Light-sheet enhanced resolution of light field microscopy for rapid imaging of large volumes
NASA Astrophysics Data System (ADS)
Madrid Wolff, Jorge; Castro, Diego; Arbeláez, Pablo; Forero-Shelton, Manu
2018-02-01
Whole-brain imaging is challenging because it demands microscopes with high temporal and spatial resolution, which are often at odds, especially in the context of large fields of view. We have designed and built a light-sheet microscope with digital micromirror illumination and light-field detection. On the one hand, light sheets provide high resolution optical sectioning on live samples without compromising their viability. On the other hand, light field imaging makes it possible to reconstruct full volumes of relatively large fields of view from a single camera exposure; however, its enhanced temporal resolution comes at the expense of spatial resolution, limiting its applicability. We present an approach to increase the resolution of light field images using DMD-based light sheet illumination. To that end, we develop a method to produce synthetic resolution targets for light field microscopy and a procedure to correct the depth at which planes are refocused with rendering software. We measured the axial resolution as a function of depth and show a three-fold potential improvement with structured illumination, albeit by sacrificing some temporal resolution, also three-fold. This results in an imaging system that may be adjusted to specific needs without having to reassemble and realign it. This approach could be used to image relatively large samples at high rates.
High resolution Cerenkov light imaging of induced positron distribution in proton therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki
2014-11-01
Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, theymore » conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors conclude that Cerenkov light imaging of proton-induced positron is promising for proton therapy.« less
Gerbich, Therese M.; Rana, Kishan; Suzuki, Aussie; Schaefer, Kristina N.; Heppert, Jennifer K.; Boothby, Thomas C.; Allbritton, Nancy L.; Gladfelter, Amy S.; Maddox, Amy S.
2018-01-01
Fluorescence microscopy is a powerful approach for studying subcellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light-sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective by using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel live-cell LSFM method, lateral interference tilted excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, and coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution. PMID:29490939
Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Ogata, Yoshimune; Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu
2015-03-01
After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since 137Cs and 134Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from 137Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm 137Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq 137Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a 137Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.
Whole-animal imaging with high spatio-temporal resolution
NASA Astrophysics Data System (ADS)
Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.
2016-03-01
We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.
Compressive light field imaging
NASA Astrophysics Data System (ADS)
Ashok, Amit; Neifeld, Mark A.
2010-04-01
Light field imagers such as the plenoptic and the integral imagers inherently measure projections of the four dimensional (4D) light field scalar function onto a two dimensional sensor and therefore, suffer from a spatial vs. angular resolution trade-off. Programmable light field imagers, proposed recently, overcome this spatioangular resolution trade-off and allow high-resolution capture of the (4D) light field function with multiple measurements at the cost of a longer exposure time. However, these light field imagers do not exploit the spatio-angular correlations inherent in the light fields of natural scenes and thus result in photon-inefficient measurements. Here, we describe two architectures for compressive light field imaging that require relatively few photon-efficient measurements to obtain a high-resolution estimate of the light field while reducing the overall exposure time. Our simulation study shows that, compressive light field imagers using the principal component (PC) measurement basis require four times fewer measurements and three times shorter exposure time compared to a conventional light field imager in order to achieve an equivalent light field reconstruction quality.
Sugimura, Daisuke; Kobayashi, Suguru; Hamamoto, Takayuki
2017-11-01
Light field imaging is an emerging technique that is employed to realize various applications such as multi-viewpoint imaging, focal-point changing, and depth estimation. In this paper, we propose a concept of a dual-resolution light field imaging system to synthesize super-resolved multi-viewpoint images. The key novelty of this study is the use of an organic photoelectric conversion film (OPCF), which is a device that converts spectra information of incoming light within a certain wavelength range into an electrical signal (pixel value), for light field imaging. In our imaging system, we place the OPCF having the green spectral sensitivity onto the micro-lens array of the conventional light field camera. The OPCF allows us to acquire the green spectra information only at the center viewpoint with the full resolution of the image sensor. In contrast, the optical system of the light field camera in our imaging system captures the other spectra information (red and blue) at multiple viewpoints (sub-aperture images) but with low resolution. Thus, our dual-resolution light field imaging system enables us to simultaneously capture information about the target scene at a high spatial resolution as well as the direction information of the incoming light. By exploiting these advantages of our imaging system, our proposed method enables the synthesis of full-resolution multi-viewpoint images. We perform experiments using synthetic images, and the results demonstrate that our method outperforms other previous methods.
Multiframe super resolution reconstruction method based on light field angular images
NASA Astrophysics Data System (ADS)
Zhou, Shubo; Yuan, Yan; Su, Lijuan; Ding, Xiaomin; Wang, Jichao
2017-12-01
The plenoptic camera can directly obtain 4-dimensional light field information from a 2-dimensional sensor. However, based on the sampling theorem, the spatial resolution is greatly limited by the microlenses. In this paper, we present a method of reconstructing high-resolution images from the angular images. First, the ray tracing method is used to model the telecentric-based light field imaging process. Then, we analyze the subpixel shifts between the angular images extracted from the defocused light field data and the blur in the angular images. According to the analysis above, we construct the observation model from the ideal high-resolution image to the angular images. Applying the regularized super resolution method, we can obtain the super resolution result with a magnification ratio of 8. The results demonstrate the effectiveness of the proposed observation model.
Light sheet theta microscopy for rapid high-resolution imaging of large biological samples.
Migliori, Bianca; Datta, Malika S; Dupre, Christophe; Apak, Mehmet C; Asano, Shoh; Gao, Ruixuan; Boyden, Edward S; Hermanson, Ola; Yuste, Rafael; Tomer, Raju
2018-05-29
Advances in tissue clearing and molecular labeling methods are enabling unprecedented optical access to large intact biological systems. These developments fuel the need for high-speed microscopy approaches to image large samples quantitatively and at high resolution. While light sheet microscopy (LSM), with its high planar imaging speed and low photo-bleaching, can be effective, scaling up to larger imaging volumes has been hindered by the use of orthogonal light sheet illumination. To address this fundamental limitation, we have developed light sheet theta microscopy (LSTM), which uniformly illuminates samples from the same side as the detection objective, thereby eliminating limits on lateral dimensions without sacrificing the imaging resolution, depth, and speed. We present a detailed characterization of LSTM, and demonstrate its complementary advantages over LSM for rapid high-resolution quantitative imaging of large intact samples with high uniform quality. The reported LSTM approach is a significant step for the rapid high-resolution quantitative mapping of the structure and function of very large biological systems, such as a clarified thick coronal slab of human brain and uniformly expanded tissues, and also for rapid volumetric calcium imaging of highly motile animals, such as Hydra, undergoing non-isomorphic body shape changes.
Enhancing the performance of the light field microscope using wavefront coding
Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc
2014-01-01
Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective’s back focal plane and at the microscope’s native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain. PMID:25322056
Enhancing the performance of the light field microscope using wavefront coding.
Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc
2014-10-06
Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.
Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization
Chong, Shau Poh; Zhang, Tingwei; Kho, Aaron; Bernucci, Marcel T.; Dubra, Alfredo; Srinivasan, Vivek J.
2018-01-01
Chromatic aberrations are an important design consideration in high resolution, high bandwidth, refractive imaging systems that use visible light. Here, we present a fiber-based spectral/Fourier domain, visible light OCT ophthalmoscope corrected for the average longitudinal chromatic aberration (LCA) of the human eye. Analysis of complex speckles from in vivo retinal images showed that achromatization resulted in a speckle autocorrelation function that was ~20% narrower in the axial direction, but unchanged in the transverse direction. In images from the improved, achromatized system, the separation between Bruch’s membrane (BM), the retinal pigment epithelium (RPE), and the outer segment tips clearly emerged across the entire 6.5 mm field-of-view, enabling segmentation and morphometry of BM and the RPE in a human subject. Finally, cross-sectional images depicted distinct inner retinal layers with high resolution. Thus, with chromatic aberration compensation, visible light OCT can achieve volume resolutions and retinal image quality that matches or exceeds ultrahigh resolution near-infrared OCT systems with no monochromatic aberration compensation. PMID:29675296
SPED light sheet microscopy: fast mapping of biological system structure and function
Tomer, Raju; Lovett-Barron, Matthew; Kauvar, Isaac; Andalman, Aaron; Burns, Vanessa M.; Sankaran, Sethuraman; Grosenick, Logan; Broxton, Michael; Yang, Samuel; Deisseroth, Karl
2016-01-01
The goal of understanding living nervous systems has driven interest in high-speed and large field-of-view volumetric imaging at cellular resolution. Light-sheet microscopy approaches have emerged for cellular-resolution functional brain imaging in small organisms such as larval zebrafish, but remain fundamentally limited in speed. Here we have developed SPED light sheet microscopy, which combines large volumetric field-of-view via an extended depth of field with the optical sectioning of light sheet microscopy, thereby eliminating the need to physically scan detection objectives for volumetric imaging. SPED enables scanning of thousands of volumes-per-second, limited only by camera acquisition rate, through the harnessing of optical mechanisms that normally result in unwanted spherical aberrations. We demonstrate capabilities of SPED microscopy by performing fast sub-cellular resolution imaging of CLARITY mouse brains and cellular-resolution volumetric Ca2+ imaging of entire zebrafish nervous systems. Together, SPED light sheet methods enable high-speed cellular-resolution volumetric mapping of biological system structure and function. PMID:26687363
NASA Astrophysics Data System (ADS)
Lu, Chieh Han; Chen, Peilin; Chen, Bi-Chang
2017-02-01
Optical imaging techniques provide much important information in understanding life science especially cellular structure and morphology because "seeing is believing". However, the resolution of optical imaging is limited by the diffraction limit, which is discovered by Ernst Abbe, i.e. λ/2(NA) (NA is the numerical aperture of the objective lens). Fluorescence super-resolution microscopic techniques such as Stimulated emission depletion microscopy (STED), Photoactivated localization microscopy (PALM), and Stochastic optical reconstruction microscopy (STORM) are invented to have the capability of seeing biological entities down to molecular level that are smaller than the diffraction limit (around 200-nm in lateral resolution). These techniques do not physically violate the Abbe limit of resolution but exploit the photoluminescence properties and labelling specificity of fluorescence molecules to achieve super-resolution imaging. However, these super-resolution techniques limit most of their applications to the 2D imaging of fixed or dead samples due to the high laser power needed or slow speed for the localization process. Extended from 2D imaging, light sheet microscopy has been proven to have a lot of applications on 3D imaging at much better spatiotemporal resolutions due to its intrinsic optical sectioning and high imaging speed. Herein, we combine the advantage of localization microscopy and light-sheet microscopy to have super-resolved cellular imaging in 3D across large field of view. With high-density labeled spontaneous blinking fluorophore and wide-field detection of light-sheet microscopy, these allow us to construct 3D super-resolution multi-cellular imaging at high speed ( minutes) by light-sheet single-molecule localization microscopy.
Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution
Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.
2016-01-01
We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939
NASA Astrophysics Data System (ADS)
Yan, Zhiqiang; Yan, Xingpeng; Jiang, Xiaoyu; Gao, Hui; Wen, Jun
2017-11-01
An integral imaging based light field display method is proposed by use of holographic diffuser, and enhanced viewing resolution is gained over conventional integral imaging systems. The holographic diffuser is fabricated with controlled diffusion characteristics, which interpolates the discrete light field of the reconstructed points to approximate the original light field. The viewing resolution can thus be improved and independent of the limitation imposed by Nyquist sampling frequency. An integral imaging system with low Nyquist sampling frequency is constructed, and reconstructed scenes of high viewing resolution using holographic diffuser are demonstrated, verifying the feasibility of the method.
Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution
Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; ...
2016-01-01
Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less
Spatial resolution limitation of liquid crystal spatial light modulator
NASA Astrophysics Data System (ADS)
Wang, Xinghua; Wang, Bin; McManamon, Paul F., III; Pouch, John J.; Miranda, Felix A.; Anderson, James E.; Bos, Philip J.
2004-10-01
The effect of fringing electric fields in a liquid crystal (LC) Optical Phased Array (OPA), also referred to as a spatial light modulator (SLM), is a governing factor that determines the diffraction efficiency (DE) of the LC OPA for high resolution spatial phase modulation. In this article, the fringing field effect in a high resolution LC OPA is studied by accurate modeling the DE of the LC blazed gratings by LC director simulation and Finite Difference Time Domain (FDTD) simulation. Influence factors that contribute significantly to the DE are discussed. Such results provide fundamental understanding for high resolution LC devices.
Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu
2013-01-01
Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50-60 nm on a time scale of 2.3 s. Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level.
Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu
2016-01-01
Background Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. Results We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50–60 nm on a time scale of 2.3 s. Conclusion Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level. PMID:27795878
High-resolution NMR study of light and heavy crude oils: “structure-property” analysis
NASA Astrophysics Data System (ADS)
Rakhmatullin, I.; Efimov, S.; Varfolomeev, M.; Klochkov, V.
2018-05-01
Measurements of three light and one heavy crude oil samples were carried out by high-resolution nuclear magnetic resonance (NMR) spectroscopy methods. Quantitative fractions of aromatic molecules and functional groups constituting oil hydrocarbons were determined, and comparative analysis of the oil samples of different viscosity and origin was done.
2016-03-31
transcutaneously via the outer ear using a high-resolution, addressable array of organic light emitting diodes (OLEDs) manufactured on a flexible...therapeutic optical stimulation in optogenetically modified neural tissue. Keywords: Optogenetics; neuromodulation; organic light emitting diode ...the outer ear using a high-resolution, two-dimensional (2-D), addressable array of red organic light - emitting diodes (OLEDs) manufactured on a thin
NASA Astrophysics Data System (ADS)
Wu, Mengxin; Liu, Qingwen; Chen, Jiageng; He, Zuyuan
2017-04-01
Pound-Drever-Hall (PDH) technique has been widely adopted for ultrahigh resolution fiber-optic sensors, but its performance degenerates seriously as the light power drops. To solve this problem, we developed a coherent PDH technique for weak optical signal detection, with which the signal-to-noise ratio (SNR) of demodulated PDH signal is dramatically improved. In the demonstrational experiments, a high resolution fiber-optic sensor using the proposed technique is realized, and n"-order strain resolution at a low light power down to -43 dBm is achieved, which is about 15 dB lower compared with classical PDH technique. The proposed coherent PDH technique has great potentials in longer distance and larger scale sensor networks.
Eben N. Broadbent; Angélica M. Almeyda Zambrano; Gregory P. Asner; Christopher B. Field; Brad E. Rosenheim; Ty Kennedy-Bowdoin; David E. Knapp; David Burke; Christian Giardina; Susan Cordell
2014-01-01
We develop and validate a high-resolution three-dimensional model of light and air temperature for a tropical forest interior in Hawaii along an elevation gradient varying greatly in structure but maintaining a consistent species composition. Our microclimate models integrate high-resolution airborne waveform light detection and ranging data (LiDAR) and hyperspectral...
Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.
Svitkina, Tatyana M
2017-05-01
Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.
Platinum Replica Electron Microscopy: Imaging the Cytoskeleton Globally and Locally
SVITKINA, Tatyana M.
2017-01-01
Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the “comfort zones” of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. PMID:28323208
NASA Astrophysics Data System (ADS)
Malone, Robert M.; Capelle, Gene A.; Cox, Brian C.; Frogget, Brent C.; Grover, Mike; Kaufman, Morris I.; Pazuchanics, Peter; Sorenson, Danny S.; Stevens, Gerald D.; Tibbitts, Aric; Turley, William D.
2009-08-01
The design and assembly of a nine-element lens that achieves >2000 lp/mm resolution at a 355-nm wavelength (ultraviolet) has been completed. By adding a doublet to this lens system, operation at a 532-nm wavelength (green) with >1100 lp/mm resolution is achieved. This lens is used with high-power laser light to record holograms of fast-moving ejecta particles from a shocked metal surface located inside a test package. Part of the lens and the entire test package are under vacuum with a 1-cm air gap separation. Holograms have been recorded with both doubled and tripled Nd:YAG laser light. The UV operation is very sensitive to the package window's tilt. If this window is tilted by more than 0.1 degrees, the green operation performs with better resolution than that of the UV operation. The setup and alignment are performed with green light, but the dynamic recording can be done with either UV light or green light. A resolution plate can be temporarily placed inside the test package so that a television microscope located beyond the hologram position can archive images of resolution patterns that prove that the calibration wires, interference filter, holographic plate, and relay lenses are in their correct positions. Part of this lens is under vacuum, at the point where the laser illumination passes through a focus. Alignment and tolerancing of this high-resolution lens are presented. Resolution variation across the 12-mm field of view and throughout the 5-mm depth of field is discussed for both wavelengths.
Super-resolution optical microscopy for studying membrane structure and dynamics.
Sezgin, Erdinc
2017-07-12
Investigation of cell membrane structure and dynamics requires high spatial and temporal resolution. The spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent developments in microscopy enabled us to access the nano-scale regime spatially, thus to elucidate the nanoscopic structures in the cellular membranes. In this review, we will explain the resolution limit, address the working principles of the most commonly used super-resolution microscopy techniques and summarise their recent applications in the biomembrane field.
High resolution surface plasmon microscopy for cell imaging
NASA Astrophysics Data System (ADS)
Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.
2010-04-01
We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.
NASA Astrophysics Data System (ADS)
Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Hamann, E.; van de Kamp, T.; Riedel, A.; Fiederle, M.; Baumbach, T.
2011-08-01
Within the project ScinTAX of the 6th framework program (FP6) of the European Commission (SCINTAX—STRP 033 427) we have developed a new thin single crystal scintillator for high-resolution X-ray imaging. The scintillator is based on a Tb-doped Lu2SiO5 (LSO) film epitaxially grown on an adapted substrate. The high density, effective atomic number and light yield of the scintillating LSO significantly improves the efficiency of the X-ray imaging detectors currently used in synchrotron micro-imaging applications. In this work we present the characterization of the scintillating LSO films in terms of their spatial resolution performance and we provide two examples of high spatial and high temporal resolution applications.
Høye, Gudrun; Fridman, Andrei
2013-05-06
Current high-resolution push-broom hyperspectral cameras introduce keystone errors to the captured data. Efforts to correct these errors in hardware severely limit the optical design, in particular with respect to light throughput and spatial resolution, while at the same time the residual keystone often remains large. The mixel camera solves this problem by combining a hardware component--an array of light mixing chambers--with a mathematical method that restores the hyperspectral data to its keystone-free form, based on the data that was recorded onto the sensor with large keystone. A Virtual Camera software, that was developed specifically for this purpose, was used to compare the performance of the mixel camera to traditional cameras that correct keystone in hardware. The mixel camera can collect at least four times more light than most current high-resolution hyperspectral cameras, and simulations have shown that the mixel camera will be photon-noise limited--even in bright light--with a significantly improved signal-to-noise ratio compared to traditional cameras. A prototype has been built and is being tested.
Liu, Mali; Lu, Chihao; Li, Haifeng; Liu, Xu
2018-02-19
We propose a bifocal computational near eye light field display (bifocal computational display) and structure parameters determination scheme (SPDS) for bifocal computational display that achieves greater depth of field (DOF), high resolution, accommodation and compact form factor. Using a liquid varifocal lens, two single-focal computational light fields are superimposed to reconstruct a virtual object's light field by time multiplex and avoid the limitation on high refresh rate. By minimizing the deviation between reconstructed light field and original light field, we propose a determination framework to determine the structure parameters of bifocal computational light field display. When applied to different objective to SPDS, it can achieve high average resolution or uniform resolution display over scene depth range. To analyze the advantages and limitation of our proposed method, we have conducted simulations and constructed a simple prototype which comprises a liquid varifocal lens, dual-layer LCDs and a uniform backlight. The results of simulation and experiments with our method show that the proposed system can achieve expected performance well. Owing to the excellent performance of our system, we motivate bifocal computational display and SPDS to contribute to a daily-use and commercial virtual reality display.
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ogata, Yoshimune; Hatazawa, Jun
2016-09-01
Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively 3 mm FWHM and 10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two modalities.
Panretinal, high-resolution color photography of the mouse fundus.
Paques, Michel; Guyomard, Jean-Laurent; Simonutti, Manuel; Roux, Michel J; Picaud, Serge; Legargasson, Jean-François; Sahel, José-Alain
2007-06-01
To analyze high-resolution color photographs of the mouse fundus. A contact fundus camera based on topical endoscopy fundus imaging (TEFI) was built. Fundus photographs of C57 and Balb/c mice obtained by TEFI were qualitatively analyzed. High-resolution digital imaging of the fundus, including the ciliary body, was routinely obtained. The reflectance and contrast of retinal vessels varied significantly with the amount of incident and reflected light and, thus, with the degree of fundus pigmentation. The combination of chromatic and spherical aberration favored blue light imaging, in term of both field and contrast. TEFI is a small, low-cost system that allows high-resolution color fundus imaging and fluorescein angiography in conscious mice. Panretinal imaging is facilitated by the presence of the large rounded lens. TEFI significantly improves the quality of in vivo photography of retina and ciliary process of mice. Resolution is, however, affected by chromatic aberration, and should be improved by monochromatic imaging.
Joint estimation of high resolution images and depth maps from light field cameras
NASA Astrophysics Data System (ADS)
Ohashi, Kazuki; Takahashi, Keita; Fujii, Toshiaki
2014-03-01
Light field cameras are attracting much attention as tools for acquiring 3D information of a scene through a single camera. The main drawback of typical lenselet-based light field cameras is the limited resolution. This limitation comes from the structure where a microlens array is inserted between the sensor and the main lens. The microlens array projects 4D light field on a single 2D image sensor at the sacrifice of the resolution; the angular resolution and the position resolution trade-off under the fixed resolution of the image sensor. This fundamental trade-off remains after the raw light field image is converted to a set of sub-aperture images. The purpose of our study is to estimate a higher resolution image from low resolution sub-aperture images using a framework of super-resolution reconstruction. In this reconstruction, these sub-aperture images should be registered as accurately as possible. This registration is equivalent to depth estimation. Therefore, we propose a method where super-resolution and depth refinement are performed alternatively. Most of the process of our method is implemented by image processing operations. We present several experimental results using a Lytro camera, where we increased the resolution of a sub-aperture image by three times horizontally and vertically. Our method can produce clearer images compared to the original sub-aperture images and the case without depth refinement.
High-throughput isotropic mapping of whole mouse brain using multi-view light-sheet microscopy
NASA Astrophysics Data System (ADS)
Nie, Jun; Li, Yusha; Zhao, Fang; Ping, Junyu; Liu, Sa; Yu, Tingting; Zhu, Dan; Fei, Peng
2018-02-01
Light-sheet fluorescence microscopy (LSFM) uses an additional laser-sheet to illuminate selective planes of the sample, thereby enabling three-dimensional imaging at high spatial-temporal resolution. These advantages make LSFM a promising tool for high-quality brain visualization. However, even by the use of LSFM, the spatial resolution remains insufficient to resolve the neural structures across a mesoscale whole mouse brain in three dimensions. At the same time, the thick-tissue scattering prevents a clear observation from the deep of brain. Here we use multi-view LSFM strategy to solve this challenge, surpassing the resolution limit of standard light-sheet microscope under a large field-of-view (FOV). As demonstrated by the imaging of optically-cleared mouse brain labelled with thy1-GFP, we achieve a brain-wide, isotropic cellular resolution of 3μm. Besides the resolution enhancement, multi-view braining imaging can also recover complete signals from deep tissue scattering and attenuation. The identification of long distance neural projections across encephalic regions can be identified and annotated as a result.
Xu, Zihao; Yang, Chengliang; Zhang, Peiguang; Zhang, Xingyun; Cao, Zhaoliang; Mu, Quanquan; Sun, Qiang; Xuan, Li
2017-08-30
There are more than eight large aperture telescopes (larger than eight meters) equipped with adaptive optics system in the world until now. Due to the limitations such as the difficulties of increasing actuator number of deformable mirror, most of them work in the infrared waveband. A novel two-step high-resolution optical imaging approach is proposed by applying phase diversity (PD) technique to the open-loop liquid crystal adaptive optics system (LC AOS) for visible light high-resolution adaptive imaging. Considering the traditional PD is not suitable for LC AOS, the novel PD strategy is proposed which can reduce the wavefront estimating error caused by non-modulated light generated by liquid crystal spatial light modulator (LC SLM) and make the residual distortions after open-loop correction to be smaller. Moreover, the LC SLM can introduce any aberration which realizes the free selection of phase diversity. The estimating errors are greatly reduced in both simulations and experiments. The resolution of the reconstructed image is greatly improved on both subjective visual effect and the highest discernible space resolution. Such technique can be widely used in large aperture telescopes for astronomical observations such as terrestrial planets, quasars and also can be used in other applications related to wavefront correction.
Marcinkowski, R; España, S; Van Holen, R; Vandenberghe, S
2014-12-07
The majority of current whole-body PET scanners are based on pixelated scintillator arrays with a transverse pixel size of 4 mm. However, recent studies have shown that decreasing the pixel size to 2 mm can significantly improve image spatial resolution. In this study, the performance of Digital Photon Counter (DPC) from Philips Digital Photon Counting (PDPC) was evaluated to determine their potential for high-resolution whole-body time of flight (TOF) PET scanners. Two detector configurations were evaluated. First, the DPC3200-44-22 DPC array was coupled to a LYSO block of 15 × 15 2 × 2 × 22 mm(3) pixels through a 1 mm thick light guide. Due to light sharing among the dies neighbour logic of the DPC was used. In a second setup the same DPC was coupled directly to a scalable 4 × 4 LYSO matrix of 1.9 × 1.9 × 22 mm(3) crystals with a dedicated reflector arrangement allowing for controlled light sharing patterns inside the matrix. With the first approach an average energy resolution of 14.5% and an average CRT of 376 ps were achieved. For the second configuration an average energy resolution of 11% and an average CRT of 295 ps were achieved. Our studies show that the DPC is a suitable photosensor for a high-resolution TOF-PET detector. The dedicated reflector arrangement allows one to achieve better performances than the light guide approach. The count loss, caused by dark counts, is overcome by fitting the matrix size to the size of DPC single die.
Wave optics theory and 3-D deconvolution for the light field microscope
Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc
2013-01-01
Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383
NASA Astrophysics Data System (ADS)
Mehta, Dalip Singh; Ahmad, Azeem; Dubey, Vishesh; Singh, Veena; Butola, Ankit; Mohanty, Tonmoy; Nandi, Sreyankar
2018-02-01
We report longitudinal spatial coherence (LSC) gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination using laser as a light source. To accomplish this a pseudo thermal light source was synthesized by passing laser beams through an optical system, which is basically a speckle reduction system with combined effect of spatial, temporal, angular and polarisation diversity. The longitudinal spatial coherence length of such light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular and temporal diversity. This results in a low spatially coherent (i.e., broad angular frequency spectrum) light source with narrow temporal frequency spectrum. Light from such a pseudo thermal light source was passed through an interference microscope with varying magnification, such as, 10X and 50X. The interference microscope was used for full-field OCT imaging of multilayer objects and topography of industrial objects. Experimental results of optical sectioning of multilayer biological objects with high axial-resolution less than 10μm was achieved which is comparable to broadband white light source. The synthesized light source with reduced speckles having uniform illumination on the sample, which can be very useful for fluorescence microscopy as well as quantitative phase microscopy with less phase noise. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.
High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation
NASA Technical Reports Server (NTRS)
Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)
2000-01-01
We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.
Angiographic and structural imaging using high axial resolution fiber-based visible-light OCT
Pi, Shaohua; Camino, Acner; Zhang, Miao; Cepurna, William; Liu, Gangjun; Huang, David; Morrison, John; Jia, Yali
2017-01-01
Optical coherence tomography using visible-light sources can increase the axial resolution without the need for broader spectral bandwidth. Here, a high-resolution, fiber-based, visible-light optical coherence tomography system is built and used to image normal retina in rats and blood vessels in chicken embryo. In the rat retina, accurate segmentation of retinal layer boundaries and quantification of layer thicknesses are accomplished. Furthermore, three distinct capillary plexuses in the retina and the choriocapillaris are identified and the characteristic pattern of the nerve fiber layer thickness in rats is revealed. In the chicken embryo model, the microvascular network and a venous bifurcation are examined and the ability to identify and segment large vessel walls is demonstrated. PMID:29082087
NASA Astrophysics Data System (ADS)
Subasinghe, Dilini; Campbell-Brown, Margaret D.; Stokan, Edward
2016-04-01
Optical observations of faint meteors (10-7 < mass < 10-4 kg) were collected by the Canadian Automated Meteor Observatory between 2010 April and 2014 May. These high-resolution (metre scale) observations were combined with two-station light-curve observations and the meteoroid orbit to classify meteors and attempt to answer questions related to meteoroid fragmentation, strength, and light-curve shape. The F parameter was used to classify the meteor light-curve shape; the observed morphology was used to classify the fragmentation mode; and the Tisserand parameter described the origin of the meteoroid. We find that most meteor light curves are symmetric (mean F parameter 0.49), show long distinct trails (continuous fragmentation), and are cometary in origin. Meteors that show no obvious fragmentation (presumably single body objects) show mostly symmetric light curves, surprisingly, and this indicates that light-curve shape is not an indication of fragility or fragmentation behaviour. Approximately 90 per cent of meteors observed with high-resolution video cameras show some form of fragmentation. Our results also show, unexpectedly, that meteors which show negligible fragmentation are more often on high-inclination orbits (I > 60°) than low-inclination ones. We also find that dynamically asteroidal meteors fragment as often as dynamically cometary meteors, which may suggest mixing in the early Solar system, or contamination between the dynamic groups.
Super Resolution Algorithm for CCTVs
NASA Astrophysics Data System (ADS)
Gohshi, Seiichi
2015-03-01
Recently, security cameras and CCTV systems have become an important part of our daily lives. The rising demand for such systems has created business opportunities in this field, especially in big cities. Analogue CCTV systems are being replaced by digital systems, and HDTV CCTV has become quite common. HDTV CCTV can achieve images with high contrast and decent quality if they are clicked in daylight. However, the quality of an image clicked at night does not always have sufficient contrast and resolution because of poor lighting conditions. CCTV systems depend on infrared light at night to compensate for insufficient lighting conditions, thereby producing monochrome images and videos. However, these images and videos do not have high contrast and are blurred. We propose a nonlinear signal processing technique that significantly improves visual and image qualities (contrast and resolution) of low-contrast infrared images. The proposed method enables the use of infrared cameras for various purposes such as night shot and poor lighting environments under poor lighting conditions.
High-resolution confocal Raman microscopy using pixel reassignment.
Roider, Clemens; Ritsch-Marte, Monika; Jesacher, Alexander
2016-08-15
We present a practical modification of fiber-coupled confocal Raman scanning microscopes that is able to provide high confocal resolution in conjunction with high light collection efficiency. For this purpose, the single detection fiber is replaced by a hexagonal lenslet array in combination with a hexagonally packed round-to-linear multimode fiber bundle. A multiline detector is used to collect individual Raman spectra for each fiber. Data post-processing based on pixel reassignment allows one to improve the lateral resolution by up to 41% compared to a single fiber of equal light collection efficiency. We present results from an experimental implementation featuring seven collection fibers, yielding a resolution improvement of about 30%. We believe that our implementation represents an attractive upgrade for existing confocal Raman microscopes that employ multi-line detectors.
Optical design of the PEPSI high-resolution spectrograph at LBT
NASA Astrophysics Data System (ADS)
Andersen, Michael I.; Spano, Paolo; Woche, Manfred; Strassmeier, Klaus G.; Beckert, Erik
2004-09-01
PEPSI is a high-resolution, fiber fed echelle spectrograph with polarimetric capabilities for the LBT. In order to reach a maximum resolution R=120.000 in polarimetric mode and 300.000 in integral light mode with high efficiency in the spectral range 390-1050~nm, we designed a white-pupil configuration with Maksutov collimators. Light is dispersed by an R4 31.6 lines/mm monolithic echelle grating mosaic and split into two arms through dichroics. The two arms, optimized for the spectral range 390-550~nm and 550-1050~nm, respectively, consist of Maksutov transfer collimators, VPH-grism cross dispersers, optimized dioptric cameras and 7.5K x 7.5K 8~μ CCDs. Fibers of different core sizes coupled to different image-slicers allow a high throughput, comparable to that of direct feed instruments. The optical configuration with only spherical and cylindrical surfaces, except for one aspherical surface in each camera, reduces costs and guarantees high optical quality. PEPSI is under construction at AIP with first light expected in 2006.
NASA Astrophysics Data System (ADS)
Held, Marcel Philipp; Ley, Peer-Phillip; Lachmayer, Roland
2018-02-01
High-resolution vehicle headlamps represent a future-oriented technology that increases traffic safety and driving comfort in the dark. A further development to current matrix beam headlamps are LED-based pixellight systems which enable additional lighting functions (e.g. the projection of navigation information on the road) to be activated for given driving scenarios. The image generation is based on spatial light modulators (SLM) such as digital micromirror devices (DMD), liquid crystal displays (LCD), liquid crystal on silicon (LCoS) devices or LED arrays. For DMD-, LCD- and LCoSbased headlamps, the optical system uses illumining optics to ensure a precise illumination of the corresponding SLM. LED arrays, however, have to use imaging optics to project the LED die onto an intermediate image plane and thus create the light distribution via an apposition of gapless juxtapositional LED die images. Nevertheless, the lambertian radiation characteristics complex the design of imaging optics regarding a highefficiency setup with maximum resolution and luminous flux. Simplifying the light source model and its emitting characteristics allows to determine a balanced setup between these parameters by using the Etendue and to ´ calculate the maximum possible efficacy and luminous flux for each technology in an early designing stage. Therefore, we present a calculation comparison of how simplifying the light source model can affect the Etendue ´ conservation and the setup design for two high-resolution technologies. The shown approach is evaluated and compared to simulation models to show the occurring deviation and its applicability.
NASA Astrophysics Data System (ADS)
Chi, Yuxi; Yu, Liping; Pan, Bing
2018-05-01
A low-cost, portable, robust and high-resolution single-camera stereo-digital image correlation (stereo-DIC) system for accurate surface three-dimensional (3D) shape and deformation measurements is described. This system adopts a single consumer-grade high-resolution digital Single Lens Reflex (SLR) camera and a four-mirror adaptor, rather than two synchronized industrial digital cameras, for stereo image acquisition. In addition, monochromatic blue light illumination and coupled bandpass filter imaging are integrated to ensure the robustness of the system against ambient light variations. In contrast to conventional binocular stereo-DIC systems, the developed pseudo-stereo-DIC system offers the advantages of low cost, portability, robustness against ambient light variations, and high resolution. The accuracy and precision of the developed single SLR camera-based stereo-DIC system were validated by measuring the 3D shape of a stationary sphere along with in-plane and out-of-plane displacements of a translated planar plate. Application of the established system to thermal deformation measurement of an alumina ceramic plate and a stainless-steel plate subjected to radiation heating was also demonstrated.
Piltingsrud, H V
1979-12-01
Bismuth germanate is a scintillation material with very high z, and high density (7.13 g/cm3). It is a rugged, nonhygroscopic, crystalline material with room-temperature scintillation properties described by previous investigators as having a light yield approximately 8% of that of NaI(Tl), emission peak at approximately 480 nm, decay constant of 0.3 microsec, and energy resolution congruent to 15% (FWHM) for Cs-137 gamma radiations. These properties make it an excellent candidate for applications involving the detection of high-energy gamma photons and positron annihilation radiation, particularly when good spatial resolution is desired. At room temperature, however, the application of this material is somewhat limited by low light output and poor energy resolution. This paper presents new data on the scintillation properties of bismuth germanate as a function of temperature from -- 196 degrees C to j0 degrees C. Low-temperature use of the material is shown to greatly improve its light yield and energy resolution. The implications of this work to the design of imaging devices for high-energy radiation in health physics and nuclear medicine are discussed.
Rhodes-Mordov, Elisheva; Katz, Ben; Oberegelsbacher, Claudia; Yasin, Bushra; Tzadok, Hanan; Huber, Armin
2017-01-01
Drosophila photoreceptors respond to oscillating light of high frequency (∼100 Hz), while the detected maximal frequency is modulated by the light rearing conditions, thus enabling high sensitivity to light and high temporal resolution. However, the molecular basis for this adaptive process is unclear. Here, we report that dephosphorylation of the light-activated transient receptor potential (TRP) ion channel at S936 is a fast, graded, light-dependent, and Ca2+-dependent process that is partially modulated by the rhodopsin phosphatase retinal degeneration C (RDGC). Electroretinogram measurements of the frequency response to oscillating lights in vivo revealed that dark-reared flies expressing wild-type TRP exhibited a detection limit of oscillating light at relatively low frequencies, which was shifted to higher frequencies upon light adaptation. Strikingly, preventing phosphorylation of the S936-TRP site by alanine substitution in transgenic Drosophila (trpS936A) abolished the difference in frequency response between dark-adapted and light-adapted flies, resulting in high-frequency response also in dark-adapted flies. In contrast, inserting a phosphomimetic mutation by substituting the S936-TRP site to aspartic acid (trpS936D) set the frequency response of light-adapted flies to low frequencies typical of dark-adapted flies. Light-adapted rdgC mutant flies showed relatively high S936-TRP phosphorylation levels and light–dark phosphorylation dynamics. These findings suggest that RDGC is one but not the only phosphatase involved in pS936-TRP dephosphorylation. Together, this study indicates that TRP channel dephosphorylation is a regulatory process that affects the detection limit of oscillating light according to the light rearing condition, thus adjusting dynamic processing of visual information under varying light conditions. SIGNIFICANCE STATEMENT Drosophila photoreceptors exhibit high temporal resolution as manifested in frequency response to oscillating light of high frequency (≤∼100 Hz). Light rearing conditions modulate the maximal frequency detected by photoreceptors, thus enabling them to maintain high sensitivity to light and high temporal resolution. However, the precise mechanisms for this process are not fully understood. Here, we show by combination of biochemistry and in vivo electrophysiology that transient receptor potential (TRP) channel dephosphorylation at a specific site is a fast, light-activated and Ca2+-dependent regulatory process. TRP dephosphorylation affects the detection limit of oscillating light according to the adaptation state of the photoreceptor cells by shifting the detection limit to higher frequencies upon light adaptation. This novel mechanism thus adjusts dynamic processing of visual information under varying light conditions. PMID:28314815
Towards native-state imaging in biological context in the electron microscope
Weston, Anne E.; Armer, Hannah E. J.
2009-01-01
Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039
NASA Astrophysics Data System (ADS)
Wen, Sy-Bor; Bhaskar, Arun; Zhang, Hongjie
2018-07-01
A scanning digital lithography system using computer controlled digital spatial light modulator, spatial filter, infinity correct optical microscope and high precision translation stage is proposed and examined. Through utilizing the spatial filter to limit orders of diffraction modes for light delivered from the spatial light modulator, we are able to achieve diffraction limited deep submicron spatial resolution with the scanning digital lithography system by using standard one inch level optical components with reasonable prices. Raster scanning of this scanning digital lithography system using a high speed high precision x-y translation stage and piezo mount to real time adjust the focal position of objective lens allows us to achieve large area sub-micron resolved patterning with high speed (compared with e-beam lithography). It is determined in this study that to achieve high quality stitching of lithography patterns with raster scanning, a high-resolution rotation stage will be required to ensure the x and y directions of the projected pattern are in the same x and y translation directions of the nanometer precision x-y translation stage.
Linac coherent light source (LCLS) undulator RF BPM system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lill, R.; Waldschmidt, G.; Morrison, L.
2006-01-01
The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, andmore » prototype test results.« less
Linac Coherent Light Source Undulator RF BPM System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lill, R.M.; Morrison, L.H.; Waldschmidt, G.J.
2007-04-17
The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, andmore » prototype test results.« less
Wavefront coding for fast, high-resolution light-sheet microscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Olarte, Omar E.; Licea-Rodriguez, Jacob; Loza-Alvarez, Pablo
2017-02-01
Some biological experiments demand the observation of dynamics processes in 3D with high spatiotemporal resolution. The use of wavefront coding to extend the depth-of-field (DOF) of the collection arm of a light-sheet microscope is an interesting alternative for fast 3D imaging. Under this scheme, the 3D features of the sample are captured at high volumetric rates while the light sheet is swept rapidly within the extended DOF. The DOF is extended by coding the pupil function of the imaging lens by using a custom-designed phase mask. A posterior restoration step is required to decode the information of the captured images based on the applied phase mask [1]. This hybrid optical-digital approach is known as wavefront coding (WFC). Previously, we have demonstrated this method for performing fast 3D imaging of biological samples at medium resolution [2]. In this work, we present the extension of this approach for high-resolution microscopes. Under these conditions, the effective DOF of a standard high NA objective is of a few micrometers. Here we demonstrate that by the use of WFC, we can extend the DOF more than one order of magnitude keeping the high-resolution imaging. This is demonstrated for two designed phase masks using Zebrafish and C. elegans samples. [1] Olarte, O.E., Andilla, J., Artigas, D., and Loza-Alvarez, P., "Decoupled Illumination-Detection Microscopy. Selected Optics in Year 2105," in Optics and Photonics news 26, p. 41 (2015). [2] Olarte, O.E., Andilla, J., Artigas, D., and Loza-Alvarez, P., "Decoupled illumination detection in light sheet microscopy for fast volumetric imaging," Optica 2(8), 702 (2015).
NASA Astrophysics Data System (ADS)
Yin, Yujian; Su, Ping; Ma, Jianshe
2018-01-01
A method to improve the radial resolution using special structured light is proposed in the field of digital holographic microscopy (DHM). A specimen is illuminated with circular symmetrical structured light that makes the spectrum have radial movement, so that high frequency components of the specimen are moved into the passband of the receiver to overcome the diffraction limit. In the DHM imaging system, Computer Generated Hologram (CGH) technology is used to generate the required structured light grating. Then the grating is loaded into a spatial light modulator (SLM) to obtain specific structured illumination. After recording the hologram, digital reconstruction, for the microstructure of a binary optical element that needs to observe radial distribution, the radial resolution of the specimen is improved experimentally compare it with the result of one-dimensional sinusoidal structured light imaging. And a method of designing structured light is presented.
Bendable X-ray Optics for High Resolution Imaging
NASA Technical Reports Server (NTRS)
Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.
2014-01-01
Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.
Compact and high resolution virtual mouse using lens array and light sensor
NASA Astrophysics Data System (ADS)
Qin, Zong; Chang, Yu-Cheng; Su, Yu-Jie; Huang, Yi-Pai; Shieh, Han-Ping David
2016-06-01
Virtual mouse based on IR source, lens array and light sensor was designed and implemented. Optical architecture including lens amount, lens pitch, baseline length, sensor length, lens-sensor gap, focal length etc. was carefully designed to achieve low detective error, high resolution, and simultaneously, compact system volume. System volume is 3.1mm (thickness) × 4.5mm (length) × 2, which is much smaller than that of camera-based device. Relative detective error of 0.41mm and minimum resolution of 26ppi were verified in experiments, so that it can replace conventional touchpad/touchscreen. If system thickness is eased to 20mm, resolution higher than 200ppi can be achieved to replace real mouse.
Single sensor processing to obtain high resolution color component signals
NASA Technical Reports Server (NTRS)
Glenn, William E. (Inventor)
2010-01-01
A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.
Liquid crystal light valve technologies for display applications
NASA Astrophysics Data System (ADS)
Kikuchi, Hiroshi; Takizawa, Kuniharu
2001-11-01
The liquid crystal (LC) light valve, which is a spatial light modulator that uses LC material, is a very important device in the area of display development, image processing, optical computing, holograms, etc. In particular, there have been dramatic developments in the past few years in the application of the LC light valve to projectors and other display technologies. Various LC operating modes have been developed, including thin film transistors, MOS-FETs and other active matrix drive techniques to meet the requirements for higher resolution, and substantial improvements have been achieved in the performance of optical systems, resulting in brighter display images. Given this background, the number of applications for the LC light valve has greatly increased. The resolution has increased from QVGA (320 x 240) to QXGA (2048 x 1536) or even super- high resolution of eight million pixels. In the area of optical output, projectors of 600 to 13,000 lm are now available, and they are used for presentations, home theatres, electronic cinema and other diverse applications. Projectors using the LC light valve can display high- resolution images on large screens. They are now expected to be developed further as part of hyper-reality visual systems. This paper provides an overview of the needs for large-screen displays, human factors related to visual effects, the way in which LC light valves are applied to projectors, improvements in moving picture quality, and the results of the latest studies that have been made to increase the quality of images and moving images or pictures.
High energy resolution with transparent ceramic garnet scintillators
NASA Astrophysics Data System (ADS)
Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Beck, P. R.; Swanberg, E. L.; Hunter, S.; Ahle, L.; Fisher, S. E.; Melcher, C.; Wei, H.; Stefanik, T.; Chung, Y.-S.; Kindem, J.
2014-09-01
Breakthrough energy resolution, R(662keV) < 4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce). Transparent ceramic GYGAG(Ce), has a peak emission wavelength of 550 nm that is better matched to Silicon photodetectors than to standard PMTs. We are therefore developing a spectrometer based on pixelated GYGAG(Ce) on a Silicon photodiode array that can provide R(662 keV) = 3.6%. In comparison, with large 1-2 in3 size GYGAG(Ce) ceramics we obtain R(662 keV) = 4.6% with PMT readout. We find that ceramic GYGAG(Ce) of a given stoichiometric chemical composition can exhibit very different scintillation properties, depending on sintering conditions and post-anneal treatments. Among the characteristics of transparent ceramic garnet scintillators that can be controlled by fabrication conditions are: scintillation decay components and their amplitudes, intensity and duration of afterglow, thermoluminescence glow curve peak positions and amplitudes, integrated light yield, light yield non-proportionality - as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI), and energy resolution for gamma spectroscopy. Garnet samples exhibiting a significant fraction of Cerium dopant in the tetravalent valence also exhibit: faster overall scintillation decay, very low afterglow, high light yield, but poor light yield proportionality and degraded energy resolution.
High-Resolution Light Transmission Spectroscopy of Nanoparticles in Real Time
NASA Astrophysics Data System (ADS)
Tanner, Carol; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven
2017-04-01
As implemented here, Light Transmission Spectroscopy (LTS) is a high-resolution real-time technique for eliminating spectral noise and systematic effects in wide band spectroscopic measurements of nanoparticles. In this work, we combine LTS with spectral inversion for the purpose of characterizing the size, shape, and number of nanoparticles in solution. The apparatus employs a wide-band multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, and the wavelength dependent light detection system ranges from 200 to 1100 nm with <=1 nm resolution. With this system, nanoparticles ranging from 1 to 3000 nm diameters can be studied. The nanoparticles are typically suspended in pure water or water-based buffer solutions. For testing and calibration purposes, results are presented for nanoparticles composed of polystyrene and gold. Mie theory is used to model the total extinction cross-section, and spectral inversion is employed to obtain quantitative particle size distributions. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired. University of Notre Dame Office of Research, College of Science, Department of Physics, and USDA.
NASA Astrophysics Data System (ADS)
Chong, Shau Poh; Bernucci, Marcel T.; Borycki, Dawid; Radhakrishnan, Harsha; Srinivasan, Vivek J.
2017-02-01
Visible light is absorbed by intrinsic chromophores such as photopigment, melanin, and hemoglobin, and scattered by subcellular structures, all of which are potential retinal disease biomarkers. Recently, high-resolution quantitative measurement and mapping of hemoglobin concentrations was demonstrated using visible light Optical Coherence Tomography (OCT). Yet, most high-resolution visible light OCT systems adopt free-space, or bulk, optical setups, which could limit clinical applications. Here, the construction of a multi-functional fiber-optic OCT system for human retinal imaging with <2.5 micron axial resolution is described. A detailed noise characterization of two supercontinuum light sources with differing pulse repetition rates is presented. The higher repetition rate, lower noise, source is found to enable a sensitivity of 87 dB with 0.1 mW incident power at the cornea and a 98 microsecond exposure time. Using a broadband, asymmetric, fused single-mode fiber coupler designed for visible wavelengths, the sample arm is integrated into an ophthalmoscope platform, rendering it portable and suitable for clinical use. In vivo anatomical, Doppler, and spectroscopic imaging of the human retina is further demonstrated using a single oversampled B-scan. For spectroscopic fitting of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) content in the retinal vessels, a noise bias-corrected absorbance spectrum is estimated using a sliding short-time Fourier transform of the complex OCT signal and fit using a model of light absorption and scattering. This yielded path length (L) times molar concentration, LCHbO2 and LCHb. Based on these results, we conclude that high-resolution visible light OCT has potential for depth-resolved functional imaging of the eye.
Tenboer, Jason; Basu, Shibom; Zatsepin, Nadia; ...
2014-12-05
We report that serial femtosecond crystallography using ultrashort pulses from X-ray Free Electron Lasers (XFELs) offers the possibility to study light-triggered dynamics of biomolecules. Using microcrystals of the blue light photoreceptor, photoactive yellow protein, as a model system, we present high resolution, time-resolved difference electron density maps of excellent quality with strong features, which allow the determination of structures of reaction intermediates to 1.6 Å resolution. These results open the way to the study of reversible and non-reversible biological reactions on time scales as short as femtoseconds under conditions which maximize the extent of reaction initiation throughout the crystal.
Webb, Donna J.; Brown, Claire M.
2012-01-01
Epi-fluorescence microscopy is available in most life sciences research laboratories, and when optimized can be a central laboratory tool. In this chapter, the epi-fluorescence light path is introduced and the various components are discussed in detail. Recommendations are made for incident lamp light sources, excitation and emission filters, dichroic mirrors, objective lenses, and charge-coupled device (CCD) cameras in order to obtain the most sensitive epi-fluorescence microscope. The even illumination of metal-halide lamps combined with new “hard” coated filters and mirrors, a high resolution monochrome CCD camera, and a high NA objective lens are all recommended for high resolution and high sensitivity fluorescence imaging. Recommendations are also made for multicolor imaging with the use of monochrome cameras, motorized filter turrets, individual filter cubes, and corresponding dyes that are the best choice for sensitive, high resolution multicolor imaging. Images should be collected using Nyquist sampling and should be corrected for background intensity contributions and nonuniform illumination across the field of view. Photostable fluorescent probes and proteins that absorb a lot of light (i.e., high extinction co-efficients) and generate a lot of fluorescence signal (i.e., high quantum yields) are optimal. A neuronal immune-fluorescence labeling protocol is also presented. Finally, in order to maximize the utility of sensitive wide-field microscopes and generate the highest resolution images with high signal-to-noise, advice for combining wide-field epi-fluorescence imaging with restorative image deconvolution is presented. PMID:23026996
Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S
2016-11-01
In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramér-Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms. Copyright © 2016 Elsevier B.V. All rights reserved.
Efficient conceptual design for LED-based pixel light vehicle headlamps
NASA Astrophysics Data System (ADS)
Held, Marcel Philipp; Lachmayer, Roland
2017-12-01
High-resolution vehicle headlamps represent a future-oriented technology that can be used to increase traffic safety and driving comfort. As a further development to the current Matrix Beam headlamps, LED-based pixel light systems enable ideal lighting functions (e.g. projection of navigation information onto the road) to be activated in any given driving scenario. Moreover, compared to other light-modulating elements such as DMDs and LCDs, instantaneous LED on-off toggling provides a decisive advantage in efficiency. To generate highly individualized light distributions for automotive applications, a number of approaches using an LED array may be pursued. One approach is to vary the LED density in the array so as to output the desired light distribution. Another notable approach makes use of an equidistant arrangement of the individual LEDs together with distortion optics to formulate the desired light distribution. The optical system adjusts the light distribution in a manner that improves resolution and increases luminous intensity of the desired area. An efficient setup for pixel generation calls for one lens per LED. Taking into consideration the limited space requirements of the system, this implies that the luminous flux, efficiency and resolution image parameters are primarily controlled by the lens dimensions. In this paper a concept for an equidistant LED array arrangement utilizing distortion optics is presented. The paper is divided into two parts. The first part discusses the influence of lens geometry on the system efficiency whereas the second part investigates the correlation between resolution and luminous flux based on the lens dimensions.
Low cost light-sheet microscopy for whole brain imaging
NASA Astrophysics Data System (ADS)
Kumar, Manish; Nasenbeny, Jordan; Kozorovitskiy, Yevgenia
2018-02-01
Light-sheet microscopy has evolved as an indispensable tool in imaging biological samples. It can image 3D samples at fast speed, with high-resolution optical sectioning, and with reduced photobleaching effects. These properties make light-sheet microscopy ideal for imaging fluorophores in a variety of biological samples and organisms, e.g. zebrafish, drosophila, cleared mouse brains, etc. While most commercial turnkey light-sheet systems are expensive, the existing lower cost implementations, e.g. OpenSPIM, are focused on achieving high-resolution imaging of small samples or organisms like zebrafish. In this work, we substantially reduce the cost of light-sheet microscope system while targeting to image much larger samples, i.e. cleared mouse brains, at single-cell resolution. The expensive components of a lightsheet system - excitation laser, water-immersion objectives, and translation stage - are replaced with an incoherent laser diode, dry objectives, and a custom-built Arduino-controlled translation stage. A low-cost CUBIC protocol is used to clear fixed mouse brain samples. The open-source platforms of μManager and Fiji support image acquisition, processing, and visualization. Our system can easily be extended to multi-color light-sheet microscopy.
High-resolution three-dimensional imaging with compress sensing
NASA Astrophysics Data System (ADS)
Wang, Jingyi; Ke, Jun
2016-10-01
LIDAR three-dimensional imaging technology have been used in many fields, such as military detection. However, LIDAR require extremely fast data acquisition speed. This makes the manufacture of detector array for LIDAR system is very difficult. To solve this problem, we consider using compress sensing which can greatly decrease the data acquisition and relax the requirement of a detection device. To use the compressive sensing idea, a spatial light modulator will be used to modulate the pulsed light source. Then a photodetector is used to receive the reflected light. A convex optimization problem is solved to reconstruct the 2D depth map of the object. To improve the resolution in transversal direction, we use multiframe image restoration technology. For each 2D piecewise-planar scene, we move the SLM half-pixel each time. Then the position where the modulated light illuminates will changed accordingly. We repeat moving the SLM to four different directions. Then we can get four low-resolution depth maps with different details of the same plane scene. If we use all of the measurements obtained by the subpixel movements, we can reconstruct a high-resolution depth map of the sense. A linear minimum-mean-square error algorithm is used for the reconstruction. By combining compress sensing and multiframe image restoration technology, we reduce the burden on data analyze and improve the efficiency of detection. More importantly, we obtain high-resolution depth maps of a 3D scene.
NASA Astrophysics Data System (ADS)
Srivastava, Vishal; Nandy, Sreyankar; Singh Mehta, Dalip
2013-04-01
Topography and tomography of fish cornea is reconstructed using high resolution white light interference microscopy. White light interferograms at different depths were recorded by moving the object axially. For each depth position, five phase shifted interferograms were recorded and analyzed. From the reconstructed phase maps, the corneal topography and hence the refractive index was determined and from amplitude images the cross-sectional image of fish cornea was reconstructed. In the present method, we utilize a nearly common-path interference microscope and wide field illumination and hence do not require any mechanical B-scan. Therefore, the phase stability of the recorded data is improved.
Retkute, Renata; Townsend, Alexandra J; Murchie, Erik H; Jensen, Oliver E; Preston, Simon P
2018-05-25
Diurnal changes in solar position and intensity combined with the structural complexity of plant architecture result in highly variable and dynamic light patterns within the plant canopy. This affects productivity through the complex ways that photosynthesis responds to changes in light intensity. Current methods to characterize light dynamics, such as ray-tracing, are able to produce data with excellent spatio-temporal resolution but are computationally intensive and the resulting data are complex and high-dimensional. This necessitates development of more economical models for summarizing the data and for simulating realistic light patterns over the course of a day. High-resolution reconstructions of field-grown plants are assembled in various configurations to form canopies, and a forward ray-tracing algorithm is applied to the canopies to compute light dynamics at high (1 min) temporal resolution. From the ray-tracer output, the sunlit or shaded state for each patch on the plants is determined, and these data are used to develop a novel stochastic model for the sunlit-shaded patterns. The model is designed to be straightforward to fit to data using maximum likelihood estimation, and fast to simulate from. For a wide range of contrasting 3-D canopies, the stochastic model is able to summarize, and replicate in simulations, key features of the light dynamics. When light patterns simulated from the stochastic model are used as input to a model of photoinhibition, the predicted reduction in carbon gain is similar to that from calculations based on the (extremely costly) ray-tracer data. The model provides a way to summarize highly complex data in a small number of parameters, and a cost-effective way to simulate realistic light patterns. Simulations from the model will be particularly useful for feeding into larger-scale photosynthesis models for calculating how light dynamics affects the photosynthetic productivity of canopies.
Daniel K. Inouye Solar Telescope: High-resolution observing of the dynamic Sun
NASA Astrophysics Data System (ADS)
Tritschler, A.; Rimmele, T. R.; Berukoff, S.; Casini, R.; Kuhn, J. R.; Lin, H.; Rast, M. P.; McMullin, J. P.; Schmidt, W.; Wöger, F.; DKIST Team
2016-11-01
The 4-m aperture Daniel K. Inouye Solar Telescope (DKIST) formerly known as the Advanced Technology Solar Telescope (ATST) is currently under construction on Haleakalā (Maui, Hawai'i) projected to start operations in 2019. At the time of completion, DKIST will be the largest ground-based solar telescope providing unprecedented resolution and photon collecting power. The DKIST will be equipped with a set of first-light facility-class instruments offering unique imaging, spectroscopic and spectropolarimetric observing opportunities covering the visible to infrared wavelength range. This first-light instrumentation suite will include: a Visible Broadband Imager (VBI) for high-spatial and -temporal resolution imaging of the solar atmosphere; a Visible Spectro-Polarimeter (ViSP) for sensitive and accurate multi-line spectropolarimetry; a Fabry-Pérot based Visible Tunable Filter (VTF) for high-spatial resolution spectropolarimetry; a fiber-fed Diffraction-Limited Near Infra-Red Spectro-Polarimeter (DL-NIRSP) for two-dimensional high-spatial resolution spectropolarimetry (simultaneous spatial and spectral information); and a Cryogenic Near Infra-Red Spectro-Polarimeter (Cryo-NIRSP) for coronal magnetic field measurements and on-disk observations of, e.g., the CO lines at 4.7 μm. We will provide an overview of the DKIST's unique capabilities with strong focus on the first-light instrumentation suite, highlight some of the additional properties supporting observations of transient and dynamic solar phenomena, and touch on some operational strategies and the DKIST critical science plan.
Submicron-resolution photoacoustic microscopy of endogenous light-absorbing biomolecules
NASA Astrophysics Data System (ADS)
Zhang, Chi
Photoacoustic imaging in biomedicine has the unique advantage of probing endogenous light absorbers at various length scales with a 100% relative sensitivity. Among the several modalities of photoacoustic imaging, optical-resolution photoacoustic microscopy (OR-PAM) can achieve high spatial resolution, on the order of optical wavelength, at <1 mm depth in biological tissue (the optical ballistic regime). OR-PAM has been applied successfully to structural and functional imaging of blood vasculature and red blood cells in vivo. Any molecules which absorb sufficient light at certain wavelengths can potentially be imaged by PAM. Compared with pure optical imaging, which typically targets fluorescent markers, label-free PAM avoids the major concerns that the fluorescent labeling probes may disturb the function of biomolecules and may have an insufficient density. This dissertation aims to advance label-free OR-PAM to the subcellular scale. The first part of this dissertation describes the technological advancement of PAM yielding high spatial resolution in 3D. The lateral resolution was improved by using optical objectives with high numerical apertures for optical focusing. The axial resolution was improved by using broadband ultrasonic transducers for ultrasound detection. We achieved 220 nm lateral resolution in transmission mode, 0.43 microm lateral resolution in reflection mode, 7.6 microm axial resolution in normal tissue, and 5.8 microm axial resolution with silicone oil immersion/injection. The achieved lateral resolution and axial resolution were the finest reported at the time. With high-resolution in 3D, PAM was demonstrated to resolve cellular and subcellular structures in vivo, such as red blood cells and melanosomes in melanoma cells. Compared with previous PAM systems, our high-resolution PAM could resolve capillaries in mouse ears more clearly. As an example application, we demonstrated intracellular temperature imaging, assisted by fluorescence signal detection, with sub-degree temperature resolution and sub-micron lateral resolution. The second part of this dissertation describes the exploration of endogenous light-absorbing biomolecules for PAM. We demonstrated cytochromes and myoglobin as new absorption contrasts for PAM and identified the corresponding optimal wavelengths for imaging. Fixed fibroblasts on slides and mouse ear sections were imaged by PAM at 422 nm and 250 nm wavelengths to reveal cytoplasms and nuclei, respectively, as confirmed by standard hematoxylin and eosin (H&E) histology. By imaging a blood-perfused mouse heart at 532 nm down to 150 microm in depth, we derived the myocardial sheet thickness and the cleavage height from an undehydrated heart for the first time. The findings promote PAM at new wavelengths and open up new possibilities for characterizing biological tissue. Of particular interest, dual-wavelength PAM around 250 nm and 420 nm wavelengths is analogous to H&E histology. The last part of this dissertation describes the development of sectioning photoacoustic microscopy (SPAM), based on the advancement in spatial resolution and new contrasts for PAM, with applications in brain histology. Label-free SPAM, assisted by a microtome, acquires serial distortion-free images of a specimen on the surface. By exciting cell nuclei at 266 nm wavelength with high resolution, SPAM could pinpoint cell nuclei sensitively and specifically in the mouse brain section, as confirmed by H&E histology. SPAM was demonstrated to generate high-resolution 3D images, highlighting cell nuclei, of formalin-fixed paraffin-embedded mouse brains without tissue staining or clearing. SPAM can potentially serve as a high-throughput and minimal-artifact substitute for histology, probe many other biomolecules and cells, and become a universal tool for animal or human whole-organ microscopy, with diverse applications in life sciences.
Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light
Wang, Ying Min; Judkewitz, Benjamin; DiMarzio, Charles A.; Yang, Changhuei
2012-01-01
Fluorescence imaging is one of the most important research tools in biomedical sciences. However, scattering of light severely impedes imaging of thick biological samples beyond the ballistic regime. Here we directly show focusing and high-resolution fluorescence imaging deep inside biological tissues by digitally time-reversing ultrasound-tagged light with high optical gain (~5×105). We confirm the presence of a time-reversed optical focus along with a diffuse background—a corollary of partial phase conjugation—and develop an approach for dynamic background cancellation. To illustrate the potential of our method, we image complex fluorescent objects and tumour microtissues at an unprecedented depth of 2.5 mm in biological tissues at a lateral resolution of 36 μm×52 μm and an axial resolution of 657 μm. Our results set the stage for a range of deep-tissue imaging applications in biomedical research and medical diagnostics. PMID:22735456
Nyquist-WDM filter shaping with a high-resolution colorless photonic spectral processor.
Sinefeld, David; Ben-Ezra, Shalva; Marom, Dan M
2013-09-01
We employ a spatial-light-modulator-based colorless photonic spectral processor with a spectral addressability of 100 MHz along 100 GHz bandwidth, for multichannel, high-resolution reshaping of Gaussian channel response to square-like shape, compatible with Nyquist WDM requirements.
The Large Deployable Reflector (LDR) report of the Science Coordination Group
NASA Technical Reports Server (NTRS)
1986-01-01
The Large Deployable Reflector (LDR) is a telescope designed to carry out high-angular resolution, high-sensitivity observations at far-infrared and submillimeter wavelengths. The scientific rationale for the LDR is discussed in light of the recent Infrared Astronomical Satellite (IRAS) and Kuiper Airborne Observatory (KAO) results and the several new ground-based observatories planned for the late 1980s. The importance of high sensitivity and high angular resolution observations from space in the submillimeter region is stressed. The scientific and technical problems of using the LDR in a light bucket mode at approx. less than 5 microns and in designing the LDR as an unfilled aperture with subarcsecond resolution are also discussed. The need for an aperture as large as 20 m is established, along with the requirements of beam-shape stability, spatial chopping, thermal control, and surface figure stability. The instrument complement required to cover the wavelength-spectral resolution region of interest to the LDR is defined.
Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T
2018-02-08
Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text
Texture-adaptive hyperspectral video acquisition system with a spatial light modulator
NASA Astrophysics Data System (ADS)
Fang, Xiaojing; Feng, Jiao; Wang, Yongjin
2014-10-01
We present a new hybrid camera system based on spatial light modulator (SLM) to capture texture-adaptive high-resolution hyperspectral video. The hybrid camera system records a hyperspectral video with low spatial resolution using a gray camera and a high-spatial resolution video using a RGB camera. The hyperspectral video is subsampled by the SLM. The subsampled points can be adaptively selected according to the texture characteristic of the scene by combining with digital imaging analysis and computational processing. In this paper, we propose an adaptive sampling method utilizing texture segmentation and wavelet transform (WT). We also demonstrate the effectiveness of the sampled pattern on the SLM with the proposed method.
Enhanced Beetle Luciferase for High-Resolution Bioluminescence Imaging
Nakajima, Yoshihiro; Yamazaki, Tomomi; Nishii, Shigeaki; Noguchi, Takako; Hoshino, Hideto; Niwa, Kazuki; Viviani, Vadim R.; Ohmiya, Yoshihiro
2010-01-01
We developed an enhanced green-emitting luciferase (ELuc) to be used as a bioluminescence imaging (BLI) probe. ELuc exhibits a light signal in mammalian cells that is over 10-fold stronger than that of the firefly luciferase (FLuc), which is the most widely used luciferase reporter gene. We showed that ELuc produces a strong light signal in primary cells and tissues and that it enables the visualization of gene expression with high temporal resolution at the single-cell level. Moreover, we successfully imaged the nucleocytoplasmic shuttling of importin α by fusing ELuc at the intracellular level. These results demonstrate that the use of ELuc allows a BLI spatiotemporal resolution far greater than that provided by FLuc. PMID:20368807
Wang, Zongjie; Abdulla, Raafa; Parker, Benjamin; Samanipour, Roya; Ghosh, Sanjoy; Kim, Keekyoung
2015-12-22
Bioprinting is a rapidly developing technique for biofabrication. Because of its high resolution and the ability to print living cells, bioprinting has been widely used in artificial tissue and organ generation as well as microscale living cell deposition. In this paper, we present a low-cost stereolithography-based bioprinting system that uses visible light crosslinkable bioinks. This low-cost stereolithography system was built around a commercial projector with a simple water filter to prevent harmful infrared radiation from the projector. The visible light crosslinking was achieved by using a mixture of polyethylene glycol diacrylate (PEGDA) and gelatin methacrylate (GelMA) hydrogel with eosin Y based photoinitiator. Three different concentrations of hydrogel mixtures (10% PEG, 5% PEG + 5% GelMA, and 2.5% PEG + 7.5% GelMA, all w/v) were studied with the presented systems. The mechanical properties and microstructure of the developed bioink were measured and discussed in detail. Several cell-free hydrogel patterns were generated to demonstrate the resolution of the solution. Experimental results with NIH 3T3 fibroblast cells show that this system can produce a highly vertical 3D structure with 50 μm resolution and 85% cell viability for at least five days. The developed system provides a low-cost visible light stereolithography solution and has the potential to be widely used in tissue engineering and bioengineering for microscale cell patterning.
Dual-axis confocal microscope for high-resolution in vivo imaging
Wang, Thomas D.; Mandella, Michael J.; Contag, Christopher H.; Kino, Gordon S.
2007-01-01
We describe a novel confocal microscope that uses separate low-numerical-aperture objectives with the illumination and collection axes crossed at angle θ from the midline. This architecture collects images in scattering media with high transverse and axial resolution, long working distance, large field of view, and reduced noise from scattered light. We measured transverse and axial (FWHM) resolution of 1.3 and 2.1 μm, respectively, in free space, and confirm subcellular resolution in excised esophageal mucosa. The optics may be scaled to millimeter dimensions and fiber coupled for collection of high-resolution images in vivo. PMID:12659264
High sensitivity optical molecular imaging system
NASA Astrophysics Data System (ADS)
An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie
2018-02-01
Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.
NASA Astrophysics Data System (ADS)
Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji
2017-03-01
With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.
NASA Astrophysics Data System (ADS)
Silvestri, Ludovico; Rudinskiy, Nikita; Paciscopi, Marco; Müllenbroich, Marie Caroline; Costantini, Irene; Sacconi, Leonardo; Frasconi, Paolo; Hyman, Bradley T.; Pavone, Francesco S.
2016-03-01
Mapping neuronal activity patterns across the whole brain with cellular resolution is a challenging task for state-of-the-art imaging methods. Indeed, despite a number of technological efforts, quantitative cellular-resolution activation maps of the whole brain have not yet been obtained. Many techniques are limited by coarse resolution or by a narrow field of view. High-throughput imaging methods, such as light sheet microscopy, can be used to image large specimens with high resolution and in reasonable times. However, the bottleneck is then moved from image acquisition to image analysis, since many TeraBytes of data have to be processed to extract meaningful information. Here, we present a full experimental pipeline to quantify neuronal activity in the entire mouse brain with cellular resolution, based on a combination of genetics, optics and computer science. We used a transgenic mouse strain (Arc-dVenus mouse) in which neurons which have been active in the last hours before brain fixation are fluorescently labelled. Samples were cleared with CLARITY and imaged with a custom-made confocal light sheet microscope. To perform an automatic localization of fluorescent cells on the large images produced, we used a novel computational approach called semantic deconvolution. The combined approach presented here allows quantifying the amount of Arc-expressing neurons throughout the whole mouse brain. When applied to cohorts of mice subject to different stimuli and/or environmental conditions, this method helps finding correlations in activity between different neuronal populations, opening the possibility to infer a sort of brain-wide 'functional connectivity' with cellular resolution.
NASA Astrophysics Data System (ADS)
Kettle, Helen; Merchant, Chris J.
2008-08-01
Modeling the vertical penetration of photosynthetically active radiation (PAR) through the ocean, and its utilization by phytoplankton, is fundamental to simulating marine primary production. The variation of attenuation and absorption of light with wavelength suggests that photosynthesis should be modeled at high spectral resolution, but this is computationally expensive. To model primary production in global 3d models, a balance between computer time and accuracy is necessary. We investigate the effects of varying the spectral resolution of the underwater light field and the photosynthetic efficiency of phytoplankton ( α∗), on primary production using a 1d coupled ecosystem ocean turbulence model. The model is applied at three sites in the Atlantic Ocean (CIS (∼60°N), PAP (∼50°N) and ESTOC (∼30°N)) to include the effect of different meteorological forcing and parameter sets. We also investigate three different methods for modeling α∗ - as a fixed constant, varying with both wavelength and chlorophyll concentration [Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters. Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033-31044], and using a non-spectral parameterization [Anderson, T.R., 1993. A spectrally averaged model of light penetration and photosynthesis. Limnol. Oceanogr. 38, 1403-1419]. After selecting the appropriate ecosystem parameters for each of the three sites we vary the spectral resolution of light and α∗ from 1 to 61 wavebands and study the results in conjunction with the three different α∗ estimation methods. The results show modeled estimates of ocean primary productivity are highly sensitive to the degree of spectral resolution and α∗. For accurate simulations of primary production and chlorophyll distribution we recommend a spectral resolution of at least six wavebands if α∗ is a function of wavelength and chlorophyll, and three wavebands if α∗ is a fixed value.
Characterization of GAGG:Ce scintillators with various Al-to-Ga ratio
NASA Astrophysics Data System (ADS)
Sibczynski, Pawel; Iwanowska-Hanke, Joanna; Moszyński, Marek; Swiderski, Lukasz; Szawłowski, Marek; Grodzicka, Martyna; Szczęśniak, Tomasz; Kamada, Kei; Yoshikawa, Akira
2015-02-01
We have studied the scintillation properties of cerium doped gadolinium aluminum gallium garnet (GAGG:Ce) scintillators with various Al-to-Ga ratio. Having many advantages, like high density (6.63 g/cm3), high light output, fair energy resolution and quite fast decay time, the scintillators are an excellent solution for gamma rays detection. In this paper performance of the GAGG:1%Ce crystals with different Al-to-Ga ratios is presented. The study covered measurements of emission spectra, light output, energy resolution and non-proportionality for each crystal. It was observed that the light output of the recently obtainable crystals varies from 40,000 to 55,000 ph/MeV. Maximum emission wavelength of about 520 nm promotes silicon based photodetectors for use with these scintillators. The best energy resolution of 3.7% at 662 keV, measured with Hamamatsu S8664-1010 APD, was obtained for the sample with the minimum gallium content. This result is close to these obtained with the group of scintillators retaining very good energy resolution, like LaCl3 and CeBr3.
NASA Technical Reports Server (NTRS)
Kohlman, Lee W.; Ruggeri, Charles R.; Roberts, Gary D.; Handschuh, Robert Frederick
2013-01-01
Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests
NASA Technical Reports Server (NTRS)
Kohlman, Lee; Ruggeri, Charles; Roberts, Gary; Handshuh, Robert
2013-01-01
Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests.
Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.
2017-04-01
A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.
Telepathology. Long-distance diagnosis.
Weinstein, R S; Bloom, K J; Rozek, L S
1989-04-01
Telepathology is defined as the practice of pathology at a distance, by visualizing an image on a video monitor rather than viewing a specimen directly through a microscope. Components of a telepathology system include the following: (1) a workstation equipped with a high-resolution video camera attached to a remote-controlled light microscope; (2) a pathologist workstation incorporating controls for manipulating the robotic microscope as well as a high-resolution video monitor; and (3) a telecommunications link. Progress has been made in designing and constructing telepathology workstations and fully motorized, computer-controlled light microscopes suitable for telepathology. In addition, components such as video signal digital encoders and decoders that produce remarkably stable, high-color fidelity, and high-resolution images have been incorporated into the workstations. Resolution requirements for the video microscopy component of telepathology have been formally examined in receiver operator characteristic (ROC) curve analyses. Test-of-concept demonstrations have been completed with the use of geostationary satellites as the broadband communication linkages for 750-line resolution video. Potential benefits of telepathology include providing a means of conveniently delivering pathology services in real-time to remote sites or underserviced areas, time-sharing of pathologists' services by multiple institutions, and increasing accessibility to specialty pathologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.
Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less
NASA Astrophysics Data System (ADS)
Kajiyama, Yoshitaka; Joseph, Kevin; Kajiyama, Koichi; Kudo, Shuji; Aziz, Hany
2014-02-01
A shadow mask technique capable of realizing high resolution (>330 pixel-per-inch) and ˜100% aperture ratio Organic Light-Emitting Diode (OLED) full color displays is demonstrated. The technique utilizes polyimide contact shadow masks, patterned by laser ablation. Red, green, and blue OLEDs with very small feature sizes (<25 μm) are fabricated side by side on one substrate. OLEDs fabricated via this technique have the same performance as those made by established technology. This technique has a strong potential to achieve high resolution OLED displays via standard vacuum deposition processes even on flexible substrates.
Yang, Hui; Trouillon, Raphaël; Huszka, Gergely; Gijs, Martin A M
2016-08-10
Dielectric microspheres with appropriate refractive index can image objects with super-resolution, that is, with a precision well beyond the classical diffraction limit. A microsphere is also known to generate upon illumination a photonic nanojet, which is a scattered beam of light with a high-intensity main lobe and very narrow waist. Here, we report a systematic study of the imaging of water-immersed nanostructures by barium titanate glass microspheres of different size. A numerical study of the light propagation through a microsphere points out the light focusing capability of microspheres of different size and the waist of their photonic nanojet. The former correlates to the magnification factor of the virtual images obtained from linear test nanostructures, the biggest magnification being obtained with microspheres of ∼6-7 μm in size. Analyzing the light intensity distribution of microscopy images allows determining analytically the point spread function of the optical system and thereby quantifies its resolution. We find that the super-resolution imaging of a microsphere is dependent on the waist of its photonic nanojet, the best resolution being obtained with a 6 μm Ø microsphere, which generates the nanojet with the minimum waist. This comparison allows elucidating the super-resolution imaging mechanism.
Photolithographic patterning of vacuum-deposited organic light emitting devices
NASA Astrophysics Data System (ADS)
Tian, P. F.; Burrows, P. E.; Forrest, S. R.
1997-12-01
We demonstrate a photolithographic technique to fabricate vacuum-deposited organic light emitting devices. Photoresist liftoff combined with vertical deposition of the emissive organic materials and the metal cathode, followed by oblique deposition of a metal cap, avoids the use of high processing temperatures and the exposure of the organic materials to chemical degradation. The unpackaged devices show no sign of deterioration in room ambient when compared with conventional devices fabricated using low-resolution, shadow mask patterning. Furthermore, the devices are resistant to rapid degradation when operated in air for extended periods. This work illustrates a potential foundation for the volume production of very high-resolution, full color, flat panel displays based on small molecular weight organic light emitting devices.
Investigation to improve the resolution and range of a light imaging system for very thick tissues
NASA Astrophysics Data System (ADS)
Wist, Abund O.; Moon, Peter; Herr, Steven L.; Fatouros, Panos P.
1995-05-01
A high resolution light imaging system has been developed utilizing an HeNe (628 nm, 32 mW) and a receiver with post collimation mounted on an x, y table to scan the object. The image can be either recorded on a film or stored in a computer for display on a terminal. Tests show that the system in the regular mode is capable of detecting the spine and soft tissues in anesthetized mice, and of transilluminating fully an adult skull bone with a resolution for details better than one third mm. In teeth, all regular carious lesions, including incipient lesions larger than one third of a mm, can be seen in front or in the back of the tooth, none of which could be detected by dental x-ray systems. Applying a new high resolution mode, the resolution can be increased in teeth to less than 0.1 mm. Some difficulty still exists in detecting small lesions on occlusal or approximal surfaces.
Zhan, Qiuqiang; Liu, Haichun; Wang, Baoju; Wu, Qiusheng; Pu, Rui; Zhou, Chao; Huang, Bingru; Peng, Xingyun; Ågren, Hans; He, Sailing
2017-10-20
Stimulated emission depletion microscopy provides a powerful sub-diffraction imaging modality for life science studies. Conventionally, stimulated emission depletion requires a relatively high light intensity to obtain an adequate depletion efficiency through only light-matter interaction. Here we show efficient emission depletion for a class of lanthanide-doped upconversion nanoparticles with the assistance of interionic cross relaxation, which significantly lowers the laser intensity requirements of optical depletion. We demonstrate two-color super-resolution imaging using upconversion nanoparticles (resolution ~ 66 nm) with a single pair of excitation/depletion beams. In addition, we show super-resolution imaging of immunostained cytoskeleton structures of fixed cells (resolution ~ 82 nm) using upconversion nanoparticles. These achievements provide a new perspective for the development of photoswitchable luminescent probes and will broaden the applications of lanthanide-doped nanoparticles for sub-diffraction microscopic imaging.
Orbiting solar observatory 8 high resolution ultraviolet spectrometer experiment
NASA Technical Reports Server (NTRS)
1980-01-01
Oscillations, physical properties of the solar atmosphere, motions in the quiet solar atmosphere, coronal holes, motions in solar active regions, solar flares, the structure of plage regions, an atlas, and aeronomy are summarized. Photometric sensitivity, scattered light, ghosts, focus and spectral resolution, wavelength drive, photometric sensitivity, and scattered light, are also summarized. Experiments are described according to spacecraft made and experiment type. Some of the most useful data reduction programs are described.
Ultra-high resolution coded wavefront sensor.
Wang, Congli; Dun, Xiong; Fu, Qiang; Heidrich, Wolfgang
2017-06-12
Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.
A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope
ERIC Educational Resources Information Center
Wakabayashi, Fumitaka; Hamada, Kiyohito
2006-01-01
Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…
NASA Astrophysics Data System (ADS)
Yang, Le; Sang, Xinzhu; Yu, Xunbo; Liu, Boyang; Liu, Li; Yang, Shenwu; Yan, Binbin; Du, Jingyan; Gao, Chao
2018-05-01
A 54-inch horizontal-parallax only light-field display based on the light-emitting diode (LED) panel and the micro-pinhole unit array (MPUA) is demonstrated. Normally, the perceived 3D effect of the three-dimensional (3D) display with smooth motion parallax and abundant light-field information can be enhanced with increasing the density of viewpoints. However, the density of viewpoints is inversely proportional to the spatial display resolution for the conventional integral imaging. Here, a special MPUA is designed and fabricated, and the displayed 3D scene constructed by the proposed horizontal light-field display is presented. Compared with the conventional integral imaging, both the density of horizontal viewpoints and the spatial display resolution are significantly improved. In the experiment, A 54-inch horizontal light-field display with 42.8° viewing angle based on the LED panel with the resolution of 1280 × 720 and the MPUA is realized, which can provide natural 3D visual effect to observers with high quality.
Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.
Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes
2015-07-22
This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA.
NASA Astrophysics Data System (ADS)
Moothanchery, Mohesh; Sharma, Arunima; Periyasamy, Vijitha; Pramanik, Manojit
2018-02-01
It is always a great challenge for pure optical techniques to maintain good resolution and imaging depth at the same time. Photoacoustic imaging is an emerging technique which can overcome the limitation by pulsed light illumination and acoustic detection. Here, we report a Near Infrared Acoustic-Resolution Photoacoustic Microscopy (NIR-AR-PAM) systm with 30 MHz transducer and 1064 nm illumination which can achieve a lateral resolution of around 88 μm and imaging depth of 9.2 mm. Compared to visible light NIR beam can penetrate deeper in biological tissue due to weaker optical attenuation. In this work, we also demonstrated the in vivo imaging capabilty of NIRARPAM by near infrared detection of SLN with black ink as exogenous photoacoustic contrast agent in a rodent model.
High resolution Fourier interferometer-spectrophotopolarimeter
NASA Technical Reports Server (NTRS)
Fymat, A. L. (Inventor)
1976-01-01
A high-resolution Fourier interferometer-spectrophotopolarimeter is provided using a single linear polarizer-analyzer the transmission axis azimuth of which is positioned successively in the three orientations of 0 deg, 45 deg, and 90 deg, in front of a detector; four flat mirrors, three of which are switchable to either of two positions to direct an incoming beam from an interferometer to the polarizer-analyzer around a sample cell transmitted through a medium in a cell and reflected by medium in the cell; and four fixed focussing lenses, all located in a sample chamber attached at the exit side of the interferometer. This arrangement can provide the distribution of energy and complete polarization state across the spectrum of the reference light entering from the interferometer; the same light after a fixed-angle reflection from the sample cell containing a medium to be analyzed; and the same light after direct transmission through the same sample cell, with the spectral resolution provided by the interferometer.
NASA Astrophysics Data System (ADS)
Lu, Xiang; Heintzmann, Rainer; Leischner, Ulrich
2015-09-01
Light sheet microscopy is a microscopy technique characterized by an illumination from the side, perpendicular to the direction of observation. While this is often used and easy to implement for imaging samples with water-immersion, the application in combination with oil-immersion is less often used and requires a specific optimization. In this paper we present our design of a light-sheet illumination optical system with a ~1μm illumination thickness, a long working distance through the immersion oil, and including a focusing system allowing for moving the focus-spot of the lightsheet laterally through the field of view. This optical design allows for the acquisition of fluorescence images in 3D with isotropic resolution of below 1 micrometer of whole-mount samples with a size of ~1mm diameter. This technique enables high-resolution insights in the 3D structure of biological samples, e.g. for research of insect anatomy or for imaging of biopsies in medical diagnostics.
Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E
2018-02-01
To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.
Intense XUV (Extreme Ultraviolet) Radiation Sources.
1985-07-31
Light Sources for High ................ .29 . Resolution XUV and VUV Spectroscopy; Appendix F:’High Resolution Spectra of Laser Pl -asma Light...34."" ."."".". "," .. .". .’ Laser (1.06juMm) iol 3 Target Intensit vrV Pls htN Ta disk 3 - I O WlCnr 4. K 2.2 ns 80100209 > 1~ C 1010 109 0 40 80 120 160 200 240...acknowledges support from SERC (UK). 1. Carroll, P.K., Kennedy, E.T. and O’Sullivan, G., 1980, App. Opt. 19, 1454. 2. Nagel, D.J., Brown, C.M., Peckerar
Dynamic high-resolution patterning for biomedical, materials, and semiconductor research
NASA Astrophysics Data System (ADS)
Garner, Harold R.; Joshi, Amruta; Mitnala, Sandhya N.; Huebschman, Michael L.; Shandy, Surya; Wallek, Brandi; Wong, Season
2009-02-01
By combining unique light sources, a Texas Instruments DLP system and a microscope, a submicron dynamic patterning system has been created. This system has a resolution of 0.5 microns, and can illuminate with rapidly changing patterns of visible, UV or pulsed laser light. This system has been used to create digital masks for the production of micron scale electronic test circuits and has been used in biological applications. Specifically we have directed light on a sub-organelle scale to cells to control their morphology and motility with applications to tissue engineering, cell biology, drug discovery and neurology.
Arrays of microscopic organic LEDs for high-resolution optogenetics
Steude, Anja; Witts, Emily C.; Miles, Gareth B.; Gather, Malte C.
2016-01-01
Optogenetics is a paradigm-changing new method to study and manipulate the behavior of cells with light. Following major advances of the used genetic constructs over the last decade, the light sources required for optogenetic control are now receiving increased attention. We report a novel optogenetic illumination platform based on high-density arrays of microscopic organic light-emitting diodes (OLEDs). Because of the small dimensions of each array element (6 × 9 μm2) and the use of ultrathin device encapsulation, these arrays enable illumination of cells with unprecedented spatiotemporal resolution. We show that adherent eukaryotic cells readily proliferate on these arrays, and we demonstrate specific light-induced control of the ionic current across the membrane of individual live cells expressing different optogenetic constructs. Our work paves the way for the use of OLEDs for cell-specific optogenetic control in cultured neuronal networks and for acute brain slices, or as implants in vivo. PMID:27386540
NASA Astrophysics Data System (ADS)
Regazzoni, V.; Acerbi, F.; Cozzi, G.; Ferri, A.; Fiorini, C.; Paternoster, G.; Piemonte, C.; Rucatti, D.; Zappalà, G.; Zorzi, N.; Gola, A.
2017-07-01
Fondazione Bruno Kessler (FBK) (Trento, Italy) has recently introduced High Density (HD) and Ultra High-Density (UHD) SiPMs, featuring very small micro-cell pitch. The high cell density is a very important factor to improve the linearity of the SiPM in high-dynamic-range applications, such as the scintillation light readout in high-energy gamma-ray spectroscopy and in prompt gamma imaging for proton therapy. The energy resolution at high energies is a trade-off between the excess noise factor caused by the non-linearity of the SiPM and the photon detection efficiency of the detector. To study these effects, we developed a new setup that simulates the LYSO light emission in response to gamma photons up to 30 MeV, using a pulsed light source. We measured the non-linearity and energy resolution vs. energy of the FBK RGB-HD e RGB-UHD SiPM technologies. We considered five different cell sizes, ranging from 10 μm up to 25 μm. With the UHD technology we were able to observe a remarkable reduction of the SiPM non-linearity, less than 5% at 5 MeV with 10 μm cells, which should be compared to a non-linearity of 50% with 25 μm-cell HD-SiPMs. With the same setup, we also measured the different components of the energy resolution (intrinsic, statistical, detector and electronic noise) vs. cell size, over-voltage and energy and we separated the different sources of excess noise factor.
NASA Astrophysics Data System (ADS)
Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Beck, Patrick R.; Swanberg, Erik L.; Hunter, Steven L.
2016-09-01
Breakthrough energy resolution, R(662keV) <4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce), by optimizing fabrication conditions. Here we describe the dependence of scintillation light yield and energy resolution on several variables: (1) Stoichiometry, in particular Gd/Y and Ga/Al ratios which modify the bandgap energy, (2) Processing methods, including vacuum vs. oxygen sintering, and (3) Trace co-dopants that influence the formation of Ce4+ and modify the intra-bandgap trap distribution. To learn about how chemical composition influences the scintillation properties of transparent ceramic garnet scintillators, we have measured: scintillation decay component amplitudes; intensity and duration of afterglow; thermoluminescence glow curve peak positions and amplitudes; integrated light yield; light yield non-proportionality, as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI); and energy resolution for gamma spectroscopy. Optimized GYGAG(Ce) provides R(662 keV) =3.0%, for 0.05 cm3 size ceramics with Silicon photodiode readout, and R(662 keV) =4.6%, at 2 in3 size with PMT readout.
Pinhole X-ray/coronagraph optical systems concept definition study
NASA Technical Reports Server (NTRS)
Zehnpfenning, T. F.; Rappaport, S.; Wattson, R. B.
1980-01-01
The Pinhole X-ray/Coronagraph Concept utilizes the long baselines possible in Earth orbit with the space transportation system (shuttle) to produce observations of solar X-ray emission features at extremely high spatial resolution (up to 0.1 arc second) and high energy (up to 100 keV), and also white light and UV observations of the inner and outer corona at high spatial and/or spectral resolution. An examination of various aspects of a preliminary version of the X-ray Pinhole/Coronagraph Concept is presented. For this preliminary version, the instrument package will be carried in the shuttle bay on a mounting platform, and will be connected to the occulter with a deployable boom such as an Astromast. Generally, the spatial resolution, stray light levels, and minimum limb observing angles improve as the boom length increases. However, the associated engineering problems also become more serious with greater boom lengths.
NASA Astrophysics Data System (ADS)
Gustavsson, Anna-Karin; Petrov, Petar N.; Lee, Maurice Y.; Shechtman, Yoav; Moerner, W. E.
2018-02-01
To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D superresolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.
Role of light satellites in the high-resolution Earth observation domain
NASA Astrophysics Data System (ADS)
Fishman, Moshe
1999-12-01
Current 'classic' applications using and exploring space based earth imagery are exclusive, narrow niche tailored, expensive and hardly accessible. On the other side new, inexpensive and widely used 'consumable' applications will be only developed concurrently to the availability of appropriate imagery allowing that process. A part of these applications can be imagined today, like WWW based 'virtual tourism' or news media, but the history of technological, cultural and entertainment evolution teaches us that most of future applications are unpredictable -- they emerge together with the platforms enabling their appearance. The only thing, which can be ultimately stated, is that the definitive condition for such applications is the availability of the proper imagery platform providing low cost, high resolution, large area, quick response, simple accessibility and quick dissemination of the raw picture. This platform is a constellation of Earth Observation satellites. Up to 1995 the Space Based High Resolution Earth Observation Domain was dominated by heavy, super-expensive and very inflexible birds. The launch of Israeli OFEQ-3 Satellite by MBT Division of Israel Aircraft Industries (IAI) marked the entrance to new era of light, smart and cheap Low Earth Orbited Imaging satellites. The Earth Resource Observation System (EROS) initiated by West Indian Space, is based on OFEQ class Satellites design and it is capable to gather visual data of Earth Surface both at high resolution and large image capacity. The main attributes, derived from its compact design, low weight and sophisticated logic and which convert the EROS Satellite to valuable and productive system, are discussed. The major advantages of Light Satellites in High Resolution Earth Observation Domain are presented and WIS guidelines featuring the next generation of LEO Imaging Systems are included.
NASA Astrophysics Data System (ADS)
Arifin, A.; Lusiana; Yunus, Muhammad; Dewang, Syamsir
2018-03-01
This research discusses the light intensity sensor based on plastic optical fiber. This light intensity sensor is made of plastic optical fiber consisting of two types, namely which is cladding and without cladding. Plastic optical fiber used multi-mode step-index type made of polymethyl metacrylate (PMMA). The infrared LED emits light into the optical fiber of the plastic and is subsequently received by the phototransistor to be converted to an electric voltage. The sensor configuration is made with three models: straight configuration, U configuration and gamma configuration with cladding and without cladding. The measured light source uses a 30 Watt high power LED with a light intensity of 0 to 10 Klux. The measured light intensity will affect the propagation of light inside the optical fiber sensor. The greater the intensity of the measured light, the greater the output voltage that is read on the computer. The results showed that the best optical fiber sensor characteristics were obtained in U configuration. Sensors with U-configuration without cladding had the best sensitivity and resolution values of 0.0307 volts/Klux and 0.0326 Klux. The advantages of this measuring light intensity based on the plastic optical fiber instrument are simple, easy-to-make operational systems, low cost, high sensitivity and resolution.
Hyperspectral stimulated emission depletion microscopy and methods of use thereof
Timlin, Jerilyn A; Aaron, Jesse S
2014-04-01
A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").
Blue laser diode (LD) and light emitting diode (LED) applications
NASA Astrophysics Data System (ADS)
Bergh, Arpad A.
2004-09-01
The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.
NASA Astrophysics Data System (ADS)
Kurek, A. R.; Stachowski, A.; Banaszek, K.; Pollo, A.
2018-05-01
High-angular-resolution imaging is crucial for many applications in modern astronomy and astrophysics. The fundamental diffraction limit constrains the resolving power of both ground-based and spaceborne telescopes. The recent idea of a quantum telescope based on the optical parametric amplification (OPA) of light aims to bypass this limit for the imaging of extended sources by an order of magnitude or more. We present an updated scheme of an OPA-based device and a more accurate model of the signal amplification by such a device. The semiclassical model that we present predicts that the noise in such a system will form so-called light speckles as a result of light interference in the optical path. Based on this model, we analysed the efficiency of OPA in increasing the angular resolution of the imaging of extended targets and the precise localization of a distant point source. According to our new model, OPA offers a gain in resolved imaging in comparison to classical optics. For a given time-span, we found that OPA can be more efficient in localizing a single distant point source than classical telescopes.
NASA Astrophysics Data System (ADS)
Tada, Ryuji; Irino, Tomohisa; Ikehara, Ken; Karasuda, Akinori; Sugisaki, Saiko; Xuan, Chuang; Sagawa, Takuya; Itaki, Takuya; Kubota, Yoshimi; Lu, Song; Seki, Arisa; Murray, Richard W.; Alvarez-Zarikian, Carlos; Anderson, William T.; Bassetti, Maria-Angela; Brace, Bobbi J.; Clemens, Steven C.; da Costa Gurgel, Marcio H.; Dickens, Gerald R.; Dunlea, Ann G.; Gallagher, Stephen J.; Giosan, Liviu; Henderson, Andrew C. G.; Holbourn, Ann E.; Kinsley, Christopher W.; Lee, Gwang Soo; Lee, Kyung Eun; Lofi, Johanna; Lopes, Christina I. C. D.; Saavedra-Pellitero, Mariem; Peterson, Larry C.; Singh, Raj K.; Toucanne, Samuel; Wan, Shiming; Zheng, Hongbo; Ziegler, Martin
2018-12-01
The Quaternary hemipelagic sediments of the Japan Sea are characterized by centimeter- to decimeter-scale alternation of dark and light clay to silty clay, which are bio-siliceous and/or bio-calcareous to a various degree. Each of the dark and light layers are considered as deposited synchronously throughout the deeper (> 500 m) part of the sea. However, attempts for correlation and age estimation of individual layers are limited to the upper few tens of meters. In addition, the exact timing of the depositional onset of these dark and light layers and its synchronicity throughout the deeper part of the sea have not been explored previously, although the onset timing was roughly estimated as 1.5 Ma based on the result of Ocean Drilling Program legs 127/128. Consequently, it is not certain exactly when their deposition started, whether deposition of dark and light layers was synchronous and whether they are correlatable also in the earlier part of their depositional history. The Quaternary hemipelagic sediments of the Japan Sea were drilled at seven sites during Integrated Ocean Drilling Program Expedition 346 in 2013. Alternation of dark and light layers was recovered at six sites whose water depths are > 900 m, and continuous composite columns were constructed at each site. Here, we report our effort to correlate individual dark layers and estimate their ages based on a newly constructed age model at Site U1424 using the best available paleomagnetic datum and marker tephras. The age model is further tuned to LR04 δ18O curve using gamma ray attenuation density (GRA) since it reflects diatom contents that are higher during interglacial high-stands. The constructed age model for Site U1424 is projected to other sites using correlation of dark layers to form a high-resolution and high-precision paleo-observatory network that allows to reconstruct changes in material fluxes with high spatio-temporal resolutions.
Shao, Yonghong; Qin, Wan; Liu, Honghai; Qu, Junle; Peng, Xiang; Niu, Hanben; Gao, Bruce Z
2012-07-01
We present an ultrafast, large-field multiphoton excitation fluorescence microscope with high lateral and axial resolutions based on a two-dimensional (2-D) acousto-optical deflector (AOD) scanner and spatial light modulator (SLM). When a phase-only SLM is used to shape the near-infrared light from a mode-locked titanium:sapphire laser into a multifocus array including the 0-order beam, a 136 μm × 136 μm field of view is achieved with a 60× objective using a 2-D AOD scanner without any mechanical scan element. The two-photon fluorescence image of a neuronal network that was obtained using this system demonstrates that our microscopy permits observation of dynamic biological events in a large field with high-temporal and -spatial resolution.
SUBARU/HDS STUDY OF HE 1015-2050: SPECTRAL EVIDENCE OF R CORONAE BOREALIS LIGHT DECLINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, Aruna; Aoki, Wako, E-mail: aruna@iiap.res.in
2013-02-01
Hydrogen deficiency and a sudden optical light decline of about 6-8 mag are two principal characteristics of R Coronae Borealis (RCB) stars. The high latitude carbon star HE 1015-2050 was identified as a hydrogen-deficient carbon star from low-resolution spectroscopy. Photometric data of the Catalina Real-Time Transient Survey gathered between 2006 February and 2012 May indicate that the object exhibits no variability. However, a high-resolution (R {approx} 50, 000) optical spectrum of this object obtained with the 8.2 m Subaru telescope using High Dispersion Spectrograph on the 2012 January 13 offers sufficient spectral evidence that the object is a cool HdCmore » star of RCB type undergoing light decline. In contrast to the Na I D broad absorption features seen in the low-resolution spectra on several occasions, the high-resolution spectrum exhibits Na I D{sub 2} and D{sub 1} features in emission. A few emission lines due to Mg I, Sc II, Ti I, Ti II, Fe II, and Ba I are also observed in the spectrum of this object for the first time. Such emission features combined with neutral and singly ionized lines of Ca, Ti, Fe, etc., in absorption are reportedly seen in RCBs spectra in the early stage of decline or during the recovery to maximum. Further, the light decline of RCBs is ascribed to the formation of a cloud of soot that obscures the visible photosphere. The presence of such circumstellar material is evident from the polarimetric observations with an estimated V-band percentage polarization of {approx}1.7% for this object.« less
Narrow-Band Organic Photodiodes for High-Resolution Imaging.
Han, Moon Gyu; Park, Kyung-Bae; Bulliard, Xavier; Lee, Gae Hwang; Yun, Sungyoung; Leem, Dong-Seok; Heo, Chul-Joon; Yagi, Tadao; Sakurai, Rie; Ro, Takkyun; Lim, Seon-Jeong; Sul, Sangchul; Na, Kyoungwon; Ahn, Jungchak; Jin, Yong Wan; Lee, Sangyoon
2016-10-05
There are growing opportunities and demands for image sensors that produce higher-resolution images, even in low-light conditions. Increasing the light input areas through 3D architecture within the same pixel size can be an effective solution to address this issue. Organic photodiodes (OPDs) that possess wavelength selectivity can allow for advancements in this regard. Here, we report on novel push-pull D-π-A dyes specially designed for Gaussian-shaped, narrow-band absorption and the high photoelectric conversion. These p-type organic dyes work both as a color filter and as a source of photocurrents with linear and fast light responses, high sensitivity, and excellent stability, when combined with C60 to form bulk heterojunctions (BHJs). The effectiveness of the OPD composed of the active color filter was demonstrated by obtaining a full-color image using a camera that contained an organic/Si hybrid complementary metal-oxide-semiconductor (CMOS) color image sensor.
Salas, Desirée; Le Gall, Antoine; Fiche, Jean-Bernard; Valeri, Alessandro; Ke, Yonggang; Bron, Patrick; Bellot, Gaetan
2017-01-01
Superresolution light microscopy allows the imaging of labeled supramolecular assemblies at a resolution surpassing the classical diffraction limit. A serious limitation of the superresolution approach is sample heterogeneity and the stochastic character of the labeling procedure. To increase the reproducibility and the resolution of the superresolution results, we apply multivariate statistical analysis methods and 3D reconstruction approaches originally developed for cryogenic electron microscopy of single particles. These methods allow for the reference-free 3D reconstruction of nanomolecular structures from two-dimensional superresolution projection images. Since these 2D projection images all show the structure in high-resolution directions of the optical microscope, the resulting 3D reconstructions have the best possible isotropic resolution in all directions. PMID:28811371
High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokarski, Tomasz, E-mail: tokarski@agh.edu.pl
Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis ofmore » very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.« less
A Pitch Extraction Method with High Frequency Resolution for Singing Evaluation
NASA Astrophysics Data System (ADS)
Takeuchi, Hideyo; Hoguro, Masahiro; Umezaki, Taizo
This paper proposes a pitch estimation method suitable for singing evaluation incorporable in KARAOKE machines. Professional singers and musicians have sharp hearing for music and singing voice. They recognize that singer's voice pitch is “a little off key” or “be in tune”. In the same way, the pitch estimation method that has high frequency resolution is necessary in order to evaluate singing. This paper proposes a pitch estimation method with high frequency resolution utilizing harmonic characteristic of autocorrelation function. The proposed method can estimate a fundamental frequency in the range 50 ∼ 1700[Hz] with resolution less than 3.6 cents in light processing.
Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.
von Hofsten, Olov; Bertilson, Michael; Reinspach, Julia; Holmberg, Anders; Hertz, Hans M; Vogt, Ulrich
2009-09-01
Improving the resolution in x-ray microscopes is of high priority to enable future applications in nanoscience. However, high-resolution zone-plate optics often have low efficiency, which makes implementation in laboratory microscopes difficult. We present a laboratory x-ray microscope based on a compound zone plate. The compound zone plate utilizes multiple diffraction orders to achieve high resolution while maintaining reasonable efficiency. We analyze the illumination conditions necessary for this type of optics in order to suppress stray light and demonstrate microscopic imaging resolving 25 nm features.
Resolution enhancement of partial coherence interferometry by dispersion compensation
NASA Astrophysics Data System (ADS)
Baumgartner, Angela; Hitzenberger, Christoph K.; Drexler, Wolfgang; Fercher, Adolf F.
1997-12-01
In the past ten years partial coherence interferometry and optical coherence tomography have been developed for high precision biometry and tomography of the human eye in vivo. The longitudinal resolution of the optical coherence tomography technique depends on the spectral bandwidth of the light source used and on the dispersion of the media to be measured. In nondispersive media the resolution is approximately equal to the coherence length of the light used, which is inversely proportional to the width of the emission spectrum. Hence, a broad emission spectrum yields a short coherence length and consequently a good resolution. However, if the tissue under investigation is dispersive, the coherence envelope of the signal broadens leading to a decrease in resolution and interference fringe contrast. This effect becomes predominant if measurements through the dispersive media of the eye to the retina are performed with source bandwidths larger than approximately 25 nm. In order to achieve optimum resolution of OCT by applying a light source with a broad emission spectrum, the dispersion of the object to be measured, i.e. in this case of the ocular media, has to be compensated. Within the scope of this work we demonstrate the resolution improvement that is obtained by compensating the dispersive effects of the ocular media and using broadband light sources. Furthermore, we present the first optical coherence tomogram recorded with this technique in the retina of a human eye in vivo with an axial geometrical resolution of approximately 6 micrometers which is a two-fold improvement compared to presently used technology.
High-resolution fiber-optic microendoscopy for in situ cellular imaging.
Pierce, Mark; Yu, Dihua; Richards-Kortum, Rebecca
2011-01-11
Many biological and clinical studies require the longitudinal study and analysis of morphology and function with cellular level resolution. Traditionally, multiple experiments are run in parallel, with individual samples removed from the study at sequential time points for evaluation by light microscopy. Several intravital techniques have been developed, with confocal, multiphoton, and second harmonic microscopy all demonstrating their ability to be used for imaging in situ. With these systems, however, the required infrastructure is complex and expensive, involving scanning laser systems and complex light sources. Here we present a protocol for the design and assembly of a high-resolution microendoscope which can be built in a day using off-the-shelf components for under US$5,000. The platform offers flexibility in terms of image resolution, field-of-view, and operating wavelength, and we describe how these parameters can be easily modified to meet the specific needs of the end user. We and others have explored the use of the high-resolution microendoscope (HRME) in in vitro cell culture, in excised and living animal tissues, and in human tissues in vivo. Users have reported the use of several different fluorescent contrast agents, including proflavine, benzoporphyrin-derivative monoacid ring A (BPD-MA), and fluoroscein, all of which have received full, or investigational approval from the FDA for use in human subjects. High-resolution microendoscopy, in the form described here, may appeal to a wide range of researchers working in the basic and clinical sciences. The technique offers an effective and economical approach which complements traditional benchtop microscopy, by enabling the user to perform high-resolution, longitudinal imaging in situ.
Occulting Light Concentrators in Liquid Scintillator Neutrino Detectors
NASA Astrophysics Data System (ADS)
Buizza Avanzini, Margherita; Cabrera, Anatael; Dusini, Stefano; Grassi, Marco; He, Miao; Wu, Wenjie
2017-09-01
The experimental efforts characterizing the era of precision neutrino physics revolve around collecting high-statistics neutrino samples and attaining an excellent energy and position resolution. Next generation liquid-based neutrino detectors, such as JUNO, HyperKamiokande, etc, share the use of a large target mass, and the need of pushing light collection to the edge for maximal calorimetric information. Achieving high light collection implies considerable costs, especially when considering detector masses of several kt. A traditional strategy to maximize the effective photo-coverage with the minimum number of PMTs relies on Light Concentrators (LC), such as Winston Cones. In this paper, the authors introduce a novel concept called Occulting Light Concentrators (OLC), whereby a traditional LC gets tailored to a conventional PMT, by taking into account its single-photoelectron collection efficiency profile and thus occulting the worst performing portion of the photocathode. Thus, the OLC shape optimization takes into account not only the optical interface of the PMT, but also the maximization of the PMT detection performances. The light collection uniformity across the detector is another advantage of the OLC system. By considering the case of JUNO, we will show OLC capabilities in terms of light collection and energy resolution.
Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets
Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y.; Du, Shengwang; Loy, M. M. T.
2016-01-01
We demonstrate a simple and efficient method for producing ultrathin Bessel (‘non-diffracting’) light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786
Measuring the speed resolution of extensive air showers at the Southern Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Gesterling, Kathleen; Sarazin, Fred
2009-10-01
Ultra-high energy cosmic rays induce extensive air showers (EASs) in Earth's atmosphere which are assumed to propagate at the speed of light. The fluorescence detector (FD) at the Southern Pierre Auger Observatory detects the light signal from the EAS and directly measures the energy of the cosmic ray. When two or more FD sites observe an event, the geometry of the shower can be calculated independently of the velocity it is traveling. It is then possible to fit the time profile recorded in the FD using the shower speed as a free parameter. The analysis of a collection of stereo events allowed us to determine with what speed resolution we can measure EASs with sensitivity to subluminal components. Knowing the speed resolution we can look for objects propagating significantly below the speed of light.
Effects of the murine skull in optoacoustic brain microscopy.
Kneipp, Moritz; Turner, Jake; Estrada, Héctor; Rebling, Johannes; Shoham, Shy; Razansky, Daniel
2016-01-01
Despite the great promise behind the recent introduction of optoacoustic technology into the arsenal of small-animal neuroimaging methods, a variety of acoustic and light-related effects introduced by adult murine skull severely compromise the performance of optoacoustics in transcranial imaging. As a result, high-resolution noninvasive optoacoustic microscopy studies are still limited to a thin layer of pial microvasculature, which can be effectively resolved by tight focusing of the excitation light. We examined a range of distortions introduced by an adult murine skull in transcranial optoacoustic imaging under both acoustically- and optically-determined resolution scenarios. It is shown that strong low-pass filtering characteristics of the skull may significantly deteriorate the achievable spatial resolution in deep brain imaging where no light focusing is possible. While only brain vasculature with a diameter larger than 60 µm was effectively resolved via transcranial measurements with acoustic resolution, significant improvements are seen through cranial windows and thinned skull experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LYSO-based precision timing detectors with SiPM readout
NASA Astrophysics Data System (ADS)
Bornheim, A.; Hassanshahi, M. H.; Griffioen, M.; Mao, J.; Mangu, A.; Peña, C.; Spiropulu, M.; Xie, S.; Zhang, Z.
2018-07-01
Particle detectors based on scintillation light are particularly well suited for precision timing applications with resolutions of a few 10's of ps. The large primary signal and the initial rise time of the scintillation light result in very favorable signal-to-noise conditions with fast signals. In this paper we describe timing studies using a LYSO-based sampling calorimeter with wavelength-shifting capillary light extraction and silicon photomultipliers as photosensors. We study the contributions of various steps of the signal generation to the total time resolution, and demonstrate its feasibility as a radiation-hard technology for calorimeters at high intensity hadron colliders.
NASA Astrophysics Data System (ADS)
Yang, Qiang; Xu, Xiao; Lai, Puxiang; Sang, Xinzhu; Wang, Lihong V.
2014-03-01
Focusing light inside highly scattering media beyond the ballistic regime is a challenging task in biomedical optical imaging, manipulation, and therapy. This challenge can be overcome by time reversing ultrasonically encoded (TRUE) diffuse light to the ultrasonic focus inside a turbid medium. In TRUE optical focusing, a photorefractive crystal or polymer is used as the phase conjugate mirror for optical time reversal. Accordingly, a relatively long ultrasound burst, whose duration matches the response time of the photorefractive material, is used to encode the diffuse light. With this long ultrasound burst, the resolution of the TRUE focus along the acoustic axis is poor. In this work, we used two transducers, emitting two intersecting ultrasound beams at 3.4 MHz and 3.6 MHz respectively, to modulate the diffuse light within their intersection volume at the beat frequency. We show that light encoded at the beat frequency can be time-reversed and converge to the intersection volume. Experimentally, TRUE focusing with an acoustic axial resolution of ~1.1 mm was demonstrated inside turbid media, agreeing with the theoretical estimation.
The GALAH survey: scientific motivation
NASA Astrophysics Data System (ADS)
De Silva, G. M.; Freeman, K. C.; Bland-Hawthorn, J.; Martell, S.; de Boer, E. Wylie; Asplund, M.; Keller, S.; Sharma, S.; Zucker, D. B.; Zwitter, T.; Anguiano, B.; Bacigalupo, C.; Bayliss, D.; Beavis, M. A.; Bergemann, M.; Campbell, S.; Cannon, R.; Carollo, D.; Casagrande, L.; Casey, A. R.; Da Costa, G.; D'Orazi, V.; Dotter, A.; Duong, L.; Heger, A.; Ireland, M. J.; Kafle, P. R.; Kos, J.; Lattanzio, J.; Lewis, G. F.; Lin, J.; Lind, K.; Munari, U.; Nataf, D. M.; O'Toole, S.; Parker, Q.; Reid, W.; Schlesinger, K. J.; Sheinis, A.; Simpson, J. D.; Stello, D.; Ting, Y.-S.; Traven, G.; Watson, F.; Wittenmyer, R.; Yong, D.; Žerjal, M.
2015-05-01
The Galactic Archaeology with HERMES (GALAH) survey is a large high-resolution spectroscopic survey using the newly commissioned High Efficiency and Resolution Multi-Element Spectrograph (HERMES) on the Anglo-Australian Telescope. The HERMES spectrograph provides high-resolution (R ˜ 28 000) spectra in four passbands for 392 stars simultaneously over a 2 deg field of view. The goal of the survey is to unravel the formation and evolutionary history of the Milky Way, using fossil remnants of ancient star formation events which have been disrupted and are now dispersed throughout the Galaxy. Chemical tagging seeks to identify such dispersed remnants solely from their common and unique chemical signatures; these groups are unidentifiable from their spatial, photometric or kinematic properties. To carry out chemical tagging, the GALAH survey will acquire spectra for a million stars down to V ˜ 14. The HERMES spectra of FGK stars contain absorption lines from 29 elements including light proton-capture elements, α-elements, odd-Z elements, iron-peak elements and n-capture elements from the light and heavy s-process and the r-process. This paper describes the motivation and planned execution of the GALAH survey, and presents some results on the first-light performance of HERMES.
Kim, Jonghyun; Moon, Seokil; Jeong, Youngmo; Jang, Changwon; Kim, Youngmin; Lee, Byoungho
2018-06-01
Here, we present dual-dimensional microscopy that captures both two-dimensional (2-D) and light-field images of an in-vivo sample simultaneously, synthesizes an upsampled light-field image in real time, and visualizes it with a computational light-field display system in real time. Compared with conventional light-field microscopy, the additional 2-D image greatly enhances the lateral resolution at the native object plane up to the diffraction limit and compensates for the image degradation at the native object plane. The whole process from capturing to displaying is done in real time with the parallel computation algorithm, which enables the observation of the sample's three-dimensional (3-D) movement and direct interaction with the in-vivo sample. We demonstrate a real-time 3-D interactive experiment with Caenorhabditis elegans. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Video-rate functional photoacoustic microscopy at depths
NASA Astrophysics Data System (ADS)
Wang, Lidai; Maslov, Konstantin; Xing, Wenxin; Garcia-Uribe, Alejandro; Wang, Lihong V.
2012-10-01
We report the development of functional photoacoustic microscopy capable of video-rate high-resolution in vivo imaging in deep tissue. A lightweight photoacoustic probe is made of a single-element broadband ultrasound transducer, a compact photoacoustic beam combiner, and a bright-field light delivery system. Focused broadband ultrasound detection provides a 44-μm lateral resolution and a 28-μm axial resolution based on the envelope (a 15-μm axial resolution based on the raw RF signal). Due to the efficient bright-field light delivery, the system can image as deep as 4.8 mm in vivo using low excitation pulse energy (28 μJ per pulse, 0.35 mJ/cm2 on the skin surface). The photoacoustic probe is mounted on a fast-scanning voice-coil scanner to acquire 40 two-dimensional (2-D) B-scan images per second over a 9-mm range. High-resolution anatomical imaging is demonstrated in the mouse ear and brain. Via fast dual-wavelength switching, oxygen dynamics of mouse cardio-vasculature is imaged in realtime as well.
Gupta, Sandesh K; Jain, Amit; Bednarek, Daniel R; Rudin, Stephen
2011-01-01
In this study, we evaluated the imaging characteristics of the high-resolution, high-sensitivity micro-angiographic fluoroscope (MAF) with 35-micron pixel-pitch when used with different commercially-available 300 micron thick phosphors: the high resolution (HR) and high light (HL) from Hamamatsu. The purpose of this evaluation was to see if the HL phosphor with its higher screen efficiency could be replaced with the HR phosphor to achieve improved resolution without an increase in noise resulting from the HR's decreased light-photon yield. We designated the detectors MAF-HR and MAF-HL and compared them with a standard flat panel detector (FPD) (194 micron pixel pitch and 600 micron thick CsI(Tl)). For this comparison, we used the generalized linear-system metrics of GMTF, GNNPS and GDQE which are more realistic measures of total system performance since they include the effect of scattered radiation, focal spot distribution, and geometric un-sharpness. Magnifications (1.05-1.15) and scatter fractions (0.28 and 0.33) characteristic of a standard head phantom were used. The MAF-HR performed significantly better than the MAF-HL at high spatial frequencies. The ratio of GMTF and GDQE of the MAF-HR compared to the MAF-HL at 3(6) cycles/mm was 1.45(2.42) and 1.23(2.89), respectively. Despite significant degradation by inclusion of scatter and object magnification, both MAF-HR and MAF-HL provide superior performance over the FPD at higher spatial frequencies with similar performance up to the FPD's Nyquist frequency of 2.5 cycles/mm. Both substantially higher resolution and improved GDQE can be achieved with the MAF using the HR phosphor instead of the HL phosphor.
NASA Astrophysics Data System (ADS)
Watanabe, A.; Furukawa, H.
2018-04-01
The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.
Planar micro- and nano-patterning of GaN light-emitting diodes: Guidelines and limitations
NASA Astrophysics Data System (ADS)
Herrnsdorf, Johannes; Xie, Enyuan; Watson, Ian M.; Laurand, Nicolas; Dawson, Martin D.
2014-02-01
The emission area of GaN light-emitting diodes can be patterned by etch-free current aperturing methods which exploit the thin and highly resistive nature of the p-doped layer in these devices. Here, the fundamental underlying electrical and optical aspects of high-resolution current aperturing are investigated theoretically. The most critical parameter for the possible resolution is the thickness d of the p-GaN layer, but the interplay of p-GaN resistivity and electrical junction characteristics is also important. A spatial resolution of 1.59d can in principle be achieved, corresponding to about 300 nm in typical epitaxial structures. Furthermore, the emission from such a small emitter will spread by about 600 nm while propagating through the p-GaN. Both values can be reduced by reducing d.
Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology
Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes
2015-01-01
This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA. PMID:26205275
A Novel Image Compression Algorithm for High Resolution 3D Reconstruction
NASA Astrophysics Data System (ADS)
Siddeq, M. M.; Rodrigues, M. A.
2014-06-01
This research presents a novel algorithm to compress high-resolution images for accurate structured light 3D reconstruction. Structured light images contain a pattern of light and shadows projected on the surface of the object, which are captured by the sensor at very high resolutions. Our algorithm is concerned with compressing such images to a high degree with minimum loss without adversely affecting 3D reconstruction. The Compression Algorithm starts with a single level discrete wavelet transform (DWT) for decomposing an image into four sub-bands. The sub-band LL is transformed by DCT yielding a DC-matrix and an AC-matrix. The Minimize-Matrix-Size Algorithm is used to compress the AC-matrix while a DWT is applied again to the DC-matrix resulting in LL2, HL2, LH2 and HH2 sub-bands. The LL2 sub-band is transformed by DCT, while the Minimize-Matrix-Size Algorithm is applied to the other sub-bands. The proposed algorithm has been tested with images of different sizes within a 3D reconstruction scenario. The algorithm is demonstrated to be more effective than JPEG2000 and JPEG concerning higher compression rates with equivalent perceived quality and the ability to more accurately reconstruct the 3D models.
High-resolution polarization sensitive OCT for ocular imaging in rodents
NASA Astrophysics Data System (ADS)
Fialová, Stanislava; Rauscher, Sabine; Gröger, Marion; Pircher, Michael; Hitzenberger, Christoph K.; Baumann, Bernhard
2015-03-01
A new high-resolution polarization sensitive optical coherence tomography system was developed for imaging rodent retina. Various light-tissue interactions such as birefringence and depolarization can change the polarization state of light. In the eye, there are several tissues that have these properties, for example retinal pigment epithelium (depolarization) and sclera (birefringence). These layers play key roles in diseases like age-related macular degeneration or glaucoma. Animal models are an important component for understanding disease pathogenesis. The gold standard for the evaluation of preclinical experiments is histology, which is an invasive and terminal procedure. Since OCT is non-invasive, it has the potential to be an alternative to histology with the benefit of long-term study of the disease progression in the same animal. In this study, a superluminescent diode with spectrum width 100 nm and mean wavelength 840 nm is used as a light source in order to enable high axial resolution. Spectrometers are custom built to enable high imaging speed that allows acquiring 3D data sets with 1024x200x1536 voxels in 3.44 s. From the acquired data, images displaying phase retardation induced by birefringence and orientation of birefringent axis were calculated. In first measurements, we were able to identify the RPE-choroid complex (depolarization effect) and the sclera (strong birefringence) in the retina of Long-Evans and Sprague-Dawley rats. Our preliminary results demonstrate the feasibility of the system for high speed/resolution imaging of the rodent retina. This is useful for longitudinal studies of disease models of retinal disease in rats and mice
Lidke, Diane S; Lidke, Keith A
2012-06-01
A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.
High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Huang, Yao-Ting; Chang, Pi-Bai
2006-10-01
The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.
Maximum likelihood positioning algorithm for high-resolution PET scanners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross-Weege, Nicolas, E-mail: nicolas.gross-weege@pmi.rwth-aachen.de, E-mail: schulz@pmi.rwth-aachen.de; Schug, David; Hallen, Patrick
2016-06-15
Purpose: In high-resolution positron emission tomography (PET), lightsharing elements are incorporated into typical detector stacks to read out scintillator arrays in which one scintillator element (crystal) is smaller than the size of the readout channel. In order to identify the hit crystal by means of the measured light distribution, a positioning algorithm is required. One commonly applied positioning algorithm uses the center of gravity (COG) of the measured light distribution. The COG algorithm is limited in spatial resolution by noise and intercrystal Compton scatter. The purpose of this work is to develop a positioning algorithm which overcomes this limitation. Methods:more » The authors present a maximum likelihood (ML) algorithm which compares a set of expected light distributions given by probability density functions (PDFs) with the measured light distribution. Instead of modeling the PDFs by using an analytical model, the PDFs of the proposed ML algorithm are generated assuming a single-gamma-interaction model from measured data. The algorithm was evaluated with a hot-rod phantom measurement acquired with the preclinical HYPERION II {sup D} PET scanner. In order to assess the performance with respect to sensitivity, energy resolution, and image quality, the ML algorithm was compared to a COG algorithm which calculates the COG from a restricted set of channels. The authors studied the energy resolution of the ML and the COG algorithm regarding incomplete light distributions (missing channel information caused by detector dead time). Furthermore, the authors investigated the effects of using a filter based on the likelihood values on sensitivity, energy resolution, and image quality. Results: A sensitivity gain of up to 19% was demonstrated in comparison to the COG algorithm for the selected operation parameters. Energy resolution and image quality were on a similar level for both algorithms. Additionally, the authors demonstrated that the performance of the ML algorithm is less prone to missing channel information. A likelihood filter visually improved the image quality, i.e., the peak-to-valley increased up to a factor of 3 for 2-mm-diameter phantom rods by rejecting 87% of the coincidences. A relative improvement of the energy resolution of up to 12.8% was also measured rejecting 91% of the coincidences. Conclusions: The developed ML algorithm increases the sensitivity by correctly handling missing channel information without influencing energy resolution or image quality. Furthermore, the authors showed that energy resolution and image quality can be improved substantially by rejecting events that do not comply well with the single-gamma-interaction model, such as Compton-scattered events.« less
Imaging of trabecular meshwork using Bessel-Gauss light sheet with fluorescence
NASA Astrophysics Data System (ADS)
Jie Jeesmond Hong, Xun; Shinoj, V. K.; Murukeshan, V. M.; Baskaran, M.; Aung, Tin
2017-03-01
Ocular imaging technology that holds promise for both fundamental investigation and clinical detection of glaucoma is still a challenging research area. A direct view of the trabecular meshwork (TM) with high resolution is not generally possible because the iridocorneal angle region is obstructed by the sclera overlap. The best approach to observe the aqueous outflow system (AOS) is therefore to view from the opposite angle. In this research work, we developed two imaging systems for the high resolution ex vivo studies of the AOS inside porcine eye, based on a Gaussian illuminated and a digitally scanned Bessel-Gauss beam light sheet fluorescence configurations. The digitally scanned Bessel-Gauss beam is able to overcome the trade-off between the length and thickness of the Gaussian light sheet to give better imaging performance. It has adequate spatial resolution to resolve critical anatomical structures such as the TM, thereby enabling objective information about the AOS. This non-contact and non-invasive imaging methodology with excellent safety profile is expected to be well received by vision researchers and clinicians in the evaluation and management of glaucoma.
Soft x-ray coherent diffraction imaging on magnetic nanostructures
NASA Astrophysics Data System (ADS)
Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team
2014-03-01
Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).
High-Resolution Adaptive Optics Test-Bed for Vision Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilks, S C; Thomspon, C A; Olivier, S S
2001-09-27
We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefrontmore » correction are done at different wavelengths. Issues associated with these techniques will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rack, Alexander; Weitkamp, Timm; European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex
2009-03-10
Diffraction and transmission synchrotron imaging methods have proven to be highly suitable for investigations in materials research and non-destructive evaluation. The high flux and spatial coherence of X-rays from modern synchrotron light sources allows one to work using high resolution and different contrast modalities. This article gives a short overview of different transmission and diffraction imaging methods with high potential for industrial applications, now available for commercial access via the German light source ANKA (Forschungszentrum Karlsruhe) and its new department ANKA Commercial Service (ANKA COS, http://www.anka-cos.de)
On the Fringe Field of Wide Angle LC Optical Phased Array
NASA Technical Reports Server (NTRS)
Wang, Xighua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John; Miranda, Felix; McManamon, Paul F.
2004-01-01
For free space laser communication, light weighted large deployable optics is a critical component for the transmitter. However, such an optical element will introduce large aberrations due to the fact that the surface figure of the large optics is susceptable to deformation in the space environment. We propose to use a high-resolution liquid crystal spatial light modulator to correct for wavefront aberrations introduced by the primary optical element, and to achieve very fine beam steering and shaping at the same time. A 2-D optical phased array (OPA) antenna based on a Liquid Crystal on Silicon (LCOS) spatial light modulator is described. This device offers a combination of low cost, high resolution, high accuracy, high diffraction efficiency at video speed. To quantitatively understand the influence factor of the different design parameters, a computer simulation of the device is given by the 2-D director simulation and the Finite Difference Time domain (FDTD) simulation. For the 1-D OPA, we define the maximum steering angle to have a grating period of 8 pixel/reset scheme; as for larger steering angles than this criterion, the diffraction efficiency drops dramatically. In this case, the diffraction efficiency of 0.86 and the Strehl ratio of 0.9 are obtained in the simulation. The performance of the device in achieving high resolution wavefront correction and beam steering is also characterized experimentally.
Efficient photonic reformatting of celestial light for diffraction-limited spectroscopy
NASA Astrophysics Data System (ADS)
MacLachlan, D. G.; Harris, R. J.; Gris-Sánchez, I.; Morris, T. J.; Choudhury, D.; Gendron, E.; Basden, A. G.; Spaleniak, I.; Arriola, A.; Birks, T. A.; Allington-Smith, J. R.; Thomson, R. R.
2017-02-01
The spectral resolution of a dispersive astronomical spectrograph is limited by the trade-off between throughput and the width of the entrance slit. Photonic guided wave transitions have been proposed as a route to bypass this trade-off, by enabling the efficient reformatting of incoherent seeing-limited light collected by the telescope into a linear array of single modes: a pseudo-slit which is highly multimode in one axis but diffraction-limited in the dispersion axis of the spectrograph. It is anticipated that the size of a single-object spectrograph fed with light in this manner would be essentially independent of the telescope aperture size. A further anticipated benefit is that such spectrographs would be free of `modal noise', a phenomenon that occurs in high-resolution multimode fibre-fed spectrographs due to the coherent nature of the telescope point spread function (PSF). We seek to address these aspects by integrating a multicore fibre photonic lantern with an ultrafast laser inscribed three-dimensional waveguide interconnect to spatially reformat the modes within the PSF into a diffraction-limited pseudo-slit. Using the CANARY adaptive optics (AO) demonstrator on the William Herschel Telescope, and 1530 ± 80 nm stellar light, the device exhibits a transmission of 47-53 per cent depending upon the mode of AO correction applied. We also show the advantage of using AO to couple light into such a device by sampling only the core of the CANARY PSF. This result underscores the possibility that a fully optimized guided-wave device can be used with AO to provide efficient spectroscopy at high spectral resolution.
Optimization of the excitation light sheet in selective plane illumination microscopy
Gao, Liang
2015-01-01
Selective plane illumination microscopy (SPIM) allows rapid 3D live fluorescence imaging on biological specimens with high 3D spatial resolution, good optical sectioning capability and minimal photobleaching and phototoxic effect. SPIM gains its advantage by confining the excitation light near the detection focal plane, and its performance is determined by the ability to create a thin, large and uniform excitation light sheet. Several methods have been developed to create such an excitation light sheet for SPIM. However, each method has its own strengths and weaknesses, and tradeoffs must be made among different aspects in SPIM imaging. In this work, we present a strategy to select the excitation light sheet among the latest SPIM techniques, and to optimize its geometry based on spatial resolution, field of view, optical sectioning capability, and the sample to be imaged. Besides the light sheets discussed in this work, the proposed strategy is also applicable to estimate the SPIM performance using other excitation light sheets. PMID:25798312
Biological applications of an LCoS-based programmable array microscope (PAM)
NASA Astrophysics Data System (ADS)
Hagen, Guy M.; Caarls, Wouter; Thomas, Martin; Hill, Andrew; Lidke, Keith A.; Rieger, Bernd; Fritsch, Cornelia; van Geest, Bert; Jovin, Thomas M.; Arndt-Jovin, Donna J.
2007-02-01
We report on a new generation, commercial prototype of a programmable array optical sectioning fluorescence microscope (PAM) for rapid, light efficient 3D imaging of living specimens. The stand-alone module, including light source(s) and detector(s), features an innovative optical design and a ferroelectric liquid-crystal-on-silicon (LCoS) spatial light modulator (SLM) instead of the DMD used in the original PAM design. The LCoS PAM (developed in collaboration with Cairn Research, Ltd.) can be attached to a port of a(ny) unmodified fluorescence microscope. The prototype system currently operated at the Max Planck Institute incorporates a 6-position high-intensity LED illuminator, modulated laser and lamp light sources, and an Andor iXon emCCD camera. The module is mounted on an Olympus IX71 inverted microscope with 60-150X objectives with a Prior Scientific x,y, and z high resolution scanning stages. Further enhancements recently include: (i) point- and line-wise spectral resolution and (ii) lifetime imaging (FLIM) in the frequency domain. Multiphoton operation and other nonlinear techniques should be feasible. The capabilities of the PAM are illustrated by several examples demonstrating single molecule as well as lifetime imaging in live cells, and the unique capability to perform photoconversion with arbitrary patterns and high spatial resolution. Using quantum dot coupled ligands we show real-time binding and subsequent trafficking of individual ligand-growth factor receptor complexes on and in live cells with a temporal resolution and sensitivity exceeding those of conventional CLSM systems. The combined use of a blue laser and parallel LED or visible laser sources permits photoactivation and rapid kinetic analysis of cellular processes probed by photoswitchable visible fluorescent proteins such as DRONPA.
A 360-degree floating 3D display based on light field regeneration.
Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong
2013-05-06
Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method.
Intrinsic light yield and light loss coefficient of Bi4Ge3O12 single crystals
NASA Astrophysics Data System (ADS)
Yawai, Nattasuda; Chewpraditkul, Weerapong; Wanarak, Chalerm; Nikl, Martin; Ratanatongchai, Wichian
2014-10-01
In this paper we present the scintillation properties of polished Bi4Ge3O12 (BGO) crystals grown by the Bridgman method. The light yield (LY) and energy resolution were measured using XP5200B photomultiplier. At 662 keV γ-rays, high LY of 9680 photons/MeV and good energy resolution of 8.6% were obtained for a 5 × 5 × 1 mm3 BGO sample. The intrinsic LY and light loss coefficient were evaluated. The photofraction in pulse height spectrum of 662 keV γ-rays and the mass attenuation coefficient at 59.5 and 662 keV γ-rays were also determined and compared with the theoretical ones calculated using the WinXCom program.
NASA Technical Reports Server (NTRS)
Wilcox, Mike
1993-01-01
The number of pixels per unit area sampling an image determines Nyquist resolution. Therefore, the highest pixel density is the goal. Unfortunately, as reduction in pixel size approaches the wavelength of light, sensitivity is lost and noise increases. Animals face the same problems and have achieved novel solutions. Emulating these solutions offers potentially unlimited sensitivity with detector size approaching the diffraction limit. Once an image is 'captured', cellular preprocessing of information allows extraction of high resolution information from the scene. Computer simulation of this system promises hyperacuity for machine vision.
High-resolution wavefront control of high-power laser systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brase, J; Brown, C; Carrano, C
1999-07-08
Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformablemore » glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more than two orders of magnitude greater than the best Deformable Mirrors currently made. Even with the increased spatial resolution, the cost of these devices is nearly two orders of magnitude less than the cost of the largest deformable mirror.« less
Design considerations of a real-time clinical confocal microscope
NASA Astrophysics Data System (ADS)
Masters, Barry R.
1991-06-01
A real-time clinical confocal light microscope provides the ophthalmologist with a new tool for the observation of the cornea and the ocular lens. In addition, the ciliary body, the iris, and the sclera can be observed. The real-time light microscopic images have high contrast and resolution. The transverse resolution is about one half micron and the range resolution is one micron. The following observations were made with visible light: corneal epithelial cells, wing cells, basal cells, Bowman's membrane, nerve fibers, basal lamina, fibroblast nuclei, Descemet's membrane, endothelial cells. Observation of the in situ ocular lens showed lens capsule, lens epithelium, lens fibrils, the interior of lens fibrils. The applications of the confocal microscope include: eye banking, laser refractive surgery, observation of wound healing, observation of the iris, the sciera, the ciliary body, the ocular lens, and the intraocular lens. Digital image processing can produce three-dimensional reconstructions of the cornea and the ocular lens.
Nishizawa, N; Chen, Y; Hsiung, P; Ippen, E P; Fujimoto, J G
2004-12-15
Real-time, ultrahigh-resolution optical coherence tomography (OCT) is demonstrated in the 1.4-1.7-microm wavelength region with a stretched-pulse, passively mode-locked, Er-doped fiber laser and highly nonlinear fiber. The fiber laser generates 100-mW, linearly chirped pulses at a 51-MHz repetition rate. The pulses are compressed and then coupled into a normally dispersive highly nonlinear fiber to generate a low-noise supercontinuum with a 180-nm FWHM bandwidth and 38 mW of output power. This light source is stable, compact, and broadband, permitting high-speed, real-time, high-resolution OCT imaging. In vivo high-speed OCT imaging of human skin with approximately 5.5-microm resolution and 99-dB sensitivity is demonstrated.
Spectrum syntheses of high-resolution integrated light spectra of Galactic globular clusters
NASA Astrophysics Data System (ADS)
Sakari, Charli M.; Shetrone, Matthew; Venn, Kim; McWilliam, Andrew; Dotter, Aaron
2013-09-01
Spectrum syntheses for three elements (Mg, Na and Eu) in high-resolution integrated light spectra of the Galactic globular clusters 47 Tuc, M3, M13, NGC 7006 and M15 are presented, along with calibration syntheses of the solar and Arcturus spectra. Iron abundances in the target clusters are also derived from integrated light equivalent width analyses. Line profiles in the spectra of these five globular clusters are well fitted after careful consideration of the atomic and molecular spectral features, providing levels of precision that are better than equivalent width analyses of the same integrated light spectra, and that are comparable to the precision in individual stellar analyses. The integrated light abundances from the 5528 and 5711 Å Mg I lines, the 6154 and 6160 Å Na I lines, and the 6645 Å Eu II line fall within the observed ranges from individual stars; however, these integrated light abundances do not always agree with the average literature abundances. Tests with the second parameter clusters M3, M13 and NGC 7006 show that assuming an incorrect horizontal branch morphology is likely to have only a small ( ≲ 0.06 dex) effect on these Mg, Na and Eu abundances. These tests therefore show that integrated light spectrum syntheses can be applied to unresolved globular clusters over a wide range of metallicities and horizontal branch morphologies. Such high precision in integrated light spectrum syntheses is valuable for interpreting the chemical abundances of globular cluster systems around other galaxies.
Aaron E. Maxwell; Adam C. Riley; Paul Kinder
2013-01-01
Remote sensing has many applications in forestry. Light detection and ranging (LiDAR) and high resolution aerial photography have been investigated as means to extract forest data, such as biomass, timber volume, stand dynamics, and gap characteristics. LiDAR return intensity data are often overlooked as a source of input raster data for thematic map creation. We...
First results from stellar occultations in the "GAIA era"
NASA Astrophysics Data System (ADS)
Benedetti-Rossi, G.; Vieira-Martins, R.; Sicardy, B.
2017-09-01
Stellar occultation is a powerful technique to study distant solar system bodies. It allows high angular resolution of the occulting body from the analysis of a light curve acquired with high temporal resolution with uncertainties comparable as probes. In the "GAIA era", stellar occultations is now able to obtain even more impressive results such as the presence of atmosphere, rings and topographic features.
Adding polarimetric imaging to depth map using improved light field camera 2.0 structure
NASA Astrophysics Data System (ADS)
Zhang, Xuanzhe; Yang, Yi; Du, Shaojun; Cao, Yu
2017-06-01
Polarization imaging plays an important role in various fields, especially for skylight navigation and target identification, whose imaging system is always required to be designed with high resolution, broad band, and single-lens structure. This paper describe such a imaging system based on light field 2.0 camera structure, which can calculate the polarization state and depth distance from reference plane for every objet point within a single shot. This structure, including a modified main lens, a multi-quadrants Polaroid, a honeycomb-liked micro lens array, and a high resolution CCD, is equal to an "eyes array", with 3 or more polarization imaging "glasses" in front of each "eye". Therefore, depth can be calculated by matching the relative offset of corresponding patch on neighboring "eyes", while polarization state by its relative intensity difference, and their resolution will be approximately equal to each other. An application on navigation under clear sky shows that this method has a high accuracy and strong robustness.
Castellano-Muñoz, Manuel; Peng, Anthony Wei; Salles, Felipe T.; Ricci, Anthony J.
2013-01-01
Confocal fluorescence microscopy is a broadly used imaging technique that enhances the signal-to-noise ratio by removing out of focal plane fluorescence. Confocal microscopes come with a variety of modifications depending on the particular experimental goals. Microscopes, illumination pathways, and light collection were originally focused upon obtaining the highest resolution image possible, typically on fixed tissue. More recently, live-cell confocal imaging has gained importance. Since measured signals are often rapid or transient, thus requiring higher sampling rates, specializations are included to enhance spatial and temporal resolution while maintaining tissue viability. Thus, a balance between image quality, temporal resolution, and tissue viability is needed. A subtype of confocal imaging, termed swept field confocal (SFC) microscopy, can image live cells at high rates while maintaining confocality. SFC systems can use a pinhole array to obtain high spatial resolution, similar to spinning disc systems. In addition, SFC imaging can achieve faster rates by using a slit to sweep the light across the entire image plane, thus requiring a single scan to generate an image. Coupled to a high-speed charge-coupled device camera and a laser illumination source, images can be obtained at greater than 1,000 frames per second while maintaining confocality. PMID:22831554
Super-resolution for scanning light stimulation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bitzer, L. A.; Neumann, K.; Benson, N., E-mail: niels.benson@uni-due.de
Super-resolution (SR) is a technique used in digital image processing to overcome the resolution limitation of imaging systems. In this process, a single high resolution image is reconstructed from multiple low resolution images. SR is commonly used for CCD and CMOS (Complementary Metal-Oxide-Semiconductor) sensor images, as well as for medical applications, e.g., magnetic resonance imaging. Here, we demonstrate that super-resolution can be applied with scanning light stimulation (LS) systems, which are common to obtain space-resolved electro-optical parameters of a sample. For our purposes, the Projection Onto Convex Sets (POCS) was chosen and modified to suit the needs of LS systems.more » To demonstrate the SR adaption, an Optical Beam Induced Current (OBIC) LS system was used. The POCS algorithm was optimized by means of OBIC short circuit current measurements on a multicrystalline solar cell, resulting in a mean square error reduction of up to 61% and improved image quality.« less
NASA Astrophysics Data System (ADS)
Senda, Naoko; Osawa, Kentaro
2016-04-01
Optical coherence tomography (OCT) is one of powerful 3D tissue imaging tools with no fluorescence staining. We have reported that Phase-Diversity Homodyne OCT developed in Hitachi could be useful for non-invasive regeneration tissue evaluation test. The OCT enables cell imaging because of high resolution (axial resolution; ~2.6 μm, lateral resolution; ~1 μm, in the air), whereas conventional OCT was not used for cell imaging because of low resolution (10~20 μm). Furthermore, the OCT has advantage over other 3D imaging devices in cost because the light source and the objective were originally used as an optical pickup of compact disc. In this report, we aimed to assess effectiveness and safety of Phase-Diversity Homodyne OCT cell imaging. Effectiveness of OCT was evaluated by imaging a living cell sheet of human oral mucosal epithelial cells. OCT images were compared with reflection confocal microscopy (RCM) images, because confocal optical system is the highest resolution (<1 μm) 3D in vivo imaging technique. Similar nuclei images were confirmed with OCT and RCM, which suggested the OCT has enough resolution to image nuclei inside a cell sheet. Degree of differentiation could be estimated using OCT images, which becomes possible because the size of cells depends on distribution of differentiation. Effect of the OCT light irradiation on cells was studied using NIH/3T3 cells. Light irradiation, the exposure amount of which is equivalent to OCT, had no impact on cell shape, cell viability, and proliferation rate. It suggested that the light irradiation has no cell damage under the condition.
High spatial resolution soft-x-ray microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer-Ilse, W.; Medecki, H.; Brown, J.T.
1997-04-01
A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy tomore » use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.« less
Colposcopic imaging using visible-light optical coherence tomography.
Duan, Lian; McRaven, Michael D; Liu, Wenzhong; Shu, Xiao; Hu, Jianmin; Sun, Cheng; Veazey, Ronald S; Hope, Thomas J; Zhang, Hao F
2017-05-01
High-resolution colposcopic optical coherence tomography (OCT) provides key anatomical measures, such as thickness and minor traumatic injury of vaginal epithelium, of the female reproductive tract noninvasively. This information can be helpful in both fundamental investigations in animal models and disease screenings in humans. We present a fiber-based visible-light OCT and two probe designs for colposcopic application. One probe conducts circular scanning using a DC motor, and the other probe is capable of three-dimensional imaging over a 4.6 × 4.6 - mm 2 area using a pair of galvo scanners. Using this colposcopic vis-OCT with both probes, we acquired high-resolution images from whole isolated macaque vaginal samples and identified biopsy lesions.
Colposcopic imaging using visible-light optical coherence tomography
NASA Astrophysics Data System (ADS)
Duan, Lian; McRaven, Michael D.; Liu, Wenzhong; Shu, Xiao; Hu, Jianmin; Sun, Cheng; Veazey, Ronald S.; Hope, Thomas J.; Zhang, Hao F.
2017-05-01
High-resolution colposcopic optical coherence tomography (OCT) provides key anatomical measures, such as thickness and minor traumatic injury of vaginal epithelium, of the female reproductive tract noninvasively. This information can be helpful in both fundamental investigations in animal models and disease screenings in humans. We present a fiber-based visible-light OCT and two probe designs for colposcopic application. One probe conducts circular scanning using a DC motor, and the other probe is capable of three-dimensional imaging over a 4.6×4.6-mm2 area using a pair of galvo scanners. Using this colposcopic vis-OCT with both probes, we acquired high-resolution images from whole isolated macaque vaginal samples and identified biopsy lesions.
Structured Illumination Microscopy for the Investigation of Synaptic Structure and Function.
Hong, Soyon; Wilton, Daniel K; Stevens, Beth; Richardson, Douglas S
2017-01-01
The neuronal synapse is a primary building block of the nervous system to which alterations in structure or function can result in numerous pathologies. Studying its formation and elimination is the key to understanding how brains are wired during development, maintained throughout adulthood plasticity, and disrupted during disease. However, due to its diffraction-limited size, investigations of the synaptic junction at the structural level have primarily relied on labor-intensive electron microscopy or ultra-thin section array tomography. Recent advances in the field of super-resolution light microscopy now allow researchers to image synapses and associated molecules with high-spatial resolution, while taking advantage of the key characteristics of light microscopy, such as easy sample preparation and the ability to detect multiple targets with molecular specificity. One such super-resolution technique, Structured Illumination Microscopy (SIM), has emerged as an attractive method to examine synapse structure and function. SIM requires little change in standard light microscopy sample preparation steps, but results in a twofold improvement in both lateral and axial resolutions compared to widefield microscopy. The following protocol outlines a method for imaging synaptic structures at resolutions capable of resolving the intricacies of these neuronal connections.
Development of sampling calorimeter with segmented lead glass absorber
NASA Astrophysics Data System (ADS)
Terada, R.; Takeshita, T.; Itoh, H.; Kanzaki, I.
2018-02-01
Sampling calorimeter is indispensable for physics measurement at collider experiment with PFA. Uncertainty of deposit energy at absorber layer degrades energy resolution. This problem will be solved by using lead glass as absorber, which is clear and heavy. High energy particles produce Cherenkov lights whose light yield corresponds to the track length in the lead glass. This information from the absorber will improve the energy resolution of the calorimeter. Performance of this calorimeter prototype tested for electrons at ELPH beam at Tohoku University has been described. We discuss the problems and its capabilities.
In vivo observation of transient photoreceptor movement correlated with oblique light stimulation
NASA Astrophysics Data System (ADS)
Lu, Yiming; Liu, Changgeng; Yao, Xincheng
2018-02-01
Rod-dominated transient retinal phototropism (TRP) has been observed in freshly isolated retinas, promising a noninvasive biomarker for high resolution assessment of retinal physiology. However, in vivo mapping of TRP is challenging due to its fast time course and sub-cellular signal magnitude. By developing a line-scanning and virtually structured detection based super-resolution ophthalmoscope, we report here in vivo observation of TRP in frog retina. In vivo characterization of TRP time course and magnitude were implemented by using variable light stimulus intensities.
Lopes, Gil; Ribeiro, A Fernando; Sillero, Neftalí; Gonçalves-Seco, Luís; Silva, Cristiano; Franch, Marc; Trigueiros, Paulo
2016-04-19
This paper presents a road surface scanning system that operates with a trichromatic line scan camera with light emitting diode (LED) lighting achieving road surface resolution under a millimeter. It was part of a project named Roadkills-Intelligent systems for surveying mortality of amphibians in Portuguese roads, sponsored by the Portuguese Science and Technology Foundation. A trailer was developed in order to accommodate the complete system with standalone power generation, computer image capture and recording, controlled lighting to operate day or night without disturbance, incremental encoder with 5000 pulses per revolution attached to one of the trailer wheels, under a meter Global Positioning System (GPS) localization, easy to utilize with any vehicle with a trailer towing system and focused on a complete low cost solution. The paper describes the system architecture of the developed prototype, its calibration procedure, the performed experimentation and some obtained results, along with a discussion and comparison with existing systems. Sustained operating trailer speeds of up to 30 km/h are achievable without loss of quality at 4096 pixels' image width (1 m width of road surface) with 250 µm/pixel resolution. Higher scanning speeds can be achieved by lowering the image resolution (120 km/h with 1 mm/pixel). Computer vision algorithms are under development to operate on the captured images in order to automatically detect road-kills of amphibians.
Lopes, Gil; Ribeiro, A. Fernando; Sillero, Neftalí; Gonçalves-Seco, Luís; Silva, Cristiano; Franch, Marc; Trigueiros, Paulo
2016-01-01
This paper presents a road surface scanning system that operates with a trichromatic line scan camera with light emitting diode (LED) lighting achieving road surface resolution under a millimeter. It was part of a project named Roadkills—Intelligent systems for surveying mortality of amphibians in Portuguese roads, sponsored by the Portuguese Science and Technology Foundation. A trailer was developed in order to accommodate the complete system with standalone power generation, computer image capture and recording, controlled lighting to operate day or night without disturbance, incremental encoder with 5000 pulses per revolution attached to one of the trailer wheels, under a meter Global Positioning System (GPS) localization, easy to utilize with any vehicle with a trailer towing system and focused on a complete low cost solution. The paper describes the system architecture of the developed prototype, its calibration procedure, the performed experimentation and some obtained results, along with a discussion and comparison with existing systems. Sustained operating trailer speeds of up to 30 km/h are achievable without loss of quality at 4096 pixels’ image width (1 m width of road surface) with 250 µm/pixel resolution. Higher scanning speeds can be achieved by lowering the image resolution (120 km/h with 1 mm/pixel). Computer vision algorithms are under development to operate on the captured images in order to automatically detect road-kills of amphibians. PMID:27104535
Arrays of Segmented, Tapered Light Guides for Use With Large, Planar Scintillation Detectors
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Vaigneur, Keith; Stolin, Alexander V.; Jaliparthi, Gangadhar
2015-06-01
Metabolic imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. Our group has previously developed a high-resolution positron emission tomography imaging and biopsy device (PEM-PET) to detect and guide the biopsy of suspicious breast lesions. Initial testing revealed that the imaging field-of-view (FOV) of the scanner was smaller than the physical size of the detector's active area, which could hinder sampling of breast areas close to the chest wall. The purpose of this work was to utilize segmented, tapered light guides for optically coupling the scintillator arrays to arrays of position-sensitive photomultipliers to increase both the active FOV and identification of individual scintillator elements. Testing of the new system revealed that the optics of these structures made it possible to discern detector elements from the complete active area of the detector face. In the previous system the top and bottom rows and left and right columns were not identifiable. Additionally, use of the new light guides increased the contrast of individual detector elements by up to 129%. Improved element identification led to a spatial resolution increase by approximately 12%. Due to attenuation of light in the light guides the detector energy resolution decreased from 18.5% to 19.1%. Overall, these improvements should increase the field-of-view and spatial resolution of the dedicated breast-PET system.
Crystal growth and characterization of europium doped KCaI3, a high light yield scintillator
NASA Astrophysics Data System (ADS)
Lindsey, Adam C.; Zhuravleva, Mariya; Stand, Luis; Wu, Yuntao; Melcher, Charles L.
2015-10-01
The presented study reports on the spectroscopic characteristics of a new high performance scintillation material KCaI3:Eu. The growth of ∅ 17 mm boules using the Bridgman-Stockbarger method in fused silica ampoules is demonstrated to produce yellow tinted, yet transparent single crystals suitable for use in spectroscopic applications due to very promising performance. Scintillation light yield of 72,000 ± 3000 ph/MeV and energy resolution of 3% (FWHM) at 662 keV and 6.1% at 122 keV was obtained from small single crystals of approximately 15 mm3. For a much larger 3.8 cm3 detector, 4.4% and 7.3% for the same energy. Proportionality of the scintillation response to the energy of ionizing radiation is within 96% of the ideal response over an energy range of 14-662 keV. The high light yield and energy resolution of KCaI3:Eu make it suitable for potential use in domestic security applications requiring radionuclide identification.
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM). PMID:29568263
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).
High resolution monochromator for the VUV radiation from the DORIS storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saile, V.; Gurtler, P.; Koch, E.E.
1976-10-01
The unique properties of the DORIS storage ring at DESY as a synchroton radiation source are exploited for high resolution spectroscopy in the vacuum ultraviolet. We describe a new experimental set up with a 3-m normal incidence monochromator for wavelengths between 3000 A and 300 A (4 < or = h..omega.. < or = 40 eV) using a vertical dispersion plane. The storage ring provides a light flux intense and stable enough for rapid photoelectrical scanning of the spectra with a resolution of 0.03 A in first order. (AIP)
Cheng, Li-Chung; Lien, Chi-Hsiang; Da Sie, Yong; Hu, Yvonne Yuling; Lin, Chun-Yu; Chien, Fan-Ching; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen
2014-08-01
In this study, the light diffraction of temporal focusing multiphoton excitation microscopy (TFMPEM) and the excitation patterning of nonlinear structured-illumination microscopy (NSIM) can be simultaneously and accurately implemented via a single high-resolution digital micromirror device. The lateral and axial spatial resolutions of the TFMPEM are remarkably improved through the second-order NSIM and projected structured light, respectively. The experimental results demonstrate that the lateral and axial resolutions are enhanced from 397 nm to 168 nm (2.4-fold) and from 2.33 μm to 1.22 μm (1.9-fold), respectively, in full width at the half maximum. Furthermore, a three-dimensionally rendered image of a cytoskeleton cell featuring ~25 nm microtubules is improved, with other microtubules at a distance near the lateral resolution of 168 nm also able to be distinguished.
Highly improved operation of monolithic BGO-PET blocks
NASA Astrophysics Data System (ADS)
Gonzalez-Montoro, A.; Sanchez, F.; Majewski, S.; Zanettini, S.; Benlloch, J. M.; Gonzalez, A. J.
2017-11-01
In PET scanners both scintillation crystals and photosensors are key components defining the system's performance and cost. Original PET systems used BGO or NaI(Tl) scintillators but achieved limited performance due to its slow decay and relatively low light output. Moreover, NaI(Tl) has low stopping power for 511 keV annihilation photons. In this study we report the possibility to reintroduce BGO crystals, and in particular in the form of monolithic blocks, especially suitable for low-dose large-size PET scanners, offering significantly improved sensitivity at a highly reduced cost compared to LYSO type fast scintillators. We have studied the performance of a monolithic BGO block as large as 50 × 50 × 15 mm3 with black-painted lateral walls to reduce lights spread, enabling accurate photon depth of interaction (DOI) measurements. A directional optical layer, called retro-reflector, was coupled to the entrance face bouncing back the scintillation light in the direction of the emission source and, therefore, adding to the light signal while preserving the narrow light cone distribution. Four configurations namely 12 × 12 and 16 × 16 SiPM arrays (3 mm × 3 mm each) as photosensors, with or without a nanopattern treatment at the crystal exit face, have been studied. This structure consisted of a thin layer of a specific high refractive index material shaped with a periodic nanopattern, increasing the scintillation light extraction. The readout returned information for each SiPM row and column, characterizing the X-Y light distribution projections. We have studied the detector spatial resolution using collimated 22Na sources at normal incidence. The DOI resolution was evaluated using collimated gamma beams with lateral incidence. The overall best detector performance was obtained for the 16× 16 SiPM array offering higher readout granularity. We have determined the spatial resolution for 3 separated DOI layers, obtaining the best results for the DOI region near to the photosensor.
Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device
Guo, Yanmeng; Song, Peipei; Zhang, Xiaohui; Zeng, Shaoqun; Wang, Zuoren
2011-01-01
Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision. PMID:22174813
Instrumentation in molecular imaging.
Wells, R Glenn
2016-12-01
In vivo molecular imaging is a challenging task and no single type of imaging system provides an ideal solution. Nuclear medicine techniques like SPECT and PET provide excellent sensitivity but have poor spatial resolution. Optical imaging has excellent sensitivity and spatial resolution, but light photons interact strongly with tissues and so only small animals and targets near the surface can be accurately visualized. CT and MRI have exquisite spatial resolution, but greatly reduced sensitivity. To overcome the limitations of individual modalities, molecular imaging systems often combine individual cameras together, for example, merging nuclear medicine cameras with CT or MRI to allow the visualization of molecular processes with both high sensitivity and high spatial resolution.
Digital Fresnel reflection holography for high-resolution 3D near-wall flow measurement.
Kumar, S Santosh; Hong, Jiarong
2018-05-14
We propose a novel backscatter holographic imaging system, as a compact and effective tool for 3D near-wall flow diagnostics at high resolutions, utilizing light reflected at the solid-liquid interface as a reference beam. The technique is fully calibrated, and is demonstrated in a densely seeded channel to achieve a spatial resolution of near-wall flows equivalent to or exceeding prior digital inline holographic measurements using local tracer seeding technique. Additionally, we examined the effects of seeding concentration and laser coherence on the measurement resolution and sample volume resolved, demonstrating the potential to manipulate sample domain by tuning the laser coherence profile.
Nanowire-based single-cell endoscopy
NASA Astrophysics Data System (ADS)
Yan, Ruoxue; Park, Ji-Ho; Choi, Yeonho; Heo, Chul-Joon; Yang, Seung-Man; Lee, Luke P.; Yang, Peidong
2012-03-01
One-dimensional smart probes based on nanowires and nanotubes that can safely penetrate the plasma membrane and enter biological cells are potentially useful in high-resolution and high-throughput gene and drug delivery, biosensing and single-cell electrophysiology. However, using such probes for optical communication across the cellular membrane at the subwavelength level remains limited. Here, we show that a nanowire waveguide attached to the tapered tip of an optical fibre can guide visible light into intracellular compartments of a living mammalian cell, and can also detect optical signals from subcellular regions with high spatial resolution. Furthermore, we show that through light-activated mechanisms the endoscope can deliver payloads into cells with spatial and temporal specificity. Moreover, insertion of the endoscope into cells and illumination of the guided laser did not induce any significant toxicity in the cells.
High-resolution light microscopy of nanoforms
NASA Astrophysics Data System (ADS)
Vodyanoy, Vitaly; Pustovyy, Oleg; Vainrub, Arnold
2007-09-01
We developed a high resolution light imaging system. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects are clearly visible on a calibrated microscope test slide (Vainrub et al., Optics Letters, 2006, 31, 2855). The two-point resolution increase results from a known narrowing of the central diffraction peak for the annular aperture. Better visibility and advanced contrast of the smallest features in the image are due to enhancement of high spatial frequencies in the optical transfer function. The imaging system is portable, low energy, and battery operated. It has been adapted to use in both transmitting and reflecting light. It is particularly applicable for motile nanoform systems where structure and functions can be depicted in real time. We have isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1-2nm metallic nanoclusters containing 40-300 atoms. Proteons are capable of spontaneous assembling into higher nanoform systems assuming structure of complicated topology. The arrangement of complex proteon system mimics the structure of a small biological cell. It has structures that imitate membrane and nucleolus or nuclei. Some of these nanoforms are motile. They interact and divide. Complex nanoform systems can spontaneously reduce to simple proteons. The physical properties of these nanoforms could shed some light on the properties of early life forms or forms at extreme conditions.
Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Gul, M. Shahzeb Khan; Gunturk, Bahadir K.
2018-05-01
Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.
Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks.
Gul, M Shahzeb Khan; Gunturk, Bahadir K
2018-05-01
Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.
Larkin, Alyse A; Blinebry, Sara K; Howes, Caroline; Lin, Yajuan; Loftus, Sarah E; Schmaus, Carrie A; Zinser, Erik R; Johnson, Zackary I
2016-01-01
The distribution of major clades of Prochlorococcus tracks light, temperature and other environmental variables; yet, the drivers of genomic diversity within these ecotypes and the net effect on biodiversity of the larger community are poorly understood. We examined high light (HL) adapted Prochlorococcus communities across spatial and temporal environmental gradients in the Pacific Ocean to determine the ecological drivers of population structure and diversity across taxonomic ranks. We show that the Prochlorococcus community has the highest diversity at low latitudes, but seasonality driven by temperature, day length and nutrients adds complexity. At finer taxonomic resolution, some ‘sub-ecotype' clades have unique, cohesive responses to environmental variables and distinct biogeographies, suggesting that presently defined ecotypes can be further partitioned into ecologically meaningful units. Intriguingly, biogeographies of the HL-I sub-ecotypes are driven by unique combinations of environmental traits, rather than through trait hierarchy, while the HL-II sub-ecotypes appear ecologically similar, thus demonstrating differences among these dominant HL ecotypes. Examining biodiversity across taxonomic ranks reveals high-resolution dynamics of Prochlorococcus evolution and ecology that are masked at phylogenetically coarse resolution. Spatial and seasonal trends of Prochlorococcus communities suggest that the future ocean may be comprised of different populations, with implications for ecosystem structure and function. PMID:26800235
NASA Astrophysics Data System (ADS)
Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.
2018-03-01
Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.
Safrani, Avner; Abdulhalim, Ibrahim
2011-06-20
Longitudinal spatial coherence (LSC) is determined by the spatial frequency content of an optical beam. The use of lenses with a high numerical aperture (NA) in full-field optical coherence tomography and a narrowband light source makes the LSC length much shorter than the temporal coherence length, hence suggesting that high-resolution 3D images of biological and multilayered samples can be obtained based on the low LSC. A simplified model is derived, supported by experimental results, which describes the expected interference output signal of multilayered samples when high-NA lenses are used together with a narrowband light source. An expression for the correction factor for the layer thickness determination is found valid for high-NA objectives. Additionally, the method was applied to a strongly scattering layer, demonstrating the potential of this method for high-resolution imaging of scattering media.
Caged molecular beacons: controlling nucleic acid hybridization with light.
Wang, Chunming; Zhu, Zhi; Song, Yanling; Lin, Hui; Yang, Chaoyong James; Tan, Weihong
2011-05-28
We have constructed a novel class of light-activatable caged molecular beacons (cMBs) that are caged by locking two stems with a photo-labile biomolecular interaction or covalent bond. With the cMBs, the nucleic acid hybridization process can be easily controlled with light, which offers the possibility for a high spatiotemporal resolution study of intracellular mRNAs. © The Royal Society of Chemistry 2011
ADVANCES IN IMAGING TECHNOLOGIES IN THE EVALUATION OF HIGH-GRADE BLADDER CANCER
Zlatev, Dimitar V.; Altobelli, Emanuela; Liao, Joseph C.
2015-01-01
Bladder cancer is a heterogeneous disease that ranges from low-grade variant with an indolent course, to high-grade subtype with a recurrent, progressive, and potentially lethal outcome. Accurate assessment for individualized treatment depends critically on the diagnostic accuracy of white light cystoscopy. Despite its central role, white light cystoscopy has several well-documented shortcomings including difficult flat lesion detection, imprecise tumor delineation that limits complete resection, differentiation between inflammation and malignancy, and grade and stage determination. As the limitations of white light cystoscopy contribute to the risk of cancer persistence, recurrence, and progression, there is a need for improved visualization of flat, multifocal, high-grade, and muscle-invasive lesions. Optical imaging technologies have emerged as an adjunct to white light cystoscopy with the goal to guide more effective treatment by improving cancer detection and patient stratification on the basis of grade and stage. Photodynamic diagnosis and narrow band imaging are macroscopic imaging modalities similar to white light cystoscopy, but provide additional contrast enhancement of bladder tumors and have been shown to improve detection rates. Confocal laser endomicroscopy and optical coherence tomography are microscopic imaging technologies that enable real-time high resolution, subsurface tissue characterization with spatial resolutions similar to histology. Molecular imaging offers the potential for the combination of optical imaging technologies with cancer-specific molecular agents to improve the specificity of disease detection. PMID:25882557
A versatile indirect detector design for hard X-ray microimaging
NASA Astrophysics Data System (ADS)
Douissard, P.-A.; Cecilia, A.; Rochet, X.; Chapel, X.; Martin, T.; van de Kamp, T.; Helfen, L.; Baumbach, T.; Luquot, L.; Xiao, X.; Meinhardt, J.; Rack, A.
2012-09-01
Indirect X-ray detectors are of outstanding importance for high resolution imaging, especially at synchrotron light sources: while consisting mostly of components which are widely commercially available, they allow for a broad range of applications in terms of the X-ray energy employed, radiation dose to the detector, data acquisition rate and spatial resolving power. Frequently, an indirect detector consists of a thin-film single crystal scintillator and a high-resolution visible light microscope as well as a camera. In this article, a novel modular-based indirect design is introduced, which offers several advantages: it can be adapted for different cameras, i.e. different sensor sizes, and can be trimmed to work either with (quasi-)monochromatic illumination and the correspondingly lower absorbed dose or with intense white beam irradiation. In addition, it allows for a motorized quick exchange between different magnifications / spatial resolutions. Developed within the European project SCINTAX, it is now commercially available. The characteristics of the detector in its different configurations (i.e. for low dose or for high dose irradiation) as measured within the SCINTAX project will be outlined. Together with selected applications from materials research, non-destructive evaluation and life sciences they underline the potential of this design to make high resolution X-ray imaging widely available.
A volumetric three-dimensional digital light photoactivatable dye display
NASA Astrophysics Data System (ADS)
Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.
2017-07-01
Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated `on-off' cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays.
A volumetric three-dimensional digital light photoactivatable dye display
Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.
2017-01-01
Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated ‘on-off’ cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays. PMID:28695887
High resolution reversible color images on photonic crystal substrates.
Kang, Pilgyu; Ogunbo, Samuel O; Erickson, David
2011-08-16
When light is incident on a crystalline structure with appropriate periodicity, some colors will be preferentially reflected (Joannopoulos, J. D.; Meade, R. D.; Winn, J. N. Photonic crystals: molding the flow of light; Princeton University Press: Princeton, NJ, 1995; p ix, 137 pp). These photonic crystals and the structural color they generate represent an interesting method for creating reflective displays and drawing devices, since they can achieve a continuous color response and do not require back lighting (Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143-149; Graham-Rowe, D. Tunable structural colour. Nat. Photonics 2009, 3, 551-553.; Arsenault, A. C.; Puzzo, D. P.; Manners, I.; Ozin, G. A. Photonic-crystal full-colour displays. Nat. Photonics 2007, 1, 468-472; Walish, J. J.; Kang, Y.; Mickiewicz, R. A.; Thomas, E. L. Bioinspired Electrochemically Tunable Block Copolymer Full Color Pixels. Adv. Mater.2009, 21, 3078). Here we demonstrate a technique for creating erasable, high-resolution, color images using otherwise transparent inks on self-assembled photonic crystal substrates (Fudouzi, H.; Xia, Y. N. Colloidal crystals with tunable colors and their use as photonic papers. Langmuir 2003, 19, 9653-9660). Using inkjet printing, we show the ability to infuse fine droplets of silicone oils into the crystal, locally swelling it and changing the reflected color (Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123-2126). Multicolor images with resolutions as high as 200 μm are obtained from oils of different molecular weights with the lighter oils being able to penetrate deeper, yielding larger red shifts. Erasing of images is done simply by adding a low vapor pressure oil which dissolves the image, returning the substrate to its original state.
Multiplexed phase-space imaging for 3D fluorescence microscopy.
Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura
2017-06-26
Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.
Camera array based light field microscopy
Lin, Xing; Wu, Jiamin; Zheng, Guoan; Dai, Qionghai
2015-01-01
This paper proposes a novel approach for high-resolution light field microscopy imaging by using a camera array. In this approach, we apply a two-stage relay system for expanding the aperture plane of the microscope into the size of an imaging lens array, and utilize a sensor array for acquiring different sub-apertures images formed by corresponding imaging lenses. By combining the rectified and synchronized images from 5 × 5 viewpoints with our prototype system, we successfully recovered color light field videos for various fast-moving microscopic specimens with a spatial resolution of 0.79 megapixels at 30 frames per second, corresponding to an unprecedented data throughput of 562.5 MB/s for light field microscopy. We also demonstrated the use of the reported platform for different applications, including post-capture refocusing, phase reconstruction, 3D imaging, and optical metrology. PMID:26417490
Fu, Qinyi; Martin, Benjamin L.; Matus, David Q.; Gao, Liang
2016-01-01
Despite the progress made in selective plane illumination microscopy, high-resolution 3D live imaging of multicellular specimens remains challenging. Tiling light-sheet selective plane illumination microscopy (TLS-SPIM) with real-time light-sheet optimization was developed to respond to the challenge. It improves the 3D imaging ability of SPIM in resolving complex structures and optimizes SPIM live imaging performance by using a real-time adjustable tiling light sheet and creating a flexible compromise between spatial and temporal resolution. We demonstrate the 3D live imaging ability of TLS-SPIM by imaging cellular and subcellular behaviours in live C. elegans and zebrafish embryos, and show how TLS-SPIM can facilitate cell biology research in multicellular specimens by studying left-right symmetry breaking behaviour of C. elegans embryos. PMID:27004937
NASA Astrophysics Data System (ADS)
Li, Linghui; Gruzdev, Vitaly; Yu, Ping; Chen, J. K.
2009-02-01
High pulse energy continuum generation in conventional multimode optical fibers has been studied for potential applications to a holographic optical coherence imaging system. As a new imaging modality for the biological tissue imaging, high-resolution holographic optical coherence imaging requires a broadband light source with a high brightness, a relatively low spatial coherence and a high stability. A broadband femtosecond laser can not be used as the light source of holographic imaging system since the laser creates a lot of speckle patterns. By coupling high peak power femtosecond laser pulses into a multimode optical fiber, nonlinear optical effects cause a continuum generation that can be served as a super-bright and broadband light source. In our experiment, an amplified femtosecond laser was coupled into the fiber through a microscopic objective. We measured the FWHM of the continuum generation as a function of incident pulse energy from 80 nJ to 800 μJ. The maximum FWHM is about 8 times higher than that of the input pulses. The stability was analyzed at different pump energies, integration times and fiber lengths. The spectral broadening and peak position show that more than two processes compete in the fiber.
High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology
NASA Technical Reports Server (NTRS)
Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Parker, Allen R. Jr. (Inventor); Hamory, Philip J (Inventor); Chan, Hon Man (Inventor)
2017-01-01
The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.
Particle detector spatial resolution
Perez-Mendez, V.
1992-12-15
Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.
Particle detector spatial resolution
Perez-Mendez, Victor
1992-01-01
Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.
High-resolution carbon mapping on the million-hectare Island of Hawaii
Gregory P. Asner; R. Flint Hughes; Joseph Mascaro; Amanda L. Uowolo; David E. Knapp; James Jacobson; Ty Kennedy-Bowdoin; John K . Clark
2011-01-01
Current markets and international agreements for reducing emissions from deforestation and forest degradation (REDD) rely on carbon (C) monitoring techniques. Combining field measurements, airborne light detection and ranging (LiDAR)-based observations, and satellite-based imagery, we developed a 30-meter-resolution map of aboveground C density spanning 40 vegetation...
Development of an ultrahigh-resolution Si-PM-based dual-head GAGG coincidence imaging system
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Kato, Katsuhiko; Hatazawa, Jun
2013-03-01
A silicon photomultiplier (Si-PM) is a promising photodetector for high resolution PET systems due to its small channel size and high gain. Using Si-PMs, it will be possible to develop a high resolution imaging systems. For this purpose, we developed a small field-of-view (FOV) ultrahigh-resolution Si-PM-based dual-head coincidence imaging system for small animals and plant research. A new scintillator, Ce doped Gd3Al12Ga3O12 (GAGG), was selected because of its high light output and its emission wavelength matched with the Si-PM arrays and contained no radioactivity. Each coincidence imaging block detector consists of 0.5×0.5×5 mm3 GAGG pixels combined with a 0.1-mm thick reflector to form a 20×17 matrix that was optically coupled to a Si-PM array (Hamamatsu MPPC S11064-050P) with a 1.5-mm thick light guide. The GAGG block size was 12.0×10.2 mm2. Two GAGG block detectors were positioned face to face and set on a flexible arm based detector stand. All 0.5 mm GAGG pixels in the block detectors were clearly resolved in the 2-dimensional position histogram. The energy resolution was 14.4% FWHM for the Cs-137 gamma ray. The spatial resolution was 0.7 mm FWHM measured using a 0.25 mm diameter Na-22 point source. Small animal and plant images were successfully obtained. We conclude that our developed ultrahigh-resolution Si-PM-based dual-head coincidence imaging system is promising for small animal and plant imaging research.
3D near-infrared imaging based on a single-photon avalanche diode array sensor
NASA Astrophysics Data System (ADS)
Mata Pavia, Juan; Wolf, Martin; Charbon, Edoardo
2012-10-01
Near-infrared light can be used to determine the optical properties (absorption and scattering) of human tissue. Optical tomography uses this principle to image the internal structure of parts of the body by measuring the light that is scattered in the tissue. An imager for optical tomography was designed based on a detector with 128x128 single photon pixels that included a bank of 32 time-to-digital converters. Due to the high spatial resolution and the possibility of performing time resolved measurements, a new contactless setup has been conceived. The setup has a resolution of 97ps and operates with a laser source with an average power of 3mW. This new setup generated an high amount of data that could not be processed by established methods, therefore new concepts and algorithms were developed to take advantage of it. Simulations show that the potential resolution of the new setup would be much higher than previous designs. Measurements have been performed showing its potential. Images derived from the measurements showed that it is possible to reach a resolution of at least 5mm.
Improved spatial resolution of luminescence images acquired with a silicon line scanning camera
NASA Astrophysics Data System (ADS)
Teal, Anthony; Mitchell, Bernhard; Juhl, Mattias K.
2018-04-01
Luminescence imaging is currently being used to provide spatially resolved defect in high volume silicon solar cell production. One option to obtain the high throughput required for on the fly detection is the use a silicon line scan cameras. However, when using a silicon based camera, the spatial resolution is reduced as a result of the weakly absorbed light scattering within the camera's chip. This paper address this issue by applying deconvolution from a measured point spread function. This paper extends the methods for determining the point spread function of a silicon area camera to a line scan camera with charge transfer. The improvement in resolution is quantified in the Fourier domain and in spatial domain on an image of a multicrystalline silicon brick. It is found that light spreading beyond the active sensor area is significant in line scan sensors, but can be corrected for through normalization of the point spread function. The application of this method improves the raw data, allowing effective detection of the spatial resolution of defects in manufacturing.
NASA Astrophysics Data System (ADS)
Valiya Peedikakkal, Liyana; Cadby, Ashley
2017-02-01
Localization based super resolution images of a biological sample is generally achieved by using high power laser illumination with long exposure time which unfortunately increases photo-toxicity of a sample, making super resolution microscopy, in general, incompatible with live cell imaging. Furthermore, the limitation of photobleaching reduces the ability to acquire time lapse images of live biological cells using fluorescence microscopy. Digital Light Processing (DLP) technology can deliver light at grey scale levels by flickering digital micromirrors at around 290 Hz enabling highly controlled power delivery to samples. In this work, Digital Micromirror Device (DMD) is implemented in an inverse Schiefspiegler telescope setup to control the power and pattern of illumination for super resolution microscopy. We can achieve spatial and temporal patterning of illumination by controlling the DMD pixel by pixel. The DMD allows us to control the power and spatial extent of the laser illumination. We have used this to show that we can reduce the power delivered to the sample to allow for longer time imaging in one area while achieving sub-diffraction STORM imaging in another using higher power densities.
Müllenbroich, M Caroline; Silvestri, Ludovico; Onofri, Leonardo; Costantini, Irene; Hoff, Marcel Van't; Sacconi, Leonardo; Iannello, Giulio; Pavone, Francesco S
2015-10-01
Comprehensive mapping and quantification of neuronal projections in the central nervous system requires high-throughput imaging of large volumes with microscopic resolution. To this end, we have developed a confocal light-sheet microscope that has been optimized for three-dimensional (3-D) imaging of structurally intact clarified whole-mount mouse brains. We describe the optical and electromechanical arrangement of the microscope and give details on the organization of the microscope management software. The software orchestrates all components of the microscope, coordinates critical timing and synchronization, and has been written in a versatile and modular structure using the LabVIEW language. It can easily be adapted and integrated to other microscope systems and has been made freely available to the light-sheet community. The tremendous amount of data routinely generated by light-sheet microscopy further requires novel strategies for data handling and storage. To complete the full imaging pipeline of our high-throughput microscope, we further elaborate on big data management from streaming of raw images up to stitching of 3-D datasets. The mesoscale neuroanatomy imaged at micron-scale resolution in those datasets allows characterization and quantification of neuronal projections in unsectioned mouse brains.
NASA Astrophysics Data System (ADS)
Gros, P.; Bernard, D.
2017-02-01
We benchmark various available event generators in Geant4 and EGS5 in the light of ongoing projects for high angular-resolution pair-conversion telescopes at low energy. We compare the distributions of key kinematic variables extracted from the geometry of the three final state particles. We validate and use as reference an exact generator using the full 5D differential cross-section of the conversion process. We focus in particular on the effect of the unmeasured recoiling nucleus on the angular resolution. We show that for high resolution trackers, the choice of the generator affects the estimated resolution of the telescope. We also show that the current available generator are unable to describe accurately a linearly polarised photon source.
High-frame-rate imaging of biological samples with optoacoustic micro-tomography
NASA Astrophysics Data System (ADS)
Deán-Ben, X. Luís.; López-Schier, Hernán.; Razansky, Daniel
2018-02-01
Optical microscopy remains a major workhorse in biological discovery despite the fact that light scattering limits its applicability to depths of ˜ 1 mm in scattering tissues. Optoacoustic imaging has been shown to overcome this barrier by resolving optical absorption with microscopic resolution in significantly deeper regions. Yet, the time domain is paramount for the observation of biological dynamics in living systems that exhibit fast motion. Commonly, acquisition of microscopy data involves raster scanning across the imaged volume, which significantly limits temporal resolution in 3D. To overcome these limitations, we have devised a fast optoacoustic micro-tomography (OMT) approach based on simultaneous acquisition of 3D image data with a high-density hemispherical ultrasound array having effective detection bandwidth around 25 MHz. We performed experiments by imaging tissue-mimicking phantoms and zebrafish larvae, demonstrating that OMT can provide nearly cellular resolution and imaging speed of 100 volumetric frames per second. As opposed to other optical microscopy techniques, OMT is a hybrid method that resolves optical absorption contrast acoustically using unfocused light excitation. Thus, no penetration barriers are imposed by light scattering in deep tissues, suggesting it as a powerful approach for multi-scale functional and molecular imaging applications.
NASA Astrophysics Data System (ADS)
Marchand, Paul J.; Szlag, Daniel; Bouwens, Arno; Lasser, Theo
2018-03-01
Visible light optical coherence tomography has shown great interest in recent years for spectroscopic and high-resolution retinal and cerebral imaging. Here, we present an extended-focus optical coherence microscopy system operating from the visible to the near-infrared wavelength range for high axial and lateral resolution imaging of cortical structures in vivo. The system exploits an ultrabroad illumination spectrum centered in the visible wavelength range (λc = 650 nm, Δλ ˜ 250 nm) offering a submicron axial resolution (˜0.85 μm in water) and an extended-focus configuration providing a high lateral resolution of ˜1.4 μm maintained over ˜150 μm in depth in water. The system's axial and lateral resolution are first characterized using phantoms, and its imaging performance is then demonstrated by imaging the vasculature, myelinated axons, and neuronal cells in the first layers of the somatosensory cortex of mice in vivo.
NASA Technical Reports Server (NTRS)
Andrews, Jane C.; Knowlton, Kelly
2007-01-01
Light pollution has significant adverse biological effects on humans, animals, and plants and has resulted in the loss of our ability to view the stars and planets of the universe. Over half of the U.S. population resides in coastal regions where it is no longer possible to see the stars and planets in the night sky. Forty percent of the entire U.S. population is never exposed to conditions dark enough for their eyes to convert to night vision capabilities. In coastal regions, urban lights shine far out to sea where they are augmented by the output from fishing boat, cruise ship and oil platform floodlights. The proposed candidate solution suggests using HSCs (high sensitivity cameras) onboard the SAC-C and Aquarius/SAC-D satellites to quantitatively evaluate light pollution at high spatial resolution. New products modeled after pre-existing, radiance-calibrated, global nighttime lights products would be integrated into a modified Garstang model where elevation, mountain screening, Rayleigh scattering, Mie scattering by aerosols, and atmospheric extinction along light paths and curvature of the Earth would be taken into account. Because the spatial resolution of the HSCs on SAC-C and the future Aquarius/SAC-D missions is greater than that provided by the DMSP (Defense Meteorological Satellite Program) OLS (Operational Linescan System) or VIIRS (Visible/Infrared Imager/Radiometer Suite), it may be possible to obtain more precise light intensity data for analytical DSSs and the subsequent reduction in coastal light pollution.
Tabletop computed lighting for practical digital photography.
Mohan, Ankit; Bailey, Reynold; Waite, Jonathan; Tumblin, Jack; Grimm, Cindy; Bodenheimer, Bobby
2007-01-01
We apply simplified image-based lighting methods to reduce the equipment, cost, time, and specialized skills required for high-quality photographic lighting of desktop-sized static objects such as museum artifacts. We place the object and a computer-steered moving-head spotlight inside a simple foam-core enclosure and use a camera to record photos as the light scans the box interior. Optimization, guided by interactive user sketching, selects a small set of these photos whose weighted sum best matches the user-defined target sketch. Unlike previous image-based relighting efforts, our method requires only a single area light source, yet it can achieve high-resolution light positioning to avoid multiple sharp shadows. A reduced version uses only a handheld light and may be suitable for battery-powered field photography equipment that fits into a backpack.
Photoionization in the time and frequency domain
NASA Astrophysics Data System (ADS)
Isinger, M.; Squibb, R. J.; Busto, D.; Zhong, S.; Harth, A.; Kroon, D.; Nandi, S.; Arnold, C. L.; Miranda, M.; Dahlström, J. M.; Lindroth, E.; Feifel, R.; Gisselbrecht, M.; L'Huillier, A.
2017-11-01
Ultrafast processes in matter, such as the electron emission after light absorption, can now be studied using ultrashort light pulses of attosecond duration (10-18 seconds) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses has raised issues in the interpretation of the experimental results and the comparison with theoretical calculations. We determine photoionization time delays in neon atoms over a 40-electron volt energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake-up, in which a second electron is left in an excited state, and obtain excellent agreement with theoretical calculations, thereby solving a puzzle raised by 7-year-old measurements.
Light field measurement based on the single-lens coherent diffraction imaging
NASA Astrophysics Data System (ADS)
Shen, Cheng; Tan, Jiubin; Liu, Zhengjun
2018-01-01
Plenoptic camera and holography are popular light field measurement techniques. However, the low resolution or the complex apparatus hinders their widespread application. In this paper, we put forward a new light field measurement scheme. The lens is introduced into coherent diffraction imaging to operate an optical transform, extended fractional Fourier transform. Combined with the multi-image phase retrieval algorithm, the scheme is proved to hold several advantages. It gets rid of the support requirement and is much easier to implement while keeping a high resolution by making full use of the detector plane. Also, it is verified that our scheme has a superiority over the direct lens focusing imaging in amplitude measurement accuracy and phase retrieval ability.
Low-Light Image Enhancement Using Adaptive Digital Pixel Binning
Yoo, Yoonjong; Im, Jaehyun; Paik, Joonki
2015-01-01
This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP). Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor. PMID:26121609
Timing Analysis with INTEGRAL: Comparing Different Reconstruction Algorithms
NASA Technical Reports Server (NTRS)
Grinberg, V.; Kreykenboehm, I.; Fuerst, F.; Wilms, J.; Pottschmidt, K.; Bel, M. Cadolle; Rodriquez, J.; Marcu, D. M.; Suchy, S.; Markowitz, A.;
2010-01-01
INTEGRAL is one of the few instruments capable of detecting X-rays above 20keV. It is therefore in principle well suited for studying X-ray variability in this regime. Because INTEGRAL uses coded mask instruments for imaging, the reconstruction of light curves of X-ray sources is highly non-trivial. We present results from the comparison of two commonly employed algorithms, which primarily measure flux from mask deconvolution (ii-lc-extract) and from calculating the pixel illuminated fraction (ii-light). Both methods agree well for timescales above about 10 s, the highest time resolution for which image reconstruction is possible. For higher time resolution, ii-light produces meaningful results, although the overall variance of the lightcurves is not preserved.
A cylindrical SPECT camera with de-centralized readout scheme
NASA Astrophysics Data System (ADS)
Habte, F.; Stenström, P.; Rillbert, A.; Bousselham, A.; Bohm, C.; Larsson, S. A.
2001-09-01
An optimized brain single photon emission computed tomograph (SPECT) camera is being designed at Stockholm University and Karolinska Hospital. The design goal is to achieve high sensitivity, high-count rate and high spatial resolution. The sensitivity is achieved by using a cylindrical crystal, which gives a closed geometry with large solid angles. A de-centralized readout scheme where only a local environment around the light excitation is readout supports high-count rates. The high resolution is achieved by using an optimized crystal configuration. A 12 mm crystal plus 12 mm light guide combination gave an intrinsic spatial resolution better than 3.5 mm (140 keV) in a prototype system. Simulations show that a modified configuration can improve this value. A cylindrical configuration with a rotating collimator significantly simplifies the mechanical design of the gantry. The data acquisition and control system uses early digitization and subsequent digital signal processing to extract timing and amplitude information, and monitors the position of the collimator. The readout system consists of 12 or more modules each based on programmable logic and a digital signal processor. The modules send data to a PC file server-reconstruction engine via a Firewire (IEEE-1394) network.
Study on High Resolution Membrane-Based Diffractive Optical Imaging on Geostationary Orbit
NASA Astrophysics Data System (ADS)
Jiao, J.; Wang, B.; Wang, C.; Zhang, Y.; Jin, J.; Liu, Z.; Su, Y.; Ruan, N.
2017-05-01
Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the "6+1" petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.
Near-field microscopy with a microfabricated solid immersion lens
NASA Astrophysics Data System (ADS)
Fletcher, Daniel Alden
2001-07-01
Diffraction of focused light prevents optical microscopes from resolving features in air smaller than half the wavelength, λ Spatial resolution can be improved by passing light through a sub-wavelength metal aperture scanned close to a sample, but aperture-based probes suffer from low optical throughput, typically below 10-4. An alternate and more efficient technique is solid immersion microscopy in which light is focused through a high refractive index Solid Immersion Lens (SIL). This work describes the fabrication, modeling, and use of a microfabricated SIL to obtain spatial resolution better than the diffraction limit in air with high optical throughput for infrared applications. SILs on the order of 10 μm in diameter are fabricated from single-crystal silicon and integrated onto silicon cantilevers with tips for scanning. We measure a focused spot size of λ/5 with optical throughput better than 10-1 at a wavelength of λ = 9.3 μm. Spatial resolution is improved to λ/10 with metal apertures fabricated directly on the tip of the silicon SIL. Microlenses have reduced spherical aberration and better transparency than large lenses but cannot be made arbitrarily small and still focus. We model the advantages and limitations of focusing in lenses close to the wavelength in diameter using an extension of Mie theory. We also investigate a new contrast mechanism unique to microlenses resulting from the decrease in field-of-view with lens diameter. This technique is shown to achieve λ/4 spatial resolution. We explore applications of the microfabricated silicon SIL for high spatial resolution thermal microscopy and biological spectroscopy. Thermal radiation is collected through the SIL from a heated surface with spatial resolution four times better than that of a diffraction- limited infrared microscope. Using a Fourier-transform infrared spectrometer, we observe absorption peaks in bacteria cells positioned at the focus of the silicon SIL.
Expanding the detection efficiency of silicon drift detectors
NASA Astrophysics Data System (ADS)
Schlosser, D. M.; Lechner, P.; Lutz, G.; Niculae, A.; Soltau, H.; Strüder, L.; Eckhardt, R.; Hermenau, K.; Schaller, G.; Schopper, F.; Jaritschin, O.; Liebel, A.; Simsek, A.; Fiorini, C.; Longoni, A.
2010-12-01
To expand the detection efficiency Silicon Drift Detectors (SDDs) with various customized radiation entrance windows, optimized detector areas and geometries have been developed. Optimum values for energy resolution, peak to background ratio (P/B) and high count rate capability support the development. Detailed results on sensors optimized for light element detection down to Boron or even lower will be reported. New developments for detecting medium and high X-ray energies by increasing the effective detector thickness will be presented. Gamma-ray detectors consisting of a SDD coupled to scintillators like CsI(Tl) and LaBr 3(Ce) have been examined. Results of the energy resolution for the 137Cs 662 keV line and the light yield (LY) of such detector systems will be reported.
Index mismatch aberration correction over long working distances using spatial light modulation.
Gjonaj, Bergin; Johnson, Patrick; Bonn, Mischa; Domke, Katrin F
2012-11-20
For many microscopy applications, millimeters-long free working distances (LWD) are required. However, the high resolution and contrast of LWD objectives operated in air are lost when introducing glass and/or liquid with the sample. We propose to use spatial light modulation to correct for such beam aberrations caused by refractive index mismatches. Focusing a monochromatic laser beam with a 10 mm working distance air objective (50×, 0.5 NA) through air, glass, and water, we manage to restore a sharp, intense focus (FWHM<2λ) by adaptive beam phase shaping. Our approach offers a practical and cost-effective route to high resolution and contrast microscopy using LWD air objectives, extending their usage beyond applications in air.
Utility of fluorescence microscopy in embryonic/fetal topographical analysis.
Zucker, R M; Elstein, K H; Shuey, D L; Ebron-McCoy, M; Rogers, J M
1995-06-01
For topographical analysis of developing embryos, investigators typically rely on scanning electron microscopy (SEM) to provide the surface detail not attainable with light microscopy. SEM is an expensive and time-consuming technique, however, and the preparation procedure may alter morphology and leave the specimen friable. We report that by using a high-resolution compound epifluorescence microscope with inexpensive low-power objectives and the fluorochrome acridine orange, we were able to obtain surface images of fixed or fresh whole rat embryos and fetal palates of considerably greater topographical detail than those obtained using routine light microscopy. Indeed the resulting high-resolution images afford not only superior qualitative documentation of morphological observations, but the capability for detailed morphometry via digitization and computer-assisted image analysis.
Development of a PET/Cerenkov-light hybrid imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Hamamura, Fuka; Kato, Katsuhiko
2014-09-15
Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light.more » The dual-head PET system employed a 1.2 × 1.2 × 10 mm{sup 3} GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a {sup 22}Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that {sup 18}F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging system is useful to evaluate the merits and the limitations of Cerenkov-light imaging in molecular imaging research.« less
Portable microscopy platform for the clinical and environmental monitoring
NASA Astrophysics Data System (ADS)
Wang, Weiming; Yu, Yan; Huang, Hui; Ou, Jinping
2016-04-01
Light microscopy can not only address various diagnosis needs such as aquatic parasites and bacteria such as E. coli in water, but also provide a method for the screening of red tide. Traditional microscope based on the smartphone created by adding lens couldn't keep the tradeoff between field-of-view(FOV) and the resolution. In this paper, we demonstrate a non-contact, light and cost-effective microscope platform, that can image highly dense samples with a spatial resolution of ~0.8um over a field-of-view(FOV) of >1mm2. After captured the direct images, we performed the pixel super-resolution algorithm to improve the image resolution and overcome the hardware interference. The system would be a good point-of-care diagnostic solution in resource limited settings. We validated the performance of the system by imaging resolution test targets, the squamous cell cancer(SqCC) and green algae that necessary to detect the squamous carcinoma and red tide
Diffraction-Limited Plenoptic Imaging with Correlated Light
NASA Astrophysics Data System (ADS)
Pepe, Francesco V.; Di Lena, Francesco; Mazzilli, Aldo; Edrei, Eitan; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena
2017-12-01
Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NAs) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade-off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: The increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this Letter, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate maintaining the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of promising applications of plenoptic imaging.
Diffraction-Limited Plenoptic Imaging with Correlated Light.
Pepe, Francesco V; Di Lena, Francesco; Mazzilli, Aldo; Edrei, Eitan; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena
2017-12-15
Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NAs) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade-off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: The increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this Letter, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate maintaining the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of promising applications of plenoptic imaging.
Cheng, Li-Chung; Lien, Chi-Hsiang; Da Sie, Yong; Hu, Yvonne Yuling; Lin, Chun-Yu; Chien, Fan-Ching; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen
2014-01-01
In this study, the light diffraction of temporal focusing multiphoton excitation microscopy (TFMPEM) and the excitation patterning of nonlinear structured-illumination microscopy (NSIM) can be simultaneously and accurately implemented via a single high-resolution digital micromirror device. The lateral and axial spatial resolutions of the TFMPEM are remarkably improved through the second-order NSIM and projected structured light, respectively. The experimental results demonstrate that the lateral and axial resolutions are enhanced from 397 nm to 168 nm (2.4-fold) and from 2.33 μm to 1.22 μm (1.9-fold), respectively, in full width at the half maximum. Furthermore, a three-dimensionally rendered image of a cytoskeleton cell featuring ~25 nm microtubules is improved, with other microtubules at a distance near the lateral resolution of 168 nm also able to be distinguished. PMID:25136483
NASA Astrophysics Data System (ADS)
Kim, Cheolsun; Lee, Woong-Bi; Ju, Gun Wu; Cho, Jeonghoon; Kim, Seongmin; Oh, Jinkyung; Lim, Dongsung; Lee, Yong Tak; Lee, Heung-No
2017-02-01
In recent years, there has been an increasing interest in miniature spectrometers for research and development. Especially, filter-array-based spectrometers have advantages of low cost and portability, and can be applied in various fields such as biology, chemistry and food industry. Miniaturization in optical filters causes degradation of spectral resolution due to limitations on spectral responses and the number of filters. Nowadays, many studies have been reported that the filter-array-based spectrometers have achieved resolution improvements by using digital signal processing (DSP) techniques. The performance of the DSP-based spectral recovery highly depends on the prior information of transmission functions (TFs) of the filters. The TFs vary with respect to an incident angle of light onto the filter-array. Conventionally, it is assumed that the incident angle of light on the filters is fixed and the TFs are known to the DSP. However, the incident angle is inconstant according to various environments and applications, and thus TFs also vary, which leads to performance degradation of spectral recovery. In this paper, we propose a method of incident angle estimation (IAE) for high resolution spectral recovery in the filter-array-based spectrometers. By exploiting sparse signal reconstruction of the L1- norm minimization, IAE estimates an incident angle among all possible incident angles which minimizes the error of the reconstructed signal. Based on IAE, DSP effectively provides a high resolution spectral recovery in the filter-array-based spectrometers.
Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques
NASA Astrophysics Data System (ADS)
Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan
2018-04-01
DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.
Analysis and characterization of high-resolution and high-aspect-ratio imaging fiber bundles.
Motamedi, Nojan; Karbasi, Salman; Ford, Joseph E; Lomakin, Vitaliy
2015-11-10
High-contrast imaging fiber bundles (FBs) are characterized and modeled for wide-angle and high-resolution imaging applications. Scanning electron microscope images of FB cross sections are taken to measure physical parameters and verify the variations of irregular fibers due to the fabrication process. Modal analysis tools are developed that include irregularities in the fiber core shapes and provide results in agreement with experimental measurements. The modeling demonstrates that the irregular fibers significantly outperform a perfectly regular "ideal" array. Using this method, FBs are designed that can provide high contrast with core pitches of only a few wavelengths of the guided light. Structural modifications of the commercially available FB can reduce the core pitch by 60% for higher resolution image relay.
Developing Tools for Undergraduate Spectroscopy: An Inexpensive Visible Light Spectrometer
ERIC Educational Resources Information Center
Vanderveen, Jesse R.; Martin, Brian; Ooms, Kristopher J.
2013-01-01
The design and implementation of an inexpensive, high-resolution Littrow-type visible light spectrometer is presented. The instrument is built from low-cost materials and interfaced with the program RSpec for real-time spectral analysis, making it useful for classroom and laboratory exercises. Using a diffraction grating ruled at 1200 lines/mm and…
Multi-Band Light Curves from Two-Dimensional Simulations of Gamma-Ray Burst Afterglows
NASA Astrophysics Data System (ADS)
MacFadyen, Andrew
2010-01-01
The dynamics of gamma-ray burst outflows is inherently multi-dimensional. 1.) We present high resolution two-dimensional relativistic hydrodynamics simulations of GRBs in the afterglow phase using adaptive mesh refinement (AMR). Using standard synchrotron radiation models, we compute multi-band light curves, from the radio to X-ray, directly from the 2D hydrodynamics simulation data. We will present on-axis light curves for both constant density and wind media. We will also present off-axis light curves relevant for searches for orphan afterglows. We find that jet breaks are smoothed due to both off-axis viewing and wind media effects. 2.) Non-thermal radiation mechanisms in GRB afterglows require substantial magnetic field strengths. In turbulence driven by shear instabilities in relativistic magnetized gas, we demonstrate that magnetic field is naturally amplified to half a percent of the total energy (epsilon B = 0.005). We will show high resolution three dimensional relativistic MHD simulations of this process as well as particle in cell (PIC) simulations of mildly relativistic collisionless shocks.
VizieR Online Data Catalog: Praesepe members with K2 light curve data (Rebull+, 2017)
NASA Astrophysics Data System (ADS)
Rebull, L. M.; Stauffer, J. R.; Hillenbrand, L. A.; Cody, A. M.; Bouvier, J.; Soderblom, D. R.; Pinsonneault, M.; Hebb, L.
2017-11-01
Praesepe members and candidate members were observed in K2 Campaign 5, which lasted for 75 days between 2015 April and October. We obtained high resolution spectra for several of the anomalously slowly rotating stars and all of the objects with odd light curves (Section 4.3) using the Keck HIRES spectrograph. The observations were taken on one of 2016 October 14, December 22, December 26, or 2017 January 13, UT, and cover the wavelength range roughly 4800-9200Å at a spectral resolution of R~45000. (10 data files).
Scanning Transmission Electron Microscopy at High Resolution
Wall, J.; Langmore, J.; Isaacson, M.; Crewe, A. V.
1974-01-01
We have shown that a scanning transmission electron microscope with a high brightness field emission source is capable of obtaining better than 3 Å resolution using 30 to 40 keV electrons. Elastic dark field images of single atoms of uranium and mercury are shown which demonstrate this fact as determined by a modified Rayleigh criterion. Point-to-point micrograph resolution between 2.5 and 3.0 Å is found in dark field images of micro-crystallites of uranium and thorium compounds. Furthermore, adequate contrast is available to observe single atoms as light as silver. Images PMID:4521050
PEPSI, the High-Resolution Optical-IR Spectrograph for the LBT
NASA Astrophysics Data System (ADS)
Andersen, Michael; Strassmeier, Klaus; Hoffman, Axel; Woche, Manfred; Spano, Paolo
PEPSI is a high resolution fibre feed optical-IR polarimetric echelle spectrograph for the Large Binocular Telescope (LBT). PEPSI utilizes the two 8.4m LBT apertures to simultaneously record four polarization states at a resolution of 120.000. The extension of the coverage towards the IR is mainly motivated by the larger Zeeman splitting of IR lines, which would allow to study weaker/fainter magnetic structures on stars. The two optical arms, which also have an integral light mode with R up to 300.000, are under construction, while the IR arm is being designed.
NASA Astrophysics Data System (ADS)
Nylk, Jonathan; McCluskey, Kaley; Aggarwal, Sanya; Tello, Javier A.; Dholakia, Kishan
2017-02-01
Light-sheet microscopy (LSM) has received great interest for fluorescent imaging applications in biomedicine as it facilitates three-dimensional visualisation of large sample volumes with high spatiotemporal resolution whilst minimising irradiation of, and photo-damage to the specimen. Despite these advantages, LSM can only visualize superficial layers of turbid tissues, such as mammalian neural tissue. Propagation-invariant light modes have played a key role in the development of high-resolution LSM techniques as they overcome the natural divergence of a Gaussian beam, enabling uniform and thin light-sheets over large distances. Most notably, Bessel and Airy beam-based light-sheet imaging modalities have been demonstrated. In the single-photon excitation regime and in lightly scattering specimens, Airy-LSM has given competitive performance with advanced Bessel-LSM techniques. Airy and Bessel beams share the property of self-healing, the ability of the beam to regenerate its transverse beam profile after propagation around an obstacle. Bessel-LSM techniques have been shown to increase the penetration-depth of the illumination into turbid specimens but this effect has been understudied in biologically relevant tissues, particularly for Airy beams. It is expected that Airy-LSM will give a similar enhancement over Gaussian-LSM. In this paper, we report on the comparison of Airy-LSM and Gaussian-LSM imaging modalities within cleared and non-cleared mouse brain tissue. In particular, we examine image quality versus tissue depth by quantitative spatial Fourier analysis of neural structures in virally transduced fluorescent tissue sections, showing a three-fold enhancement at 50 μm depth into non-cleared tissue with Airy-LSM. Complimentary analysis is performed by resolution measurements in bead-injected tissue sections.
Strontium and barium iodide high light yield scintillators
NASA Astrophysics Data System (ADS)
Cherepy, Nerine J.; Hull, Giulia; Drobshoff, Alexander D.; Payne, Stephen A.; van Loef, Edgar; Wilson, Cody M.; Shah, Kanai S.; Roy, Utpal N.; Burger, Arnold; Boatner, Lynn A.; Choong, Woon-Seng; Moses, William W.
2008-02-01
Europium-doped strontium and barium iodide are found to be readily growable by the Bridgman method and to produce high scintillation light yields. SrI2(Eu ) emits into the Eu2+ band, centered at 435nm, with a decay time of 1.2μs and a light yield of ˜90000photons/MeV. It offers energy resolution better than 4% full width at half maximum at 662keV, and exhibits excellent light yield proportionality. BaI2(Eu ) produces >30000photons/MeV into the Eu2+ band at 420nm (<1μs decay). An additional broad impurity-mediated recombination band is present at 550nm (>3μs decay), unless high-purity feedstock is used.
NASA Astrophysics Data System (ADS)
Kiekens, Kelli C.; Talarico, Olivia; Barton, Jennifer K.
2018-02-01
A multimodality endoscope system has been designed for early detection of ovarian cancer. Multiple illumination and detection systems must be integrated in a compact, stable, transportable configuration to meet the requirements of a clinical setting. The proximal configuration presented here supports visible light navigation with a large field of view and low resolution, high resolution multiphoton microscopy (MPM), and high resolution optical coherence microscopy (OCM). All modalities are integrated into a single optical system in the endoscope. The system requires two light sources: a green laser for visible light navigation and a compact fiber based femtosecond laser for MPM and OCM. Using an inline wavelength division multiplexer, the two sources are combined into a single mode fiber. To accomplish OCM, a fiber coupler is used to separate the femtosecond laser into a reference arm and signal arm. The reflected reference arm and the signal from the sample are interfered and wavelength separated by a reflection grating and detected using a linear array. The MPM signal is collimated and goes through a series of filters to separate the 2nd and 3rd harmonics as well as twophoton excitation florescence (2PEF) and 3PEF. Each signal is independently detected on a photo multiplier tube and amplified. The visible light is collected by multiple high numerical aperture fibers at the endoscope tip which are bundled into one SMA adapter at the proximal end and connected to a photodetector. This integrated system design is compact, efficient and meets both optical and mechanical requirements for clinical applications.
NASA Astrophysics Data System (ADS)
Zhu, Lili; Wu, Jingping; Lin, Guimin; Hu, Liangjun; Li, Hui
2016-10-01
With high spatial resolution of ultrasonic location and high sensitivity of optical detection, ultrasound-modulated optical tomography (UOT) is a promising noninvasive biological tissue imaging technology. In biological tissue, the ultrasound-modulated light signals are very weak and are overwhelmed by the strong unmodulated light signals. It is a difficulty and key to efficiently pick out the weak modulated light from strong unmodulated light in UOT. Under the effect of an ultrasonic field, the scattering light intensity presents a periodic variation as the ultrasonic frequency changes. So the modulated light signals would be escape from the high unmodulated light signals, when the modulated light signals and the ultrasonic signal are processed cross correlation operation by a lock-in amplifier and without a chopper. Experimental results indicated that the signal-to-noise ratio of UOT is significantly improved by a lock-in amplifier, and the higher the repetition frequency of pulsed ultrasonic wave, the better the signal-to-noise ratio of UOT.
NASA Technical Reports Server (NTRS)
Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Kujawinska, Malgorzata; Pouch, John; Miranda, Feliz
2004-01-01
In a 3-D display system based on an opto-electronic reconstruction of a digitally recorded hologram, the field of view of such a system is limited by the spatial resolution of the liquid crystal on silicon (LCOS) spatial light modular (SLM) used to perform the opto-electronic reconstruction. In this article, the special resolution limitation of LCOS SLM associated with the fringe field effect and interpixel coupling is determined by the liquid crystal detector simulation and the Finite Difference Time Domain (FDTD) simulation. The diffraction efficiency loss associated with the imperfection in the phase profile is studied with an example of opto-electronic reconstruction of an amplitude object. A high spatial resolution LCOS SLM with a wide reconstruction angle is proposed.
NASA Astrophysics Data System (ADS)
Jünger, Felix; Olshausen, Philipp V.; Rohrbach, Alexander
2016-07-01
Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes.
Jünger, Felix; Olshausen, Philipp v.; Rohrbach, Alexander
2016-01-01
Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes. PMID:27465033
PEPSI: the Potsdam Echelle Polarimetric and Spectroscopic Instrument for the LBT
NASA Astrophysics Data System (ADS)
Strassmeier, K. G.; Woche, M.; Ilyin, I.; Popow, E.; Bauer, S.-M.; Dionies, F.; Fechner, T.; Weber, M.; Hofmann, A.; Storm, J.; Materne, R.; Bittner, W.; Bartus, J.; Granzer, T.; Denker, C.; Carroll, T.; Kopf, M.; DiVarano, I.; Beckert, E.; Lesser, M.
2008-07-01
We present the status of PEPSI, the bench-mounted fibre-fed and stabilized "Potsdam Echelle Polarimetric and Spectroscopic Instrument" for the 2×8.4m Large Binocular Telescope in southern Arizona. PEPSI is under construction at AIP and is scheduled for first light in 2009/10. Its ultra-high-resolution mode will deliver an unprecedented spectral resolution of approximately R=310,000 at high efficiency throughout the entire optical/red wavelength range 390-1050nm without the need for adaptive optics. Besides its polarimetric Stokes IQUV mode, the capability to cover the entire optical range in three exposures at resolutions of 40,000, 130,000 and 310,000 will surpass all existing facilities in terms of light-gathering-power times spectral-coverage product. A solar feed will make use of the spectrograph also during day time. As such, we hope that PEPSI will be the most powerful spectrometer of its kind for the years to come.
Tip-enhanced Raman spectroscopy and near-field polarization
NASA Astrophysics Data System (ADS)
Saito, Yuika; Mino, Toshihiro; Verma, Prabhat
2015-12-01
Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for High-resolution Raman spectroscopy. In this method, a metal coated nano-tip acts as a plasmonic antenna to enhance the originally weak Raman scattering from a nanometric volume of a sample. The technique enables to detect Raman scattering light from nano-scale area and also enhance the light intensity with combination of near-filed light and localized surface plasmon generated at a metallized tip apex. Nowadays TERS is used to investigate various nano-scale samples, for examples, carbon nanotubes, graphenes DNA and biomaterials. As the TERS developed, there is high demand to investigate the properties of near-field light e.g. polarization properties. We have analyzed the polarization properties of near-field light in TERS and successfully realized the quantitative nano-imaging by visible light.
SRXRF analysis with spatial resolution of dental calculus
NASA Astrophysics Data System (ADS)
Sánchez, Héctor Jorge; Pérez, Carlos Alberto; Grenón, Miriam
2000-09-01
This work presents elemental-composition studies of dental calculus by X-ray fluorescence analysis using synchrotron radiation. The intrinsic characteristics of synchrotron light allow for a semi-quantitative analysis with spatial resolution. The experiments were carried out in the high-vacuum station of the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). All the measurements were performed in conventional geometry (45°+45°) and the micro-collimation was attained via a pair of orthogonal slits mounted in the beamline. In this way, pixels of 50 μm×50 μm were obtained keeping a high flux of photons on the sample. Samples of human dental calculus were measured in different positions along their growing axis, in order to determine variations of the compositions in the pattern of deposit. Intensity ratios of minor elements and traces were obtained, and linear profiles and surface distributions were determined. As a general summary, we can conclude that μXRF experiments with spatial resolution on dental calculus are feasible with simple collimation and adequate positioning systems, keeping a high flux of photon. These results open interesting perspectives for the future station of the line, devoted to μXRF, which will reach resolutions of the order of 10 μm.
NASA Astrophysics Data System (ADS)
Venter, Petrus J.; Alberts, Antonie C.; du Plessis, Monuko; Joubert, Trudi-Heleen; Goosen, Marius E.; Janse van Rensburg, Christo; Rademeyer, Pieter; Fauré, Nicolaas M.
2013-03-01
Microdisplay technology, the miniaturization and integration of small displays for various applications, is predominantly based on OLED and LCoS technologies. Silicon light emission from hot carrier electroluminescence has been shown to emit light visibly perceptible without the aid of any additional intensification, although the electrical to optical conversion efficiency is not as high as the technologies mentioned above. For some applications, this drawback may be traded off against the major cost advantage and superior integration opportunities offered by CMOS microdisplays using integrated silicon light sources. This work introduces an improved version of our previously published microdisplay by making use of new efficiency enhanced CMOS light emitting structures and an increased display resolution. Silicon hot carrier luminescence is often created when reverse biased pn-junctions enter the breakdown regime where impact ionization results in carrier transport across the junction. Avalanche breakdown is typically unwanted in modern CMOS processes. Design rules and process design are generally tailored to prevent breakdown, while the voltages associated with breakdown are too high to directly interact with the rest of the CMOS standard library. This work shows that it is possible to lower the operating voltage of CMOS light sources without compromising the optical output power. This results in more efficient light sources with improved interaction with other standard library components. This work proves that it is possible to create a reasonably high resolution microdisplay while integrating the active matrix controller and drivers on the same integrated circuit die without additional modifications, in a standard CMOS process.
External Mask Based Depth and Light Field Camera
2013-12-08
laid out in the previous light field cameras. A good overview of the sampling of the plenoptic function can be found in the survey work by Wetzstein et...view is shown in Figure 6. 5. Applications High spatial resolution depth and light fields are a rich source of information about the plenoptic ...http://www.pelicanimaging.com/. [4] E. Adelson and J. Wang. Single lens stereo with a plenoptic camera. Pattern Analysis and Machine Intelligence
NASA Astrophysics Data System (ADS)
Kuang, Zhonghua; Yang, Qian; Wang, Xiaohui; Fu, Xin; Ren, Ning; Sang, Ziru; Wu, San; Zheng, Yunfei; Zhang, Xianming; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng
2018-02-01
Detectors with depth-encoding capability and good timing resolution are required to develop high-performance whole-body or total-body PET scanners. In this work, depth-encoding PET detectors that use light sharing between two discrete crystals and single-ended readout with silicon photomultipliers (SiPMs) were manufactured and evaluated. The detectors consisted of two unpolished 3 × 3 × 20 mm3 LYSO crystals with different coupling materials between them and were read out by Hamamatsu 3 × 3 mm2 SiPMs with one-to-one coupling. The ratio of the energy of one SiPM to the total energy of two SiPMs was used to measure the depth of interaction (DOI). Detectors with different coupling materials in-between the crystals were measured in the singles mode in an effort to obtain detectors that can provide good DOI resolution. The DOI resolution and energy resolution of three types of detector were measured and the timing resolution was measured for the detector with the best DOI and energy resolution. The optimum detector, with 5 mm optical glue, a 9 mm triangular ESR and a 6 mm rectangular ESR in-between the unpolished crystals, provides a DOI resolution of 2.65 mm, an energy resolution of 10.0% and a timing resolution of 427 ps for events of E > 400 keV. The detectors simultaneously provide good DOI and timing resolution, and show great promise for the development of high-performance whole-body and total-body PET scanners.
Production of radially and azimuthally polarized polychromatic beams
NASA Astrophysics Data System (ADS)
Shoham, A.; Vander, R.; Lipson, S. G.
2006-12-01
We describe a system that efficiently provides radially or azimuthally polarized radiation from a randomly polarized source. It is constructed from two conical reflectors and a cylindrical sheet of polarizing film. Envisaged applications include a microscope illuminator for high-resolution surface plasmon resonance microscopy, illumination for high-resolution microlithography, and efficient coupling of a laser source to hollow optical fibers. The angular coherence function of light polarized by the device was measured to evaluate its usefulness for these applications.
NASA Astrophysics Data System (ADS)
Seo, Hokuto; Aihara, Satoshi; Namba, Masakazu; Watabe, Toshihisa; Ohtake, Hiroshi; Kubota, Misao; Egami, Norifumi; Hiramatsu, Takahiro; Matsuda, Tokiyoshi; Furuta, Mamoru; Nitta, Hiroshi; Hirao, Takashi
2010-01-01
Our group has been developing a new type of image sensor overlaid with three organic photoconductive films, which are individually sensitive to only one of the primary color components (blue (B), green (G), or red (R) light), with the aim of developing a compact, high resolution color camera without any color separation optical systems. In this paper, we firstly revealed the unique characteristics of organic photoconductive films. Only choosing organic materials can tune the photoconductive properties of the film, especially excellent wavelength selectivities which are good enough to divide the incident light into three primary colors. Color separation with vertically stacked organic films was also shown. In addition, the high-resolution of organic photoconductive films sufficient for high-definition television (HDTV) was confirmed in a shooting experiment using a camera tube. Secondly, as a step toward our goal, we fabricated a stacked organic image sensor with G- and R-sensitive organic photoconductive films, each of which had a zinc oxide (ZnO) thin film transistor (TFT) readout circuit, and demonstrated image pickup at a TV frame rate. A color image with a resolution corresponding to the pixel number of the ZnO TFT readout circuit was obtained from the stacked image sensor. These results show the potential for the development of high-resolution prism-less color cameras with stacked organic photoconductive films.
Optical Diagnostics in Medicine
NASA Astrophysics Data System (ADS)
Iftimia, Nicusor
2003-03-01
Light has a unique potential for non-invasive tissue diagnosis. The relatively short wavelength of light allows imaging of tissue at the resolution of histopathology. While strong multiple scattering of light in tissue makes attainment of this resolution difficult for thick tissues, most pathology emanates from epithelial surfaces. Therefore, high-resolution diagnosis of many important diseases may be achieved by transmitting light to the surface of interest. The recent fiber-optic implementation of technologies that reject multiple scattering, such as confocal microscopy and optical low coherence interferometry, have brought us one step closer to realizing non-invasive imaging of architectural and cellular features of tissue. Optical coherence tomography (OCT) can produce high-resolution cross-sectional images of biological structures. Clinical OCT studies conducted in the gastrointestinal tract and cardiovascular system have shown that OCT is capable of providing images of the architectural (> 20 µm) microanatomy of a variety of epithelial tissues, including the layered structure of squamous epithelium and arterial vessels. Fine Needle Aspiration- Low Coherence Interferometry (FNA-LCI) is another optical diagnostics technique, which is a suitable solution to increase the effectiveness of the FNA procedures. LCI is capable of measuring depth resolved (axial, z) tissue structure, birefringence, flow (Doppler shift), and spectra at a resolution of several microns. Since LCI systems are fiber-optic based, LCI probes may easily fit within the bore of a fine gauge needle, allowing diagnostic information to be obtained directly from the FNA biopsy site. Fiber optic spectrally encoded confocal microscopy (SECM) is a new confocal microscopy method, which eliminates the need for rapid beam scanning within the optical probe. This advance enables confocal microscopy to be performed through small diameter probes and will allow assessment of internal human tissues in vivo at the cellular level. A detailed description of several fiber optics based systems for early diseases diagnosis, as well as preliminary clinic results, will be presented.
Transparent ceramic scintillators for gamma spectroscopy and MeV imaging
NASA Astrophysics Data System (ADS)
Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Swanberg, E. L.; Beck, P. R.; Schneberk, D. J.; Stone, G.; Perry, R.; Wihl, B.; Fisher, S. E.; Hunter, S. L.; Thelin, P. A.; Thompson, R. R.; Harvey, N. M.; Stefanik, T.; Kindem, J.
2015-09-01
We report on the development of two new mechanically rugged, high light yield transparent ceramic scintillators: (1) Ce-doped Gd-garnet for gamma spectroscopy, and (2) Eu-doped Gd-Lu-bixbyite for radiography. GYGAG(Ce) garnet transparent ceramics offer ρ = 5.8g/cm3, Zeff = 48, principal decay of <100 ns, and light yield of 50,000 Ph/MeV. Gdgarnet ceramic scintillators offer the best energy resolution of any oxide scintillator, as good as R(662 keV) = 3% (Si-PD readout) for small sizes and typically R(662 keV) < 5% for cubic inch sizes. For radiography, the bixbyite transparent ceramic scintillator, (Gd,Lu,Eu)2O3, or "GLO," offers excellent x-ray stopping, with ρ = 9.1 g/cm3 and Zeff = 68. Several 10" diameter by 0.1" thickness GLO scintillators have been fabricated. GLO outperforms scintillator glass for high energy radiography, due to higher light yield (55,000 Ph/MeV) and better stopping, while providing spatial resolution of >8 lp/mm.
Superpixel-based spatial amplitude and phase modulation using a digital micromirror device.
Goorden, Sebastianus A; Bertolotti, Jacopo; Mosk, Allard P
2014-07-28
We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F = 0.98 for a target field with fully independent phase and amplitude at a resolution of 8 × 8 pixels per diffraction limited spot. For the LG10 orbital angular momentum mode the calculated fidelity is F = 0.99993, using 768 × 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50% and 18%, with a comparable light efficiency of around 5%. Our control software is publicly available.
A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio
NASA Astrophysics Data System (ADS)
Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang
2014-12-01
Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.
A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio.
Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang
2014-12-12
Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.
Diffraction Efficiency of Thin Film Holographic Beam Steering Devices
NASA Technical Reports Server (NTRS)
Titus, Charles M.; Pouch, John; Nguyen, Hung; Miranda, Felix; Bos, Philip J.
2003-01-01
Dynamic holography has been demonstrated as a method for correcting aberrations in space deployable optics, and can also be used to achieve high-resolution beam steering in the same environment. In this paper, we consider some of the factors affecting the efficiency of these devices. Specifically, the effect on the efficiency of a highly collimated beam from the number of discrete phase steps per period is considered for a blazed thin film beam steering grating. The effect of the number of discrete phase steps per period on steering resolution is also considered. We also present some result of Finite-Difference Time-Domain (FDTD) calculations of light propagating through liquid crystal "blazed" gratings. Liquid crystal gratings are shown to spatially modulate both the phase and amplitude of the propagating light.
NASA Astrophysics Data System (ADS)
Schulz-Hildebrandt, H.; Münter, Michael; Ahrens, M.; Spahr, H.; Hillmann, D.; König, P.; Hüttmann, G.
2018-03-01
Optical coherence tomography (OCT) images scattering tissues with 5 to 15 μm resolution. This is usually not sufficient for a distinction of cellular and subcellular structures. Increasing axial and lateral resolution and compensation of artifacts caused by dispersion and aberrations is required to achieve cellular and subcellular resolution. This includes defocus which limit the usable depth of field at high lateral resolution. OCT gives access the phase of the scattered light and hence correction of dispersion and aberrations is possible by numerical algorithms. Here we present a unified dispersion/aberration correction which is based on a polynomial parameterization of the phase error and an optimization of the image quality using Shannon's entropy. For validation, a supercontinuum light sources and a costume-made spectrometer with 400 nm bandwidth were combined with a high NA microscope objective in a setup for tissue and small animal imaging. Using this setup and computation corrections, volumetric imaging at 1.5 μm resolution is possible. Cellular and near cellular resolution is demonstrated in porcine cornea and the drosophila larva, when computational correction of dispersion and aberrations is used. Due to the excellent correction of the used microscope objective, defocus was the main contribution to the aberrations. In addition, higher aberrations caused by the sample itself were successfully corrected. Dispersion and aberrations are closely related artifacts in microscopic OCT imaging. Hence they can be corrected in the same way by optimization of the image quality. This way microscopic resolution is easily achieved in OCT imaging of static biological tissues.
High resolution study of magnetic ordering at absolute zero.
Lee, M; Husmann, A; Rosenbaum, T F; Aeppli, G
2004-05-07
High resolution pressure measurements in the zero-temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the precision that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.
Micro-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy
NASA Technical Reports Server (NTRS)
Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-Yen, Kongpop; Ehsan, Negar; Caltado, Giuseppe; Wollock, Edward
2012-01-01
We describe the micro-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the micro strip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.
Mu-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy
NASA Technical Reports Server (NTRS)
Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-yen, Kongpop; Ehsan, Negar; Cataldo, Giuseppe; Wollack, Ed
2012-01-01
We describe the Mu-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.
Malaria Diagnosis Using a Mobile Phone Polarized Microscope
NASA Astrophysics Data System (ADS)
Pirnstill, Casey W.; Coté, Gerard L.
2015-08-01
Malaria remains a major global health burden, and new methods for low-cost, high-sensitivity, diagnosis are essential, particularly in remote areas with low-resource around the world. In this paper, a cost effective, optical cell-phone based transmission polarized light microscope system is presented for imaging the malaria pigment known as hemozoin. It can be difficult to determine the presence of the pigment from background and other artifacts, even for skilled microscopy technicians. The pigment is much easier to observe using polarized light microscopy. However, implementation of polarized light microscopy lacks widespread adoption because the existing commercial devices have complicated designs, require sophisticated maintenance, tend to be bulky, can be expensive, and would require re-training for existing microscopy technicians. To this end, a high fidelity and high optical resolution cell-phone based polarized light microscopy system is presented which is comparable to larger bench-top polarized microscopy systems but at much lower cost and complexity. The detection of malaria in fixed and stained blood smears is presented using both, a conventional polarized microscope and our cell-phone based system. The cell-phone based polarimetric microscopy design shows the potential to have both the resolution and specificity to detect malaria in a low-cost, easy-to-use, modular platform.
Malaria Diagnosis Using a Mobile Phone Polarized Microscope
Pirnstill, Casey W.; Coté, Gerard L.
2015-01-01
Malaria remains a major global health burden, and new methods for low-cost, high-sensitivity, diagnosis are essential, particularly in remote areas with low-resource around the world. In this paper, a cost effective, optical cell-phone based transmission polarized light microscope system is presented for imaging the malaria pigment known as hemozoin. It can be difficult to determine the presence of the pigment from background and other artifacts, even for skilled microscopy technicians. The pigment is much easier to observe using polarized light microscopy. However, implementation of polarized light microscopy lacks widespread adoption because the existing commercial devices have complicated designs, require sophisticated maintenance, tend to be bulky, can be expensive, and would require re-training for existing microscopy technicians. To this end, a high fidelity and high optical resolution cell-phone based polarized light microscopy system is presented which is comparable to larger bench-top polarized microscopy systems but at much lower cost and complexity. The detection of malaria in fixed and stained blood smears is presented using both, a conventional polarized microscope and our cell-phone based system. The cell-phone based polarimetric microscopy design shows the potential to have both the resolution and specificity to detect malaria in a low-cost, easy-to-use, modular platform. PMID:26303238
NASA Astrophysics Data System (ADS)
Vattikuti, S. V. Prabhakar; Ngo, Ich-Long; Byon, Chan
2016-11-01
In this work, we report the synthesis of CdS-incorporated porous WS2 by a simple hydrothermal method. The structural, morphological, and optical properties of the samples were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), high resolution X-ray photoelectron spectroscopy (XPS) and UV-visible spectrometry. The photocatalytic activities were established for degradation of crystal violet (CV) under UV and visible light irradiation. The CdS-incorporated porous WS2 hybrid demonstrated high photocatalytic activity for degradation of CV pollutant compared to pure CdS nanoparticles and porous WS2 sheets. This result implies that the CdS-incorporated porous WS2 promoted more electron-hole pair transformation under UV and visible light irradiation. This significant enhancement of photocatalytic efficiency of CdS-incorporated porous WS2 photocatalyst under visible light can be ascribed to the presence of CdS nanospheres on the meshed-like WS2 sheets which potentially improves absorption in the visible range enabled by surface plasmon resonance effect of CdS nanospheres. The photostability and reusability of the CdS-porous WS2 were examined through recycling experiments.
Membrane Protein Crystallization Using Laser Irradiation
NASA Astrophysics Data System (ADS)
Adachi, Hiroaki; Murakami, Satoshi; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Inoue, Tsuyoshi; Mori, Yusuke; Yamaguchi, Akihito; Sasaki, Takatomo
2004-10-01
We demonstrate the crystallization of a membrane protein using femtosecond laser irradiation. This method, which we call the laser irradiated growth technique (LIGHT), is useful for producing AcrB crystals in a solution of low supersaturation range. LIGHT is characterized by reduced nucleation times. This feature is important for crystallizing membrane proteins because of their labile properties when solubilized as protein-detergent micelles. Using LIGHT, high-quality crystals of a membrane transporter protein, AcrB, were obtained. The resulting crystals were found to be of sufficiently high resolution for X-ray diffraction. The results reported here indicate that LIGHT is a powerful tool for membrane protein crystallization, as well as for the growth of soluble proteins.
Characterizing Scitillation and Cherenkov Light Yield in Water-Based Liquid Scintillators
NASA Astrophysics Data System (ADS)
Land, B. J.; Caravaca, J.; Descamps, F. B.; Orebi Gann, G. D.
2016-03-01
The recent development of Water-based Liquid Scintillator (WbLS) has made it possible to produce scintillating materials with highly tunable light yields and excellent optical clarity. This allows for a straightforward combination of the directional properties of Cherenkov light with the greater energy resolution afforded by the typically brighter scintillation light, which lends itself well to a broad program of neutrino physics. Here we explore the light yields and optical properties of WbLS materials in development for Theia (formerly ASDC) as measured in our benchtop Theia R&D at Berkeley Lab and extrapolate to larger detectors.
High-Resolution Large Field-of-View FUV Compact Camera
NASA Technical Reports Server (NTRS)
Spann, James F.
2006-01-01
The need for a high resolution camera with a large field of view and capable to image dim emissions in the far-ultraviolet is driven by the widely varying intensities of FUV emissions and spatial/temporal scales of phenomena of interest in the Earth% ionosphere. In this paper, the concept of a camera is presented that is designed to achieve these goals in a lightweight package with sufficient visible light rejection to be useful for dayside and nightside emissions. The camera employs the concept of self-filtering to achieve good spectral resolution tuned to specific wavelengths. The large field of view is sufficient to image the Earth's disk at Geosynchronous altitudes and capable of a spatial resolution of >20 km. The optics and filters are emphasized.
Hyperlens-array-implemented optical microscopy
NASA Astrophysics Data System (ADS)
Iwanaga, Masanobu
2014-08-01
Limit of resolution of conventional optical microscopes has never reached below 100 nm under visible light illumination. We show that numerically designed high-transmittance hyperlens array (HLA) is implemented in an optical microscope and works in practice for achieving one-shot-recording optical images of in-situ placed objects with sub 50 nm resolution in lateral direction. Direct resolution test employing well-defined nanopatterns proves that the HLA-implemented imaging is super-resolution optical microscopy, which works even under nW/mm2 visible illumination for objects. The HLA implementation makes the resolution of conventional microscopes one-scale higher, leading to the 1/10 illumination wavelength range, that is, mesoscopic range.
Jung, Sungwook; Park, Joonhyuck; Bang, Jiwon; Kim, Jae-Yeol; Kim, Cheolhee; Jeon, Yongmoon; Lee, Seung Hwan; Jin, Ho; Choi, Sukyung; Kim, Bomi; Lee, Woo Jin; Pack, Chan-Gi; Lee, Jong-Bong; Lee, Nam Ki; Kim, Sungjee
2017-06-07
Photoswitching or modulation of quantum dots (QDs) can be promising for many fields that include display, memory, and super-resolution imaging. However, such modulations have mostly relied on photomodulations of conjugated molecules in QD vicinity, which typically require high power of high energy photons at UV. We report a visible light-induced facile modulation route for QD-dye conjugates. QD crystal violets conjugates (QD-CVs) were prepared and the crystal violet (CV) molecules on QD quenched the fluorescence efficiently. The fluorescence of QD-CVs showed a single cycle of emission burst as they go through three stages of (i) initially quenched "off" to (ii) photoactivated "on" as the result of chemical change of CVs induced by photoelectrons from QD and (iii) back to photodarkened "off" by radical-associated reactions. Multicolor on-demand photopatterning was demonstrated using QD-CV solid films. QD-CVs were introduced into cells, and excitation with visible light yielded photomodulation from "off" to "on" and "off" by nearly ten fold. Individual photoluminescence dynamics of QD-CVs was investigated using fluorescence correlation spectroscopy and single QD emission analysis, which revealed temporally stochastic photoactivations and photodarkenings. Exploiting the stochastic fluorescence burst of QD-CVs, simultaneous multicolor super-resolution localizations were demonstrated.
Visual resolution in incoherent and coherent light: preliminary investigation
NASA Astrophysics Data System (ADS)
Sarnowska-Habrat, Katarzyna; Dubik, Boguslawa; Zajac, Marek
2001-05-01
In ophthalmology and optometry a number of measures are used for describing quality of human vision such as resolution, visual acuity, contrast sensitivity function, etc. In this paper we will concentrate on the vision quality understood as a resolution of periodic object being a set of equidistant parallel lines of given spacing and direction. The measurement procedure is based on presenting the test to the investigated person and determining the highest spatial frequency he/she can still resolve. In this paper we describe a number of experiments in which we use test tables illuminated with light both coherent and incoherent of different spectral characteristics. Our experiments suggest that while considering incoherent polychromatic illumination the resolution in blue light is substantially worse than in white light. In coherent illumination speckling effect causes worsening of resolution. While using laser light it is easy to generate a sinusoidal interference pattern which can serve as test object. In the paper we compare the results of resolution measurements with test tables and interference fringes.
High-Resolution, Low-Cost Spectrometer-on-Chip
2015-01-02
extracted for each PhCs for λ=400 and 500 nm, respectively; d) example of the spectral response of our prototype to two input filtered lights. aBeam...packed into the size of a USB key. Nano-spectrometers with a resolution down to 0.5 nm and a spectral range up to 229 nm were successfully demonstrated...Our miniaturized spectrometers are defining the state-of-the-art for on-chip spectroscopy, as well as in terms of spectral resolution and bandwidth
Characteristics of Un doped and Europium-dopedSrI2 Scintillator Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturm, Benjamin; Cherepy, Nerine; Drury, Owen
2012-01-01
High energy resolution gamma-ray detectors that can be formed into relatively large sizes while operating at room temperature offer many advantages for national security applications. We are working toward that goal through the development of SrI{sub 2}(Eu) scintillator detectors, which routinely provide <;3.0% energy resolution at 662 keV with volumes >;10 cm{sup 3}. In this study, we have tested pure, undoped SrI{sub 2} to gain a better understanding of the scintillation properties and spectroscopic performance achievable without activation. An undoped crystal grown from 99.999% pure SrI{sub 2} pellets was tested for its spectroscopic performance, its light yield, and uniformity ofmore » scintillation light collection as a function of gamma-ray interaction position relative to the crystal growth direction. Undoped SrI{sub 2} was found to provide energy resolution of 5.3% at 662 keV, and the light collection nonuniformity varied by only 0.72% over the length of the crystal. Measurements of both a 3% Eu-doped and the undoped SrI{sub 2} crystal were carried out in the SLYNCI facility and indicate differences in their light yield non-proportionality. The surprisingly good scintillation properties of the pure SrI{sub 2} crystal suggests that with high-purity feedstock, further reduction of the Eu concentration can be made to grow larger crystals while not adversely impacting the spectroscopic performance.« less
Gallium nitride light sources for optical coherence tomography
NASA Astrophysics Data System (ADS)
Goldberg, Graham R.; Ivanov, Pavlo; Ozaki, Nobuhiko; Childs, David T. D.; Groom, Kristian M.; Kennedy, Kenneth L.; Hogg, Richard A.
2017-02-01
The advent of optical coherence tomography (OCT) has permitted high-resolution, non-invasive, in vivo imaging of the eye, skin and other biological tissue. The axial resolution is limited by source bandwidth and central wavelength. With the growing demand for short wavelength imaging, super-continuum sources and non-linear fibre-based light sources have been demonstrated in tissue imaging applications exploiting the near-UV and visible spectrum. Whilst the potential has been identified of using gallium nitride devices due to relative maturity of laser technology, there have been limited reports on using such low cost, robust devices in imaging systems. A GaN super-luminescent light emitting diode (SLED) was first reported in 2009, using tilted facets to suppress lasing, with the focus since on high power, low speckle and relatively low bandwidth applications. In this paper we discuss a method of producing a GaN based broadband source, including a passive absorber to suppress lasing. The merits of this passive absorber are then discussed with regards to broad-bandwidth applications, rather than power applications. For the first time in GaN devices, the performance of the light sources developed are assessed though the point spread function (PSF) (which describes an imaging systems response to a point source), calculated from the emission spectra. We show a sub-7μm resolution is possible without the use of special epitaxial techniques, ultimately outlining the suitability of these short wavelength, broadband, GaN devices for use in OCT applications.
NASA Astrophysics Data System (ADS)
Linnenberger, A.
2018-02-01
Wavefront shaping devices such as deformable mirrors, liquid crystal spatial light modulators (SLMs), and active lenses are of considerable interest in microscopy for aberration correction, volumetric imaging, and programmable excitation. Liquid crystal SLMs are high resolution phase modulators capable of creating complex phase profiles to reshape, or redirect light within a three-dimensional (3D) volume. Recent advances in Meadowlark Optics (MLO) SLMs reduce losses by increasing fill factor from 83.4% to 96%, and improving resolution from 512 x 512 pixels to 1920 x 1152 pixels while maintaining a liquid crystal response time of 300 Hz at 1064 nm. This paper summarizes new SLM capabilities, and benefits for microscopy.
Modulating complex beams in amplitude and phase using fast tilt-micromirror arrays and phase masks.
Roth, Matthias; Heber, Jörg; Janschek, Klaus
2018-06-15
The Letter proposes a system for the spatial modulation of light in amplitude and phase at kilohertz frame rates and high spatial resolution. The focus is fast spatial light modulators (SLMs) consisting of continuously tiltable micromirrors. We investigate the utilization of such SLMs in combination with a static phase mask in a 4f setup. The phase mask enables the complex beam modulation in a linear optical arrangement. Furthermore, adding so-called phase steps to the phase mask increases both the number of image pixels at constant SLM resolution and the optical efficiency. We illustrate our concept based on numerical simulations.
Virtual reality 3D headset based on DMD light modulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Evans, Allan; Tang, Edward
We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Shin-ichi; Ito, Takahiro; Nakamura, Eiken
A high-energy-resolution angle-resolved photoemission beamline in the vacuum-ultraviolet (VUV) region has been designed for a 750 MeV synchrotron light source UVSOR-II. The beamline equips an APPLE-II-type undulator with the horizontally/vertically linear and right/left circular polarizations, a modified Wadsworth-type monochromator and a high-resolution photoelectron analyzer. The monochromator covers the photon energy range of 6 - 40 eV. The energy resolution (hv/{delta}hv) and the photon flux on samples are expected to be 2 x 104 and 1012 photons/sec at 10 eV, 4 x 104 and 5 x 1011 photons/sec at 20 eV, and 6 x 104 and 1011 photons/sec at 40 eV,more » respectively. The beamline provides the high-resolution angle-resolved photoemission spectroscopy less than 1 meV in the whole VUV energy range.« less
Maximum likelihood positioning and energy correction for scintillation detectors
NASA Astrophysics Data System (ADS)
Lerche, Christoph W.; Salomon, André; Goldschmidt, Benjamin; Lodomez, Sarah; Weissler, Björn; Solf, Torsten
2016-02-01
An algorithm for determining the crystal pixel and the gamma ray energy with scintillation detectors for PET is presented. The algorithm uses Likelihood Maximisation (ML) and therefore is inherently robust to missing data caused by defect or paralysed photo detector pixels. We tested the algorithm on a highly integrated MRI compatible small animal PET insert. The scintillation detector blocks of the PET gantry were built with the newly developed digital Silicon Photomultiplier (SiPM) technology from Philips Digital Photon Counting and LYSO pixel arrays with a pitch of 1 mm and length of 12 mm. Light sharing was used to readout the scintillation light from the 30× 30 scintillator pixel array with an 8× 8 SiPM array. For the performance evaluation of the proposed algorithm, we measured the scanner’s spatial resolution, energy resolution, singles and prompt count rate performance, and image noise. These values were compared to corresponding values obtained with Center of Gravity (CoG) based positioning methods for different scintillation light trigger thresholds and also for different energy windows. While all positioning algorithms showed similar spatial resolution, a clear advantage for the ML method was observed when comparing the PET scanner’s overall single and prompt detection efficiency, image noise, and energy resolution to the CoG based methods. Further, ML positioning reduces the dependence of image quality on scanner configuration parameters and was the only method that allowed achieving highest energy resolution, count rate performance and spatial resolution at the same time.
Recent advances in a linear micromirror array for high-resolution projection
NASA Astrophysics Data System (ADS)
Picard, Francis; Doucet, Michel; Niall, Keith K.; Larouche, Carl; Savard, Maxime; Crisan, Silviu; Thibault, Simon; Jerominek, Hubert
2004-05-01
The visual displays of contemporary military flight simulators lack adequate definition to represent scenes in basic fast-jet fighter tasks. For example, air-to-air and air-to-ground targets are not projected with sufficient contrast and resolution for a pilot to perceive aspect, aspect rate and object detail at real world slant ranges. Simulator display geometries require the development of ultra-high resolution projectors with greater than 20 megapixel resolution at 60 Hz frame rate. A new micromirror device has been developed to address this requirement; it is able to modulate light intensity in an analog fashion with switching times shorter than 5 μs. When combined with a scanner, a laser and Schlieren optics, a linear array of these flexible micromirrors can display images composed of thousands of lines at a frame rate of 60 Hz. Recent results related to evaluation of this technology for high resolution projection are presented. Alternate operation modes for light modulation with flexible micromirrors are proposed. The related importance of controlling the residual micromirror curvature is discussed and results of experiments investigating the use of the deposition pressure to achieve such control are reported. Moreover, activities aiming at minimizing the micromirror response time and, so doing, maximizing the number of image columns per image frame are discussed. Finally, contrast measurement and estimate of the contrast limit achievable with the flexible micromirror technology are presented. All reported activities support the development of a fully addressable 2000-element micromirror array.
NASA Astrophysics Data System (ADS)
Xu, Si-Yao; Li, Zhuo
2014-04-01
Complete high-resolution light curves of GRB 080319B observed by Swift present an opportunity for detailed temporal analysis of prompt optical emission. With a two-component distribution of initial Lorentz factors, we simulate the dynamical process of shells being ejected from the central engine in the framework of the internal shock model. The emitted radiations are decomposed into different frequency ranges for a temporal correlation analysis between the light curves in different energy bands. The resulting prompt optical and gamma-ray emissions show similar temporal profiles, with both showing a superposition of a component with slow variability and a component with fast variability, except that the gamma-ray light curve is much more variable than its optical counterpart. The variability in the simulated light curves and the strong correlation with a time lag between the optical and gamma-ray emissions are in good agreement with observations of GRB 080319B. Our simulations suggest that the variations seen in the light curves stem from the temporal structure of the shells injected from the central engine of gamma-ray bursts. Future observations with high temporal resolution of prompt optical emission from GRBs, e.g., by UFFO-Pathfinder and SVOM-GWAC, will provide a useful tool for investigating the central engine activity.
Organic-on-silicon complementary metal-oxide-semiconductor colour image sensors.
Lim, Seon-Jeong; Leem, Dong-Seok; Park, Kyung-Bae; Kim, Kyu-Sik; Sul, Sangchul; Na, Kyoungwon; Lee, Gae Hwang; Heo, Chul-Joon; Lee, Kwang-Hee; Bulliard, Xavier; Satoh, Ryu-Ichi; Yagi, Tadao; Ro, Takkyun; Im, Dongmo; Jung, Jungkyu; Lee, Myungwon; Lee, Tae-Yon; Han, Moon Gyu; Jin, Yong Wan; Lee, Sangyoon
2015-01-12
Complementary metal-oxide-semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor.
Organic-on-silicon complementary metal–oxide–semiconductor colour image sensors
Lim, Seon-Jeong; Leem, Dong-Seok; Park, Kyung-Bae; Kim, Kyu-Sik; Sul, Sangchul; Na, Kyoungwon; Lee, Gae Hwang; Heo, Chul-Joon; Lee, Kwang-Hee; Bulliard, Xavier; Satoh, Ryu-Ichi; Yagi, Tadao; Ro, Takkyun; Im, Dongmo; Jung, Jungkyu; Lee, Myungwon; Lee, Tae-Yon; Han, Moon Gyu; Jin, Yong Wan; Lee, Sangyoon
2015-01-01
Complementary metal–oxide–semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor. PMID:25578322
NASA Technical Reports Server (NTRS)
2005-01-01
This spectacular image of comet Tempel 1 was taken 67 seconds after it obliterated Deep Impact's impactor spacecraft. The image was taken by the high-resolution camera on the mission's flyby craft. Scattered light from the collision saturated the camera's detector, creating the bright splash seen here. Linear spokes of light radiate away from the impact site, while reflected sunlight illuminates most of the comet surface. The image reveals topographic features, including ridges, scalloped edges and possibly impact craters formed long ago.Programmable near-infrared ranging system
Everett, Jr., Hobart R.
1989-01-01
A high angular resolution ranging system particularly suitable for indoor plications involving mobile robot navigation and collision avoidance uses a programmable array of light emitters that can be sequentially incremented by a microprocessor. A plurality of adjustable level threshold detectors are used in an optical receiver for detecting the threshold level of the light echoes produced when light emitted from one or more of the emitters is reflected by a target or object in the scan path of the ranging system.
Observation of superradiant synchrotron radiation in the terahertz region
NASA Astrophysics Data System (ADS)
Billinghurst, B. E.; Bergstrom, J. C.; Dallin, L.; de Jong, M.; May, T. E.; Vogt, J. M.; Wurtz, W. A.
2013-06-01
We report the first high-resolution measurement of superradiance, using coherent synchrotron radiation in the terahertz region from the Canadian Light Source synchrotron and a Michelson interferometer with a nominal frequency resolution of 0.00096cm-1. Superradiance arises when a high degree of phase coherence exists between the radiation fields of the individual electron bunches, and manifests itself as a series of narrow spectral peaks at harmonics of the bunch frequency. We observe an enhancement factor of 16 at the spectral peaks, limited by the interferometer resolution. The spectral distribution and relative amplitudes of the superradiant peaks are modified by altering the pattern of bunches along the bunch train.
An interferometer for high-resolution optical surveillance from GEO - internal metrology breadboard
NASA Astrophysics Data System (ADS)
Bonino, L.; Bresciani, F.; Piasini, G.; Pisani, M.; Cabral, A.; Rebordão, J.; Musso, F.
2017-11-01
This paper describes the internal metrology breadboard development activities performed in the frame of the EUCLID CEPA 9 RTP 9.9 "High Resolution Optical Satellite Sensor" project of the WEAO Research Cell by AAS-I and INETI. The Michelson Interferometer Testbed demonstrates the possibility of achieving a cophasing condition between two arms of the optical interferometer starting from a large initial white light Optical Path Difference (OPD) unbalance and of maintaining the fringe pattern stabilized in presence of disturbances.
Schreppel, Heather A.; Cimitile, Matthew J.
2011-01-01
The U.S. Geological Survey (USGS) Coastal and Marine Geology Program develops and uses specialized technology to build high-resolution topographic and habitat maps. High-resolution maps of topography, bathymetry, and habitat describe important features affected by coastal-management decisions. The mapped information serves as a baseline for evaluating resources and tracking the effectiveness of resource- and conservation-management decisions. These data products are critical to researchers, decision makers, resource managers, planners, and the public. To learn more about Lidar (light detection and ranging) technology visit: http://ngom.usgs.gov/dsp/.
High resolution projection micro stereolithography system and method
Spadaccini, Christopher M.; Farquar, George; Weisgraber, Todd; Gemberling, Steven; Fang, Nicholas; Xu, Jun; Alonso, Matthew; Lee, Howon
2016-11-15
A high-resolution P.mu.SL system and method incorporating one or more of the following features with a standard P.mu.SL system using a SLM projected digital image to form components in a stereolithographic bath: a far-field superlens for producing sub-diffraction-limited features, multiple spatial light modulators (SLM) to generate spatially-controlled three-dimensional interference holograms with nanoscale features, and the integration of microfluidic components into the resin bath of a P.mu.SL system to fabricate microstructures of different materials.
Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction
Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H.; Franz, Hermann
2015-01-01
Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1’s efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation. PMID:25931084
Archer, James; Li, Enbang; Petasecca, Marco; Stevenson, Andrew; Livingstone, Jayde; Dipuglia, Andrew; Davis, Jeremy; Rosenfeld, Anatoly; Lerch, Michael
2018-05-01
Cancer is one of the leading causes of death worldwide. External beam radiation therapy is one of the most important modalities for the treatment of cancers. Synchrotron microbeam radiation therapy (MRT) is a novel pre-clinical therapy that uses highly spatially fractionated X-ray beams to target tumours, allowing doses much higher than conventional radiotherapies to be delivered. A dosimeter with a high spatial resolution is required to provide the appropriate quality assurance for MRT. This work presents a plastic scintillator fibre optic dosimeter with a one-dimensional spatial resolution of 20 µm, an improvement on the dosimeter with a resolution of 50 µm that was demonstrated in previous work. The ability of this probe to resolve microbeams of width 50 µm has been demonstrated. The major limitations of this method were identified, most notably the low-light signal resulting from the small sensitive volume, which made valley dose measurements very challenging. A titanium-based reflective paint was used as a coating on the probe to improve the light collection, but a possible effect of the high-Z material on the probes water-equivalence has been identified. The effect of the reflective paint was a 28.5 ± 4.6% increase in the total light collected; it did not affect the shape of the depth-dose profile, nor did it explain an over-response observed when used to probe at low depths, when compared with an ionization chamber. With improvements to the data acquisition, this probe design has the potential to provide a water-equivalent, inexpensive dosimetry tool for MRT.
Retinal Prosthetics, Optogenetics, and Chemical Photoswitches
2015-01-01
Three technologies have emerged as therapies to restore light sensing to profoundly blind patients suffering from late-stage retinal degenerations: (1) retinal prosthetics, (2) optogenetics, and (3) chemical photoswitches. Prosthetics are the most mature and the only approach in clinical practice. Prosthetic implants require complex surgical intervention and provide only limited visual resolution but can potentially restore navigational ability to many blind patients. Optogenetics uses viral delivery of type 1 opsin genes from prokaryotes or eukaryote algae to restore light responses in survivor neurons. Targeting and expression remain major problems, but are potentially soluble. Importantly, optogenetics could provide the ultimate in high-resolution vision due to the long persistence of gene expression achieved in animal models. Nevertheless, optogenetics remains challenging to implement in human eyes with large volumes, complex disease progression, and physical barriers to viral penetration. Now, a new generation of photochromic ligands or chemical photoswitches (azobenzene-quaternary ammonium derivatives) can be injected into a degenerated mouse eye and, in minutes to hours, activate light responses in neurons. These photoswitches offer the potential for rapidly and reversibly screening the vision restoration expected in an individual patient. Chemical photoswitch variants that persist in the cell membrane could make them a simple therapy of choice, with resolution and sensitivity equivalent to optogenetics approaches. A major complexity in treating retinal degenerations is retinal remodeling: pathologic network rewiring, molecular reprogramming, and cell death that compromise signaling in the surviving retina. Remodeling forces a choice between upstream and downstream targeting, each engaging different benefits and defects. Prosthetics and optogenetics can be implemented in either mode, but the use of chemical photoswitches is currently limited to downstream implementations. Even so, given the high density of human foveal ganglion cells, the ultimate chemical photoswitch treatment could deliver cost-effective, high-resolution vision for the blind. PMID:25089879
Retinal Optical Coherence Tomography Imaging
NASA Astrophysics Data System (ADS)
Drexler, Wolfgang; Fujimoto, James G.
The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in combination with three-dimensional UHR OCT, recently enabled in vivo cellular resolution retinal imaging.
Müller Glial Cell-Provided Cellular Light Guidance through the Vital Guinea-Pig Retina
Agte, Silke; Junek, Stephan; Matthias, Sabrina; Ulbricht, Elke; Erdmann, Ines; Wurm, Antje; Schild, Detlev; Käs, Josef A.; Reichenbach, Andreas
2011-01-01
In vertebrate eyes, images are projected onto an inverted retina where light passes all retinal layers on its way to the photoreceptor cells. Light scattering within this tissue should impair vision. We show that radial glial (Müller) cells in the living retina minimize intraretinal light scatter and conserve the diameter of a beam that hits a single Müller cell endfoot. Thus, light arrives at individual photoreceptors with high intensity. This leads to an optimized signal/noise ratio, which increases visual sensitivity and contrast. Moreover, we show that the ratio between Müller cells and cones—responsible for acute vision—is roughly 1. This suggests that high spatiotemporal resolution may be achieved by each cone receiving its part of the image via its individual Müller cell-light guide. PMID:22261048
16 nm-resolution lithography using ultra-small-gap bowtie apertures
NASA Astrophysics Data System (ADS)
Chen, Yang; Qin, Jin; Chen, Jianfeng; Zhang, Liang; Ma, Chengfu; Chu, Jiaru; Xu, Xianfan; Wang, Liang
2017-02-01
Photolithography has long been a critical technology for nanoscale manufacturing, especially in the semiconductor industry. However, the diffractive nature of light has limited the continuous advance of optical lithography resolution. To overcome this obstacle, near-field scanning optical lithography (NSOL) is an alternative low-cost technique, whose resolution is determined by the near-field localization that can be achieved. Here, we apply the newly-developed backside milling method to fabricate bowtie apertures with a sub-15 nm gap, which can substantially improve the resolution of NSOL. A highly confined electric near field is produced by localized surface plasmon excitation and nanofocusing of the closely-tapered gap. We show contact lithography results with a record 16 nm resolution (FWHM). This photolithography scheme promises potential applications in data storage, high-speed computation, energy harvesting, and other nanotechnology areas.
NASA Astrophysics Data System (ADS)
Darafsheh, Arash
2018-02-01
Microsphere-assisted imaging can be incorporated onto conventional light microscopes allowing wide-field and flourescence imaging with enhanced resolution. We demonstrated that imaging of specimens containing subdiffraction-limited features is achievable through high-index microspheres embedded in a transparent thin film placed over the specimen. We fabricated novel microsphere-embedded microscope slides composed of barium titanate glass microspheres (with diameter 10-100 μm and refractive index 1.9-2.2) embedded in a transparent polydimethylsiloxane (PDMS) elastomer layer with controllable thickness. We characterized the imaging performance of such microsphere-embedded devices in white-light microscopies, by measuring the imaging resolution, field-of-view, and magnification as a function of microsphere size. Our results inform on the design of novel optical devices, such as microsphere-embedded microscope slides for imaging applications.
NASA Astrophysics Data System (ADS)
Wang, Shuai; Sun, Huayan; Guo, Huichao
2018-01-01
Aiming at the problem of beam scanning in low-resolution APD array in three-dimensional imaging, a method of beam scanning with liquid crystal phase-space optical modulator is proposed to realize high-resolution imaging by low-resolution APD array. First, a liquid crystal phase spatial light modulator is used to generate a beam array and then a beam array is scanned. Since the sub-beam divergence angle in the beam array is smaller than the field angle of a single pixel in the APD array, the APD's pixels respond only to the three-dimensional information of the beam illumination position. Through the scanning of the beam array, a single pixel is used to collect the target three-dimensional information multiple times, thereby improving the resolution of the APD detector. Finally, MATLAB is used to simulate the algorithm in this paper by using two-dimensional scalar diffraction theory, which realizes the splitting and scanning with a resolution of 5 x 5. The feasibility is verified theoretically.
Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan
2011-04-07
We report a portable lensless on-chip microscope that can achieve <1 µm resolution over a wide field-of-view of ∼ 24 mm(2) without the use of any mechanical scanning. This compact on-chip microscope weighs ∼ 95 g and is based on partially coherent digital in-line holography. Multiple fiber-optic waveguides are butt-coupled to light emitting diodes, which are controlled by a low-cost micro-controller to sequentially illuminate the sample. The resulting lensfree holograms are then captured by a digital sensor-array and are rapidly processed using a pixel super-resolution algorithm to generate much higher resolution holographic images (both phase and amplitude) of the objects. This wide-field and high-resolution on-chip microscope, being compact and light-weight, would be important for global health problems such as diagnosis of infectious diseases in remote locations. Toward this end, we validate the performance of this field-portable microscope by imaging human malaria parasites (Plasmodium falciparum) in thin blood smears. Our results constitute the first-time that a lensfree on-chip microscope has successfully imaged malaria parasites.
Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J
2012-07-01
We present a new integrated micro-endoscopy system combining label-free, fiber-based, real-time C-scan optical-resolution photoacoustic microscopy (F-OR-PAM) and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the F-OR-PAM sub-system is able to reach a resolution of ∼7 μm. The fluorescence subsystem, which does not require any mechanical scanning, consists of a 447.5-nm-centered diode laser as the light source, an objective lens, and a CCD camera. Proflavine is used as the fluorescent contrast agent by topical application. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single-mode fibers. The absorption of proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural information given by F-OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping visualize angiogenesis and the effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.
Combined optical resolution photoacoustic and fluorescence micro-endoscopy
NASA Astrophysics Data System (ADS)
Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J.
2012-02-01
We present a new micro-endoscopy system combining real-time C-scan optical-resolution photoacoustic micro-endoscopy (OR-PAME), and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the OR-PAM sub-system is capable of imaging with a resolution of ~ 7μm. The fluorescence sub-system consists of a diode laser with 445 nm-centered emissions as the light source, an objective lens and a CCD camera. Proflavine, a FDA approved drug for human use, is used as the fluorescent contrast agent by topical application. The fluorescence system does not require any mechanical scanning. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single mode fibers. The absorption of Proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural and functional information given by OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping researchers and clinicians visualize angiogenesis, effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.
NASA Astrophysics Data System (ADS)
Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J.
2012-07-01
We present a new integrated micro-endoscopy system combining label-free, fiber-based, real-time C-scan optical-resolution photoacoustic microscopy (F-OR-PAM) and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the F-OR-PAM sub-system is able to reach a resolution of ~7 μm. The fluorescence subsystem, which does not require any mechanical scanning, consists of a 447.5-nm-centered diode laser as the light source, an objective lens, and a CCD camera. Proflavine is used as the fluorescent contrast agent by topical application. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single-mode fibers. The absorption of proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural information given by F-OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping visualize angiogenesis and the effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.
Holographic microscopy for in situ studies of microorganism motility
NASA Astrophysics Data System (ADS)
Nadeau, J.; Hu, S.; Jericho, S.; Lindensmith, C.
2011-12-01
Robust technologies for the detection and identification of microorganisms at low concentrations in complex liquid media are needed for numerous applications: environmental and medical microbiology, food safety, and for the search for microbial life elsewhere in the Solar System. The best current method for microbial enumeration is specific labeling with fluorescent dyes followed by high-resolution light microscopy. However, fluorescent techniques are difficult to use in situ in extreme environments (such as the Arctic and Antarctic or the open ocean) due to the fragility of the instruments and their high power demands. In addition, light microscopic techniques rarely provide insight into microbial motility behaviors. Tracking single cells would provide important insight into the physics of micron-scale motility as well as into key microbial phenomena such as surface attachment and invasiveness. An alternative to traditional light microscopy that is attracting increasing attention is holographic microscopy. Holographic microscopy works by illuminating the object of interest with coherent light from a laser. The light reflected from (or transmitted through) the object is then combined with a coherent reference beam to create an interference pattern that contains the phase and intensity information required to reconstruct a three dimensional image of the object. The interference pattern is recorded on a high resolution detector and can be used to computationally reconstruct a 3D image of the object. The lateral resolution of the image depends upon the wavelength of the light used, the laser power, camera quality, and external noise sources (vibration, stray light, and so forth). Although the principle is simple, technological barriers have prevented wider use of holographic microscopy. Laser sources and CCD cameras with the appropriate properties have only very recently become affordable. In addition, holographic microscopy leads to large data sets that are computationally intensive to reconstruct images from, so the technology to store and process large amounts of data are required. We have successfully deployed a digital in-line holographic microscope in lakes of the Canadian High Arctic and the open ocean. We present characteristic data sets from these experiments, as well as discussing how data acquisition and instrumentation can be improved. A design for a new type of autonomous, submersible holographic microscope incorporating an off-axis reference beam is presented, and future plans for controlled microbe-polymer studies are detailed.
MSE spectrograph optical design: a novel pupil slicing technique
NASA Astrophysics Data System (ADS)
Spanò, P.
2014-07-01
The Maunakea Spectroscopic Explorer shall be mainly devoted to perform deep, wide-field, spectroscopic surveys at spectral resolutions from ~2000 to ~20000, at visible and near-infrared wavelengths. Simultaneous spectral coverage at low resolution is required, while at high resolution only selected windows can be covered. Moreover, very high multiplexing (3200 objects) must be obtained at low resolution. At higher resolutions a decreased number of objects (~800) can be observed. To meet such high demanding requirements, a fiber-fed multi-object spectrograph concept has been designed by pupil-slicing the collimated beam, followed by multiple dispersive and camera optics. Different resolution modes are obtained by introducing anamorphic lenslets in front of the fiber arrays. The spectrograph is able to switch between three resolution modes (2000, 6500, 20000) by removing the anamorphic lenses and exchanging gratings. Camera lenses are fixed in place to increase stability. To enhance throughput, VPH first-order gratings has been preferred over echelle gratings. Moreover, throughput is kept high over all wavelength ranges by splitting light into more arms by dichroic beamsplitters and optimizing efficiency for each channel by proper selection of glass materials, coatings, and grating parameters.
Wen, Li; Liu, Nishuang; Wang, Siliang; Zhang, Hui; Zhao, Wanqiu; Yang, Zhichun; Wang, Yumei; Su, Jun; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua
2016-10-03
Flexible alternating current electroluminescent devices (ACEL) are more and more popular and widely used in liquid-crystal display back-lighting, large-scale architectural and decorative lighting due to their uniform light emission, low power consumption and high resolution. However, presently how to acquire high brightness under a certain voltage are confronted with challenges. Here, we demonstrate an electroluminescence (EL) enhancing strategy that tetrapod-like ZnO whiskers (T-ZnOw) are added into the bottom electrode of carbon nanotubes (CNTs) instead of phosphor layer in flexible ACEL devices emitting blue, green and orange lights, and the brightness is greatly enhanced due to the coupling between the T-ZnOw and ZnS phosphor dispersed in the flexible polydimethylsiloxane (PDMS) layer. This strategy provides a new routine for the development of high performance, flexible and large-area ACEL devices.
Soulard, Christopher E.; Bogle, Rian
2011-01-01
Emerging technologies provide scientists with methods to measure Earth processes in new ways. One of these technologies--ultra-high-resolution, ground-based light detection and ranging (lidar)--is being used by USGS Western Geographic Science Center scientists to characterize the role of wind and fire processes in shaping desert landscapes of the Southwest United States.
Jung, Suk Won; Shin, Jong Yoon; Pi, Kilwha; Goo, Yong Sook; Cho, Dong-Il Dan
2016-12-01
This paper proposes a neural stimulation device integrated with a silicon nanowire (SiNW)-based photodetection circuit for the activation of neurons with light. The proposed device is comprised of a voltage divider and a current driver in which SiNWs are used as photodetector and field-effect transistors; it has the functions of detecting light, generating a stimulation signal in proportion to the light intensity, and transmitting the signal to a micro electrode. To show the applicability of the proposed neural stimulation device as a high-resolution retinal prosthesis system, a high-density neural stimulation device with a unit cell size of 110 × 110 μ m and a resolution of 32 × 32 was fabricated on a flexible film with a thickness of approximately 50 μm. Its effectiveness as a retinal stimulation device was then evaluated using a unit cell in an in vitro animal experiment involving the retinal tissue of retinal Degeneration 1 ( rd1 ) mice. Experiments wherein stimulation pulses were applied to the retinal tissues successfully demonstrate that the number of spikes in neural response signals increases in proportion to light intensity.
Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters.
Hoffman, David S; Repasky, Kevin S; Reagan, John A; Carlsten, John L
2012-09-01
The high spectral resolution lidar (HSRL) instrument described in this paper utilizes the fundamental and second-harmonic output from an injection seeded Nd:YAG laser as the laser transmitter. The light scattered in the atmosphere is collected using a commercial Schmidt-Cassegrain telescope with the optical receiver train first splitting the fundamental and second-harmonic return signal with the fundament light monitored using an avalanche photodiode. The second-harmonic return signal is mode matched into a tunable confocal Fabry-Perot (CFP) interferometer with a free spectral range of 7.5 GHz and a finesse of 50.7 (312) at 532 nm (1064 nm) placed in the optical receiver for spectrally filtering the molecular and aerosol return signals. The light transmitted through the CFP is used to monitor the aerosol return signal while the light reflected from the CFP is used to monitor the molecular return signal. Data collected with the HSRL are presented and inversion results are compared to a co-located solar radiometer, demonstrating the successful operation of the instrument. The CFP-based filtering technique successfully employed by this HSRL instrument is easily portable to other arbitrary wavelengths, thus allowing for the future development of multiwavelength HSRL instruments.
Design and Fabrication of the Second-Generation KID-Based Light Detectors of CALDER
NASA Astrophysics Data System (ADS)
Colantoni, I.; Cardani, L.; Casali, N.; Cruciani, A.; Bellini, F.; Castellano, M. G.; Cosmelli, C.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.
2018-04-01
The goal of the cryogenic wide-area light detectors with excellent resolution project is the development of light detectors with large active area and noise energy resolution smaller than 20 eV RMS using phonon-mediated kinetic inductance detectors (KIDs). The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double readout of the light and the heat released by particles interacting in the bolometers. In this work we present the fabrication process, starting from the silicon wafer arriving to the single chip. In the first part of the project, we designed and fabricated KID detectors using aluminum. Detectors are designed by means of state-of-the-art software for electromagnetic analysis (SONNET). The Al thin films (40 nm) are evaporated on high-quality, high-resistivity (> 10 kΩ cm) Si(100) substrates using an electron beam evaporator in a HV chamber. Detectors are patterned in direct-write mode, using electron beam lithography (EBL), positive tone resist poly-methyl methacrylate and lift-off process. Finally, the chip is diced into 20 × 20 mm2 chips and assembled in a holder OFHC (oxygen-free high conductivity) copper using PTFE support. To increase the energy resolution of our detectors, we are changing the superconductor to sub-stoichiometric TiN (TiN x ) deposited by means of DC magnetron sputtering. We are optimizing its deposition by means of DC magnetron reactive sputtering. For this kind of material, the fabrication process is subtractive and consists of EBL patterning through negative tone resist AR-N 7700 and deep reactive ion etching. Critical temperature of TiN x samples was measured in a dedicated cryostat.
Co-Phasing the Large Binocular Telescope:. [Status and Performance of LBTI-PHASECam
NASA Technical Reports Server (NTRS)
Defrere, D.; Hinz, P.; Downey, E.; Ashby, D.; Bailey, V.; Brusa, G.; Christou, J.; Danchi, W. C.; Grenz, P.; Hill, J. M.;
2014-01-01
The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 micrometer). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).
Suitability of holographic beam scanning in high resolution applications
NASA Astrophysics Data System (ADS)
Kalita, Ranjan; Goutam Buddha, S. S.; Boruah, Bosanta R.
2018-02-01
The high resolution applications of a laser scanning imaging system very much demand the accurate positioning of the illumination beam. The galvanometer scanner based beam scanning imaging systems, on the other hand, suffer from both short term and long term beam instability issues. Fortunately Computer generated holography based beam scanning offers extremely accurate beam steering, which can be very useful for imaging in high-resolution applications in confocal microscopy. The holographic beam scanning can be achieved by writing a sequence of holograms onto a spatial light modulator and utilizing one of the diffracted orders as the illumination beam. This paper highlights relative advantages of such a holographic beam scanning based confocal system and presents some of preliminary experimental results.
NASA Astrophysics Data System (ADS)
Lawman, Samuel; Romano, Vito; Madden, Peter W.; Mason, Sharon; Williams, Bryan M.; Zheng, Yalin; Shen, Yao-Chun
2018-03-01
Ultra high axial resolution (UHR) was demonstrated early in the development of optical coherence tomography (OCT), but has not yet reached clinical practice. We present the combination of supercontinuum light source and line field (LF-) OCT as a technical and economical route to get UHR-OCT into clinic and other OCT application areas. We directly compare images of a human donor cornea taken with low and high resolution current generation clinical OCT systems with UHR-LF-OCT. These images highlight the massive information increase of UHR-OCT. Application to pharmaceutical pellets, and the functionality and imaging performance of different imaging spectrograph choices for LF- OCT are also demonstrated.
Burgess, Alexandra J.; Retkute, Renata; Pound, Michael P.; Foulkes, John; Preston, Simon P.; Jensen, Oliver E.; Pridmore, Tony P.; Murchie, Erik H.
2015-01-01
Photoinhibition reduces photosynthetic productivity; however, it is difficult to quantify accurately in complex canopies partly because of a lack of high-resolution structural data on plant canopy architecture, which determines complex fluctuations of light in space and time. Here, we evaluate the effects of photoinhibition on long-term carbon gain (over 1 d) in three different wheat (Triticum aestivum) lines, which are architecturally diverse. We use a unique method for accurate digital three-dimensional reconstruction of canopies growing in the field. The reconstruction method captures unique architectural differences between lines, such as leaf angle, curvature, and leaf density, thus providing a sensitive method of evaluating the productivity of actual canopy structures that previously were difficult or impossible to obtain. We show that complex data on light distribution can be automatically obtained without conventional manual measurements. We use a mathematical model of photosynthesis parameterized by field data consisting of chlorophyll fluorescence, light response curves of carbon dioxide assimilation, and manual confirmation of canopy architecture and light attenuation. Model simulations show that photoinhibition alone can result in substantial reduction in carbon gain, but this is highly dependent on exact canopy architecture and the diurnal dynamics of photoinhibition. The use of such highly realistic canopy reconstructions also allows us to conclude that even a moderate change in leaf angle in upper layers of the wheat canopy led to a large increase in the number of leaves in a severely light-limited state. PMID:26282240
Traffic Sign Recognition with Invariance to Lighting in Dual-Focal Active Camera System
NASA Astrophysics Data System (ADS)
Gu, Yanlei; Panahpour Tehrani, Mehrdad; Yendo, Tomohiro; Fujii, Toshiaki; Tanimoto, Masayuki
In this paper, we present an automatic vision-based traffic sign recognition system, which can detect and classify traffic signs at long distance under different lighting conditions. To realize this purpose, the traffic sign recognition is developed in an originally proposed dual-focal active camera system. In this system, a telephoto camera is equipped as an assistant of a wide angle camera. The telephoto camera can capture a high accuracy image for an object of interest in the view field of the wide angle camera. The image from the telephoto camera provides enough information for recognition when the accuracy of traffic sign is low from the wide angle camera. In the proposed system, the traffic sign detection and classification are processed separately for different images from the wide angle camera and telephoto camera. Besides, in order to detect traffic sign from complex background in different lighting conditions, we propose a type of color transformation which is invariant to light changing. This color transformation is conducted to highlight the pattern of traffic signs by reducing the complexity of background. Based on the color transformation, a multi-resolution detector with cascade mode is trained and used to locate traffic signs at low resolution in the image from the wide angle camera. After detection, the system actively captures a high accuracy image of each detected traffic sign by controlling the direction and exposure time of the telephoto camera based on the information from the wide angle camera. Moreover, in classification, a hierarchical classifier is constructed and used to recognize the detected traffic signs in the high accuracy image from the telephoto camera. Finally, based on the proposed system, a set of experiments in the domain of traffic sign recognition is presented. The experimental results demonstrate that the proposed system can effectively recognize traffic signs at low resolution in different lighting conditions.
Mars Image Collection Mosaic Builder
NASA Technical Reports Server (NTRS)
Plesea, Lucian; Hare, Trent
2008-01-01
A computer program assembles images from the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) collection to generate a uniform-high-resolution, georeferenced, uncontrolled mosaic image of the Martian surface. At the time of reporting the information for this article, the mosaic covered 7 percent of the Martian surface and contained data from more than 50,000 source images acquired under various light conditions at various resolutions.
NASA Technical Reports Server (NTRS)
Thompson, J. L.; Vijayan, K.; Riley, D. A.
2000-01-01
We have developed a method of fixing, embedding, sectioning, and staining that allows high-resolution detection of myofibrillar structure and myosin immunocytochemical muscle fiber typing in serial semithin sections of LR White plastic embedded muscle at the light microscopic level. Traditional approaches, such as cryostat sections, permit fiber typing, but small myofibrillar lesions (1-3 sarcomeres) are difficult to detect because of section thickness. Semithin sections of hydrophobic resins do not stain well either histochemically or immunocytochemically. Electron microscopy can resolve lesions and discriminate fiber types based on morphology, but the sampling area is small. Our goal was to develop a rapid method for defining both fiber type and high-resolution primary myofibrillar lesion damage. Mild fixation (1-4% paraformaldehyde, 0. 05-0.1% glutaraldehyde) and embedment in a hydrophilic resin (LR White) were used. Myofibrillar structure was extremely well preserved at the light microscopic (LM) level, and lesions could be readily resolved in Toluidine blue stained 500-nm sections. Fiber type was defined by LM immunomyosin staining of serial plastic semithin sections, which demonstrated reciprocal staining patterns for "fast (Sigma M4276) and "total" (skeletal muscle) myosins (Sigma M7523). Copyright 2000 Wiley-Liss, Inc.
Advances in Low-Temperature Tungsten Spectroscopy Capability to Quantify DIII-D Divertor Erosion
Abrams, Tyler; Thomas, Daniel M.; Unterberg, Ezekial A.; ...
2018-01-05
Recent emphasis of tungsten (W) plasma-materialsinteractions (PMI) experiments on DIII-D has made it essential to enhance the W I and W II measurement capabilities of its spectroscopy diagnostic suite to acquire W sourcing measurements with high temporal, spatial, and wavelength resolution. To this end, four new viewing chords for the Multichordal Divertor Spectrometer (MDS) and diverter filterscope systems were installed, leading to a 7x increase in blue light sensitivity. W I and low-Z impurity line identifications were performed in the 3995-4030 Å region, placing wavelengths within 0.1 Å of the NIST values. A novel method was also developed for themore » DIII-D high temporal resolution filterscopes to distinguish between W I light and background contamination, important due to the relatively weak intensity of this line, using two different bandpass filters width different widths but the same center wavelength. Lastly, fast imaging of the W I 4008.75 Å spectral line with a PCO Pixelfly VGA 200/205 camera allowed for discrimination between ELMy and intra-ELM W I emission profiles with very high (~1 mm) spatial resolution.« less
NASA Astrophysics Data System (ADS)
Jiang, Jiaxin
Vernal pool refers to temporary or semi-permanent pools that occur in surface depressions without permanent inlets or outlets. Because they periodically dry out, vernal pools are free of fish and essential to amphibians, some reptiles, birds, and mammals for breeding habitats. In Massachusetts, vernal pool habitats are found in woodland depressions, swales or kettle holes where water is contained for at least two months in most years. However, vernal pools are delicate ecosystems. These systems are fragile to human activities such as urbanization. Understanding the current situation of vernal pools helps city planners make wiser decisions. This study focuses on identifying vernal pools in the state of Massachusetts with high-resolution light detection and ranging (LiDAR) data and aerial imagery. By using high-resolution light detection and ranging data, aerial imagery, land use data, the MassDEP Hydrography layer and the Soil Survey Geographic Database, the approach located over 1800 potential vernal pools in a 108 km 2 study area in Massachusetts. The assessment of the study result shows the commission rate was 5.6% and omission rate was 7.1%. This method provides an efficient way of locating vernal pools over large areas.
Advances in Low-Temperature Tungsten Spectroscopy Capability to Quantify DIII-D Divertor Erosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrams, Tyler; Thomas, Daniel M.; Unterberg, Ezekial A.
Recent emphasis of tungsten (W) plasma-materialsinteractions (PMI) experiments on DIII-D has made it essential to enhance the W I and W II measurement capabilities of its spectroscopy diagnostic suite to acquire W sourcing measurements with high temporal, spatial, and wavelength resolution. To this end, four new viewing chords for the Multichordal Divertor Spectrometer (MDS) and diverter filterscope systems were installed, leading to a 7x increase in blue light sensitivity. W I and low-Z impurity line identifications were performed in the 3995-4030 Å region, placing wavelengths within 0.1 Å of the NIST values. A novel method was also developed for themore » DIII-D high temporal resolution filterscopes to distinguish between W I light and background contamination, important due to the relatively weak intensity of this line, using two different bandpass filters width different widths but the same center wavelength. Lastly, fast imaging of the W I 4008.75 Å spectral line with a PCO Pixelfly VGA 200/205 camera allowed for discrimination between ELMy and intra-ELM W I emission profiles with very high (~1 mm) spatial resolution.« less
Two micron pore size MCP-based image intensifiers
NASA Astrophysics Data System (ADS)
Glesener, John; Estrera, Joseph
2010-02-01
Image intensifiers (I2) have many advantages as detectors. They offer single photon sensitivity in an imaging format, they're light in weight and analog I2 systems can operate for hours on a single AA battery. Their light output is such as to exploit the peak in color sensitivity of the human eye. Until recent developments in CMOS sensors, they also were one of the highest resolution sensors available. The closest all solid state solution, the Texas Instruments Impactron chip, comes in a 1 megapixel format. Depending on the level of integration, an Impactron based system can consume 20 to 40 watts in a system configuration. In further investing in I2 technology, L-3 EOS determined that increasing I2 resolution merited a high priority. Increased I2 resolution offers the system user two desirable options: 1) increased detection and identification ranges while maintaining field-of-view (FOV) or 2) increasing FOV while maintaining the original system resolution. One of the areas where an investment in resolution is being made is in the microchannel plate (MCP). Incorporation of a 2 micron MCP into an image tube has the potential of increasing the system resolution of currently fielded systems. Both inverting and non-inverting configurations are being evaluated. Inverting tubes are being characterized in night vision goggle (NVG) and sights. The non-inverting 2 micron tube is being characterized for high resolution I2CMOS camera applications. Preliminary measurements show an increase in the MTF over a standard 5 micron pore size, 6 micron pitch plate. Current results will be presented.
Light Controlled Modulation of Gene Expression by Chemical Optoepigenetic Probes
Reis, Surya A.; Ghosh, Balaram; Hendricks, J. Adam; Szantai-Kis, D. Miklos; Törk, Lisa; Ross, Kenneth N.; Lamb, Justin; Read-Button, Willis; Zheng, Baixue; Wang, Hongtao; Salthouse, Christopher; Haggarty, Stephen J.; Mazitschek, Ralph
2016-01-01
Epigenetic gene regulation is a dynamic process orchestrated by chromatin-modifying enzymes. Many of these master regulators exert their function through covalent modification of DNA and histone proteins. Aberrant epigenetic processes have been implicated in the pathophysiology of multiple human diseases. Small-molecule inhibitors have been essential to advancing our understanding of the underlying molecular mechanisms of epigenetic processes. However, the resolution offered by small molecules is often insufficient to manipulate epigenetic processes with high spatio-temporal control. Here, we present a novel and generalizable approach, referred to as ‘Chemo-Optical Modulation of Epigenetically-regulated Transcription’ (COMET), enabling high-resolution, optical control of epigenetic mechanisms based on photochromic inhibitors of human histone deacetylases using visible light. COMET probes may translate into novel therapeutic strategies for diseases where conditional and selective epigenome modulation is required. PMID:26974814
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maksimova, Alevtina A.; Petrova, Evgeniya V.; Grokhovsky, Victor I.
2014-10-27
Study of Chelyabinsk LL5 ordinary chondrite fragment with a light lithology and its fusion crust, fallen on February 15, 2013, in Russian Federation, was carried out using Mössbauer spectroscopy with a high velocity resolution. The Mössbauer spectra of the internal matter and fusion crust were fitted and all components were related to iron-bearing phases such as olivine, pyroxene, troilite, Fe-Ni-Co alloy, and chromite in the internal matter and olivine, pyroxene, troilite, Fe-Ni-Co alloy, and magnesioferrite in the fusion crust. A comparison of the content of different phases in the internal matter and in the fusion crust of this fragment showedmore » that ferric compounds resulted from olivine, pyroxene, and troilite combustion in the atmosphere.« less
Investigation of breadboard temperature profiling system for SSME fuel preburner diagnostics
NASA Technical Reports Server (NTRS)
Shirley, J. A.
1986-01-01
The feasibility of measuring temperatures in the space shuttle main engine (SSME) fuel preburner using spontaneous Raman scattering from molecular hydrogen was studied. Laser radiation is transmitted to the preburner through a multimode optical fiber. Backscattered Raman-shifted light is collected and focused into a second fiber which connects to a remote-located spectrograph and a mutlichannel optical detector. Optics collimate and focus laser light from the transmitter fiber defining the probe volume. The high pressure, high temperature preburner environment was simulated by a heated pressure cell. Temperatures determined by the distribution of Q-branch co-vibrational transitions demonstrate precision and accuracy of 3%. It is indicated heat preburner temperatures can be determined with 5% accuracy with spatial resolution less than 1 cm and temporal resolution of 10 millisec at the nominal preburner operation conditions.
High-Performance Doped Strontium Iodide Crystal Growth Using a Modified Bridgman Method
NASA Astrophysics Data System (ADS)
Rowe, Emmanuel
The importance of gamma-ray spectroscopy---the science of determining the distribution of energy in a gamma field---can rarely be overstated. High performance scintillators for gamma-ray spectroscopy in Nuclear Nonproliferation applications and homeland security require excellent energy resolution to distinguish neighboring element and isotope lines while minimizing the time and exposure to do so. Semiconductor detectors operate by converting incident photons directly into electrical pulses, but often have problems of high costs due to constituent segregation and surface states as is the case for Cadmium Zinc Telluride. The ideal scintillator material for gamma spectrometer will therefore requires high light yield, excellent proportionality between light yield and gamma photon energy, and material uniformity. A scintillator should possess the following properties; it should convert the kinetic energy of the generated charged particles (typically K-shell electrons) into detectable visible light. This conversion should be linear-the light yield should be proportional to deposited energy over as wide a range as possible. For good light collection, the medium should be transparent to the wavelength of its own emission. The decay time of the induced luminescence should be short so that fast signal pulses can be generated. The medium should be of good optical quality and subject to manufacture in sizes large enough to be of interest as a practical detector. Its index of refraction should be near that of glass (~1.5) to permit efficient coupling of scintillation light to a photomultiplier tube or other photo-sensor. In the past decade, inorganic scintillator research has focused less on improving the characteristics of known scintillators, but rather on the search for new hosts capable of fast response and high energy resolution. Extensive searches have been made for hosts doped with lanthanide activators utilizing the allowed 5d-4f transition. These 5d-4f transitions are dipole-allowed and thus are about 106 times stronger than the more frequently observed 4f-4f transition in the trivalent rare earth ions. Ce3+, Nd3+ and Pr3+ have been investigated for fast response applications while Ce3+, Eu 2+, and Yb2+ stand out as the most promising activators offering high light yield, and high energy resolution. Using a modified Bridgman growth technique we have grown crystals with a low energy resolution of 2.6% at 662 keV, which is lower than the previous 2.8% reported for SrI2:Eu 2+. The modified technique (called so for its vertical crystal growth orientation) is necessary due to the anisotropic thermal expansion coefficient of Strontium Iodide. The problem plaguing the growth of the crystal is spontaneous cracking, which usually appear during cooling in the bulk. With the use of a zone separating shield, one can achieve more control of the temperature gradient between the two zones without compromising the actual temperature of the two zones. Additionally the use of codopants, in particular divalent magnesium improved the crystalline quality by acting as a gathering for iodine ions, which led to reduction of defect density.
High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates.
Seiriki, Kaoru; Kasai, Atsushi; Hashimoto, Takeshi; Schulze, Wiebke; Niu, Misaki; Yamaguchi, Shun; Nakazawa, Takanobu; Inoue, Ken-Ichi; Uezono, Shiori; Takada, Masahiko; Naka, Yuichiro; Igarashi, Hisato; Tanuma, Masato; Waschek, James A; Ago, Yukio; Tanaka, Kenji F; Hayata-Takano, Atsuko; Nagayasu, Kazuki; Shintani, Norihito; Hashimoto, Ryota; Kunii, Yasuto; Hino, Mizuki; Matsumoto, Junya; Yabe, Hirooki; Nagai, Takeharu; Fujita, Katsumasa; Matsuda, Toshio; Takuma, Kazuhiro; Baba, Akemichi; Hashimoto, Hitoshi
2017-06-21
Subcellular resolution imaging of the whole brain and subsequent image analysis are prerequisites for understanding anatomical and functional brain networks. Here, we have developed a very high-speed serial-sectioning imaging system named FAST (block-face serial microscopy tomography), which acquires high-resolution images of a whole mouse brain in a speed range comparable to that of light-sheet fluorescence microscopy. FAST enables complete visualization of the brain at a resolution sufficient to resolve all cells and their subcellular structures. FAST renders unbiased quantitative group comparisons of normal and disease model brain cells for the whole brain at a high spatial resolution. Furthermore, FAST is highly scalable to non-human primate brains and human postmortem brain tissues, and can visualize neuronal projections in a whole adult marmoset brain. Thus, FAST provides new opportunities for global approaches that will allow for a better understanding of brain systems in multiple animal models and in human diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Optical design of automotive headlight system incorporating digital micromirror device.
Hung, Chuan-Cheng; Fang, Yi-Chin; Huang, Ming-Shyan; Hsueh, Bo-Ren; Wang, Shuan-Fu; Wu, Bo-Wen; Lai, Wei-Chi; Chen, Yi-Liang
2010-08-01
In recent years, the popular adaptive front-lighting automobile headlight system has become a main emphasis of research that manufacturers will continue to focus great efforts on in the future. In this research we propose a new integral optical design for an automotive headlight system with an advanced light-emitting diode and digital micromirror device (DMD). Traditionally, automobile headlights have all been designed as a low beam light module, whereas the high beam light module still requires using accessory lamps. In anticipation of this new concept of integral optical design, we have researched and designed a single optical system with high and low beam capabilities. To switch on and off the beams, a DMD is typically used. Because DMDs have the capability of redirecting incident light into a specific angle, they also determine the shape of the high or low light beam in order to match the standard of headlight illumination. With collocation of the multicurvature reflection lens design, a DMD can control the light energy distribution and thereby reinforce the resolution of the light beam.
Radiation sensitive area detection device and method
NASA Technical Reports Server (NTRS)
Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)
1991-01-01
A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.
NASA Astrophysics Data System (ADS)
Kato, T.; Kataoka, J.; Nakamori, T.; Kishimoto, A.; Yamamoto, S.; Sato, K.; Ishikawa, Y.; Yamamura, K.; Kawabata, N.; Ikeda, H.; Kamada, K.
2013-05-01
We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 105 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to <= 400 kcps per channel. We selected Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) and a brand-new scintillator, Ce-doped Gd3Al2Ga3O12 (Ce:GAGG) due to their high light yield and density. To improve the spatial resolution, these scintillators were fabricated into 15 × 15 matrices of 0.5 × 0.5 mm2 pixels. The Ce:LYSO and Ce:GAGG scintillator matrices were assembled into phosphor sandwich (phoswich) detectors, and then coupled to the MPPC array along with an acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.
White-light diffraction phase microscopy at doubled space-bandwidth product.
Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel
2016-12-12
White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.
High speed line-scan confocal imaging of stimulus-evoked intrinsic optical signals in the retina
Li, Yang-Guo; Liu, Lei; Amthor, Franklin; Yao, Xin-Cheng
2010-01-01
A rapid line-scan confocal imager was developed for functional imaging of the retina. In this imager, an acousto-optic deflector (AOD) was employed to produce mechanical vibration- and inertia-free light scanning, and a high-speed (68,000 Hz) linear CCD camera was used to achieve sub-cellular and sub-millisecond spatiotemporal resolution imaging. Two imaging modalities, i.e., frame-by-frame and line-by-line recording, were validated for reflected light detection of intrinsic optical signals (IOSs) in visible light stimulus activated frog retinas. Experimental results indicated that fast IOSs were tightly correlated with retinal stimuli, and could track visible light flicker stimulus frequency up to at least 2 Hz. PMID:20125743
Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.
2015-01-01
Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3×3×20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162±1 ps FWHM, approaching the analytically calculated lower bound within 6.5%. PMID:26083559
NASA Astrophysics Data System (ADS)
Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.
2015-07-01
Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3× 3× 20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162+/- 1 ps FWHM, approaching the analytically calculated lower bound within 6.5%.
NASA Astrophysics Data System (ADS)
Romo, Jaime E., Jr.
Optical microscopy, the most common technique for viewing living microorganisms, is limited in resolution by Abbe's criterion. Recent microscopy techniques focus on circumnavigating the light diffraction limit by using different methods to obtain the topography of the sample. Systems like the AFM and SEM provide images with fields of view in the nanometer range with high resolvable detail, however these techniques are expensive, and limited in their ability to document live cells. The Dino-Lite digital microscope coupled with the Zeiss Axiovert 25 CFL microscope delivers a cost-effective method for recording live cells. Fields of view ranging from 8 microns to 300 microns with fair resolution provide a reliable method for discovering native cell structures at the nanoscale. In this report, cultured HeLa cells are recorded using different optical configurations resulting in documentation of cell dynamics at high magnification and resolution.
NASA Astrophysics Data System (ADS)
Staier, Florian; Eipel, Heinz; Matula, Petr; Evsikov, Alexei V.; Kozubek, Michal; Cremer, Christoph; Hausmann, Michael
2011-09-01
With the development of novel fluorescence techniques, high resolution light microscopy has become a challenging technique for investigations of the three-dimensional (3D) micro-cosmos in cells and sub-cellular components. So far, all fluorescence microscopes applied for 3D imaging in biosciences show a spatially anisotropic point spread function resulting in an anisotropic optical resolution or point localization precision. To overcome this shortcoming, micro axial tomography was suggested which allows object tilting on the microscopic stage and leads to an improvement in localization precision and spatial resolution. Here, we present a miniaturized device which can be implemented in a motor driven microscope stage. The footprint of this device corresponds to a standard microscope slide. A special glass fiber can manually be adjusted in the object space of the microscope lens. A stepwise fiber rotation can be controlled by a miniaturized stepping motor incorporated into the device. By means of a special mounting device, test particles were fixed onto glass fibers, optically localized with high precision, and automatically rotated to obtain views from different perspective angles under which distances of corresponding pairs of objects were determined. From these angle dependent distance values, the real 3D distance was calculated with a precision in the ten nanometer range (corresponding here to an optical resolution of 10-30 nm) using standard microscopic equipment. As a proof of concept, the spindle apparatus of a mature mouse oocyte was imaged during metaphase II meiotic arrest under different perspectives. Only very few images registered under different rotation angles are sufficient for full 3D reconstruction. The results indicate the principal advantage of the micro axial tomography approach for many microscopic setups therein and also those of improved resolutions as obtained by high precision localization determination.
NASA Astrophysics Data System (ADS)
Zhang, Jinfeng; Lv, Jiali; Dai, Kai; Liang, Changhao; Liu, Qi
2018-02-01
In this work, we have developed a simple synthetic approach of nanosheet-assembled BiOCl/BiOBr microspheres by an ethylene glycol (EG)-assisted hydrothermal method. The crystalline form, morphology, chemical composition, optical performance and surface area of BiOCl/BiOBr microspheres were identified using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS) analysis, high resolution X-ray photoelectron spectra (XPS) and N2 adsorption-desorption isotherms. BiOCl/BiOBr microspheres were nanosheet-assembled particles, which possessed visible light absorption under LED light irridation. Additionally, the methylene blue (MB) photodegradation performance of different BiOCl/BiOBr microspheres irradiated under 410 nm LED light arrays were investigated, the results exhibited that as-prepared BiOCl/BiOBr products showed higher catalytic effiency than pure BiOCl or BiOBr. By optimizing the composition ration of the BiOCl and BiOBr, up to 93% degradation rate can be obtained in the 40%BiOCl/BiOBr microspheres. Finally, the photocatalytic mechanism of BiOCl/BiOBr microspheres had been proposed.
Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P
2016-09-07
We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.
High definition TV projection via single crystal faceplate technology
NASA Astrophysics Data System (ADS)
Kindl, H. J.; St. John, Thomas
1993-03-01
Single crystal phosphor faceplates are epitaxial phosphors grown on crystalline substrates with the advantages of high light output, resolution, and extended operational life. Single crystal phosphor faceplate industrial technology in the United States is capable of providing a faceplate appropriate to the projection industry of up to four (4) inches in diameter. Projection systems incorporating cathode ray tubes utilizing single crystal phosphor faceplates will produce 1500 lumens of white light with 1000 lines of resolution, non-interlaced. This 1500 lumen projection system will meet all of the currently specified luminance and resolution requirements of Visual Display systems for flight simulators. Significant logistic advantages accrue from the introduction of single crystal phosphor faceplate CRT's. Specifically, the full performance life of a CRT is expected to increase by a factor of five (5); ie, from 2000 to 10,000 hours of operation. There will be attendant reductions in maintenance time, spare CRT requirements, system down time, etc. The increased brightness of the projection system will allow use of lower gain, lower cost simulator screen material. Further, picture performance characteristics will be more balanced across the full simulator.
Isotropic image in structured illumination microscopy patterned with a spatial light modulator.
Chang, Bo-Jui; Chou, Li-Jun; Chang, Yun-Ching; Chiang, Su-Yu
2009-08-17
We developed a structured illumination microscopy (SIM) system that uses a spatial light modulator (SLM) to generate interference illumination patterns at four orientations - 0 degrees, 45 degrees, 90 degrees, and 135 degrees, to reconstruct a high-resolution image. The use of a SLM for pattern alterations is rapid and precise, without mechanical calibration; moreover, our design of SLM patterns allows generating the four illumination patterns of high contrast and nearly equivalent periods to achieve a near isotropic enhancement in lateral resolution. We compare the conventional image of 100-nm beads with those reconstructed from two (0 degrees +90 degrees or 45 degrees +135 degrees) and four (0 degrees +45 degrees +90 degrees +135 degrees) pattern orientations to show the differences in resolution and image, with the support of simulations. The reconstructed images of 200-nm beads at various depths and fine structures of actin filaments near the edge of a HeLa cell are presented to demonstrate the intensity distributions in the axial direction and the prospective application to biological systems. (c) 2009 Optical Society of America
High resolution spectroscopic optical coherence tomography in the 900-1100 nm wavelength range
NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Povazay, Boris; Apolonski, Alexander A.; Unterhuber, Angelika; Hermann, Boris; Sattmann, Harald; Russell, Phillip S. J.; Krausz, Ferenc; Fercher, Adolf F.; Drexler, Wolfgang
2002-06-01
We demonstrate for the first time optical coherence tomography (OCT) in the 900-1100 nm wavelength range. A photonic crystal fiber (PCF) in combination with a sub-15fs Ti:sapphire laser is used to produce an emission spectrum with an optical bandwidth of 35 nm centered at ~1070 nm. Coupling the light from the PCF based source to an optimized free space OCT system results in ~15 micrometers axial resolution in air, corresponding to ~10 micrometers in biological tissue. The near infrared wavelength range around 1100 nm is very attractive for high resolution ophthalmologic OCT imaging of the anterior and posterior eye segment with enhanced penetration. The emission spectrum of the PCF based light source can also be reshaped and tuned to cover the wavelength region around 950-970 nm, where water absorption has a local peak. Therefore, the OCT system described in this paper can also be used for spatially resolved water absorption measurements in non-transparent biological tissue. A preliminary qualitative spectroscopic Oct measurement in D2O and H2 O phantoms is described in this paper.
Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish
Yang, Zhe; Mei, Li; Xia, Fei; Luo, Qingming; Fu, Ling; Gong, Hui
2015-01-01
In vivo functional imaging at single-neuron resolution is an important approach to visualize biological processes in neuroscience. Light sheet microscopy (LSM) is a cutting edge in vivo imaging technique that provides micron-scale spatial resolution at high frame rate. Due to the scattering and absorption of tissue, however, conventional LSM is inadequate to resolve cells because of the attenuated signal to noise ratio (SNR). Using dual-beam illumination and confocal dual-slit detection, here a dual-slit confocal LSM is demonstrated to obtain the SNR enhanced images with frame rate twice as high as line confocal LSM method. Through theoretical calculations and experiments, the correlation between the slit’s width and SNR was determined to optimize the image quality. In vivo whole brain structural imaging stacks and the functional imaging sequences of single slice were obtained for analysis of calcium activities at single-cell resolution. A two-fold increase in imaging speed of conventional confocal LSM makes it possible to capture the sequence of the neurons’ activities and help reveal the potential functional connections in the whole zebrafish’s brain. PMID:26137381
Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains
Schwarz, Martin K.; Scherbarth, Annemarie; Sprengel, Rolf; Engelhardt, Johann; Theer, Patrick; Giese, Guenter
2015-01-01
In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain. PMID:25993380
Dynamic frequency-domain interferometer for absolute distance measurements with high resolution
NASA Astrophysics Data System (ADS)
Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua
2014-11-01
A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.
A methodology for luminance map retrieval using airborne hyperspectral and photogrammetric data
NASA Astrophysics Data System (ADS)
Pipia, Luca; Alamús, Ramon; Tardà, Anna; Pérez, Fernando; Palà, Vicenç; Corbera, Jordi
2014-10-01
This paper puts forward a methodology developed at the Institut Cartogràfic i Geològic de Catalunya (ICGC) to quantify upwelling light flux using hyperspectral and photogrammetric airborne data. The work was carried out in the frame of a demonstrative study requested by the municipality of Sant Cugat del Vallès, in the vicinity of Barcelona (Spain), and aimed to envisage a new approach to assess artificial lighting policies and actions as alternative to field campaigns. Hyperspectral and high resolution multispectral/panchromatic data were acquired simultaneously over urban areas. In order to avoid moon light contributions, data were acquired during the first days of new moon phase. Hyperspectral data were radiometrically calibrated. Then, National Center for Environmental Prediction (NCEP) atmospheric profiles were employed to estimate the actual Column Water Vapor (CWV) to be passed to ModTran5.0 for the atmospheric transmissivity τ calculation. At-the-ground radiance was finally integrated using the photopic sensitivity curve to generate a luminance map (cdm-2) of the flown area by mosaicking the different flight tracks. In an attempt to improve the spatial resolution and enhance the dynamic range of the luminance map, a sensor-fusion strategy was finally looked into. DMC Photogrammetric data acquired simultaneously to hyperspectral information were converted into at-the-ground radiance and upscaled to CASI spatial resolution. High-resolution (HR) luminance maps with enhanced dynamic range were finally generated by linearly fitting up-scaled DMC mosaics to the CASI-based luminance information. In the end, a preliminary assessment of the methodology is carried out using non-simultaneous in-situ measurements.
Swap intensified WDR CMOS module for I2/LWIR fusion
NASA Astrophysics Data System (ADS)
Ni, Yang; Noguier, Vincent
2015-05-01
The combination of high resolution visible-near-infrared low light sensor and moderate resolution uncooled thermal sensor provides an efficient way for multi-task night vision. Tremendous progress has been made on uncooled thermal sensors (a-Si, VOx, etc.). It's possible to make a miniature uncooled thermal camera module in a tiny 1cm3 cube with <1W power consumption. For silicon based solid-state low light CCD/CMOS sensors have observed also a constant progress in terms of readout noise, dark current, resolution and frame rate. In contrast to thermal sensing which is intrinsic day&night operational, the silicon based solid-state sensors are not yet capable to do the night vision performance required by defense and critical surveillance applications. Readout noise, dark current are 2 major obstacles. The low dynamic range at high sensitivity mode of silicon sensors is also an important limiting factor, which leads to recognition failure due to local or global saturations & blooming. In this context, the image intensifier based solution is still attractive for the following reasons: 1) high gain and ultra-low dark current; 2) wide dynamic range and 3) ultra-low power consumption. With high electron gain and ultra low dark current of image intensifier, the only requirement on the silicon image pickup device are resolution, dynamic range and power consumption. In this paper, we present a SWAP intensified Wide Dynamic Range CMOS module for night vision applications, especially for I2/LWIR fusion. This module is based on a dedicated CMOS image sensor using solar-cell mode photodiode logarithmic pixel design which covers a huge dynamic range (> 140dB) without saturation and blooming. The ultra-wide dynamic range image from this new generation logarithmic sensor can be used directly without any image processing and provide an instant light accommodation. The complete module is slightly bigger than a simple ANVIS format I2 tube with <500mW power consumption.
NASA Astrophysics Data System (ADS)
Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; Jablonski, L. F.; Wurtz, J. R.; Ertley, C. D.; McConnell, M. L.; Ryan, J. M.
2014-11-01
Space-based gamma-ray detectors for high-energy astronomy and solar physics face severe constraints on mass, volume, and power, and must endure harsh launch conditions and operating environments. Historically, such instruments have usually been based on scintillator materials due to their relatively low cost, inherent ruggedness, high stopping power, and radiation hardness. New scintillator materials, such as LaBr3:Ce, feature improved energy and timing performance, making them attractive for future astronomy and solar physics space missions in an era of tightly constrained budgets. Despite this promise, the use of scintillators in space remains constrained by the volume, mass, power, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). In recent years, silicon photomultipliers (SiPMs) have emerged as promising alternative light readout devices that offer gains and quantum efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. In order for SiPMs to replace PMTs in space-based instruments, however, it must be shown that they can provide comparable performance, and that their inherent temperature sensitivity can be corrected for. To this end, we have performed extensive testing and modeling of a small gamma-ray spectrometer composed of a 6 mm×6 mm SiPM coupled to a 6 mm×6 mm ×10 mm LaBr3:Ce crystal. A custom readout board monitors the temperature and adjusts the bias voltage to compensate for gain variations. We record an energy resolution of 5.7% (FWHM) at 662 keV at room temperature. We have also performed simulations of the scintillation process and optical light collection using Geant4, and of the SiPM response using the GosSiP package. The simulated energy resolution is in good agreement with the data from 22 keV to 662 keV. Above ~1 MeV, however, the measured energy resolution is systematically worse than the simulations. This discrepancy is likely due to the high input impedance of the readout board front-end electronics, which introduces a non-linear saturation effect in the SiPM for large light pulses. Analysis of the simulations indicates several additional steps that must be taken to optimize the energy resolution of SiPM-based scintillator detectors.
NASA Technical Reports Server (NTRS)
Jacobson, A. D.
1973-01-01
Studies were conducted on the performance of a photoactivated dc liquid crystal light valve. The dc light valve is a thin film device that consists of two transparent electrodes, deposited on glass substrates, that enclose a thin film photoconductor (cadmium sulfide) and a thin layer of a nematic liquid crystal that operates in the dynamic scattering mode. The work was directed toward application of the light valve to high resolution non-coherent light to coherent light image conversion. The goal of these studies was to improve the performance and quality of the already existing dc light valve device and to evaluate quantitatively the properties and performance of the device as they relate to the coherent optical data processing application. As a result of these efforts, device sensitivity was improved by a factor of ten, device resolution was improved by a factor of three, device lifetime was improved by two-orders of magnitude, undesirable secondary liquid crystal scattering effects were eliminated, the scattering characteristics of the liquid crystal were thoroughly documented, the cosmetic quality of the devices was dramatically improved, and the performance of the device was fully documented.
2006-06-01
work by Marshak et al.,9 who was studying neutron diffusion, and by Hamaker ,10 who had calculated the light emitted from a layer of x-ray fluorescent...diffusion and slowing down of neutrons,” Nucleonics 4, 10–22 1949. 10H. C. Hamaker , “Radiation and heat conduction in light scattering mate- rials
Lithium Alkaline Halides—Next Generation of Dual Mode Scintillators
NASA Astrophysics Data System (ADS)
Soundara-Pandian, L.; Hawrami, R.; Glodo, J.; Ariesanti, E.; van Loef, E. V.; Shah, K.
2016-04-01
We report on a new family of scintillators - Lithium alkaline halides, developed based on the alkaline halides by introducing lithium for dual mode gamma-neutron detection. Many different compositions were grown, among which LiSr2I5 (LSI), LiCa2I5 (LCI), LiSr2Br5 (LSB) activated with divalent Europium show good gamma and neutron detection properties. LSI shows the main emission at 497 nm under X-ray excitation. It also shows good proportionality, which in combination with the light yield as high as 60000 photons/MeV, results in an energy resolution of 3.5% at 662 keV. The electron or gamma equivalent energy (GEE) of the thermal neutron peak due to the 6Li neutron capture is 4.1 MeV, which amounts to a very high neutron light yield of 245000 photons. The decay times for neutrons are faster compared to that for gamma-rays, hence we achieved good pulse shape discrimination (PSD) between gamma and neutron events. Our initial studies on the effects of Eu concentration on the properties of LSI show that 3%-4% Eu concentration is optimal for the best performance in terms of gamma and neutron light yields and pulse shape discrimination. LCI shows the main emission at 475 nm under X-ray excitation and a very high gamma light yield of 90000 photons/MeV. The measured energy resolution is 6% at 662 keV. The electron equivalent energy for neutron detection has been measured to be around 3 MeV, which gives a neutron light yield of 270 000 photons. The measured decay times for neutrons are faster compared to gamma decays and the PSD between the gamma-rays and neutrons is not as good as LSI. LSB shows two emissions at 410 and 475 nm under X-ray excitation. The measured light yield is 32000 ph/MeV gamma-ray with an energy resolution of 6% at 662 keV. The electron equivalent energy of the 6Li capture peak was measured to be 3.3 MeV.
The x-ray light valve: a low-cost, digital radiographic imaging system-spatial resolution
NASA Astrophysics Data System (ADS)
MacDougall, Robert D.; Koprinarov, Ivaylo; Webster, Christie A.; Rowlands, J. A.
2007-03-01
In recent years, new x-ray radiographic systems based on large area flat panel technology have revolutionized our capability to produce digital x-ray radiographic images. However, these active matrix flat panel imagers (AMFPIs) are extraordinarily expensive compared to the systems they are replacing. Thus there is a need for a low cost digital imaging system for general applications in radiology. Different approaches have been considered to make lower cost, integrated x-ray imaging devices for digital radiography, including: scanned projection x-ray, an integrated approach based on computed radiography technology and optically demagnified x-ray screen/CCD systems. These approaches suffer from either high cost or high mechanical complexity and do not have the image quality of AMFPIs. We have identified a new approach - the X-ray Light Valve (XLV). The XLV has the potential to achieve the immediate readout in an integrated system with image quality comparable to AMFPIs. The XLV concept combines three well-established and hence lowcost technologies: an amorphous selenium (a-Se) layer to convert x-rays to image charge, a liquid crystal (LC) cell as an analog display, and an optical scanner for image digitization. Here we investigate the spatial resolution possible with XLV systems. Both a-Se and LC cells have both been shown separately to have inherently very high spatial resolution. Due to the close electrostatic coupling in the XLV, it can be expected that the spatial resolution of this system will also be very high. A prototype XLV was made and a typical office scanner was used for image digitization. The Modulation Transfer Function was measured and the limiting factor was seen to be the optical scanner. However, even with this limitation the XLV system is able to meet or exceed the resolution requirements for chest radiography.
Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert
2009-03-10
In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.
Photo-Induced Click Chemistry for DNA Surface Structuring by Direct Laser Writing.
Kerbs, Antonina; Mueller, Patrick; Kaupp, Michael; Ahmed, Ishtiaq; Quick, Alexander S; Abt, Doris; Wegener, Martin; Niemeyer, Christof M; Barner-Kowollik, Christopher; Fruk, Ljiljana
2017-04-11
Oligonucleotides containing photo-caged dienes were prepared and shown to react quantitatively in a light-induced Diels-Alder cycloaddition with functional maleimides in aqueous solution within minutes. Due to its high yield and fast rate, the reaction was exploited for DNA surface patterning with sub-micrometer resolution employing direct laser writing (DLW). Functional DNA arrays were written by direct laser writing (DLW) in variable patterns, which were further encoded with fluorophores and proteins through DNA directed immobilization. This mild and efficient light-driven platform technology holds promise for the fabrication of complex bioarrays with sub-micron resolution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
New concept high-speed and high-resolution color scanner
NASA Astrophysics Data System (ADS)
Nakashima, Keisuke; Shinoda, Shin'ichi; Konishi, Yoshiharu; Sugiyama, Kenji; Hori, Tetsuya
2003-05-01
We have developed a new concept high-speed and high-resolution color scanner (Blinkscan) using digital camera technology. With our most advanced sub-pixel image processing technology, approximately 12 million pixel image data can be captured. High resolution imaging capability allows various uses such as OCR, color document read, and document camera. The scan time is only about 3 seconds for a letter size sheet. Blinkscan scans documents placed "face up" on its scan stage and without any special illumination lights. Using Blinkscan, a high-resolution color document can be easily inputted into a PC at high speed, a paperless system can be built easily. It is small, and since the occupancy area is also small, setting it on an individual desk is possible. Blinkscan offers the usability of a digital camera and accuracy of a flatbed scanner with high-speed processing. Now, about several hundred of Blinkscan are mainly shipping for the receptionist operation in a bank and a security. We will show the high-speed and high-resolution architecture of Blinkscan. Comparing operation-time with conventional image capture device, the advantage of Blinkscan will make clear. And image evaluation for variety of environment, such as geometric distortions or non-uniformity of brightness, will be made.
Jensen, Sabrine S; Jensen, Henrik; Goodall, David M; Østergaard, Jesper
2016-11-30
UV imaging is capable of providing spatially and temporally resolved absorbance measurements, which is highly beneficial in drug diffusion, dissolution and release testing studies. For optimal planning and design of experiments, knowledge about the capabilities and limitations of the imaging system is required. The aim of this study was to characterize the performance of two commercially available UV imaging systems, the D100 and SDI. Lidocaine crystals, lidocaine containing solutions, and gels were applied in the practical assessment of the UV imaging systems. Dissolution of lidocaine from single crystals into phosphate buffer and 0.5% (w/v) agarose hydrogel at pH 7.4 was investigated to shed light on the importance of density gradients under dissolution conditions in the absence of convective flow. In addition, the resolution of the UV imaging systems was assessed by the use of grids. Resolution was found to be better in the vertical direction than the horizontal direction, consistent with the illumination geometry. The collimating lens in the SDI imaging system was shown to provide more uniform light intensity across the UV imaging area and resulted in better resolution as compared to the D100 imaging system (a system without a lens). Under optimal conditions, the resolution was determined to be 12.5 and 16.7 line pairs per mm (lp/mm) corresponding to line widths of 40μm and 30μm in the horizontal and vertical direction, respectively. Overall, the performance of the UV imaging systems was shown mainly to depend on collimation of light, the light path, the positioning of the object relative to the line of 100μm fibres which forms the light source, and the distance of the object from the sensor surface. Copyright © 2016 Elsevier B.V. All rights reserved.
Ultra-high resolution spectral domain optical coherence tomography using supercontinuum light source
NASA Astrophysics Data System (ADS)
Lim, Yiheng; Yatagai, Toyohiko; Otani, Yukitoshi
2016-04-01
An ultra-high resolution spectral domain optical coherence tomography (SD-OCT) was developed using a cost-effective supercontinuum laser. A spectral filter consists of a dispersive prism, a cylindrical lens and a right-angle prism was built to transmit the wavelengths in range 680-940 nm to the OCT system. The SD-OCT has achieved 1.9 μm axial resolution and the sensitivity was estimated to be 91.5 dB. A zero-crossing fringes matching method which maps the wavelengths to the pixel indices of the spectrometer was proposed for the OCT spectral calibration. A double sided foam tape as a static sample and the tip of a middle finger as a biological sample were measured by the OCT. The adhesive and the internal structure of the foam of the tape were successfully visualized in three dimensions. Sweat ducts was clearly observed in the OCT images at very high resolution. To the best of our knowledge, this is the first demonstration of ultra-high resolution visualization of sweat duct by OCT.
Continuous Wave Stimulated Raman Spectroscopy Inside a Hollow Core Photonic Crystal Fiber
NASA Astrophysics Data System (ADS)
Domenech, Jose L.; Cueto, Maite
2013-06-01
Hollow-core photonic crystal fibers (HCPCF) have raised new opportunities to study light-matter interaction. Dielectric or metallic capillaries are intrinsically lossy, making poor light guides. In contrast, HCPCFs can guide light quite efficiently, due to the band-gap effect produced by an array of smaller channels which surrounds a central hollow core with a few μm diameter. The tight confinement of light inside the core, that can be filled with gases, as well as a long interaction length, enhance multiple nonlinear phenomena, making it possible to devise new ways to do low signal level spectroscopy, as is the case of high resolution stimulated Raman spectroscopy (SRS). A. Owyoung demonstrated high resolution continuous wave SRS in 1978. Shortly afterwards, seeking higher sensitivity, he developed the quasi-continuous SRS technique (a high peak power pump laser, interacting with a low power cw probe laser). That variant remains today the best compromise between resolution and sensitivity for gas-phase Raman spectroscopy. In this work, we show the possibility of fully cw stimulated Raman spectroscopy, using a gas cell built around a HCPCF to overcome the limitations posed by the weakness of the stimulated Raman effect when not using pulsed sources. The interaction length (1.2 m), longer than that of a multiple pass refocusing cell, and the narrow diameter of the core (4.8 μm), can compensate for the much lower laser powers used in the cw set-up. The experimental complexity is considerably reduced and the instrumental resolution is at the 10's of MHz level, limited, with our fiber, by transit time effects. At present, we have demonstrated the feasibility of the experiment, a sensitivity enhancement of ˜ 6000 over the single focus regime, and a spectral resolution better than 0.005 wn in the unresolved Q-branch of the ν_1 component of the Fermi dyad of CO_2 at 1388 wn. Other examples of rotationally resolved spectra will be shown: the Q branch of O_2 at 1555 wn, and the 2ν_2 component of the Fermi dyad of CO_2 at 1285 wn. P. St. Russell, Science {299}, 358, 2003. A.Owyoung, C. W. Patterson, R S. McDowell, Chem. Phys. Lett. {59}, 156, 1978
Liu, Wanpeng; Zhou, Zhitao; Zhang, Shaoqing; Shi, Zhifeng; Tabarini, Justin; Lee, Woonsoo; Zhang, Yeshun; Gilbert Corder, S. N.; Li, Xinxin; Dong, Fei; Cheng, Liang; Liu, Mengkun; Kaplan, David L.; Omenetto, Fiorenzo G.
2017-01-01
Precise patterning of biomaterials has widespread applications, including drug release, degradable implants, tissue engineering, and regenerative medicine. Patterning of protein‐based microstructures using UV‐photolithography has been demonstrated using protein as the resist material. The Achilles heel of existing protein‐based biophotoresists is the inevitable wide molecular weight distribution during the protein extraction/regeneration process, hindering their practical uses in the semiconductor industry where reliability and repeatability are paramount. A wafer‐scale high resolution patterning of bio‐microstructures using well‐defined silk fibroin light chain as the resist material is presented showing unprecedent performances. The lithographic and etching performance of silk fibroin light chain resists are evaluated systematically and the underlying mechanisms are thoroughly discussed. The micropatterned silk structures are tested as cellular substrates for the successful spatial guidance of fetal neural stems cells seeded on the patterned substrates. The enhanced patterning resolution, the improved etch resistance, and the inherent biocompatibility of such protein‐based photoresist provide new opportunities in fabricating large scale biocompatible functional microstructures. PMID:28932678
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Shin-Ichi; Ito, Takahiro; Hosaka, Masahito
A novel variably polarized angle-resolved photoemission spectroscopy beamline in the vacuum-ultraviolet (VUV) region has been installed at the UVSOR-II 750 MeV synchrotron light source. The beamline is equipped with a 3 m long APPLE-II type undulator with horizontally/vertically linear and right/left circular polarizations, a 10 m Wadsworth type monochromator covering a photon energy range of 6-43 eV, and a 200 mm radius hemispherical photoelectron analyzer with an electron lens of a {+-}18 deg. acceptance angle. Due to the low emittance of the UVSOR-II storage ring, the light source is regarded as an entrance slit, and the undulator light is directlymore » led to a grating by two plane mirrors in the monochromator while maintaining a balance between high-energy resolution and high photon flux. The energy resolving power (h{nu}/{Delta}h{nu}) and photon flux of the monochromator are typically 1x10{sup 4} and 10{sup 12} photons/s, respectively, with a 100 {mu}m exit slit. The beamline is used for angle-resolved photoemission spectroscopy with an energy resolution of a few meV covering the UV-to-VUV energy range.« less
Mahbub, Parvez; Leis, John; Macka, Mirek
2018-05-15
Modeling the propagation of light from LED sources is problematic since the emission covers a broad range of wavelengths and thus cannot be considered as monochromatic. Furthermore, the lack of directivity of such sources is also problematic. Both attributes are characteristic of LEDs. Here we propose a HITRAN ( high-resolution transmission molecular absorption database) based chemometric approach that incorporates not-perfect-monochromaticity and spatial directivity of near-infrared (NIR) LED for absorbance calculations in 1-6% methane (CH 4 ) in air, considering CH 4 as a model absorbing gas. We employed the absorbance thus calculated using HITRAN to validate the experimentally measured absorbance of CH 4 . The maximum error between the measured and calculated absorbance values were within 1%. The approach can be generalized as a chemometric calibration technique for measuring gases and gas mixtures that absorb emissions from polychromatic or not-perfect-monochromatic sources, provided the gas concentration, optical path length, as well as blank and attenuated emission spectra of the light source are incorporated into the proposed chemometric approach.
NASA Astrophysics Data System (ADS)
Pagès, Anaïs; Welsh, David T.; Robertson, David; Panther, Jared G.; Schäfer, Jörg; Tomlinson, Rodger B.; Teasdale, Peter R.
2012-12-01
High resolution, two dimensional distributions of porewater iron(II) and sulfide were measured, using colourimetric DET (diffusive equilibration in a thin film) and DGT (diffusive gradients in a thin film) techniques, respectively, in Zostera capricorni colonised sediments under both light and dark conditions. Low resolution depth profiles of ammonium and phosphate were measured using conventional DET and DGT methods, respectively. Porewater iron(II) and sulfide distributions showed a high degree of spatial heterogeneity under both light and dark conditions, and distributions were characterised by a complex mosaic of sediment zones dominated by either iron(II) or sulfide. However, there was a clear shift in overall redox conditions between light and dark conditions. During light deployments, iron(II) and sulfide concentrations were generally low throughout the rhizosphere, apart from a few distinct "hotspots" of high concentration. Whereas during dark deployments, high concentrations of iron(II) were sometimes measured in the near surface sediments and sulfide depth distributions migrated towards the sediment surface. Profiles of porewater ammonium and phosphate demonstrated an increase in ammonium concentrations under dark compared to light conditions. Surprisingly, despite the large changes in iron(II) distributions between light and dark conditions, phosphate profiles remained similar, indicating that adsorption/release of phosphate by iron(III) hydr(oxide) mineral formation and reduction was not a major factor regulating porewater phosphate concentrations in these sediments or that phosphate uptake by the seagrass roots persisted during the dark period. Overall, the results demonstrate that the photosynthetic activity of the seagrass played a significant role in regulating sulfide, iron(II) and ammonium concentrations in the rhizosphere, due to rates of radial oxygen loss and ammonium uptake by the roots and rhizomes being lower under dark compared to light conditions. This cyclic production and reduction of iron(III) hydr(oxides) in the rhizosphere may act as a buffering system preventing sulfide accumulation.
OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité
NASA Astrophysics Data System (ADS)
Bibring, J.-P.; Soufflot, A.; Berthé, M.; Langevin, Y.; Gondet, B.; Drossart, P.; Bouyé, M.; Combes, M.; Puget, P.; Semery, A.; Bellucci, G.; Formisano, V.; Moroz, V.; Kottsov, V.; Bonello, G.; Erard, S.; Forni, O.; Gendrin, A.; Manaud, N.; Poulet, F.; Poulleau, G.; Encrenaz, T.; Fouchet, T.; Melchiori, R.; Altieri, F.; Ignatiev, N.; Titov, D.; Zasova, L.; Coradini, A.; Capacionni, F.; Cerroni, P.; Fonti, S.; Mangold, N.; Pinet, P.; Schmitt, B.; Sotin, C.; Hauber, E.; Hoffmann, H.; Jaumann, R.; Keller, U.; Arvidson, R.; Mustard, J.; Forget, F.
2004-08-01
The OMEGA visible and near-IR mapping spectrometer will reveal the mineralogical and molecular composition of the surface and atmosphere of Mars through the spectral analysis of the diffused solar light and surface thermal emission. It will provide global coverage at medium resolution (2-5 km) for altitudes from 1500 km to 4000 km, and high-resolution (<350 m) spectral images of selected areas.
Bending the Rules: Widefield Microscopy and the Abbe Limit of Resolution
Verdaasdonk, Jolien S.; Stephens, Andrew D.; Haase, Julian; Bloom, Kerry
2014-01-01
One of the most fundamental concepts of microscopy is that of resolution–the ability to clearly distinguish two objects as separate. Recent advances such as structured illumination microscopy (SIM) and point localization techniques including photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM) strive to overcome the inherent limits of resolution of the modern light microscope. These techniques, however, are not always feasible or optimal for live cell imaging. Thus, in this review, we explore three techniques for extracting high resolution data from images acquired on a widefield microscope–deconvolution, model convolution, and Gaussian fitting. Deconvolution is a powerful tool for restoring a blurred image using knowledge of the point spread function (PSF) describing the blurring of light by the microscope, although care must be taken to ensure accuracy of subsequent quantitative analysis. The process of model convolution also requires knowledge of the PSF to blur a simulated image which can then be compared to the experimentally acquired data to reach conclusions regarding its geometry and fluorophore distribution. Gaussian fitting is the basis for point localization microscopy, and can also be applied to tracking spot motion over time or measuring spot shape and size. All together, these three methods serve as powerful tools for high-resolution imaging using widefield microscopy. PMID:23893718
High-Spatial-Resolution OH and CH2O PLIF Visualization in a Dual-Mode Scramjet Combustor
NASA Technical Reports Server (NTRS)
Geipel, Clayton M.
2017-01-01
A high-spatial-resolution planar laser-induced fluorescence (PLIF) imaging system was constructed and used to image a cavity-stabilized, premixed ethylene-air flame. The flame was created within a continuous flow, electrically-heated supersonic combustion facility consisting of a Mach 2 nozzle, an isolator with flush-wall fuel injectors, a combustor with a cavity flameholder of height 9 mm and optical access, and an extender. Tests were conducted at total temperature 1200 K, total pressure 300 kPa, equivalence ratio near 0.4 in the combustor, and Mach number near 0.6 in the combustor. A frequency-doubled Nd:YAG laser pumped a dye laser, which produced light at 283.55 nm. The beam was shaped into a light sheet with full width half-maximum 25 microns, which illuminated a streamwise plane that bisected the cavity. An intensified camera system imaged OH in this plane with a square 6.67 mm field of view and in-plane resolution 39 microns. Images were taken between the backward-facing step and 120 mm downstream of the step. OH structures as small as 110 microns were observed. CH2O was excited using 352.48 nm light; the smallest observed CH2O structures were approximately 200 microns wide. Approximately 15,000 images per species were processed and used to compute composite images.
Virtual reality 3D headset based on DMD light modulators
NASA Astrophysics Data System (ADS)
Bernacki, Bruce E.; Evans, Allan; Tang, Edward
2014-06-01
We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micromirror devices (DMD). Current methods for presenting information for virtual reality are focused on either polarizationbased modulators such as liquid crystal on silicon (LCoS) devices, or miniature LCD or LED displays often using lenses to place the image at infinity. LCoS modulators are an area of active research and development, and reduce the amount of viewing light by 50% due to the use of polarization. Viewable LCD or LED screens may suffer low resolution, cause eye fatigue, and exhibit a "screen door" or pixelation effect due to the low pixel fill factor. Our approach leverages a mature technology based on silicon micro mirrors delivering 720p resolution displays in a small form-factor with high fill factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high-definition resolution and low power consumption, and many of the design methods developed for DMD projector applications can be adapted to display use. Potential applications include night driving with natural depth perception, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design concept is described in which light from the DMD is imaged to infinity and the user's own eye lens forms a real image on the user's retina resulting in a virtual retinal display.
Preliminary interpretation of pre-2014 landslide deposits in the vicinity of Oso, Washington
Haugerud, Ralph A.
2014-01-01
High-resolution topographic surveys allow fairly precise mapping of landslide deposits and their relative ages. Relative ages are determined by cross-cutting relations and the amount of smoothing—more smoothed slide deposits are older—of these deposits. The Tulalip Tribes, in partnership with the Puget Sound Lidar Consortium, acquired a high-resolution lidar (light detection and ranging) survey of the North Fork Stillaguamish River valley in 2013. This report presents a preliminary interpretation of the topography of this area using the lidar data at a scale of 1:24,000.
A sub-millimeter resolution PET detector module using a multi-pixel photon counter array
NASA Astrophysics Data System (ADS)
Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B.; Tai, Yuan-Chuan
2010-05-01
A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 × 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 × 0.8 × 3 mm3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 × 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications.
A sub-millimeter resolution PET detector module using a multi-pixel photon counter array.
Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan
2010-05-07
A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 x 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 x 0.8 x 3 mm(3) and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 x 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and +/-5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when +/-10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications.
A sub-millimeter resolution PET detector module using a multi-pixel photon counter array
Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan
2010-01-01
A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 × 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 × 0.8 × 3 mm3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 × 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications. PMID:20393236
A light sheet confocal microscope for image cytometry with a variable linear slit detector
NASA Astrophysics Data System (ADS)
Hutcheson, Joshua A.; Khan, Foysal Z.; Powless, Amy J.; Benson, Devin; Hunter, Courtney; Fritsch, Ingrid; Muldoon, Timothy J.
2016-03-01
We present a light sheet confocal microscope (LSCM) capable of high-resolution imaging of cell suspensions in a microfluidic environment. In lieu of conventional pressure-driven flow or mechanical translation of the samples, we have employed a novel method of fluid transport, redox-magnetohydrodynamics (redox-MHD). This method achieves fluid motion by inducing a small current into the suspension in the presence of a magnetic field via electrodes patterned onto a silicon chip. This on-chip transportation requires no moving parts, and is coupled to the remainder of the imaging system. The microscopy system comprises a 450 nm diode 20 mW laser coupled to a single mode fiber and a cylindrical lens that converges the light sheet into the back aperture of a 10x, 0.3 NA objective lens in an epi-illumination configuration. The emission pathway contains a 150 mm tube lens that focuses the light onto the linear sensor at the conjugate image plane. The linear sensor (ELiiXA+ 8k/4k) has three lateral binning modes which enables variable detection aperture widths between 5, 10, or 20 μm, which can be used to vary axial resolution. We have demonstrated redox-MHD-enabled light sheet microscopy in suspension of fluorescent polystyrene beads. This approach has potential as a high-throughput image cytometer with myriad cellular diagnostic applications.
NASA Astrophysics Data System (ADS)
Kuroda, R.; Sugawa, S.
2017-02-01
Ultra-high speed (UHS) CMOS image sensors with on-chop analog memories placed on the periphery of pixel array for the visualization of UHS phenomena are overviewed in this paper. The developed UHS CMOS image sensors consist of 400H×256V pixels and 128 memories/pixel, and the readout speed of 1Tpixel/sec is obtained, leading to 10 Mfps full resolution video capturing with consecutive 128 frames, and 20 Mfps half resolution video capturing with consecutive 256 frames. The first development model has been employed in the high speed video camera and put in practical use in 2012. By the development of dedicated process technologies, photosensitivity improvement and power consumption reduction were simultaneously achieved, and the performance improved version has been utilized in the commercialized high-speed video camera since 2015 that offers 10 Mfps with ISO16,000 photosensitivity. Due to the improved photosensitivity, clear images can be captured and analyzed even under low light condition, such as under a microscope as well as capturing of UHS light emission phenomena.
History and current status of strontium iodide scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherepy, Nerine J.; Beck, Patrick R.; Payne, Stephen A.
Eu-doped strontium iodide single crystal growth has reached maturity and prototype SrI 2(Eu)-based gamma ray spectrometers provide detection performance advantages over standard detectors. SrI 2(Eu) offers a high, proportional light yield of >80,000 photons/MeV. Energy resolution of <3% at 662 keV with 1.5” x 1.5” SrI2(Eu) crystals is routinely achieved, by employing either a small taper at the top of the crystal or a digital readout technique. These methods overcome light-trapping, in which scintillation light is re-absorbed and re-emitted in Eu 2+-doped crystals. As a result, its excellent energy resolution, lack of intrinsic radioactivity or toxicity, and commercial availability makemore » SrI 2(Eu) the ideal scintillator for use in handheld radioisotope identification devices. A 6-lb SrI 2(Eu) radioisotope identifier is described.« less
History and current status of strontium iodide scintillators
Cherepy, Nerine J.; Beck, Patrick R.; Payne, Stephen A.; ...
2017-09-15
Eu-doped strontium iodide single crystal growth has reached maturity and prototype SrI 2(Eu)-based gamma ray spectrometers provide detection performance advantages over standard detectors. SrI 2(Eu) offers a high, proportional light yield of >80,000 photons/MeV. Energy resolution of <3% at 662 keV with 1.5” x 1.5” SrI2(Eu) crystals is routinely achieved, by employing either a small taper at the top of the crystal or a digital readout technique. These methods overcome light-trapping, in which scintillation light is re-absorbed and re-emitted in Eu 2+-doped crystals. As a result, its excellent energy resolution, lack of intrinsic radioactivity or toxicity, and commercial availability makemore » SrI 2(Eu) the ideal scintillator for use in handheld radioisotope identification devices. A 6-lb SrI 2(Eu) radioisotope identifier is described.« less
NASA Astrophysics Data System (ADS)
O'Keeffe, Brendon Andrew; Johnson, Michael
2017-01-01
Light pollution plays an ever increasing role in the operations of observatories across the world. This is especially true in urban environments like Columbus, GA, where Columbus State University’s WestRock Observatory is located. Light pollution’s effects on an observatory include high background levels, which results in a lower signal to noise ratio. Overall, this will limit what the telescope can detect, and therefore limit the capabilities of the observatory as a whole.Light pollution has been mapped in Columbus before using VIIRS DNB composites. However, this approach did not provide the detailed resolution required to narrow down the problem areas around the vicinity of the observatory. The purpose of this study is to assess the current state of light pollution surrounding the WestRock observatory by measuring and mapping the brightness of the sky due to light pollution using light meters and geographic information system (GIS) software.Compared to VIIRS data this study allows for an improved spatial resolution and a direct measurement of the sky background. This assessment will enable future studies to compare their results to the baseline established here, ensuring that any changes to the way the outdoors are illuminated and their effects can be accurately measured, and counterbalanced.
Multispectral imaging of the ocular fundus using light emitting diode illumination
NASA Astrophysics Data System (ADS)
Everdell, N. L.; Styles, I. B.; Calcagni, A.; Gibson, J.; Hebden, J.; Claridge, E.
2010-09-01
We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration.
Multispectral imaging of the ocular fundus using light emitting diode illumination.
Everdell, N L; Styles, I B; Calcagni, A; Gibson, J; Hebden, J; Claridge, E
2010-09-01
We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration.
High angular resolution at LBT
NASA Astrophysics Data System (ADS)
Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.
2015-12-01
High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.
A novel high-resolution chaotic lidar with optical injection to chaotic laser diode
NASA Astrophysics Data System (ADS)
Wang, Yun-cai; Wang, An-bang
2008-03-01
A novel chaotic lidar with high resolution is proposed and studied theoretically. In chaotic lidar system, the chaotic laser emitted from chaotic laser diode is split into two beams: the probe and the reference light. The ranging is achieved by correlating the reference waveform with the delayed probe waveform backscattered from the target. In chaotic lidar systems presented previously, the chaotic signal source is laser diode with optical feedback or with optical injection by another one. The ranging resolution is limited by the bandwidth of chaotic laser which determined by the configuration of chaotic signal source. We proposed a novel chaotic lidar which ranging resolution is enhanced significantly by external optical injected chaotic laser diode. With the bandwidth-enhanced chaotic laser, the range resolution of the chaotic lidar system with optical injection is roughly two times compared with that of without optical injection. The resolution increases with injection strength increasing in a certain frequency detuning range.
Time and position resolution of the scintillator strips for a muon system at future colliders
Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja
2016-03-31
In this study, prototype scintilator+WLS strips with SiPM readout for a muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been observed, as well as time resolution of 0.45 ns and position resolution along the strip of 7.7 cm.
Tests of Scintillator+WLS Strips for Muon System at Future Colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, Dmitri; Evdokimov, Valery; Lukić, Strahinja
2015-10-11
Prototype scintilator+WLS strips with SiPM readout for muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been achieved, as well as time resolution of 0.5 ns and position resolution of ~ 7 cm.
A simple apparatus for quick qualitative analysis of CR39 nuclear track detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gautier, D. C.; Kline, J. L.; Flippo, K. A.
2008-10-15
Quantifying the ion pits in Columbia Resin 39 (CR39) nuclear track detector from Thomson parabolas is a time consuming and tedious process using conventional microscope based techniques. A simple inventive apparatus for fast screening and qualitative analysis of CR39 detectors has been developed, enabling efficient selection of data for a more detailed analysis. The system consists simply of a green He-Ne laser and a high-resolution digital single-lens reflex camera. The laser illuminates the edge of the CR39 at grazing incidence and couples into the plastic, acting as a light pipe. Subsequently, the laser illuminates all ion tracks on the surface.more » A high-resolution digital camera is used to photograph the scattered light from the ion tracks, enabling one to quickly determine charge states and energies measured by the Thomson parabola.« less
Device for translating negative film image to a line scan
Dutton, G.W.
1998-05-19
A negative film reader records high-resolution optical density changes across negative film radiographic images to allow precise image dimensions to be determined. A laser light source capable of high-resolution focusing is passed through an intensity control filter, focused by a lens, and reflected off a mirror to focus in the plane of the negative film. The light transmitted through the film is collected by a second lens and directed to a photo diode detector which senses the transmitted intensity. The output of the photo diode signal amplifier is sent to the Y-axis input of an X-Y recorder. The film sample is transported in a plane perpendicular to the beam axis by means of a slide. The film position is monitored, with the signal amplified and recorded as the X-axis on the X-Y recorder. The linear dimensions and positions of image components can be determined by direct measurement of the amplified recording.
Polarization-controlled directional scattering for nanoscopic position sensing
Neugebauer, Martin; Woźniak, Paweł; Bag, Ankan; Leuchs, Gerd; Banzer, Peter
2016-01-01
Controlling the propagation and coupling of light to sub-wavelength antennas is a crucial prerequisite for many nanoscale optical devices. Recently, the main focus of attention has been directed towards high-refractive-index materials such as silicon as an integral part of the antenna design. This development is motivated by the rich spectral properties of individual high-refractive-index nanoparticles. Here we take advantage of the interference of their magnetic and electric resonances to achieve strong lateral directionality. For controlled excitation of a spherical silicon nanoantenna, we use tightly focused radially polarized light. The resultant directional emission depends on the antenna's position relative to the focus. This approach finds application as a novel position sensing technique, which might be implemented in modern nanometrology and super-resolution microscopy set-ups. We demonstrate in a proof-of-concept experiment that a lateral resolution in the Ångström regime can be achieved. PMID:27095171
Ex vivo validation of photo-magnetic imaging.
Luk, Alex; Nouizi, Farouk; Erkol, Hakan; Unlu, Mehmet B; Gulsen, Gultekin
2017-10-15
We recently introduced a new high-resolution diffuse optical imaging technique termed photo-magnetic imaging (PMI), which utilizes magnetic resonance thermometry (MRT) to monitor the 3D temperature distribution induced in a medium illuminated with a near-infrared light. The spatiotemporal temperature distribution due to light absorption can be accurately estimated using a combined photon propagation and heat diffusion model. High-resolution optical absorption images are then obtained by iteratively minimizing the error between the measured and modeled temperature distributions. We have previously demonstrated the feasibility of PMI with experimental studies using tissue simulating agarose phantoms. In this Letter, we present the preliminary ex vivo PMI results obtained with a chicken breast sample. Similarly to the results obtained on phantoms, the reconstructed images reveal that PMI can quantitatively resolve an inclusion with a 3 mm diameter embedded deep in a biological tissue sample with only 10% error. These encouraging results demonstrate the high performance of PMI in ex vivo biological tissue and its potential for in vivo imaging.
The high-energy x-ray diffraction and scattering beamline at the Canadian Light Source
NASA Astrophysics Data System (ADS)
Gomez, A.; Dina, G.; Kycia, S.
2018-06-01
The optical design for the high-energy x-ray diffraction and scattering beamline of the Brockhouse sector at the Canadian Light Source is described. The design is based on a single side-bounce silicon focusing monochromator that steers the central part of a high-field permanent magnet wiggler beam into the experimental station. Two different configurations are proposed: a higher energy resolution with vertical focusing and a lower energy resolution with horizontal and vertical focusing. The monochromator will have the possibility of mounting three crystals: one crystal optimized for 35 keV that focuses in the horizontal and vertical directions using reflection (1,1,1) and two other crystals both covering the energies above 40 keV: one with only vertical focusing and another one with horizontal and vertical focusing. The geometry of the last two monochromator crystals was optimized to use reflections (4,2,2) and (5,3,3) to cover the broad energy range from 40 to 95 keV.
Bessel light sheet structured illumination microscopy
NASA Astrophysics Data System (ADS)
Noshirvani Allahabadi, Golchehr
Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in confocal quality images in thick tissue. The technique was applied to live transgenic zebra fish tg(kdrl:GFP), and the sub-cellular structure of fish vasculature genetically labeled with GFP was captured in 3D. The superior speed of the microscope enables us to acquire signal from 200 layers of a thick sample in 4 minutes. The compact microscope uses exclusively off-the-shelf components and offers a low-cost imaging solution for studying small animal models or tissue samples.
Song, Yushou; Conner, Joseph; Zhang, Xiaodong; Hayward, Jason P
2016-02-01
In order to develop a high spatial resolution (micron level) thermal neutron detector, a detector assembly composed of cerium doped lithium glass microfibers, each with a diameter of 1 μm, is proposed, where the neutron absorption location is reconstructed from the observed charged particle products that result from neutron absorption. To suppress the cross talk of the scintillation light, each scintillating fiber is surrounded by air-filled glass capillaries with the same diameter as the fiber. This pattern is repeated to form a bulk microfiber detector. On one end, the surface of the detector is painted with a thin optical reflector to increase the light collection efficiency at the other end. Then the scintillation light emitted by any neutron interaction is transmitted to one end, magnified, and recorded by an intensified CCD camera. A simulation based on the Geant4 toolkit was developed to model this detector. All the relevant physics processes including neutron interaction, scintillation, and optical boundary behaviors are simulated. This simulation was first validated through measurements of neutron response from lithium glass cylinders. With good expected light collection, an algorithm based upon the features inherent to alpha and triton particle tracks is proposed to reconstruct the neutron reaction position in the glass fiber array. Given a 1 μm fiber diameter and 0.1mm detector thickness, the neutron spatial resolution is expected to reach σ∼1 μm with a Gaussian fit in each lateral dimension. The detection efficiency was estimated to be 3.7% for a glass fiber assembly with thickness of 0.1mm. When the detector thickness increases from 0.1mm to 1mm, the position resolution is not expected to vary much, while the detection efficiency is expected to increase by about a factor of ten. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lock-in imaging with synchronous digital mirror demodulation
NASA Astrophysics Data System (ADS)
Bush, Michael G.
2010-04-01
Lock-in imaging enables high contrast imaging in adverse conditions by exploiting a modulated light source and homodyne detection. We report results on a patent pending lock-in imaging system fabricated from commercial-off-theshelf parts utilizing standard cameras and a spatial light modulator. By leveraging the capabilities of standard parts we are able to present a low cost, high resolution, high sensitivity camera with applications in search and rescue, friend or foe identification (IFF), and covert surveillance. Different operating modes allow the same instrument to be utilized for dual band multispectral imaging or high dynamic range imaging, increasing the flexibility in different operational settings.
Liaparinos, P F
2015-11-21
X-ray phosphor-based detectors have enormously improved the quality of medical imaging examinations through the optimization of optical diffusion. In recent years, with the development of science and technology in the field of materials, improved powder phosphors require structural and optical properties that contribute to better optical signal propagation. The purpose of this paper was to provide a quantitative and qualitative understanding of the optical absorption characteristics in the assessment of powder phosphor-based detectors (from nano- scale up to micro-scale). Variations on the optical absorption parameters (i.e. the light extinction coefficient [Formula: see text] and the percentage probability of light absorption p%) were evaluated based on Mie calculations examining a wide range of light wavelengths, particle refractive indices and sizes. To model and assess the effects of the aforementioned parameters on optical diffusion, Monte Carlo simulation techniques were employed considering: (i) phosphors of different layer thickness, 100 μm (thin layer) and 300 μm (thick layer), respectively, (ii) light extinction coefficient values, 1, 3 and 6 μm(-1), and (iii) percentage probability of light absorption p% in the range 10(-4)-10(-2). Results showed that the [Formula: see text] coefficient is high for phosphor grains in the submicron scale and for low light wavelengths. At higher wavelengths (above 650 nm), optical quanta follow approximately similar depths until interaction for grain diameter 500 nm and 1 μm. Regarding the variability of the refractive index, high variations of the [Formula: see text] coefficient occurred above 1.6. Furthermore, results derived from Monte Carlo modeling showed that high spatial resolution phosphors can be accomplished by increasing the [Formula: see text] parameter. More specifically, the FWHM was found to decrease (i.e. higher resolution): (i) 4.8% at 100 μm and (ii) 9.5%, at 300 μm layer thickness. This study attempted to examine the role of the optical absorption parameters on optical diffusion studies. A significant outcome of the present investigation was that the improvement of phosphor spatial resolution without decreasing the light collection efficiency too much can be better achieved by increasing the parameter [Formula: see text] rather than the parameter p%.
[The optimizing design and experiment for a MOEMS micro-mirror spectrometer].
Mo, Xiang-xia; Wen, Zhi-yu; Zhang, Zhi-hai; Guo, Yuan-jun
2011-12-01
A MOEMS micro-mirror spectrometer, which uses micro-mirror as a light switch so that spectrum can be detected by a single detector, has the advantages of transforming DC into AC, applying Hadamard transform optics without additional template, high pixel resolution and low cost. In this spectrometer, the vital problem is the conflict between the scales of slit and the light intensity. Hence, in order to improve the resolution of this spectrometer, the present paper gives the analysis of the new effects caused by micro structure, and optimal values of the key factors. Firstly, the effects of diffraction limitation, spatial sample rate and curved slit image on the resolution of the spectrum were proposed. Then, the results were simulated; the key values were tested on the micro mirror spectrometer. Finally, taking all these three effects into account, this micro system was optimized. With a scale of 70 mm x 130 mm, decreasing the height of the image at the plane of micro mirror can not diminish the influence of curved slit image in the spectrum; under the demand of spatial sample rate, the resolution must be twice over the pixel resolution; only if the width of the slit is 1.818 microm and the pixel resolution is 2.2786 microm can the spectrometer have the best performance.
Possible Fluvial Features in Golden Crater
2015-03-25
This observation from NASA Mars Reconnaissance Orbiter shows an interesting crater floor with what appear to be inverted channels, rounded lobe-like landforms, and light-toned layered deposits along the southern portion of the crater wall. High resolution can help study the layers, with an enhanced-color image showing us any variations in composition between those light-toned layers and the darker-toned surfaces. http://photojournal.jpl.nasa.gov/catalog/PIA19353
NASA Astrophysics Data System (ADS)
Gong, Rui; Xu, Haisong; Wang, Binyu; Luo, Ming Ronnier
2012-08-01
The image quality of two active matrix organic light emitting diode (AMOLED) smart-phone displays and two in-plane switching (IPS) ones was visually assessed at two levels of ambient lighting conditions corresponding to indoor and outdoor applications, respectively. Naturalness, colorfulness, brightness, contrast, sharpness, and overall image quality were evaluated via psychophysical experiment by categorical judgment method using test images selected from different application categories. The experimental results show that the AMOLED displays perform better on colorfulness because of their wide color gamut, while the high pixel resolution and high peak luminance of the IPS panels help the perception of brightness, contrast, and sharpness. Further statistical analysis of ANOVA indicates that ambient lighting levels have significant influences on the attributes of brightness and contrast.
Developmental approach towards high resolution optical coherence tomography for glaucoma diagnostics
NASA Astrophysics Data System (ADS)
Kemper, Björn; Ketelhut, Steffi; Heiduschka, Peter; Thorn, Marie; Larsen, Michael; Schnekenburger, Jürgen
2018-02-01
Glaucoma is caused by a pathological rise in the intraocular pressure, which results in a progressive loss of vision by a damage to retinal cells and the optical nerve head. Early detection of pressure-induced damage is thus essential for the reduction of eye pressure and to prevent severe incapacity or blindness. Within the new European Project GALAHAD (Glaucoma Advanced, Label free High Resolution Automated OCT Diagnostics), we will develop a new low-cost and high-resolution OCT system for the early detection of glaucoma. The device is designed to improve diagnosis based on a new system of optical coherence tomography. Although OCT systems are at present available in ophthalmology centres, high-resolution devices are extremely expensive. The novelty of the new Galahad system is its super wideband light source to achieve high image resolution at a reasonable cost. Proof of concept experiments with cell and tissue Glaucoma test standards and animal models are planned for the test of the new optical components and new algorithms performance for the identification of Glaucoma associated cell and tissue structures. The intense training of the software systems with various samples should result in a increased sensitivity and specificity of the OCT software system.
First light of the CHARIS high-contrast integral-field spectrograph
NASA Astrophysics Data System (ADS)
Groff, Tyler; Chilcote, Jeffrey; Brandt, Timothy; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Rizzo, Maxime; Knapp, Gillian; Guyon, Olivier; Jovanovic, Nemanja; Lozi, Julien; Currie, Thayne; Takato, Naruhisa; Hayashi, Masahiko
2017-09-01
One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has `high' and `low' resolution operating modes. The high-resolution mode is used to characterize targets in J, H, and K bands at R70. The low-resolution prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS has completed commissioning and is open for science observations.
Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.
2010-01-01
Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333
Observations of movement dynamics of flying insects using high resolution lidar.
Kirkeby, Carsten; Wellenreuther, Maren; Brydegaard, Mikkel
2016-07-04
Insects are fundamental to ecosystem functioning and biodiversity, yet the study of insect movement, dispersal and activity patterns remains a challenge. Here we present results from a novel high resolution laser-radar (lidar) system for quantifying flying insect abundance recorded during one summer night in Sweden. We compare lidar recordings with data from a light trap deployed alongside the lidar. A total of 22808 insect were recorded, and the relative temporal quantities measured matched the quantities recorded with the light trap within a radius of 5 m. Lidar records showed that small insects (wing size <2.5 mm(2) in cross-section) moved across the field and clustered near the light trap around 22:00 local time, while larger insects (wing size >2.5 mm(2) in cross-section) were most abundant near the lidar beam before 22:00 and then moved towards the light trap between 22:00 and 23:30. We could distinguish three insect clusters based on morphology and found that two contained insects predominantly recorded above the field in the evening, whereas the third was formed by insects near the forest at around 21:30. Together our results demonstrate the capability of lidar for distinguishing different types of insect during flight and quantifying their movements.
The design of light pipe with microstructures for touch screen
NASA Astrophysics Data System (ADS)
Yang, Bo; Lu, Kan; Liu, Pengfei; Wei, Xiaona
2010-11-01
Touch screen has a very wide range of applications. Most of them are used in public information inquiries, for instance, service inquiries in telecommunication bureau, tax bureau, bank system, electric department, etc...Touch screen can also be used for entertainment and virtual reality applications too. Traditionally, touch screen was composed of pairs of infrared LED and correspondent receivers which were all installed in the screen frame. Arrays of LED were set in the adjacent sides of the frame of an infrared touch screen while arrays of the infrared receivers were fixed in each opposite side, so that the infrared detecting network was formed. While the infrared touch screen has some technical limitations nowadays such as the low resolution, limitations of touching methods and fault response due to environmental disturbances. The plastic material has a relatively high absorption rate for infrared light, which greatly limits the size of the touch screen. Our design uses laser diode as source and change the traditional inner structure of touch screen by using a light pipe with microstructures. The geometric parameters of the light pipe and the microstructures were obtained through equation solving. Simulation results prove that the design method for touch screen proposed in this paper could achieve high resolution and large size of touch screen.
NASA Astrophysics Data System (ADS)
Bae, Seungbin; Lee, Kisung; Seo, Changwoo; Kim, Jungmin; Joo, Sung-Kwan; Joung, Jinhun
2011-09-01
We developed a high precision position decoding method for a positron emission tomography (PET) detector that consists of a thick slab scintillator coupled with a multichannel photomultiplier tube (PMT). The DETECT2000 simulation package was used to validate light response characteristics for a 48.8 mm×48.8 mm×10 mm slab of lutetium oxyorthosilicate coupled to a 64 channel PMT. The data are then combined to produce light collection histograms. We employed a Gaussian mixture model (GMM) to parameterize the composite light response with multiple Gaussian mixtures. In the training step, light photons acquired by N PMT channels was used as an N-dimensional feature vector and were fed into a GMM training model to generate optimal parameters for M mixtures. In the positioning step, we decoded the spatial locations of incident photons by evaluating a sample feature vector with respect to the trained mixture parameters. The average spatial resolutions after positioning with four mixtures were 1.1 mm full width at half maximum (FWHM) at the corner and 1.0 mm FWHM at the center section. This indicates that the proposed algorithm achieved high performance in both spatial resolution and positioning bias, especially at the corner section of the detector.
Observations of movement dynamics of flying insects using high resolution lidar
Kirkeby, Carsten; Wellenreuther, Maren; Brydegaard, Mikkel
2016-01-01
Insects are fundamental to ecosystem functioning and biodiversity, yet the study of insect movement, dispersal and activity patterns remains a challenge. Here we present results from a novel high resolution laser-radar (lidar) system for quantifying flying insect abundance recorded during one summer night in Sweden. We compare lidar recordings with data from a light trap deployed alongside the lidar. A total of 22808 insect were recorded, and the relative temporal quantities measured matched the quantities recorded with the light trap within a radius of 5 m. Lidar records showed that small insects (wing size <2.5 mm2 in cross-section) moved across the field and clustered near the light trap around 22:00 local time, while larger insects (wing size >2.5 mm2 in cross-section) were most abundant near the lidar beam before 22:00 and then moved towards the light trap between 22:00 and 23:30. We could distinguish three insect clusters based on morphology and found that two contained insects predominantly recorded above the field in the evening, whereas the third was formed by insects near the forest at around 21:30. Together our results demonstrate the capability of lidar for distinguishing different types of insect during flight and quantifying their movements. PMID:27375089
Strocov, V. N.; Schmitt, T.; Flechsig, U.; Schmidt, T.; Imhof, A.; Chen, Q.; Raabe, J.; Betemps, R.; Zimoch, D.; Krempasky, J.; Wang, X.; Grioni, M.; Piazzalunga, A.; Patthey, L.
2010-01-01
The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785
Generation of high-energy neutron beam by fragmentation of relativistic heavy nuclei
NASA Astrophysics Data System (ADS)
Yurevich, Vladimir
2016-09-01
The phenomenon of multiple production of neutrons in reactions with heavy nuclei induced by high-energy protons and light nuclei is analyzed using a Moving Source Model. The Lorentz transformation of the obtained neutron distributions is used to study the neutron characteristics in the inverse kinematics where relativistic heavy nuclei bombard a light-mass target. The neutron beam generated at 0∘has a Gaussian shape with a maximum at the energy of the projectile nucleons and an energy resolution σE/E < 4% above 6 GeV.
NASA Astrophysics Data System (ADS)
Lehmann, L.; Darré, P.; Szemendera, L.; Gomes, J. T.; Baudoin, R.; Ceus, D.; Brustlein, S.; Delage, L.; Grossard, L.; Reynaud, F.
2018-04-01
This paper gives an overview of the Astronomical Light Optical Hybrid Analysis (ALOHA) project dedicated to investigate a new method for high resolution imaging in mid infrared astronomy. This proposal aims to use a non-linear frequency conversion process to shift the thermal infrared radiation to a shorter wavelength domain compatible with proven technology such as guided optics and detectors. After a description of the principle, we summarise the evolution of our study from the high flux seminal experiments to the latest results in the photon counting regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gould, A.; Yee, J. C.; Pinsonneault, M. H.
The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an A {sub max} {approx} 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations for a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the light-curve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge.
U-Shaped and Surface Functionalized Polymer Optical Fiber Probe for Glucose Detection.
Azkune, Mikel; Ruiz-Rubio, Leire; Aldabaldetreku, Gotzon; Arrospide, Eneko; Pérez-Álvarez, Leyre; Bikandi, Iñaki; Zubia, Joseba; Vilas-Vilela, Jose Luis
2017-12-25
In this work we show an optical fiber evanescent wave absorption probe for glucose detection in different physiological media. High selectivity is achieved by functionalizing the surface of an only-core poly(methyl methacrylate) (PMMA) polymer optical fiber with phenilboronic groups, and enhanced sensitivity by using a U-shaped geometry. Employing a supercontinuum light source and a high-resolution spectrometer, absorption measurements are performed in the broadband visible light spectrum. Experimental results suggest the feasibility of such a fiber probe as a low-cost and selective glucose detector.
Electrostatically actuatable light modulating device
Koehler, Dale R.
1991-01-01
The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.
Oh, Sungjin; Ahn, Jae-Hyun; Lee, Sangmin; Ko, Hyoungho; Seo, Jong Mo; Goo, Yong-Sook; Cho, Dong-il Dan
2015-01-01
Retinal prosthetic devices stimulate retinal nerve cells with electrical signals proportional to the incident light intensities. For a high-resolution retinal prosthesis, it is necessary to reduce the size of the stimulator pixels as much as possible, because the retinal nerve cells are concentrated in a small area of approximately 5 mm × 5 mm. In this paper, a miniaturized biphasic current stimulator integrated circuit is developed for subretinal stimulation and tested in vitro. The stimulator pixel is miniaturized by using a complementary metal-oxide-semiconductor (CMOS) image sensor composed of three transistors. Compared to a pixel that uses a four-transistor CMOS image sensor, this new design reduces the pixel size by 8.3%. The pixel size is further reduced by simplifying the stimulation-current generating circuit, which provides a 43.9% size reduction when compared to the design reported to be the most advanced version to date for subretinal stimulation. The proposed design is fabricated using a 0.35 μm bipolar-CMOS-DMOS process. Each pixel is designed to fit in a 50 μ m × 55 μm area, which theoretically allows implementing more than 5000 pixels in the 5 mm × 5 mm area. Experimental results show that a biphasic current in the range of 0 to 300 μA at 12 V can be generated as a function of incident light intensities. Results from in vitro experiments with rd1 mice indicate that the proposed method can be effectively used for retinal prosthesis with a high resolution.
Chowdhury, Mustafa H.; Catchmark, Jeffrey M.; Lakowicz, Joseph R.
2009-01-01
The authors introduce a technique for three-dimensional (3D) imaging of the light transmitted through periodic nanoapertures using a scanning probe to perform optical sectioning microscopy. For a 4×4 nanohole array, the transmitted light displays intensity modulations along the propagation axis, with the maximum intensity occurring at 450 μm above the surface. The propagating fields show low divergence, suggesting a beaming effect induced by the array. At distances within 25 μm from the surface, they observe subwavelength confinement of light propagating from the individual nanoholes. Hence, this technique can potentially be used to map the 3D distribution of propagating light, with high spatial resolution. PMID:19696912
Development of position-sensitive time-of-flight spectrometer for fission fragment research
Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; ...
2014-07-09
A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flightmore » times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.« less
Integration of a high-NA light microscope in a scanning electron microscope.
Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P
2013-10-01
We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Super-resolved refocusing with a plenoptic camera
NASA Astrophysics Data System (ADS)
Zhou, Zhiliang; Yuan, Yan; Bin, Xiangli; Qian, Lulu
2011-03-01
This paper presents an approach to enhance the resolution of refocused images by super resolution methods. In plenoptic imaging, we demonstrate that the raw sensor image can be divided to a number of low-resolution angular images with sub-pixel shifts between each other. The sub-pixel shift, which defines the super-resolving ability, is mathematically derived by considering the plenoptic camera as equivalent camera arrays. We implement simulation to demonstrate the imaging process of a plenoptic camera. A high-resolution image is then reconstructed using maximum a posteriori (MAP) super resolution algorithms. Without other degradation effects in simulation, the super resolved image achieves a resolution as high as predicted by the proposed model. We also build an experimental setup to acquire light fields. With traditional refocusing methods, the image is rendered at a rather low resolution. In contrast, we implement the super-resolved refocusing methods and recover an image with more spatial details. To evaluate the performance of the proposed method, we finally compare the reconstructed images using image quality metrics like peak signal to noise ratio (PSNR).
The ICE spectrograph for PEPSI at the LBT: preliminary optical design
NASA Astrophysics Data System (ADS)
Pallavicini, Roberto; Zerbi, Filippo M.; Spano, Paolo; Conconi, Paolo; Mazzoleni, Ruben; Molinari, Emilio; Strassmeier, Klaus G.
2003-03-01
We present a preliminary design study for a high-resolution echelle spectrograph (ICE) to be used with the spectropolarimeter PEPSI under development at the LBT. In order to meet the scientific requirements and take full advantage of the peculiarities of the LBT (i.e. the binocular nature and the adaptive optics capabilities), we have designed a fiber-fed bench mounted instrument for both high resolution (R ≍ 100,000; non-AO polarimetric and integral light modes) and ultra-high resolution (R ≍ 300,000; AO integral light mode). In both cases, 4 spectra per order (two for each primary mirror) shall be accomodated in a 2-dimensional cross dispersed echelle format. In order to obtain a resolution-slit product of ≍ 100,000 as required by the science case, we have considered two alternative designs, one with two R4 echelles in series and the other with a sigle R4 echelle and fiber slicing. A white-pupil design, VPH cross-dispersers and two cameras of different focal length for the AO and non-AO modes are adopted in both cases. It is concluded that the single-echelle fiber-slicer solution has to be preferred in terms of performances, complexity and cost. It can be implemented at the LBT in two phases, with the long-camera AO mode added in a second phase depending on the availability of funds and the time-scale for implementation of the AO system.
NASA Astrophysics Data System (ADS)
Uehara, Yoichi; Michimata, Junichi; Watanabe, Shota; Katano, Satoshi; Inaoka, Takeshi
2018-03-01
We have investigated the scanning tunneling microscope (STM) light emission spectra of isolated single Ag nanoparticles lying on highly oriented pyrolytic graphite (HOPG). The STM light emission spectra exhibited two types of spectral structures (step-like and periodic). Comparisons of the observed structures and theoretical predictions indicate that the phonon energy of the ZO mode of HOPG [M. Mohr et al., Phys. Rev. B 76, 035439 (2007)] can be determined from the energy difference between the cutoff of STM light emission and the step in the former structure, and from the period of the latter structure. Since the role of the Ag nanoparticles does not depend on the substrate materials, this method will enable the phonon energies of various materials to be measured by STM light emission spectroscopy. The spatial resolution is comparable to the lateral size of the individual Ag nanoparticles (that is, a few nm).
Zhao, Ming; Zhang, Han; Li, Yu; Ashok, Amit; Liang, Rongguang; Zhou, Weibin; Peng, Leilei
2014-01-01
In vivo fluorescent cellular imaging of deep internal organs is highly challenging, because the excitation needs to penetrate through strong scattering tissue and the emission signal is degraded significantly by photon diffusion induced by tissue-scattering. We report that by combining two-photon Bessel light-sheet microscopy with nonlinear structured illumination microscopy (SIM), live samples up to 600 microns wide can be imaged by light-sheet microscopy with 500 microns penetration depth, and diffused background in deep tissue light-sheet imaging can be reduced to obtain clear images at cellular resolution in depth beyond 200 microns. We demonstrate in vivo two-color imaging of pronephric glomeruli and vasculature of zebrafish kidney, whose cellular structures located at the center of the fish body are revealed in high clarity by two-color two-photon Bessel light-sheet SIM. PMID:24876996
Greening, Gage J.; Powless, Amy J.; Hutcheson, Joshua A.; Prieto, Sandra P.; Majid, Aneeka A.; Muldoon, Timothy J.
2015-01-01
Many cases of epithelial cancer originate in basal layers of tissue and are initially undetected by conventional microendoscopy techniques. We present a bench-top, fiber-bundle microendoscope capable of providing high resolution images of surface cell morphology. Additionally, the microendoscope has the capability to interrogate deeper into material by using diffuse reflectance and broadband diffuse reflectance spectroscopy. The purpose of this multimodal technique was to overcome the limitation of microendoscopy techniques that are limited to only visualizing morphology at the tissue or cellular level. Using a custom fiber optic probe, high resolution surface images were acquired using topical proflavine to fluorescently stain non-keratinized epithelia. A 635 nm laser coupled to a 200 μm multimode fiber delivers light to the sample and the diffuse reflectance signal was captured by a 1 mm image guide fiber. Finally, a tungsten-halogen lamp coupled to a 200 μm multimode fiber delivers broadband light to the sample to acquire spectra at source-detector separations of 374, 729, and 1051 μm. To test the instrumentation, a high resolution proflavine-induced fluorescent image of resected healthy mouse colon was acquired. Additionally, five monolayer poly(dimethylsiloxane)-based optical phantoms with varying absorption and scattering properties were created to acquire diffuse reflectance profiles and broadband spectra. PMID:25983372
NASA Astrophysics Data System (ADS)
Greening, Gage J.; Powless, Amy J.; Hutcheson, Joshua A.; Prieto, Sandra P.; Majid, Aneeka A.; Muldoon, Timothy J.
2015-03-01
Many cases of epithelial cancer originate in basal layers of tissue and are initially undetected by conventional microendoscopy techniques. We present a bench-top, fiber-bundle microendoscope capable of providing high resolution images of surface cell morphology. Additionally, the microendoscope has the capability to interrogate deeper into material by using diffuse reflectance and broadband diffuse reflectance spectroscopy. The purpose of this multimodal technique was to overcome the limitation of microendoscopy techniques that are limited to only visualizing morphology at the tissue or cellular level. Using a custom fiber optic probe, high resolution surface images were acquired using topical proflavine to fluorescently stain non-keratinized epithelia. A 635 nm laser coupled to a 200 μm multimode fiber delivers light to the sample and the diffuse reflectance signal was captured by a 1 mm image guide fiber. Finally, a tungsten-halogen lamp coupled to a 200 μm multimode fiber delivers broadband light to the sample to acquire spectra at source-detector separations of 374, 729, and 1051 μm. To test the instrumentation, a high resolution proflavine-induced fluorescent image of resected healthy mouse colon was acquired. Additionally, five monolayer poly(dimethylsiloxane)-based optical phantoms with varying absorption and scattering properties were created to acquire diffuse reflectance profiles and broadband spectra.
Abundances of Local Group Globular Clusters Using High Resolution Integrated Light Spectroscopy
NASA Astrophysics Data System (ADS)
Sakari, Charli; McWilliam, A.; Venn, K.; Shetrone, M. D.; Dotter, A. L.; Mackey, D.
2014-01-01
Abundances and kinematics of extragalactic globular clusters provide valuable clues about galaxy and globular cluster formation in a wide variety of environments. In order to obtain such information about distant, unresolved systems, specific observational techniques are required. An Integrated Light Spectrum (ILS) provides a single spectrum from an entire stellar population, and can therefore be used to determine integrated cluster abundances. This dissertation investigates the accuracy of high resolution ILS analysis methods, using ILS (taken with the Hobby-Eberly Telescope) of globular clusters associated with the Milky Way (47 Tuc, M3, M13, NGC 7006, and M15) and then applies the method to globular clusters in the outer halo of M31 (from the Pan-Andromeda Archaeological Survey, or PAndAS). Results show that: a) as expected, the high resolution method reproduces individual stellar abundances for elements that do not vary within a cluster; b) the presence of multiple populations does affect the abundances of elements that vary within the cluster; c) certain abundance ratios are very sensitive to systematic effects, while others are not; and d) certain abundance ratios (e.g. [Ca/Fe]) can be accurately obtained from unresolved systems. Applications of ILABUNDS to the PAndAS clusters reveal that accretion may have played an important role in the formation of M31's outer halo.
NASA Astrophysics Data System (ADS)
Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus
2018-07-01
We investigate the central sub-arcsec region of the low-luminosity active galactic nucleusNGC 1052, using a high-angular resolution data set that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.
NASA Astrophysics Data System (ADS)
Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus
2018-05-01
We investigate the central sub-arcsec region of the low-luminosity active galactic nucleus NGC 1052, using a high-angular resolution dataset that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a truncated disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.
NASA Astrophysics Data System (ADS)
Yilmaz, Hasan
2016-03-01
Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).
NASA Astrophysics Data System (ADS)
Reolon, David; Jacquot, Maxime; Verrier, Isabelle; Brun, Gérald; Veillas, Colette
2006-12-01
In this paper we propose group refractive index measurement with a spectral interferometric set-up using a broadband supercontinuum generated in an air-silica Microstructured Optical Fibre (MOF) pumped with a picosecond pulsed microchip laser. This source authorizes high fringes visibility for dispersion measurements by Spectroscopic Analysis of White Light Interferograms (SAWLI). Phase calculation is assumed by a wavelet transform procedure combined with a curve fit of the recorded channelled spectrum intensity. This approach provides high resolution and absolute group refractive index measurements along one line of the sample by recording a single 2D spectral interferogram without mechanical scanning.
Birefringent coherent diffraction imaging
NASA Astrophysics Data System (ADS)
Karpov, Dmitry; dos Santos Rolo, Tomy; Rich, Hannah; Kryuchkov, Yuriy; Kiefer, Boris; Fohtung, E.
2016-10-01
Directional dependence of the index of refraction contains a wealth of information about anisotropic optical properties in semiconducting and insulating materials. Here we present a novel high-resolution lens-less technique that uses birefringence as a contrast mechanism to map the index of refraction and dielectric permittivity in optically anisotropic materials. We applied this approach successfully to a liquid crystal polymer film using polarized light from helium neon laser. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of emergent brilliant X-ray sources. Applications of this novel imaging technique are in disruptive technologies, including novel electronic devices, in which both charge and spin carry information as in multiferroic materials and photonic materials such as light modulators and optical storage.
Precise and economic FIB/SEM for CLEM: with 2 nm voxels through mitosis.
Luckner, Manja; Wanner, Gerhard
2018-05-23
A portfolio is presented documenting economic, high-resolution correlative focused ion beam scanning electron microscopy (FIB/SEM) in routine, comprising: (i) the use of custom-labeled slides and coverslips, (ii) embedding of cells in thin, or ultra-thin resin layers for correlative light and electron microscopy (CLEM) and (iii) the claim to reach the highest resolution possible with FIB/SEM in xyz. Regions of interest (ROIs) defined in light microscope (LM), can be relocated quickly and precisely in SEM. As proof of principle, HeLa cells were investigated in 3D context at all stages of the cell cycle, documenting ultrastructural changes during mitosis: nuclear envelope breakdown and reassembly, Golgi degradation and reconstitution and the formation of the midzone and midbody.
Ultrasound modulation of bioluminescence generated inside a turbid medium
NASA Astrophysics Data System (ADS)
Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.
2017-03-01
In vivo bioluminescence imaging (BLI) has poor spatial resolution owing to strong light scattering by tissue, which also affects quantitative accuracy. This paper proposes a hybrid acousto-optic imaging platform that images bioluminescence modulated at ultrasound (US) frequency inside an optically scattering medium. This produces an US modulated light within the tissue that reduces the effects of light scattering and improves the spatial resolution. The system consists of a continuously excited 3.5 MHz US transducer applied to a tissue like phantom of known optical properties embedded with bio-or chemiluminescent sources that are used to mimic in vivo experiments. Scanning US over the turbid medium modulates the luminescent sources deep inside tissue at several US scan points. These modulated signals are recorded by a photomultiplier tube and lock-in detection to generate a 1D profile. Indeed, high frequency US enables small focal volume to improve spatial resolution, but this leads to lower signal-to-noise ratio. First experimental results show that US enables localization of a small luminescent source (around 2 mm wide) deep ( 20 mm) inside a tissue phantom having a scattering coefficient of 80 cm-1. Two sources separated by 10 mm could be resolved 20 mm inside a chicken breast.
Selvam, N Clament Sagaya; Narayanan, S; Kennedy, L John; Vijaya, J Judith
2013-10-01
A novel self-assembled pure and Mg doped ZnO nano-particles (NPs) were successfully synthesized by a simple low temperature co-precipitation method. The prepared photocatalysts were characterized by X-ray diffraction, high resolution scanning electron microscopy, high resolution transmission electron microscopy, diffuse reflectance spectroscopy and photoluminescence (PL) spectroscopy. The results indicated that the prepared photocatalysts showed high crystallinity with a uniform size distribution of the NPs. The degradation of cholorphenols is highly mandatory in today's scenario as they are affecting the environment adversely. Thus, the photocatalytic degradation of 4-chlorophenol (4-CP), a potent endocrine disrupting chemical in aqueous medium was investigated by both pure and Mg-doped ZnO NPs under UV-light irradiation in the present study. The influence of the Mg content on the structure, morphology, PL character and photocatalytic activity of ZnO NPs were investigated systematically. Furthermore,the effect of different parameters such as 4-CP concentration, photocatalyst amount, pH and UV-light wavelength on the resulting photocatalytic activity was investigated.
Maier, Hans; de Heer, Gert; Ortac, Ajda; Kuijten, Jan
2015-11-01
To analyze, interpret and evaluate microscopic images, used in medical diagnostics and forensic science, video images for educational purposes were made with a very high resolution of 4096 × 2160 pixels (4K), which is four times as many pixels as High-Definition Video (1920 × 1080 pixels). The unprecedented high resolution makes it possible to see details that remain invisible to any other video format. The images of the specimens (blood cells, tissue sections, hair, fibre, etc.) are recorded using a 4K video camera which is attached to a light microscope. After processing, this resulted in very sharp and highly detailed images. This material was then used in education for classroom discussion. Spoken explanation by experts in the field of medical diagnostics and forensic science was also added to the high-resolution video images to make it suitable for self-study. © 2015 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten
2014-01-01
The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm−1 with a spectral resolution of 1 cm−1 were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca2+-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca2+ presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel. PMID:25071948
Inverse synthetic aperture radar imagery of a man with a rocket propelled grenade launcher
NASA Astrophysics Data System (ADS)
Tran, Chi N.; Innocenti, Roberto; Kirose, Getachew; Ranney, Kenneth I.; Smith, Gregory
2004-08-01
As the Army moves toward more lightly armored Future Combat System (FCS) vehicles, enemy personnel will present an increasing threat to U.S. soldiers. In particular, they face a very real threat from adversaries using shoulder-launched, rocket propelled grenade (RPG). The Army Research Laboratory has utilized its Aberdeen Proving Ground (APG) turntable facility to collect very high resolution, fully polarimetric Ka band radar data at low depression angles of a man holding an RPG. In this paper, we examine the resulting low resolution and high resolution range profiles; and based on the observed radar cross section (RCS) value, we attempt to determine the utility of Ka band radar for detecting enemy personnel carrying RPG launchers.
Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten
2014-07-01
The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm(-1) with a spectral resolution of 1 cm(-1) were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca(2+)-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca(2+) presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel.
A compact CCD-monitored atomic force microscope with optical vision and improved performances.
Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang
2013-09-01
A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.
Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa
2015-07-13
We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.
NASA Astrophysics Data System (ADS)
Liu, Guodong; Wang, Chenlu; Zhang, Yan; Hu, Bingfeng; Mou, Daixiang; Yu, Li; Zhao, Lin; Zhou, Xingjiang; Wang, Nanlin; Chen, Chuangtian; Xu, Zuyan
We performed high-resolution angle-resolved photoemission spectroscopy (ARPES) measurement on high quality crystal of HoTe3, an intriguing quasi-two-dimensional rare-earth-element tritelluride charge-density-wave (CDW) compound. The main features of the electronic structure in this compound are established by employing a quasi-CW laser (7eV) and a helium discharging lamp (21.22 eV) as excitation light sources. It reveals many bands back folded according to the CDW periodicity and two incommensurate CDW gaps created by perpendicular Fermi surface (FS) nesting vectors. A large gap is found to open in well nested regions of the Fermi surface sheets, whereas other Fermi surface sections with poor nesting remain ungapped. In particular, some peculiar features are identified by using our ultra-high resolution and bulk sensitive laser-ARPES.
Design of a concise Féry-prism hyperspectral imaging system based on multi-configuration
NASA Astrophysics Data System (ADS)
Dong, Wei; Nie, Yun-feng; Zhou, Jin-song
2013-08-01
In order to meet the needs of space borne and airborne hyperspectral imaging system for light weight, simplification and high spatial resolution, a novel design of Féry-prism hyperspectral imaging system based on Zemax multi-configuration method is presented. The novel structure is well arranged by analyzing optical monochromatic aberrations theoretically, and the optical structure of this design is concise. The fundamental of this design is Offner relay configuration, whereas the secondary mirror is replaced by Féry-prism with curved surfaces and a reflective front face. By reflection, the light beam passes through the Féry-prism twice, which promotes spectral resolution and enhances image quality at the same time. The result shows that the system can achieve light weight and simplification, compared to other hyperspectral imaging systems. Composed of merely two spherical mirrors and one achromatized Féry-prism to perform both dispersion and imaging functions, this structure is concise and compact. The average spectral resolution is 6.2nm; The MTFs for 0.45~1.00um spectral range are greater than 0.75, RMSs are less than 2.4um; The maximal smile is less than 10% pixel, while the keystones is less than 2.8% pixel; image quality approximates the diffraction limit. The design result shows that hyperspectral imaging system with one modified Féry-prism substituting the secondary mirror of Offner relay configuration is feasible from the perspective of both theory and practice, and possesses the merits of simple structure, convenient optical alignment, and good image quality, high resolution in space and spectra, adjustable dispersive nonlinearity. The system satisfies the requirements of airborne or space borne hyperspectral imaging system.
Wolfram, Phillip J.; Ringler, Todd D.; Maltrud, Mathew E.; ...
2015-08-01
Isopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon modelmore » resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(10 5) m 2 s –1 in the region of western boundary current separation to O(10 3) m 2 s –1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. In conclusion, a reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.« less
NASA Astrophysics Data System (ADS)
Zhang, Yujia; Yilmaz, Alper
2016-06-01
Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new combined coding method.
NASA Astrophysics Data System (ADS)
Erskine, David J.; Edelstein, J.; Sirk, M.; Wishnow, E.; Ishikawa, Y.; McDonald, E.; Shourt, W. V.
2014-07-01
High resolution broad-band spectroscopy at near-infrared wavelengths has been performed using externally dis- persed interferometry (EDI) at the Hale telescope at Mt. Palomar. The EDI technique uses a field-widened Michelson interferometer in series with a dispersive spectrograph, and is able to recover a spectrum with a resolution 4 to 10 times higher than the existing grating spectrograph. This method increases the resolution well beyond the classical limits enforced by the slit width and the detector pixel Nyquist limit and, in principle, decreases the effect of pupil variation on the instrument line-shape function. The EDI technique permits arbi- trarily higher resolution measurements using the higher throughput, lower weight, size, and expense of a lower resolution spectrograph. Observations of many stars were performed with the TEDI interferometer mounted within the central hole of the 200 inch primary mirror. Light from the interferometer was then dispersed by the TripleSpec near-infrared echelle spectrograph. Continuous spectra between 950 and 2450 nm with a resolution as high as ~27,000 were recovered from data taken with TripleSpec at a native resolution of ˜2,700. Aspects of data analysis for interferometric spectral reconstruction are described. This technique has applications in im- proving measurements of high-resolution stellar template spectra, critical for precision Doppler velocimetry using conventional spectroscopic methods. A new interferometer to be applied for this purpose at visible wavelengths is under construction.
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Kawaguchi, Wataru
2018-06-01
For precise distribution measurements of alpha particles, a high-resolution alpha particle imaging detector is required. Although combining a thin scintillator with a silicon photomultiplier (Si-PM) array is a promising method for achieving high resolution, the spatial resolution is limited. Reducing the size of the Si-PM array is a possible approach to improving the spatial resolution of the alpha particle imaging detector. Consequently, we employed a 1 mm channel size Si-PM array combined with a thin ZnS(Ag) sheet to form an alpha particle imaging detector and evaluated the performance. For the developed alpha particle imaging detector, an Si-PM array with 1 mm x 1 mm channel size arranged 8 x 8 was optically coupled to a ZnS(Ag) sheet with a 1-mm-thick light guide between them. The size of the alpha particle imaging detector was 9.5 mm x 9.5 mm. The spatial resolution of the developed alpha particle imaging detector was 0.14 mm FWHM, and the energy resolution was 74% FWHM for 5.5 MeV alpha particles. The uniformity of the imaging detector at the central part of the field of view (FOV) was ±4.7%. The background count rate was 0.06 counts/min. We obtained various high-resolution phantom images for alpha particles with the developed system. We conclude that the developed imaging detector is promising for high-resolution distribution measurements of alpha particles.
Wang, Gordon; Smith, Stephen J.
2012-01-01
Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective) and at the axial plane to 1.4nλ/NA2 (n = refractive index of the imaging medium, 1.51 for oil immersion), which with visible wavelengths and a 1.4NA oil immersion objective is ∼220 nm and ∼600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT), with its native 50–100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF), a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes. PMID:22956902
Wang, Gordon; Smith, Stephen J
2012-01-01
Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective) and at the axial plane to 1.4nλ/NA(2) (n = refractive index of the imaging medium, 1.51 for oil immersion), which with visible wavelengths and a 1.4NA oil immersion objective is -220 nm and -600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT), with its native 50-100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF), a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes.
NASA Astrophysics Data System (ADS)
Repasky, K. S.; Hoffman, D. S.; Reagan, J. A.; Carlsten, J.
2010-12-01
Aerosols are an important constituent in atmospheric composition affecting climate, weather, and air quality. Active remote sensing instruments provide tools for in-situ studies of atmospheric aerosols that can help understand the role of aerosols on the radiative forcing of the climate system. In this paper, the design and initial performance of a high spectral resolution lidar (HSRL) based on a unique confocal cavity for optically filtering the aerosol and molecular returns is presented. An injection seeded pulsed Nd:YAG laser with a fundamental and frequency doubled output is used as the laser transmitter for the HSRL. A small portion of fiber coupled injection seeded signal at 1064 nm is split before the laser oscillator and, after modulation using an acousto-optic modulator, is used to produce a discriminating signal for locking a confocal cavity that is resonant at the 1064 and 532 nm wavelengths to the injection seeded source. Light scattered in the atmosphere is collected using a commercial telescope. After the telescope, the 1064 nm light is split from the 532 nm light using a dielectric mirror with the 1064 nm light monitored using a PMT. The 532 nm light is launched into a multimode fiber. The output from the fiber is next incident on a beamsplitter with part of the light sent to a PMT to monitor the total return for the 532 nm channel. The light that passes through the beamsplitter is mode matched into a confocal optical cavity that allows the light scattered by the atmospheric aerosols to be transmitted while the light scattered from the atmospheric molecules is reflected. The transmitted light from the aerosol scattering is incident on a PMT while the reflected molecular signal is incident on a PMT. The transmission of the confocal cavity is monitored before and after the data collection using a continuous wave frequency doubled Nd:YAG laser that is fiber coupled. Data is collected and processed in the following manner. Each of the four voltage signals from the PMT’s are monitored using a high speed A/D card. The inversion of the 1064 nm return signal is completed using the Fernald inversion technique with the additional constraint of the aerosol optical depth. The HSRL 532 nm signal is inverted using a Rayleigh backscatter model along with the inversion techniques described by Shipley et al. (Applied Optics, V22, N23, 3716-3724, 1983) and Sroga et al. (Applied Optics, V22, N23, 3725-3732, 1983). This presentation will focus on the design of the confocal optical filter, the locking of the confocal optical filter to the laser transmitter, and the performance of the high spectral resolution channel at 532 nm. Data will be presented showing the molecular returns, the aerosol returns and the range resolved lidar ratio.
High resolution multiple excitation spot optical microscopy
NASA Astrophysics Data System (ADS)
Dilipkumar, Shilpa; Mondal, Partha Pratim
2011-06-01
We propose fundamental improvements in three-dimensional (3D) resolution of multiple excitation spot optical microscopy. The excitation point spread function (PSF) is generated by two interfering counter-propagating depth-of-focus beams along the optical axis. Detection PSF is obtained by coherently interfering the emitted fluorescent light (collected by both the objectives) at the detector. System PSF shows upto 14-fold reduction in focal volume as compared to confocal, and almost 2-fold improvement in lateral resolution. Proposed PSF has the ability to simultaneously excite multiple 3D-spots of sub-femtoliter volume. Potential applications are in fluorescence microscopy and nanobioimaging.
NASA Astrophysics Data System (ADS)
Hariri, Ali; Bely, Nicholas; Chen, Chen; Nasiriavanaki, Mohammadreza
2016-03-01
The increasing use of mouse models for human brain disease studies, coupled with the fact that existing high-resolution functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing both mechanical and optical scanning in the photoacoustic microscopy, we can image spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images is going to be acquired noninvasively with a fast frame rate, a large field of view, and a high spatial resolution. We developed an optical resolution photoacoustic microscopy (OR-PAM) with diode laser. Laser light was raster scanned due to XY-stage movement. Images from ultra-high OR-PAM can then be used to study brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy.
High density terahertz frequency comb produced by coherent synchrotron radiation
Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.
2015-01-01
Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10−10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile. PMID:26190043
High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy.
Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham
2016-07-29
Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy.
High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy
Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham
2016-01-01
Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy. PMID:27471000
High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy
NASA Astrophysics Data System (ADS)
Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham
2016-07-01
Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy.
Coherent imaging with incoherent light in digital holographic microscopy
NASA Astrophysics Data System (ADS)
Chmelik, Radim
2012-01-01
Digital holographic microscope (DHM) allows for imaging with a quantitative phase contrast. In this way it becomes an important instrument, a completely non-invasive tool for a contrast intravital observation of living cells and a cell drymass density distribution measurement. A serious drawback of current DHMs is highly coherent illumination which makes the lateral resolution worse and impairs the image quality by a coherence noise and a parasitic interference. An uncompromising solution to this problem can be found in the Leith concept of incoherent holography. An off-axis hologram can be formed with arbitrary degree of light coherence in systems equipped with an achromatic interferometer and thus the resolution and the image quality typical for an incoherent-light wide-field microscopy can be achieved. In addition, advanced imaging modes based on limited coherence can be utilized. The typical example is a coherence-gating effect which provides a finite axial resolution and makes DHM image similar to that of a confocal microscope. These possibilities were described theoretically using the formalism of three-dimensional coherent transfer functions and proved experimentally by the coherence-controlled holographic microscope which is DHM based on the Leith achromatic interferometer. Quantitative-phase-contrast imaging is demonstrated with incoherent light by the living cancer cells observation and their motility evaluation. The coherence-gating effect was proved by imaging of model samples through a scattering layer and living cells inside an opalescent medium.
Restoring the spatial resolution of refocus images on 4D light field
NASA Astrophysics Data System (ADS)
Lim, JaeGuyn; Park, ByungKwan; Kang, JooYoung; Lee, SeongDeok
2010-01-01
This paper presents the method for generating a refocus image with restored spatial resolution on a plenoptic camera, which functions controlling the depth of field after capturing one image unlike a traditional camera. It is generally known that the camera captures 4D light field (angular and spatial information of light) within a limited 2D sensor and results in reducing 2D spatial resolution due to inevitable 2D angular data. That's the reason why a refocus image is composed of a low spatial resolution compared with 2D sensor. However, it has recently been known that angular data contain sub-pixel spatial information such that the spatial resolution of 4D light field can be increased. We exploit the fact for improving the spatial resolution of a refocus image. We have experimentally scrutinized that the spatial information is different according to the depth of objects from a camera. So, from the selection of refocused regions (corresponding depth), we use corresponding pre-estimated sub-pixel spatial information for reconstructing spatial resolution of the regions. Meanwhile other regions maintain out-of-focus. Our experimental results show the effect of this proposed method compared to existing method.
Portable and cost-effective pixel super-resolution on-chip microscope for telemedicine applications.
Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan
2011-01-01
We report a field-portable lensless on-chip microscope with a lateral resolution of <1 μm and a large field-of-view of ~24 mm(2). This microscope is based on digital in-line holography and a pixel super-resolution algorithm to process multiple lensfree holograms and obtain a single high-resolution hologram. In its compact and cost-effective design, we utilize 23 light emitting diodes butt-coupled to 23 multi-mode optical fibers, and a simple optical filter, with no moving parts. Weighing only ~95 grams, we demonstrate the performance of this field-portable microscope by imaging various objects including human malaria parasites in thin blood smears.
Performance evaluation of newly developed SrI2(Eu) scintillator
NASA Astrophysics Data System (ADS)
Takabe, M.; Kishimoto, A.; Kataoka, J.; Sakuragi, S.; Yamasaki, Y.
2016-09-01
The development of europium-doped strontium iodide (SrI2(Eu)) has attracted considerable attention, because of its excellent material properties as regards gamma-ray scintillator applications. These include its excellent energy resolution, high light output (> 80 , 000 ph / MeV), and high effective atomic number (Z=49). Here we report on the performance of ϕ 1 in×1 in SrI2(Eu) cylindrical crystals newly fabricated by Union Materials Inc. In this study, we measured the energy resolution and light output at 10 °C temperature intervals between -40 and 40 °C, using an optically coupled 2-in photomultiplier tube (PMT) (Super Bialkali, Hamamatsu). The SrI2(Eu) light output increased by 0.12%/°C as the temperature decreased. At -40 °C, we obtained the optimal energy resolution recording 2.91±0.02% full width at half maximum (FWHM) for 662 keV gamma rays measured with 137Cs. For comparison, we also measured the same crystal using both a large-area (19×19 mm2) avalanche photodiode detector (APD) and 8×8 multi-pixel photon counter (MPPC) arrays of 3×3 mm2 pixels. The energy resolutions of 2.94±0.02%, 3.14±0.06% and 3.99±0.01% were obtained using PMT, APD, and MPPC, respectively, as measured at -20 °C. We also measured the inherent background of SrI2(Eu) in a cave composed of Cu-Pb blocks with their thickness of 5-10 cm confirming that SrI2(Eu) has an extremely low inherent background radiation. In this study, we have shown that SrI2(Eu) is a promising scintillator that can be utilized for radiation measurements incorporating low-energy X-rays to high-energy gamma rays, and can thus be applied in various medical, industrial, and environmental treatment fields in the near future.
Cassette Series Designed for Live-Cell Imaging of Proteins and High Resolution Techniques in Yeast
Young, Carissa L.; Raden, David L.; Caplan, Jeffrey; Czymmek, Kirk; Robinson, Anne S.
2012-01-01
During the past decade, it has become clear that protein function and regulation are highly dependent upon intracellular localization. Although fluorescent protein variants are ubiquitously used to monitor protein dynamics, localization, and abundance; fluorescent light microscopy techniques often lack the resolution to explore protein heterogeneity and cellular ultrastructure. Several approaches have been developed to identify, characterize, and monitor the spatial localization of proteins and complexes at the sub-organelle level; yet, many of these techniques have not been applied to yeast. Thus, we have constructed a series of cassettes containing codon-optimized epitope tags, fluorescent protein variants that cover the full spectrum of visible light, a TetCys motif used for FlAsH-based localization, and the first evaluation in yeast of a photoswitchable variant – mEos2 – to monitor discrete subpopulations of proteins via confocal microscopy. This series of modules, complete with six different selection markers, provides the optimal flexibility during live-cell imaging and multicolor labeling in vivo. Furthermore, high-resolution imaging techniques include the yeast-enhanced TetCys motif that is compatible with diaminobenzidine photooxidation used for protein localization by electron microscopy and mEos2 that is ideal for super-resolution microscopy. We have examined the utility of our cassettes by analyzing all probes fused to the C-terminus of Sec61, a polytopic membrane protein of the endoplasmic reticulum of moderate protein concentration, in order to directly compare fluorescent probes, their utility and technical applications. Our series of cassettes expand the repertoire of molecular tools available to advance targeted spatiotemporal investigations using multiple live-cell, super-resolution or electron microscopy imaging techniques. PMID:22473760
Borden, Peter Y.; Ortiz, Alex D.; Waiblinger, Christian; Sederberg, Audrey J.; Morrissette, Arthur E.; Forest, Craig R.; Jaeger, Dieter; Stanley, Garrett B.
2017-01-01
Abstract. With the recent breakthrough in genetically expressed voltage indicators (GEVIs), there has been a tremendous demand to determine the capabilities of these sensors in vivo. Novel voltage sensitive fluorescent proteins allow for direct measurement of neuron membrane potential changes through changes in fluorescence. Here, we utilized ArcLight, a recently developed GEVI, and examined the functional characteristics in the widely used mouse somatosensory whisker pathway. We measured the resulting evoked fluorescence using a wide-field microscope and a CCD camera at 200 Hz, which enabled voltage recordings over the entire cortical region with high temporal resolution. We found that ArcLight produced a fluorescent response in the S1 barrel cortex during sensory stimulation at single whisker resolution. During wide-field cortical imaging, we encountered substantial hemodynamic noise that required additional post hoc processing through noise subtraction techniques. Over a period of 28 days, we found clear and consistent ArcLight fluorescence responses to a simple sensory input. Finally, we demonstrated the use of ArcLight to resolve cortical S1 sensory responses in the awake mouse. Taken together, our results demonstrate the feasibility of ArcLight as a measurement tool for mesoscopic, chronic imaging. PMID:28491905
NASA Astrophysics Data System (ADS)
Brondijk, J. J.; Li, X.; Akkerman, H. B.; Blom, P. W. M.; de Boer, B.
2009-04-01
By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were modified with SAMs based on alkanethiols and perfluorinated alkanethiols, applied by microcontact printing, and their work functions have been measured. The molecules form a chemisorbed monolayer of only ˜1.5 nm on the gold surface, thereby locally changing the work function of the metal. Kelvin probe measurements show that the local work function can be tuned from 4.3 to 5.5 eV, which implies that this anode can be used as a hole blocking electrode or as a hole injecting electrode, respectively, in PLEDs based on poly( p-phenylene vinylene) (PPV) derivatives. By microcontact printing of SAMs with opposing dipole moments, the work function was locally modified and the charge injection in the PLED could be controlled down to the micrometer length scale. Consequently, the local light-emission exhibits a high contrast. Microcontact printing of SAMs is a simple and inexpensive method to pattern, with micrometer resolution, the light-emission for low-end applications like static displays.
Liquid Crystal on Silicon Wavefront Corrector
NASA Technical Reports Server (NTRS)
Pouch, John; Miranda, Felix; Wang, Xinghua; Bos, Philip, J.
2004-01-01
A low cost, high resolution, liquid crystal on silicon, spatial light modulator has been developed for the correction of huge aberrations in an optical system where the polarization dependence and the chromatic nature are tolerated. However, the overall system performance suggests that this device is also suitable for real time correction of aberration in human eyes. This device has a resolution of 1024 x 768, and is driven by an XGA display driver. The effective stroke length of the device is 700 nm and 2000 nm for the visible and IR regions of the device, respectively. The response speeds are 50 Hz and 5 Hz, respectively, which are fast enough for real time adaptive optics for aberrations in human eyes. By modulating a wavefront of 2 pi, this device can correct for arbitrary high order wavefront aberrations since the 2-D pixel array is independently controlled by the driver. The high resolution and high accuracy of the device allow for diffraction limited correction of the tip and tilt or defocus without an additional correction loop. We have shown that for every wave of aberration, an 8 step blazed grating is required to achieve high diffraction efficiency around 80%. In light of this, up to 125 waves peak to valley of tip and tilt can be corrected if we choose the simplest aberration. Corrections of 34 waves of aberration, including high order Zernicke terms in a high magnification telescope, to diffraction limited performance (residual wavefront aberration less than 1/30 lambda at 632.8 nm) have been observed at high efficiency.
A detailed comparison of single-camera light-field PIV and tomographic PIV
NASA Astrophysics Data System (ADS)
Shi, Shengxian; Ding, Junfei; Atkinson, Callum; Soria, Julio; New, T. H.
2018-03-01
This paper conducts a comprehensive study between the single-camera light-field particle image velocimetry (LF-PIV) and the multi-camera tomographic particle image velocimetry (Tomo-PIV). Simulation studies were first performed using synthetic light-field and tomographic particle images, which extensively examine the difference between these two techniques by varying key parameters such as pixel to microlens ratio (PMR), light-field camera Tomo-camera pixel ratio (LTPR), particle seeding density and tomographic camera number. Simulation results indicate that the single LF-PIV can achieve accuracy consistent with that of multi-camera Tomo-PIV, but requires the use of overall greater number of pixels. Experimental studies were then conducted by simultaneously measuring low-speed jet flow with single-camera LF-PIV and four-camera Tomo-PIV systems. Experiments confirm that given a sufficiently high pixel resolution, a single-camera LF-PIV system can indeed deliver volumetric velocity field measurements for an equivalent field of view with a spatial resolution commensurate with those of multi-camera Tomo-PIV system, enabling accurate 3D measurements in applications where optical access is limited.
Video Capture of Plastic Surgery Procedures Using the GoPro HERO 3+.
Graves, Steven Nicholas; Shenaq, Deana Saleh; Langerman, Alexander J; Song, David H
2015-02-01
Significant improvements can be made in recoding surgical procedures, particularly in capturing high-quality video recordings from the surgeons' point of view. This study examined the utility of the GoPro HERO 3+ Black Edition camera for high-definition, point-of-view recordings of plastic and reconstructive surgery. The GoPro HERO 3+ Black Edition camera was head-mounted on the surgeon and oriented to the surgeon's perspective using the GoPro App. The camera was used to record 4 cases: 2 fat graft procedures and 2 breast reconstructions. During cases 1-3, an assistant remotely controlled the GoPro via the GoPro App. For case 4 the GoPro was linked to a WiFi remote, and controlled by the surgeon. Camera settings for case 1 were as follows: 1080p video resolution; 48 fps; Protune mode on; wide field of view; 16:9 aspect ratio. The lighting contrast due to the overhead lights resulted in limited washout of the video image. Camera settings were adjusted for cases 2-4 to a narrow field of view, which enabled the camera's automatic white balance to better compensate for bright lights focused on the surgical field. Cases 2-4 captured video sufficient for teaching or presentation purposes. The GoPro HERO 3+ Black Edition camera enables high-quality, cost-effective video recording of plastic and reconstructive surgery procedures. When set to a narrow field of view and automatic white balance, the camera is able to sufficiently compensate for the contrasting light environment of the operating room and capture high-resolution, detailed video.
High-resolution high-efficiency multilayer Fresnel zone plates for soft and hard x-rays
NASA Astrophysics Data System (ADS)
Sanli, Umut T.; Keskinbora, Kahraman; Gregorczyk, Keith; Leister, Jonas; Teeny, Nicolas; Grévent, Corinne; Knez, Mato; Schütz, Gisela
2015-09-01
X-ray microscopy enables high spatial resolutions, high penetration depths and characterization of a broad range of materials. Calculations show that nanometer range resolution is achievable in the hard X-ray regime by using Fresnel zone plates (FZPs) if certain conditions are satisfied. However, this requires, among other things, aspect ratios of several thousands. The multilayer (ML) type FZPs, having virtually unlimited aspect ratios, are strong candidates to achieve single nanometer resolutions. Our research is focused on the fabrication of ML-FZPs which encompasses deposition of multilayers over a glass fiber via the atomic layer deposition (ALD), which is subsequently sliced in the optimum thickness for the X-ray energy by a focused ion beam (FIB). We recently achieved aberration free imaging by resolving 21 nm features with an efficiency of up to 12.5 %, the highest imaging resolution achieved by an ML-FZP. We also showed efficient focusing of 7.9 keV X-rays down to 30 nm focal spot size (FWHM). For resolutions below ~10 nm, efficiencies would decrease significantly due to wave coupling effects. To compensate this effect high efficiency, low stress materials have to be researched, as lower intrinsic stresses will allow fabrication of larger FZPs with higher number of zones, leading to high light intensity at the focus. As a first step we fabricated an ML-FZP with a diameter of 62 μm, an outermost zone width of 12 nm and 452 active zones. Further strategies for fabrication of high resolution high efficiency multilayer FZPs will also be discussed.
Bullen, A; Patel, S S; Saggau, P
1997-07-01
The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging.
Bullen, A; Patel, S S; Saggau, P
1997-01-01
The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging. Images FIGURE 6 PMID:9199810
A wide angle low coherence interferometry based eye length optometer
NASA Astrophysics Data System (ADS)
Meadway, Alexander; Siegwart, John; Wildsoet, Christine; Norton, Thomas; Zhang, Yuhua
2015-03-01
Interest in eye growth regulation has burgeoned with the rise in myopia prevalence world-wide. Eye length and eye shape are fundamental metrics for related research, but current in vivo measurement techniques are generally limited to the optical axis of the eye. We describe a high resolution, time domain low coherence interferometry based optometer for measuring the eye length of small animals over a wide field of view. The system is based upon a Michelson interferometer using a superluminescent diode as a source, including a sample arm and a reference arm. The sample arm is split into two paths by a polarisation beam splitter; one focuses the light on the cornea and the other focuses the light on the retina. This method has a high efficiency of detection for reflections from both surfaces. The reference arm contains a custom high speed linear motor with 25 mm stroke and equipped with a precision displacement encoder. Light reflected from the cornea and the retina is combined with the reference beam to generate low coherence interferograms. Two galvo scanners are employed to steer the light to different angles so that the eye length over a field of view of 20° × 20° can be measured. The system has an axial resolution of 6.8 μm (in air) and the motor provides accurate movement, allowing for precise and repeatable measurement of coherence peak positions. Example scans from a tree shrew are presented.
NASA Astrophysics Data System (ADS)
Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao
2016-03-01
Electrical stimulation is the clinical standard for cardiac pacing. Although highly effective in controlling cardiac rhythm, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its applications. Optogenetic pacing of the heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids the shortcomings in electrical stimulation. Drosophila melanogaster, which is a powerful model organism with orthologs of nearly 75% of human disease genes, has not been studied for optogenetic pacing in the heart. Here, we developed a non-invasive integrated optical pacing and optical coherence microscopy (OCM) imaging system to control the heart rhythm of Drosophila at different developmental stages using light. The OCM system is capable of providing high imaging speed (130 frames/s) and ultrahigh imaging resolutions (1.5 μm and 3.9 μm for axial and transverse resolutions, respectively). A light-sensitive pacemaker was developed in Drosophila by specifically expressing the light-gated cation channel, channelrhodopsin-2 (ChR2) in transgenic Drosophila heart. We achieved non-invasive and specific optical control of the Drosophila heart rhythm throughout the fly's life cycle (larva, pupa, and adult) by stimulating the heart with 475 nm pulsed laser light. Heart response to stimulation pulses was monitored non-invasively with OCM. This integrated non-invasive optogenetic control and in vivo imaging technique provides a novel platform for performing research studies in developmental cardiology.
High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers
NASA Astrophysics Data System (ADS)
Siegel, Nisan; Lupashin, Vladimir; Storrie, Brian; Brooker, Gary
2016-12-01
Fresnel incoherent correlation holography (FINCH) microscopy is a promising approach for high-resolution biological imaging but has so far been limited to use with low-magnification, low-numerical-aperture configurations. We report the use of in-line incoherent interferometers made from uniaxial birefringent α-barium borate (α-BBO) or calcite crystals that overcome the aberrations and distortions present with previous implementations that employed spatial light modulators or gradient refractive index lenses. FINCH microscopy incorporating these birefringent elements and high-numerical-aperture oil immersion objectives could outperform standard wide-field fluorescence microscopy, with, for example, a 149 nm lateral point spread function at a wavelength of 590 nm. Enhanced resolution was confirmed with sub-resolution fluorescent beads. Taking the Golgi apparatus as a biological example, three different proteins labelled with GFP and two other fluorescent dyes in HeLa cells were resolved with an image quality that is comparable to similar samples captured by structured illumination microscopy.
Tabletop Imaging of Structural Evolutions in Chemical Reactions
NASA Astrophysics Data System (ADS)
Ibrahim, Heide; Wales, Benji; Beaulieu, Samuel; Schmidt, Bruno E.; Thiré, Nicolas; Fowe, Emmanuel P.; Bisson, Éric; Hebeisen, Christoph T.; Wanie, Vincent; Giguére, Mathieu; Kieffer, Jean-Claude; Spanner, Michael; Bandrauk, André D.; Sanderson, Joseph; Schuurman, Michael S.; Légaré, François
The first high-resolution molecular movie of proton migration in the acetylene cation is obtained using a tabletop multiphoton pump-probe approach—an alternative to demanding free-electron-lasers and other VUV light sources when ionizing from the HOMO-1.
New Results on Io's Color and Composition
NASA Technical Reports Server (NTRS)
Geissler, P.; McEwen, A. S.; Phillips, C.; Keszthelyi, L.; Turtle, E.; Milazzo, M.; Lopes-Gautier, R.; Simonelli, D.; Williams, D.
2000-01-01
Galileo's recent high-resolution imaging provides new insights into the nature of Io's colorful surface, shedding light on the composition and origin of pyroclastic deposits and suggesting that Io's mysterious green spots are due to coating or alteration of silicate lavas.
Adaptive optics high-resolution IR spectroscopy with silicon grisms and immersion gratings
NASA Astrophysics Data System (ADS)
Ge, Jian; McDavitt, Daniel L.; Chakraborty, Abhijit; Bernecker, John L.; Miller, Shane
2003-02-01
The breakthrough of silicon immersion grating technology at Penn State has the ability to revolutionize high-resolution infrared spectroscopy when it is coupled with adaptive optics at large ground-based telescopes. Fabrication of high quality silicon grism and immersion gratings up to 2 inches in dimension, less than 1% integrated scattered light, and diffraction-limited performance becomes a routine process thanks to newly developed techniques. Silicon immersion gratings with etched dimensions of ~ 4 inches are being developed at Penn State. These immersion gratings will be able to provide a diffraction-limited spectral resolution of R = 300,000 at 2.2 micron, or 130,000 at 4.6 micron. Prototype silicon grisms have been successfully used in initial scientific observations at the Lick 3m telescope with adaptive optics. Complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ~ 3000 were obtained. This resolving power was achieved by using a silicon echelle grism with a 5 mm pupil diameter in an IR camera. These results represent the first scientific observations conducted by the high-resolution silicon grisms, and demonstrate the extremely high dispersing power of silicon-based gratings. New discoveries from this high spatial and spectral resolution IR spectroscopy will be reported. The future of silicon-based grating applications in ground-based AO IR instruments is promising. Silicon immersion gratings will make very high-resolution spectroscopy (R > 100,000) feasible with compact instruments for implementation on large telescopes. Silicon grisms will offer an efficient way to implement low-cost medium to high resolution IR spectroscopy (R ~ 1000-50000) through the conversion of existing cameras into spectrometers by locating a grism in the instrument's pupil location.
Advanced Scintillator Detectors for Neutron Imaging in Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Volegov, Petr; Wilde, Carl
2016-10-01
The neutron imaging team at Los Alamos National Laboratory (LANL) has been providing two-dimensional neutron imaging of the inertial confinement fusion process at the National Ignition Facility (NIF) for over five years. Neutron imaging is a powerful tool in which position-sensitive detectors register neutrons emitted in the fusion reactions, producing a picture of the burning fuel. Recent images have revealed possible multi-dimensional asymmetries, calling for additional views to facilitate three-dimensional imaging. These will be along shorter lines of sight to stay within the existing facility at NIF. In order to field imaging capabilities equivalent to the existing system several technological challenges have to be met: high spatial resolution, high light output, and fast scintillator response to capture lower-energy neutrons, which have scattered from non-burning regions of fuel. Deuterated scintillators are a promising candidate to achieve the timing and resolution required; a systematic study of deuterated and non-deuterated polystyrene and liquid samples is currently ongoing. A test stand has been implemented to measure the response function, and preliminary data on resolution and light output have been obtained at the LANL Weapons Neutrons Research facility.
NASA Astrophysics Data System (ADS)
Frins, E.; Platt, U.; Wagner, T.
2008-06-01
Tomographic Target Light scattering - Differential Optical Absorption Spectroscopy (ToTaL-DOAS), also called Target-DOAS, is a novel experimental procedure to retrieve trace gas concentrations present in the low atmosphere. Scattered sunlight (partially or totally) reflected from natural or artificial targets of similar albedo located at different distances is analyzed to retrieve the concentration of different trace gases like NO2, SO2 and others. We report high spatial resolution measurements of NO2 mixing ratios in the city of Montevideo (Uruguay) observing three buildings as targets with a Mini-DOAS instrument. Our instrument was 146 m apart from the first building, 196 m from the second and 286 m from the third one. All three buildings are located along a main Avenue. We obtain temporal variation of NO2 mixing ratios between 30 ppb and 65 ppb (±2 ppb). Our measurements demonstrate that ToTaL-DOAS measurements can be made over very short distances. In polluted air masses, the retrieved absorption signal was found to be strong enough to allow measurements over distances in the range of several ten meters, and achieve a spatial resolution of 50 m approximately.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Feng, Rong-juan; Li, Yi-yi; Liu, Ming-hua; Guo, Yuan
2017-08-01
Sphingomyelin(SM) is specifically enriched in the plasma membrane of mammalian cells. Its molecular structure is compose by N-acyl-Derythro-sphingosylphosphorylcholine. The function of the SM related to membrane signaling and protein trafficking are relied on the interactions of the SM, cations, cholesterol and proteins. In this report, the interaction of three different nature SMs, cations and cholesterol at air/aqueous interfaces studied by high-resolution broadband sum frequency vibrational spectroscopy, respectively. Our results shed lights on understanding the relationship between SMs monolayer, cholesterol and Cations.
Plasmonic particles of colloidal silver in high-resolution recording media
NASA Astrophysics Data System (ADS)
Andreeva, O. V.; Andreeva, N. V.; Kuzmina, T. B.
2017-01-01
The optical properties of colloidal silver particles formed photographically in high-resolution silver halide photographic materials have been considered. The conditions that allow one to obtain exposed and developed light-sensitive silver halide particles in the form of colloidal particles of metallic silver having the properties of localized plasmons have been described. The results of the studies of the developed silver particles in traditional photographic materials for image holography and in nanoporous silver halide photographic materials for volume holography have been presented. The perspectives of using plasmonic silver nanoparticles produced photographically have been discussed.
Development of a Direct Fabrication Technique for Full-Shell X-Ray Optics
NASA Technical Reports Server (NTRS)
Gubarev, M.; Kolodziejczak, J. K.; Griffith, C.; Roche, J.; Smith, W. S.; Kester, T.; Atkins, C.; Arnold, W.; Ramsey, B.
2016-01-01
Future astrophysical missions will require fabrication technology capable of producing high angular resolution x-ray optics. A full-shell direct fabrication approach using modern robotic polishing machines has the potential for producing high resolution, light-weight and affordable x-ray mirrors that can be nested to produce large collecting area. This approach to mirror fabrication, based on the use of the metal substrates coated with nickel phosphorous alloy, is being pursued at MSFC. The design of the polishing fixtures for the direct fabrication, the surface figure metrology techniques used and the results of the polishing experiments are presented.
Advances in atmospheric temperature profile measurements using high spectral resolution lidar
NASA Astrophysics Data System (ADS)
Razenkov, Ilya I.; Eloranta, Edwin W.
2018-04-01
This paper reports the atmospheric temperature profile measurements using a University of Wisconsin-Madison High Spectral Resolution Lidar (HSRL) and describes improvements in the instrument performance. HSRL discriminates between Mie and Rayleigh backscattering [1]. Thermal motion of molecules broadens the spectrum of the transmitted laser light due to Doppler effect. The HSRL exploits this property to allow the absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different line widths are used to resolve temperature sensitive changes in Rayleigh backscattering for atmospheric temperature profile measurements.
Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate.
Yamamoto, Seiichi; Kamada, Kei; Yoshikawa, Akira
2018-02-16
High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO 3 :Ce (GAP) /α-Al 2 O 3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.
SRRF: Universal live-cell super-resolution microscopy.
Culley, Siân; Tosheva, Kalina L; Matos Pereira, Pedro; Henriques, Ricardo
2018-08-01
Super-resolution microscopy techniques break the diffraction limit of conventional optical microscopy to achieve resolutions approaching tens of nanometres. The major advantage of such techniques is that they provide resolutions close to those obtainable with electron microscopy while maintaining the benefits of light microscopy such as a wide palette of high specificity molecular labels, straightforward sample preparation and live-cell compatibility. Despite this, the application of super-resolution microscopy to dynamic, living samples has thus far been limited and often requires specialised, complex hardware. Here we demonstrate how a novel analytical approach, Super-Resolution Radial Fluctuations (SRRF), is able to make live-cell super-resolution microscopy accessible to a wider range of researchers. We show its applicability to live samples expressing GFP using commercial confocal as well as laser- and LED-based widefield microscopes, with the latter achieving long-term timelapse imaging with minimal photobleaching. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.
2013-03-01
Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.
Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display
NASA Astrophysics Data System (ADS)
Nelson, Scott A.
1994-06-01
The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.
Wells, Darren M.; French, Andrew P.; Naeem, Asad; Ishaq, Omer; Traini, Richard; Hijazi, Hussein; Bennett, Malcolm J.; Pridmore, Tony P.
2012-01-01
Roots are highly responsive to environmental signals encountered in the rhizosphere, such as nutrients, mechanical resistance and gravity. As a result, root growth and development is very plastic. If this complex and vital process is to be understood, methods and tools are required to capture the dynamics of root responses. Tools are needed which are high-throughput, supporting large-scale experimental work, and provide accurate, high-resolution, quantitative data. We describe and demonstrate the efficacy of the high-throughput and high-resolution root imaging systems recently developed within the Centre for Plant Integrative Biology (CPIB). This toolset includes (i) robotic imaging hardware to generate time-lapse datasets from standard cameras under infrared illumination and (ii) automated image analysis methods and software to extract quantitative information about root growth and development both from these images and via high-resolution light microscopy. These methods are demonstrated using data gathered during an experimental study of the gravitropic response of Arabidopsis thaliana. PMID:22527394
Wells, Darren M; French, Andrew P; Naeem, Asad; Ishaq, Omer; Traini, Richard; Hijazi, Hussein I; Hijazi, Hussein; Bennett, Malcolm J; Pridmore, Tony P
2012-06-05
Roots are highly responsive to environmental signals encountered in the rhizosphere, such as nutrients, mechanical resistance and gravity. As a result, root growth and development is very plastic. If this complex and vital process is to be understood, methods and tools are required to capture the dynamics of root responses. Tools are needed which are high-throughput, supporting large-scale experimental work, and provide accurate, high-resolution, quantitative data. We describe and demonstrate the efficacy of the high-throughput and high-resolution root imaging systems recently developed within the Centre for Plant Integrative Biology (CPIB). This toolset includes (i) robotic imaging hardware to generate time-lapse datasets from standard cameras under infrared illumination and (ii) automated image analysis methods and software to extract quantitative information about root growth and development both from these images and via high-resolution light microscopy. These methods are demonstrated using data gathered during an experimental study of the gravitropic response of Arabidopsis thaliana.
Wide coverage by volume CT: benefits for cardiac imaging
NASA Astrophysics Data System (ADS)
Sablayrolles, Jean-Louis; Cesmeli, Erdogan; Mintandjian, Laura; Adda, Olivier; Dessalles-Martin, Diane
2005-04-01
With the development of new technologies, computed tomography (CT) is becoming a strong candidate for non-invasive imaging based tool for cardiac disease assessment. One of the challenges of cardiac CT is that a typical scan involves a breath hold period consisting of several heartbeats, about 20 sec with scanners having a longitudinal coverage of 2 cm, and causing the image quality (IQ) to be negatively impacted since beat to beat variation is high likely to occur without any medication, e.g. beta blockers. Because of this and the preference for shorter breath hold durations, a CT scanner with a wide coverage without the compromise in the spatial and temporal resolution of great clinical value. In this study, we aimed at determining the optimum scan duration and the delay relative to beginning of breath hold, to achieve high IQ. We acquired EKG data from 91 consecutive patients (77 M, 14 F; Age: 57 +/- 14) undergoing cardiac CT exams with contrast, performed on LightSpeed 16 and LightSpeed Pro16. As an IQ metric, we adopted the standard deviation of "beat-to-beat variation" (stdBBV) within a virtual scan period. Two radiologists evaluated images by assigning a score of 1 (worst) to 4 best). We validated stdBBV with the radiologist scores, which resulted in a population distribution of 9.5, 9.5, 31, and 50% for the score groups 1, 2, 3, and 4, respectively. Based on the scores, we defined a threshold for stdBBV and identified an optimum combination of virtual scan period and a delay. With the assumption that the relationship between the stdBBV and diagnosable scan IQ holds, our analysis suggested that the success rate can be improved to 100% with scan durations equal or less than 5 sec with a delay of 1 - 2 sec. We confirmed the suggested conclusion with LightSpeed VCT (GE Healthcare Technologies, Waukesha, WI), which has a wide longitudinal coverage, fine isotropic spatial resolution, and high temporal resolution, e.g. 40 mm coverage per rotation of 0.35 sec. Under the light of this study, LightSpeed VCT lends itself to be a clinically tested unique platform to achieve routine cardiac imaging.
Relationships between brightness of nighttime lights and population density
NASA Astrophysics Data System (ADS)
Naizhuo, Z.
2012-12-01
Brightness of nighttime lights has been proven to be a good proxy for socioeconomic and demographic statistics. Moreover, the satellite nighttime lights data have been used to spatially disaggregate amounts of gross domestic product (GDP), fossil fuel carbon dioxide emission, and electric power consumption (Ghosh et al., 2010; Oda and Maksyutov, 2011; Zhao et al., 2012). Spatial disaggregations were performed in these previous studies based on assumed linear relationships between digital number (DN) value of pixels in the nighttime light images and socioeconomic data. However, reliability of the linear relationships was never tested due to lack of relative high-spatial-resolution (equal to or finer than 1 km × 1 km) statistical data. With the similar assumption that brightness linearly correlates to population, Bharti et al. (2011) used nighttime light data as a proxy for population density and then developed a model about seasonal fluctuations of measles in West Africa. The Oak Ridge National Laboratory used sub-national census population data and high spatial resolution remotely-sensed-images to produce LandScan population raster datasets. The LandScan population datasets have 1 km × 1 km spatial resolution which is consistent with the spatial resolution of the nighttime light images. Therefore, in this study I selected 2008 LandScan population data as baseline reference data and the contiguous United State as study area. Relationships between DN value of pixels in the 2008 Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) stable light image and population density were established. Results showed that an exponential function can more accurately reflect the relationship between luminosity and population density than a linear function. Additionally, a certain number of saturated pixels with DN value of 63 exist in urban core areas. If directly using the exponential function to estimate the population density for the whole brightly lit area, relatively large under-estimations would emerge in the urban core regions. Previous studies have shown that GDP, carbon dioxide emission, and electric power consumption strongly correlate to urban population (Ghosh et al., 2010; Sutton et al., 2007; Zhao et al., 2012). Thus, although this study only examined the relationships between brightness of nighttime lights and population density, the results can provide insight for the spatial disaggregations of socioeconomic data (e.g. GDP, carbon dioxide emission, and electric power consumption) using the satellite nighttime light image data. Simply distributing the socioeconomic data to each pixel in proportion to the DN value of the nighttime light images may generate relatively large errors. References Bharit N, Tatem AJ, Ferrari MJ, Grais RF, Djibo A, Grenfell BT, 2011. Science, 334:1424-1427. Ghosh T, Elvidge CD, Sutton PC, Baugh KE, Ziskin D, Tuttle BT, 2010. Energies, 3:1895-1913. Oda T, Maksyutov S, 2011. Atmospheric Chemistry and Physics, 11:543-556. Sutton PC, Elvidge CD, Ghosh T, 2007. International Journal of Ecological Economics and Statistics, 8:5-21. Zhao N, Ghosh T, Samson EL, 2012. International Journal of Remote sensing, 33:6304-6320.
High Speed Computational Ghost Imaging via Spatial Sweeping
NASA Astrophysics Data System (ADS)
Wang, Yuwang; Liu, Yang; Suo, Jinli; Situ, Guohai; Qiao, Chang; Dai, Qionghai
2017-03-01
Computational ghost imaging (CGI) achieves single-pixel imaging by using a Spatial Light Modulator (SLM) to generate structured illuminations for spatially resolved information encoding. The imaging speed of CGI is limited by the modulation frequency of available SLMs, and sets back its practical applications. This paper proposes to bypass this limitation by trading off SLM’s redundant spatial resolution for multiplication of the modulation frequency. Specifically, a pair of galvanic mirrors sweeping across the high resolution SLM multiply the modulation frequency within the spatial resolution gap between SLM and the final reconstruction. A proof-of-principle setup with two middle end galvanic mirrors achieves ghost imaging as fast as 42 Hz at 80 × 80-pixel resolution, 5 times faster than state-of-the-arts, and holds potential for one magnitude further multiplication by hardware upgrading. Our approach brings a significant improvement in the imaging speed of ghost imaging and pushes ghost imaging towards practical applications.
Hainsworth, A. H.; Lee, S.; Patel, A.; Poon, W. W.; Knight, A. E.
2018-01-01
Aims The spatial resolution of light microscopy is limited by the wavelength of visible light (the ‘diffraction limit’, approximately 250 nm). Resolution of sub-cellular structures, smaller than this limit, is possible with super resolution methods such as stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). We aimed to resolve subcellular structures (axons, myelin sheaths and astrocytic processes) within intact white matter, using STORM and SOFI. Methods Standard cryostat-cut sections of subcortical white matter from donated human brain tissue and from adult rat and mouse brain were labelled, using standard immunohistochemical markers (neurofilament-H, myelin-associated glycoprotein, glial fibrillary acidic protein, GFAP). Image sequences were processed for STORM (effective pixel size 8–32 nm) and for SOFI (effective pixel size 80 nm). Results In human, rat and mouse, subcortical white matter high-quality images for axonal neurofilaments, myelin sheaths and filamentous astrocytic processes were obtained. In quantitative measurements, STORM consistently underestimated width of axons and astrocyte processes (compared with electron microscopy measurements). SOFI provided more accurate width measurements, though with somewhat lower spatial resolution than STORM. Conclusions Super resolution imaging of intact cryo-cut human brain tissue is feasible. For quantitation, STORM can under-estimate diameters of thin fluorescent objects. SOFI is more robust. The greatest limitation for super-resolution imaging in brain sections is imposed by sample preparation. We anticipate that improved strategies to reduce autofluorescence and to enhance fluorophore performance will enable rapid expansion of this approach. PMID:28696566
Hainsworth, A H; Lee, S; Foot, P; Patel, A; Poon, W W; Knight, A E
2018-06-01
The spatial resolution of light microscopy is limited by the wavelength of visible light (the 'diffraction limit', approximately 250 nm). Resolution of sub-cellular structures, smaller than this limit, is possible with super resolution methods such as stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). We aimed to resolve subcellular structures (axons, myelin sheaths and astrocytic processes) within intact white matter, using STORM and SOFI. Standard cryostat-cut sections of subcortical white matter from donated human brain tissue and from adult rat and mouse brain were labelled, using standard immunohistochemical markers (neurofilament-H, myelin-associated glycoprotein, glial fibrillary acidic protein, GFAP). Image sequences were processed for STORM (effective pixel size 8-32 nm) and for SOFI (effective pixel size 80 nm). In human, rat and mouse, subcortical white matter high-quality images for axonal neurofilaments, myelin sheaths and filamentous astrocytic processes were obtained. In quantitative measurements, STORM consistently underestimated width of axons and astrocyte processes (compared with electron microscopy measurements). SOFI provided more accurate width measurements, though with somewhat lower spatial resolution than STORM. Super resolution imaging of intact cryo-cut human brain tissue is feasible. For quantitation, STORM can under-estimate diameters of thin fluorescent objects. SOFI is more robust. The greatest limitation for super-resolution imaging in brain sections is imposed by sample preparation. We anticipate that improved strategies to reduce autofluorescence and to enhance fluorophore performance will enable rapid expansion of this approach. © 2017 British Neuropathological Society.
NASA Astrophysics Data System (ADS)
Fiore, Antonio; Scarcelli, Giuliano
2017-02-01
Brillouin microscopy allows high-resolution mapping of the mechanical properties of a sample by measuring the spectra of acoustically induced light scattering therein, and thus has been widely investigated for biomedical application. Measuring the Brillouin spectral shift is challenging when the light is focused onto the interfaces between two materials of different refractive index, because a sizeable portion of the incident light is Fresnel-reflected into the Brillouin spectrometer. To address this need, here, we designed a Brillouin confocal microscope in which the specular reflection at the interface between two materials is physically rejected without significant loss to the Brillouin signal. To achieve this goal, we illuminate the sample with a small-diameter Gaussian beam focused by a high numerical aperture objective lens. In the collection path, the beam reflected from the sample has the same diameter as the incident beam, while the scattered light beam is as large as the clear aperture of the microscope objective. Therefore, using a small blocking filter allows to efficiently reject the reflected light. We calculated the tradeoff between extinction improvement and signal loss when the diameter of the blocking filter is changed. Experimentally, we demonstrated extinction improvement of over 60dB with only 30% signal loss while achieving submicron resolutions. This innovation can be useful for in vivo measurements of the cornea to avoid artifacts in the epithelium and anterior portions of the stroma, as well as to investigate cells cultured on glass coverslips without necessity of index-matching materials.
Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L
2012-10-01
High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.
The novel top-coat material for RLS trade-off reduction in EUVL
NASA Astrophysics Data System (ADS)
Onishi, Ryuji; Sakamoto, Rikimaru; Fujitani, Noriaki; Endo, Takafumi; Ho, Bang-ching
2012-03-01
For the next generation lithography (NGL), several technologies have been proposed to achieve the 22nm-node devices and beyond. Extreme ultraviolet (EUV) lithography is one of the candidates for the next generation lithography. In EUV light source development, low power is one of the critical issue because of the low throughput, and another issue is Out of Band (OoB) light existing in EUV light. OoB is concerned to be the cause of deterioration for the lithography performance. In order to avoid this critical issue, we focused on development of the resist top coat material with OoB absorption property as Out of Band Protection Layer (OBPL). We designed this material having high absorbance around 240nm wavelength and high transmittance for EUV light. And this material aimed to improve sensitivity, resolution and LWR performance.
Ultrahigh-resolution endoscopic optical coherence tomography
NASA Astrophysics Data System (ADS)
Chen, Yu; Herz, Paul R.; Hsiung, Pei-Lin; Aguirre, Aaron D.; Mashimo, Hiroshi; Desai, Saleem; Pedrosa, Macos; Koski, Amanda; Schmitt, Joseph M.; Fujimoto, James G.
2005-01-01
Early detection of gastrointestinal cancer is essential for the patient treatment and medical care. Endoscopically guided biopsy is currently the gold standard for the diagnosis of early esophageal cancer, but can suffer from high false negative rates due to sampling errors. Optical coherence tomography (OCT) is an emerging medical imaging technology which can generate high resolution, cross-sectional images of tissue in situ and in real time, without the removal of tissue specimen. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10 - 15 m for clinical procedures. In this study, in vivo imaging of the gastrointestinal tract is demonstrated at a three-fold higher resolution (< 5 m), using a portable, broadband, Cr4+:Forsterite laser as the optical light source. Images acquired from the esophagus, gastro-esophageal junction and colon on animal model display tissue microstructures and architectural details at high resolution, and the features observed in the OCT images are well-matched with histology. The clinical feasibility study is conducted through delivering OCT imaging catheter using standard endoscope. OCT images of normal esophagus, Barrett's esophagus, and esophageal cancers are demonstrated with distinct features. The ability of high resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo would facilitate the development of OCT as a potential imaging modality for early detection of neoplastic changes.
High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source.
Cole, Jason M; Symes, Daniel R; Lopes, Nelson C; Wood, Jonathan C; Poder, Kristjan; Alatabi, Saleh; Botchway, Stanley W; Foster, Peta S; Gratton, Sarah; Johnson, Sara; Kamperidis, Christos; Kononenko, Olena; De Lazzari, Michael; Palmer, Charlotte A J; Rusby, Dean; Sanderson, Jeremy; Sandholzer, Michael; Sarri, Gianluca; Szoke-Kovacs, Zsombor; Teboul, Lydia; Thompson, James M; Warwick, Jonathan R; Westerberg, Henrik; Hill, Mark A; Norris, Dominic P; Mangles, Stuart P D; Najmudin, Zulfikar
2018-06-19
In the field of X-ray microcomputed tomography (μCT) there is a growing need to reduce acquisition times at high spatial resolution (approximate micrometers) to facilitate in vivo and high-throughput operations. The state of the art represented by synchrotron light sources is not practical for certain applications, and therefore the development of high-brightness laboratory-scale sources is crucial. We present here imaging of a fixed embryonic mouse sample using a compact laser-plasma-based X-ray light source and compare the results to images obtained using a commercial X-ray μCT scanner. The radiation is generated by the betatron motion of electrons inside a dilute and transient plasma, which circumvents the flux limitations imposed by the solid or liquid anodes used in conventional electron-impact X-ray tubes. This X-ray source is pulsed (duration <30 fs), bright (>10 10 photons per pulse), small (diameter <1 μm), and has a critical energy >15 keV. Stable X-ray performance enabled tomographic imaging of equivalent quality to that of the μCT scanner, an important confirmation of the suitability of the laser-driven source for applications. The X-ray flux achievable with this approach scales with the laser repetition rate without compromising the source size, which will allow the recording of high-resolution μCT scans in minutes. Copyright © 2018 the Author(s). Published by PNAS.
Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ciprian Ionita, N.; Hoffmann, Kenneth R.; Bednarek, Daniel R.
2011-01-01
New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 × 20 cm can be obtained where the images have pixel-resolution of 100 µm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 µR detector exposure per frame. Because of the flexible voltage controlled gain of the LA’s and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels. PMID:21297904
NASA Astrophysics Data System (ADS)
Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ionita, N. Ciprian; Hoffmann, Kenneth R.; Bednarek, Daniel R.
2006-03-01
New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 x 20 cm can be obtained where the images have pixel-resolution of 100 μm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 μR detector exposure per frame. Because of the flexible voltage controlled gain of the LA's and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels.
NASA Astrophysics Data System (ADS)
de Vieilleville, F.; Ristorcelli, T.; Delvit, J.-M.
2016-06-01
This paper presents a method for dense DSM reconstruction from high resolution, mono sensor, passive imagery, spatial panchromatic image sequence. The interest of our approach is four-fold. Firstly, we extend the core of light field approaches using an explicit BRDF model from the Image Synthesis community which is more realistic than the Lambertian model. The chosen model is the Cook-Torrance BRDF which enables us to model rough surfaces with specular effects using specific material parameters. Secondly, we extend light field approaches for non-pinhole sensors and non-rectilinear motion by using a proper geometric transformation on the image sequence. Thirdly, we produce a 3D volume cost embodying all the tested possible heights and filter it using simple methods such as Volume Cost Filtering or variational optimal methods. We have tested our method on a Pleiades image sequence on various locations with dense urban buildings and report encouraging results with respect to classic multi-label methods such as MIC-MAC, or more recent pipelines such as S2P. Last but not least, our method also produces maps of material parameters on the estimated points, allowing us to simplify building classification or road extraction.
Killingsworth, Murray C; Lai, Ken; Wu, Xiaojuan; Yong, Jim L C; Lee, C Soon
2012-11-01
Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy.
3D single-molecule super-resolution microscopy with a tilted light sheet.
Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E
2018-01-09
Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.
Lai, Ken; Wu, Xiaojuan; Yong, Jim L. C.; Lee, C. Soon
2012-01-01
Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy. PMID:22899862
Measurement of replication structures at the nanometer scale using super-resolution light microscopy
Baddeley, D.; Chagin, V. O.; Schermelleh, L.; Martin, S.; Pombo, A.; Carlton, P. M.; Gahl, A.; Domaing, P.; Birk, U.; Leonhardt, H.; Cremer, C.; Cardoso, M. C.
2010-01-01
DNA replication, similar to other cellular processes, occurs within dynamic macromolecular structures. Any comprehensive understanding ultimately requires quantitative data to establish and test models of genome duplication. We used two different super-resolution light microscopy techniques to directly measure and compare the size and numbers of replication foci in mammalian cells. This analysis showed that replication foci vary in size from 210 nm down to 40 nm. Remarkably, spatially modulated illumination (SMI) and 3D-structured illumination microscopy (3D-SIM) both showed an average size of 125 nm that was conserved throughout S-phase and independent of the labeling method, suggesting a basic unit of genome duplication. Interestingly, the improved optical 3D resolution identified 3- to 5-fold more distinct replication foci than previously reported. These results show that optical nanoscopy techniques enable accurate measurements of cellular structures at a level previously achieved only by electron microscopy and highlight the possibility of high-throughput, multispectral 3D analyses. PMID:19864256
Dual Double-Wedge Pseudo-Depolarizer with Anamorphic PSF
NASA Technical Reports Server (NTRS)
Hill, Peter; Thompson, Patrick
2012-01-01
A polarized scene, which may occur at oblique illumination angles, creates a radiometric signal that varies as a function of viewing angle. One common optical component that is used to minimize such an effect is a polarization scrambler or depolarizer. As part of the CLARREO mission, the SOLARIS instrument project at Goddard Space Flight Center has developed a new class of polarization scramblers using a dual double-wedge pseudo-depolarizer that produces an anamorphic point spread function (PSF). The SOLARIS instrument uses two Wollaston type scramblers in series, each with a distinct wedge angle, to image a pseudo-depolarized scene that is free of eigenstates. Since each wedge is distinct, the scrambler is able to produce an anamorphic PSF that maintains high spatial resolution in one dimension by sacrificing the spatial resolution in the other dimension. This scrambler geometry is ideal for 1-D imagers, such as pushbroom slit spectrometers, which require high spectral resolution, high spatial resolution, and low sensitivity to polarized light. Moreover, the geometry is applicable to a wide range of scientific instruments that require both high SNR (signal-to-noise ratio) and low sensitivity to polarized scenes
NASA Astrophysics Data System (ADS)
Lousberg, G. P.; Lemagne, F.; Gloesener, P.; Flebus, C.; Rougelot, S.; Coatantiec, C.; Harnisch, B.
2017-11-01
In the framework of the Fluorescence Explorer (FLEX) phase A/B1 study, an elegant breadboard (EBB) of an imaging spectrometer is designed, manufactured and aligned by AMOS, with Airbus Defence&Space as the prime Contractor of the study. The FLEX mission is one of the two candidates of the 8th Earth Explorer mission. The main constituting instrument of the FLEX mission is an imaging spectrometer observing vegetation fluorescence and reflectance with a high- and a low-resolution channels in the 500 nm -780 nm band. As part of the system feasibility study of the mission, a breadboard of the high-resolution channel of the instrument is designed and manufactured with a high representativeness of a future flight concept. The high-resolution channel is referred to as FIMAS (Fluorescence IMAging Spectrometer). The main purpose of the EBB is to demonstrate (1) the manufacturability of the instrument and (2) the compliance of the optical performances with respect to the science requirements (including spatial and spectral resolution and stray-light).
Measurements of OH(X2pi) in the stratosphere by high resolution UV spectroscopy
NASA Technical Reports Server (NTRS)
Torr, D. G.; Swift, W.; Fennelly, J.; Liu, G.; Torr, M. R.
1987-01-01
This paper reports the first results obtained using high spectral resolution imaging ultraviolet spectroscopy to observe multiple rotational lines of OH A2 Sigma-X2pi (0-0) band. A 9.2 A spectral segment from 3075.8 A to 3085.0 A is imaged at 0.08 A FWHM spectral resolution, allowing the simultaneous acquisition of six of the brightest OH resonance fluorescence emission lines. The high spectral resolution and low scattered light design of the instrument allows these lines to be detected above the Rayleigh scattered sunlight background. The technique permits remote sensing of stratospheric OH from a high altitude instrument. The instrument was flown to an altitude of 40 km on Aug. 25, 1983, and again on June 12, 1986, on scientific balloons from Palestine, TX. The OH profiles inverted from the limb scans made during these flights are reported here. These profiles represent the first measurements of the temporal variation of OH over an extended height range. The results demonstrate that the technique can be used to monitor OH from orbit.
Elevated-temperature luminescence measurements to improve spatial resolution
NASA Astrophysics Data System (ADS)
Pluska, Mariusz; Czerwinski, Andrzej
2018-01-01
Various branches of applied physics use luminescence based methods to investigate light-emitting specimens with high spatial resolution. A key problem is that luminescence signals lack all the advantages of high locality (i.e. of high spatial resolution) when structures with strong built-in electric field are measured. Such fields exist intentionally in most photonic structures, and occur unintentionally in many other materials. In this case, as a result of beam-induced current generation and its outflow, information that indicates irregularities, nonuniformities and inhomogeneities, such as defects, is lost. We show that to avoid nonlocality and enable truly local luminescence measurements, an elevated measurement temperature as high as 350 K (or even higher) is, perhaps surprisingly, advantageous. This is in contrast to a widely used approach, where cryogenic temperatures, or at least room temperature, are recommended. The elevated temperature of a specimen, together with the current outflow being limited by focused ion beam (FIB) milling, is shown to improve the spatial resolution of luminescence measurements greatly. All conclusions drawn using the example of cathodoluminescence are useful for other luminescence techniques.
Experimental comparison of high-density scintillators for EMCCD-based gamma ray imaging
NASA Astrophysics Data System (ADS)
Heemskerk, Jan W. T.; Kreuger, Rob; Goorden, Marlies C.; Korevaar, Marc A. N.; Salvador, Samuel; Seeley, Zachary M.; Cherepy, Nerine J.; van der Kolk, Erik; Payne, Stephen A.; Dorenbos, Pieter; Beekman, Freek J.
2012-07-01
Detection of x-rays and gamma rays with high spatial resolution can be achieved with scintillators that are optically coupled to electron-multiplying charge-coupled devices (EMCCDs). These can be operated at typical frame rates of 50 Hz with low noise. In such a set-up, scintillation light within each frame is integrated after which the frame is analyzed for the presence of scintillation events. This method allows for the use of scintillator materials with relatively long decay times of a few milliseconds, not previously considered for use in photon-counting gamma cameras, opening up an unexplored range of dense scintillators. In this paper, we test CdWO4 and transparent polycrystalline ceramics of Lu2O3:Eu and (Gd,Lu)2O3:Eu as alternatives to currently used CsI:Tl in order to improve the performance of EMCCD-based gamma cameras. The tested scintillators were selected for their significantly larger cross-sections at 140 keV (99mTc) compared to CsI:Tl combined with moderate to good light yield. A performance comparison based on gamma camera spatial and energy resolution was done with all tested scintillators having equal (66%) interaction probability at 140 keV. CdWO4, Lu2O3:Eu and (Gd,Lu)2O3:Eu all result in a significantly improved spatial resolution over CsI:Tl, albeit at the cost of reduced energy resolution. Lu2O3:Eu transparent ceramic gives the best spatial resolution: 65 µm full-width-at-half-maximum (FWHM) compared to 147 µm FWHM for CsI:Tl. In conclusion, these ‘slow’ dense scintillators open up new possibilities for improving the spatial resolution of EMCCD-based scintillation cameras.
High resolution microtomography for density and spatial infomation about wood structures
Barbara Illman; Betsy Dowd
1999-01-01
Microtomography has successfully been used to characterize loss of structural integrity of wood. Tomographic images were generated with the newly developed third generation x-ray computed microtomography (XCMT) instrument at the X27A beamline at the national Synchrotron Light source (NSLS). The beamline is equipped with high-flux x-ray monochromator based on multilayer...
Wu, Yicong; Chandris, Panagiotis; Winter, Peter W.; Kim, Edward Y.; Jaumouillé, Valentin; Kumar, Abhishek; Guo, Min; Leung, Jacqueline M.; Smith, Corey; Rey-Suarez, Ivan; Liu, Huafeng; Waterman, Clare M.; Ramamurthi, Kumaran S.; La Riviere, Patrick J.; Shroff, Hari
2016-01-01
Most fluorescence microscopes are inefficient, collecting only a small fraction of the emitted light at any instant. Besides wasting valuable signal, this inefficiency also reduces spatial resolution and causes imaging volumes to exhibit significant resolution anisotropy. We describe microscopic and computational techniques that address these problems by simultaneously capturing and subsequently fusing and deconvolving multiple specimen views. Unlike previous methods that serially capture multiple views, our approach improves spatial resolution without introducing any additional illumination dose or compromising temporal resolution relative to conventional imaging. When applying our methods to single-view wide-field or dual-view light-sheet microscopy, we achieve a twofold improvement in volumetric resolution (~235 nm × 235 nm × 340 nm) as demonstrated on a variety of samples including microtubules in Toxoplasma gondii, SpoVM in sporulating Bacillus subtilis, and multiple protein distributions and organelles in eukaryotic cells. In every case, spatial resolution is improved with no drawback by harnessing previously unused fluorescence. PMID:27761486
Martial, Franck P.; Hartell, Nicholas A.
2012-01-01
Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor. PMID:22937130
Martial, Franck P; Hartell, Nicholas A
2012-01-01
Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor.