composite.

    PubMed

    Hodson, Nicholas A; Dunne, Stephen M; Pankhurst, Caroline L

    2005-04-01

    Dental curing lights are vulnerable to contamination with oral fluids during routine intra-oral use. This controlled study aimed to evaluate whether or not disposable transparent barriers placed over the light-guide tip would affect light output intensity or the subsequent depth of cure of a composite restoration. The impact on light intensity emitted from high-, medium- and low-output light-cure units in the presence of two commercially available disposable infection-control barriers was evaluated against a no-barrier control. Power density measurements from the three intensity light-cure units were recorded with a radiometer, then converted to a digital image using an intra-oral camera and values determined using a commercial computer program. For each curing unit, the measurements were repeated on ten separate occasions with each barrier and the control. Depth of cure was evaluated using a scrape test in a natural tooth model. At each level of light output, the two disposable barriers produced a significant reduction in the mean power density readings compared to the no-barrier control (P<0.005). The cure sleeve inhibited light output to a greater extent than either the cling film or the control (P<0.005). Only composite restorations light-activated by the high level unit demonstrated a small but significant decrease in the depth of cure compared to the control (P<0.05). Placing disposable barriers over the light-guide tip reduced the light intensity from all three curing lights. There was no impact on depth of cure except for the high-output light, where a small decrease in cure depth was noted but this was not considered clinically significant. Disposable barriers can be recommended for use with light-cure lights.

  1. Saving Energy. Managing School Facilities, Guide 3.

    ERIC Educational Resources Information Center

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide offers information on how schools can implement an energy saving action plan to reduce their energy costs. Various low-cost energy-saving measures are recommended covering heating levels and heating systems, electricity demand reduction and lighting, ventilation, hot water usage, and swimming pool energy management. Additional…

  2. The Architect's Guide to Mechanical Systems.

    ERIC Educational Resources Information Center

    Andrews, F. T.

    The principles and problems of designing new building mechanical systems are discussed in this reference source in the light of data on the functions and operation of mechanical systems. As a practical guide to understanding mechanical systems it describes system types, functions, space requirements, weights, installation, maintenance and…

  3. Hydrogels for efficient light delivery in optogenetic applications

    NASA Astrophysics Data System (ADS)

    Johannsmeier, S.; Torres, M. L.; Ripken, T.; Heinemann, D.; Heisterkamp, A.

    2018-02-01

    Light-based therapies have been established for various indications, such as skin conditions, cancer or neonatal jaundice. Advances in the field of optogenetics open up new horizons for light-tissue interactions with an organism-wide impact. Excitable tissues, such as nerve and muscle tissues, can be controlled by light after the introduction of light-sensitive ion channels. Since these organs are generally not easily accessible to illumination in vivo, there is an increasing need for effective biocompatible waveguides for light delivery. These devices not only have to guide and distribute the light as desired with minimal losses, they should also mimic the mechanical properties of the surrounding tissue to ensure compatibility. In this project, we are tuning the properties of hydrogels from poly(ethylene glycol) derivatives to achieve compatibility with muscle tissue as well as optimal light guiding and distribution for optogenetic applications at the heart. The excitation light is coupled into the hydrogel with a biocompatible fiber. Properties of the hydrogel are mainly tuned by monomer length and concentration. Total reflection can be achieved by embedding a fiber-like hydrogel with a high refractive index into a second, low refractive index gel. Different geometries and scattering microparticles are used for light distribution in a flat gel patch. Targeted cell attachment can be achieved by introducing a protein layer to the otherwise bioinert gel. After optimization, the hydrogel may be used to deliver light for the excitation of genetically altered cardiomyocytes for controlled contraction.

  4. Braiding light quanta

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio

    The possibility that anyons -- quantum particles other than fermions or bosons -- can emerge in condensed matter systems has motivated generations of physicists. In addition to being of fundamental scientific importance, so-called non-Abelian anyons are particularly sought-after for potential applications to quantum computing. However, experimental evidence of anyons in electronic systems remains inconclusive. We propose to demonstrate non-Abelian braiding by injecting coherent states of light into ``topological guided modes'' in specially-fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases. We propose an optical interference experiment to probe this non-Abelian braiding directly. T.I. is supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1247312.

  5. System for diffusing light from an optical fiber or light guide

    DOEpatents

    Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [

    2008-06-10

    A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.

  6. Image-guided surgery using near-infrared fluorescent light: from bench to bedside

    NASA Astrophysics Data System (ADS)

    Boogerd, Leonora S. F.; Handgraaf, Henricus J. M.; van de Velde, Cornelis J. H.; Vahrmeijer, Alexander L.

    2015-03-01

    Due to its relatively high tissue penetration, near-infrared (NIR; 700-900 nm) fluorescent light has the potential to visualize structures that need to be resected (e.g. tumors, lymph nodes) and structures that need to be spared (e.g. nerves, ureters, bile ducts). Until now, most clinical trials have focused on suboptimal, non-targeted dyes. Although successful, a new era in image-guided surgery has begun by the introduction of tumor-targeted agents. In this paper, we will describe how tumor-targeted NIR fluorescent imaging can be applied in a clinical setting.

  7. Optical fibers and Fluorosensors having improved power efficiency and methods of producing same

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O. (Inventor); Rogowski, Robert S. (Inventor)

    1993-01-01

    Optical fibers may have applications including fluorosensors which sense the concentration of an analyte. Like communication fibers, these fluorosensors are modeled using a weakly guiding approximation which is only effective when the difference between the respective refractive indices of the fiber core and surrounding cladding are minimal. An optical fiber fluorosensor is provided having a portion of a fiber core which is surrounded by an active cladding which is permeable by the analyte to be sensed and containing substances which emit light waves upon excitation. A remaining portion of the fiber core is surrounded by a guide cladding which guides these light waves to a sensor which detects the intensity of waves, which is a function of the analyte concentration. Contrary to conventional weakly guiding principles, the difference between the respective indices of refraction of the fiber core is surrounded by an active cladding which is thin enough such that its index of refraction is effectively that of the surrounding atmosphere, thereby the atmosphere guides the injective indices of the fiber core and the cladding results in an unexpected increase in the power efficiency of the fiber core.

  8. Plasma arc welding weld imaging

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  9. In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Que, Ivo; Kong, Xianggui; Zhang, Youlin; Tu, Langping; Chang, Yulei; Wang, Tong Tong; Chan, Alan; Löwik, Clemens W. G. M.; Zhang, Hong

    2015-09-01

    A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii) realizing in vivo NIR 808 nm image-guided PDT with both excitation (980 nm) and emission (808 nm) light falling in the biological window of tissues, which minimized auto-fluorescence, reduced light scatting and improved the imaging contrast and depth, and thus guaranteed noninvasive diagnostic accuracy. In vivo and ex vivo tests demonstrated its favorable bio-distribution, tumor-selectivity and high therapeutic efficacy. Owing to the effective ligand exchange strategy and the excellent intrinsic photophysical properties of C60, 1O2 production yield was improved, suggesting that a low 980 nm irradiation dosage (351 J cm-2) and a short treatment time (15 min) were sufficient to perform NIR (980 nm) to NIR (808 nm) image-guided PDT. Our work enriches the understanding of UCNP-based PDT nanophotosensitizers and highlights their potential use in future NIR image-guided noninvasive deep cancer therapy.A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii) realizing in vivo NIR 808 nm image-guided PDT with both excitation (980 nm) and emission (808 nm) light falling in the biological window of tissues, which minimized auto-fluorescence, reduced light scatting and improved the imaging contrast and depth, and thus guaranteed noninvasive diagnostic accuracy. In vivo and ex vivo tests demonstrated its favorable bio-distribution, tumor-selectivity and high therapeutic efficacy. Owing to the effective ligand exchange strategy and the excellent intrinsic photophysical properties of C60, 1O2 production yield was improved, suggesting that a low 980 nm irradiation dosage (351 J cm-2) and a short treatment time (15 min) were sufficient to perform NIR (980 nm) to NIR (808 nm) image-guided PDT. Our work enriches the understanding of UCNP-based PDT nanophotosensitizers and highlights their potential use in future NIR image-guided noninvasive deep cancer therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03690a

  10. Evaluation of a novel laparoscopic camera for characterization of renal ischemia in a porcine model using digital light processing (DLP) hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Olweny, Ephrem O.; Tan, Yung K.; Faddegon, Stephen; Jackson, Neil; Wehner, Eleanor F.; Best, Sara L.; Park, Samuel K.; Thapa, Abhas; Cadeddu, Jeffrey A.; Zuzak, Karel J.

    2012-03-01

    Digital light processing hyperspectral imaging (DLP® HSI) was adapted for use during laparoscopic surgery by coupling a conventional laparoscopic light guide with a DLP-based Agile Light source (OL 490, Optronic Laboratories, Orlando, FL), incorporating a 0° laparoscope, and a customized digital CCD camera (DVC, Austin, TX). The system was used to characterize renal ischemia in a porcine model.

  11. 76 FR 82323 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0296] Design, Inspection, and Testing Criteria for Air... for public comment draft regulatory guide (DG), DG-1274, ``Design, Inspection, and Testing Criteria... Systems in Light-Water-Cooled Nuclear Power Plants.'' This guide applies to the design, inspection, and...

  12. Banking/Finance Supplement to the California Business Program Guide.

    ERIC Educational Resources Information Center

    Cary, Judie; And Others

    This supplement to the California Business Education Program Guide for Office and Distributive Occupations is designed to assist office education teachers of secondary, postsecondary, and adult students to update their business education curricula in light of new technology and increasing demand for skilled office workers. Focusing on banking and…

  13. Legal Secretarial Supplement to the California Business Education Program Guide.

    ERIC Educational Resources Information Center

    Holst, Alice L.; And Others

    This supplement to the California Business Education Program Guide for Office and Distributive Occupations is designed to assist office education teachers of secondary, postsecondary, and adult students to update their business education curricula in light of new technology and increasing demand for skilled office workers. Focusing on the legal…

  14. A Large-Telescope Natural Guide Star AO System

    NASA Technical Reports Server (NTRS)

    Redding, David; Milman, Mark; Needels, Laura

    1994-01-01

    None given. From overview and conclusion:Keck Telescope case study. Objectives-low cost, good sky coverage. Approach--natural guide star at 0.8um, correcting at 2.2um.Concl- Good performance is possible for Keck with natural guide star AO system (SR>0.2 to mag 17+).AO-optimized CCD should b every effective. Optimizing td is very effective.Spatial Coadding is not effective except perhaps at extreme low light levels.

  15. Optical fiber inspection system

    DOEpatents

    Moore, Francis W.

    1987-01-01

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected.

  16. Optical fiber inspection system

    DOEpatents

    Moore, F.W.

    1985-04-05

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected. 10 figs.

  17. Endoscopic hyperspectral imaging: light guide optimization for spectral light source

    NASA Astrophysics Data System (ADS)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2018-02-01

    Hyperspectral imaging (HSI) is a technology used in remote sensing, food processing and documentation recovery. Recently, this approach has been applied in the medical field to spectrally interrogate regions of interest within respective substrates. In spectral imaging, a two (spatial) dimensional image is collected, at many different (spectral) wavelengths, to sample spectral signatures from different regions and/or components within a sample. Here, we report on the use of hyperspectral imaging for endoscopic applications. Colorectal cancer is the 3rd leading cancer for incidences and deaths in the US. One factor of severity is the miss rate of precancerous/flat lesions ( 65% accuracy). Integrating HSI into colonoscopy procedures could minimize misdiagnosis and unnecessary resections. We have previously reported a working prototype light source with 16 high-powered light emitting diodes (LEDs) capable of high speed cycling and imaging. In recent testing, we have found our current prototype is limited by transmission loss ( 99%) through the multi-furcated solid light guide (lightpipe) and the desired framerate (20-30 fps) could not be achieved. Here, we report on a series of experimental and modeling studies to better optimize the lightpipe and the spectral endoscopy system as a whole. The lightpipe was experimentally evaluated using an integrating sphere and spectrometer (Ocean Optics). Modeling the lightpipe was performed using Monte Carlo optical ray tracing in TracePro (Lambda Research Corp.). Results of these optimization studies will aid in manufacturing a revised prototype with the newly designed light guide and increased sensitivity. Once the desired optical output (5-10 mW) is achieved then the HIS endoscope system will be able to be implemented without adding onto the procedure time.

  18. Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting

    PubMed Central

    Wen, Long; Chen, Qin; Sun, Fuhe; Song, Shichao; Jin, Lin; Yu, Yan

    2014-01-01

    Solar cells incorporated with multi-coloring capability not only offer an aesthetic solution to bridge the gap between solar modules and building decorations but also open up the possibility for self-powered colorful display. In this paper, we proposed a multi-colored semi-transparent organic solar cells (TOSCs) design containing metallic nanostructures with the both high color purity and efficiency based on theoretical considerations. By employing guided mode resonance effect, the multi-colored TOSC behave like an efficient color filter that selectively transmits light with the desired wavelengths and generates electricity with light of other wavelengths. Broad range of coloring and luminosity adjusting for the transmission light can be achieved by simply tuning the period and the duty cycle of the metallic nanostructures. Furthermore, accompanying with the efficient color filtering characteristics, the optical absorption of TOSCs was improved due to the marked suppression of transmission loss at the off-resonance wavelengths and the increased light trapping in TOSCs. The mechanisms of the light guiding in photoactive layer and broadband backward scattering from the metallic nanostructures were identified to make an essential contribution to the improved light-harvesting. By enabling efficient color control and high efficiency simultaneously, this approach holds great promise for future versatile photovoltaic energy utilization. PMID:25391756

  19. Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting.

    PubMed

    Wen, Long; Chen, Qin; Sun, Fuhe; Song, Shichao; Jin, Lin; Yu, Yan

    2014-11-13

    Solar cells incorporated with multi-coloring capability not only offer an aesthetic solution to bridge the gap between solar modules and building decorations but also open up the possibility for self-powered colorful display. In this paper, we proposed a multi-colored semi-transparent organic solar cells (TOSCs) design containing metallic nanostructures with the both high color purity and efficiency based on theoretical considerations. By employing guided mode resonance effect, the multi-colored TOSC behave like an efficient color filter that selectively transmits light with the desired wavelengths and generates electricity with light of other wavelengths. Broad range of coloring and luminosity adjusting for the transmission light can be achieved by simply tuning the period and the duty cycle of the metallic nanostructures. Furthermore, accompanying with the efficient color filtering characteristics, the optical absorption of TOSCs was improved due to the marked suppression of transmission loss at the off-resonance wavelengths and the increased light trapping in TOSCs. The mechanisms of the light guiding in photoactive layer and broadband backward scattering from the metallic nanostructures were identified to make an essential contribution to the improved light-harvesting. By enabling efficient color control and high efficiency simultaneously, this approach holds great promise for future versatile photovoltaic energy utilization.

  20. Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer

    NASA Astrophysics Data System (ADS)

    Diop, Mamadou; Wright, Eric; Toronov, Vladislav; Lee, Ting-Yim; St. Lawrence, Keith

    2014-05-01

    Broadband continuous-wave near-infrared spectroscopy (CW-NIRS) is an attractive alternative to time-resolved and frequency-domain techniques for quantifying cerebral blood flow (CBF) and oxygen metabolism in newborns. However, efficient light collection is critical to broadband CW-NIRS since only a small fraction of the injected light emerges from any given area of the scalp. Light collection is typically improved by optimizing the contact area between the detection system and the skin by means of light guides with large detection surface. Since the form-factor of these light guides do not match the entrance of commercial spectrometers, which are usually equipped with a narrow slit to improve their spectral resolution, broadband NIRS spectrometers are typically custom-built. Nonetheless, off-the-shelf spectrometers have attractive advantages compared to custom-made units, such as low cost, small footprint, and wide availability. We demonstrate that off-the-shelf spectrometers can be easily converted into suitable instruments for deep tissue spectroscopy by improving light collection, while maintaining good spectral resolution, and reducing measurement noise. The ability of this approach to provide reliable cerebral hemodynamics was illustrated in a piglet by measuring CBF and oxygen metabolism under different anesthetic regimens.

  1. Exploration of the horizontally staggered light guides for high concentration CPV applications.

    PubMed

    Selimoglu, Ozgur; Turan, Rasit

    2012-08-13

    The material and processing costs are still the major drawbacks of the c-Si based photovoltaic (PV) technology. The wafer cost comprises up to 35-40% of the total module cost. New approaches and system designs are needed in order to reduce the share of the wafer cost in photovoltaic energy systems. Here we explore the horizontally staggered light guide solar optics for use in Concentrated Photovoltaic (CPV) applications. This optical system comprises a lens array system coupled to a horizontal light guide which directs the incoming light beam to its edge. We have designed and simulated this system using a commercial ray tracing software (Zemax). The system is more compact, thinner and more robust compared to the conventional CPV systems. Concentration levels as high as 1000x can easily be reached when the system is properly designed. With such a high concentration level, a good acceptance angle of + -1 degree is still be conserved. The analysis of the system reveals that the total optical efficiency of the system could be as high as %94.4 without any anti-reflection (AR) coating. Optical losses can be reduced by just accommodating a single layer AR coating on the initial lens array leading to a %96.5 optical efficiency. Thermal behavior of high concentration linear concentrator is also discussed and compared with a conventional point focus CPV system.

  2. Liquid Argon Scintillation Detection Utilizing Wavelength-Shifting Plates and Light Guides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, B.

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this lightmore » and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.« less

  3. Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction.

    PubMed

    Hung, Yun-Ting; Huang, Chen-Bin; Huang, Jer-Shing

    2012-08-27

    To enable multiple functions of plasmonic nanocircuits, it is of key importance to control the propagation properties and the modal distribution of the guided optical modes such that their impedance matches to that of nearby quantum systems and desired light-matter interaction can be achieved. Here, we present efficient mode converters for manipulating guided modes on a plasmonic two-wire transmission line. The mode conversion is achieved through varying the path length, wire cross section and the surrounding index of refraction. Instead of pure optical interference, strong near-field coupling of surface plasmons results in great momentum splitting and modal profile variation. We theoretically demonstrate control over nanoantenna radiation and discuss the possibility to enhance nanoscale light-matter interaction. The proposed converter may find applications in surface plasmon amplification, index sensing and enhanced nanoscale spectroscopy.

  4. Space-Based Astronomy: An Educator Guide with Activities for Science, Mathematics, and Technology Education

    NASA Technical Reports Server (NTRS)

    Vogt, Gregory L.

    2001-01-01

    If you go to the country, far from city lights, you can see about 3,000 stars on a clear night. If your eyes were bigger, you could see many more stars. With a pair of binoculars, an optical device that effectively enlarges the pupil of your eye by about 30 times, the number of stars you can see increases to the tens of thousands. With a medium-sized telescope with a light-collecting mirror 30 centimeters in diameter, you can see hundreds of thousands of stars. With a large observatory telescope, millions of stars become visible. This curriculum guide uses hands-on activities to help students and teachers understand the significance of space-based astronomy--astronomical observations made from outer space. It is not intended to serve as a curriculum. Instead, teachers should select activities from this guide that support and extend existing study. The guide contains few of the traditional activities found in many astronomy guides such as constellation studies, lunar phases, and planetary orbits. It tells, rather, the story of why it is important to observe celestial objects from outer space and how to study the entire electromagnetic spectrum. Teachers are encouraged to adapt these activities for the particular needs of their students. When selected activities from this guide are used in conjunction with traditional astronomy curricula, students benefit from a more complete experience.

  5. Homogeneous free-form directional backlight for 3D display

    NASA Astrophysics Data System (ADS)

    Krebs, Peter; Liang, Haowen; Fan, Hang; Zhang, Aiqin; Zhou, Yangui; Chen, Jiayi; Li, Kunyang; Zhou, Jianying

    2017-08-01

    Realization of a near perfect homogeneous secondary emission source for 3D display is proposed and demonstrated. The light source takes advantage of an array of free-form emission surface with a specially tailored light guiding structure, a light diffuser and Fresnel lens. A seamless and homogeneous directional emission is experimentally obtained which is essential for a high quality naked-eye 3D display.

  6. 10 CFR Appendix I to Part 50 - Numerical Guides for Design Objectives and Limiting Conditions for Operation To Meet the...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power... light-water-cooled nuclear power reactors licensed under 10 CFR part 50 or part 52 of this chapter. The...

  7. 10 CFR Appendix I to Part 50 - Numerical Guides for Design Objectives and Limiting Conditions for Operation To Meet the...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power... light-water-cooled nuclear power reactors licensed under 10 CFR part 50 or part 52 of this chapter. The...

  8. 10 CFR Appendix I to Part 50 - Numerical Guides for Design Objectives and Limiting Conditions for Operation To Meet the...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power... light-water-cooled nuclear power reactors licensed under 10 CFR part 50 or part 52 of this chapter. The...

  9. Enviropod handbook: A guide to preparation and use of the Environmental Protection Agency's light-weight aerial camera system. [Weber River, Utah

    NASA Technical Reports Server (NTRS)

    Brower, S. J.; Ridd, M. K.

    1984-01-01

    The use of the Environmental Protection Agency (EPA) Enviropod camera system is detailed in this handbook which contains a step-by-step guide for mission planning, flights, film processing, indexing, and documentation. Information regarding Enviropod equipment and specifications is included.

  10. An Employer's Guide to Child Care Consultants.

    ERIC Educational Resources Information Center

    Eichman, Caroline

    This guide is designed to help employers hire a qualified child care consultant who will evaluate child care options in light of employees' needs and help develop and implement appropriate child care options. These options include: (1) establishment of a child care facility; (2) financial assistance; (3) a resource and referral service; (4)…

  11. Build Your Own Photometer: A Guided-Inquiry Experiment to Introduce Analytical Instrumentation

    ERIC Educational Resources Information Center

    Wang, Jessie J.; Nun´ez, Jose´ R. Rodríguez; Maxwell, E. Jane; Algar, W. Russ

    2016-01-01

    A guided-inquiry project designed to teach students the basics of spectrophotometric instrumentation at the second year level is presented. Students design, build, program, and test their own single-wavelength, submersible photometer using low-cost light-emitting diodes (LEDs) and inexpensive household items. A series of structured prelaboratory…

  12. 78 FR 65329 - Agency Information Collection Activities; Submission for Office of Management and Budget Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... Safety Testing of Sunlamp Products'' Form FDA 3632 ``Guide for Preparing Product Reports on Lasers and Products Containing Lasers'' Form FDA 3633''General Variance Request'' Form FDA 3634 ``Television Products Annual Report'' Form FDA 3635 ``Laser Light Show Notification'' Form FDA 3636 ``Guide for Preparing...

  13. 75 FR 26964 - Agency Information Collection Activities; Submission for Office of Management and Budget Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... of Sunlamps and Sunlamp Products'' FDA Form 3632 ``Guide for Preparing Product Reports on Lasers and Products Containing Lasers'' FDA Form 3633 ``General Variance Request'' FDA Form 3634 ``Television Products Annual Report'' FDA Form 3635 ``Laser Light Show Notification'' FDA Form 3636 ``Guide for Preparing...

  14. Housing for the Physically Impaired; A Guide for Planning and Design.

    ERIC Educational Resources Information Center

    Department of Housing and Urban Development, Washington, DC.

    Problems involved in providing homes for independent living for the physically handicapped, health impaired, or older adults are considered. Basic concepts of low rent housing preface a discussion of neighborhoods and site selection, access, ramps, pedestrian walks, parking, landscaping, and lighting. Guides for building design focus on entrances,…

  15. Guided Inquiry Learning Unit on Aquatic Ecosystems for Seventh Grade Students

    ERIC Educational Resources Information Center

    To-im, Jongdee; Ruenwongsa, Pintip

    2009-01-01

    Using mini-aquaria experiments, a learning unit on the effects of light period on aquatic ecosystems was developed for 7th grade students. This guided inquiry unit was aimed at helping students understand basic ecological principles involved in relationships among physical, chemical, and biological components in aquatic ecosystems. It involved…

  16. Retinal light trapping in textured photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kravets, V. G.; Grigorenko, A. N.

    2010-10-01

    We suggest a new structure for light trapping in solar cells which is loosely based on retina of human eye. In this design, the incident light is scattered by noble metal nanoparticles acting as amacrine retinal cells and then is guided and concentrated by conelike structures. We show that the proposed textured structure should lead to a significant enhancement of optical path of trapped light resulting in a higher degree of light conversion into electric current. The proposed design should work efficiently in direct sunlight and in cloudy weather.

  17. Numerical study on trapping and guiding of nanoparticles in a flow using scattering field of laser light

    NASA Astrophysics Data System (ADS)

    Yokoi, Naomichi; Aizu, Yoshihisa

    2018-01-01

    Optical trapping and guiding using laser have been proven to be useful for non-contact and non-invasive manipulation of small objects such as biological cells, organelles within cells, and dielectric particles. We have numerically investigated so far the motion of a Brownian particle suspended in still water under the illumination of a speckle pattern generated by the interference of coherent light scattered by a rough object. In the present study, we investigate numerically the motion of a particle in a water flow under the illumination of a speckle pattern that is at rest or in motion. Trajectory of the particle is simulated in relation with its size, flow velocity, maximum irradiance, and moving velocity of the speckle pattern to confirm the feasibility of the present method for performing optical trapping and guiding of the particle in the flow.

  18. Guided-wave phase-matched second-harmonic generation in KTiOPO4 waveguide produced by swift heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Cheng, Yazhou; Jia, Yuechen; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2014-11-01

    We report on the guided-wave second-harmonic generation in a KTiOPO4 nonlinear optical waveguide fabricated by a 17 MeV O5+ ion irradiation at a fluence of 1.5×1015 ions/cm2. The waveguide guides light along both TE and TM polarizations, which is suitable for phase-matching frequency doubling. Second harmonics of green light at a wavelength of 532 nm have been generated through the KTiOPO4 waveguide platform under an optical pump of fundamental wave at 1064 nm in both continuous-wave and pulsed regimes, reaching optical conversion efficiencies of 5.36%/W and 11.5%, respectively. The propagation losses have been determined to be ˜3.1 and ˜5.7 dB/cm for the TE and TM polarizations at a wavelength of 632.8 nm, respectively.

  19. Numerical study on trapping and guiding of nanoparticles in a flow using scattering field of laser light

    NASA Astrophysics Data System (ADS)

    Yokoi, Naomichi; Aizu, Yoshihisa

    2018-06-01

    Optical trapping and guiding using laser have been proven to be useful for non-contact and non-invasive manipulation of small objects such as biological cells, organelles within cells, and dielectric particles. We have numerically investigated so far the motion of a Brownian particle suspended in still water under the illumination of a speckle pattern generated by the interference of coherent light scattered by a rough object. In the present study, we investigate numerically the motion of a particle in a water flow under the illumination of a speckle pattern that is at rest or in motion. Trajectory of the particle is simulated in relation with its size, flow velocity, maximum irradiance, and moving velocity of the speckle pattern to confirm the feasibility of the present method for performing optical trapping and guiding of the particle in the flow.

  20. Therapeutic lighting design for the elderly: a review.

    PubMed

    Shikder, Shariful; Mourshed, Monjur; Price, Andrew

    2012-11-01

    Research suggests that specialised lighting design is essential to cater for the elderly users of a building because of reduced visual performance with increased age. This review aims to document what is known of the physical and psychological aspects of lighting and their role in promoting a healthy and safe environment for the elderly. A methodical review was carried out of published literature on the physical and psychological impacts of light on the elderly. Design standards and guides from professional organizations were evaluated to identify synergies and gaps between the evidence base and current practice. Lighting has been identified as a significant environmental attribute responsible for promoting physical and mental health of the elderly. The evidence related to visual performance was found to be robust. However, guides and standards appeared to have focused mostly on illumination requirements for specific tasks and have lacked detailed guidelines on vertical lighting and luminance design. This review has identified a growing body of evidence on the therapeutic benefits of lighting and its use in treating psychological disorders among the elderly. The experiments using light as a therapy have improved our understanding of the underlying principles, but the integration of therapeutic aspects of lighting in design practice and guidelines is lacking. While design guidelines discuss the physical needs of lighting for the elderly fairly well, they lack incorporation of photobiological impacts. Despite positive outcomes from research, the implementation of therapeutic aspects of lighting in buildings is still debatable due to insufficient relevant investigations and robustness of their findings. Collaborations between designers and physicians can contribute in delivering customised lighting solutions by considering disease types and needs. Further investigation needs to be carried out for translating therapeutic benefits to photometric units to implement them in building lighting design.

  1. Residential and Light Commercial HVAC. Teacher Edition.

    ERIC Educational Resources Information Center

    Stephenson, David; Fulkerson, Dan, Ed.

    This curriculum guide contains 18 units of instruction for a competency-based course in residential and light commercial heating, ventilating, and air conditioning (HVAC). Introductory materials include a competency profile and an instructional/task analysis that correlates job training with related information for this course. Each instructional…

  2. 40 CFR 60.390 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... affected facility. 60.390 Section 60.390 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and...

  3. 40 CFR 60.390 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... affected facility. 60.390 Section 60.390 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and...

  4. Image-Guided Cryoablation of the Spine in a Swine Model: Clinical, Radiological, and Pathological Findings with Light and Electron Microscopy.

    PubMed

    de Freitas, Ricardo Miguel Costa; Andrade, Celi Santos; Caldas, José Guilherme Mendes Pereira; Tsunemi, Miriam Harumi; Ferreira, Lorraine Braga; Arana-Chavez, Victor Elias; Cury, Patrícia Maluf

    2015-10-01

    This study was designed to present the feasibility of an in vivo image-guided percutaneous cryoablation of the porcine vertebral body. The institutional animal care committee approved this study. Cone-beam computed tomography (CBCT)-guided vertebral cryoablations (n = 22) were performed in eight pigs with short, 2-min, single or double-freezing protocols. Protective measures to nerves included dioxide carbon (CO2) epidural injections and spinal canal temperature monitoring. Clinical, radiological, and pathological data with light (n = 20) or transmission electron (n = 2) microscopic analyses were evaluated after 6 days of clinical follow-up and euthanasia. CBCT/fluoroscopic-guided transpedicular vertebral body cryoprobe positioning and CO2 epidural injection were successful in all procedures. No major complications were observed in seven animals (87.5 %, n = 8). A minor complication was observed in one pig (12.5 %, n = 1). Logistic regression model analysis showed the cryoprobe-spinal canal (Cp-Sc) distance as the most efficient parameter to categorize spinal canal temperatures lower than 19 °C (p < 0.004), with a significant Pearson's correlation test (p < 0.041) between the Cp-Sc distance and the lowest spinal canal temperatures. Ablation zones encompassed pedicles and the posterior wall of the vertebral bodies with an inflammatory rim, although no inflammatory infiltrate was depicted in the surrounding neural structures at light microscopy. Ultrastructural analyses evidenced myelin sheath disruption in some large nerve fibers, although neurological deficits were not observed. CBCT-guided vertebral cryoablation of the porcine spine is feasible under a combination of a short freezing protocol and protective measures to the surrounding nerves. Ultrastructural analyses may be helpful assess the early modifications of the nerve fibers.

  5. "Let There Be Light" Minicourse, Career Oriented Pre-Technical Physics.

    ERIC Educational Resources Information Center

    Dallas Independent School District, TX.

    This instructional guide, intended for student use, develops the concept of light through a series of sequential activities. A technical development of the subject is pursued with examples stressing practical aspects of the concepts. Included in the minicourse are: (1) the rationale, (2) terminal behavioral objectives, (3) enabling behavioral…

  6. A light-up probe with aggregation-induced emission characteristics (AIE) for selective imaging, naked-eye detection and photodynamic killing of Gram-positive bacteria.

    PubMed

    Feng, Guangxue; Yuan, Youyong; Fang, Hu; Zhang, Ruoyu; Xing, Bengang; Zhang, Guanxin; Zhang, Deqing; Liu, Bin

    2015-08-11

    We report the design and synthesis of a red fluorescent AIE light-up probe for selective recognition, naked-eye detection, and image-guided photodynamic killing of Gram-positive bacteria, including vancomycin-resistant Enterococcus strains.

  7. Polarization-maintaining performance of large effective area, higher order modes fiber in a coiled configuration

    NASA Astrophysics Data System (ADS)

    Ahmad, Raja; Nicholson, Jeffrey W.; Abedin, Kazi S.; Westbrook, Paul S.; Headley, Clifford; Wisk, Patrick W.; Monberg, Eric M.; Yan, Man F.; DiGiovanni, David J.

    2018-02-01

    Scaling the power-level of fiber sources has many practical advantages, while also enabling fundamental studies on the light-matter interaction in amorphous guiding media. In order to scale the power-level of fiber-sources without encountering nonlinear impairments, a strategy is to increase the effective-area of the guided optical-mode. Increasing the effective-area of the fundamental mode in a fiber, however, presents the challenges of increased susceptibility to mode-distortion and effective-area-reduction under the influence of bends. Therefore, higher-order-mode (HOM) fibers, which guide light in large effective-area (Aeff) Bessel-like modes, are a good candidate for scaling the power-level of robust fiber-sources. Many applications of high-power fiber-sources also demand a deterministic control on the polarization-state of light. Furthermore, a polarization-maintaining (PM)-type HOM fiber can afford the added possibility of coherent-beam combination and polarization multiplexing of high-power fiber-lasers. Previously, we reported polarization-maintaining operation in a 1.3 m length of PM-HOM fiber that was held straight. The PM-HOM fiber guided Bessel-like modes with Aeff ranging from 1200-2800 μm2. In this work, we report, for the first time, that the polarization-extinction-ratio (PER) of the HOM exceeds 10 dB in an 8 m long fiber that is coiled down to a diameter of 40 cm. This opens a path towards compact and polarization-controlled high-power fiber-systems.

  8. Design of a multifiber light delivery system for photoacoustic-guided surgery.

    PubMed

    Eddins, Blackberrie; Bell, Muyinatu A Lediju

    2017-04-01

    This work explores light delivery optimization for photoacoustic-guided minimally invasive surgeries, such as the endonasal transsphenoidal approach. Monte Carlo simulations were employed to study three-dimensional light propagation in tissue, comprising one or two 4-mm diameter arteries located 3 mm below bone, an absorbing metallic drill contacting the bone surface, and a single light source placed next to the 2.4-mm diameter drill shaft with a 2.9-mm diameter spherical drill tip. The optimal fiber distance from the drill shaft was determined from the maximum normalized fluence to the underlying artery. Using this optimal fiber-to-drill shaft distance, Zemax simulations were employed to propagate Gaussian beams through one or more 600 micron-core diameter optical fibers for detection on the bone surface. When the number of equally spaced fibers surrounding the drill increased, a single merged optical profile formed with seven or more fibers, determined by thresholding the resulting light profile images at 1 / e times the maximum intensity. We used these simulations to inform design requirements, build a one to seven multifiber light delivery prototype to surround a surgical drill, and demonstrate its ability to simultaneously visualize the tool tip and blood vessel targets in the absence and presence of bone. The results and methodology are generalizable to multiple interventional photoacoustic applications.

  9. Design of a multifiber light delivery system for photoacoustic-guided surgery

    NASA Astrophysics Data System (ADS)

    Eddins, Blackberrie; Bell, Muyinatu A. Lediju

    2017-04-01

    This work explores light delivery optimization for photoacoustic-guided minimally invasive surgeries, such as the endonasal transsphenoidal approach. Monte Carlo simulations were employed to study three-dimensional light propagation in tissue, comprising one or two 4-mm diameter arteries located 3 mm below bone, an absorbing metallic drill contacting the bone surface, and a single light source placed next to the 2.4-mm diameter drill shaft with a 2.9-mm diameter spherical drill tip. The optimal fiber distance from the drill shaft was determined from the maximum normalized fluence to the underlying artery. Using this optimal fiber-to-drill shaft distance, Zemax simulations were employed to propagate Gaussian beams through one or more 600 micron-core diameter optical fibers for detection on the bone surface. When the number of equally spaced fibers surrounding the drill increased, a single merged optical profile formed with seven or more fibers, determined by thresholding the resulting light profile images at 1/e times the maximum intensity. We used these simulations to inform design requirements, build a one to seven multifiber light delivery prototype to surround a surgical drill, and demonstrate its ability to simultaneously visualize the tool tip and blood vessel targets in the absence and presence of bone. The results and methodology are generalizable to multiple interventional photoacoustic applications.

  10. An optimized prototype of electromagnetic calorimeter for the SoLID project at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Shen, C.; Wang, Y.; Xiao, D.; Han, D.; Zou, Z.; Li, Y.; Zheng, X.; Chen, J.

    2018-02-01

    A shashlik-type electromagnetic calorimeter will be produced in Hall A of Jefferson Laboratory for the Solenoidal Large Intensity Device (SoLID). Wavelength-shifting (WLS) fibers and clear fibers will be used as the light guide part of the calorimeter. The blue light from scintillators is converted into green light by WLS fibers and is carried out to the back of the calorimeters for readout. Since the magnetic field of SoLID reaches about 1.5 T behind the calorimeters, the design is to use clear fibers to further guide the light out of the solenoid for readout by PMTs. Therefore, it is important to study the perfomance of WLS and clear fibers. This paper describes a comparative test of two different WLS fibers and a light attenuation test for a clear fiber. The results show that the performance of the two WLS fibers is the same under large curvature bending, and that the bending has no effect on the light transmission through the clear fiber. In addition, a comparison test for two fiber end-face reflective materials is also reported. It reveals that the use of silver ink as a reflective material can increase the light yield by 30%. Thereby, an optimized prototype based on the above experimental results was built and the basic performance was tested.

  11. The Industrial Training Yearbook, 1970; A Comprehensive Guide for Training Officers and Their Managements.

    ERIC Educational Resources Information Center

    Kogan Page, Ltd., London (England).

    This yearbook is designed as a comprehensive guide to British industrial training. Section 1 describes existing resources, information, and obligations in the light of the Industrial Training Act of 1964. Sections 2-6 deal with the scope of training; the Department of Education and Productivity and the Central Training Council; the 27 regional…

  12. The Industrial Training Yearbook, 1971; A Comprehensive Guide for Training Officers and their Managements.

    ERIC Educational Resources Information Center

    Kogan Page, Ltd., London (England).

    This yearbook is designed as a comprehensive guide to British Industrial Training. Section 1 describes existing resources, information, and obligations in the light of the Industrial Training Act of 1964. Sections 2-6 cover the scope of training; the Department of Education and Productivity and the Central Training Council; the 30 Industrial…

  13. Schools Going Solar: A Guide to Schools Enjoying the Power of Solar Energy.

    ERIC Educational Resources Information Center

    Gibson, Bob; Mayotte, Jenna; Cochran, Jacquie

    Schools today are hosting the solar energy systems that will become commonplace tomorrow in public buildings, homes, and businesses. This publication serves as a guide to how schools are using solar energy, listing scores of schools currently using the sun for lighting, heating, and cooling as well as highlights of innovative programs to expand…

  14. Micromachined edge illuminated optically transparent automotive light guide panels

    NASA Astrophysics Data System (ADS)

    Ronny, Rahima Afrose; Knopf, George K.; Bordatchev, Evgueni; Tauhiduzzaman, Mohammed; Nikumb, Suwas

    2012-03-01

    Edge-lit backlighting has been used extensively for a variety of small and medium-sized liquid crystal displays (LCDs). The shape, density and spatial distribution pattern of the micro-optical elements imprinted on the surface of the flat light-guide panel (LGP) are often "optimized" to improve the overall brightness and luminance uniformity. A similar concept can be used to develop interior convenience lighting panels and exterior tail lamps for automotive applications. However, costly diffusive sheeting and brightness enhancement films are not be considered for these applications because absolute luminance uniformity and the minimization of Moiré fringe effects are not significant factors in assessing quality of automotive lighting. A new design concept that involves micromilling cylindrical micro-optical elements on optically transparent plastic substrates is described in this paper. The variable parameter that controls illumination over the active regions of the panel is the depth of the individual cylindrical micro-optical elements. LightTools™ is the optical simulation tool used to explore how changing the micro-optical element depth can alter the local and global luminance. Numerical simulation and microfabrication experiments are performed on several (100mmx100mmx6mm) polymethylmethacrylate (PMMA) test samples in order to verify the illumination behavior.

  15. The Lyman-alpha Solar Telescope for the ASO-S

    NASA Astrophysics Data System (ADS)

    Li, Hui

    2015-08-01

    The Lyman-alpha Solar Telescope (LST) is one of the payloads for the proposed Space-Borne Advanced Solar Observatory (ASO-S). LST consists of a Solar Disk Imager (SDI) with a field-of-view (FOV) of 1.2 Rsun, a Solar Corona Imager (SCI) with an FOV of 1.1 - 2.5 Rsun, and a full-disk White-light Solar Telescope (WST) with an FOV of 1.2 Rsun, which also serves as the guiding telescope. The SCI is designed to work at the Lyman-alpha waveband and white-light, while the SDI will work at the Lyman-alpha waveband only. The WST works both in visible (for guide) and ultraviolet (for science) white-light. The LST will observe the Sun from disk-center up to 2.5 solar radii for both solar flares and coronal mass ejections. In this presentation, I will give an introduction to LST, including scientific objectives, science requirement, instrument design and current status.

  16. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo

    NASA Astrophysics Data System (ADS)

    Choi, Myunghwan; Choi, Jin Woo; Kim, Seonghoon; Nizamoglu, Sedat; Hahn, Sei Kwang; Yun, Seok Hyun

    2013-12-01

    Polymer hydrogels are widely used as cell scaffolds for biomedical applications. Although the biochemical and biophysical properties of hydrogels have been investigated extensively, little attention has been paid to their potential photonic functionalities. Here, we report cell-integrated polyethylene glycol-based hydrogels for in vivo optical-sensing and therapy applications. Hydrogel patches containing cells were implanted in awake, freely moving mice for several days and shown to offer long-term transparency, biocompatibility, cell viability and light-guiding properties (loss of <1 dB cm-1). Using optogenetic, glucagon-like peptide-1 secreting cells, we conducted light-controlled therapy using the hydrogel in a mouse model with diabetes and obtained improved glucose homeostasis. Furthermore, real-time optical readout of encapsulated heat-shock-protein-coupled fluorescent reporter cells made it possible to measure the nanotoxicity of cadmium-based bare and shelled quantum dots (CdTe; CdSe/ZnS) in vivo.

  17. Efficient semiconductor light-emitting device and method

    DOEpatents

    Choquette, Kent D.; Lear, Kevin L.; Schneider, Jr., Richard P.

    1996-01-01

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  18. Efficient semiconductor light-emitting device and method

    DOEpatents

    Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.

    1996-02-20

    A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.

  19. Light guide technology: using light to enhance safety

    NASA Astrophysics Data System (ADS)

    Lerner, William S.

    2009-05-01

    When used to detect extreme temperatures in harsh environments, warning devices have been placed at a distance from the "danger zone" for several reasons. The inability to mix electricity with flammable, caustic, liquid or volatile substances, the limited heat tolerances exhibited by most light sources, and the susceptibility of light sources to damage from vibration, have made the placement of a warning light directly within these harsh environments impossible. This paper describes a system that utilizes a beam of light to provide just such a warning. This system can be used with hard-wired or wireless sensors, side-light illumination, image projection and image transfer. The entire system may be self-contained and portable.

  20. Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.

    PubMed

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2012-11-05

    LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.

  1. LED--panacea or marketing hype?

    PubMed

    Baillie, Jonathan

    2012-02-01

    With energy efficiency and carbon reduction, and the importance of a relaxing, therapeutic patient environment, ever more in the spotlight, LED lighting's proponents claim the technology offers healthcare estates personnel many of the answers on both fronts. However some observers believe its benefits are being over-sold, often to the detriment of other high-performing types of more 'conventional lighting', and to a sometimes uninitiated audience too easily swayed by slick sales patter. HEJ editor Jonathan Baillie spoke to one highly experienced lighting professional, Nicholas Bukorović, a former employee of Thorn, Cooper, and Thorlux Lighting, and the principal author of the last CIBSE/Society of Light and Lighting (SLL) Guide LG2 on healthcare lighting, to seek some expert illumination.

  2. Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings.

    PubMed

    Grande, M; Vincenti, M A; Stomeo, T; Bianco, G V; de Ceglia, D; Aközbek, N; Petruzzelli, V; Bruno, G; De Vittorio, M; Scalora, M; D'Orazio, A

    2014-12-15

    A one-dimensional dielectric grating, based on a simple geometry, is proposed and investigated to enhance light absorption in a monolayer graphene exploiting guided mode resonances. Numerical findings reveal that the optimized configuration is able to absorb up to 60% of the impinging light at normal incidence for both TE and TM polarizations resulting in a theoretical enhancement factor of about 26 with respect to the monolayer graphene absorption (≈2.3%). Experimental results confirm this behavior showing CVD graphene absorbance peaks up to about 40% over narrow bands of a few nanometers. The simple and flexible design points to a way to realize innovative, scalable and easy-to-fabricate graphene-based optical absorbers.

  3. Telemetry with an Optical Fiber Revisited: An Alternative Strategy

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2014-01-01

    With a new data-acquisition system developed by PASCO scientific, an experiment on telemetry with an optical fiber can be made easier and more accurate. For this aim, an alternative strategy of the remote temperature measurements is proposed: the frequency of light pulses transmitted via the light guide numerically equals the temperature using…

  4. 78 FR 35279 - Agency Information Collection Activities; Proposed Collection; Comment Request; Electronic Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... Lasers and Products Containing Lasers'' FDA Form 3633 ``General Variance Request'' FDA Form 3634 ``Television Products Annual Report'' FDA Form 3635 ``Laser Light Show Notification'' FDA Form 3636 ``Guide for Preparing Annual Reports on Radiation Safety Testing of Laser and Laser Light Show Products'' FDA Form 3637...

  5. Emissive color preferences and temporal alteration of walking performance by pulsing lights in colorado potato beetle

    USDA-ARS?s Scientific Manuscript database

    The Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say 1824) is a diurnal insect that strongly relies on vision to guide its walk. In the present study, we investigated the orientation behavior of nondiapausing walking CPB in response to emissive colors produced by light emitting diodes (L...

  6. Optics: Light, Color, and Their Uses. An Educator's Guide With Activities In Science and Mathematics

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This document includes information on the Chandra X-Ray Observatory, the Hubble Space Telescope, the Next Generation Space Telescope, Soft X-Ray Imager, and the Lightning Imaging System. Classroom activities from grades K-12 are included, focusing on light and color, using mirrors, lenses, prisms, and filters.

  7. Optimization of a Light Collection System for use in the Neutron Lifetime Project

    NASA Astrophysics Data System (ADS)

    Taylor, C.; O'Shaughnessy, C.; Mumm, P.; Thompson, A.; Huffman, P.

    2007-10-01

    The Ultracold Neutron (UCN) Lifetime Project is an ongoing experiment with the objective of improving the average measurement of the neutron beta-decay lifetime. A more accurate measurement may increase our understanding of the electroweak interaction and improve astrophysical/cosmological theories on Big Bang nucleosynthesis. The current apparatus uses 0.89 nm cold neutrons to produce UCN through inelastic collisions with superfluid 4He in the superthermal process. The lifetime of the UCN is measured by detection of scintillation light from superfluid 4He created by electrons produced in neutron decay. Competing criteria of high detection efficiency outside of the apparatus and minimum heating of the experimental cell has led to the design of an acrylic light collection system. Initial designs were based on previous generations of the apparatus. ANSYS was used to optimize the cooling system for the light guide by checking simulated end conditions based on width of contact area, number of contact points, and location on the guide itself. SolidWorks and AutoCAD were used for design. The current system is in the production process.

  8. When the Light Turns Blue: Journeying into Disability Studies Guided by the Work of Ellen Brantlinger

    ERIC Educational Resources Information Center

    Collins, Kathleen M.; Broderick, Alicia

    2013-01-01

    Ellen Brantlinger's research and activism created opportunities for scholars who seek to locate and interrupt the social processes that shape educational inequities. In this essay, we reflect on Ellen's contributions by identifying three key "signposts"--lessons from Ellen's work that guided our own journeys and shaped the…

  9. Ten Things New Teachers Need To Succeed. A SkyLight Guide.

    ERIC Educational Resources Information Center

    Fogarty, Robin

    This guide for novice teachers includes ten sections: (1) "A Knowing Colleague as Counsel...About the Policies, Practices, and Politics!" (proactively seek a mentor); (2) "A Place Called 'My Room' for Students To Grow, To Groom, and To Zoom!" (create a climate that fosters growth and pride); (3) "A Method for Managing 1,500 Decisions: On Your…

  10. Waves and Particles, The Orbital Atom, Parts One and Two of an Integrated Science Sequence, Teacher's Guide, 1973 Edition.

    ERIC Educational Resources Information Center

    Portland Project Committee, OR.

    This teacher's guide includes parts one and two of the four-part third year Portland Project, a three-year integrated secondary science curriculum sequence. The Harvard Project Physics textbook is used for reading assignments for part one. Assignments relate to waves, light, electricity, magnetic fields, Faraday and the electrical age,…

  11. Extraction of surface plasmons in organic light-emitting diodes via high-index coupling.

    PubMed

    Scholz, Bert J; Frischeisen, Jörg; Jaeger, Arndt; Setz, Daniel S; Reusch, Thilo C G; Brütting, Wolfgang

    2012-03-12

    The efficiency of organic light-emitting diodes (OLEDs) is still limited by poor light outcoupling. In particular, the excitation of surface plasmon polaritons (SPPs) at metal-organic interfaces represents a major loss channel. By combining optical simulations and experiments on simplified luminescent thin-film structures we elaborate the conditions for the extraction of SPPs via coupling to high-index media. As a proof-of-concept, we demonstrate the possibility to extract light from wave-guided modes and surface plasmons in a top-emitting white OLED by a high-index prism.

  12. Light-stimulated cargo release from a core–shell structured nanocomposite for site-specific delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yun; Ling, Li; Li, Xiaofang

    This paper reported a core–shell structured site-specific delivery system with a light switch triggered by low energy light (λ=510 nm). Its core was composed of supermagnetic Fe{sub 3}O{sub 4} nanoparticles for magnetic guiding and targeting. Its outer shell consisted of mesoporous silica molecular sieve MCM-41 which offered highly ordered hexagonal tunnels for cargo capacity. A light switch N1-(4aH-cyclopenta[1,2-b:5,4-b′]dipyridin-5(5aH)-ylidene)benzene-1, 4-diamine (CBD) was covalently grafted into these hexagonal tunnels, serving as light stimuli acceptor with loading content of 1.1 μM/g. This composite was fully characterized and confirmed by SEM, TEM, XRD patterns, N{sub 2} adsorption/desorption, thermogravimetric analysis, IR, UV–vis absorption and emissionmore » spectra. Experimental data suggested that this composite had a core as wide as 150 nm and could be magnetically guided to specific sites. Its hexagonal tunnels were as long as 180 nm. Upon light stimuli of “on” and “off” states, controllable release was observed with short release time of ~900 s (90% capacity). - Graphical abstract: A core–shell structured site-specific delivery system with a light switch triggered by yellow light was constructed. Controllable release was observed with short release time of ~900 s (90% capacity). - Highlights: • A core–shell structured site-specific delivery system was constructed. • It consisted of Fe{sub 3}O{sub 4} core and MCM-41 shell grafted with light switch. • This delivery system was triggered by low energy light. • Controllable release was observed with short release time of ~900 s.« less

  13. Mach-Zehnder atom interferometer inside an optical fiber

    NASA Astrophysics Data System (ADS)

    Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu

    2017-04-01

    Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.

  14. Single-polarization hollow-core square photonic bandgap waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eguchi, Masashi, E-mail: megu@ieee.org; Tsuji, Yasuhide, E-mail: y-tsuji@mmm.muroran-it.ac.jp

    Materials with a periodic structure have photonic bandgaps (PBGs), in which light can not be guided within certain wavelength ranges; thus light can be confined within a low-index region by the bandgap effect. In this paper, rectangular-shaped hollow waveguides having waveguide-walls (claddings) using the PBG have been discussed. The design principle for HE modes of hollow-core rectangular PBG waveguides with a Bragg cladding consisting of alternating high- and low-index layers, based on a 1D periodic multilayer approximation for the Bragg cladding, is established and then a novel single-polarization hollow-core square PBG waveguide using the bandgap difference between two polarized wavesmore » is proposed. Our results demonstrated that a single-polarization guiding can be achieved by using the square Bragg cladding structure with different layer thickness ratios in the mutually orthogonal directions and the transmission loss of the guided mode in a designed hollow-core square PBG waveguide is numerically estimated to be 0.04 dB/cm.« less

  15. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy.

    PubMed

    Sheng, Zonghai; Hu, Dehong; Zheng, Mingbin; Zhao, Pengfei; Liu, Huilong; Gao, Duyang; Gong, Ping; Gao, Guanhui; Zhang, Pengfei; Ma, Yifan; Cai, Lintao

    2014-12-23

    Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a light-activated local treatment modality that is under intensive preclinical and clinical investigations for cancer. To enhance the treatment efficiency of phototherapy and reduce the light-associated side effects, it is highly desirable to improve drug accumulation and precision guided phototherapy for efficient conversion of the absorbed light energy to reactive oxygen species (ROS) and local hyperthermia. In the present study, a programmed assembly strategy was developed for the preparation of human serum albumin (HSA)-indocyanine green (ICG) nanoparticles (HSA-ICG NPs) by intermolecular disulfide conjugations. This study indicated that HSA-ICG NPs had a high accumulation with tumor-to-normal tissue ratio of 36.12±5.12 at 24 h and a long-term retention with more than 7 days in 4T1 tumor-bearing mice, where the tumor and its margin, normal tissue were clearly identified via ICG-based in vivo near-infrared (NIR) fluorescence and photoacoustic dual-modal imaging and spectrum-resolved technology. Meanwhile, HSA-ICG NPs efficiently induced ROS and local hyperthermia simultaneously for synergetic PDT/PTT treatments under a single NIR laser irradiation. After an intravenous injection of HSA-ICG NPs followed by imaging-guided precision phototherapy (808 nm, 0.8 W/cm2 for 5 min), the tumor was completely suppressed, no tumor recurrence and treatments-induced toxicity were observed. The results suggest that HSA-ICG NPs generated by programmed assembly as smart theranostic nanoplatforms are highly potential for imaging-guided cancer phototherapy with PDT/PTT synergistic effects.

  16. Setup for testing cameras for image guided surgery using a controlled NIR fluorescence mimicking light source and tissue phantom

    NASA Astrophysics Data System (ADS)

    Georgiou, Giota; Verdaasdonk, Rudolf M.; van der Veen, Albert; Klaessens, John H.

    2017-02-01

    In the development of new near-infrared (NIR) fluorescence dyes for image guided surgery, there is a need for new NIR sensitive camera systems that can easily be adjusted to specific wavelength ranges in contrast the present clinical systems that are only optimized for ICG. To test alternative camera systems, a setup was developed to mimic the fluorescence light in a tissue phantom to measure the sensitivity and resolution. Selected narrow band NIR LED's were used to illuminate a 6mm diameter circular diffuse plate to create uniform intensity controllable light spot (μW-mW) as target/source for NIR camera's. Layers of (artificial) tissue with controlled thickness could be placed on the spot to mimic a fluorescent `cancer' embedded in tissue. This setup was used to compare a range of NIR sensitive consumer's cameras for potential use in image guided surgery. The image of the spot obtained with the cameras was captured and analyzed using ImageJ software. Enhanced CCD night vision cameras were the most sensitive capable of showing intensities < 1 μW through 5 mm of tissue. However, there was no control over the automatic gain and hence noise level. NIR sensitive DSLR cameras proved relative less sensitive but could be fully manually controlled as to gain (ISO 25600) and exposure time and are therefore preferred for a clinical setting in combination with Wi-Fi remote control. The NIR fluorescence testing setup proved to be useful for camera testing and can be used for development and quality control of new NIR fluorescence guided surgery equipment.

  17. In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform.

    PubMed

    Liu, Xiaomin; Que, Ivo; Kong, Xianggui; Zhang, Youlin; Tu, Langping; Chang, Yulei; Wang, Tong Tong; Chan, Alan; Löwik, Clemens W G M; Zhang, Hong

    2015-09-28

    A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the (1)O2 production, resulting in the improvement of the therapeutic effect; (ii) realizing in vivo NIR 808 nm image-guided PDT with both excitation (980 nm) and emission (808 nm) light falling in the biological window of tissues, which minimized auto-fluorescence, reduced light scatting and improved the imaging contrast and depth, and thus guaranteed noninvasive diagnostic accuracy. In vivo and ex vivo tests demonstrated its favorable bio-distribution, tumor-selectivity and high therapeutic efficacy. Owing to the effective ligand exchange strategy and the excellent intrinsic photophysical properties of C60, (1)O2 production yield was improved, suggesting that a low 980 nm irradiation dosage (351 J cm(-2)) and a short treatment time (15 min) were sufficient to perform NIR (980 nm) to NIR (808 nm) image-guided PDT. Our work enriches the understanding of UCNP-based PDT nanophotosensitizers and highlights their potential use in future NIR image-guided noninvasive deep cancer therapy.

  18. The study of laser beam riding guided system based on 980nm diode laser

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Xu, Haifeng; Sui, Xin; Yang, Kun

    2015-10-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  19. Laser beam riding guided system principle and design research

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Jin, Yi; Xu, Zhou; Xing, Hao

    2016-01-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  20. Effect of LED-LCU light irradiance distribution on mechanical properties of resin based materials.

    PubMed

    Magalhães Filho, T R; Weig, K M; Costa, M F; Werneck, M M; Barthem, R B; Costa Neto, C A

    2016-06-01

    The objective of this study is to analyze the light power distribution along the tip end of the light guide of three LED-LCUs (Light Curing Units) and to evaluate its effect on the mechanical properties of a polymer based dental composite. Firstly, the light power distribution over the whole area of LED-LCU light guide surface was analyzed by three methods: visual projection observation, spectral measurement and optical spectral analysis (OSA). The light power distribution and the total irradiance were different for the three LEDs used, but the wavelength was within the camphorquinone absorption spectrum. The use of a blank sheet was quite on hand to make a qualitative analysis of a beam, and it is costless. Secondly, specimens of a hybrid composite with approximately 8mm diameter and 2mm thickness were produced and polymerized by 20s exposition time to each LED-LCU. Thirdly, the elastic modulus (E) and hardness (HV) were measured throughout the irradiated area by instrumented micro-indentation test (IIT), allowing to correlate localized power and mechanical properties. Both E and HV showed to be very sensitive to local power and wavelength dependent, but they followed the beam power profile. It was also shown that the mechanical properties could be directly correlated to the curing process. Very steep differences in mechanical properties over very short distances may impair the material performance, since residual stresses can easily be built over it. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Development of an LYSO based gamma camera for positron and scinti-mammography

    NASA Astrophysics Data System (ADS)

    Liang, H.-C.; Jan, M.-L.; Lin, W.-C.; Yu, S.-F.; Su, J.-L.; Shen, L.-H.

    2009-08-01

    In this research, characteristics of combination of PSPMTs (position sensitive photo-multiplier tube) to form a larger detection area is studied. A home-made linear divider circuit was built for merging signals and readout. Borosilicate glasses were chosen for the scintillation light sharing in the crossover region. Deterioration effect caused by the light guide was understood. The influences of light guide and crossover region on the separable crystal size were evaluated. According to the test results, a gamma camera with a crystal block of 90 × 90 mm2 covered area, composed of 2 mm LYSO crystal pixels, was designed and fabricated. Measured performances showed that this camera worked fine in both 511 keV and lower energy gammas. The light loss behaviour within the crossover region was analyzed and realized. Through count rate measurements, the 176Lu nature background didn't show severe influence on the single photon imaging and exhibited an amount of less than 1/3 of all the events acquired. These results show that with using light sharing techniques, combination of multiple PSPMTs in both X and Y directions to build a large area imaging detector is capable to be achieved. Also this camera design is feasible to keep both the abilities for positron and single photon breast imaging applications. Separable crystal size is 2 mm with 2 mm thick glass applied for the light sharing in current status.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djavid, Mehrdad; Mi, Zetian, E-mail: zetian.mi@mcgill.ca

    The performance of conventional AlGaN deep ultraviolet light emitting diodes has been limited by the extremely low light extraction efficiency (<10%), due to the unique transverse magnetic (TM) polarized light emission. Here, we show that, by exploiting the lateral side emission, the extraction efficiency of TM polarized light can be significantly enhanced in AlGaN nanowire structures. Using the three-dimensional finite-difference time domain simulation, we demonstrate that the nanowire structures can be designed to inhibit the emission of guided modes and redirect trapped light into radiated modes. A light extraction efficiency of more than 70% can, in principle, be achieved bymore » carefully optimizing the nanowire size, nanowire spacing, and p-GaN thickness.« less

  3. The Tragic Aspect of Teaching: Hope in Face of Uncertainty

    ERIC Educational Resources Information Center

    Scott, Kieran

    2017-01-01

    Educators throughout the ages have offered metaphors and analogies for teaching and teachers. Prominent among them are: gardener, midwife, facilitator, guide, sacrament. Each of these metaphors shed light, from a different angle, on the act of teaching. This article proposes the metaphor of tragedy as a way of shedding new light, from a totally…

  4. Evaluation of simulation alternatives for the brute-force ray-tracing approach used in backlight design

    NASA Astrophysics Data System (ADS)

    Desnijder, Karel; Hanselaer, Peter; Meuret, Youri

    2016-04-01

    A key requirement to obtain a uniform luminance for a side-lit LED backlight is the optimised spatial pattern of structures on the light guide that extract the light. The generation of such a scatter pattern is usually performed by applying an iterative approach. In each iteration, the luminance distribution of the backlight with a particular scatter pattern is analysed. This is typically performed with a brute-force ray-tracing algorithm, although this approach results in a time-consuming optimisation process. In this study, the Adding-Doubling method is explored as an alternative way for evaluating the luminance of a backlight. Due to the similarities between light propagating in a backlight with extraction structures and light scattering in a cloud of light scatterers, the Adding-Doubling method which is used to model the latter could also be used to model the light distribution in a backlight. The backlight problem is translated to a form upon which the Adding-Doubling method is directly applicable. The calculated luminance for a simple uniform extraction pattern with the Adding-Doubling method matches the luminance generated by a commercial raytracer very well. Although successful, no clear computational advantage over ray tracers is realised. However, the dynamics of light propagation in a light guide as used the Adding-Doubling method, also allow to enhance the efficiency of brute-force ray-tracing algorithms. The performance of this enhanced ray-tracing approach for the simulation of backlights is also evaluated against a typical brute-force ray-tracing approach.

  5. A PREP Panel, Practice-Based, Evaluation of the Handling of the Kerr Demi-Ultra Light Curing Unit.

    PubMed

    Burke, F J Trevor; Crisp, Russell J

    2015-09-01

    This paper describes the handling evaluation (by a group of practice-based researchers, the PREP Panel) of a recently introduced Light Curing Unit (LCU), the Kerr Demi-Ultra, which possesses a number of novel features such as its ultracapacitor power source, and the Light Emitting Diodes (LEDs) which provide the light output being placed close to the tip of the light guide. CPD/CLINICAL RELEVANCE: Testing of new devices and materials with respect to their handling is of importance, given that an easy to handle device should produce better clinical results than one which is difficult to use.

  6. A Practical Guide to Experimental Geometrical Optics

    NASA Astrophysics Data System (ADS)

    Garbovskiy, Yuriy A.; Glushchenko, Anatoliy V.

    2017-12-01

    Preface; 1. Markets of optical materials, components, accessories, light sources and detectors; 2. Introduction to optical experiments: light producing, light managing, light detection and measuring; 3. Light detectors based on semiconductors: photoresistors, photodiodes in a photo-galvanic regime. Principles of operation and measurements; 4. Linear light detectors based on photodiodes; 5. Basic laws of geometrical optics: experimental verification; 6. Converging and diverging thin lenses; 7. Thick lenses; 8. Lens systems; 9. Simple optical instruments I: the eye and the magnifier, eyepieces and telescopes; 10. Simple optical instruments II: light illuminators and microscope; 11. Spherical mirrors; 12. Introduction to optical aberrations; 13. Elements of optical radiometry; 14. Cylindrical lenses and vials; 15. Methods of geometrical optics to measure refractive index; 16. Dispersion of light and prism spectroscope; 17. Elements of computer aided optical design; Index.

  7. Towards Guided Underwater Survey Using Light Visual Odometry

    NASA Astrophysics Data System (ADS)

    Nawaf, M. M.; Drap, P.; Royer, J. P.; Merad, D.; Saccone, M.

    2017-02-01

    A light distributed visual odometry method adapted to embedded hardware platform is proposed. The aim is to guide underwater surveys in real time. We rely on image stream captured using portable stereo rig attached to the embedded system. Taken images are analyzed on the fly to assess image quality in terms of sharpness and lightness, so that immediate actions can be taken accordingly. Images are then transferred over the network to another processing unit to compute the odometry. Relying on a standard ego-motion estimation approach, we speed up points matching between image quadruplets using a low level points matching scheme relying on fast Harris operator and template matching that is invariant to illumination changes. We benefit from having the light source attached to the hardware platform to estimate a priori rough depth belief following light divergence over distance low. The rough depth is used to limit points correspondence search zone as it linearly depends on disparity. A stochastic relative bundle adjustment is applied to minimize re-projection errors. The evaluation of the proposed method demonstrates the gain in terms of computation time w.r.t. other approaches that use more sophisticated feature descriptors. The built system opens promising areas for further development and integration of embedded computer vision techniques.

  8. Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound

    PubMed Central

    Yuan, Guangqian; Alqasemi, Umar; Chen, Aaron; Yang, Yi; Zhu, Quing

    2014-01-01

    Abstract. Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions. PMID:25473884

  9. Theoretical solution for light transmission of a bended hollow light guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocifaj, Miroslav; Darula, Stanislav; Kittler, Richard

    2010-08-15

    Hollow light guides with very high reflective inner surfaces are novel daylight systems that collect sunlight and skylight available on the roof of buildings transporting it into deep or windowless interiors in building cores. Thus the better utilization of daylight can result in energy savings and wellbeing in these enclosed indoor spaces. An analytical complex solution of a straight tube system was solved in the HOLIGILM method with a user-friendly tool available on the http://www.holigilm.info. An even more difficult light flow transport is to be determined in bended tubes usually placed on sloped roofs where a bend is necessary tomore » adjust the vertical pass through the ceilings. This paper presents the theoretical derivation of the model with its graphical representation and coordinate system respecting backward ray-tracing bend distortions. To imagine the resulting illuminance on the horizontal plane element in the interior, the virtual ray (i.e. luminance in an elementary solid angle) has to pass the ceiling diffuser interface, the inner mirror like tube with a bend, through a roof cupola attachment to the element of the sky and sun light source. Due to this complexity and the lengthy derivation and explanations more practical applications will be published later in a separate contribution. (author)« less

  10. How To Save Money By Using Less Electricity, Natural Gas, and Water: A Do-It-Yourself Guide. Publication 228.

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Lawrence Berkeley Lab.

    Presented are ways in which consumers can improve the energy efficiency of their homes and conserve water. Organized by types of energy use, the guide points out what to look for and what changes to consider as homeowners inspect heating and air conditioning systems, the hot water system, kitchen appliances, lighting, and water use. Conservation…

  11. Design of a backlighting structure for very large-area luminaries

    NASA Astrophysics Data System (ADS)

    Carraro, L.; Mäyrä, A.; Simonetta, M.; Benetti, G.; Tramonte, A.; Benedetti, M.; Randone, E. M.; Ylisaukko-Oja, A.; Keränen, K.; Facchinetti, T.; Giuliani, G.

    2017-02-01

    A novel approach for RGB semiconductor LED-based backlighting system is developed to satisfy the requirements of the Project LUMENTILE funded by the European Commission, whose scope is to develop a luminous electronic tile that is foreseen to be manufactured in millions of square meters each year. This unconventionally large-area surface of uniform, high-brightness illumination requires a specific optical design to keep a low production cost, while maintaining high optical extraction efficiency and a reduced thickness of the structure, as imposed by architectural design constraints. The proposed solution is based on a light-guiding layer to be illuminated by LEDs in edge configuration, or in a planar arrangement. The light guiding slab is finished with a reflective top interface and a diffusive or reflective bottom interface/layer. Patterning is used for both the top interface (punctual removal of reflection and generation of a light scattering centers) and for the bottom layer (using dark/bright printed pattern). Computer-based optimization algorithms based on ray-tracing are used to find optimal solutions in terms of uniformity of illumination of the top surface and overall light extraction efficiency. Through a closed-loop optimization process, that assesses the illumination uniformity of the top surface, the algorithm generates the desired optimized top and bottom patterns, depending on the number of LED sources used, their geometry, and the thickness of the guiding layer. Specific low-cost technologies to realize the patterning are discussed, with the goal of keeping the production cost of these very large-area luminaries below the value of 100$/sqm.

  12. Scintillating fiber-based photon beam profiler for the Jefferson Lab tagged photon beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorn, C.; Barbosa, F.J.; Freyberger, A.

    2000-10-01

    A scintillating fiber hodoscope has been built for use as a photon beam profiler in the bremsstrahlung tagged photon beam in Hall B of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The device consists of a linear array of 64 2-2 mm2 scintillating fibers glued to a corresponding set of light guide fibers. Both fiber types use double-clad technology for maximum intensity. The light guide fibers are gently bent into a square array of holes and air-gap coupled to four compact position-sensitive photomultipliers (16 channel Hamamatsu R5900-M16). Custom electronics amplifies and converts the analog outputs to ECL pulses whichmore » are counted by VME-based scalars. The device consisting of the fibers, photomultipliers, and electronics is sealed within a light-tight aluminum box. Two modules make up a beam imaging 2-D system. The system has been tested successfully during an experimental run« less

  13. Multi-characteristic opsin enabled vision restoration

    NASA Astrophysics Data System (ADS)

    Wright, Weldon; Pradhan, Sanjay; Bhattacharya, Sulgana; Mahapatra, Vasu; Tripathy, Ashutosh; Gajjeraman, Sivakumar; Mohanty, Samarendra

    2017-02-01

    Photodegenerative retinal diseases such as retinitis pigmentosa (RP) and dry age related macular degeneration (dry- AMD) lead to loss of vision in millions of individuals. Currently, no surgical or medical treatment is available though optogenetic therapies are in clinical development. Here, we demonstrate vision restoration using Multi- Characteristics Opsin (MCO1) in animal models with photo-degenerated retina. MCO1 is reliably delivered to specific retinal cells via intravitreal injection of Adeno-Associated Virus, leading to significant improvement in visually guided behavior conducted using a radial-arm water maze. The time to reach platform significantly reduced after delivery of MCO1. Notably, the improvement in visually guided behavior was observed even at light intensity levels orders of magnitude lower than that required for Channelrhodopsin-2 opsin. Chronic light exposure study showed that chronic light exposure did not compromise viability of vMCO1-treated retina. Safe virus-mediated MCO1-delivery has potential for effective gene therapy of diverse retinal degenerations in patients.

  14. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes.

    PubMed

    Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R; Castillo, Gabriel R; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng

    2014-08-07

    Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips.

  15. Directional imaging of the retinal cone mosaic

    NASA Astrophysics Data System (ADS)

    Vohnsen, Brian; Iglesias, Ignacio; Artal, Pablo

    2004-05-01

    We describe a near-IR scanning laser ophthalmoscope that allows the retinal cone mosaic to be imaged in the human eye in vivo without the use of wave-front correction techniques. The method takes advantage of the highly directional quality of cone photoreceptors that permits efficient coupling of light to individual cones and subsequent detection of most directional components of the backscattered light produced by the light-guiding effect of the cones. We discuss details of the system and describe cone-mosaic images obtained under different conditions.

  16. Light-assisted, templated self-assembly using a photonic-crystal slab.

    PubMed

    Jaquay, Eric; Martínez, Luis Javier; Mejia, Camilo A; Povinelli, Michelle L

    2013-05-08

    We experimentally demonstrate the technique of light-assisted, templated self-assembly (LATS). We excite a guided-resonance mode of a photonic-crystal slab with 1.55 μm laser light to create an array of optical traps. We demonstrate assembly of a square lattice of 520 nm diameter polystyrene particles spaced by 860 nm. Our results demonstrate how LATS can be used to fabricate reconfigurable structures with symmetries different from traditional colloidal self-assembly, which is limited by free energetic constraints.

  17. A study of optical design of backlight module with external illuminance

    NASA Astrophysics Data System (ADS)

    Yen, Chih-Ta; Fang, Yi-Chin

    2011-10-01

    This research proposes the concept of Light Guide Film (LGF) at the back side of Back Light Unit (BLU). This new design may induce the exterior light, and then improve the power-saving of existent BLU. Two design models are reseated: One is design for 14 inch LCD monitor of notebook computer, which might improve 21% compared to traditional one. Another is designed for 3.5 inch LCD for mobile phone display, which might improve 15% compared to traditional one.

  18. Using Kepler Light Curves for Astronomy Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Cash, Jennifer; Rivers, S.; Eleby, J.; Gould, A.; Komatsu, T.

    2014-01-01

    We will present our efforts related to Education and Public Outreach activities using Kepler Light Curves. We are currently developing interactive web based activities to introduce the public to the general topic of Stellar Variability and Intrinsic Variable Stars in particular using the high quality light curves of over a dozen Kepler targets. Along with the public website, we are exploring areas to develop teacher guides to use Kepler Light Curves in the middle and high school classrooms. These efforts are supported through a NASA EPSCoR grant "South Carolina Joint Venture Program" via a subaward to SC State University.

  19. FIBER AND INTEGRATED OPTICS: Influence of diffraction-induced emission of light on resonant conversion of surface waves in diffraction-coupled optical waveguides

    NASA Astrophysics Data System (ADS)

    Kiselev, V. A.; Shaposhnikov, S. N.

    1989-09-01

    An investigation is reported of diffraction-induced emission of surface waves under conditions of resonant transfer of light between different regular and corrugated waveguides. It is shown that the part of the emitted light flux carried by surface waves along diffraction-coupled waveguides depends strongly on the ratio of the effective refractive indices of the guides. The dependences of the optical coupling length and of the corresponding emitted light flux on the distance between the waveguides and on the difference between their refractive indices are given.

  20. Daylighting with Mirror Light Pipes and with Fluorescent Planar Concentrators. First Results from the Demonstration Project Stuttgart-Hohenheim

    NASA Astrophysics Data System (ADS)

    Zastrow, Armin; Wittwer, Volker

    1987-02-01

    Efficient daylighting systems have recently attracted increasing interest due to their potential for saving a condiderable amount of electrical energy used for lighting purposes. In this paper we discuss the properties of daylighting systems based on either fluorescent planar concentrators (FPC's) and transparent light guiding plates or light pipes coated with a highly reflective silver coated plastic film (3M Silverlux film). First results on daylighting systems in the students' living quarters in Stuttgart-Hohenheim will be presented. This is a demonstration project which is supported by the Commission of the European Communities.

  1. [Comparison of the color difference between teeth underwent cold light whitening and two kinds of shade guides].

    PubMed

    Xu, Y X

    2018-06-18

    To investigate which shade guide, Vitapan Classical or Vita Bleachedguide 3DMaster, is better matched with the color of teeth in judging whitening effect, by comparing the color difference between shade tabs and corresponding teeth underwent cold light tooth whitening. A total of 60 patients underwent Beyond cold light tooth whitening from May 2014 to April 2016. The patients were divided into two experimental groups according to the shade guide used. Vitapan Classical shade guide was used to judge whitening effect in one group, and Vita Bleachedguide 3DMaster shade guide was used in another. Shade matching was carried out before and after whitening in both the two groups, and the results were recorded by digital photographs. Shade matching procedures were carried out by two doctors independently. If they chose the same tab, it would be seen as the shade matching result; While if they chose different tabs, another doctor would be invited to make a decision. Photographs were taken in preset conditions: intraoral photos of the full dentition in the front, and the proportion of shooting was 1:3; aperture was F22; shutter speed was 1/200; intensity of flash was M/8; ISO value was 200. The photographs were analyzed by Photoshop software. Chromatic values were measured, and color difference values were calculated. Measuring of chromatic values was carried out by three doctors independently, and all the photos were measured twice by each doctor. Six measure results of each photo were recorded, and the maximum and the minimum were excluded, then the mean was seen as the final result. The color difference values were compared by independent-sample t test. Besides, changes of shade tabs after whitening in the two groups were recorded. Color difference value was 5.06±1.71 in Vitapan Classical group, and 3.39±1.36 in Vita Bleachedguide 3D-Master group. There was statistically significant difference between the two groups (t=4.68,P<0.001). Change of shade tabs was 3.63±1.75 in Vitapan Classical group, and 2.23±1.01 in Vita Bleachedguide 3DMaster group. Vita Bleachedguide 3D-Master is better matched with the color of teeth, so it is preferred in judging the effect of cold light tooth whitening.

  2. CEL-1 Lighting Computer Program - Programmer’s Guide.

    DTIC Science & Technology

    1983-01-01

    COMPLETING FORM I REPORT NumeR .2 GOUT ACCESSION NO. 1. RECIPIENT’S CATALOG NUMBER CR 83.009� 4TITLE (Id Subt.II.) F HIf REOTAPIDCVRD CEL-1 Light...contribution due to the "bright spots" gene - rated in OVLY20 may be considered the "first bounce" effect. The ceiling contribution computed here in

  3. LUT Wrap Up

    DTIC Science & Technology

    2011-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. LUT Wrap Up Curtis D. Mobley Sequoia Scientific, Inc...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Sequoia Scientific, Inc,2700 Richards Road, Suite 107,Bellevue,WA...2010. EcoLight-S 1.0 Users’ Guide and Technical Documentation. Sequoia Scientific, Inc., 40 pages. Mobley, C. D., 2011. Fast light

  4. Use of a fiberscope for examining cavity nests

    Treesearch

    Kathryn L. Purcell

    1997-01-01

    A system is described that uses a fiberscope to view nests in cavities to provide detailed information on eggs and nestlings. The flexible probe can be inserted around bends, and the tip articulates to allow viewing of the entire cavity and nest. A light guide bundle furnishes light to enable viewing of dark cavities and optical fibers transmit the impage from the lens...

  5. 10 CFR Appendix I to Part 50 - Numerical Guides for Design Objectives and Limiting Conditions for Operation To Meet the...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power Reactor Effluents SECTION I. Introduction. Section 50.34a provides that an application for a construction...

  6. 10 CFR Appendix I to Part 50 - Numerical Guides for Design Objectives and Limiting Conditions for Operation To Meet the...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power Reactor Effluents SECTION I. Introduction. Section 50.34a provides that an application for a construction...

  7. A Prospective, Randomized Crossover Study Comparing Direct Inspection by Light Microscopy versus Projected Images for Teaching of Hematopathology to Medical Students

    ERIC Educational Resources Information Center

    Carlson, Aaron M.; McPhail, Ellen D.; Rodriguez, Vilmarie; Schroeder, Georgene; Wolanskyj, Alexandra P.

    2014-01-01

    Instruction in hematopathology at Mayo Medical School has evolved from instructor-guided direct inspection under the light microscope (laboratory method), to photomicrographs of glass slides with classroom projection (projection method). These methods have not been compared directly to date. Forty-one second-year medical students participated in…

  8. Two Effective Ways to Implement Wait Time. A Symposium on Wait Time.

    ERIC Educational Resources Information Center

    Swift, J. Nathan; And Others

    The effects of instructional guides and a wait time feedback device (called a "Wait Timer") on the classroom interaction of middle school science teachers are examined. The Wait Timer, an unobtrusive indicator of wait time, is an automatic device that activates a light when a person speaks. The duration of the light at the end of a…

  9. Tabletop computed lighting for practical digital photography.

    PubMed

    Mohan, Ankit; Bailey, Reynold; Waite, Jonathan; Tumblin, Jack; Grimm, Cindy; Bodenheimer, Bobby

    2007-01-01

    We apply simplified image-based lighting methods to reduce the equipment, cost, time, and specialized skills required for high-quality photographic lighting of desktop-sized static objects such as museum artifacts. We place the object and a computer-steered moving-head spotlight inside a simple foam-core enclosure and use a camera to record photos as the light scans the box interior. Optimization, guided by interactive user sketching, selects a small set of these photos whose weighted sum best matches the user-defined target sketch. Unlike previous image-based relighting efforts, our method requires only a single area light source, yet it can achieve high-resolution light positioning to avoid multiple sharp shadows. A reduced version uses only a handheld light and may be suitable for battery-powered field photography equipment that fits into a backpack.

  10. Seeing in a new light: Astro-1 teacher's guide with activities

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A teacher's guide that concentrates on the electromagnetic spectrum is presented. The subject was chosen because it is part of the middle school curriculum and because an understanding of the different ranges of energy is crucial to an understanding of the high energy astronomy performed by the Astro-1 telescopes to be carried on the Space Shuttle's first astrophysics mission. Various learning activities are outlined.

  11. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    PubMed Central

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-01-01

    Abstract. There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here. PMID:27533438

  12. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    NASA Astrophysics Data System (ADS)

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-08-01

    There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here.

  13. The First Light of the Subaru Laser Guide Star Adaptive Optics System

    NASA Astrophysics Data System (ADS)

    Takami, H.; Hayano, Y.; Oya, S.; Hattori, M.; Watanabe, M.; Guyon, O.; Eldred, M.; Colley, S.; Saito, Y.; Itoh, M.; Dinkins, M.

    Subaru Telescope has been operating 36 element curvature sensor AO system for the Cassegrain focus since 2000. We have developed a new AO system for the Nasmyth focus. The AO system has 188 element curvature wavefront sensor and bimorph deformable mirror. It is the largest format system for this type of sensor . The deformable mirror has also 188 element with 90 mm effective aperture and 130 mm blank size. The real time controller is 4 CPU real time Linux OS computer and the update speed is now 1.5 kHz. The AO system also has laser guide star system. The laser is sum frequency solid state laser generating 589 nm light. We have achieved 4.7 W output power with excellent beam quality of M^2=1.1 and good stability. The laser is installed in a clean room on the Nasmyth platform. The laser beam is transferred by photonic crystal optical fiber with 35 m to the 50 cm laser launching telescope mounted behind the Subaru 2ry mirror. The field of view of the low order wavefront sensor for tilt guide star in LGS mode is 2.7 arcmin in diameter. The AO system had the first light with natural guide star in October 2006. The Strehl ratio was > 0.5 at K band under the 0.8 arcsec visible seeing. We also has projected laser beam on the sky during the same engineering run. Three instruments will be used with the AO system. Infrared camera and spectrograph (IRCS), High dynamic range IR camera (HiCIAO) for exosolar planet detection, and visible 3D spectrograph.

  14. Evaluation of a fiber-optic fluorescence spectroscopy system to assist neurosurgical tumor resections

    NASA Astrophysics Data System (ADS)

    Ilias, Michail A.; Richter, Johan; Westermark, Frida; Brantmark, Martin; Andersson-Engels, Stefan; Wårdell, Karin

    2007-07-01

    The highly malignant brain tumor, glioblastoma multiforme, is difficult to totally resect without aid due to its infiltrative way of growing and its morphological similarities to surrounding functioning brain under direct vision in the operating field. The need for an inexpensive and robust real-time visualizing system for resection guiding in neurosurgery has been formulated by research groups all over the world. The main goal is to develop a system that helps the neurosurgeon to make decisions during the surgical procedure. A compact fiber optic system using fluorescence spectroscopy has been developed for guiding neurosurgical resections. The system is based on a high power light emitting diode at 395 nm and a spectrometer. A fiber bundle arrangement is used to guide the excitation light and fluorescence light between the instrument and the tissue target. The system is controlled through a computer interface and software package especially developed for the application. This robust and simple instrument has been evaluated in vivo both on healthy skin but also during a neurosurgical resection procedure. Before surgery the patient received orally a low dose of 5-aminolevulinic acid, converted to the fluorescence tumor marker protoporphyrin IX in the malignant cells. Preliminary results indicate that PpIX fluorescence and brain tissue autofluorescence can be recorded with the help of the developed system intraoperatively during resection of glioblastoma multiforme.

  15. Engineered surface scatterers in edge-lit slab waveguides to improve light delivery in algae cultivation.

    PubMed

    Ahsan, Syed Saad; Pereyra, Brandon; Jung, Erica E; Erickson, David

    2014-10-20

    Most existing photobioreactors do a poor job of distributing light uniformly due to shading effects. One method by which this could be improved is through the use of internal wave-guiding structures incorporating engineered light scattering schemes. By varying the density of these scatterers, one can control the spatial distribution of light inside the reactor enabling better uniformity of illumination. Here, we compare a number of light scattering schemes and evaluate their ability to enhance biomass accumulation. We demonstrate a design for a gradient distribution of surface scatterers with uniform lateral scattering intensity that is superior for algal biomass accumulation, resulting in a 40% increase in the growth rate.

  16. Optofluidic encapsulation and manipulation of silicon microchips using image processing based optofluidic maskless lithography and railed microfluidics.

    PubMed

    Chung, Su Eun; Lee, Seung Ah; Kim, Jiyun; Kwon, Sunghoon

    2009-10-07

    We demonstrate optofluidic encapsulation of silicon microchips using image processing based optofluidic maskless lithography and manipulation using railed microfluidics. Optofluidic maskless lithography is a dynamic photopolymerization technique of free-floating microstructures within a fluidic channel using spatial light modulator. Using optofluidic maskless lithography via computer-vision aided image processing, polymer encapsulants are fabricated for chip protection and guiding-fins for efficient chip conveying within a fluidic channel. Encapsulated silicon chips with guiding-fins are assembled using railed microfluidics, which is an efficient guiding and heterogeneous self-assembly system of microcomponents. With our technology, externally fabricated silicon microchips are encapsulated, fluidically guided and self-assembled potentially enabling low cost fluidic manipulation and assembly of integrated circuits.

  17. Polarization switching of sodium guide star laser for brightness enhancement

    NASA Astrophysics Data System (ADS)

    Fan, Tingwei; Zhou, Tianhua; Feng, Yan

    2016-07-01

    The efficiency of optical pumping that enhances the brightness of sodium laser guide star with circularly polarized light is reduced substantially due to the precession of sodium atoms in geomagnetic field. Switching the laser between left and right circular polarization at the Larmor frequency is proposed to improve the photon return. With ESO's cw laser guide star system at Paranal as example, numerical simulation for both square-wave and sine-wave polarization modulation is conducted. For the square-wave switching case, the return flux is increased when the angle between geomagnetic field and laser beam is larger than 60°, as much as 40% at 90°. The method can also be applied for remote measurement of magnetic field with available cw guide star laser.

  18. Development of multiwavelength excitation light source for autofluorescence and photodynamic diagnosis systems

    NASA Astrophysics Data System (ADS)

    Kenar, Necla; Lim, H. S.; Mirzaaghasi, Amin

    2014-02-01

    New design of the excitation light source that can stably generate light with center wavelengths of 450nm, 530nm, 632.8nm and white light for auto-fluorescence(AF) and photodynamic diagnosis(PDD) of cancer in clinics in a single system is presented in this study. The light source consists of Xenon Lamp (300W), light guide module including motorize filter wheel equipped with optical filters with corresponding to wavelength bands, servo motor, motorize iris, a cooling system, power supply and optical transmission part for the output light. The transmission part of the light source was developed to collimate the light with desired wavelength into input of fiber optic. Output powers are obtained average 99.91 mW for 450+/-40 nm, 111.01 mW for 530+/-10nm, and 78.50 mW for 632.8+/-10nm.

  19. Multiphoton microscopy and image guided light activated therapy using nanomaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Prasad, Paras N.

    2017-02-01

    This talk will focus on design and applications of nanomaterials exhibiting strong multiphoton upconversion for multiphoton microscopy as well as for image-guided and light activated therapy .1-3 Such processes can occur by truly nonlinear optical interactions proceeding through virtual intermediate states or by stepwise coupled linear excitations through real intermediate states. Multiphoton processes in biocompatible multifunctional nanoparticles allow for 3D deep tissue imaging. In addition, they can produce in-situ photon conversion of deep tissue penetrating near IR light into a needed shorter wavelength light for photo-activated therapy at a targeted site, thus overcoming the limited penetration of UV or visible light into biological media. We are using near IR emitters such as silicon quantum dots which also exhibit strong multiphoton excitation for multiphoton microscopy. Another approach involves nonlinear nanocrystals such as ZnO which can produce four wave mixing, sum frequency generation as well as second harmonic generation to convert a deep tissue penetrating Near IR light at the targeted biological site to a desired shorter wavelength light suitable for bio imaging or activation of a therapy. We have utilized this approach to activate a photosensitizer for photodynamic therapy. Yet another type of upconversion materials is rare-earth ion doped optical nanotransformers which transform a Near IR (NIR) light from an external source by sequential single photon absorption, in situ and on demand, to a needed wavelength. Applications of these nanotransformers in multiphoton photoacoustic imaging will also be presented. An exciting direction pursued by us using these multiphoton nanoparticles, is functional imaging of brain. Simultaneously, they can effect optogenetics for regioselective stimulation of neurons for providing an effective intervention/augmentation strategy to enhance the cognitive state and lead to a foundation for futuristic vision of super human capabilities. Challenges and opportunities will be discussed.

  20. Group Behavioural Responses of Atlantic Salmon (Salmo salar L.) to Light, Infrasound and Sound Stimuli

    PubMed Central

    Bui, Samantha; Oppedal, Frode; Korsøen, Øyvind J.; Sonny, Damien; Dempster, Tim

    2013-01-01

    Understanding species-specific flight behaviours is essential in developing methods of guiding fish spatially, and requires knowledge on how groups of fish respond to aversive stimuli. By harnessing their natural behaviours, the use of physical manipulation or other potentially harmful procedures can be minimised. We examined the reactions of sea-caged groups of 50 salmon (1331±364 g) to short-term exposure to visual or acoustic stimuli. In light experiments, fish were exposed to one of three intensities of blue LED light (high, medium and low) or no light (control). Sound experiments included exposure to infrasound (12 Hz), a surface disturbance event, the combination of infrasound and surface disturbance, or no stimuli. Groups that experienced light, infrasound, and the combination of infrasound and surface disturbance treatments, elicited a marked change in vertical distribution, where fish dived to the bottom of the sea-cage for the duration of the stimulus. Light treatments, but not sound, also reduced the total echo-signal strength (indicative of swim bladder volume) after exposure to light, compared to pre-stimulus levels. Groups in infrasound and combination treatments showed increased swimming activity during stimulus application, with swimming speeds tripled compared to that of controls. In all light and sound treatments, fish returned to their pre-stimulus swimming depths and speeds once exposure had ceased. This work establishes consistent, short-term avoidance responses to these stimuli, and provides a basis for methods to guide fish for aquaculture applications, or create avoidance barriers for conservation purposes. In doing so, we can achieve the manipulation of group position with minimal welfare impacts, to create more sustainable practices. PMID:23691087

  1. Group behavioural responses of Atlantic salmon (Salmo salar L.) to light, infrasound and sound stimuli.

    PubMed

    Bui, Samantha; Oppedal, Frode; Korsøen, Øyvind J; Sonny, Damien; Dempster, Tim

    2013-01-01

    Understanding species-specific flight behaviours is essential in developing methods of guiding fish spatially, and requires knowledge on how groups of fish respond to aversive stimuli. By harnessing their natural behaviours, the use of physical manipulation or other potentially harmful procedures can be minimised. We examined the reactions of sea-caged groups of 50 salmon (1331 ± 364 g) to short-term exposure to visual or acoustic stimuli. In light experiments, fish were exposed to one of three intensities of blue LED light (high, medium and low) or no light (control). Sound experiments included exposure to infrasound (12 Hz), a surface disturbance event, the combination of infrasound and surface disturbance, or no stimuli. Groups that experienced light, infrasound, and the combination of infrasound and surface disturbance treatments, elicited a marked change in vertical distribution, where fish dived to the bottom of the sea-cage for the duration of the stimulus. Light treatments, but not sound, also reduced the total echo-signal strength (indicative of swim bladder volume) after exposure to light, compared to pre-stimulus levels. Groups in infrasound and combination treatments showed increased swimming activity during stimulus application, with swimming speeds tripled compared to that of controls. In all light and sound treatments, fish returned to their pre-stimulus swimming depths and speeds once exposure had ceased. This work establishes consistent, short-term avoidance responses to these stimuli, and provides a basis for methods to guide fish for aquaculture applications, or create avoidance barriers for conservation purposes. In doing so, we can achieve the manipulation of group position with minimal welfare impacts, to create more sustainable practices.

  2. Optical emission line monitor with background observation and cancellation

    DOEpatents

    Goff, D.R.; Notestein, J.E.

    1985-01-04

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interfering blackbody radiation by greater than 20 dB.

  3. Optical emission line monitor with background observation and cancellation

    DOEpatents

    Goff, David R.; Notestein, John E.

    1986-01-01

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interferring blackbody radiation by greater than 20 dB.

  4. Argonne - Ring Resonators

    Science.gov Websites

    -- Link6 -- Integrated Photonic Spectrographs for Astronomy Optical Multi-Mode Interference Devices Dual Guiding, Modulating, and Emitting Light on Silicon Scope1 -- Scope 2 -- Lamp1 -- optical Ring Resonators

  5. School Auditoriums.

    ERIC Educational Resources Information Center

    American School Board Journal, 1965

    1965-01-01

    Auditoriums of the future, divisible auditoriums, economic advantages of multi-service space and auditorium location are discussed. Also presented are guides for buying and selecting seating, state equipment, portable stages, and stage lighting. (RK)

  6. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors.

    PubMed

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-09-30

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  7. Nanowire-based single-cell endoscopy

    NASA Astrophysics Data System (ADS)

    Yan, Ruoxue; Park, Ji-Ho; Choi, Yeonho; Heo, Chul-Joon; Yang, Seung-Man; Lee, Luke P.; Yang, Peidong

    2012-03-01

    One-dimensional smart probes based on nanowires and nanotubes that can safely penetrate the plasma membrane and enter biological cells are potentially useful in high-resolution and high-throughput gene and drug delivery, biosensing and single-cell electrophysiology. However, using such probes for optical communication across the cellular membrane at the subwavelength level remains limited. Here, we show that a nanowire waveguide attached to the tapered tip of an optical fibre can guide visible light into intracellular compartments of a living mammalian cell, and can also detect optical signals from subcellular regions with high spatial resolution. Furthermore, we show that through light-activated mechanisms the endoscope can deliver payloads into cells with spatial and temporal specificity. Moreover, insertion of the endoscope into cells and illumination of the guided laser did not induce any significant toxicity in the cells.

  8. Numerical consideration on trapping and guiding of nanoparticles in a flow using scattering field of laser light

    NASA Astrophysics Data System (ADS)

    Yokoi, Naomichi; Aizu, Yoshihisa

    2017-04-01

    Optical manipulation techniques proposed so far almost depend on carefully fabricated setups and samples. Similar conditions can be fixed in laboratories, however, it is still a challenging work to manipulate nanoparticles when the environment is not well controlled and is unknown in advance. Nonetheless, coherent light scattered by rough object generates speckles which are random interference patterns with well-defined statistical properties. In the present study, we numerically investigate the motion of a particle in a flow under the illumination of a speckle pattern that is at rest or in motion. Trajectory of the particle is simulated in relation to a flow velocity and a speckle contrast to confirm the feasibility of the present method for performing optical manipulation tasks such as trapping and guiding.

  9. Real-time single image dehazing based on dark channel prior theory and guided filtering

    NASA Astrophysics Data System (ADS)

    Zhang, Zan

    2017-10-01

    Images and videos taken outside the foggy day are serious degraded. In order to restore degraded image taken in foggy day and overcome traditional Dark Channel prior algorithms problems of remnant fog in edge, we propose a new dehazing method.We first find the fog area in the dark primary color map to obtain the estimated value of the transmittance using quadratic tree. Then we regard the gray-scale image after guided filtering as atmospheric light map and remove haze based on it. Box processing and image down sampling technology are also used to improve the processing speed. Finally, the atmospheric light scattering model is used to restore the image. A plenty of experiments show that algorithm is effective, efficient and has a wide range of application.

  10. Experimental measurement and numerical analysis of group velocity dispersion in cladding modes of an endlessly single-mode photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Baselt, Tobias; Taudt, Christopher; Nelsen, Bryan; Lasagni, Andrés. Fabián.; Hartmann, Peter

    2017-06-01

    The optical properties of the guided modes in the core of photonic crystal fibers (PCFs) can be easily manipulated by changing the air-hole structure in the cladding. Special properties can be achieved in this case such as endless singlemode operation. Endlessly single-mode fibers, which enable single-mode guidance over a wide spectral range, are indispensable in the field of fiber technology. A two-dimensional photonic crystal with a silica central core and a micrometer-spaced hexagonal array of air holes is an established method to achieve endless single-mode properties. In addition to the guidance of light in the core, different cladding modes occur. The coupling between the core and the cladding modes can affect the endlessly single-mode guides. There are two possible ways to determine the dispersion: measurement and calculation. We calculate the group velocity dispersion (GVD) of different cladding modes based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array. Based on the scanning electron image, a calculation was made of the optical guiding properties of the microstructured cladding. We compare the calculation with a method to measure the wavelength-dependent time delay. We measure the time delay of defined cladding modes with a homemade supercontinuum light source in a white light interferometric setup. To measure the dispersion of cladding modes of optical fibers with high accuracy, a time-domain white-light interferometer based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelengthdependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the cladding modes of an endlessly single-mode fiber.

  11. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina

    NASA Astrophysics Data System (ADS)

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-03-01

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α - CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment.

  12. Hybrid fiber-rod laser

    DOEpatents

    Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.

    2012-12-18

    Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.

  13. Diffractive flat panel solar concentrators of a novel design.

    PubMed

    de Jong, Ties M; de Boer, Dick K G; Bastiaansen, Cees W M

    2016-07-11

    A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the principles of nonimaging optics, while the thickness of the device is minimized due to the use of total internal reflection.

  14. Guided-Wave Optic Devices for Integrated Optic Information Processing.

    DTIC Science & Technology

    1984-08-08

    Modulation and switching of light waves in Yttrium iron garnet (YIG)- Gadolinium gallium garnet (GGG) waveguides using Farady rotation , and light...switch, an electrooptic analog-to-digital converter using a Fabry -Perot modula- tor array, and a noncollinear magnetooptic modulator using magnetostatic...data routing in electronic computer networks. ELECTROOPTIC ANALOG-TO-DIGITAL CONVERTER USING CHANNEL WAVEGUIDE FABRY -PEROT MODULATOR ARRAY One of the

  15. Flight performance in night-flying sweat bees suffers at low light levels.

    PubMed

    Theobald, Jamie Carroll; Coates, Melissa M; Wcislo, William T; Warrant, Eric J

    2007-11-01

    The sweat bee Megalopta (Hymenoptera: Halictidae), unlike most bees, flies in extremely dim light. And although nocturnal insects are often equipped with superposition eyes, which greatly enhance light capture, Megalopta performs visually guided flight with apposition eyes. We examined how light limits Megalopta's flight behavior by measuring flight times and corresponding light levels and comparing them with flight trajectories upon return to the nest. We found the average time to land increased in dim light, an effect due not to slow approaches, but to circuitous approaches. Some landings, however, were quite fast even in the dark. To explain this, we examined the flight trajectories and found that in dim light, landings became increasingly error prone and erratic, consistent with repeated landing attempts. These data agree well with the premise that Megalopta uses visual summation, sacrificing acuity in order to see and fly at the very dimmest light intensities that its visual system allows.

  16. Light Trapping with Silicon Light Funnel Arrays

    PubMed Central

    Nissan, Yuval; Gabay, Tamir; Shalev, Gil

    2018-01-01

    Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF) arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase). This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization. PMID:29562685

  17. Daylighting with Fluorescent Concentrators and Highly Reflective Silver-Coated Plastic Films: A New Application for New Materials

    NASA Astrophysics Data System (ADS)

    Zastrow, Armin; Wittwer, Volker

    1986-09-01

    The interest in efficient daylighting systems has grown recently, due to their potential for saving a considerable amount of electrical energy used for lighting purposes. In this paper we discuss the properties of daylighting systems based on either fluorescent planar concentrators and transparent light guiding plates or light pipes coated with highly reflective silver coated plastic films. Finally we give first results from a demonstration project, daylighting systems in the students' living quarters in Stuttgart-Hohenheim, which is supported by the Commission of the European Communities.

  18. Ellipsoidal cell flow system

    DOEpatents

    Salzman, Gary C.; Mullaney, Paul F.

    1976-01-01

    The disclosure relates to a system incorporating an ellipsoidal flow chamber having light reflective walls for low level light detection in practicing cellular analysis. The system increases signal-to-noise ratio by a factor of ten over prior art systems. In operation, laser light passes through the primary focus of the ellipsoid. A controlled flow of cells simultaneously passes through this focus so that the laser light impinges on the cells and is modulated by the cells. The reflective walls of the ellipsoid reflect the cell-modulated light to the secondary focus of the ellipsoid. A tapered light guide at the secondary focus picks up a substantial portion of modulated reflective light and directs it onto a light detector to produce a signal. The signal is processed to obtain the intensity distribution of the modulated light and hence sought after characteristics of the cells. In addition, cells may be dyed so as to fluoresce in response to the laser light and their fluorescence may be processed as cell-modulated light above described. A light discriminating filter would be used to distinguish reflected modulated laser light from reflected fluorescent light.

  19. Optogenetic Modulation and Multi-Electrode Analysis of Cerebellar Networks In Vivo

    PubMed Central

    Kruse, Wolfgang; Krause, Martin; Aarse, Janna; Mark, Melanie D.; Manahan-Vaughan, Denise; Herlitze, Stefan

    2014-01-01

    The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice. PMID:25144735

  20. Positron source position sensing detector and electronics

    DOEpatents

    Burnham, Charles A.; Bradshaw, Jr., John F.; Kaufman, David E.; Chesler, David A.; Brownell, Gordon L.

    1985-01-01

    A positron source, position sensing device, particularly with medical applications, in which positron induced gamma radiation is detected using a ring of stacked, individual scintillation crystals, a plurality of photodetectors, separated from the scintillation crystals by a light guide, and high resolution position interpolation electronics. Preferably the scintillation crystals are several times more numerous than the photodetectors with each crystal being responsible for a single scintillation event from a received gamma ray. The light guide will disperse the light emitted from gamma ray absorption over several photodetectors. Processing electronics for the output of the photodetectors resolves the location of the scintillation event to a fraction of the dimension of each photodetector. Because each positron absorption results in two 180.degree. oppositely traveling gamma rays, the detection of scintillation in pairs permits location of the positron source in a manner useful for diagnostic purposes. The processing electronics simultaneously responds to the outputs of the photodetectors to locate the scintillations to the source crystal. While it is preferable that the scintillation crystal include a plurality of stacked crystal elements, the resolving power of the processing electronics is also applicable to continuous crystal scintillators.

  1. Optimization of nonbinary slanted surface-relief gratings as high-efficiency broadband couplers for light guides.

    PubMed

    Bai, Benfeng; Laukkanen, Janne; Kuittinen, Markku; Siitonen, Samuli

    2010-10-01

    We propose and investigate the use of slanted surface-relief gratings with nonbinary profiles as high-efficiency broadband couplers for light guides. First, a Chandezon-method-based rigorous numerical formulation is presented for modeling the slanted gratings with overhanging profiles. Then, two typical types of slanted grating couplers--a sinusoidal one and a trapezoidal one--are studied and optimized numerically, both exhibiting a high coupling efficiency of over 50% over the full band of white LED under the normal illumination of unpolarized light. Reasonable structural parameters with nice tolerance have been obtained for the optimized designs. It is found that the performance of the couplers depends little on the grating profile shape, but primarily on the grating period and the slant angle of the ridge. The underlying mechanism is analyzed by the equivalence rules of gratings, which provide useful guidelines for the design and fabrication of the couplers. Preliminary investigation has been performed on the fabrication and replication of the slanted overhanging grating couplers, which shows the feasibility of fabrication with mature microfabrication techniques and the perspective for mass production.

  2. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes

    PubMed Central

    Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R.; Castillo, Gabriel R.; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng

    2014-01-01

    Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips. PMID:25100561

  3. Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green.

    PubMed

    Namikawa, Tsutomu; Sato, Takayuki; Hanazaki, Kazuhiro

    2015-12-01

    Near-infrared (NIR) fluorescence imaging has better tissue penetration, allowing for the effective rejection of excitation light and detection deep inside organs. Indocyanine green (ICG) generates NIR fluorescence after illumination by an NIR ray, enabling real-time intraoperative visualization of superficial lymphatic channels and vessels transcutaneously. The HyperEye Medical System (HEMS) can simultaneously detect NIR rays under room light to provide color imaging, which enables visualization under bright light. Thus, NIR fluorescence imaging using ICG can provide for excellent diagnostic accuracy in detecting sentinel lymph nodes in cancer and microvascular circulation in various ischemic diseases, to assist us with intraoperative decision making. Including HEMS in this system could further improve the sentinel lymph node mapping and intraoperative identification of blood supply in reconstructive organs and ischemic diseases, making it more attractive than conventional imaging. Moreover, the development of new laparoscopic imaging systems equipped with NIR will allow fluorescence-guided surgery in a minimally invasive setting. Future directions, including the conjugation of NIR fluorophores to target specific cancer markers might be realistic technology with diagnostic and therapeutic benefits.

  4. Generating a stationary infinite range tractor force via a multimode optical fibre

    NASA Astrophysics Data System (ADS)

    Ebongue, C. A.; Holzmann, D.; Ostermann, S.; Ritsch, H.

    2017-06-01

    Optical fibres confine and guide light almost unattenuated and thus convey light forces to polarizable nano-particles over very long distances. Radiation pressure forces arise from scattering of guided photons into free space while gradient forces are based on coherent scattering between different fibre modes or propagation directions. Interestingly, even scattering between co-propagating modes induces longitudinal forces as the transverse confinement of the light modes creates mode dependent longitudinal wave-vectors and photon momenta. We generalize a proven scattering matrix based approach to calculate single as well as inter-particle forces to include several forward and backward propagating modes. We show that an injection of the higher order mode only in a two mode fibre will induce a stationary tractor force against the injection direction, when the mode coupling to the lower order mode dominates against backscattering and free space losses. Generically this arises for non-absorbing particles at the centre of a waveguide. The model also gives improved predictions for inter-particle forces in evanescent nanofibre fields as experimentally observed recently. Surprisingly strong tractor forces can also act on whole optically bound arrays.

  5. Richard Day Deslattes, 21 Sept 1931 - 16 May 2001: Calibration of light, matter and fundamental constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chantler, C.T.

    2003-01-24

    Richard Deslattes passed away on 16 May 2001 after a life dedicated to fundamental metrology. Although the themes of calibrating light, matter and fundamental constants can give three guiding principles through his career, the wide-ranging nature of his areas of interest are encompassed by over 165 refereed publications with several cited over 100 times. He has left an enduring legacy to science.

  6. On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yongjin, E-mail: wangyj@njupt.edu.cn; Zhu, Guixia; Gao, Xumin

    We propose, fabricate, and characterize the on-chip integration of suspended p-n junction InGaN/GaN multiple quantum wells (MQWs) device and multiple waveguides on the same GaN-on-silicon platform. The integrated devices are fabricated via a wafer-level process and exhibit selectable functionalities for diverse applications. As the suspended p-n junction InGaN/GaN MQWs device operates under a light emitting diode (LED) mode, part of the light emission is confined and guided by the suspended waveguides. The in-plane propagation along the suspended waveguides is measured by a micro-transmittance setup. The on-chip data transmission is demonstrated for the proof-of-concept photonic integration. As the suspended p-n junctionmore » InGaN/GaN MQWs device operates under photodiode mode, the light is illuminated on the suspended waveguides with the aid of the micro-transmittance setup and, thus, coupled into the suspended waveguides. The guided light is finally sensed by the photodiode, and the induced photocurrent trace shows a distinct on/off switching performance. These experimental results indicate that the on-chip photonic integration is promising for the development of sophisticated integrated photonic circuits in the visible wavelength region.« less

  7. Method for ultrafast optical deflection enabling optical recording via serrated or graded light illumination

    DOEpatents

    Heebner, John E [Livermore, CA

    2009-09-08

    In one general embodiment, a method for deflecting an optical signal input into a waveguide is provided. In operation, an optical input signal is propagated through a waveguide. Additionally, an optical control signal is applied to a mask positioned relative to the waveguide such that the application of the optical control signal to the mask is used to influence the optical input signal propagating in the waveguide. Furthermore, the deflected optical input signal output from the waveguide is detected in parallel on an array of detectors. In another general embodiment, a beam deflecting structure is provided for deflecting an optical signal input into a waveguide, the structure comprising at least one wave guiding layer for guiding an optical input signal and at least one masking layer including a pattern configured to influence characteristics of a material of the guiding layer when an optical control signal is passed through the masking layer in a direction of the guiding layer. In another general embodiment, a system is provided including a waveguide, an attenuating mask positioned on the waveguide, and an optical control source positioned to propagate pulsed laser light towards the attenuating mask and the waveguide such that a pattern of the attenuating mask is applied to the waveguide and material properties of at least a portion of the waveguide are influenced.

  8. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    PubMed Central

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-01-01

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 µm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors. PMID:26437407

  9. [Development and test of a wheat chlorophyll, nitrogen and water content meter].

    PubMed

    Yu, Bo; Sun, Ming; Han, Shu-Qing; Xia, Jin-Wen

    2011-08-01

    A portable meter was developed which can detect chlorophyll, nitrogen and moisture content of wheat leaf simultaneously, and can supply enough data for guiding fertilization and irrigation. This meter is composed of light path and electronic circuit. And this meter uses 660, 940 and 1450 nm LED together with narrow band filters as the active light source. The hardware circuit consists of micro-controller, LED drive circuit, detector, communication circuit, keyboard and LCD circuit. The meter was tested in the field and performed well with good repeatability and accuracy. The relative errors of chlorophyll and nitrogen test were about 10%, relative error for water content was 4%. The coefficients of variation of the three indices were all below 1.5%. All of these prove that the meter can be applied under the field condition to guide the wheat production.

  10. Coherent perfect absorption mediated enhancement of transverse spin in a gap plasmon guide

    NASA Astrophysics Data System (ADS)

    Mukherjee, Samyobrata; Dutta Gupta, Subhasish

    2017-01-01

    We consider a symmetric gap plasmon guide (a folded Kretschmann configuration) supporting both symmetric and antisymmetric coupled surface plasmons. We calculate the transverse spin under illumination from both the sides like in coherent perfect absorption (CPA), whereby all the incident light can be absorbed to excite one of the modes of the structure. Significant enhancement in the transverse spin is shown to be possible when the CPA dip and the mode excitation are at the same frequency. The enhancement results from CPA-mediated total transfer of the incident light to either of the coupled modes and the associated large local fields. The effect is shown to be robust against small deviations from the symmetric structure. The transverse spin is localized in the structure since in the ambient dielectric there are only incident plane waves lacking any structure.

  11. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, S.; Kross, B.J.; Zorn, C.J.; Majewski, L.A.

    1996-10-22

    An optimized examination system and method based on the Reverse Geometry X-Ray{trademark} (RGX{trademark}) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs.

  12. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.

    1996-01-01

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  13. Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding.

    PubMed

    Qiao, Xin; Qian, Zhigang; Li, Junjie; Sun, Hongji; Han, Yao; Xia, Xiaoxia; Zhou, Jin; Wang, Chunlan; Wang, Yan; Wang, Changyong

    2017-05-03

    A variety of devices used for biomedical engineering have been fabricated using protein polymer because of their excellent properties, such as strength, toughness, biocompatibility, and biodegradability. In this study, we fabricated an optical waveguide using genetically engineered spider silk protein. This method has two significant advantages: (1) recombinant spider silk optical waveguide exhibits excellent optical and biological properties and (2) biosynthesis of spider silk protein can overcome the limitation to the research on spider silk optical waveguide due to the low yield of natural spider silk. In detail, two kinds of protein-based optical waveguides made from recombinant spider silk protein and regenerative silkworm silk protein were successfully prepared. Results suggested that the recombinant spider silk optical waveguide showed a smoother surface and a higher refractive index when compared with regenerative silkworm silk protein. The optical loss of recombinant spider silk optical waveguide was 0.8 ± 0.1 dB/cm in air and 1.9 ± 0.3 dB/cm in mouse muscles, which were significantly lower than those of regenerative silkworm silk optical waveguide. Moreover, recombinant spider silk optical waveguide can meet the demand to guide and efficiently deliver light through biological tissue. In addition, recombinant spider silk optical waveguide showed low toxicity to cells in vitro and low-level inflammatory reaction with surrounding tissue in vivo. Therefore, recombinant spider silk optical waveguide is a promising implantable device to guide and deliver light with low loss.

  14. Wavelength-tunable light shaping with cholesteric liquid crystal microlenses.

    PubMed

    Bayon, Chloé; Agez, Gonzague; Mitov, Michel

    2014-06-21

    The ability to guide light on the mesoscopic scale is important both scientifically and technologically. Especially relevant is the development of wavelength-tunable light-shaping microdevices. Here we demonstrate the use of cholesteric liquid crystal polygonal textures organized as an array of microlenses for this purpose. The beam shaping is controlled by tuning the wavelength of the incident light in the visible spectrum. By taking advantage of the self-organization property of liquid crystals, the structure of the lens and its optical response are tailored by changing the annealing time of the single layer material during a completely integrated one-step process. The intrinsic helical organization of the layer is the cause of the light shaping and not the shape of the surface as for conventional lenses. A new concept of light manipulation using the structure chirality of liquid crystals is demonstrated, which concerns soft matter photonic circuits to mould the light.

  15. Night-time lighting alters the composition of marine epifaunal communities

    PubMed Central

    Davies, Thomas W.; Coleman, Matthew; Griffith, Katherine M.; Jenkins, Stuart R.

    2015-01-01

    Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities. PMID:25926694

  16. Effects of Light Intensity and Color on the Biomass, Extracellular Red Pigment, and Citrinin Production of Monascus ruber.

    PubMed

    Wang, Liling; Dai, Yang; Chen, Wanping; Shao, Yanchun; Chen, Fusheng

    2016-12-21

    Light is a crucial environmental signal for fungi. In this work, the effects of different light intensities and colors on biomass, Monascus pigments (MPs) and citrinin production of Monascus ruber M7 were investigated. We have demonstrated that low intensity of blue light (500 lx) decreased Monascus biomass, increased MPs accumulation via upregulation of MpigA, MpigB, and MpigJ genes expression, but had no significant influence on citrinin production. High intensity of blue light (1500 lx) decreased citrinin accumulation but had no significant influence on biomass and MPs production after 14 days cultivation. Low intensity of green light (500 lx) stimulated citrinin production via upregulation of pksCT, mrl1, mrl2, and ctnA genes expression. One putative red light photoreceptor and two putative green light photoreceptors were identified in M. ruber M7. These observations will not only guide the practical production of Monascus but also contribute to our understanding light effects on Monascus.

  17. Spanish-Speaking Limited English Proficiency Patients and Call Light Use.

    PubMed

    Montie, Mary; Galinato, Jose Gabriel; Patak, Lance; Titler, Marita

    2016-06-01

    Despite a continuous increase of the limited English proficiency (LEP) population in the United States, disparities in the quality of care received in health care systems persist. This qualitative study explores the perceptions of hospitalized LEP patients on their call light use, as well as their perceptions of a prototype of a new multilingual call light system, Eloquence™. Individual interviews were conducted with 10 Spanish-speaking patient participants. Using a constant comparative method, the following themes emerged: (1) reasons for call light use, (2) challenges with communication, (3) patients' adaptation to language barriers, (4) perceived staff responses to call light, and (5) responses to the Eloquence™ demonstration. Data from this study shed light on the patient care experience of LEP patients and can help guide clinicians and administrators in providing culturally and linguistically competent care. © The Author(s) 2016.

  18. Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications.

    PubMed

    Shim, Euijae; Chen, Yu; Masmanidis, Sotiris; Li, Mo

    2016-03-04

    Optimal optogenetic perturbation of brain circuit activity often requires light delivery in a precise spatial pattern that cannot be achieved with conventional optical fibers. We demonstrate an implantable silicon-based probe with a compact light delivery system, consisting of silicon nitride waveguides and grating couplers for out-of-plane light emission with high spatial resolution. 473 nm light is coupled into and guided in cm-long waveguide and emitted at the output grating coupler. Using the direct cut-back and out-scattering measurement techniques, the propagation optical loss of the waveguide is measured to be below 3 dB/cm. The grating couplers provide collimated light emission with sufficient irradiance for neural stimulation. Finally, a probe with multisite light delivery with three output grating emitters from a single laser input is demonstrated.

  19. Müller Glial Cell-Provided Cellular Light Guidance through the Vital Guinea-Pig Retina

    PubMed Central

    Agte, Silke; Junek, Stephan; Matthias, Sabrina; Ulbricht, Elke; Erdmann, Ines; Wurm, Antje; Schild, Detlev; Käs, Josef A.; Reichenbach, Andreas

    2011-01-01

    In vertebrate eyes, images are projected onto an inverted retina where light passes all retinal layers on its way to the photoreceptor cells. Light scattering within this tissue should impair vision. We show that radial glial (Müller) cells in the living retina minimize intraretinal light scatter and conserve the diameter of a beam that hits a single Müller cell endfoot. Thus, light arrives at individual photoreceptors with high intensity. This leads to an optimized signal/noise ratio, which increases visual sensitivity and contrast. Moreover, we show that the ratio between Müller cells and cones—responsible for acute vision—is roughly 1. This suggests that high spatiotemporal resolution may be achieved by each cone receiving its part of the image via its individual Müller cell-light guide. PMID:22261048

  20. Omnidirectional light absorption of disordered nano-hole structure inspired from Papilio ulysses.

    PubMed

    Wang, Wanlin; Zhang, Wang; Fang, Xiaotian; Huang, Yiqiao; Liu, Qinglei; Bai, Mingwen; Zhang, Di

    2014-07-15

    Butterflies routinely produce nanostructured surfaces with useful properties. Here, we report a disordered nano-hole structure with ridges inspired by Papilio ulysses that produce omnidirectional light absorption compared with the common ordered structure. The result shows that the omnidirectional light absorption is affected by polarization, the incident angle, and the wavelength. Using the finite-difference time-domain (FDTD) method, the stable omnidirectional light absorption is achieved in the structure inspired from the Papilio ulysses over a wide incident angle range and with various wavelengths. This explains some of the mysteries of the structure of the Papilio ulysses butterfly. These conclusions can guide the design of omnidirectional absorption materials.

  1. LASR-Guided Variability Subtraction: The Linear Algorithm for Significance Reduction of Stellar Seismic Activity

    NASA Astrophysics Data System (ADS)

    Horvath, Sarah; Myers, Sam; Ahlers, Johnathon; Barnes, Jason W.

    2017-10-01

    Stellar seismic activity produces variations in brightness that introduce oscillations into transit light curves, which can create challenges for traditional fitting models. These oscillations disrupt baseline stellar flux values and potentially mask transits. We develop a model that removes these oscillations from transit light curves by minimizing the significance of each oscillation in frequency space. By removing stellar variability, we prepare each light curve for traditional fitting techniques. We apply our model to $\\delta$-Scuti KOI-976 and demonstrate that our variability subtraction routine successfully allows for measuring bulk system characteristics using traditional light curve fitting. These results open a new window for characterizing bulk system parameters of planets orbiting seismically active stars.

  2. Flashes, floaters and fuzz.

    PubMed

    Nagendran, Sonali T; Thomas, Dhanes; Gurbaxani, Avinash

    2013-02-01

    Flashing lights (photopsia) and floaters are common visual phenomena and patients frequently present to hospital with these symptoms. This article provides a guide for the non-specialist to the different pathologies that may result in photopsia and floaters.

  3. Your Guide To Lowering Your Blood Pressure with DASH

    MedlinePlus

    ... cereals, soy sauce, seasoned salts, monosodium glutamate (MSG), baking soda, and some antacids—the range is wide. ... F. Lightly spray a 9- by 13-inch baking dish with vegetable oil spray. 2. In a ...

  4. Vehicle classification system : FHWA perspective

    DOT National Transportation Integrated Search

    2000-08-01

    Issues related to vehicle classification in light of the Federal Highway Administration (FHWA) Traffic Monitoring Guide (TMG) revision will be discussed. The discussion will look at the expressed needs of the data users and the associated impacts on ...

  5. Office Building Occupant's Guide to Indoor Air Quality

    MedlinePlus

    ... physical aspects of the workplace: location, work environment, availability of natural light and the aesthetics of office ... promptly and properly. Dispose of garbage in appropriate containers that are emptied daily to prevent odors and ...

  6. Broadband surface-wave transformation cloak

    DOE PAGES

    Xu, Su; Xu, Hongyi; Gao, Hanhong; ...

    2015-06-08

    Guiding surface electromagnetic waves around disorder without disturbing the wave amplitude or phase is in great demand for modern photonic and plasmonic devices, but is fundamentally difficult to realize because light momentum must be conserved in a scattering event. A partial realization has been achieved by exploiting topological electromagnetic surface states, but this approach is limited to narrow-band light transmission and subject to phase disturbances in the presence of disorder. Recent advances in transformation optics apply principles of general relativity to curve the space for light, allowing one to match the momentum and phase of light around any disorder asmore » if that disorder were not there. This feature has been exploited in the development of invisibility cloaks. An ideal invisibility cloak, however, would require the phase velocity of light being guided around the cloaked object to exceed the vacuum speed of light—a feat potentially achievable only over an extremely narrow band. In this paper, we theoretically and experimentally show that the bottlenecks encountered in previous studies can be overcome. We introduce a class of cloaks capable of remarkable broadband surface electromagnetic waves guidance around ultrasharp corners and bumps with no perceptible changes in amplitude and phase. These cloaks consist of specifically designed nonmagnetic metamaterials and achieve nearly ideal transmission efficiency over a broadband frequency range from 0 + to 6 GHz. Finally, this work provides strong support for the application of transformation optics to plasmonic circuits and could pave the way toward high-performance, large-scale integrated photonic circuits.« less

  7. All-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  8. An All-Dielectric Coaxial Waveguide.

    PubMed

    Ibanescu; Fink; Fan; Thomas; Joannopoulos

    2000-07-21

    An all-dielectric coaxial waveguide that can overcome problems of polarization rotation and pulse broadening in the transmission of optical light is presented here. It consists of a coaxial waveguiding region with a low index of refraction, bounded by two cylindrical, dielectric, multilayer, omnidirectional reflecting mirrors. The waveguide can be designed to support a single mode whose properties are very similar to the unique transverse electromagnetic mode of a traditional metallic coaxial cable. The new mode has radial symmetry and a point of zero dispersion. Moreover, because the light is not confined by total internal reflection, the waveguide can guide light around very sharp corners.

  9. SIM PlanetQuest Spectral Calibration Development Unit Beam Combiner

    NASA Technical Reports Server (NTRS)

    Tang, Hong

    2008-01-01

    The beam combiner of an astronomical long-baseline interferometer combines the two beams of starlight to form white-light fringes. We describe beam combiner in the SIM PlanetQuest Spectral Calibration Development Unit (SCDU). In addition to forming white light fringes, the beam combiner provides other functions such as separating the light for guiding, fringe tracking, and science measurement. It is designed to function over the optical bandpass 450-950 nm. Coating design is critical to beam combiner as residual dispersion and mismatches affect the ability to accurately measure the position of stars of varying spectral types.

  10. Light-assisted templated self assembly using photonic crystal slabs.

    PubMed

    Mejia, Camilo A; Dutt, Avik; Povinelli, Michelle L

    2011-06-06

    We explore a technique which we term light-assisted templated self-assembly. We calculate the optical forces on colloidal particles over a photonic crystal slab. We show that exciting a guided resonance mode of the slab yields a resonantly-enhanced, attractive optical force. We calculate the lateral optical forces above the slab and predict that stably trapped periodic patterns of particles are dependent on wavelength and polarization. Tuning the wavelength or polarization of the light source may thus allow the formation and reconfiguration of patterns. We expect that this technique may be used to design all-optically reconfigurable photonic devices.

  11. Light guiding properties of soap films

    NASA Astrophysics Data System (ADS)

    Emile, Janine; Emile, Olivier; Casanova, Federico

    2013-02-01

    The injection of a laser beam from the side in a horizontal free-standing draining soap film is reported. We observe the self-deflection of the beam that varies in a random way. The film thinning is affected by the injection and depends on the polarization of the light beam, not on the laser power. The liquid in the soap film is ejected towards the meniscus, without modifying its molecular structure. Besides, this injection seems to stabilize the film near the light beam propagation and to destabilize the film in the other zones. Consequences and applications are then discussed.

  12. Optical conformal mapping.

    PubMed

    Leonhardt, Ulf

    2006-06-23

    An invisibility device should guide light around an object as if nothing were there, regardless of where the light comes from. Ideal invisibility devices are impossible, owing to the wave nature of light. This study develops a general recipe for the design of media that create perfect invisibility within the accuracy of geometrical optics. The imperfections of invisibility can be made arbitrarily small to hide objects that are much larger than the wavelength. With the use of modern metamaterials, practical demonstrations of such devices may be possible. The method developed here can also be applied to escape detection by other electromagnetic waves or sound.

  13. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue

    PubMed Central

    Wang, Kai; Sun, Wenzhi; Richie, Christopher T.; Harvey, Brandon K.; Betzig, Eric; Ji, Na

    2015-01-01

    Adaptive optics by direct imaging of the wavefront distortions of a laser-induced guide star has long been used in astronomy, and more recently in microscopy to compensate for aberrations in transparent specimens. Here we extend this approach to tissues that strongly scatter visible light by exploiting the reduced scattering of near-infrared guide stars. The method enables in vivo two-photon morphological and functional imaging down to 700 μm inside the mouse brain. PMID:26073070

  14. Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform.

    PubMed

    Barrios, C A; Sánchez, B; Gylfason, K B; Griol, A; Sohlström, H; Holgado, M; Casquel, R

    2007-05-28

    We report on the first demonstration of guiding light in vertical slot-waveguides on silicon nitride/silicon oxide material system. Integrated ring resonators and Fabry-Perot cavities have been fabricated and characterized in order to determine optical features of the slot-waveguides. Group index behavior evidences guiding and confinement in the low-index slot region at O-band (1260-1370nm) telecommunication wavelengths. Propagation losses of <20 dB/cm have been measured for the transverse-electric mode of the slot-waveguides.

  15. Principios de Nutricion y Alimentacion del Adolescente (Para Estudiantes con Impedimentos Leves y Moderados). Guia Curricular para el Curso Documento de Trabajar. Principles of Nutrition and Food for the Adolescent (For Students with Light and Moderate Disabilities. Course Curriculum Guide. Working Document).

    ERIC Educational Resources Information Center

    Puerto Rico State Dept. of Education, Hato Rey. Office of Special Education.

    This curriculum guide, in Spanish, consists of a compilation of concepts, activities, and skills for the student with disabilities who receives services from the special education programs of Puerto Rico. Lesson plans cover the basic principles of nutrition, food handling, and food preparation for adolescents. The following units are presented…

  16. Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice.

    PubMed

    Ma, Jing; Martínez, Luis Javier; Povinelli, Michelle L

    2012-03-12

    A novel photonic crystal lattice is proposed for trapping a two-dimensional array of particles. The lattice is created by introducing a rectangular slot in each unit cell of the Suzuki-Phase lattice to enhance the light confinement of guided resonance modes. Large quality factors on the order of 10⁵ are predicted in the lattice. A significant decrease of the optical power required for optical trapping can be achieved compared to our previous design.

  17. Guided Radiation Beams in Free Electron Lasers.

    DTIC Science & Technology

    1988-05-19

    the electron beam in an FEL that the radiation beam will remain guided. 0 20 II. Refractive Index Associated with FELs In our model, the vector ...eIAw/ymOc(exp(ikwz) + c.c.) ex/2 , is the wiggle velocity, y is the Lorentz factor, Aw is the vector potential amplitude of the planar wiggler...Balboa Avenue Palo Alto, CA 94303 San Diego, CA 92123 38 Dr. S. Krinsky Nat. Synchrotron Light Source Dr. Michael Lavan Brookhaven National Laboratory U.S

  18. Formation of ECR Plasma in a Dielectric Plasma Guide under Self-Excitation of a Standing Ion-Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Balmashnov, A. A.; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M.

    2018-01-01

    The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.

  19. Costura Basica (Principios Basicos para el Estudiante con Impedimentos Leves y Moderados) Documento de Trabajo Guia Curricular para el Curso. Basic Sewing (Basic Principles for the Student with Light and Moderate Disabilities. Course Curriculum Guide. Working Document).

    ERIC Educational Resources Information Center

    Puerto Rico State Dept. of Education, Hato Rey. Office of Special Education.

    This guide has been prepared by the Puerto Rico Department of Public Instruction for special education teachers teaching domestic sewing. It includes informative and easy to comprehend material for students of both sexes with mild to moderate disabilities. The material is developed through varied strategies and activities that relate to the…

  20. Evaluating Surgical Margins with Optical Spectroscopy and Spectral Imaging Following Breast Cancer Resection

    DTIC Science & Technology

    2009-08-01

    Raman spectral features of hydroxyapatite crystals (found in breast calcifications) through overlying lean chicken breast tissue [18]. Thus, the...form o f spectral imaging to examine entire margins in a single acquisition . 23 1. INTRODUCTION Of the approxim ately 180,000 patien ts each...ination sources into a single, 10-mm-core liquid light guide, which delivered the illumination light to the sample. 2.3 Data acquisition For lum

  1. Near-infrared branding efficiently correlates light and electron microscopy.

    PubMed

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  2. Optical Docking Aid Containing Fresnel Lenses

    NASA Technical Reports Server (NTRS)

    Pierce, Cole J.

    1995-01-01

    Proposed device provides self-contained visual cues to aid in docking. Similar to devices used to guide pilots in landing on aircraft carriers. Positions and directions of beams of light give observer visual cues of position relative to docking target point. Optical assemblies generate directed, diverging beams of light that, together, mark approach path to docking point. Conceived for use in docking spacecraft at Space Station Freedom, device adapted to numerous industrial docking and alignment applications.

  3. Rainbow Trapping in Hyperbolic Metamaterial Waveguide

    PubMed Central

    Hu, Haifeng; Ji, Dengxin; Zeng, Xie; Liu, Kai; Gan, Qiaoqiang

    2013-01-01

    The recent reported trapped “rainbow” storage of light using metamaterials and plasmonic graded surface gratings has generated considerable interest for on-chip slow light. The potential for controlling the velocity of broadband light in guided photonic structures opens up tremendous opportunities to manipulate light for optical modulation, switching, communication and light-matter interactions. However, previously reported designs for rainbow trapping are generally constrained by inherent difficulties resulting in the limited experimental realization of this intriguing effect. Here we propose a hyperbolic metamaterial structure to realize a highly efficient rainbow trapping effect, which, importantly, is not limited by those severe theoretical constraints required in previously reported insulator-negative-index-insulator, insulator-metal-insulator and metal-insulator-metal waveguide tapers, and therefore representing a significant promise to realize the rainbow trapping structure practically. PMID:23409240

  4. Image-guided removal of occlusal caries lesions with a λ= 9.3-µm CO2 laser using near-IR transillumination

    PubMed Central

    Chung, Leon C.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Fried, Daniel; Darling, Cynthia L.

    2015-01-01

    Previous studies have shown that near-IR transillumination is well suited for imaging deep occlusal lesions. The purpose of this study was to determine if near-IR images can be used to guide a CO2 laser for the selective removal of natural occlusal lesions on extracted teeth. Near-IR occlusal transillumination images of extracted human teeth with natural occlusal caries lesions were acquired using an InGaAs camera and near-IR light at wavelengths from 1290 to 1470-nm from a filtered tungsten halogen source. A CO2 laser operating at 9.3-µm with a pulse duration of 10–15-µs and a pulse repetition rate of 100–300-Hz was used for caries removal. Optical Coherence tomography was used to confirm lesion presence and serial scans were used to assess selective removal. Teeth were also sectioned for histological examination using polarized light microscopy. This study suggests that near-infrared transillumination is a promising method for the image guided laser ablation of occlusal caries lesions but the use of serial near-IR transillumination imaging for monitoring lesion removal was limited. PMID:25914498

  5. Image-guided removal of occlusal caries lesions with a λ= 9.3-μm CO2 laser using near-IR transillumination

    NASA Astrophysics Data System (ADS)

    Chung, Leon C.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Fried, Daniel; Darling, Cynthia L.

    2015-02-01

    Previous studies have shown that near-IR transillumination is well suited for imaging deep occlusal lesions. The purpose of this study was to determine if near-IR images can be used to guide a CO2 laser for the selective removal of natural occlusal lesions on extracted teeth. Near-IR occlusal transillumination images of extracted human teeth with natural occlusal caries lesions were acquired using an InGaAs camera and near-IR light at wavelengths from 1290 to 1470-nm from a filtered tungsten halogen source. A CO2 laser operating at 9.3-μm with a pulse duration of 10-15-μs and a pulse repetition rate of 100-300-Hz was used for caries removal. Optical Coherence tomography was used to confirm lesion presence and serial scans were used to assess selective removal. Teeth were also sectioned for histological examination using polarized light microscopy. This study suggests that near-infrared transillumination is a promising method for the image guided laser ablation of occlusal caries lesions but the use of serial near-IR transillumination imaging for monitoring lesion removal was limited.

  6. Fluorescence-Guided Surgery

    PubMed Central

    Nagaya, Tadanobu; Nakamura, Yu A.; Choyke, Peter L.; Kobayashi, Hisataka

    2017-01-01

    Surgical resection of cancer remains an important treatment modality. Despite advances in preoperative imaging, surgery itself is primarily guided by the surgeon’s ability to locate pathology with conventional white light imaging. Fluorescence-guided surgery (FGS) can be used to define tumor location and margins during the procedure. Intraoperative visualization of tumors may not only allow more complete resections but also improve safety by avoiding unnecessary damage to normal tissue which can also reduce operative time and decrease the need for second-look surgeries. A number of new FGS imaging probes have recently been developed, complementing a small but useful number of existing probes. In this review, we describe current and new fluorescent probes that may assist FGS. PMID:29312886

  7. Dental Shade Guide Variability for Hues B, C, and D Using Cross-Polarized Photography.

    PubMed

    Sampaio, Camila S; Gurrea, Jon; Gurrea, Marta; Bruguera, August; Atria, Pablo J; Janal, Malvin; Bonfante, Estevam A; Coelho, Paulo G; Hirata, Ronaldo

    2018-04-20

    This study evaluated the color variability of hues B, C, and D between the VITA Classical shade guide (Vita Zahnfabrik) and four other VITA-coded ceramic shade guides using a digital camera (Canon EOS 60D) and computer software (Adobe Photoshop CC). A cross-polarizing filter was used to standardize external light sources influencing color match. A total of 275 pictures were taken, 5 per shade tab, for 11 shades (B1, B2, B3, B4, C1, C2, C3, C4, D2, D3, and D4), from the following shade guides: VITA Classical (control); IPS e.max Ceram (Ivoclar Vivadent); IPS d.SIGN (Ivoclar Vivadent); Initial ZI (GC); and Creation CC (Creation Willi Geller). Pictures were evaluated using Adobe Photoshop CC for standardization of hue, chroma, and value between shade tabs. The VITA-coded shade guides evaluated here showed an overall unmatched shade in all their tabs when compared to the control, suggesting that shade selection should be made with the corresponding manufacturer guide of the ceramic intended for the final restoration.

  8. Numerical analysis of light extraction enhancement of GaN-based thin-film flip-chip light-emitting diodes with high-refractive-index buckling nanostructures

    NASA Astrophysics Data System (ADS)

    Yue, Qing-Yang; Yang, Yang; Cheng, Zhen-Jia; Guo, Cheng-Shan

    2018-06-01

    In this work, the light extraction efficiency enhancement of GaN-based thin-film flip-chip (TFFC) light-emitting diodes (LEDs) with high-refractive-index (TiO2) buckling nanostructures was studied using the three-dimensional finite difference time domain method. Compared with 2-D photonic crystals, the buckling structures have the advantages of a random directionality and a broad distribution in periodicity, which can effectively extract the guided light propagating in all azimuthal directions over a wide spectrum. Numerical studies revealed that the light extraction efficiency of buckling-structured LEDs reaches 1.1 times that of triangular lattice photonic crystals. The effects of the buckling structure feature sizes and the thickness of the N-GaN layer on the light extraction efficiency for TFFC LEDs were also investigated systematically. With optimized structural parameters, a significant light extraction enhancement of about 2.6 times was achieved for TiO2 buckling-structured TFFC LEDs compared with planar LEDs.

  9. Evaluation of light detector surface area for functional Near Infrared Spectroscopy.

    PubMed

    Wang, Lei; Ayaz, Hasan; Izzetoglu, Meltem; Onaral, Banu

    2017-10-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neuroimaging technique that utilizes near infrared light to detect cortical concentration changes of oxy-hemoglobin and deoxy-hemoglobin non-invasively. Using light sources and detectors over the scalp, multi-wavelength light intensities are recorded as time series and converted to concentration changes of hemoglobin via modified Beer-Lambert law. Here, we describe a potential source for systematic error in the calculation of hemoglobin changes and light intensity measurements. Previous system characterization and analysis studies looked into various fNIRS parameters such as type of light source, number and selection of wavelengths, distance between light source and detector. In this study, we have analyzed the contribution of light detector surface area to the overall outcome. Results from Monte Carlo based digital phantoms indicated that selection of detector area is a critical system parameter in minimizing the error in concentration calculations. The findings here can guide the design of future fNIRS sensors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Implementation of aerial LiDAR technology to update highway feature inventory.

    DOT National Transportation Integrated Search

    2016-12-01

    Highway assets, including traffic signs, traffic signals, light poles, and guardrails, are important components of : transportation networks. They guide, warn and protect drivers, and regulate traffic. To manage and maintain the : regular operation o...

  11. KAPAO first light: the design, construction and operation of a low-cost natural guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Severson, Scott A.; Choi, Philip I.; Badham, Katherine E.; Bolger, Dalton; Contreras, Daniel S.; Gilbreth, Blaine N.; Guerrero, Christian; Littleton, Erik; Long, Joseph; McGonigle, Lorcan P.; Morrison, William A.; Ortega, Fernando; Rudy, Alex R.; Wong, Jonathan R.; Spjut, Erik; Baranec, Christoph; Riddle, Reed

    2014-07-01

    We present the instrument design and first light observations of KAPAO, a natural guide star adaptive optics (AO) system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. The KAPAO system has dual science channels with visible and near-infrared cameras, a Shack-Hartmann wavefront sensor, and a commercially available 140-actuator MEMS deformable mirror. The pupil relays are two pairs of custom off-axis parabolas and the control system is based on a version of the Robo-AO control software. The AO system and telescope are remotely operable, and KAPAO is designed to share the Cassegrain focus with the existing TMO polarimeter. We discuss the extensive integration of undergraduate students in the program including the multiple senior theses/capstones and summer assistantships amongst our partner institutions. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  12. The Lyman-α Solar Telescope (LST) for the ASO-S mission

    NASA Astrophysics Data System (ADS)

    Li, Hui

    The Lyman-α (Lyα) Solar Telescope (LST) is one of the payloads for the proposed Space-Borne Advanced Solar Observatory (ASO-S). LST consists of a Solar Disk Imager (SDI) with a field-of-view (FOV) of 1.2 R⊙ (R⊙ = solar radius), a Solar Corona Imager (SCI) with an FOV of 1.1 - 2.5 R⊙, and a full-disk White-light Solar Telescope (WST) with the same FOV as the SDI, which also serves as the guiding telescope. The SCI is designed to work in the Lyα (121.6 nm) waveband and white-light (for polarization brightness observation), while the SDI will work in the Lyα waveband only. The WST works in both visible (for guide) and ultraviolet (for science) broadband. The LST will observe the Sun from disk-center up to 2.5 R⊙ for both solar flares and coronal mass ejections with high tempo-spatial resolution

  13. Retinex based low-light image enhancement using guided filtering and variational framework

    NASA Astrophysics Data System (ADS)

    Zhang, Shi; Tang, Gui-jin; Liu, Xiao-hua; Luo, Su-huai; Wang, Da-dong

    2018-03-01

    A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization (CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.

  14. An ultrasound-guided fluorescence tomography system: design and specification

    NASA Astrophysics Data System (ADS)

    D'Souza, Alisha V.; Flynn, Brendan P.; Kanick, Stephen C.; Torosean, Sason; Davis, Scott C.; Maytin, Edward V.; Hasan, Tayyaba; Pogue, Brian W.

    2013-03-01

    An ultrasound-guided fluorescence molecular tomography system is under development for in vivo quantification of Protoporphyrin IX (PpIX) during Aminolevulinic Acid - Photodynamic Therapy (ALA-PDT) of Basal Cell Carcinoma. The system is designed to combine fiber-based spectral sampling of PPIX fluorescence emission with co-registered ultrasound images to quantify local fluorophore concentration. A single white light source is used to provide an estimate of the bulk optical properties of tissue. Optical data is obtained by sequential illumination of a 633nm laser source at 4 linear locations with parallel detection at 5 locations interspersed between the sources. Tissue regions from segmented ultrasound images, optical boundary data, white light-informed optical properties and diffusion theory are used to estimate the fluorophore concentration in these regions. Our system and methods allow interrogation of both superficial and deep tissue locations up to PpIX concentrations of 0.025ug/ml.

  15. Development of a novel combined fluorescence and reflectance spectroscopy system for guiding high-grade glioma resections: confirmation of capability in lab experiments

    NASA Astrophysics Data System (ADS)

    Mousavi, Monirehalsadat; Xie, Haiyan; Xie, Zhiyuan; Brydegaard, Mikkel; Axelsson, Johan; Andersson-Engels, Stefan

    2013-11-01

    Total resection of glioblastoma multiform (GBM), the most common and aggressive malignant brain tumor, is challenging among other things due to difficulty in intraoperative discrimination between normal and residual tumor cells. This project demonstrates the potential of a system based on a combination of autofluorescence and diffuse reflectance spectroscopy to be useful as an intraoperative guiding tool. In this context, a system based on 5 LEDs coupled to optical fibers was employed to deliver UV/visible light to the sample sequentially. Remitted light from the tissue; including diffuse reflected and fluorescence of endogenous and exogenous fluorophores, as well as its photobleaching product, is transmitted to one photodiode and four avalanche photodiodes. This instrument has been evaluated with very promising results by performing various tissue-equivalent phantom laboratory and clinical studies on skin lesions.

  16. 120 watt continuous wave solar-pumped laser with a liquid light-guide lens and an Nd:YAG rod.

    PubMed

    Dinh, T H; Ohkubo, T; Yabe, T; Kuboyama, H

    2012-07-01

    We propose a simple and efficient pumping approach for a high-power solar-pumped laser by using a liquid light-guide lens (LLGL) and a hybrid pumping cavity. A 2×2 m Fresnel lens is used as a primary concentrator to collect natural sunlight; 120 W cw laser power and a 4.3% total slope efficiency are achieved with a 6-mm diameter Nd:YAG rod within a 14-mm diameter LLGL. The corresponded collection efficiency is 30.0 W/m(2), which is 1.5 times larger than the previous record. This result is unexpectedly better than that of Cr:Nd:YAG ceramics. It is because the scattering coefficient of Cr:Nd:YAG ceramics is 0.004cm(1), which is 2 times larger than that of the Nd:YAG crystal, although both have similar saturation gains.

  17. High resolution PET breast imager with improved detection efficiency

    DOEpatents

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  18. An adaptive optics package designed for astronomical use with a laser guide star tuned to an absorption line of atomic sodium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon, J.T.; Avicola, K.; Brase, J.M.

    1994-04-11

    We present the design and implementation of a very compact adaptive optic system that senses the return light from a sodium guide-star and controls a deformable mirror and a pointing mirror to compensate atmospheric perturbations in the wavefront. The deformable mirror has 19 electrostrictive actuators and triangular subapertures. The wavefront sensor is a Hartmann sensor with lenslets on triangular centers. The high-bandwidth steering mirror assembly incorporates an analog controller that samples the tilt with an avalanche photodiode quad cell. An {line_integral}/25 imaging leg focuses the light into a science camera that can either obtain long-exposure images or speckle data. Inmore » laboratory tests overall Strehl ratios were improved by a factor of 3 when a mylar sheet was used as an aberrator. The crossover frequency at unity gain is 30 Hz.« less

  19. The Color Red Supports Avoidance Reactions to Unhealthy Food.

    PubMed

    Rohr, Michaela; Kamm, Friederike; Koenigstorfer, Joerg; Groeppel-Klein, Andrea; Wentura, Dirk

    2015-01-01

    Empirical evidence suggests that the color red acts like an implicit avoidance cue in food contexts. Thus specific colors seem to guide the implicit evaluation of food items. We built upon this research by investigating the implicit meaning of color (red vs. green) in an approach-avoidance task with healthy and unhealthy food items. Thus, we examined the joint evaluative effects of color and food: Participants had to categorize food items by approach-avoidance reactions, according to their healthfulness. Items were surrounded by task-irrelevant red or green circles. We found that the implicit meaning of the traffic light colors influenced participants' reactions to the food items. The color red (compared to green) facilitated automatic avoidance reactions to unhealthy foods. By contrast, approach behavior toward healthy food items was not moderated by color. Our findings suggest that traffic light colors can act as implicit cues that guide automatic behavioral reactions to food.

  20. Photodiode radiation hardness, lyman-alpha emitting galaxies and photon detection in liquid argon neutrino detectors

    NASA Astrophysics Data System (ADS)

    Baptista, Brian

    2013-12-01

    My dissertation is comprised of three projects: 1) studies of Lyman-alpha Emitting galaxies (LAEs), 2) radiation hardness studies of InGaAs photodiodes (PDs), and 3) scintillation photon detection in liquid argon (LAr) neutrino detectors. I began work on the project that has now become WFIRST, developing a science case that would use WFIRST after launch for the observation of LAEs. The radiation hardness of PDs was as an effort to support the WFIRST calibration team. When WFIRST was significantly delayed, I joined an R&D effort that applied my skills to work on photon detection in LAr neutrino detectors. I report results on a broadband selection method developed to detect high equivalent width (EW) LAEs. Using photometry from the CFHT-Legacy Survey Deep 2 and 3 fields, I have spectroscopically confirmed 63 z=2.5-3.5 LAEs using the WIYN/Hydra spectrograph. Using UV continuum-fitting techniques I computed properties such as EWs, internal reddening and star formation rates. 62 of my LAEs show evidence to be normal dust-free LAEs. Second, I present an investigation into the effects of ionizing proton radiation on commercial off-the-shelf InGaAs PDs. I developed a monochromator-based test apparatus that utilized NIST-calibrated reference PDs. I tested the PDs for changes to their dark current, relative responsivity as a function of wavelength, and absolute responsivity. I irradiated the test PDs using 30, 52, and 98 MeV protons at the IU Cyclotron Facility. I found the InGaAs PDs showed increased dark current as the fluence increased with no evidence of broadband response degradation at the fluences expected at an L2 orbit and a 10-year mission lifetime. Finally, I detail my efforts on technology development of both optical detector technologies and waveshifting light guide construction for LAr vacuum UV scintillation light. Cryogenic neutrino detectors use photon detection for both accelerator based science and for SNe neutrino detection and proton decay. I have developed waveshifter doped cast acrylic light guides that convert scintillation light and guide the waveshifted light to SiPMs detectors.

  1. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array

    NASA Astrophysics Data System (ADS)

    Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B.; Tai, Yuan-Chuan

    2010-05-01

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 × 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 × 0.8 × 3 mm3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 × 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications.

  2. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array.

    PubMed

    Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan

    2010-05-07

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 x 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 x 0.8 x 3 mm(3) and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 x 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and +/-5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when +/-10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications.

  3. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array

    PubMed Central

    Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan

    2010-01-01

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 × 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 × 0.8 × 3 mm3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 × 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications. PMID:20393236

  4. Odontological light-emitting diode light-curing unit beam quality.

    PubMed

    de Magalhães Filho, Thales Ribeiro; Weig, Karin de Mello; Werneck, Marcelo Martins; da Costa Neto, Célio Albano; da Costa, Marysilvia Ferreira

    2015-05-01

    The distribution of light intensity of three light-curing units (LCUs) to cure the resin-based composite for dental fillings was analyzed, and a homogeneity index [flat-top factor (FTF)] was calculated. The index is based on the M2 index, which is used for laser beams. An optical spectrum analyzer was used with an optical fiber to produce an x-y power profile of each LCU light guide. The FTF-calculated values were 0.51 for LCU1 and 0.55 for LCU2, which was the best FTF, although it still differed greatly from the perfect FTF = 1, and 0.27 for LCU3, which was the poorest value and even lower than the Gaussian FTF = 0.5. All LCUs presented notably heterogeneous light distribution, which can lead professionals and researchers to produce samples with irregular polymerization and poor mechanical properties.

  5. Multi-channel medical imaging system

    DOEpatents

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  6. Odontological light-emitting diode light-curing unit beam quality

    NASA Astrophysics Data System (ADS)

    de Magalhães Filho, Thales Ribeiro; Weig, Karin de Mello; Werneck, Marcelo Martins; da Costa Neto, Célio Albano; da Costa, Marysilvia Ferreira

    2015-05-01

    The distribution of light intensity of three light-curing units (LCUs) to cure the resin-based composite for dental fillings was analyzed, and a homogeneity index [flat-top factor (FTF)] was calculated. The index is based on the M2 index, which is used for laser beams. An optical spectrum analyzer was used with an optical fiber to produce an x-y power profile of each LCU light guide. The FTF-calculated values were 0.51 for LCU1 and 0.55 for LCU2, which was the best FTF, although it still differed greatly from the perfect FTF=1, and 0.27 for LCU3, which was the poorest value and even lower than the Gaussian FTF=0.5. All LCUs presented notably heterogeneous light distribution, which can lead professionals and researchers to produce samples with irregular polymerization and poor mechanical properties.

  7. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre

    PubMed Central

    Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut

    2014-01-01

    Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s−1 and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638

  8. Multi-channel medical imaging system

    DOEpatents

    Frangioni, John V.

    2016-05-03

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  9. Moving Stimuli Facilitate Synchronization But Not Temporal Perception

    PubMed Central

    Silva, Susana; Castro, São Luís

    2016-01-01

    Recent studies have shown that a moving visual stimulus (e.g., a bouncing ball) facilitates synchronization compared to a static stimulus (e.g., a flashing light), and that it can even be as effective as an auditory beep. We asked a group of participants to perform different tasks with four stimulus types: beeps, siren-like sounds, visual flashes (static) and bouncing balls. First, participants performed synchronization with isochronous sequences (stimulus-guided synchronization), followed by a continuation phase in which the stimulus was internally generated (imagery-guided synchronization). Then they performed a perception task, in which they judged whether the final part of a temporal sequence was compatible with the previous beat structure (stimulus-guided perception). Similar to synchronization, an imagery-guided variant was added, in which sequences contained a gap in between (imagery-guided perception). Balls outperformed flashes and matched beeps (powerful ball effect) in stimulus-guided synchronization but not in perception (stimulus- or imagery-guided). In imagery-guided synchronization, performance accuracy decreased for beeps and balls, but not for flashes and sirens. Our findings suggest that the advantages of moving visual stimuli over static ones are grounded in action rather than perception, and they support the hypothesis that the sensorimotor coupling mechanisms for auditory (beeps) and moving visual stimuli (bouncing balls) overlap. PMID:27909419

  10. Moving Stimuli Facilitate Synchronization But Not Temporal Perception.

    PubMed

    Silva, Susana; Castro, São Luís

    2016-01-01

    Recent studies have shown that a moving visual stimulus (e.g., a bouncing ball) facilitates synchronization compared to a static stimulus (e.g., a flashing light), and that it can even be as effective as an auditory beep. We asked a group of participants to perform different tasks with four stimulus types: beeps, siren-like sounds, visual flashes (static) and bouncing balls. First, participants performed synchronization with isochronous sequences (stimulus-guided synchronization), followed by a continuation phase in which the stimulus was internally generated (imagery-guided synchronization). Then they performed a perception task, in which they judged whether the final part of a temporal sequence was compatible with the previous beat structure (stimulus-guided perception). Similar to synchronization, an imagery-guided variant was added, in which sequences contained a gap in between (imagery-guided perception). Balls outperformed flashes and matched beeps (powerful ball effect) in stimulus-guided synchronization but not in perception (stimulus- or imagery-guided). In imagery-guided synchronization, performance accuracy decreased for beeps and balls, but not for flashes and sirens. Our findings suggest that the advantages of moving visual stimuli over static ones are grounded in action rather than perception, and they support the hypothesis that the sensorimotor coupling mechanisms for auditory (beeps) and moving visual stimuli (bouncing balls) overlap.

  11. Bioluminescence Tomography–Guided Radiation Therapy for Preclinical Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bin; Wang, Ken Kang-Hsin, E-mail: kwang27@jhmi.edu; Yu, Jingjing

    Purpose: In preclinical radiation research, it is challenging to localize soft tissue targets based on cone beam computed tomography (CBCT) guidance. As a more effective method to localize soft tissue targets, we developed an online bioluminescence tomography (BLT) system for small-animal radiation research platform (SARRP). We demonstrated BLT-guided radiation therapy and validated targeting accuracy based on a newly developed reconstruction algorithm. Methods and Materials: The BLT system was designed to dock with the SARRP for image acquisition and to be detached before radiation delivery. A 3-mirror system was devised to reflect the bioluminescence emitted from the subject to a stationarymore » charge-coupled device (CCD) camera. Multispectral BLT and the incomplete variables truncated conjugate gradient method with a permissible region shrinking strategy were used as the optimization scheme to reconstruct bioluminescent source distributions. To validate BLT targeting accuracy, a small cylindrical light source with high CBCT contrast was placed in a phantom and also in the abdomen of a mouse carcass. The center of mass (CoM) of the source was recovered from BLT and used to guide radiation delivery. The accuracy of the BLT-guided targeting was validated with films and compared with the CBCT-guided delivery. In vivo experiments were conducted to demonstrate BLT localization capability for various source geometries. Results: Online BLT was able to recover the CoM of the embedded light source with an average accuracy of 1 mm compared to that with CBCT localization. Differences between BLT- and CBCT-guided irradiation shown on the films were consistent with the source localization revealed in the BLT and CBCT images. In vivo results demonstrated that our BLT system could potentially be applied for multiple targets and tumors. Conclusions: The online BLT/CBCT/SARRP system provides an effective solution for soft tissue targeting, particularly for small, nonpalpable, or orthotopic tumor models.« less

  12. Precision Airdrop Technology Conference and Demonstration 2007

    DTIC Science & Technology

    2010-04-01

    not deployed. 10. Onyx 300 – Atair Aerospace, Inc. The Onyx 3006 is a hybrid system used for delivering 0 to 300 lbs of cargo. The Onyx 300...payloads or damage-induced asymmetries while in flight. Six Onyx 300 systems were airdropped during PATCAD. The first stick of three was dropped on 24...11. Onyx Ultra Light (UL) – Atair Aerospace, Inc. The Onyx Ultra Light (UL) uses an autonomous, GPS guided AGU that is capable of interfacing

  13. Field of View Requirements for Carrier Landing Training

    DTIC Science & Technology

    1980-06-01

    descent is guided by the Fresnel Lens Optical Landing System,(FLOLS) which displays a vertically moveable center iight beam (the " meatball ") which...must be kept aligned with rows of stationary horizontal lights. When the aircraft is above or below the correct glideslope, the meatball is seen as above...or below the horizontal reference lights. If the pilot is viewing a centered meatball , and if the aircraft has the correct AOA, the tailhook will be

  14. The research of knitting needle status monitoring setup

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Liao, Xiao-qing; Zhu, Yong-kang; Yang, Wei; Zhang, Pei; Zhao, Yong-kai; Huang, Hui-jie

    2013-09-01

    In textile production, quality control and testing is the key to ensure the process and improve the efficiency. Defect of the knitting needles is the main factor affecting the quality of the appearance of textiles. Defect detection method based on machine vision and image processing technology is universal. This approach does not effectively identify the defect generated by damaged knitting needles and raise the alarm. We developed a knitting needle status monitoring setup using optical imaging, photoelectric detection and weak signal processing technology to achieve real-time monitoring of weaving needles' position. Depending on the shape of the knitting needle, we designed a kind of Glass Optical Fiber (GOF) light guides with a rectangular port used for transmission of the signal light. To be able to capture the signal of knitting needles accurately, we adopt a optical 4F system which has better imaging quality and simple structure and there is a rectangle image on the focal plane after the system. When a knitting needle passes through position of the rectangle image, the reflected light from needle surface will back to the GOF light guides along the same optical system. According to the intensity of signals, the computer control unit distinguish that the knitting needle is broken or curving. The experimental results show that this system can accurately detect the broken needles and the curving needles on the knitting machine in operating condition.

  15. Gas Analysis Using Auroral Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Alozie, M.; Thomas, G.; Medillin, M.

    2017-12-01

    As part of the Undergraduate Student Instrumentation Project at the University of Houston, an Auroral spectroscope was designed and built. This visible light spectroscope was constructed out of carbon fiber, aluminum, and 3D printed parts. The spectroscope was designed to calculate the wavelengths of the spectral lines and analyze the emitted light spectrum of the gases. The spectroscope contains a primary parabolic 6" mirror and a smaller secondary 2.46" mirror. The light captured through these mirrors will be guided to an optical train that consist of five lenses (1" in diameter and focal length), a slit, and a visible transmission grating. The light will then be led to a Sony Alpha A6000 camera to take images of the spectral lines.

  16. Method for optical pumping of thin laser media at high average power

    DOEpatents

    Zapata, Luis E [Livermore, CA; Beach, Raymond J [Livermore, CA; Honea, Eric C [Sunol, CA; Payne, Stephen A [Castro Valley, CA

    2004-07-13

    A thin, planar laser material is bonded to a light guide of an index-matched material forming a composite disk. Diode array or other pump light is introduced into the composite disk through the edges of the disk. Pump light trapped within the composite disk depletes as it multi-passes the laser medium before reaching an opposing edge of the disk. The resulting compound optical structure efficiently delivers concentrated pump light and to a laser medium of minimum thickness. The external face of the laser medium is used for cooling. A high performance cooler attached to the external face of the laser medium rejects heat. Laser beam extraction is parallel to the heat flux to minimize optical distortions.

  17. Demonstration of a memory for tightly guided light in an optical nanofiber.

    PubMed

    Gouraud, B; Maxein, D; Nicolas, A; Morin, O; Laurat, J

    2015-05-08

    We report the experimental observation of slow-light and coherent storage in a setting where light is tightly confined in the transverse directions. By interfacing a tapered optical nanofiber with a cold atomic ensemble, electromagnetically induced transparency is observed and light pulses at the single-photon level are stored in and retrieved from the atomic medium. The decay of efficiency with storage time is also measured and related to concurrent decoherence mechanisms. Collapses and revivals can be additionally controlled by an applied magnetic field. Our results based on subdiffraction-limited optical mode interacting with atoms via the strong evanescent field demonstrate an alternative to free-space focusing and a novel capability for information storage in an all-fibered quantum network.

  18. MECC: A Guiding Light for Statewide Instructional Computing.

    ERIC Educational Resources Information Center

    Rawitseh, Michael A.; Kaiser, Jerry

    1982-01-01

    Describes the Minnesota Educational Computing Consortium (MECC), made up of universities, colleges, and the state department of education, which offers assistance in equipment procurement, courseware development, and inservice training in the use of computers in education. (Author/JM)

  19. A Guide to Energy Savings - For the Poultry Producer.

    ERIC Educational Resources Information Center

    Benson, Verel W.

    This booklet gives a brief overview of energy use in poultry operations and gives examples of cutting costs of brooding, lighting, ventilation, feeding, watering, waste removal, housing design, construction and maintenance. Finally, energy use recordkeeping is discussed. (BB)

  20. Novel photonics polymer and its application in IT

    NASA Astrophysics Data System (ADS)

    Koike, Yasuhiro

    2003-07-01

    In the field of LANs, transmission systems based on a multimode silica fiber network is heading towards capacities of Gb/s. We have proposed a low-loss, high-bandwidth and large-core graded-index plastic optical fiber (GI POF) in data-com. area. We sill show that GI POF enables to virtually eliminate the "modal noise" problem cased by the medium-core silica fibers. Therefore, stable high-speed data transmission is realized by GI POF rather than silica fibers. Furthermore, advent of perfluorinated (PF) polymer based GI POF network can support higher transmission than silica fibers network because of the small material dispersion of PF polymer compared with silica. In addition, we proposed a "highly scattering optical transmission (HSOT) polymer" and applied it to a light guide plate of a liquid crystal display (LCD) backlight. The advanced HSOT polymer backlight that was proposed using the HSOT designing simulation program demonstrated approximately three times higher luminance than the conventional flat-type HSOT backlight of 14.1-inch diagonal because of the microscopic prism structures at the bottom of the advanced HSOT light guide plate. The HSOT polymer containing the optimized heterogeneous structures produced homogeneous scattered light with forward directivity and sufficient color uniformity.

  1. An integrated general purpose SiPM based optical module with a high dynamic range

    NASA Astrophysics Data System (ADS)

    Bretz, T.; Engel, R.; Hebbeker, T.; Kemp, J.; Middendorf, L.; Peters, C.; Schumacher, J.; Šmída, R.; Veberič, D.

    2018-06-01

    Silicon photomultipliers (SiPMs) are semiconductor-based light-sensors offering a high gain, a mechanically and optically robust design and high photon detection efficiency. Due to these characteristics, they started to replace conventional photomultiplier tubes in many applications in recent years. This paper presents an optical module based on SiPMs designed for the application in scintillators as well as lab measurements. The module hosts the SiPM bias voltage supply and three pre-amplifiers with different gain levels to exploit the full dynamic range of the SiPMs. Two SiPMs, read-out in parallel, are equipped with light guides to increase the sensitive area. The light guides are optimized for the read-out of wavelength shifting fibers as used in many plastic scintillator detectors. The optical and electrical performance of the module is characterized in detail in laboratory measurements. Prototypes have been installed and tested in a modified version of the Scintillator Surface Detector developed for AugerPrime, the upgrade of the Pierre Auger Observatory. The SiPM module is operated in the Argentinian Pampas and first data proves its usability in such harsh environments.

  2. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    PubMed

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  3. Micro Dot Patterning on the Light Guide Panel Using Powder Blasting

    PubMed Central

    Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam

    2008-01-01

    This study is to develop a micromachining technology for a light guide panel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a single injection process instead of existing screen printing processes. The micro powder blasting technique is applied to form micro dot patterns on the LGP mold surface. The optimal conditions for masking, laminating, exposure, and developing processes to form the micro dot patterns are first experimentally investigated. A LGP mold with masked micro patterns is then machined using the micro powder blasting method and the machinability of the micro dot patterns is verified. A prototype LGP is test- injected using the developed LGP mold and a shape analysis of the patterns and performance testing of the injected LGP are carried out. As an additional approach, matte finishing, a special surface treatment method, is applied to the mold surface to improve the light diffusion characteristics, uniformity and brightness of the LGP. The results of this study show that the applied powder blasting method can be successfully used to manufacture LGPs with micro patterns by just single injection using the developed mold and thereby replace existing screen printing methods. PMID:27879740

  4. Development of a fluorimeter using laser-induced single-shot fluorescence lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Eisum, Niels H.; Lynggaard-Jensen, Anders

    1990-08-01

    The developed laboratory prototype fluorimeter is the first step to a new in-situ instrument, and is based on a pulsed nitrogen laser (pumping a color dye laser and the laserbeam passing through a frequency doubler) with a pulse width less than 1 nsec. With such a short excitation pulse it is possible to measure the exponential decay of the fluorescence from the aromatic compounds and thus determine the fluorescence lifetime-curves, which are typically in the region of 5-40 nsec. The emitted fluorescence is collected simultaneously in 35 channels in the wavelength region 250-600 nm. If the fluorescence falls within the transmission areas of the interference filters in each channel the light will be collected by a plastic light guide (doped PMMA) in the actual channel and transmitted to the channels photo multiplier tube (PMT). (The use of the plastic light guide improves the sensitivity). The signal from the PMT is passed on to a 200 MHz 8-bit flash AID-converter connected to a local memory. From this local memory the digital lifetime curves from each channel are transmitted to a computer for presentation of the 3-dimensional spectrum. This spectrum has been obtained with a single laser shot.

  5. Embeded photonic crystal at the interface of p-GaN and Ag reflector to improve light extraction of GaN-based flip-chip light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, Aigong; Ma, Ping, E-mail: maping@semi.ac.cn; Zhang, Yonghui

    2014-12-22

    In this experiment, a flip-chip light-emitting diode with photonic crystal was fabricated at the interface of p-GaN and Ag reflector via nanospheres lithography technique. In this structure, photonic crystal could couple with the guide-light efficiently by reason of the little distance between photonic crystal and active region. The light output power of light emitting diode with embedded photonic crystal was 1.42 times larger than that of planar flip-chip light-emitting diode. Moreover, the embedded photonic crystal structure makes the far-field divergence angle decreased by 18° without spectra shift. The three-dimensional finite difference time domain simulation results show that photonic crystal couldmore » improve the light extraction, and enhance the light absorption caused by Ag reflector simultaneously, because of the roughed surface. The depth of photonic crystal is the key parameter affecting the light extraction and absorption. Light extraction efficiency increases with the depth photonic crystal structure rapidly, and reaches the maximum at the depth 80 nm, beyond which light extraction decrease drastically.« less

  6. Recent Advances in Cyclodextrin-Based Light-Responsive Supramolecular Systems.

    PubMed

    Zhang, Xiaojin; Ma, Xin; Wang, Kang; Lin, Shijun; Zhu, Shitai; Dai, Yu; Xia, Fan

    2018-06-01

    Cyclodextrins (CDs), one of the host molecules in supramolecular chemistry, can host guest molecules to form inclusion complexes via non-covalent and reversible host-guest interactions. CD-based light-responsive supramolecular systems are typically constructed using CDs and guest molecules with light-responsive moieties, including azobenzene, arylazopyrazole, o-nitrobenzyl ester, pyrenylmethyl ester, coumarin, and anthracene. To date, numerous efforts have been reported on the topic of CD-based light-responsive supramolecular systems, but these have not yet been highlighted in a separated review. This review summarizes the efforts reported over the past ten years. The main text of this review is divided into five sections (vesicles, micelles, gels, capturers, and nanovalves) according to the formation of self-assemblies. This feature article aims to afford a comprehensive understanding of the light-responsive moieties used in the construction of CD-based light-responsive supramolecular systems and to provide a helpful guide for the further design of CD-based light-responsive supramolecular systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Investigation on bandgap, diffraction, interference, and refraction effects of photonic crystal structure in GaN/InGaN LEDs for light extraction.

    PubMed

    Patra, Saroj Kanta; Adhikari, Sonachand; Pal, Suchandan

    2014-06-20

    In this paper, we have made a clear differentiation among bandgap, diffraction, interference, and refraction effects in photonic crystal structures (PhCs). For observing bandgap, diffraction, and refraction effects, PhCs are considered on the top p-GaN surface of light emitting diodes (LEDs), whereas for interference effect, hole type PhCs are considered to be embedded within n-GaN layer of LED. From analysis, it is observed that at a particular lattice periodicity, for which bandgap lies within the wavelength of interest shows a significant light extraction due to inhibition of guided mode. Beyond a certain periodicity, diffraction effect starts dominating and light extraction improves further. The interference effect is observed in embedded photonic crystal LEDs, where depth of etching supports constructive interference of outward light waves. We have also shed light on refraction effects exhibited by the PhCs and whether negative refraction properties of PhCs may be useful in case of LED light extraction.

  8. A nitric oxide concentration clamp.

    PubMed

    Zhelyaskov, V R; Godwin, D W

    1999-10-01

    We report a new method of generating nitric oxide (NO) that possesses several advantages for experimental use. This method consists of a photolysis chamber where NO is released by illuminating photolabile NO donors with light from a xenon lamp, in conjunction with feedback control. Control of the photolysis light was achieved by selectively gating light projected through a shutter before the light was launched into a light guide that conveyed the light to the photolysis chamber. By gating the light in proportion to a sensor that reported nearly instantaneous concentration from the photolysis chamber, a criterion NO concentration could be achieved, which could be easily adjusted to higher or lower criterion levels. To denote the similarity of this process with the electrophysiological process of voltage clamp, we term this process a concentration "clamp." This development enhances the use of the fiber-optic-based system for NO delivery and should enable the execution of experiments where the in situ concentration of NO is particularly critical, such as in biological preparations. Copyright 1999 Academic Press.

  9. MetaboLights: An Open-Access Database Repository for Metabolomics Data.

    PubMed

    Kale, Namrata S; Haug, Kenneth; Conesa, Pablo; Jayseelan, Kalaivani; Moreno, Pablo; Rocca-Serra, Philippe; Nainala, Venkata Chandrasekhar; Spicer, Rachel A; Williams, Mark; Li, Xuefei; Salek, Reza M; Griffin, Julian L; Steinbeck, Christoph

    2016-03-24

    MetaboLights is the first general purpose, open-access database repository for cross-platform and cross-species metabolomics research at the European Bioinformatics Institute (EMBL-EBI). Based upon the open-source ISA framework, MetaboLights provides Metabolomics Standard Initiative (MSI) compliant metadata and raw experimental data associated with metabolomics experiments. Users can upload their study datasets into the MetaboLights Repository. These studies are then automatically assigned a stable and unique identifier (e.g., MTBLS1) that can be used for publication reference. The MetaboLights Reference Layer associates metabolites with metabolomics studies in the archive and is extensively annotated with data fields such as structural and chemical information, NMR and MS spectra, target species, metabolic pathways, and reactions. The database is manually curated with no specific release schedules. MetaboLights is also recommended by journals for metabolomics data deposition. This unit provides a guide to using MetaboLights, downloading experimental data, and depositing metabolomics datasets using user-friendly submission tools. Copyright © 2016 John Wiley & Sons, Inc.

  10. Optimized light sharing for high-resolution TOF PET detector based on digital silicon photomultipliers.

    PubMed

    Marcinkowski, R; España, S; Van Holen, R; Vandenberghe, S

    2014-12-07

    The majority of current whole-body PET scanners are based on pixelated scintillator arrays with a transverse pixel size of 4 mm. However, recent studies have shown that decreasing the pixel size to 2 mm can significantly improve image spatial resolution. In this study, the performance of Digital Photon Counter (DPC) from Philips Digital Photon Counting (PDPC) was evaluated to determine their potential for high-resolution whole-body time of flight (TOF) PET scanners. Two detector configurations were evaluated. First, the DPC3200-44-22 DPC array was coupled to a LYSO block of 15 × 15 2 × 2 × 22 mm(3) pixels through a 1 mm thick light guide. Due to light sharing among the dies neighbour logic of the DPC was used. In a second setup the same DPC was coupled directly to a scalable 4 × 4 LYSO matrix of 1.9 × 1.9 × 22 mm(3) crystals with a dedicated reflector arrangement allowing for controlled light sharing patterns inside the matrix. With the first approach an average energy resolution of 14.5% and an average CRT of 376 ps were achieved. For the second configuration an average energy resolution of 11% and an average CRT of 295 ps were achieved. Our studies show that the DPC is a suitable photosensor for a high-resolution TOF-PET detector. The dedicated reflector arrangement allows one to achieve better performances than the light guide approach. The count loss, caused by dark counts, is overcome by fitting the matrix size to the size of DPC single die.

  11. Efficient photonic reformatting of celestial light for diffraction-limited spectroscopy

    NASA Astrophysics Data System (ADS)

    MacLachlan, D. G.; Harris, R. J.; Gris-Sánchez, I.; Morris, T. J.; Choudhury, D.; Gendron, E.; Basden, A. G.; Spaleniak, I.; Arriola, A.; Birks, T. A.; Allington-Smith, J. R.; Thomson, R. R.

    2017-02-01

    The spectral resolution of a dispersive astronomical spectrograph is limited by the trade-off between throughput and the width of the entrance slit. Photonic guided wave transitions have been proposed as a route to bypass this trade-off, by enabling the efficient reformatting of incoherent seeing-limited light collected by the telescope into a linear array of single modes: a pseudo-slit which is highly multimode in one axis but diffraction-limited in the dispersion axis of the spectrograph. It is anticipated that the size of a single-object spectrograph fed with light in this manner would be essentially independent of the telescope aperture size. A further anticipated benefit is that such spectrographs would be free of `modal noise', a phenomenon that occurs in high-resolution multimode fibre-fed spectrographs due to the coherent nature of the telescope point spread function (PSF). We seek to address these aspects by integrating a multicore fibre photonic lantern with an ultrafast laser inscribed three-dimensional waveguide interconnect to spatially reformat the modes within the PSF into a diffraction-limited pseudo-slit. Using the CANARY adaptive optics (AO) demonstrator on the William Herschel Telescope, and 1530 ± 80 nm stellar light, the device exhibits a transmission of 47-53 per cent depending upon the mode of AO correction applied. We also show the advantage of using AO to couple light into such a device by sampling only the core of the CANARY PSF. This result underscores the possibility that a fully optimized guided-wave device can be used with AO to provide efficient spectroscopy at high spectral resolution.

  12. A pragmatic guide to multiphoton microscope design

    PubMed Central

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  13. Light pollution generated by laser guide star at Canarian Observatories

    NASA Astrophysics Data System (ADS)

    Chueca, Sergio; Fuensalida, Jesus J.

    2004-11-01

    A new generation of instrument using a launching laser is been developed to correct the atmospheric image blurring and to establish optical communication with space. Then, light pollution generated by laser will be a serious operational problem in next years. This laser could affect astronomical works of adjacent telescopes when the laser lay across the field of view of the observing telescope, this is a kind of light pollution. This could be avoided with an adequate operational politic to detect possible interference between the laser and the astronomical telescopes. In this paper is analysed the mathematical probability of a cross-event happen.

  14. Visual Aspects of the Electric Environment. NECA Electrical Design Guidelines.

    ERIC Educational Resources Information Center

    National Electrical Contractors Association, Washington, DC.

    New design opportunities afforded by modern high-intensity light sources, and the many ways of integrating package air-conditioners with the design of buildings, are discussed. A guide to unitary air-conditioners and heat pumps is included. (RK)

  15. A Decision-Making Framework for Cleanup of Sites Impacted with Light Non-Aqueous Phase Liquids (LNAPL)

    EPA Pesticide Factsheets

    This document has been prepared by the Remediation Technologies Development Forum (RTDF) NAPL Cleanup Alliance to provide a guide to practicable and reasonable approaches for management of LNAPL petroleum hydrocarbons in the subsurface.

  16. What You Should Know about Infectious Diseases: A Guide for Hemodialysis Patients and Their Families

    MedlinePlus

    ... stomach Stomach pain Fever Loss of appetite Diarrhea Dark-yellow urine Light-colored stools Yellowish eyes and ... developed solely from internal experts on the subject matter, including medical advisory boards, who have developed guidelines ...

  17. Photoreception in Phytoplankton.

    PubMed

    Colley, Nansi Jo; Nilsson, Dan-Eric

    2016-11-01

    In many species of phytoplankton, simple photoreceptors monitor ambient lighting. Photoreceptors provide a number of selective advantages including the ability to assess the time of day for circadian rhythms, seasonal changes, and the detection of excessive light intensities and harmful UV light. Photoreceptors also serve as depth gauges in the water column for behaviors such as diurnal vertical migration. Photoreceptors can be organized together with screening pigment into visible eyespots. In a wide variety of motile phytoplankton, including Chlamydomonas, Volvox, Euglena, and Kryptoperidinium, eyespots are light-sensitive organelles residing within the cell. Eyespots are composed of photoreceptor proteins and typically red to orange carotenoid screening pigments. This association of photosensory pigment with screening pigment allows for detection of light directionality, needed for light-guided behaviors such as positive and negative phototaxis. In Chlamydomonas, the eyespot is located in the chloroplast and Chlamydomonas expresses a number of photosensory pigments including the microbial channelrhodopsins (ChR1 and ChR2). Dinoflagellates are unicellular protists that are ecologically important constituents of the phytoplankton. They display a great deal of diversity in morphology, nutritional modes and symbioses, and can be photosynthetic or heterotrophic, feeding on smaller phytoplankton. Dinoflagellates, such as Kryptoperidinium foliaceum, have eyespots that are used for light-mediated tasks including phototaxis. Dinoflagellates belonging to the family Warnowiaceae have a more elaborate eye. Their eye-organelle, called an ocelloid, is a large, elaborate structure consisting of a focusing lens, highly ordered retinal membranes, and a shield of dark pigment. This complex eye-organelle is similar to multicellular camera eyes, such as our own. Unraveling the molecular makeup, structure and function of dinoflagellate eyes, as well as light-guided behaviors in phytoplankton can inform us about the selective forces that drove evolution in the important steps from light detection to vision. We show here that the evolution from simple photoreception to vision seems to have independently followed identical paths and principles in phytoplankton and animals, significantly strengthening our understanding of this important biological process. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  18. The rare isotope beams production at the Texas A and M university Cyclotron Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabacaru, G.; May, D. P.; Chubarian, G.

    2013-04-19

    The Cyclotron Institute at Texas A and M initiated an upgrade project for the production of radioactive-ion beams that incorporates a light-ion guide (LIG) and a heavy-ion guide coupled (HIG) with an Electron Cyclotron Resonance Ion Source (ECRIS) constructed for charge-boosting (CB-ECRIS). This scheme is intended to produce radioactive beams suitable for injection into the K500 superconducting cyclotron. The current status of the project and details on the ion sources and devices used in the project is presented.

  19. Disorder-induced losses in photonic crystal waveguides with line defects.

    PubMed

    Gerace, Dario; Andreani, Lucio Claudio

    2004-08-15

    A numerical analysis of extrinsic diffraction losses in two-dimensional photonic crystal slabs with line defects is reported. To model disorder, a Gaussian distribution of hole radii in the triangular lattice of airholes is assumed. The extrinsic losses below the light line increase quadratically with the disorder parameter, decrease slightly with increasing core thickness, and depend weakly on the hole radius. For typical values of the disorder parameter the calculated loss values of guided modes below the light line compare favorably with available experimental results.

  20. Effects of surface roughness and absorption on light propagation in graded-profile waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danilenko, S S; Osovitskii, A N

    2011-06-30

    This paper examines the effects of surface roughness and absorption on laser light propagation in graded-profile waveguiding structures. We derive analytical expressions for the scattering and absorption coefficients of guided waves and analyse these coefficients in relation to parameters of the waveguiding structure and the roughness of its boundary. A new approach is proposed to measuring roughness parameters of precision dielectric surfaces. Experimental evidence is presented which supports the main conclusions of the theory. (integraled-optical waweguides)

  1. Optimum design calculations for detectors based on ZnSe(Те,О) scintillators

    NASA Astrophysics Data System (ADS)

    Katrunov, K.; Ryzhikov, V.; Gavrilyuk, V.; Naydenov, S.; Lysetska, O.; Litichevskyi, V.

    2013-06-01

    Light collection in scintillators ZnSe(X), where X is an isovalent dopant, was studied using Monte Carlo calculations. Optimum design was determined for detectors of "scintillator—Si-photodiode" type, which can involve either one scintillation element or scintillation layers of large area made of small-crystalline grains. The calculations were carried out both for determination of the optimum scintillator shape and for design optimization of light guides, on the surface of which the layer of small-crystalline grains is formed.

  2. Meat Entree Item Production Guides Developed for Use in Ft. Lee Interim Central Food Preparation Facility

    DTIC Science & Technology

    1975-03-01

    serves 8). 10. Add cooked dough . (See topping procedure). 11. Cover, label and place in blast freezer. Totals Rotes: 1. Reheating...3. Gradually add cold water and mix only enough to form a soft dough . 4. Place dough on a lightly floured board, kneeding lightly about 1...minute or until dough Is smooth. 5. Roll out to a uniform thickness of 1/4 inch. 6. Cut into 2 i/4-inch diameter biscuits. 7. Bake for 15 minutes in

  3. Terrestrial Planet Finder Coronagraph 2005: Overview of Technology Development and System Design Studies

    NASA Technical Reports Server (NTRS)

    Ford, Virginia G.

    2005-01-01

    Technology research, design trades, and modeling and analysis guide the definition of a Terrestrial Planet Finder Coronagraph Mission that will search for and characterize earth-like planets around near-by stars. Operating in visible wavebands, this mission will use coronagraphy techniques to suppress starlight to enable capturing and imaging the reflected light from a planet orbiting in the habitable zone of its parent star. The light will be spectrally characterized to determine the presence of life-indicating chemistry in the planet atmosphere.

  4. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  5. Guiding neuronal growth with light

    PubMed Central

    Ehrlicher, A.; Betz, T.; Stuhrmann, B.; Koch, D.; Milner, V.; Raizen, M. G.; Käs, J.

    2002-01-01

    Control over neuronal growth is a fundamental objective in neuroscience, cell biology, developmental biology, biophysics, and biomedicine and is particularly important for the formation of neural circuits in vitro, as well as nerve regeneration in vivo [Zeck, G. & Fromherz, P. (2001) Proc. Natl. Acad. Sci. USA 98, 10457–10462]. We have shown experimentally that we can use weak optical forces to guide the direction taken by the leading edge, or growth cone, of a nerve cell. In actively extending growth cones, a laser spot is placed in front of a specific area of the nerve's leading edge, enhancing growth into the beam focus and resulting in guided neuronal turns as well as enhanced growth. The power of our laser is chosen so that the resulting gradient forces are sufficiently powerful to bias the actin polymerization-driven lamellipodia extension, but too weak to hold and move the growth cone. We are therefore using light to control a natural biological process, in sharp contrast to the established technique of optical tweezers [Ashkin, A. (1970) Phys. Rev. Lett. 24, 156–159; Ashkin, A. & Dziedzic, J. M. (1987) Science 235, 1517–1520], which uses large optical forces to manipulate entire structures. Our results therefore open an avenue to controlling neuronal growth in vitro and in vivo with a simple, noncontact technique. PMID:12456879

  6. [Preparation and chromaticity properties of colored dental 3Y-TZP ceramics].

    PubMed

    Yi, Yuan-fu; Wang, Chen; Tian, Jie-mo; Liu, Hong-chen; Wen, Ning

    2008-10-01

    To obtain and investigate the chromaticity properties of colored dental 3Y-TZP ceramics with different colorant combinations. Colorant combinations were mixed with TZ-3Y-S powder, then the mixtures were compacted at 200 MPa using cold isostatic pressure, densely sintered at 1500 degrees C for 2 h forming 5 graded colored dental zirconia ceramics. Specimen were sectioned into 10 mm x 10 mm x 0.5 mm and 10 mm x l0 mmx 1 mm slices from the sintered blocks. Color measurement was performed under black background using spectrophotometer. The chromaticity properties were compared with that of the VITA In-Ceram YZ shade guide. Five colored dental zirconia ceramics were obtained. The lightness decreased gradually, and the chroma value increased gradually. The color differences of the two thickness specimens were little. The parameters of the color space were L*: 67.76-77.78; a*: -2.19-3.80; b*: 12.13-25.01, which was similar with that of the VITA In-Ceram YZ shade guide, while the lowest value of lightness was relatively higher than that of the VITA In-Ceram YZ shade guide. Colored 3Y-TZP dental ceramics are suitable for clinical use. There is a need to develop more darkness shaded zirconia dental ceramics.

  7. Assessment of progressively delayed prompts on guided skill learning in rats.

    PubMed

    Reid, Alliston K; Futch, Sara E; Ball, Katherine M; Knight, Aubrey G; Tucker, Martha

    2017-03-01

    We examined the controlling factors that allow a prompted skill to become autonomous in a discrete-trials implementation of Touchette's (1971) progressively delayed prompting procedure, but our subjects were rats rather than children with disabilities. Our prompted skill was a left-right lever-press sequence guided by two panel lights. We manipulated (a) the effectiveness of the guiding lights prompt and (b) the presence or absence of a progressively delayed prompt in four groups of rats. The less effective prompt yielded greater autonomy than the more effective prompt. The ability of the progressively delayed prompt procedure to produce behavioral autonomy depended upon characteristics of the obtained delay (trial duration) rather than on the pending prompt. Sequence accuracy was reliably higher in unprompted trials than in prompted trials, and this difference was maintained in the 2 groups that received no prompts but yielded equivalent trial durations. Overall sequence accuracy decreased systematically as trial duration increased. Shorter trials and their greater accuracy were correlated with higher overall reinforcement rates for faster responding. Waiting for delayed prompts (even if no actual prompt was provided) was associated with lower overall reinforcement rate by decreasing accuracy and by lengthening trials. These findings extend results from previous studies regarding the controlling factors in delayed prompting procedures applied to children with disabilities.

  8. Liquid-core photonic crystal fiber platform for raman scattering measurements of microliter analyte solutions

    NASA Astrophysics Data System (ADS)

    Han, Yun; Oo, Maung Khaing; Zhu, Yinian; Sukhishvili, Svetlana; Xiao, Limin; Demokan, M. Süleyman; Jin, Wei; Du, Henry

    2007-09-01

    We have explored the use of index-guiding liquid-core photonic crystal fiber (LC-PCF) as a platform for sensing and measurements of analyte solutions of minute volume by normal and surface-enhanced Raman scattering (SERS). The index-guiding LC-PCF was fabricated by selectively sealing via fusion splicing the cladding air channels of a hollow-core PCF (HC-PCF) while leaving the center core open at both ends of the fiber. The center core of the resultant fiber was subsequently filled with water-ethanol solution mixtures at various ethanol concentrations for normal Raman scattering measurements and with water-thiocynate solutions containing Ag nanoparticle aggregates for SERS detection of thiocynate at trace concentrations. The light-guiding nature in the solution phase inside the LC-PCF allows direct and strong light-field overlap with the solution phase over the entire length of the PCF (~30 cm). This detection scheme also dramatically reduces the contribution of silica to Raman spectral background, compared with the solid-core counterpart, thus its potential interference in spectral analysis. These features attribute to ready normal Raman measurements of water, ethanol, and water (99 vol.%)-ethanol (1 vol.%) solutions as well as sensitive and reproducible SERS detection of ~10 ppb thiocynate in water, all at a volume of ~0.1 μL.

  9. Breaking the glass ceiling: hollow OmniGuide fibers

    NASA Astrophysics Data System (ADS)

    Johnson, Steven G.; Ibanescu, Mihai; Skorobogatiy, Maksim A.; Weisberg, Ori; Engeness, Torkel D.; Soljacic, Marin; Jacobs, Steven A.; Joannopoulos, John D.; Fink, Yoel

    2002-04-01

    We argue that OmniGuide fibers, which guide light within a hollow core by concentric multilayer films having the property of omnidirectional reflection, have the potential to lift several physical limitations of silica fibers. We show how the strong confinement in OmniGuide fibers greatly suppresses the properties of the cladding materials: even if highly lossy and nonlinear materials are employed, both the intrinsic losses and nonlinearities of silica fibers can be surpassed by orders of magnitude. This feat, impossible to duplicate in an index-guided fiber with existing materials, would open up new regimes for long-distance propagation and dense wavelength-division multiplexing (DWDM). The OmniGuide-fiber modes bear a strong analogy to those of hollow metallic waveguides; from this analogy, we are able to derive several general scaling laws with core radius. Moreover, there is strong loss discrimination between guided modes, depending upon their degree of confinement in the hollow core: this allows large, ostensibly multi-mode cores to be used, with the lowest-loss TE01 mode propagating in an effectively single-mode fashion. Finally, because this TE01 mode is a cylindrically symmetrical ('azimuthally' polarized) singlet state, it is immune to polarization-mode dispersion (PMD), unlike the doubly-degenerate linearly-polarized modes in silica fibers that are vulnerable to birefringence.

  10. Development of the Intervention Materials for the HomeStyles Obesity Prevention Program for Parents of Preschoolers

    PubMed Central

    Martin-Biggers, Jennifer; Spaccarotella, Kim; Delaney, Colleen; Koenings, Mallory; Alleman, Gayle; Hongu, Nobuko; Worobey, John; Byrd-Bredbenner, Carol

    2015-01-01

    Home environment is key to the development of obesity-preventing behaviors during childhood, yet few resources help preschool parents address factors at home associated with obesity risk. This paper describes creation of materials for an in-home intervention (HomeStyles) with this population. An advisory group of stakeholders and target audience members determined salient factors affecting childhood obesity to address in-home and developed program materials. The Social Cognitive Theory, Faith’s Core Behavior Change Strategies to Treat Childhood Obesity, Adult Learning Theory and motivational interviewing techniques guided development of 12 guides targeting strategies parents can use to shape the home environment. Interviews were conducted to determine effectiveness of the guides. Cognitive testing of guide design (n = 251) and content (n = 261) occurred in English and Spanish in New Jersey and Arizona with parents and home visitation staff who would present the guides. Interviews investigated perceptions of content usefulness and parent comprehension. Findings were also examined in light of theoretical underpinnings. Both home visitation staff and parents felt the guides were very readable and useful. Parents appreciated use of motivational interviewing techniques and Adult Learning Theory. Current research is testing these guides through an in-home, randomized control trial. PMID:26266419

  11. Tooth shade measurements under standard and nonstandard illumination and their agreement with skin color.

    PubMed

    Al-Dwairi, Ziad; Shaweesh, Ashraf; Kamkarfar, Sohrab; Kamkarfar, Shahrzad; Borzabadi-Farahani, Ali; Lynch, Edward

    2014-01-01

    The purpose of this study was to examine the relationship between skin color (shade) and tooth shade under standard and nonstandard illumination sources. Four hundred Jordanian participants (200 males, 200 females, 20 to 50 years of age) were studied. Skin colors were assessed and categorized using the L'Oreal and Revlon foundation shade guides (light, medium, dark). The Vita Pan Classical Shade Guide (VPCSG; Vident) and digital Vita EasyShade Intraoral Dental Spectrophotometer (VESIDS; Vident) were used to select shades in the middle thirds of maxillary central incisors; tooth shades were classified into four categories (highest, high, medium, low). Significant gender differences were observed for skin colors (P = .000) and tooth shade guide systems (P = .001 and .050 for VPCSG and VESIDS, respectively). The observed agreement was 100% and 93% for skin and tooth shade guides, respectively. The corresponding kappa statistic values were 1.00 and 0.79, respectively (substantial agreement, P < .001). The observed agreement between skin color and tooth shades (VPCSG and VESIDS) was approximately 50%. The digital tooth shade guide system can be a satisfactory substitute for classical tooth shade guides and clinical shade matching. There was only moderate agreement between skin color and tooth shade.

  12. Thin optical display panel

    DOEpatents

    Veligdan, James Thomas

    1997-01-01

    An optical display includes a plurality of optical waveguides each including a cladding bound core for guiding internal display light between first and second opposite ends by total internal reflection. The waveguides are stacked together to define a collective display thickness. Each of the cores includes a heterogeneous portion defining a light scattering site disposed longitudinally between the first and second ends. Adjacent ones of the sites are longitudinally offset from each other for forming a longitudinal internal image display over the display thickness upon scattering of internal display light thereagainst for generating a display image. In a preferred embodiment, the waveguides and scattering sites are transparent for transmitting therethrough an external image in superposition with the display image formed by scattering the internal light off the scattering sites for defining a heads up display.

  13. Illumination of dense urban areas by light redirecting panels.

    PubMed

    El-Henawy, Sally I; Mohamed, Mohamed W N; Mashaly, Islam A; Mohamed, Osama N; Galal, Ola; Taha, Iman; Nassar, Khaled; Safwat, Amr M E

    2014-05-05

    With the high population growth rate, especially in developing countries, and the scarcity of land resources, buildings are becoming so close to each other, depriving the lower floors and the alleys from sunlight and consequently causing health problems. Therefore, there is an urgent need for cost-effective efficient light redirecting panels that guide sun rays into those dim places. In this paper, we address this problem. A novel sine wave based panel is presented to redirect/diverge light downward and enhance the illumination level in those dark places. Simulation results show that the proposed panel improves the illuminance values by more than 200% and 400% in autumn and winter respectively, operates over wide solar altitude ranges, and redirects light efficiently. Experimental and simulation results are in good agreement.

  14. Light-assisted, templated self-assembly of gold nanoparticle chains.

    PubMed

    Jaquay, Eric; Martínez, Luis Javier; Huang, Ningfeng; Mejia, Camilo A; Sarkar, Debarghya; Povinelli, Michelle L

    2014-09-10

    We experimentally demonstrate the technique of light-assisted, templated self-assembly (LATS) to trap and assemble 200 nm diameter gold nanoparticles. We excite a guided-resonance mode of a photonic-crystal slab with 1.55 μm laser light to create an array of optical traps. Unlike our previous demonstration of LATS with polystyrene particles, we find that the interparticle interactions play a significant role in the resulting particle patterns. Despite a two-dimensionally periodic intensity profile in the slab, the particles form one-dimensional chains whose orientations can be controlled by the incident polarization of the light. The formation of chains can be understood in terms of a competition between the gradient force due to the excitation of the mode in the slab and optical binding between particles.

  15. Multiplexing 200 spatial modes with a single hologram

    NASA Astrophysics Data System (ADS)

    Rosales-Guzmán, Carmelo; Bhebhe, Nkosiphile; Mahonisi, Nyiku; Forbes, Andrew

    2017-11-01

    The on-demand tailoring of light's spatial shape is of great relevance in a wide variety of research areas. Computer-controlled devices, such as spatial light modulators (SLMs) or digital micromirror devices, offer a very accurate, flexible and fast holographic means to this end. Remarkably, digital holography affords the simultaneous generation of multiple beams (multiplexing), a tool with numerous applications in many fields. Here, we provide a self-contained tutorial on light beam multiplexing. Through the use of several examples, the readers will be guided step by step in the process of light beam shaping and multiplexing. Additionally, we provide a quantitative analysis on the multiplexing capabilities of SLMs to assess the maximum number of beams that can be multiplexed on a single SLM, showing approximately 200 modes on a single hologram.

  16. Photonic Crystals from Order to Disorder: Perturbative Methods in Nanophotonics

    ScienceCinema

    Johnson, Steven G. [MIT, Cambridge, Massachusetts, United States

    2017-12-09

    Photonic crystals are periodic dielectric structures in which light can behave much differently than in a homogeneous medium. This talk gives an overview of some of the interesting properties and applications of these media, from switching in subwavelength microcavities to slow-light devices, to guiding light in air. However, some of the most interesting and challenging problems occur when the periodicity is disturbed, either by design or by inevitable fabrication imperfections. The talk focuses especially on small perturbations that have important effects, from slow-light tapers to surface roughness disorder, and will show that many classic perturbative approaches must be rethought for high-contrast nanophotonics. The combination of strong periodicity with large field discontinuities at interfaces causes standard methods to fail, but succumbs to new generalizations, while some problems remain open.

  17. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.

    PubMed

    Pennanen, Antti M; Toppari, J Jussi

    2013-01-14

    Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).

  18. Good vibrations: Controlling light with sound (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Eggleton, Benjamin J.; Choudhary, Amol

    2016-10-01

    One of the surprises of nonlinear optics, is that light may interact strongly with sound. Intense laser light literally "shakes" the glass in optical fibres, exciting acoustic waves (sound) in the fibre. Under the right conditions, it leads to a positive feedback loop between light and sound termed "Stimulated Brillouin Scattering," or simply SBS. This nonlinear interaction can amplify or filter light waves with extreme precision in frequency which makes it uniquely suited to solve key problems in the fields of defence, biomedicine, wireless communications, spectroscopy and imaging. We have achieved the first demonstration of SBS in compact chip-scale structures, carefully designed so that the optical fields and the acoustic fields are simultaneously confined and guided. This new platform has opened a range of new functionalities that are being applied in communications and defence with breathtaking performance and compactness. My talk will introduce this new field and review our progress and achievements, including silicon based optical phononic processor.

  19. Measurement and removal of cladding light in high power fiber systems

    NASA Astrophysics Data System (ADS)

    Walbaum, Till; Liem, Andreas; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas

    2018-02-01

    The amount of cladding light is important to ensure longevity of high power fiber components. However, it is usually measured either by adding a cladding light stripper (and thus permanently modifying the fiber) or by using a pinhole to only transmit the core light (ignoring that there may be cladding mode content in the core area). We present a novel noninvasive method to measure the cladding light content in double-clad fibers based on extrapolation from a cladding region of constant average intensity. The method can be extended to general multi-layer radially symmetric fibers, e.g. to evaluate light content in refractive index pedestal structures. To effectively remove cladding light in high power systems, cladding light strippers are used. We show that the stripping efficiency can be significantly improved by bending the fiber in such a device and present respective experimental data. Measurements were performed with respect to the numerical aperture as well, showing the dependency of the CLS efficiency on the NA of the cladding light and implying that efficiency data cannot reliably be given for a certain fiber in general without regard to the properties of the guided light.

  20. Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila

    NASA Astrophysics Data System (ADS)

    Cho, Eunjoo; Oh, Ji Hye; Lee, Euna; Do, Young Rag; Kim, Eun Young

    2016-11-01

    Light at night disrupts the circadian clock and causes serious health problems in the modern world. Here, we show that newly developed four-package light-emitting diodes (LEDs) can provide harmless lighting at night. To quantify the effects of light on the circadian clock, we employed the concept of circadian illuminance (CIL). CIL represents the amount of light weighted toward the wavelengths to which the circadian clock is most sensitive, whereas visual illuminance (VIL) represents the total amount of visible light. Exposure to 12 h:12 h cycles of white LED light with high and low CIL values but a constant VIL value (conditions hereafter referred to as CH/CL) can entrain behavioral and molecular circadian rhythms in flies. Moreover, flies re-entrain to phase shift in the CH/CL cycle. Core-clock proteins are required for the rhythmic behaviors seen with this LED lighting scheme. Taken together, this study provides a guide for designing healthful white LED lights for use at night, and proposes the use of the CIL value for estimating the harmful effects of any light source on organismal health.

  1. Challenges and opportunities in patient-specific, motion-managed and PET/CT-guided radiation therapy of lung cancer: review and perspective

    PubMed Central

    2012-01-01

    The increasing interest in combined positron emission tomography (PET) and computed tomography (CT) to guide lung cancer radiation therapy planning has been well documented. Motion management strategies during treatment simulation PET/CT imaging and treatment delivery have been proposed to improve the precision and accuracy of radiotherapy. In light of these research advances, why has translation of motion-managed PET/CT to clinical radiotherapy been slow and infrequent? Solutions to this problem are as complex as they are numerous, driven by large inter-patient variability in tumor motion trajectories across a highly heterogeneous population. Such variation dictates a comprehensive and patient-specific incorporation of motion management strategies into PET/CT-guided radiotherapy rather than a one-size-fits-all tactic. This review summarizes challenges and opportunities for clinical translation of advances in PET/CT-guided radiotherapy, as well as in respiratory motion-managed radiotherapy of lung cancer. These two concepts are then integrated into proposed patient-specific workflows that span classification schemes, PET/CT image formation, treatment planning, and adaptive image-guided radiotherapy delivery techniques. PMID:23369522

  2. The linear shade guide design of Vita 3D-master performs as well as the original design of the Vita 3D-master.

    PubMed

    Corcodel, N; Rammelsberg, P; Jakstat, H; Moldovan, O; Schwarz, S; Hassel, A J

    2010-11-01

    Visual tooth colour assessment by use of the Vita 3D-Master(®) (3D; Vita Zahnfabrik, Bad Säckingen, Germany) is well documented. To improve handling, a new linear arrangement of the shade tabs has been introduced (LG; Linearguide 3D-Master(®) ). The purpose of this study was to investigate whether the linear design has an effect on shade matching. Fifty-six students underwent identical, theoretical and practical training, by use of an Internet learning module [Toothguide Training Software(®) (TT)] and a standardised training programme [Toothguide Training Box(®) (TTB)]. Each student then matched 30 randomly chosen shade tabs presented in an intra-oral setting by a standardised device [Toothguide Check Box(®) (TCB)]; 15 matches were made using the 3D and 15 using the LG shade guide system, under a daylight lamp (840 matches for each guide). It was recorded to what extent the presented and selected shade tabs, or the lightness group of the tabs, matched, also the needed time for colour matching. The results showed that 35% of perfect matches were observed for the 3D and 32% for the LG. The lightness group was correct in 59% of cases for 3D and 56% for LG. Mean time needed for matching of tabs and lightness group was no different between groups (no significant difference for any assessment). Within the limitations of the study design, the colour assessment with regard to performance and time needed in shade matching was not different with the LG or the 3D. Therefore, the user should choose which shade tab arrangement is more applicable. © 2010 Blackwell Publishing Ltd.

  3. Dual-labeling with 5-aminolevulinic acid and fluorescein for fluorescence-guided resection of high-grade gliomas: technical note.

    PubMed

    Suero Molina, Eric; Wölfer, Johannes; Ewelt, Christian; Ehrhardt, André; Brokinkel, Benjamin; Stummer, Walter

    2018-02-01

    OBJECTIVE Fluorescence guidance with 5-aminolevulinic acid (5-ALA) helps improve resections of malignant gliomas. However, one limitation is the low intensity of blue light for background illumination. Fluorescein has recently been reintroduced into neurosurgery, and novel microscope systems are available for visualizing this fluorochrome, which highlights all perfused tissues but has limited selectivity for tumor detection. Here, the authors investigate a combination of both fluorochromes: 5-ALA for distinguishing tumor and fluorescein for providing tissue fluorescence of adjacent brain tissue. METHODS The authors evaluated 6 patients who harbored cerebral lesions suggestive of high-grade glioma. Patients received 5-ALA (20 mg/kg) orally 4 hours before induction of anesthesia. Low-dose fluorescein (3 mg/kg intravenous) was injected immediately after anesthesia induction. Pentero microscopes (equipped either with Yellow 560 or Blue 400 filters) were used to visualize fluorescence. To simultaneously visualize both fluorochromes, the Yellow 560 module was combined with external blue light illumination (D-light C System). RESULTS Fluorescein-induced fluorescence created a useful background for protoporphyrin IX (PPIX) fluorescence, which appeared orange to red, surrounded by greenly fluorescent normal brain and edematous tissue. Green brain-tissue fluorescence was helpful in augmenting background. Levels of blue illumination that were too strong obscured PPIX fluorescence. Unspecific extravasation of fluorescein was noted at resection margins, which did not interfere with PPIX fluorescence detection. CONCLUSIONS Dual labeling with both PPIX and fluorescein fluorescence is feasible and gives superior background information during fluorescence-guided resections. The authors believe that this technique carries potential as a next step in fluorescence-guided resections if it is completely integrated into the surgical microscope.

  4. The ARGOS laser system: green light for ground layer adaptive optics at the LBT

    NASA Astrophysics Data System (ADS)

    Raab, Walfried; Rabien, Sebastian; Gässler, Wolfgang; Esposito, Simone; Barl, Lothar; Borelli, Jose; Daysenroth, Matthias; Gemperlein, Hans; Kulas, Martin; Ziegleder, Julian

    2014-07-01

    We report on the development of the laser system of ARGOS, the multiple laser guide star adaptive optics system for the Large Binocular Telescope (LBT). The system uses a total of six high powered, pulsed Nd:YAG lasers frequency-doubled to a wavelength of 532 nm to generate a set of three guide stars above each of the LBT telescopes. The position of each of the LGS constellations on sky as well as the relative position of the individual laser guide stars within this constellation is controlled by a set of steerable mirrors and a fast tip-tilt mirror within the laser system. The entire opto-mechanical system is housed in two hermetically sealed and thermally controlled enclosures on the SX and DX side of the LBT telescope. The laser beams are propagated through two refractive launch telescopes which focus the beams at an altitude of 12 km, creating a constellation of laser guide stars around a 4 arcminute diameter circle by means of Rayleigh scattering. In addition to the GLAO Rayleigh beacon system, ARGOS has also been designed for a possible future upgrade with a hybrid sodium laser - Rayleigh beacon combination, enabling diffraction limited operation. The ARGOS laser system was successfully installed at the LBT in April 2013. Extensive functional tests have been carried out and have verified the operation of the systems according to specifications. The alignment of the laser system with respect to the launch telescope was carried out during two more runs in June and October 2013, followed by the first propagation of laser light on sky in November 2013.

  5. Waveguide-excited fluorescence microarray

    NASA Astrophysics Data System (ADS)

    Sagarzazu, Gabriel; Bedu, Mélanie; Martinelli, Lucio; Ha, Khoi-Nguyen; Pelletier, Nicolas; Safarov, Viatcheslav I.; Weisbuch, Claude; Gacoin, Thierry; Benisty, Henri

    2008-04-01

    Signal-to-noise ratio is a crucial issue in microarray fluorescence read-out. Several strategies are proposed for its improvement. First, light collection in conventional microarrays scanners is quite limited. It was recently shown that almost full collection can be achieved in an integrated lens-free biosensor, with labelled species hybridizing practically on the surface of a sensitive silicon detector [L. Martinelli et al. Appl. Phys. Lett. 91, 083901 (2007)]. However, even with such an improvement, the ultimate goal of real-time measurements during hybridization is challenging: the detector is dazzled by the large fluorescence of labelled species in the solution. In the present paper we show that this unwanted signal can effectively be reduced if the excitation light is confined in a waveguide. Moreover, the concentration of excitation light in a waveguide results in a huge signal gain. In our experiment we realized a structure consisting of a high index sol-gel waveguide deposited on a low-index substrate. The fluorescent molecules deposited on the surface of the waveguide were excited by the evanescent part of a wave travelling in the guide. The comparison with free-space excitation schemes confirms a huge gain (by several orders of magnitude) in favour of waveguide-based excitation. An optical guide deposited onto an integrated biosensor thus combines both advantages of ideal light collection and enhanced surface localized excitation without compromising the imaging properties. Modelling predicts a negligible penalty from spatial cross-talk in practical applications. We believe that such a system would bring microarrays to hitherto unattained sensitivities.

  6. Analyses of multi-color plant-growth light sources in achieving maximum photosynthesis efficiencies with enhanced color qualities.

    PubMed

    Wu, Tingzhu; Lin, Yue; Zheng, Lili; Guo, Ziquan; Xu, Jianxing; Liang, Shijie; Liu, Zhuguagn; Lu, Yijun; Shih, Tien-Mo; Chen, Zhong

    2018-02-19

    An optimal design of light-emitting diode (LED) lighting that benefits both the photosynthesis performance for plants and the visional health for human eyes has drawn considerable attention. In the present study, we have developed a multi-color driving algorithm that serves as a liaison between desired spectral power distributions and pulse-width-modulation duty cycles. With the aid of this algorithm, our multi-color plant-growth light sources can optimize correlated-color temperature (CCT) and color rendering index (CRI) such that photosynthetic luminous efficacy of radiation (PLER) is maximized regardless of the number of LEDs and the type of photosynthetic action spectrum (PAS). In order to illustrate the accuracies of the proposed algorithm and the practicalities of our plant-growth light sources, we choose six color LEDs and German PAS for experiments. Finally, our study can help provide a useful guide to improve light qualities in plant factories, in which long-term co-inhabitance of plants and human beings is required.

  7. Medical imaging systems

    DOEpatents

    Frangioni, John V [Wayland, MA

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  8. Visible light guided manipulation of liquid wettability on photoresponsive surfaces

    PubMed Central

    Kwon, Gibum; Panchanathan, Divya; Mahmoudi, Seyed Reza; Gondal, Mohammed A.; McKinley, Gareth H.; Varanasi, Kripa K.

    2017-01-01

    Photoresponsive titania surfaces are of great interest due to their unique wettability change upon ultraviolet light illumination. However, their applications are often limited either by the inability to respond to visible light or the need for special treatment to recover the original wettability. Sensitizing TiO2 surfaces with visible light-absorbing materials has been utilized in photovoltaic applications. Here we demonstrate that a dye-sensitized TiO2 surface can selectively change the wettability towards contacting liquids upon visible light illumination due to a photo-induced voltage across the liquid and the underlying surface. The photo-induced wettability change of our surfaces enables external manipulation of liquid droplet motion upon illumination. We show demulsification of surfactant-stabilized brine-in-oil emulsions via coalescence of brine droplets on our dye-sensitized TiO2 surface upon visible light illumination. We anticipate that our surfaces will have a wide range of applications including microfluidic devices with customizable wettability, solar-driven oil–water clean-up and demulsification technologies. PMID:28440292

  9. Improving sodium laser guide star brightness by polarization switching

    PubMed Central

    Fan, Tingwei; Zhou, Tianhua; Feng, Yan

    2016-01-01

    Optical pumping with circularly polarized light has been used to enhance the brightness of sodium laser guide star. But the benefit is reduced substantially due to the precession of sodium atoms in geomagnetic field. Switching the laser between left and right circular polarization at the Larmor frequency is proposed to improve the return. With ESO’s laser guide star system at Paranal as example, numerical simulation shows that the return flux is increased when the angle between geomagnetic field and laser beam is larger than 60°, as much as 50% at 90°. The proposal is significant since most astronomical observation is at angle between 60° and 90° and it only requires a minor addition to the delivery optics of present laser system. PMID:26797503

  10. Evaluation of warning lights on maintenance of traffic devices and development of possible alternatives : [summary].

    DOT National Transportation Integrated Search

    2013-01-01

    Orange plastic drums are common on Florida roadways, warning motorists and guiding them safely through work zones. The orange color is mandated by the Manual on Uniform Traffic Control Devices, which also requires that drums bear retroreflective whit...

  11. 7 CFR 1755.900 - Abbreviations and Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to §§ 1755.901 and 1755.902: (a) Abbreviations. (1) ADSSAll dielectric self-supporting; (2...) Dielectric cable means a cable which has neither metallic members nor other electrically conductive materials... means any fiber made of dielectric material that guides light. (24) Optical point discontinuities means...

  12. 7 CFR 1755.900 - Abbreviations and Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to §§ 1755.901 and 1755.902: (a) Abbreviations. (1) ADSSAll dielectric self-supporting; (2...) Dielectric cable means a cable which has neither metallic members nor other electrically conductive materials... means any fiber made of dielectric material that guides light. (24) Optical point discontinuities means...

  13. Solid-state laser pumping with a planar compound parabolic concentrator.

    PubMed

    Panteli, D V; Pani, B M; Beli, L Z

    1997-10-20

    A novel solid-state laser-pumping scheme is proposed that combines a reflective lamp chamber and a compound parabolic concentrator (CPC) as a light guide. The CPC is made of a transparent material of high refractive index, and light is guided by the total internal reflection, with drastically reduced reflection losses. Material is chosen so that the absorption losses are minimized in the pumping wavelength range. The lamp chamber is designed with the principles of nonimaging optics, which ensures that the radiation is efficiently transferred from the lamp to the input aperture of the CPC. The pumping efficiency was first estimated theoretically, which gave us enough justification for the more accurate calculations with ray tracing. Single as well as multiple pumping cavities are discussed. New pumping geometry results in significantly increased pumping efficiency compared with conventional geometries. Also the lamp and the laser rod are separated, leading to reduced thermal load. We found that the proposed pumping method is also applicable to diode-pumped lasers.

  14. Analysis of beam propagation characteristics in gain-guided, index antiguided fibers with the beam propagation method.

    PubMed

    Ai, Fei; Qian, Jianqiang; Shi, Junfeng; Zhang, Machi

    2017-10-10

    The transmission properties of beams in gain fibers are studied with the complex refractive index beam propagation method (CRI-BPM). The method is checked by comparison with an analytic method. The behavior of a gain-guided, index antiguided (GG-IAG) fiber with different gain coefficients is studied. The simulation results show that the signal can transfer in the fiber with almost no loss when the gain coefficient reaches the threshold of the fundamental mode, and the shape of output spot will have no major changes when the gain coefficient is over the thresholds of high-order modes, even when the mode competition is not obvious. The CRI-BPM can predict the changes in light power and light mode at the same time, and will be very useful in the designing of fiber amplifiers and lasers with complex structures. More factors will be considered in this method to provide reference for practical application in our further research.

  15. The opto-mechanical design of HARMONI: a first light integral field spectrograph for the E-ELT

    NASA Astrophysics Data System (ADS)

    Thatte, Niranjan A.; Tecza, Mathias; Freeman, David; Gallie, Angus M.; Montgomery, David; Clarke, Fraser; Fragoso-Lopez, Ana Belén.; Fuentes, Javier; Gago, Fernando; Garcia, Adolfo; Gracia, Felix; Kosmalski, Johan; Lynn, James; Sosa, Dario; Arribas, Santiago; Bacon, Roland; Davies, Roger L.; Fusco, Thierry; Lunney, David; Mediavilla, Evencio; Remillieux, Alban; Schnetler, Hermine

    2012-09-01

    HARMONI is a visible and near-IR integral field spectrograph, providing the E-ELT's spectroscopic capability at first light. It obtains simultaneous spectra of 32000 spaxels, at a range of resolving powers from R~4000 to R~20000, covering the wavelength range from 0.47 to 2.45 μm. The 256 × 128 spaxel field of view has four different plate scales, with the coarsest scale (40 mas) providing a 5″ × 10″ FoV, while the finest scale is a factor of 10 finer (4mas). We describe the opto-mechanical design of HARMONI, prior to the start of preliminary design, including the main subsystems - namely the image de-rotator, the scale-changing optics, the splitting and slicing optics, and the spectrographs. We also present the secondary guiding system, the pupil imaging optics, the field and pupil stops, the natural guide star wavefront sensor, and the calibration unit.

  16. Catheter guided by optical coherence domain reflectometry

    DOEpatents

    Everett, Matthew; Colston, Billy W.; Da Silva, Luiz B.; Matthews, Dennis

    2002-01-01

    A guidance and viewing system based on multiplexed optical coherence domain reflectometry is incorporated into a catheter, endoscope, or other medical device to measure the location, thickness, and structure of the arterial walls or other intra-cavity regions at discrete points on the medical device during minimally invasive medical procedures. The information will be used both to guide the device through the body and to evaluate the tissue through which the device is being passed. Multiple optical fibers are situated along the circumference of the device. Light from the distal end of each fiber is directed onto the interior cavity walls via small diameter optics (such as gradient index lenses and mirrored corner cubes). Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers and multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The system may also be implemented in a nonmedical inspection device.

  17. Optical performance of segmented aperture windows for solar tower receivers

    NASA Astrophysics Data System (ADS)

    Buck, Reiner

    2017-06-01

    Segmented quartz windows are a concept to build larger windows for receivers that require a closed aperture. Reflection losses are a significant loss factor for such solar receivers. Without any additional measures, the reflection loss can reach about 12%. One important measure to improve transmission is the application of anti-reflective coatings, which is beneficial in any case. Another option is modifying the window geometry, especially the edge surfaces of the glass segments. A certain fraction of the reflection losses are caused by a light-guide effect in the glass body, for rays entering through the front surface. Changing the cut surfaces in a way reducing the light-guide effect can significantly improve transmission of a segmented window. Several possible configurations are evaluated and discussed. The results of ray-tracing simulations verify the improvement. The final selection of the window configuration depends on the optical properties and on mechanical strength, manufacturing and cost considerations. This has to be evaluated for any specific receiver design.

  18. Development of a flexible γ-ray detector using a liquid scintillation light guide (LSLG).

    PubMed

    Nomura, Kiyoshi; Yunoki, Akira; Hara, Masayuki; Morito, Yuko; Fujishima, Akira

    2018-04-10

    A flexible γ detector using a liquid scintillation light guide (LSLG) was developed. The analyzed pulse height (PHA) spectrum depended on the diameter, length and scintillator concentration of the LSLG, and the distance of a γ ray irradiation point from the head of photomultiplier tube (PMT). From the analysis of PHA spectrum, it was found that the count ratio of two divided channel regions linearly decreases as the distance from the PMT head increases. It was further found that the radiation dose rate can be estimated by setting the flexible LSLG tube to a circular shape since the count rate is proportional to the dose rate measured by a conventional NaI (Tl) scintillation detector. Therefore, a flexible and long LSLG detector using a single PMT is useful for determination of the dose rate and has a potential to detect local contaminations in a certain narrow space. Copyright © 2018. Published by Elsevier Ltd.

  19. Combination of Fluorescence-Guided Surgery With Photodynamic Therapy for the Treatment of Cancer

    PubMed Central

    He, Jun; Yang, Leping; Yi, Wenjun; Fan, Wentao; Wen, Yu; Miao, Xiongying; Xiong, Li

    2017-01-01

    Specific visualization of body parts is needed during surgery. Fluorescence-guided surgery (FGS) uses a fluorescence contrast agent for in vivo tumor imaging to detect and identify both malignant and normal tissues. There are several advantages and clinical benefits of FGS over other conventional medical imaging modalities, such as its safety, effectiveness, and suitability for real-time imaging in the operating room. Recent advancements in contrast agents and intraoperative fluorescence imaging devices have led to a greater potential for intraoperative fluorescence imaging in clinical applications. Photodynamic therapy (PDT) is an alternative modality to treat tumors, which uses a light-sensitive drug (photosensitizers) and special light to destroy the targeted tissues. In this review, we discuss the fluorescent contrast agents, some newly developed imaging devices, and the successful clinical application of FGS. Additionally, we present the combined strategy of FGS with PDT to further improve the therapeutic effect for patients with cancer. Taken together, this review provides a unique perspective and summarization of FGS. PMID:28849712

  20. Comprehensive investigation of noble metal nanoparticles shape, size and material on the optical response of optimal plasmonic Y-splitter waveguides

    NASA Astrophysics Data System (ADS)

    Ahmadivand, Arash; Golmohammadi, Saeed

    2014-01-01

    With the purpose of guiding and splitting of optical power at C-band spectrum, we studied Y-shape splitters based on various shapes of nanoparticles as a plasmon waveguide. We applied different configurations of Gold (Au) and Silver (Ag) nanoparticles including spheres, rods and rings, to optimize the efficiency and losses of two and four-branch splitters. The best performance in light transportation specifically at telecom wavelength (λ≈1550 nm) is achieved by nanorings, due to an extra degree of freedom in their geometrical components. In addition, comparisons of several values for offset distance (doffset) of examined structures shows that Au nanoring splitters with feasible lower doffset have high quality in guiding and splitting of light through the structure. Finally, we studied four-branch Y-splitters based on Au and Ag nanorings with least possible offset distances to optimize the splitter performance. The power transmission as a key element is calculated for examined structures.

  1. Structural Color for Additive Manufacturing: 3D-Printed Photonic Crystals from Block Copolymers.

    PubMed

    Boyle, Bret M; French, Tracy A; Pearson, Ryan M; McCarthy, Blaine G; Miyake, Garret M

    2017-03-28

    The incorporation of structural color into 3D printed parts is reported, presenting an alternative to the need for pigments or dyes for colored parts produced through additive manufacturing. Thermoplastic build materials composed of dendritic block copolymers were designed, synthesized, and used to additively manufacture plastic parts exhibiting structural color. The reflection properties of the photonic crystals arise from the periodic nanostructure formed through block copolymer self-assembly during polymer processing. The wavelength of reflected light could be tuned across the visible spectrum by synthetically controlling the block copolymer molecular weight and manufacture parts that reflected violet, green, or orange light with the capacity to serve as selective optical filters and light guides.

  2. A novel multiwavelength fluorescence image-guided surgery imaging system

    NASA Astrophysics Data System (ADS)

    Volpi, D.; Tullis, I. D. C.; Laios, A.; Pathiraja, P. N. J.; Haldar, K.; Ahmed, A. A.; Vojnovic, B.

    2014-02-01

    We describe the development and performance analysis of two clinical near-infrared fluorescence image-guided surgery (FIGS) devices that aim to overcome some of the limitations of current FIGS systems. The devices operate in a widefield-imaging mode and can work (1) in conjunction with a laparoscope, during minimally invasive surgery, and (2) as a hand-held, open surgery imaging system. In both cases, narrow-band excitation light, delivered at multiple wavelengths, is efficiently combined with white reflectance light. Light is delivered to ~100 cm2 surgical field at 1-2 mW/cm2 for white light and 3-7 mW/cm2 (depending on wavelength) of red - near infrared excitation, at a typical working distance of 350 mm for the hand-held device and 100 mm for the laparoscope. A single, sensitive, miniaturized color camera collects both fluorescence and white reflectance light. The use of a single imager eliminates image alignment and software overlay complexity. A novel filtering and illumination arrangement allows simultaneous detection of white reflectance and fluorescence emission from multiple dyes in real-time. We will present both fluorescence detection sensitivity modeling and practical performance data. We have demonstrated the efficiency and the advantages of the devices both pre-clinically and during live surgery on humans. Both the hand-held and the laparoscopic systems have proved to be reliable and beneficial in an ongoing clinical trial involving sentinel lymph node detection in gynecological cancers. We will show preliminary results using two clinically approved dyes, Methylene blue and indocyanine green. We anticipate that this technology can be integrated and routinely used in a larger variety of surgical procedures.

  3. Wide-field fluorescent microscopy on a cell-phone.

    PubMed

    Zhu, Hongying; Yaglidere, Oguzhan; Su, Ting-Wei; Tseng, Derek; Ozcan, Aydogan

    2011-01-01

    We demonstrate wide-field fluorescent imaging on a cell-phone, using compact and cost-effective optical components that are mechanically attached to the existing camera unit of the cell-phone. Battery powered light-emitting diodes (LEDs) are used to side-pump the sample of interest using butt-coupling. The pump light is guided within the sample cuvette to excite the specimen uniformly. The fluorescent emission from the sample is then imaged with an additional lens that is put in front of the existing lens of the cell-phone camera. Because the excitation occurs through guided waves that propagate perpendicular to the detection path, an inexpensive plastic color filter is sufficient to create the dark-field background needed for fluorescent imaging. The imaging performance of this light-weight platform (~28 grams) is characterized with red and green fluorescent microbeads, achieving an imaging field-of-view of ~81 mm(2) and a spatial resolution of ~10 μm, which is enhanced through digital processing of the captured cell-phone images using compressive sampling based sparse signal recovery. We demonstrate the performance of this cell-phone fluorescent microscope by imaging labeled white-blood cells separated from whole blood samples as well as water-borne pathogenic protozoan parasites such as Giardia Lamblia cysts.

  4. Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping

    PubMed Central

    Shi, Dai; Zeng, Yang; Shen, Wenzhong

    2015-01-01

    Perovskite/c-Si tandem solar cells (TSCs) have become a promising candidate in recent years for achieving efficiency over 30%. Although general analysis has shown very high upper limits for such TSCs, it remains largely unclear what specific optical structures could best approach these limits. Here we propose the combination of perovskite/c-Si tandem structure with inverted nanopyramid morphology as a practical way of achieving efficiency above 31% based on realistic solar cell parameters. By full-field simulation, we have shown that an ultra-low surface reflectance can be achieved by tuning the pyramid geometry within the range of experimental feasibility. More importantly, we have demonstrated that the index-guided modes can be excited within the top cell layer by introducing a TCO interlayer that prevents coupling of guided light energy into the bottom cell. This light trapping scheme has shown superior performance over the Bragg stack intermediate reflector utilized in previous micropyramid-based TSCs. Finally, by controlling the coupling between the top and bottom cell through the thickness of the interlayer, current generation within the tandem can be optimized for both two- and four-terminal configurations, yielding efficiencies of 31.9% and 32.0%, respectively. These results have provided useful guidelines for the fabrication of perovskite/c-Si TSCs. PMID:26566176

  5. Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping.

    PubMed

    Shi, Dai; Zeng, Yang; Shen, Wenzhong

    2015-11-13

    Perovskite/c-Si tandem solar cells (TSCs) have become a promising candidate in recent years for achieving efficiency over 30%. Although general analysis has shown very high upper limits for such TSCs, it remains largely unclear what specific optical structures could best approach these limits. Here we propose the combination of perovskite/c-Si tandem structure with inverted nanopyramid morphology as a practical way of achieving efficiency above 31% based on realistic solar cell parameters. By full-field simulation, we have shown that an ultra-low surface reflectance can be achieved by tuning the pyramid geometry within the range of experimental feasibility. More importantly, we have demonstrated that the index-guided modes can be excited within the top cell layer by introducing a TCO interlayer that prevents coupling of guided light energy into the bottom cell. This light trapping scheme has shown superior performance over the Bragg stack intermediate reflector utilized in previous micropyramid-based TSCs. Finally, by controlling the coupling between the top and bottom cell through the thickness of the interlayer, current generation within the tandem can be optimized for both two- and four-terminal configurations, yielding efficiencies of 31.9% and 32.0%, respectively. These results have provided useful guidelines for the fabrication of perovskite/c-Si TSCs.

  6. Towards in vivo laser coagulation and concurrent optical coherence tomography through double-clad fiber devices

    NASA Astrophysics Data System (ADS)

    Beaudette, Kathy; Lo, William; Villiger, Martin; Shishkov, Milen; Godbout, Nicolas; Bouma, Brett E.; Boudoux, Caroline

    2016-03-01

    There is a strong clinical need for an optical coherence tomography (OCT) system capable of delivering concurrent coagulation light enabling image-guided dynamic laser marking for targeted collection of biopsies, as opposed to a random sampling, to reduce false-negative findings. Here, we present a system based on double-clad fiber (DCF) capable of delivering pulsed laser light through the inner cladding while performing OCT through the core. A previously clinically validated commercial OCT system (NVisionVLE, Ninepoint Medical) was adapted to enable in vivo esophageal image-guided dynamic laser marking. An optimized DCF coupler was implemented into the system to couple both modalities into the DCF. A DCF-based rotary joint was used to couple light to the spinning DCF-based catheter for helical scanning. DCF-based OCT catheters, providing a beam waist diameter of 62μm at a working distance of 9.3mm, for use with a 17-mm diameter balloon sheath, were used for ex vivo imaging of a swine esophagus. Imaging results using the DCF-based clinical system show an image quality comparable with a conventional system with minimal crosstalk-induced artifacts. To further optimize DCF catheter optical design in order to achieve single-pulse marking, a Zemax model of the DCF output and its validation are presented.

  7. Photonic bandgap narrowing in conical hollow core Bragg fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightlymore » smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.« less

  8. Monte Carlo simulation of a quantum noise limited Čerenkov detector based on air-spaced light guiding taper for megavoltage x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teymurazyan, A.; Rowlands, J. A.; Thunder Bay Regional Research Institute

    2014-04-15

    Purpose: Electronic Portal Imaging Devices (EPIDs) have been widely used in radiation therapy and are still needed on linear accelerators (Linacs) equipped with kilovoltage cone beam CT (kV-CBCT) or MRI systems. Our aim is to develop a new high quantum efficiency (QE) Čerenkov Portal Imaging Device (CPID) that is quantum noise limited at dose levels corresponding to a single Linac pulse. Methods: Recently a new concept of CPID for MV x-ray imaging in radiation therapy was introduced. It relies on Čerenkov effect for x-ray detection. The proposed design consisted of a matrix of optical fibers aligned with the incident x-raysmore » and coupled to an active matrix flat panel imager (AMFPI) for image readout. A weakness of such design is that too few Čerenkov light photons reach the AMFPI for each incident x-ray and an AMFPI with an avalanche gain is required in order to overcome the readout noise for portal imaging application. In this work the authors propose to replace the optical fibers in the CPID with light guides without a cladding layer that are suspended in air. The air between the light guides takes on the role of the cladding layer found in a regular optical fiber. Since air has a significantly lower refractive index (∼1 versus 1.38 in a typical cladding layer), a much superior light collection efficiency is achieved. Results: A Monte Carlo simulation of the new design has been conducted to investigate its feasibility. Detector quantities such as quantum efficiency (QE), spatial resolution (MTF), and frequency dependent detective quantum efficiency (DQE) have been evaluated. The detector signal and the quantum noise have been compared to the readout noise. Conclusions: Our studies show that the modified new CPID has a QE and DQE more than an order of magnitude greater than that of current clinical systems and yet a spatial resolution similar to that of current low-QE flat-panel based EPIDs. Furthermore it was demonstrated that the new CPID does not require an avalanche gain in the AMFPI and is quantum noise limited at dose levels corresponding to a single Linac pulse.« less

  9. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting.

    PubMed

    Tsuei, Chih-Hsuan; Sun, Wen-Shing; Kuo, Chien-Cheng

    2010-11-08

    A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

  10. Resonance-enhanced optical forces between coupled photonic crystal slabs.

    PubMed

    Liu, Victor; Povinelli, Michelle; Fan, Shanhui

    2009-11-23

    The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.

  11. Fluorescence-guided surgical resection of oral cancer reduces recurrence

    NASA Astrophysics Data System (ADS)

    Lane, Pierre; Poh, Catherine F.; Durham, J. Scott; Zhang, Lewei; Lam, Sylvia F.; Rosin, Miriam; MacAulay, Calum

    2011-03-01

    Approximately 36,000 people in the US will be newly diagnosed with oral cancer in 2010 and it will cause 8,000 new deaths. The death rate is unacceptably high because oral cancer is usually discovered late in its development and is often difficult to treat or remove completely. Data collected over the last 5 years at the BC Cancer Agency suggest that the surgical resection of oral lesions guided by the visualization of the alteration of endogenous tissue fluorescence can dramatically reduce the rate of cancer recurrence. Four years into a study which compares conventional versus fluorescence-guided surgical resection, we reported a recurrence rate of 25% (7 of 28 patients) for the control group compared to a recurrence rate of 0% (none of the 32 patients) for the fluorescence-guided group. Here we present resent results from this ongoing study in which patients undergo either conventional surgical resection of oral cancer under white light illumination or using tools that enable the visualization of naturally occurring tissue fluorescence.

  12. Frozen Pendulum?

    ERIC Educational Resources Information Center

    Barker, Bernard

    2012-01-01

    This article examines the New Labour legacy in education, reviews the arguments of "The Pendulum Swings" in the light of contributions to this themed issue, examines early Coalition policymaking, and recommends four principles that should guide the search for a new approach to school improvement. Recent initiatives are found to be a…

  13. Digital Citizenship Policy Development Guide

    ERIC Educational Resources Information Center

    Alberta Education, 2012

    2012-01-01

    Education leaders are re-examining acceptable use policies in light of the increasing use of highly mobile information technologies. While acceptable use policies were developed to manage and control behaviour, a digital citizenship policy takes a more comprehensive approach by recognizing the important role of education in preparing digital…

  14. A Guide to Energy Savings - For the Dairy Farmers.

    ERIC Educational Resources Information Center

    Frank, Gary G.

    This booklet gives a brief overview of energy use patterns in a dairy farm and gives tips on cutting costs of water heating, ventilation and supplemental heat, milk cooling, vacuum pumps, electric motors, tractors, trucks, engines, and lighting. Finally, energy use recordkeeping is discussed. (BB)

  15. Instructional Media Center. Educational Facility Series. A Guide to Planning.

    ERIC Educational Resources Information Center

    Esposito, Nicholas A., Ed.

    General recommendations are set forth regarding aesthetics, acoustics, lighting, temperature control, location, and layout of the instructional media center. Consideration is given to spatial relationships, equipment and furnishings, and suggestions are included regarding basic and advance facilities for primary, middle and secondary schools. (FS)

  16. Textured micrometer scale templates as light managing fabrication platform for organic solar cells

    DOEpatents

    Chaudhary, Sumit; Ho, Kai-Ming; Park, Joong-Mok; Nalwa, Kanwar Singh; Leung, Wai Y.

    2016-07-26

    A three-dimensional, microscale-textured, grating-shaped organic solar cell geometry. The solar cells are fabricated on gratings to give them a three-dimensional texture that provides enhanced light absorption. Introduction of microscale texturing has a positive effect on the overall power conversion efficiency of the devices. This grating-based solar cell having a grating of pre-determined pitch and height has shown improved power-conversion efficiency over a conventional flat solar cell. The improvement in efficiency is accomplished by homogeneous coverage of the grating with uniform thickness of the active layer, which is attributed to a sufficiently high pitch and low height of the underlying gratings. Also the microscale texturing leads to suppressed reflection of incident light due to the efficient coupling of the incident light into modes that are guided in the active layer.

  17. Compact fluorescence and white-light imaging system for intraoperative visualization of nerves

    NASA Astrophysics Data System (ADS)

    Gray, Dan; Kim, Evgenia; Cotero, Victoria; Staudinger, Paul; Yazdanfar, Siavash; tan Hehir, Cristina

    2012-02-01

    Fluorescence image guided surgery (FIGS) allows intraoperative visualization of critical structures, with applications spanning neurology, cardiology and oncology. An unmet clinical need is prevention of iatrogenic nerve damage, a major cause of post-surgical morbidity. Here we describe the advancement of FIGS imaging hardware, coupled with a custom nerve-labeling fluorophore (GE3082), to bring FIGS nerve imaging closer to clinical translation. The instrument is comprised of a 405nm laser and a white light LED source for excitation and illumination. A single 90 gram color CCD camera is coupled to a 10mm surgical laparoscope for image acquisition. Synchronization of the light source and camera allows for simultaneous visualization of reflected white light and fluorescence using only a single camera. The imaging hardware and contrast agent were evaluated in rats during in situ surgical procedures.

  18. A compact fluorescence and white light imaging system for intraoperative visualization of nerves

    NASA Astrophysics Data System (ADS)

    Gray, Dan; Kim, Evgenia; Cotero, Victoria; Staudinger, Paul; Yazdanfar, Siavash; Tan Hehir, Cristina

    2012-03-01

    Fluorescence image guided surgery (FIGS) allows intraoperative visualization of critical structures, with applications spanning neurology, cardiology and oncology. An unmet clinical need is prevention of iatrogenic nerve damage, a major cause of post-surgical morbidity. Here we describe the advancement of FIGS imaging hardware, coupled with a custom nerve-labeling fluorophore (GE3082), to bring FIGS nerve imaging closer to clinical translation. The instrument is comprised of a 405nm laser and a white light LED source for excitation and illumination. A single 90 gram color CCD camera is coupled to a 10mm surgical laparoscope for image acquisition. Synchronization of the light source and camera allows for simultaneous visualization of reflected white light and fluorescence using only a single camera. The imaging hardware and contrast agent were evaluated in rats during in situ surgical procedures.

  19. III-nitride nanowire LEDs and diode lasers: monolithic light sources on (001) Si emitting in the 600-1300nm range

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Hazari, A.; Jahangir, S.

    2018-02-01

    GaN-based nanowire heterostructure arrays epitaxially grown on (001)Si substrates have unique properties and present the potential to realize useful devices. The active light-emitting region in the nanowire heterostructures are usually InGaN disks, whose composition can be varied to tune the emission wavelength. We have demonstrated light emitting diodes and edgeemitting diode lasers with power outputs 10mW with emission in the 600-1300nm wavelength range. These light sources are therefore useful for a variety of applications, including silicon photonics. Molecular beam epitaxial growth of the nanowire heterostructure arrays on (001)Si substrates and the characteristics of 1.3μm nanowire array edge emitting lasers, guided wave photodiodes and a monolithic photonic integrated circuit designed for 1.3μm operation are described.

  20. Exploring the Invisible Universe: From Black Holes to Superstrings

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Willeboordse, Frederick H.

    2015-03-01

    The book is written for a broad scientific audience with an interest in the leading theories about the Universe. The focus is on the physical Universe, and the laws of Physics are taken to be the guiding light in all our analysis. Starting from first principles and using self-evident reasoning, all the fundamental ideas that are employed in exploring the hidden and invisible realms of the Universe are shown to arise quite naturally, once one adopts the outlook that has come to light with the advances in Physics...

  1. Fiber Bragg grating inscription in optical multicore fibers

    NASA Astrophysics Data System (ADS)

    Becker, Martin; Elsmann, Tino; Lorenz, Adrian; Spittel, Ron; Kobelke, Jens; Schuster, Kay; Rothhardt, Manfred; Latka, Ines; Dochow, Sebastian; Bartelt, Hartmut

    2015-09-01

    Fiber Bragg gratings as key components in telecommunication, fiber lasers, and sensing systems usually rely on the Bragg condition for single mode fibers. In special applications, such as in biophotonics and astrophysics, high light coupling efficiency is of great importance and therefore, multimode fibers are often preferred. The wavelength filtering effect of Bragg gratings in multimode fibers, however is spectrally blurred over a wide modal spectrum of the fiber. With a well-designed all solid multicore microstructured fiber a good light guiding efficiency in combination with narrow spectral filtering effect by Bragg gratings becomes possible.

  2. ALOHA—Astronomical Light Optical Hybrid Analysis - From experimental demonstrations to a MIR instrument proposal

    NASA Astrophysics Data System (ADS)

    Lehmann, L.; Darré, P.; Szemendera, L.; Gomes, J. T.; Baudoin, R.; Ceus, D.; Brustlein, S.; Delage, L.; Grossard, L.; Reynaud, F.

    2018-04-01

    This paper gives an overview of the Astronomical Light Optical Hybrid Analysis (ALOHA) project dedicated to investigate a new method for high resolution imaging in mid infrared astronomy. This proposal aims to use a non-linear frequency conversion process to shift the thermal infrared radiation to a shorter wavelength domain compatible with proven technology such as guided optics and detectors. After a description of the principle, we summarise the evolution of our study from the high flux seminal experiments to the latest results in the photon counting regime.

  3. Enhancement and inhibition of light tunneling mediated by resonant mode conversion.

    PubMed

    Kartashov, Yaroslav V; Vysloukh, Victor A; Torner, Lluis

    2014-02-15

    We show that the rate at which light tunnels between neighboring multimode waveguides can be drastically increased or reduced by the presence of small longitudinal periodic modulations of the waveguide properties that stimulate resonant conversion between the eigenmodes of each waveguide. Such a conversion, available only in multimode guiding structures, leads to periodic power transfer into higher-order modes, whose tails may considerably overlap with neighboring waveguides. As a result, the effective coupling constant for neighboring waveguides may change by several orders of magnitude upon small variations in the longitudinal modulation parameters.

  4. 1-J white-light continuum from 100-TW laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, Yannick; Henin, Stefano; Bejot, Pierre

    2011-01-15

    We experimentally measured the supercontinuum generation using 3-J, 30-fs laser pulses and measured white-light generation at the level of 1 J. Such high energy is allowed by a strong contribution to the continuum by the photon bath, as compared to the self-guided filaments. This contribution due to the recently observed congestion of the filament number density in the beam profile at very high intensity also results in a wider broadening for positively chirped pulses rather than for negatively chirped ones, similar to broadening in hollow-core fibers.

  5. Monte Carlo simulation of a dynamical fermion problem: The light q sup 2 q sup 2 system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grondin, G.

    1991-01-01

    We present results from a Guided Random Walk Monte Carlo simulation of the light q{sup 2}{bar q}{sup 2} system in a Coulomb-plus-linear quark potential model using an Intel iPSC/860 hypercube. A solvable model problem is first considered, after which we study the full q{sup 2}{bar q}{sup 2} system in (J,I) = (2,2) and (2,0) sectors. We find evidence for no bound states below the vector-vector threshold in these systems. 17 refs., 6 figs.

  6. Double-cladding-fiber-based detection system for intravascular mapping of fluorescent molecular probes

    NASA Astrophysics Data System (ADS)

    Razansky, R. Nika; Rozental, Amir; Mueller, Mathias S.; Deliolanis, Nikolaos; Jaffer, Farouc A.; Koch, Alexander W.; Ntziachristos, Vasilis

    2011-03-01

    Early detection of high-risk coronary atherosclerosis remains an unmet clinical challenge. We have previously demonstrated a near-infrared fluorescence catheter system for two-dimensional intravascular detection of fluorescence molecular probes [1]. In this work we improve the system performance by introducing a novel high resolution sensor. The main challenge of the intravascular sensor is to provide a highly focused spot at an application relevant distance on one hand and a highly efficient collection of emitted light on the other. We suggest employing a double cladding optical fiber (DCF) in combination with focusing optics to provide a sensor with both highly focused excitation light and highly efficient fluorescent light collection. The excitation laser is coupled into the single mode core of DCF and guided through a focusing element and a right angle prism. The resulting side-fired beam exhibits a small spot diameter (50 μm) throughout a distance of up to 2 mm from the sensor. This is the distance of interest for intravascular coronary imaging application, determined by an average human coronary artery diameter. At the blood vessel wall, an activatable fluorescence molecular probe is excited in the diseased lesions. Next light of slightly shifted wavelength emits only in the places of the inflammations, associated with dangerous plaques [2]. The emitted light is collected by the cladding of the DCF, with a large collection angle (NA=0.4). The doublecladding acts as multimodal fiber and guides the collected light to the photo detection elements. The sensor automatically rotates and pulled-back, while each scanned point is mapped according to the amount of detected fluorescent emission. The resulting map of fluorescence activity helps to associate the atherosclerotic plaques with the inflammation process. The presented detection system is a valuable tool in the intravascular plaque detection and can help to differentiate the atherosclerotic plaques based on their biological activity, identify the ones that prone to rupture and therefore require more medical attention.

  7. [LIGHT POLLUTION AS THE HYGIENIC PROBLEM].

    PubMed

    Kaptsov, V A; Gerasev, V F; Deynego, V N

    2015-01-01

    Mass introduction of lighting devices according to the concept of "maximum coverage area" and multistoried buildings of cities gave rise to light pollution, which became a problem for astronomers, ecologists and hygienists. Analysis of modern lighting devices and installations has shown that about 30-45% of the luminous flux becomes the light pollution. Night lighting of cities causes both direct and indirect damage to the environment, leads to unnecessary energy wastes. So in the USA due to excessive light there is wasted about 2 million barrels of oil per day. Light pollution affects the human hormonal system, causing various health disorders, such as insomnia and depression as a consequence. The light pollution through the ganglion cells of the retina affects the synthesis of melatonin by the pineal gland (epiphysis) and contributes to its calcification, which greatly affects the human psyche. At present, many countries have been paying much state attention to this problem via delivery of national documents and change of the concept of the designing of lighting devices and installations. The essence of this concept--to shine with a preset quality of light only in the right place at the specified time interval. This reduces the light pollution, saves energy and increases the environmental safety of lighting. There is presented an example of a technical solution to reduce the light pollution in the application of the light panel in the form of the gradient of the light guide generator project development.

  8. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback

    PubMed Central

    Liu, Haoting; Zhou, Qianxiang; Yang, Jin; Jiang, Ting; Liu, Zhizhen; Li, Jie

    2017-01-01

    An imaging sensor-based intelligent Light Emitting Diode (LED) lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs) are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes. PMID:28208781

  9. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback.

    PubMed

    Liu, Haoting; Zhou, Qianxiang; Yang, Jin; Jiang, Ting; Liu, Zhizhen; Li, Jie

    2017-02-09

    An imaging sensor-based intelligent Light Emitting Diode (LED) lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs) are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.

  10. Identification of acoustic waves in ZnO materials by Brillouin light scattering for SAW device applications

    NASA Astrophysics Data System (ADS)

    Zerdali, M.; Bechiri, F.; Hamzaoui, S.; Teherani, F. H.; Rogers, D. J.; Sandana, V. E.; Bove, P.; Djemia, P.; Roussigné, Y.

    2017-03-01

    Brillouin light scattering (BLS) was conducted on melt-grown ZnO bulk crystals and ZnO thin films grown by pulsed laser deposition. The bulk ZnO crystals presented both longitudinal and transverse bulk acoustic waves. Theoretical calculations agreed well with there being one piezoelectric longitudinal branch and two transverse branches. BLS measurements conducted on ZnO thin films also revealed Rayleigh surface acoustic waves (R-SAW) guided by only the surface of the layer and Sezawa modes, guided by the film thickness. Measurements were conducted for three incidence angles in order to investigate different SAW wave numbers. Higher frequency features were identified as being related to a new class of guided longitudinal (LG) SAW modes which are not usually detected for ZnO thin films. The LG-SAW modes were observed for two incidence angles (θ=45° and 55°) corresponding to frequencies of 17.88 and 20.75 GHz, respectively. BLS measurements enable us to estimate the LG-SAW velocity as 6500 m/s. This value is three times higher than that of the currently used R-SAW. Theoretical simulations were coherent with the presence of LG modes in the ZnO layers. Such LG-SAW modes are promising for the development of novel, higher-speed SAW devices operating in the GHz-band and which could be readily incorporated in Si-based integrated circuitry.

  11. Use of invisible near infrared light fluorescence with indocyanine green and methylene blue in urology. Part 2.

    PubMed

    Polom, Wojciech; Markuszewski, Marcin; Rho, Young Soo; Matuszewski, Marcin

    2014-01-01

    In the second part of this paper, concerning the use of invisible near infrared light (NIR) fluorescence with indocyanine green (ICG) and methylene blue (MB) in urology, other possible uses of this new technique will be presented. In kidney transplantation, this concerns allograft perfusion and real time NIR-guided angiography; moreover, perfusion angiography of tissue flaps, NIRF visualization of ureters, NIR-guided visualization of urinary calcifications, NIRF in male infertility and semen quality assessment. In this part, we have also analysed cancer targeting and imaging fluorophores as well as cost benefits associated with the use of these new techniques. PubMed and Medline databases were searched for ICG and MB use in urological settings, along with data published in abstracts of urological conferences. Although NIR-guided ICG and MB are still in their initial phases, there have been significant developments in a few more major domains of urology, including 1) kidney transplantation: kidney allograft perfusion and vessel reconstruction; 2) angiography perfusion of tissue flaps; 3) visualization of ureters; 4) visualization of urinary calcifications; and 5) NIRF in male infertility and semen quality assessment. Near infrared technology in urology is at its early stages. More studies are needed to assess the true potential and limitations of the technology. Initial studies show that this pioneering tool may influence various aspects of urology.

  12. The opportunities and challenges of guided inquiry science for students with special needs

    NASA Astrophysics Data System (ADS)

    Miller, Marianne

    Research in science education has been conducted with various goals for instruction. Four outcomes identified include: immediate and delayed recall, literal comprehension, science skills and processes, and conceptual understanding. The promise of developing important thinking skills exists for all students if science instruction is designed to teach students the products of science and the principled process of inquiry. Guided inquiry science seeks to develop conceptual understanding through the pursuit of meaningful questions using scientific problem solving to conduct investigations that are thoughtfully generated and evaluated. Using a social constructivist perspective, this study examines the learning experiences of four students, identified by their teachers as learning disabled or underachieving. Four case studies are presented of the students' participation in a guided inquiry investigation of the behavior of light. Measures of conceptual understanding included pre- and post-instruction assessments, interviews, journal writing, videotapes, and fieldnotes. All four students demonstrated improved conceptual understanding of light. Five patterns of relationships influenced the development of the students' thinking. First, differences in the culture of the two classrooms altered the learning environment, Second, the nature of teacher interaction with the target students affected conceptual understanding. Third, interactions with peers modified the learning experiences for the identified students. Fourth, the conceptual and procedural complexity of the tasks increased the tendency for the students to lose focus. Finally, the literacy requirements of the work were challenging for these students.

  13. Transforming guided waves with metamaterial waveguide cores

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.

    2016-04-01

    Metamaterials make use of subwavelength building blocks to enhance our control on the propagation of light. To determine the required material properties for a given functionality, i.e., a set of desired light flows inside a metamaterial device, metamaterial designs often rely on a geometrical design tool known as transformation optics. In recent years, applications in integrated photonics motivated several research groups to develop two-dimensional versions of transformation optics capable of routing surface waves along graphene-dielectric and metal-dielectric interfaces. Although guided electromagnetic waves are highly relevant to applications in integrated optics, no consistent transformation-optical framework has so far been developed for slab waveguides. Indeed, the conventional application of transformation optics to dielectric slab waveguides leads to bulky three-dimensional devices with metamaterial implementations both inside and outside of the waveguide's core. In this contribution, we develop a transformationoptical framework that still results in thin metamaterial waveguide devices consisting of a nonmagnetic metamaterial core of varying thickness [Phys. Rev. B 93.8, 085429 (2016)]. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities: a beam bender, a beam splitter and a conformal lens. Our devices perform well on a qualitative (comparison of fields) and quantitative (comparison of transmitted power) level compared to their bulky counterparts. As a result, the geometrical toolbox of transformation optics may lead to a plethora of integrated metamaterial devices to route guided waves along optical chips.

  14. Theory and analysis of a large field polarization imaging system with obliquely incident light.

    PubMed

    Lu, Xiaotian; Jin, Weiqi; Li, Li; Wang, Xia; Qiu, Su; Liu, Jing

    2018-02-05

    Polarization imaging technology provides information about not only the irradiance of a target but also the polarization degree and angle of polarization, which indicates extensive application potential. However, polarization imaging theory is based on paraxial optics. When a beam of obliquely incident light passes an analyser, the direction of light propagation is not perpendicular to the surface of the analyser and the applicability of the traditional paraxial optical polarization imaging theory is challenged. This paper investigates a theoretical model of a polarization imaging system with obliquely incident light and establishes a polarization imaging transmission model with a large field of obliquely incident light. In an imaging experiment with an integrating sphere light source and rotatable polarizer, the polarization imaging transmission model is verified and analysed for two cases of natural light and linearly polarized light incidence. Although the results indicate that the theoretical model is consistent with the experimental results, the theoretical model distinctly differs from the traditional paraxial approximation model. The results prove the accuracy and necessity of the theoretical model and the theoretical guiding significance for theoretical and systematic research of large field polarization imaging.

  15. Method to improve the survival of night-swarming mayflies near bridges in areas of distracting light pollution

    PubMed Central

    Száz, Dénes; Farkas, Alexandra; Pereszlényi, Ádám; Kriska, György

    2017-01-01

    Numerous negative ecological effects of urban lighting have been identified during the last decades. In spite of the development of lighting technologies, the detrimental effect of this form of light pollution has not declined. Several insect species are affected including the night-swarming mayfly Ephoron virgo: when encountering bridges during their mass swarming, these mayflies often fall victim to artificial lighting. We show a simple method for the conservation of these mayflies exploiting their positive phototaxis. With downstream-facing light-emitting diode beacon lights above two tributaries of the river Danube, we managed to guide egg-laying females to the water and prevent them from perishing outside the river near urban lights. By means of measuring the mayfly outflow from the river as a function of time and the on/off state of the beacons, we showed that the number of mayflies exiting the river's area was practically zero when our beacons were operating. Tributaries could be the sources of mayfly recolonization in case of water quality degradation of large rivers. The protection of mayfly populations in small rivers and safeguarding their aggregation and oviposition sites is therefore important. PMID:29291103

  16. Skylight: a hollow prismatic CPC

    NASA Astrophysics Data System (ADS)

    Fernandez-Balbuena, Antonio Alvarez; Vázquez-Moliní, Daniel; Garcia-Fernandez, Berta; Garcia-Botella, Angel; Bernabeu, Eusebio

    2009-08-01

    Many applications involve the use of a compound parabolic concentrator (CPC) like, natural lighting, thermal applications, optics for illuminators, optical fibre coupling and solar energy. The use of a CPC in reverse mode for natural lighting gives the chance to use it as a lighting skylight in ceilings because light output is controlled inside the design angle, on the contrary having a low flux transfer ratio because of the reduced area of the entrance pupil regarding exit pupil. The authors propose an innovative 3D hollow prismatic CPC (HPCPC) made of a dielectric material, which has a high efficiency comparing it with aluminium CPC. The basic idea is to use a hollow prismatic light guide with CPC shape. This paper reports 2D, 3D design and numerical analysis by raytracing software, also experimental results are shown. The system works almost like a true CPC when light enters through standard entrance pupil and also collect light that enters outside entrance pupil. Performance and efficiency of the prismatic CPC is in average 300% higher than standard aluminium CPC for collimated light in a range from 0º to 85º. A prototype has been developed and tested.

  17. Method to improve the survival of night-swarming mayflies near bridges in areas of distracting light pollution.

    PubMed

    Egri, Ádám; Száz, Dénes; Farkas, Alexandra; Pereszlényi, Ádám; Horváth, Gábor; Kriska, György

    2017-11-01

    Numerous negative ecological effects of urban lighting have been identified during the last decades. In spite of the development of lighting technologies, the detrimental effect of this form of light pollution has not declined. Several insect species are affected including the night-swarming mayfly Ephoron virgo : when encountering bridges during their mass swarming, these mayflies often fall victim to artificial lighting. We show a simple method for the conservation of these mayflies exploiting their positive phototaxis. With downstream-facing light-emitting diode beacon lights above two tributaries of the river Danube, we managed to guide egg-laying females to the water and prevent them from perishing outside the river near urban lights. By means of measuring the mayfly outflow from the river as a function of time and the on/off state of the beacons, we showed that the number of mayflies exiting the river's area was practically zero when our beacons were operating. Tributaries could be the sources of mayfly recolonization in case of water quality degradation of large rivers. The protection of mayfly populations in small rivers and safeguarding their aggregation and oviposition sites is therefore important.

  18. Photonic-crystal fiber as a multifunctional optical sensor and sample collector.

    PubMed

    Konorov, Stanislav; Zheltikov, Aleksei; Scalora, Michael

    2005-05-02

    Two protocols of optical sensing realized with the same photonic-crystal fiber are compared. In the first protocol, diode-laser radiation is delivered to a sample through the central core of a dual-cladding photonic-crystal fiber with a diameter of a few micrometers, while the large-diameter fiber cladding serves to collect the fluorescent response from the sample and to guide it to a detector in the backward direction. In the second scheme, liquid sample is collected by a microcapillary array in the fiber cladding and is interrogated by laser radiation guided in the fiber modes. For sample fluids with refractive indices exceeding the refractive index of the fiber material, fluid channels in photonic-crystal fibers can guide laser light by total internal reflection, providing an 80% overlap of interrogating radiation with sample fluid.

  19. Attending to Nuanced Emotions: Fostering Supervisees' Emotional Awareness and Complexity

    ERIC Educational Resources Information Center

    Tangen, Jodi L.

    2017-01-01

    There is limited supervision research exploring how supervisees learn emotional awareness and complexity. In this article, the 5 levels of emotional awareness and 3 aspects of emotional complexity are explored in light of the supervision enterprise. In addition, 2 supervision intervention guides and a case example are provided.

  20. Transcriptome analysis for pork color – the ham halo effect in biceps femoris

    USDA-ARS?s Scientific Manuscript database

    Pork color is a major indicator of product quality that guides consumer purchasing decisions. For hams, consumers prefer a uniform pink color. Recently, industry has received an increase in consumer complaints about the lightness and non-uniformity of ham color, primarily lighter color in the periph...

  1. Linear Electrooptic Effect In Sputtered Polycrystalline LiNbO3 Films

    NASA Astrophysics Data System (ADS)

    Griffel, G.; Ruschin, Shlomo; Croitoru, Nathan I.

    1989-02-01

    Light guiding and modulation was demonstrated in sputtered LiNbO3 films deposited on glass substrates. The films exhibit exceptionally low attenuation (< 2dB/cm) and the highest electrooptical coefficient reported so far for this kind of films (1.34 x 10-12 m/V).

  2. Turning a New Light on Assessment with LinguaFolio

    ERIC Educational Resources Information Center

    Van Houten, Jacqueline Bott

    2006-01-01

    This article aims to reshape the prevailing negative perception of assessment into one of a positive and powerful tool to guide learning, teaching and advocacy. Emphasis is placed on the importance of becoming assessment-literate, developing a balanced assessment system, using assessment results to motivate learners and mold instruction, and…

  3. A computer program (VEHSIM) for vehicle fuel economy and performance simulation (automobiles and light trucks). Volume 2. Users guide

    DOT National Transportation Integrated Search

    1981-01-01

    This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...

  4. Harry Potter: Enchantment for All Seasons.

    ERIC Educational Resources Information Center

    Black, Sharon

    2003-01-01

    This article focuses on the enchantment of the Harry Potter series in the development of gifted imagination, self-concept, and worldview in light of Bruno Bettelheim's work, "The Uses of Enchantment." As the processes are discussed, suggestions to guide parents and teachers in facilitating them are included. (Contains references.)…

  5. Achieving a high seat belt use rate : a guide for selective traffic enforcement programs

    DOT National Transportation Integrated Search

    2001-04-01

    When used properly, lap/shoulder belts reduce the risk of fatal injury to front-seat passenger car occupants by 45% and the risk of moderate-to-critical injury by 50%. Even greater risk reduction results when seat belts are used properly in light tru...

  6. Project Physics Teacher Guide 4, Light and Electromagnetism.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Teaching procedures of Project Physics Unit 4 are presented to help teachers make effective use of learning materials. Unit contents are discussed in connection with teaching aid lists, multi-media schedules, schedule blocks, and resources charts. Brief summaries are made for transparencies, 16mm films, and reader articles. Included is information…

  7. Motivating Readers: Helping Students Set and Attain Personal Reading Goals

    ERIC Educational Resources Information Center

    Cabral-Márquez, Consuelo

    2015-01-01

    The motivational, cognitive, and performance benefits associated with setting goals are presented in light of goal-setting theory. These theoretical principles provide a framework that teachers can use to guide students in setting and pursuing personal reading goals that are proximal, specific, and compatible with students' reading abilities…

  8. Toward a Science of Honors Education

    ERIC Educational Resources Information Center

    Jones, Beata M.

    2016-01-01

    In this article, Beata Jones attempts to organize the honors discipline into a comprehensive framework that can guide explorations and shed light on specific attributes of honors entities in the framework of their interrelationships. The framework offers an approach to deal with the inherent fragmentation of the field, which can lead to…

  9. Sound, Noise, and Vibration Control.

    ERIC Educational Resources Information Center

    Yerges, Lyle F.

    This working guide on the principles and techniques of controlling acoustical environment is discussed in the light of human, environmental and building needs. The nature of sound and its variables are defined. The acoustical environment and its many materials, spaces and functional requirements are described, with specific methods for planning,…

  10. Employee Privacy Rights: A Management Guide.

    ERIC Educational Resources Information Center

    Shepard, Ira Michael; Olsen, Harry

    Employee privacy rights are considered, along with practical problems and permissible parameters of employer activity. Included is a state-by-state analysis of the status of workplace privacy. Definitions are offered of "invasion of privacy," with attention to four types of privacy invasions: (1) placing someone in a "false light," (2) the public…

  11. Reducing fog-related crashes on the Afton and Fancy Gap Mountain sections of I-64 and I-77 in Virginia.

    DOT National Transportation Integrated Search

    2002-10-01

    The Fancy Gap and Afton Mountain interstates have a long history of fog-related, multivehicle crashes. Because of its earlier involvement in the installation and evaluation of the original Afton Mountain in-pavement fog guide light system, and concer...

  12. PHYSICS FOR IOWA SCHOOLS.

    ERIC Educational Resources Information Center

    TWEETEN, PAUL W.

    THIS GUIDE FOR TEACHING HIGH SCHOOL PHYSICS INCLUDES--(1) CONCEPTS, (2) UNDERSTANDINGS, (3) ACTIVITIES, (4) REFERENCES, (5) AUDIOVISUAL AIDS, (6) EQUIPMENT, AND (7) REQUIRED SUPPLIES. THE COURSE CONTENT IS DIVIDED INTO EIGHT MAJOR TOPICS--(1) FUNDAMENTALS, (2) MECHANICS, (3) HEAT, (4) SOUND, (5) LIGHT, (6) ELECTRICITY, (7) SPACE, TIME, AND MOTION,…

  13. A Guide to Energy Savings - For the Livestock Producer.

    ERIC Educational Resources Information Center

    Van Arsdall, Roy N.

    This booklet gives a brief overview of energy use in livestock production and gives examples of cutting costs of field equipment use, grinding and preparing feed, managing range and herd, ventilating and heating, lighting, drying grain, and irrigating with sprinklers. Recordkeeping and estimating energy use is also discussed. (BB)

  14. Ciencias 3. Manual do Professor (Science 3. Teacher's Manual).

    ERIC Educational Resources Information Center

    Raposo, Lucilia

    This teaching guide contains materials corresponding to those found in the nine sections of the grade 3 elementary science textbook. It also contains lesson objectives, instructional strategies, classroom activities, and evaluation methods. Among the topic areas found in the nine sections are: (1) solar energy, electricity, and light; (2) solar…

  15. Field evaluation of unlighted overhead guide signs using older drivers : final report, August 2003.

    DOT National Transportation Integrated Search

    2003-08-01

    Twenty older drivers, aged 63 to 81 (average 72.1), with corrected visual acuity ranging from 20/20 to 20/29 (average : 20/25), evaluated six sign material and lighting combinations under nighttime conditions on US Route 30 near Mansfield, : Ohio. Th...

  16. COMMUNITY-BASED UV RISK EDUCATION: THE SUNWISE PROGRAM HANDBOOK

    EPA Science Inventory

    This handbook is a user-friendly "How-to Guide" on providing information on how the SunWise project: 1) increased understanding of the importance of Ultraviolet light as a carcinogenic agent and an agent of skin aging, 2) disseminated time-relevant information on when (times of d...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, Ricardo Miguel Costa de, E-mail: ricardomcfreitas@gmail.com; Andrade, Celi Santos, E-mail: celis.andrade@hotmail.com; Caldas, José Guilherme Mendes Pereira, E-mail: jgmpcaldas@uol.com.br

    PurposeThis study was designed to present the feasibility of an in vivo image-guided percutaneous cryoablation of the porcine vertebral body.MethodsThe institutional animal care committee approved this study. Cone-beam computed tomography (CBCT)-guided vertebral cryoablations (n = 22) were performed in eight pigs with short, 2-min, single or double-freezing protocols. Protective measures to nerves included dioxide carbon (CO{sub 2}) epidural injections and spinal canal temperature monitoring. Clinical, radiological, and pathological data with light (n = 20) or transmission electron (n = 2) microscopic analyses were evaluated after 6 days of clinical follow-up and euthanasia.ResultsCBCT/fluoroscopic-guided transpedicular vertebral body cryoprobe positioning and CO{sub 2} epidural injection were successful in all procedures. No majormore » complications were observed in seven animals (87.5 %, n = 8). A minor complication was observed in one pig (12.5 %, n = 1). Logistic regression model analysis showed the cryoprobe-spinal canal (Cp-Sc) distance as the most efficient parameter to categorize spinal canal temperatures lower than 19 °C (p < 0.004), with a significant Pearson’s correlation test (p < 0.041) between the Cp-Sc distance and the lowest spinal canal temperatures. Ablation zones encompassed pedicles and the posterior wall of the vertebral bodies with an inflammatory rim, although no inflammatory infiltrate was depicted in the surrounding neural structures at light microscopy. Ultrastructural analyses evidenced myelin sheath disruption in some large nerve fibers, although neurological deficits were not observed.ConclusionsCBCT-guided vertebral cryoablation of the porcine spine is feasible under a combination of a short freezing protocol and protective measures to the surrounding nerves. Ultrastructural analyses may be helpful assess the early modifications of the nerve fibers.« less

  18. Studying Silicon Photomultipliers and Light Signal Acquisition for the SBND Experiment

    NASA Astrophysics Data System (ADS)

    Savard, Claire; SBND Collaboration

    2017-01-01

    The Short-Baseline Near Detector (SBND) is one of three Liquid Argon Time Projection Chamber (LArTPC) based detectors that will be used in the Short-Baseline Neutrino (SBN) program at Fermilab. SBN will study the neutrino-argon interaction and search for oscillations at short baseline. Light produced in neutrino interactions inside a LArTPC provides a precision measurement of the initial interaction time of the event, essential for differentiating non-beam-background from beam-based signal. I will discuss the light guide system for SBND, with an emphasis on the Silicon Photomultiplier (SiPM) readout and data acquisition. In particular, I will show results from testing and characterizing a candidate electronics board for reading out the SiPM signals.

  19. Sub-wavelength grating structure on the planar waveguide (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qing-Song, Zhu; Sheng-Hui, Chen

    2016-10-01

    Making progress in recent years, with the technology of the grating, the grating period can be reduced to shrink the size of the light coupler on a waveguide. The working wavelength of the light coupler can be in the range from the near-infrared to visible. In this study , we used E-gun evaporation system with ion-beam-assisted deposition system to fabricate bottom cladding (SiO2), guiding layer (Ta2O5) and Distributed Bragg Reflector(DBR) of the waveguide on the silicon substrate. Electron-beam lithography is used to make sub-wavelength gratings and reflector grating on the planar waveguide which is a coupling device on the guiding layer. The best fabrication parameters were analyzed to deposit the film. The exposure and development times also influenced to fabricate the grating quality. The purpose is to reduce the device size and enhance coupling efficiency which maintain normal incidence of the light . We designed and developed the device using the Finite-Difference Time-Domain (FDTD) method. The grating period, depth, fill factor, film thickness, Distributed Bragg Reflector(DBR) numbers and reflector grating period have been discussed to enhance coupling efficiency and maintained normal incidence of the light. According to the simulation results, when the wavelength is 1300 nm, the coupling grating period is 720 nm and the Ta2O5 film is 460 nm with 360 nm of reflector grating period and 2 layers of Distributed Bragg Reflector, which had the optimum coupling efficiency and normal incidence angle. In the measurement, We successfully measured the TE wave coupling efficiency of the photoresist grating coupling device.

  20. Efficacy of cold light bleaching using different bleaching times and their effects on human enamel.

    PubMed

    Wang, Wei; Zhu, Yuhe; Li, Jiajia; Liao, Susan; Ai, Hongjun

    2013-01-01

    This study investigated the efficacy of cold light bleaching using different bleaching times and the effects thereof on tooth enamel. Before and after bleaching, stained tooth specimens were subjected to visual and instrumental colorimetric assessments using Vita Shade Guide and spectrophotometric shade matching. Enamel surface alterations were examined using scanning electron microscopy (SEM) to analyze surface morphology, surface microhardness (SMH) measurement to determine changes in mechanical properties, and X-ray diffraction (XRD) to characterize post-bleaching enamel composition. Cold light bleaching successfully improved tooth color, with optimal efficacy when bleaching time was beyond 10 min. Significant differences in surface morphology were observed among the different bleaching times, but no significant differences were observed for enamel composition and surface microhardness among the different bleaching times. Results of this study revealed an association between the bleaching time of cold light bleaching and its whitening efficacy. Together with the results on enamel surface changes, this study provided positive evidence to support cold light bleaching as an in-office bleaching treatment.

Top