Redwood seedling responses to light patterns and intensities
Ronald W. Boldenow; Joe R. McBride
2017-01-01
Coast redwood (Sequoia sempervirens (D. Don) Endl.) seedlings were grown from seed in controlled environments with 16 hour photoperiods using three light patterns that mimicked full shade (constant light level), intermittent high light such as long duration sun flecks (low light with 15 minutes of intense light every 2 hours), and large...
Popovic, Milos
2011-03-08
Low-loss waveguide structures may comprise a multimode waveguide supporting a periodic light intensity pattern, and attachments disposed at the waveguide adjacent low-intensity regions of the light intensity pattern.
Feng, Dan; Wang, Yanwei; Lu, Tiegang; Zhang, Zhiguo; Han, Xiao
2017-01-01
Plant leaves exhibit differentiated patterns of photosynthesis rates under diurnal light regulation. Maize leaves show a single-peak pattern without photoinhibition at midday when the light intensity is maximized. This mechanism contributes to highly efficient photosynthesis in maize leaves. To understand the molecular basis of this process, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics analysis was performed to reveal the dynamic pattern of proteins related to photosynthetic reactions. Steady, single-peak and double-peak protein expression patterns were discovered in maize leaves, and antenna proteins in these leaves displayed a steady pattern. In contrast, the photosystem, carbon fixation and citrate pathways were highly controlled by diurnal light intensity. Most enzymes in the limiting steps of these pathways were major sites of regulation. Thus, maize leaves optimize photosynthesis and carbon fixation outside of light harvesting to adapt to the changes in diurnal light intensity at the protein level.
Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.
2000-01-01
An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.
Lu, Tiegang; Zhang, Zhiguo
2017-01-01
Plant leaves exhibit differentiated patterns of photosynthesis rates under diurnal light regulation. Maize leaves show a single-peak pattern without photoinhibition at midday when the light intensity is maximized. This mechanism contributes to highly efficient photosynthesis in maize leaves. To understand the molecular basis of this process, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics analysis was performed to reveal the dynamic pattern of proteins related to photosynthetic reactions. Steady, single-peak and double-peak protein expression patterns were discovered in maize leaves, and antenna proteins in these leaves displayed a steady pattern. In contrast, the photosystem, carbon fixation and citrate pathways were highly controlled by diurnal light intensity. Most enzymes in the limiting steps of these pathways were major sites of regulation. Thus, maize leaves optimize photosynthesis and carbon fixation outside of light harvesting to adapt to the changes in diurnal light intensity at the protein level. PMID:28732011
de Jong, Maaike; Caro, Samuel P; Gienapp, Phillip; Spoelstra, Kamiel; Visser, Marcel E
2017-08-01
Artificial light at night disturbs the daily rhythms of many organisms. To what extent this disturbance depends on the intensity and spectral composition of light remain obscure. Here, we measured daily activity patterns of captive blue tits ( Cyanistes caeruleus) exposed to similar intensities of green, red, or white light at night. Birds advanced their onset of activity in the morning under all light colors but more under red and white light than under green light. Offset of activity was slightly delayed in all light colors. The total activity over a 24-h period did not change but birds moved a part of their daily activity into the night. Since the effect of red and white lights are comparable, we tested the influence of light intensity in a follow-up experiment, where we compared the activity of the birds under different intensities of green and white light only. While in the higher range of intensities, the effects of white and green light were comparable; at lower intensities, green light had a less disturbing effect as compared with white light on daily rhythms in blue tits. Our results show that the extent of this disturbance can be mitigated by modulating the spectral characteristics and intensity of outdoor lighting, which is now feasible through the use of LED lighting.
Detection of a Novel Mechanism of Acousto-Optic Modulation of Incoherent Light
Jarrett, Christopher W.; Caskey, Charles F.; Gore, John C.
2014-01-01
A novel form of acoustic modulation of light from an incoherent source has been detected in water as well as in turbid media. We demonstrate that patterns of modulated light intensity appear to propagate as the optical shadow of the density variations caused by ultrasound within an illuminated ultrasonic focal zone. This pattern differs from previous reports of acousto-optical interactions that produce diffraction effects that rely on phase shifts and changes in light directions caused by the acoustic modulation. Moreover, previous studies of acousto-optic interactions have mainly reported the effects of sound on coherent light sources via photon tagging, and/or the production of diffraction phenomena from phase effects that give rise to discrete sidebands. We aimed to assess whether the effects of ultrasound modulation of the intensity of light from an incoherent light source could be detected directly, and how the acoustically modulated (AOM) light signal depended on experimental parameters. Our observations suggest that ultrasound at moderate intensities can induce sufficiently large density variations within a uniform medium to cause measurable modulation of the intensity of an incoherent light source by absorption. Light passing through a region of high intensity ultrasound then produces a pattern that is the projection of the density variations within the region of their interaction. The patterns exhibit distinct maxima and minima that are observed at locations much different from those predicted by Raman-Nath, Bragg, or other diffraction theory. The observed patterns scaled appropriately with the geometrical magnification and sound wavelength. We conclude that these observed patterns are simple projections of the ultrasound induced density changes which cause spatial and temporal variations of the optical absorption within the illuminated sound field. These effects potentially provide a novel method for visualizing sound fields and may assist the interpretation of other hybrid imaging methods. PMID:25105880
Computer Generated Holography with Intensity-Graded Patterns
Conti, Rossella; Assayag, Osnath; de Sars, Vincent; Guillon, Marc; Emiliani, Valentina
2016-01-01
Computer Generated Holography achieves patterned illumination at the sample plane through phase modulation of the laser beam at the objective back aperture. This is obtained by using liquid crystal-based spatial light modulators (LC-SLMs), which modulate the spatial phase of the incident laser beam. A variety of algorithms is employed to calculate the phase modulation masks addressed to the LC-SLM. These algorithms range from simple gratings-and-lenses to generate multiple diffraction-limited spots, to iterative Fourier-transform algorithms capable of generating arbitrary illumination shapes perfectly tailored on the base of the target contour. Applications for holographic light patterning include multi-trap optical tweezers, patterned voltage imaging and optical control of neuronal excitation using uncaging or optogenetics. These past implementations of computer generated holography used binary input profile to generate binary light distribution at the sample plane. Here we demonstrate that using graded input sources, enables generating intensity graded light patterns and extend the range of application of holographic light illumination. At first, we use intensity-graded holograms to compensate for LC-SLM position dependent diffraction efficiency or sample fluorescence inhomogeneity. Finally we show that intensity-graded holography can be used to equalize photo evoked currents from cells expressing different levels of chanelrhodopsin2 (ChR2), one of the most commonly used optogenetics light gated channels, taking into account the non-linear dependence of channel opening on incident light. PMID:27799896
Abnormal environmental light exposure in the intensive care environment.
Fan, Emily P; Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C; Maas, Matthew B
2017-08-01
We sought to characterize ambient light exposure in the intensive care unit (ICU) environment to identify patterns of light exposure relevant to circadian regulation. A light monitor was affixed to subjects' bed at eye level in a modern intensive care unit and continuously recorded illuminescence for at least 24h per subject. Blood was sampled hourly and measured for plasma melatonin. Subjects underwent hourly vital sign and bedside neurologic assessments. Care protocols and the ICU environment were not modified for the study. A total of 67,324 30-second epochs of light data were collected from 17 subjects. Light intensity peaked in the late morning, median 64.1 (interquartile range 19.7-138.7) lux. The 75th percentile of light intensity exceeded 100lx only between 9AM and noon, and never exceeded 150lx. There was no correlation between melatonin amplitude and daytime, nighttime or total light exposure (Spearman's correlation coefficients all <0.2 and p>0.5). Patients' environmental light exposure in the intensive care unit is consistently low and follows a diurnal pattern. No effect of nighttime light exposure was observed on melatonin secretion. Inadequate daytime light exposure in the ICU may contribute to abnormal circadian rhythms. Copyright © 2017 Elsevier Inc. All rights reserved.
Light diffraction studies of single muscle fibers as a function of fiber rotation.
Gilliar, W G; Bickel, W S; Bailey, W F
1984-01-01
Light diffraction patterns from single glycerinated frog semitendinosus muscle fibers were examined photographically and photoelectrically as a function of diffraction angle and fiber rotation. The total intensity diffraction pattern indicates that the order maxima change both position and intensity periodically as a function of rotation angle. The total diffracted light, light diffracted above and below the zero-order plane, and light diffracted into individual orders gives information about the fiber's longitudinal and rotational structure and its noncylindrical symmetry. Images FIGURE 2 PMID:6611174
Martinez, Angel; Smalyukh, Ivan I.
2015-02-12
Oscillatory and excitable systems very commonly exhibit formation of dynamic non-equilibrium patterns. For example, rotating spiral patterns are observed in biological, chemical, and physical systems ranging from organization of slime mold cells to Belousov-Zhabotinsky reactions, and to crystal growth from nuclei with screw dislocations. Here we describe spontaneous formation of spiral waves and a large variety of other dynamic patterns in anisotropic soft matter driven by low-intensity light. The unstructured ambient or microscope light illumination of thin liquid crystal films in contact with a self-assembled azobenzene monolayer causes spontaneous formation, rich spatial organization, and dynamics of twisted domains and topologicalmore » solitons accompanied by the dynamic patterning of azobenzene group orientations within the monolayer. Linearly polarized incident light interacts with the twisted liquid crystalline domains, mimicking their dynamics and yielding patterns in the polarization state of transmitted light, which can be transformed to similar dynamic patterns in its intensity and interference color. This shows that the delicate light-soft-matter interaction can yield complex self-patterning of both. Finally, we uncover underpinning physical mechanisms and discuss potential uses.« less
Ultraviolet laser beam monitor using radiation responsive crystals
McCann, Michael P.; Chen, Chung H.
1988-01-01
An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.
Shen, S C; Li, J S; Huang, M C
2014-06-02
Fourier series and an energy mapping method were used in this study to design a lens that produces a light pattern of multiple concentric circles (LPMCC) for a light-emitting diode (LED) fishing lamp. Fourier series were used to represent the light intensity distribution curve (LIDC) of the LPMCC light pattern. Energy mapping involves performing angular energy mapping based on the LIDCs of an LED light source and LPMCC to design a freeform lens. Type I and Type II LPMCC lenses were designed according to the phototaxis behavior of fish to create a LPMCC light pattern of interleaving light-dark zones that attracts fish shoals to stay in an area for a long period. The experimental results indicated that, in comparing the LIDCs of the Type I and II lenses with the respective simulation values, the normalized cross-correlation (NCC) value reached 96%. According to a 24-hour observation of the phototaxis of Poecilia reticulata to evaluate the effectiveness of the proposed light pattern to attract fish, when a fish shoal was habituated to a light source that emitted constant illumination light, it gradually moved away from the intense light zone and hovered around the junction of the light and dark zones. In the future, the design used in this study can be applied to LED fishing lamps to replace traditional fishing lamps.
el Jundi, Basil; Smolka, Jochen; Baird, Emily; Byrne, Marcus J; Dacke, Marie
2014-07-01
To escape competition at the dung pile, a ball-rolling dung beetle forms a piece of dung into a ball and rolls it away. To ensure their efficient escape from the dung pile, beetles rely on a 'celestial compass' to move along a straight path. Here, we analyzed the reliability of different skylight cues for this compass and found that dung beetles rely not only on the sun but also on the skylight polarization pattern. Moreover, we show the first evidence of an insect using the celestial light-intensity gradient for orientation. Using a polarizer, we manipulated skylight so that the polarization pattern appeared to turn by 90 deg. The beetles then changed their bearing close to the expected 90 deg. This behavior was abolished if the sun was visible to the beetle, suggesting that polarized light is hierarchically subordinate to the sun. When the sky was depolarized and the sun was invisible, the beetles could still move along straight paths. Therefore, we analyzed the use of the celestial light-intensity gradient for orientation. Artificial rotation of the intensity pattern by 180 deg caused beetles to orient in the opposite direction. This light-intensity cue was also found to be subordinate to the sun and could play a role in disambiguating the polarization signal, especially at low sun elevations. © 2014. Published by The Company of Biologists Ltd.
Jung, Mi; Kim, Jae Hun; Lee, Seok; Jang, Byung Jin; Lee, Woo Young; Oh, Yoo-Mi; Park, Sun-Woo; Woo, Deokha
2012-07-01
A significant enhancement in the light output from nano-patterned InP substrate covered with a nanoporous alumina mask was observed. A uniform nanohole array on an InP semiconductor substrate was fabricated by inductively coupled plasma reactive ion etching (ICP-RIE), using the nanoporous alumina mask as a shadow mask. The light output property of the semiconductor substrate was investigated via photoluminescence (PL) intensity measurement. The InP substrate with a nanohole array showed a more enhanced PL intensity compared with the raw InP substrate without a nanohole structure. After ICP-RIE etching, the light output from the nanoporous InP substrate covered with a nanoporous alumina mask showed fourfold enhanced PL intensity compared with the raw InP substrate. These results can be used as a prospective method for increasing the light output efficiency of optoelectronic devices.
Retkute, Renata; Townsend, Alexandra J; Murchie, Erik H; Jensen, Oliver E; Preston, Simon P
2018-05-25
Diurnal changes in solar position and intensity combined with the structural complexity of plant architecture result in highly variable and dynamic light patterns within the plant canopy. This affects productivity through the complex ways that photosynthesis responds to changes in light intensity. Current methods to characterize light dynamics, such as ray-tracing, are able to produce data with excellent spatio-temporal resolution but are computationally intensive and the resulting data are complex and high-dimensional. This necessitates development of more economical models for summarizing the data and for simulating realistic light patterns over the course of a day. High-resolution reconstructions of field-grown plants are assembled in various configurations to form canopies, and a forward ray-tracing algorithm is applied to the canopies to compute light dynamics at high (1 min) temporal resolution. From the ray-tracer output, the sunlit or shaded state for each patch on the plants is determined, and these data are used to develop a novel stochastic model for the sunlit-shaded patterns. The model is designed to be straightforward to fit to data using maximum likelihood estimation, and fast to simulate from. For a wide range of contrasting 3-D canopies, the stochastic model is able to summarize, and replicate in simulations, key features of the light dynamics. When light patterns simulated from the stochastic model are used as input to a model of photoinhibition, the predicted reduction in carbon gain is similar to that from calculations based on the (extremely costly) ray-tracer data. The model provides a way to summarize highly complex data in a small number of parameters, and a cost-effective way to simulate realistic light patterns. Simulations from the model will be particularly useful for feeding into larger-scale photosynthesis models for calculating how light dynamics affects the photosynthetic productivity of canopies.
Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se-Te films.
Sadtler, Bryce; Burgos, Stanley P; Batara, Nicolas A; Beardslee, Joseph A; Atwater, Harry A; Lewis, Nathan S
2013-12-03
Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium-tellurium (Se-Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light-matter interactions in the Se-Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns.
Projecting light beams with 3D waveguide arrays
NASA Astrophysics Data System (ADS)
Crespi, Andrea; Bragheri, Francesca
2017-01-01
Free-space light beams with complex intensity patterns, or non-trivial phase structure, are demanded in diverse fields, ranging from classical and quantum optical communications, to manipulation and imaging of microparticles and cells. Static or dynamic spatial light modulators, acting on the phase or intensity of an incoming light wave, are the conventional choices to produce beams with such non-trivial characteristics. However, interfacing these devices with optical fibers or integrated optical circuits often requires difficult alignment or cumbersome optical setups. Here we explore theoretically and with numerical simulations the potentialities of directly using the output of engineered three-dimensional waveguide arrays, illuminated with linearly polarized light, to project light beams with peculiar structures. We investigate through a collection of illustrative configurations the far field distribution, showing the possibility to achieve orbital angular momentum, or to produce elaborate intensity or phase patterns with several singularity points. We also simulate the propagation of the projected beam, showing the possibility to concentrate light. We note that these devices should be at reach of current technology, thus perspectives are open for the generation of complex free-space optical beams from integrated waveguide circuits.
Daytime light intensity affects seasonal timing via changes in the nocturnal melatonin levels
NASA Astrophysics Data System (ADS)
Kumar, Vinod; Rani, Sangeeta; Malik, Shalie; Trivedi, Amit K.; Schwabl, Ingrid; Helm, Barbara; Gwinner, Eberhard
2007-08-01
Daytime light intensity can affect the photoperiodic regulation of the reproductive cycle in birds. The actual way by which light intensity information is transduced is, however, unknown. We postulate that transduction of the light intensity information is mediated by changes in the pattern of melatonin secretion. This study, therefore, investigated the effects of high and low daytime light intensities on the daily melatonin rhythm of Afro-tropical stonechats ( Saxicola torquata axillaris) in which seasonal changes in daytime light intensity act as a zeitgeber of the circannual rhythms controlling annual reproduction and molt. Stonechats were subjected to light conditions simulated as closely as possible to native conditions near the equator. Photoperiod was held constant at 12.25 h of light and 11.75 h of darkness per day. At intervals of 2.5 to 3.5 weeks, daytime light intensity was changed from bright (12,000 lux at one and 2,000 lux at the other perch) to dim (1,600 lux at one and 250 lux at the other perch) and back to the original bright light. Daily plasma melatonin profiles showed that they were linked with changes in daytime light intensity: Nighttime peak and total nocturnal levels were altered when transitions between light conditions were made, and these changes were significant when light intensity was changed from dim to bright. We suggest that daytime light intensity could affect seasonal timing via changes in melatonin profiles.
Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se–Te films
Sadtler, Bryce; Burgos, Stanley P.; Batara, Nicolas A.; Beardslee, Joseph A.; Atwater, Harry A.; Lewis, Nathan S.
2013-01-01
Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium–tellurium (Se–Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light–matter interactions in the Se–Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns. PMID:24218617
Universal sensitivity of speckle intensity correlations to wavefront change in light diffusers
Kim, KyungDuk; Yu, Hyeonseung; Lee, KyeoReh; Park, YongKeun
2017-01-01
Here, we present a concept based on the realization that a complex medium can be used as a simple interferometer. Changes in the wavefront of an incident coherent beam can be retrieved by analyzing changes in speckle patterns when the beam passes through a light diffuser. We demonstrate that the spatial intensity correlations of the speckle patterns are independent of the light diffusers, and are solely determined by the phase changes of an incident beam. With numerical simulations using the random matrix theory, and an experimental pressure-driven wavefront-deforming setup using a microfluidic channel, we theoretically and experimentally confirm the universal sensitivity of speckle intensity correlations, which is attributed to the conservation of optical field correlation despite multiple light scattering. This work demonstrates that a light diffuser works as a simple interferometer, and presents opportunities to retrieve phase information of optical fields with a compact scattering layer in various applications in metrology, analytical chemistry, and biomedicine. PMID:28322268
Producing superfluid circulation states using phase imprinting
NASA Astrophysics Data System (ADS)
Kumar, Avinash; Dubessy, Romain; Badr, Thomas; De Rossi, Camilla; de Goër de Herve, Mathieu; Longchambon, Laurent; Perrin, Hélène
2018-04-01
We propose a method to prepare states of given quantized circulation in annular Bose-Einstein condensates (BEC) confined in a ring trap using the method of phase imprinting without relying on a two-photon angular momentum transfer. The desired phase profile is imprinted on the atomic wave function using a short light pulse with a tailored intensity pattern generated with a spatial light modulator. We demonstrate the realization of "helicoidal" intensity profiles suitable for this purpose. Due to the diffraction limit, the theoretical steplike intensity profile is not achievable in practice. We investigate the effect of imprinting an intensity profile smoothed by a finite optical resolution onto the annular BEC with a numerical simulation of the time-dependent Gross-Pitaevskii equation. This allows us to optimize the intensity pattern for a given target circulation to compensate for the limited resolution.
NASA Astrophysics Data System (ADS)
Gokhale, Pritesh; Mitra, Dana; Sowade, Enrico; Yoti Mitra, Kalyan; Leonel Gomes, Henrique; Ramon, Eloi; Al-Hamry, Ammar; Kanoun, Olfa; Baumann, Reinhard R.
2017-12-01
During the last years, intense pulsed light (IPL) processing has been employed and studied intensively for the drying and sintering of metal nanoparticle layers deposited by means of printing methods on flexible polymer substrates. IPL was found to be a very fast and substrate-gentle approach qualified for the field of flexible and large-area printed electronics, i.e. manufactured via roll-to-roll processing. In this contribution, IPL is used for the fine-patterning of printed silver nanoparticle layers. The patterning is obtained by induced and controlled crack formation in the thin silver layer due to the intense exposure of IPL. The crack formation is controlled by selection of the substrate material, the fine-tuning of the morphology of the silver layer and an application of a dielectric layer on top of the silver layer that acts as a stress concentrator. Careful optimization of the IPL parameters allowed to adjust the lateral width of the crack. This novel approach turned out to be a fast and reproducible high-resolution patterning process for multiple applications, e.g. to pattern the source-drain electrodes for all-inkjet-printed thin-film transistors.
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta
2004-01-01
A molecular Rayleigh scattering based flow diagnostic is developed to measure time average velocity, density, temperature, and turbulence intensity in a 25.4-mm diameter nozzle free jet facility. The spectrum of the Rayleigh scattered light is analyzed using a Fabry-Perot interferometer operated in the static imaging mode. The resulting fringe pattern containing spectral information of the scattered light is recorded using a low noise CCD camera. Nonlinear least squares analysis of the fringe pattern using a kinetic theory model of the Rayleigh scattered light provides estimates of density, velocity, temperature, and turbulence intensity of the gas flow. Resulting flow parameter estimates are presented for an axial scan of subsonic flow at Mach 0.95 for comparison with previously acquired pitot tube data, and axial scans of supersonic flow in an underexpanded screeching jet. The issues related to obtaining accurate turbulence intensity measurements using this technique are discussed.
NASA Astrophysics Data System (ADS)
Zhou, Weimin; Min, Guoquan; Song, Zhitang; Zhang, Jing; Liu, Yanbo; Zhang, Jianping
2010-05-01
This paper reports a significant enhancement in the extraction efficiency of nano-patterned GaN light emitting diodes (LED) realized by soft UV nanoimprint lithography. The 2 inch soft stamp was fabricated using a replication stamp of anodic alumina oxide (AAO) membrane. The light output power was enhanced by 10.9% compared to that of the LED sample without a nano-patterned surface. Up to 41% enhancement in photoluminescence intensity was obtained from the nano-patterned GaN LED sample. The method is simple, cheap and suitable for mass production.
NASA Astrophysics Data System (ADS)
Yoon, Jinsik; Kim, Kibeom; Park, Wook
2017-07-01
We present an essential method for generating microparticles uniformly in a single ultraviolet (UV) light exposure area for optofluidic maskless lithography. In the optofluidic maskless lithography process, the productivity of monodisperse microparticles depends on the size of the UV exposure area. An effective fabrication area is determined by the size of the UV intensity profile map, satisfying the required uniformity of UV intensity. To increase the productivity of monodisperse microparticles in optofluidic maskless lithography, we expanded the effective UV exposure area by modulating the intensity of the desired UV light pattern based on the premeasured UV intensity profile map. We verified the improvement of the uniformity of the microparticles generated by the proposed modulation technique, providing histogram analyses of the conjugated fluorescent intensities and the sizes of the microparticles. Additionally, we demonstrated the generation of DNA uniformly encapsulated in microparticles.
NASA Astrophysics Data System (ADS)
Guo, Wei; Li, Junmei; Sheikhi, Moheb; Jiang, Jie’an; Yang, Zhenhai; Li, Hongwei; Guo, Shiping; Sheng, Jiang; Sun, Jie; Bo, Baoxue; Ye, Jichun
2018-06-01
Light extraction and current injection are two important considerations in the development of high efficiency light-emitting-diodes (LEDs), but usually cannot be satisfied simultaneously in nanostructure patterned devices. In this work, we investigated near-UV LEDs with nanopillar and nanohole patterns to improve light extraction efficiency. Photoluminescence (PL) intensities were enhanced by 8.0 and 4.1 times for nanopillar and nanohole LEDs compared to that of planar LED. Nanopillar LED exhibits higher PL emission than that of the nanohole LED, attributing to a convex shape sidewall for more effective outward light scattering, and reduction of quantum-confined-stark-effect owing to strain relaxation. However, nanopillar LED exhibits lower electroluminescence intensity than the nanohole sample, which calls for further optimization in carrier distributions. Experimental results were further supported by near-field electric field simulations. This work demonstrates the difference in optical and electrical behaviors between the nanopillar and nanohole LEDs, paving the way for detailed understanding on luminescence extraction mechanisms of nanostructure patterned UV emitters.
Schwalenberg, Simon
2005-06-01
The present work represents a first attempt to perform computations of output intensity distributions for different parametric holographic scattering patterns. Based on the model for parametric four-wave mixing processes in photorefractive crystals and taking into account realistic material properties, we present computed images of selected scattering patterns. We compare these calculated light distributions to the corresponding experimental observations. Our analysis is especially devoted to dark scattering patterns as they make high demands on the underlying model.
NASA Astrophysics Data System (ADS)
Kwak, Ji Hye; Chun, Su Jin; Shon, Chae-Hwa; Jung, Sunshin
2018-04-01
Photonic sintering has attracted considerable attention for printed electronics. It irradiates high-intensity light onto the front surface of metal nanoparticle patterns, which often causes defects such as delamination, cavities, and cracks in the patterns. Here, a back-irradiation photonic sintering method is developed for obtaining defect-free high-conductivity metal patterns on a transparent plastic substrate, through which high-intensity light is irradiated onto the back surface of the patterns for a few milliseconds. Ag patterns back-irradiated with ˜10.0 J cm-2 are defect-free in contrast to front-irradiated patterns and exhibited an electrical conductivity of ˜2.3 × 107 S m-1. Furthermore, real-time high-speed observation reveals that the mechanisms that generate defects in the front-irradiated patterns and prevent defects in the back-irradiated patterns are closely related to vapor trapping. In contrast to the latter, in the former, vapor is trapped and delaminates the patterns from the substrate because the front of the patterns acts as a barrier to vapor venting.
NASA Technical Reports Server (NTRS)
Adamovsky, G.; Sherer, T. N.; Maitland, D. J.
1989-01-01
A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.
Modeling the radiation pattern of LEDs.
Moreno, Ivan; Sun, Ching-Cherng
2008-02-04
Light-emitting diodes (LEDs) come in many varieties and with a wide range of radiation patterns. We propose a general, simple but accurate analytic representation for the radiation pattern of the light emitted from an LED. To accurately render both the angular intensity distribution and the irradiance spatial pattern, a simple phenomenological model takes into account the emitting surfaces (chip, chip array, or phosphor surface), and the light redirected by both the reflecting cup and the encapsulating lens. Mathematically, the pattern is described as the sum of a maximum of two or three Gaussian or cosine-power functions. The resulting equation is widely applicable for any kind of LED of practical interest. We accurately model a wide variety of radiation patterns from several world-class manufacturers.
The Impact of Environmental Light Intensity on Experimental Tumor Growth.
Suckow, Mark A; Wolter, William R; Duffield, Giles E
2017-09-01
Cancer research requires for consistent models that minimize environmental variables. Within the typical laboratory animal housing facility, animals may be exposed to varying intensities of light as a result of cage type, cage position, light source, and other factors; however, studies evaluating the differential effect of light intensity during the light phase on tumor growth are lacking. The effect of cage face light intensity, as determined by cage rack position was evaluated with two tumor models using the C57Bl/6NHsd mouse and transplantable B16F10 melanoma cells or Lewis lung carcinoma (LLC) cells. Animals were housed in individually-ventilated cages placed at the top, middle, or bottom of the rack in a diagonal pattern so that the top cage was closest to the ceiling light source, and cage face light intensity was measured. Following a two-week acclimation period at the assigned cage position, animals were subcutaneously administered either 1.3×10 6 B16F10 melanoma cells or 2.5×10 5 Lewis lung carcinoma cells. Weights of excised tumors were measured following euthanasia 18 days (melanoma) or 21 days (LCC) after tumor cell administration. Cage face light intensity was significantly different depending on the location of the cage, with cages closest to the light source have the greatest intensity. Mean tumor weights were significantly less (p<0.001 for melanoma; p≤0.01 for LCC) in middle light intensity mice compared to high and low light intensity mice. The environmental light intensity to which experimental animals are exposed may vary markedly with cage location and can significantly influence experimental tumor growth, thus supporting the idea that light intensity should be controlled as an experimental variable for animals used in cancer research. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Lanoue, Jason; Leonardos, Evangelos D; Grodzinski, Bernard
2018-01-01
Translocation of assimilates is a fundamental process involving carbon and water balance affecting source/sink relationships. Diurnal patterns of CO 2 exchange, translocation (carbon export), and transpiration of an intact tomato source leaf were determined during 14 CO 2 steady-state labeling under different wavelengths at three pre-set photosynthetic rates. Daily patterns showed that photosynthesis and export were supported by all wavelengths of light tested including orange and green. Export in the light, under all wavelengths was always higher than that at night. Export in the light varied from 65-83% of the total daily carbon fixed, depending on light intensity. Photosynthesis and export were highly correlated under all wavelengths ( r = 0.90-0.96). Export as a percentage of photosynthesis (relative export) decreased as photosynthesis increased by increasing light intensity under all wavelengths. These data indicate an upper limit for export under all spectral conditions. Interestingly, only at the medium photosynthetic rate, relative export under the blue and the orange light-emitting diodes (LEDs) were higher than under white and red-white LEDs. Stomatal conductance, transpiration rates, and water-use-efficiency showed similar daily patterns under all wavelengths. Illuminating tomato leaves with different spectral quality resulted in similar carbon export rates, but stomatal conductance and transpiration rates varied due to wavelength specific control of stomatal function. Thus, we caution that the link between transpiration and C-export may be more complex than previously thought. In summary, these data indicate that orange and green LEDs, not simply the traditionally used red and blue LEDs, should be considered and tested when designing lighting systems for optimizing source leaf strength during plant production in controlled environment systems. In addition, knowledge related to the interplay between water and C-movement within a plant and how they are affected by environmental stimuli, is needed to develop a better understanding of source/sink relationships.
Lanoue, Jason; Leonardos, Evangelos D.; Grodzinski, Bernard
2018-01-01
Translocation of assimilates is a fundamental process involving carbon and water balance affecting source/sink relationships. Diurnal patterns of CO2 exchange, translocation (carbon export), and transpiration of an intact tomato source leaf were determined during 14CO2 steady-state labeling under different wavelengths at three pre-set photosynthetic rates. Daily patterns showed that photosynthesis and export were supported by all wavelengths of light tested including orange and green. Export in the light, under all wavelengths was always higher than that at night. Export in the light varied from 65–83% of the total daily carbon fixed, depending on light intensity. Photosynthesis and export were highly correlated under all wavelengths (r = 0.90–0.96). Export as a percentage of photosynthesis (relative export) decreased as photosynthesis increased by increasing light intensity under all wavelengths. These data indicate an upper limit for export under all spectral conditions. Interestingly, only at the medium photosynthetic rate, relative export under the blue and the orange light-emitting diodes (LEDs) were higher than under white and red-white LEDs. Stomatal conductance, transpiration rates, and water-use-efficiency showed similar daily patterns under all wavelengths. Illuminating tomato leaves with different spectral quality resulted in similar carbon export rates, but stomatal conductance and transpiration rates varied due to wavelength specific control of stomatal function. Thus, we caution that the link between transpiration and C-export may be more complex than previously thought. In summary, these data indicate that orange and green LEDs, not simply the traditionally used red and blue LEDs, should be considered and tested when designing lighting systems for optimizing source leaf strength during plant production in controlled environment systems. In addition, knowledge related to the interplay between water and C-movement within a plant and how they are affected by environmental stimuli, is needed to develop a better understanding of source/sink relationships. PMID:29915612
Automated platform for determination of LEDs spatial radiation pattern
NASA Astrophysics Data System (ADS)
Vladescu, Marian; Vuza, Dan Tudor
2015-02-01
Nowadays technologies lead to remarkable properties of the light-emitting diodes (LEDs), making them attractive for more and more applications, such as: interior and exterior lighting, outdoor LED panels, traffic signals, automotive (tail and brake lights, backlighting in dashboard and switches), backlighting of display panels, LCD displays, symbols on switches, keyboards, graphic boards and measuring scales. Usually, LEDs are small light sources consisting of a chip placed into a package, which may bring additional optics to this encapsulated ensemble, resulting in a less or more complex spatial distribution of the light intensity, with particular radiation patterns. This paper presents an automated platform designed to allow a quick and accurate determination of the spatial radiation patterns of LEDs encapsulated in various packages. Keywords: LED, luminous
Optical Pattern Recognition for Missile Guidance.
1982-11-15
directed to novel pattern recognition algo- rithms (that allow pattern recognition and object classification in the face of various geometrical and...I wats EF5 = 50) p.j/t’ni 2 (for btith image pat tern recognitio itas a preproicessing oiperatiton. Ini devices). TIhe rt’ad light intensity (0.33t mW...electrodes on its large faces . This Priz light modulator and the motivation for its devel- SLM is known as the Prom (Pockels real-time optical opment. In Sec
Bodvard, Kristofer; Wrangborg, David; Tapani, Sofia; Logg, Katarina; Sliwa, Piotr; Blomberg, Anders; Kvarnström, Mats; Käll, Mikael
2011-02-01
Light exposure is a potentially powerful stress factor during in vivo optical microscopy studies. In yeast, the general transcription factor Msn2p translocates from the cytoplasm to the nucleus in response to illumination. However, previous time-lapse fluorescence microscopy studies of Msn2p have utilized a variety of discrete exposure settings, which makes it difficult to correlate stress levels and illumination parameters. We here investigate how continuous illumination with blue light, corresponding to GFP excitation wavelengths, affects the localization pattern of Msn2p-GFP in budding yeast. The localization pattern was analyzed using a novel approach that combines wavelet decomposition and change point analysis. It was found that the Msn2p nucleocytoplasmic localization trajectories for individual cells exhibit up to three distinct and successive states; i) Msn2p localizes to the cytoplasm; ii) Msn2p rapidly shuttles between the cytoplasm and the nucleus; iii) Msn2p localizes to the nucleus. Many cells pass through all states consecutively at high light intensities, while at lower light intensities most cells only reach states i) or ii). This behaviour strongly indicates that continuous light exposure gradually increases the stress level over time, presumably through continuous accumulation of toxic photoproducts, thereby forcing the cell through a bistable region corresponding to nucleocytoplasmic oscillations. We also show that the localization patterns are dependent on protein kinase A (PKA) activity, i.e. yeast cells with constantly low PKA activity showed a stronger stress response. In particular, the nucleocytoplasmic oscillation frequency was found to be significantly higher for cells with low PKA activity for all light intensities. 2010 Elsevier B.V. All rights reserved.
Chadee, D D; Martinez, R
2000-12-01
The diel landing/biting periodicity of the Trinidad strain of Aedes aegypti (L.) was monitored using human-bait during January-August 1999. Hourly light intensities were measured both indoors and outdoors at both urban and rural sites. The periodicity of females was diurnal and nocturnal, with 90% arriving during daylight and twilight and 10% during the night. The pattern of landing was trimodal, with consistent peaks at 0700 h, 1100 h and 1700 h. The diel periodicities at indoor and outdoor urban sites were virtually identical. In contrast, the periodicities in rural areas differed, with no nocturnal activities being recorded at indoor and outdoor sites. At both urban and rural sites, larger numbers of adults were collected outside than inside houses. A significant correlation between light intensities and mosquito landing patterns was observed. The implications of the changing landing patterns of Ae. aegypti within urban areas are discussed in light of the epidemiology and control of dengue fever in Trinidad.
Photomixing of chlamydomonas rheinhardtii suspensions
NASA Astrophysics Data System (ADS)
Dervaux, Julien; Capellazzi Resta, Marina; Abou, Bérengère; Brunet, Philippe
2014-11-01
Chlamydomonas rheinhardtii is a fast swimming unicellular alga able to bias its swimming direction in gradients of light intensity, an ability know as phototaxis. We have investigated experimentally both the swimming behavior of individual cells and the macroscopic response of shallow suspensions of these micro-organisms in response to a localized light source. At low light intensity, algae exhibit positive phototaxis and accumulate beneath the excitation light. In weakly concentrated thin layers, the balance between phototaxis and cell motility results in steady symmetrical patterns compatible with a purely diffusive model using effective diffusion coefficients extracted from the analysis of individual cell trajectories. However, at higher cell density and layer depth, collective effects induce convective flows around the light source. These flows disturb the cell concentration patterns which spread and may then becomes unstable. Using large passive tracer particles, we have characterized the velocity fields associated with this forced bioconvection and their dependence on the cell density and layer depth. By tuning the light distribution, this mechanism of photo-bioconvection allows a fine control over the local fluid flows, and thus the mixing efficiency, in algal suspensions.
NASA Astrophysics Data System (ADS)
Yun, Jin-Hyeon; Kim, Kyu Cheol; Yu, Yeon Tae; Yang, Jin Kyu; Polyakov, Alexander Y.; Lee, In-Hwan
2017-10-01
Improved performance of blue InGaN/GaN light-emitting diodes (LEDs) is realized as a result of fabricating nanohole patterns in the p-GaN contact layer and embedding the nanoholes with Ag/SiO2 nanoparticles to generate localized surface plasmons (LSPs). Good matching between LSP resonance energy and LED emission energy together with the close proximity between nanoparticles and the active region results in strong coupling between them. Consequently, the photoluminescence and electroluminescence intensities increased to 1.75 and 1.10, respectively, compared with nanohole patterned reference LEDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Wei, E-mail: wguo2@ncsu.edu; Kirste, Ronny; Bryan, Zachary
Enhanced light extraction efficiency was demonstrated on nanostructure patterned GaN and AlGaN/AlN Multiple-Quantum-Well (MQW) structures using mass production techniques including natural lithography and interference lithography with feature size as small as 100 nm. Periodic nanostructures showed higher light extraction efficiency and modified emission profile compared to non-periodic structures based on integral reflection and angular-resolved transmission measurement. Light extraction mechanism of macroscopic and microscopic nanopatterning is discussed, and the advantage of using periodic nanostructure patterning is provided. An enhanced photoluminescence emission intensity was observed on nanostructure patterned AlGaN/AlN MQW compared to as-grown structure, demonstrating a large-scale and mass-producible pathway to higher lightmore » extraction efficiency in deep-ultra-violet light-emitting diodes.« less
Byeon, Kyeong-Jae; Hwang, Seon-Yong; Hong, Chang-Hee; Baek, Jong Hyeob; Lee, Heon
2008-10-01
Nanoimprint lithography (NIL) was adapted to fabricate two-dimensional (2-D) photonic crystal (PC) pattern on the p-GaN layer of InGaN/GaN multi quantum well light-emitting diodes (LEDs) structure to improve the light extraction efficiency. For the uniform transfer of the PC pattern, a bi-layer imprinting method with liquid phase resin was used. The p-GaN layer was patterned with a periodic array of holes by an inductively coupled plasma etching process, based on SiCl4/Ar plasmas. As a result, 2-D photonic crystal patterns with 144 nm, 200 nm and 347 nm diameter holes were uniformly formed on the p-GaN layer and the photoluminescence (PL) intensity of each patterned LED samples was increased by more than 2.6 times, as compared to that of the un-patterned LED sample.
The tunable optical magneto-electric effect in patterned manganese oxide superlattices
NASA Astrophysics Data System (ADS)
Pei, H. Y.; Zhang, Y. J.; Guo, S. J.; Ren, L. X.; Yan, H.; Chen, C. L.; Jin, K. X.; Luo, B. C.
2018-05-01
The optical magneto-electric (OME) effect has been widely investigated in magnetic materials, but obtaining the large and tunable OME effect is an ongoing challenge. We here design a tri-color superlattice composed of manganese oxides, Pr0.9Ca0.1MnO3, La0.9Sr0.1MnO3, and La0.9Sb0.1MnO3, where the space-inversion and time-reversal symmetries are broken. With the aid of the grating structure, the OME effect for near-infrared light in tri-color superlattices is investigated systematically through the Bragg diffraction method. The relative change of diffracted light intensity of the order n = ±1 has a strong dependence on the magnetization and polarization of the tri-color superlattice, whether the superlattice is irradiated in reflection or transmission geometries. Otherwise, the relative change of diffracted light intensity increases with the increase in the superlattice period and with the decrease in the grating period. The maximum relative change of diffracted light intensity in tri-color superlattices with the grating structure patterned is as large as 8.27%. These results pave the way for designing next-generation OME devices based on manganese oxides.
Stolephorus sp Behavior in Different LED (Light Emitting Diode) Color and Light Intensities
NASA Astrophysics Data System (ADS)
Fitri Aristi, D. P.; Ramadanita, I. A.; Hapsari, T. D.; Susanto, A.
2018-02-01
This research aims to observe anchovy (Stolephorus sp) behavior under different LED light intensities that affect eye physiology (cell cone structure). The materials used were Stolephorus sp taken from the waters off Jepara and 13 and 10 watt light emitting diode (LED). The research method was an experiment conducted from March through August 2015 in the waters off Jepara. Data analysis of visual histology and fish respond was carried out at the fishing gear material laboratory, anatomy and cultivate. Cone cell structure (mosaic cone) of Stolephorus sp forms a connected regular square pattern with every single cone surrounded by four double cones, which indicate that anchovies are sensitive to light. The 13 watt LED (628 lux) has faster response than the 10 watt LED (531 lux) as it has wider and higher emitting intensity, which also attracts fish to gather quicker.
Polarization patterns of the twilight sky
NASA Astrophysics Data System (ADS)
Cronin, Thomas W.; Warrant, Eric J.; Greiner, Birgit
2005-08-01
Although natural light sources produce depolarized light, patterns of partially linearly polarized light appear in the sky due to scattering from air molecules, dust, and aerosols. Many animals, including bees and ants, orient themselves to patterns of polarization that are present in daytime skies, when the intensity is high and skylight polarization is strong and predictable. The halicitid bee Megalopta genalis inhabits rainforests in Central America. Unlike typical bees, it forages before sunrise and after sunset, when light intensities under the forest canopy are very low, and must find its way to food sources and return to its nest in visually challenging circumstances. An important cue for the orientation could be patterns of polarization in the twilight sky. Therefore, we used a calibrated digital camera to image skylight polarization in an overhead patch of sky, 87.6° across, before dawn on Barro Colorado Island in Panama, where the bees are found. We simultaneously measured the spectral properties of polarized light in a cloudless patch of sky 15° across centered on the zenith. We also performed full-sky imaging of polarization before dawn and after dusk on Lizard Island in Australia, another tropical island. During twilight, celestial polarized light occurs in a wide band stretching perpendicular to the location of the hidden sun and reaching typical degrees of polarization near 80% at wavelengths >600 nm. This pattern appears about 45 minutes before local sunrise or disappears 45 minutes after local sunset (about 20 minutes after the onset of astronomical twilight at dawn, or before its end at dusk) and extends with little change through the entire twilight period. Such a strong and reliable orientation cue could be used for flight orientation by any animal with polarization sensitivity that navigates during twilight.
Carim, Azhar I.; Batara, Nicolas A.; Premkumar, Anjali; ...
2015-11-23
The template-free growth of well ordered, highly anisotropic lamellar structures has been demonstrated during the photoelectrodeposition of Se–Te films, wherein the orientation of the pattern can be directed by orienting the linear polarization of the incident light. This control mechanism was investigated further herein by examining the morphologies of films grown photoelectrochemically using light from two simultaneous sources that had mutually different linear polarizations. Photoelectrochemical growth with light from two nonorthogonally polarized same-wavelength sources generated lamellar morphologies in which the long axes of the lamellae were oriented parallel to the intensity-weighted average polarization orientation. Simulations of light scattering at themore » solution–film interface were consistent with this observation. Computer modeling of these growths using combined full-wave electromagnetic and Monte Carlo growth simulations successfully reproduced the experimental morphologies and quantitatively agreed with the pattern orientations observed experimentally by considering only the fundamental light-material interactions during growth. Deposition with light from two orthogonally polarized same-wavelength as well as different-wavelength sources produced structures that consisted of two intersecting sets of orthogonally oriented lamellae in which the relative heights of the two sets could be varied by adjusting the relative source intensities. Simulations of light absorption were performed in analogous, idealized intersecting lamellar structures and revealed that the lamellae preferentially absorbed light polarized with the electric field vector along their long axes. In conclusion, these data sets cumulatively indicate that anisotropic light scattering and light absorption generated by the light polarization produces the anisotropic morphology and that the resultant morphology is a function of all illumination inputs despite differing polarizations.« less
Error correcting coding-theory for structured light illumination systems
NASA Astrophysics Data System (ADS)
Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramos-Garcia, Ruben
2017-06-01
Intensity discrete structured light illumination systems project a series of projection patterns for the estimation of the absolute fringe order using only the temporal grey-level sequence at each pixel. This work proposes the use of error-correcting codes for pixel-wise correction of measurement errors. The use of an error correcting code is advantageous in many ways: it allows reducing the effect of random intensity noise, it corrects outliners near the border of the fringe commonly present when using intensity discrete patterns, and it provides a robustness in case of severe measurement errors (even for burst errors where whole frames are lost). The latter aspect is particular interesting in environments with varying ambient light as well as in critical safety applications as e.g. monitoring of deformations of components in nuclear power plants, where a high reliability is ensured even in case of short measurement disruptions. A special form of burst errors is the so-called salt and pepper noise, which can largely be removed with error correcting codes using only the information of a given pixel. The performance of this technique is evaluated using both simulations and experiments.
Incoherent light-induced self-organization of molecules.
Kandjani, S Ahmadi; Barille, R; Dabos-Seignon, S; Nunzi, J M; Ortyl, E; Kucharski, S
2005-12-01
Although coherent light is usually required for the self-organization of regular spatial patterns from optical beams, we show that peculiar light-matter interaction can break this evidence. In the traditional method of recording laser-induced periodic surface structures, a light intensity distribution is produced at the surface of a polymer film by an interference between two coherent optical beams. We report on the self-organization followed by propagation of a surface relief pattern. It is induced in a polymer film by using a low-power and small-size coherent beam assisted by a high-power and large-size incoherent and unpolarized beam. We demonstrate that we can obtain large size and well-organized patterns starting from a dissipative interaction. Our experiments open new directions to improving optical processing systems.
NASA Astrophysics Data System (ADS)
Chen, Yi-Chen; Chen, Ho-Tsung; Lee, Chih-Kung
2014-03-01
The newly developed configuration included adopting the photosensitive electrode material TiOPc (titanyl phthalocyanine) to create electrowetting on dielectric (EWOD) mechanism. With this new development, the electric potential on the surface of TiOPc could be on-line real-time changed and defined spatially by illuminating spatially distributed light beam patterns. We tried to control the polarized droplets in our EWOD devices by using different light intensities. The experimental results clearly demonstrated that the relationship of light intensity and electrowetting phenomena can provide us with a feasible platform to construct optofluidic chip with potential autonomous manipulation of samples for point-of-care home medical detection applications.
Hack, Erwin; Gundu, Phanindra Narayan; Rastogi, Pramod
2005-05-10
An innovative technique for reducing speckle noise and improving the intensity profile of the speckle correlation fringes is presented. The method is based on reducing the range of the modulation intensity values of the speckle interference pattern. After the fringe pattern is corrected adaptively at each pixel, a simple morphological filtering of the fringes is sufficient to obtain smoothed fringes. The concept is presented both analytically and by simulation by using computer-generated speckle patterns. The experimental verification is performed by using an amplitude-only spatial light modulator (SLM) in a conventional electronic speckle pattern interferometry setup. The optical arrangement for tuning a commercially available LCD array for amplitude-only behavior is described. The method of feedback to the LCD SLM to modulate the intensity of the reference beam in order to reduce the modulation intensity values is explained, and the resulting fringe pattern and increase in the signal-to-noise ratio are discussed.
NASA Technical Reports Server (NTRS)
Hochberg, Eric B. (Inventor); Baroth, Edmund C. (Inventor)
1994-01-01
An novel interferometric apparatus and method for measuring the topography of aspheric surfaces, without requiring any form of scanning or phase shifting. The apparatus and method of the present invention utilize a white-light interferometer, such as a white-light Twyman-Green interferometer, combined with a means for dispersing a polychromatic interference pattern, using a fiber-optic bundle and a disperser such as a prism for determining the monochromatic spectral intensities of the polychromatic interference pattern which intensities uniquely define the optical path differences or OPD between the surface under test and a reference surface such as a reference sphere. Consequently, the present invention comprises a snapshot approach to measuring aspheric surface topographies such as the human cornea, thereby obviating vibration sensitive scanning which would otherwise reduce the accuracy of the measurement. The invention utilizes a polychromatic interference pattern in the pupil image plane, which is dispersed on a point-wise basis, by using a special area-to-line fiber-optic manifold, onto a CCD or other type detector comprising a plurality of columns of pixels. Each such column is dedicated to a single point of the fringe pattern for enabling determination of the spectral content of the pattern. The auto-correlation of the dispersed spectrum of the fringe pattern is uniquely characteristic of a particular optical path difference between the surface under test and a reference surface.
Photochemical preparation of sub-wavelength heterogeneous laser-induced periodic surface structures.
Kim, Hee-Cheol; Reinhardt, Hendrik; Hillebrecht, Pierre; Hampp, Norbert A
2012-04-17
Laser-induced periodic surface structures (LIPSS) are a phenomenon caused by interaction of light with solid surfaces. We present a photochemical concept which uses LIPSS-related light intensity patterns for the generation of heterogeneous nanostructures. The process facilitates arbitrary combinations of substrate and LIPSS-pattern materials. An efficient method for the generation of organometallic hybrid-nanowire arrays on porous anodic aluminum oxide is demonstrated. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Chang-Lin; Guo, Qiao-Sheng; Zhu, Zai-Biao; Cheng, Bo-Xing
2017-12-01
Changium smyrnioides Wolff (Apiaceae) is an endangered medicinal plant with numerous pharmacological uses. To investigate the effect of light intensity levels on the growth and accumulation of secondary metabolites of C. smyrnioides, cultivated seedlings were subjected to different relative light intensities via sun-shading. Changium smyrnioides seedlings were subjected to five irradiance treatments (100, 60.54, 44.84, 31.39, and 10.56% sunlight) in glasshouse for 9 months. Enzymatic and non-enzymatic antioxidants with spectrophotometric method, photosynthetic parameters with Li-6400XT, dry matter accumulation and active component contents in the root with spectrophotometric and HPLC method were analyzed. With an increase in relative light intensity levels, activities of enzymatic and non-enzymatic antioxidants, and malondialdehyde (MDA) contents were increased overall, while net photosynthetic rate (P n ) and dry matter accumulation patter first increased and then declined. The highest net photosynthetic rate (30.68 μmol/m 2 ·s) and dry root weight (5.07 g) were achieved under 60.54% sunlight. Lower relative light intensity levels stimulated the accumulation levels of bioactive compounds in the roots so that the highest contents of mannitol (1.35%) and choline (405.58 μg/g) were recorded under 31.39% sunlight, and the highest polysaccharide content (10.80%) were achieved under 44.84% sunlight. With a decrease in the relative light intensity levels, the water-soluble component content increased first and then decreased. The results revealed that 31.39-60.54% sunlight serve as appropriate relative light intensity conditions for cultivated C. smyrnioides.
NASA Astrophysics Data System (ADS)
Rammohan, A.; Kumar, C. Ramesh
2017-11-01
Illumination of any light is measured using a different kind of calibrated equipment’s available in the market such as a goniometer, spectral radiometer, photometer, Lux meter and camera based systems which directly display the illumination of automotive headlights light distribution in the unit of lux, foot-candles, lumens/sq. ft. and Lambert etc., In this research, we dealt with evaluating the photo resistor or Light Dependent Resistor (LDR) and phototransistor whether it is useful for sensing light patterns of Automotive Halogen and Xenon bulbs. The experiments are conducted during night hours under complete dark space. We have used the headlamp setup available in TATA SUMO VICTA vehicle in the Indian market and conducted the experiments separately for Halogen and Xenon bulbs under low and high beam operations at various degrees and test points within ten meters of distance. Also, we have compared the light intensity of halogen and xenon bulbs to prove the highest light intensity between halogen and Xenon bulbs. After doing a rigorous test with these two sensors it is understood both are good to sensing beam pattern of automotive bulbs and even it is good if we use an array of sensors or a mixed combination of sensors for measuring illumination purposes under perfect calibrations.
Monolithically integrated Si gate-controlled light-emitting device: science and properties
NASA Astrophysics Data System (ADS)
Xu, Kaikai
2018-02-01
The motivation of this study is to develop a p-n junction based light emitting device, in which the light emission is conventionally realized using reverse current driving, by voltage driving. By introducing an additional terminal of insulated gate for voltage driving, a novel three-terminal Si light emitting device is described where both the light intensity and spatial light pattern of the device are controlled by the gate voltage. The proposed light emitting device employs injection-enhanced Si in avalanche mode where electric field confinement occurs in the corner of a reverse-biased p+n junction. It is found that, depending on the bias conditions, the light intensity is either a linear or a quadratic function of the applied gate voltage or the reverse-bias. Since the light emission is based on the avalanching mode, the Si light emitting device offers the potential for very large scale integration-compatible light emitters for inter- or intra-chip signal transmission and contactless functional testing of wafers.
N'Gom, Moussa; Lien, Miao-Bin; Estakhri, Nooshin M; Norris, Theodore B; Michielssen, Eric; Nadakuditi, Raj Rao
2017-05-31
Complex Semi-Definite Programming (SDP) is introduced as a novel approach to phase retrieval enabled control of monochromatic light transmission through highly scattering media. In a simple optical setup, a spatial light modulator is used to generate a random sequence of phase-modulated wavefronts, and the resulting intensity speckle patterns in the transmitted light are acquired on a camera. The SDP algorithm allows computation of the complex transmission matrix of the system from this sequence of intensity-only measurements, without need for a reference beam. Once the transmission matrix is determined, optimal wavefronts are computed that focus the incident beam to any position or sequence of positions on the far side of the scattering medium, without the need for any subsequent measurements or wavefront shaping iterations. The number of measurements required and the degree of enhancement of the intensity at focus is determined by the number of pixels controlled by the spatial light modulator.
Recent advances in patterned photostimulation for optogenetics
NASA Astrophysics Data System (ADS)
Ronzitti, Emiliano; Ventalon, Cathie; Canepari, Marco; Forget, Benoît C.; Papagiakoumou, Eirini; Emiliani, Valentina
2017-11-01
An important technological revolution is underway in the field of neuroscience as we begin the 21st century. The combination of optical methods with genetically encoded photosensitive tools (optogenetics) offers the opportunity to quickly modulate and monitor a large number of neuronal events and the ability to recreate the physiological, spatial, and temporal patterns of brain activity. The use of light instead of electrical stimulation is less invasive, and permits superior spatial and temporal specificity and flexibility. This ongoing revolution has motivated the development of new optical methods for light stimulation. They can be grouped in two main categories: scanning and parallel photostimulation techniques, each with its advantages and limitations. In scanning approaches, a small light spot is displaced in targeted regions of interest (ROIs), using galvanometric mirrors or acousto-optic deflectors, whereas in parallel approaches, the light beam can be spatially shaped to simultaneously cover all ROIs by modulating either the light intensity or the phase of the illumination beam. With amplitude modulation, light patterns are created by selectively blocking light rays that illuminate regions of no interest, while with phase modulation, the wavefront of the light beam is locally modified so that light rays are directed onto the target, thus allowing for higher intensity efficiency. In this review, we will describe the principle of each of these photostimulation techniques and review the use of these approaches in optogenetics experiments by presenting their advantages and drawbacks. Finally, we will review the challenges that need to be faced when photostimulation methods are combined with two-photon imaging approaches to reach an all-optical brain control through optogenetics and functional reporters (Ca2+ and voltage indicators).
Mapping algorithm for freeform construction using non-ideal light sources
NASA Astrophysics Data System (ADS)
Li, Chen; Michaelis, D.; Schreiber, P.; Dick, L.; Bräuer, A.
2015-09-01
Using conventional mapping algorithms for the construction of illumination freeform optics' arbitrary target pattern can be obtained for idealized sources, e.g. collimated light or point sources. Each freeform surface element generates an image point at the target and the light intensity of an image point is corresponding to the area of the freeform surface element who generates the image point. For sources with a pronounced extension and ray divergence, e.g. an LED with a small source-freeform-distance, the image points are blurred and the blurred patterns might be different between different points. Besides, due to Fresnel losses and vignetting, the relationship between light intensity of image points and area of freeform surface elements becomes complicated. These individual light distributions of each freeform element are taken into account in a mapping algorithm. To this end the method of steepest decent procedures are used to adapt the mapping goal. A structured target pattern for a optics system with an ideal source is computed applying corresponding linear optimization matrices. Special weighting factor and smoothing factor are included in the procedures to achieve certain edge conditions and to ensure the manufacturability of the freefrom surface. The corresponding linear optimization matrices, which are the lighting distribution patterns of each of the freeform surface elements, are gained by conventional raytracing with a realistic source. Nontrivial source geometries, like LED-irregularities due to bonding or source fine structures, and a complex ray divergence behavior can be easily considered. Additionally, Fresnel losses, vignetting and even stray light are taken into account. After optimization iterations, with a realistic source, the initial mapping goal can be achieved by the optics system providing a structured target pattern with an ideal source. The algorithm is applied to several design examples. A few simple tasks are presented to discussed the ability and limitation of the this mothed. It is also presented that a homogeneous LED-illumination system design, in where, with a strongly tilted incident direction, a homogeneous distribution is achieved with a rather compact optics system and short working distance applying a relatively large LED source. It is shown that the lighting distribution patterns from the freeform surface elements can be significantly different from the others. The generation of a structured target pattern, applying weighting factor and smoothing factor, are discussed. Finally, freeform designs for much more complex sources like clusters of LED-sources are presented.
NASA Astrophysics Data System (ADS)
Auger, J.-C.; Fernandes, G. E.; Aptowicz, K. B.; Pan, Y.-L.; Chang, R. K.
2010-04-01
The relation between the surface roughness of aerosol particles and the appearance of island-like features in their angle-resolved elastic-light scattering patterns is investigated both experimentally and with numerical simulation. Elastic scattering patterns of polystyrene spheres, Bacillus subtilis spores and cells, and NaCl crystals are measured and statistical properties of the island-like intensity features in their patterns are presented. The island-like features for each class of particle are found to be similar; however, principal-component analysis applied to extracted features is able to differentiate between some of the particle classes. Numerically calculated scattering patterns of Chebyshev particles and aggregates of spheres are analyzed and show qualitative agreement with experimental results.
NASA Astrophysics Data System (ADS)
Mehrübeoğlu, Mehrübe; McLauchlan, Lifford
2006-02-01
The goal of this project was to detect the intensity of traffic on a road at different times of the day during daytime. Although the work presented utilized images from a section of a highway, the results of this project are intended for making decisions on the type of intervention necessary on any given road at different times for traffic control, such as installation of traffic signals, duration of red, green and yellow lights at intersections, and assignment of traffic control officers near school zones or other relevant locations. In this project, directional patterns are used to detect and count the number of cars in traffic images over a fixed area of the road to determine local traffic intensity. Directional patterns are chosen because they are simple and common to almost all moving vehicles. Perspective vision effects specific to each camera orientation has to be considered, as they affect the size and direction of patterns to be recognized. In this work, a simple and fast algorithm has been developed based on horizontal directional pattern matching and perspective vision adjustment. The results of the algorithm under various conditions are presented and compared in this paper. Using the developed algorithm, the traffic intensity can accurately be determined on clear days with average sized cars. The accuracy is reduced on rainy days when the camera lens contains raindrops, when there are very long vehicles, such as trucks or tankers, in the view, and when there is very low light around dusk or dawn.
Nonlinear optical coupler using a doped optical waveguide
Pantell, Richard H.; Sadowski, Robert W.; Digonnet, Michel J. F.; Shaw, Herbert J.
1994-01-01
An optical mode coupling apparatus includes an Erbium-doped optical waveguide in which an optical signal at a signal wavelength propagates in a first spatial propagation mode and a second spatial propagation mode of the waveguide. The optical signal propagating in the waveguide has a beat length. The coupling apparatus includes a pump source of perturbational light signal at a perturbational wavelength that propagates in the waveguide in the first spatial propagation mode. The perturbational signal has a sufficient intensity distribution in the waveguide that it causes a perturbation of the effective refractive index of the first spatial propagation mode of the waveguide in accordance with the optical Kerr effect. The perturbation of the effective refractive index of the first spatial propagation mode of the optical waveguide causes a change in the differential phase delay in the optical signal propagating in the first and second spatial propagation modes. The change in the differential phase delay is detected as a change in the intensity distribution between two lobes of the optical intensity distribution pattern of an output signal. The perturbational light signal can be selectively enabled and disabled to selectively change the intensity distribution in the two lobes of the optical intensity distribution pattern.
Lamparter, T; Kagawa, T; Brücker, G; Wada, M
2004-01-01
The photoreceptor phytochrome mediates tropic responses in protonemata of the moss Ceratodon purpureus. Under standard conditions the tip cells grow towards unilateral red light, or perpendicular to the electrical vector of polarized light. In this study the response of tip cells to partial irradiation of the apical region was analysed using a microbeam apparatus. The fluence response curve gave an unexpected pattern: whereas a 15-min microbeam with light intensities around 3 micro mol m (-2) s (-1) induced a growth curvature towards the irradiated side, higher light intensities around 100 micro mol m (-2) s (-1) caused a negative response, the cells grew away from the irradiated side. This avoidance response is explained by two effects: the light intensity is high enough to induce photoconversion into the active Pfr form of phytochrome, not only on the irradiated but also on the non-irradiated side by stray light. At the same time, the strong light on the irradiated side acts antagonistically to Pfr. As a result of this inhibition, the growth direction is moved to the light-avoiding side. Such a Pfr-independent mechanism might be important for the phototropic response to distinguish between the light-directed and light-avoiding side under unilateral light.
Optimal Fisher Discriminant Ratio for an Arbitrary Spatial Light Modulator
NASA Technical Reports Server (NTRS)
Juday, Richard D.
1999-01-01
Optimizing the Fisher ratio is well established in statistical pattern recognition as a means of discriminating between classes. I show how to optimize that ratio for optical correlation intensity by choice of filter on an arbitrary spatial light modulator (SLM). I include the case of additive noise of known power spectral density.
Hoffmann, Julia; Palme, Rupert; Eccard, Jana Anja
2018-07-01
Artificial light at night (ALAN) is spreading worldwide and thereby is increasingly interfering with natural dark-light cycles. Meanwhile, effects of very low intensities of light pollution on animals have rarely been investigated. We explored the effects of low intensity ALAN over seven months in eight experimental bank vole (Myodes glareolus) populations in large grassland enclosures over winter and early breeding season, using LED garden lamps. Initial populations consisted of eight individuals (32 animals per hectare) in enclosures with or without ALAN. We found that bank voles under ALAN experienced changes in daily activity patterns and space use behavior, measured by automated radiotelemetry. There were no differences in survival and body mass, measured with live trapping, and none in levels of fecal glucocorticoid metabolites. Voles in the ALAN treatment showed higher activity at night during half moon, and had larger day ranges during new moon. Thus, even low levels of light pollution as experienced in remote areas or by sky glow can lead to changes in animal behavior and could have consequences for species interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng
2012-09-01
One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.
Monitoring the trajectory of urban nighttime light hotspots using a Gaussian volume model
NASA Astrophysics Data System (ADS)
Zheng, Qiming; Jiang, Ruowei; Wang, Ke; Huang, Lingyan; Ye, Ziran; Gan, Muye; Ji, Biyong
2018-03-01
Urban nighttime light hotspot is an ideal representation of the spatial heterogeneity of human activities within a city, which is sensitive to regional urban expansion pattern. However, most of previous studies related to nighttime light imageries focused on extracting urban extent, leaving the spatial variation of radiance intensity insufficiently explored. With the help of global radiance calibrated DMSP-OLS datasets (NTLgrc), we proposed an innovative framework to explore the spatio-temporal trajectory of polycentric urban nighttime light hotspots. Firstly, NTLgrc was inter-annually calibrated to improve the consistency. Secondly, multi-resolution segmentation and region-growing SVM classification were employed to remove blooming effect and to extract potential clusters. At last, the urban hotspots were identified by a Gaussian volume model, and the resulting parameters were used to quantitatively depict hotspot features (i.e., intensity, morphology and centroid dynamics). The result shows that our framework successfully captures hotspots in polycentric urban area, whose Ra2 are over 0.9. Meanwhile, the spatio-temporal dynamics of the hotspot features intuitively reveal the impact of the regional urban growth pattern and planning strategies on human activities. Compared to previous studies, our framework is more robust and offers an effective way to describe hotspot pattern. Also, it provides a more comprehensive and spatial-explicit understanding regarding the interaction between urbanization pattern and human activities. Our findings are expected to be beneficial to governors in term of sustainable urban planning and decision making.
NASA Technical Reports Server (NTRS)
1978-01-01
The practicability of using a classical light-scattering technique, involving comparison of angular scattering intensity patterns with theoretically determined Mie and Rayleight patterns, to detect discrete soot particles (diameter less than 50 nm) in premixed propane/air and propane/oxygen-helium flames is considered. The experimental apparatus employed in this investigation included a laser light source, a flat-flame burner, specially coated optics, a cooled photomultiplier detector, and a lock-in voltmeter readout. Although large, agglomerated soot particles were detected and sized, it was not possible to detect small, discrete particles. The limiting factor appears to be background scattering by the system's optics.
Zhang, Yanzhao; Xu, Shuzhen; Cheng, Yanwei; Peng, Zhengfeng; Han, Jianming
2018-01-01
Red leaf lettuce ( Lactuca sativa L.) is popular due to its high anthocyanin content, but poor leaf coloring often occurs under low light intensity. In order to reveal the mechanisms of anthocyanins affected by light intensity, we compared the transcriptome of L. sativa L. var. capitata under light intensities of 40 and 100 μmol m -2 s -1 . A total of 62,111 unigenes were de novo assembled with an N50 of 1,681 bp, and 48,435 unigenes were functionally annotated in public databases. A total of 3,899 differentially expressed genes (DEGs) were detected, of which 1,377 unigenes were up-regulated and 2,552 unigenes were down-regulated in the high light samples. By Kyoto Encyclopedia of Genes and Genomes enrichment analysis, the DEGs were significantly enriched in 14 pathways. Using gene annotation and phylogenetic analysis, we identified seven anthocyanin structural genes, including CHS , CHI , F3H , F3'H , DFR , ANS , and 3GT , and two anthocyanin transport genes, GST and MATE . In terms of anthocyanin regulatory genes, five MYBs and one bHLH gene were identified. An HY5 gene was discovered, which may respond to light-signaling and regulate anthocyanin structural genes. These genes showed a log2FC of 2.7-9.0 under high irradiance, and were validated using quantitative real-time-PCR. In conclusion, our results indicated transcriptome variance in red leaf lettuce under low and high light intensity, and observed a anthocyanin biosynthesis and regulation pattern. The data should further help to unravel the molecular mechanisms of anthocyanins influenced by light intensity.
NASA Astrophysics Data System (ADS)
Wagner, Karoline; Bengtsson, Mia M.; Findlay, Robert H.; Battin, Tom J.; Ulseth, Amber J.
2017-07-01
Changes in the riparian vegetation along stream channels, diurnal light availability, and longitudinal fluctuations in the local light regime in streams influence primary production and carbon (C) cycling in benthic stream biofilms. To investigate the influence of light availability on the uptake dynamics of autochthonous and allochthonous dissolved organic carbon (DOC) in benthic biofilms, we experimentally added 13C-labeled allochthonous DOC to biofilms grown under light intensities ranging from 5 to 152 μmol photons m-2 s-1. We calculated the net C flux, which showed that benthic biofilms released autochthonous DOC across the entire light gradient. Light availability and diurnal light patterns influenced C uptake by benthic biofilms. More allochthonous DOC was respired under low light availability and at night, whereas under high light availability and during the day mainly autochthonous C was respired by the benthic biofilm community. Furthermore, phenol oxidase activity (indicative of allochthonous DOC uptake) was more elevated under low light availability, whereas beta-glucosidase activity (indicative of autochthonous DOC use) increased with light intensity. Collectively, our results suggest that biofilms exposed to high light inputs preferentially used autochthonous DOC, whereas biofilms incubated at attenuated levels showed greater use of allochthonous DOC. This has implications for the spatial dynamics of DOC uptake in streams and speaks against the occurrence of priming effects in algal-dominated stream biofilms.
Uric Acid Spherulites in the Reflector Layer of Firefly Light Organ
Goh, King-Siang; Sheu, Hwo-Shuenn; Hua, Tzu-En; Kang, Mei-Hua; Li, Chia-Wei
2013-01-01
Background In firefly light organs, reflector layer is a specialized tissue which is believed to play a key role for increasing the bioluminescence intensity through reflection. However, the nature of this unique tissue remains elusive. In this report, we investigated the role, fine structure and nature of the reflector layer in the light organ of adult Luciola cerata. Principal Findings Our results indicated that the reflector layer is capable of reflecting bioluminescence, and contains abundant uric acid. Electron microscopy (EM) demonstrated that the cytosol of the reflector layer's cells is filled with densely packed spherical granules, which should be the uric acid granules. These granules are highly regular in size (∼700 nm in diameter), and exhibit a radial internal structure. X-ray diffraction (XRD) analyses revealed that an intense single peak pattern with a d-spacing value of 0.320 nm is specifically detected in the light organ, and is highly similar to the diffraction peak pattern and d-spacing value of needle-formed crystals of monosodium urate monohydrate. However, the molar ratio evaluation of uric acid to various cations (K+, Na+, Ca2+ and Mg2+) in the light organ deduced that only a few uric acid molecules were in the form of urate salts. Thus, non-salt uric acid should be the source of the diffraction signal detected in the light organ. Conclusions In the light organ, the intense single peak diffraction signal might come from a unique needle-like uric acid form, which is different from other known structures of non-salt uric acid form. The finding of a radial structure in the granules of reflector layer implies that the spherical uric acid granules might be formed by the radial arrangement of needle-formed packing matter. PMID:23441187
Biological cell classification by multiangle light scattering
Salzman, G.C.; Crowell, J.M.; Mullaney, P.F.
1975-06-03
The specification is directed to an apparatus and method for detecting light scattering from a biological cell. Light, preferably from a coherent source of radiation, intercepts an individual biological cell in a stream of cells passing through the beam. Light scattered from the cell is detected at a selected number of angles between 0 and 90/sup 0/ to the longitudinal axis of the beam with a circular array of light responsive elements which produce signals representative of the intensity of light incident thereon. Signals from the elements are processed to determine the light-scattering pattern of the cell and therefrom its identity.
Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees.
Reber, Therese; Vähäkainu, Antti; Baird, Emily; Weckström, Matti; Warrant, Eric; Dacke, Marie
2015-05-01
To control flight, insects rely on the pattern of visual motion generated on the retina as they move through the environment. When light levels fall, vision becomes less reliable and flight control thus becomes more challenging. Here, we investigated the effect of light intensity on flight control by filming the trajectories of free-flying bumblebees (Bombus terrestris, Linnaeus 1758) in an experimental tunnel at different light levels. As light levels fell, flight speed decreased and the flight trajectories became more tortuous but the bees were still remarkably good at centring their flight about the tunnel's midline. To investigate whether this robust flight performance can be explained by visual adaptations in the bumblebee retina, we also examined the response speed of the green-sensitive photoreceptors at the same light intensities. We found that the response speed of the photoreceptors significantly decreased as light levels fell. This indicates that bumblebees have both behavioural (reduction in flight speed) and retinal (reduction in response speed of the photoreceptors) adaptations to allow them to fly in dim light. However, the more tortuous flight paths recorded in dim light suggest that these adaptations do not support flight with the same precision during the twilight hours of the day. © 2015. Published by The Company of Biologists Ltd.
Measures of Light in Studies on Light-Driven Plant Plasticity in Artificial Environments
Niinemets, Ülo; Keenan, Trevor F.
2012-01-01
Within-canopy variation in light results in profound canopy profiles in foliage structural, chemical, and physiological traits. Studies on within-canopy variations in key foliage traits are often conducted in artificial environments, including growth chambers with only artificial light, and greenhouses with and without supplemental light. Canopy patterns in these systems are considered to be representative to outdoor conditions, but in experiments with artificial and supplemental lighting, the intensity of artificial light strongly deceases with the distance from the light source, and natural light intensity in greenhouses is less than outdoors due to limited transmittance of enclosure walls. The implications of such changes in radiation conditions on canopy patterns of foliage traits have not yet been analyzed. We developed model-based methods for retrospective estimation of distance vs. light intensity relationships, for separation of the share of artificial and natural light in experiments with combined light and for estimation of average enclosure transmittance, and estimated daily integrated light at the time of sampling (Qint,C), at foliage formation (Qint,G), and during foliage lifetime (Qint,av). The implications of artificial light environments were analyzed for altogether 25 studies providing information on within-canopy gradients of key foliage traits for 70 species × treatment combinations. Across the studies with artificial light, Qint,G for leaves formed at different heights in the canopy varied from 1.8- to 6.4-fold due to changing the distance between light source and growing plants. In experiments with combined lighting, the share of natural light at the top of the plants varied threefold, and the share of natural light strongly increased with increasing depth in the canopy. Foliage nitrogen content was most strongly associated with Qint,G, but photosynthetic capacity with Qint,C, emphasizing the importance of explicit description of light environment during foliage lifetime. The reported and estimated transmittances of enclosures varied between 0.27 and 0.85, and lack of consideration of the reduction of light compared with outdoor conditions resulted in major underestimation of foliage plasticity to light. The study emphasizes that plant trait vs. light relationships in artificial systems are not directly comparable to natural environments unless modifications in lighting conditions in artificial environments are taken into account. PMID:22822407
Beck, W; Gobatto, C
2016-03-01
Nocturnal rodents should be assessed at an appropriate time of day, which leads to a challenge in identifying an adequate environmental light which allows animal visualisation without perturbing physiological homeostasis. Thus, we analysed the influence of high wavelength and low intensity light during dark period on physical exercise and biochemical and haematological parameters of nocturnal rats. We submitted 80 animals to an exhaustive exercise at individualised intensity under two different illuminations during dark period. Red light (> 600 nm; < 15lux) was applied constantly during dark period (EI; for experimental illumination groups) or only for handling and assessments (SI; for standard illumination groups). EI led to worse haematological and biochemical conditions, demonstrating that EI alone can influence physiological parameters and jeopardise result interpretation. SI promotes normal physiological conditions and greater aerobic tolerance than EI, showing the importance of a correct illumination pattern for all researchers that employ nocturnal rats for health/disease or sports performance experiments.
Coral photobiology: new light on old views.
Iluz, David; Dubinsky, Zvy
2015-04-01
The relationship between reef-building corals and light-harvesting pigments of zooxanthellae (Symbiodinium sp.) has been acknowledged for decades. The photosynthetic activity of the algal endocellular symbionts may provide up to 90% of the energy needed for the coral holobiont. This relationship limits the bathymetric distribution of coral reefs to the upper 100 m of tropical shorelines. However, even corals growing under high light intensities have to supplement the photosynthates translocated from the algae by predation on nutrient-rich zooplankton. New information has revealed how the fate of carbon acquired through photosynthesis differs from that secured by predation, whose rates are controlled by light-induced tentacular extension. The Goreau paradigm of "light-enhanced calcification" is being reevaluated, based on evidence that blue light stimulates coral calcification independently from photosynthesis rates. Furthermore, under dim light, calcification rates were stoichiometrically uncoupled from photosynthesis. The rates of photosynthesis of the zooxanthellae exhibit a clear endogenous rhythmicity maintained by light patterns. This daily pattern is concomitant with a periodicity of all the antioxidant protective mechanisms that wax and wane to meet the concomitant fluctuation in oxygen evolution. The phases of the moon are involved in the triggering of coral reproduction and control the spectacular annual mass-spawning events taking place in several reefs. The intensity and directionality of the underwater light field affect the architecture of coral colonies, leading to an optimization of the exposure of the zooxanthellae to light. We present a summary of major gaps in our understanding of the relationship between light and corals as a roadmap for future research. Copyright © 2014 Elsevier GmbH. All rights reserved.
Concept of coherence of learning physical optics
NASA Astrophysics Data System (ADS)
Colombo, Elisa M.; Jaen, Mirta; de Cudmani, Leonor C.
1995-10-01
The aim of the actual paper is to enhance achievements of the text 'Optica Fisica Basica: estructurada alrededor del concepto de coherencia luminosa' (in English 'Basic Physical Optics centered in the concept of coherence'). We consider that this book is a very worth tool when one has to learn or to teach some fundamental concepts of physical optics. It is well known that the topics of physical optics present not easy understanding for students. Even more they also present some difficulties for the teachers when they have to introduce them to the class. First, we think that different phenomena like diffraction and polarization could be well understood if the starting point is a deep comprehension of the concept of interference of light and, associated with this, the fundamental and nothing intuitive concept of coherence of the light. In the reference text the authors propose the use of expression 'stable interference pattern of no uniform intensity' instead of 'pattern of interference' and 'average pattern of uniform untested' instead of 'lack of interference' to make reference that light always interfere but just under restrictive conditions it can be got temporal and spatial stability of the pattern. Another idea we want to stand out is that the ability to observe a 'stable interference pattern of no uniform intensity' is associated not only with the coherence of the source but also with the dimensions of the experimental system and with the temporal and spatial characteristics of the detector used - human eye, photographic film, etc. The proposal is well support by quantitative relations. With an alternate model: a train of waves with a finite length of coherence, it is possible to get range of validity of models, to decide when a source could be considered a 'point' or 'monochromatic' or 'remote', an 'infinite' wave or a train of waves, etc. Using this concept it is possible to achieve a better understanding of phenomena like the polarization of light. Here, it is easier to recognize limitations of the model of light. For example, in the interpretation of the effect of retarding plates on polarizated light. When the plate is wider than the coherence length of the wavetrain of light, the effect disappears.
Fixen, Kathryn R.; Oda, Yasuhiro; Harwood, Caroline S.; ...
2015-12-22
Many photosynthetic bacteria have peripheral light-harvesting (LH) antenna complexes that increase the efficiency of light energy capture. The purple nonsulfur photosynthetic bacteriumRhodopseudomonas palustrisproduces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complexes). There are multiplepucBAoperons that encode the α and β peptides that make up these complexes. But, low-resolution structures, amino acid similarities between the complexes, and a lack of transcription analysis have made it difficult to determine the contributions of differentpucBAoperons to the composition and function of different LH complexes. It was also unclear how much diversity of LHmore » complexes exists inR. palustrisand affiliated strains. To address this, we undertook an integrative genomics approach using 20 sequenced strains. Gene content analysis revealed that even closely related strains have differences in theirpucBAgene content. Transcriptome analyses of the strains grown under high light and low light revealed that the patterns of expression of thepucBAoperons varied among strains grown under the same conditions. We also found that one set of LH2 complex proteins compensated for the lack of an LH4 complex under low light intensities but not under extremely low light intensities, indicating that there is functional redundancy between some of the LH complexes under certain light intensities. The variation observed in LH gene composition and expression inRhodopseudomonasstrains likely reflects how they have evolved to adapt to light conditions in specific soil and water microenvironments. ImportanceRhodopseudomonas palustrisis a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes.Rhodopseudomonasstrains are notable for containing numerous sets of light-harvesting genes. We determined the diversity of LH complexes and their transcript levels during growth under high and low light intensities in 20 sequenced genomes of strains related to the speciesRhodopseudomonas palustris. Finally, the data obtained are a resource for investigators with interests as wide-ranging as the biophysics of photosynthesis, the ecology of phototrophic bacteria, and the use of photosynthetic bacteria for biotechnology applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fixen, Kathryn R.; Oda, Yasuhiro; Harwood, Caroline S.
Many photosynthetic bacteria have peripheral light-harvesting (LH) antenna complexes that increase the efficiency of light energy capture. The purple nonsulfur photosynthetic bacteriumRhodopseudomonas palustrisproduces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complexes). There are multiplepucBAoperons that encode the α and β peptides that make up these complexes. But, low-resolution structures, amino acid similarities between the complexes, and a lack of transcription analysis have made it difficult to determine the contributions of differentpucBAoperons to the composition and function of different LH complexes. It was also unclear how much diversity of LHmore » complexes exists inR. palustrisand affiliated strains. To address this, we undertook an integrative genomics approach using 20 sequenced strains. Gene content analysis revealed that even closely related strains have differences in theirpucBAgene content. Transcriptome analyses of the strains grown under high light and low light revealed that the patterns of expression of thepucBAoperons varied among strains grown under the same conditions. We also found that one set of LH2 complex proteins compensated for the lack of an LH4 complex under low light intensities but not under extremely low light intensities, indicating that there is functional redundancy between some of the LH complexes under certain light intensities. The variation observed in LH gene composition and expression inRhodopseudomonasstrains likely reflects how they have evolved to adapt to light conditions in specific soil and water microenvironments. ImportanceRhodopseudomonas palustrisis a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes.Rhodopseudomonasstrains are notable for containing numerous sets of light-harvesting genes. We determined the diversity of LH complexes and their transcript levels during growth under high and low light intensities in 20 sequenced genomes of strains related to the speciesRhodopseudomonas palustris. Finally, the data obtained are a resource for investigators with interests as wide-ranging as the biophysics of photosynthesis, the ecology of phototrophic bacteria, and the use of photosynthetic bacteria for biotechnology applications.« less
Hu, Zenghui; Li, Tianjiao; Zheng, Jian; Yang, Kai; He, Xiangfeng; Leng, Pingsheng
2015-06-01
The floral scent is an important part of plant volatile compounds, and is influenced by environmental factors. The emission of monoterpenes of Lilium 'siberia' is regulated by light intensity, but the mechanism is large unknown. In this study, the expression of Li-mTPS, a monoterpene synthase gene in the tepals of Lilium 'siberia', and net Ca(2+) flux were investigated after exposure to different levels of light intensity (0, 100, 300, 600, 1000, and 1500 μmol m(-2) s(-1)). Moreover the effect of LaCl3 and ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) on the Li-mTPS expression, monoterpene emission, and net Ca(2+) flux were examined at 600 μmol m(-2) s(-1). The results showed that along with the enhancement of light intensity, the expression level of Li-mTPS increased gradually, and the net Ca(2+) influx was also enhanced showing a similar pattern. It was found that LaCl3 and EGTA effectively inhibited the increase in expression of Li-mTPS and the net Ca(2+) influx induced by light treatment. Moreover, the release amounts of monoterpenes decreased significantly after treatment with LaCl3 and EGTA. So it can be concluded that Ca(2+) signal contributed to the biosynthesis and emission of monoterpenes regulated by light intensity in Lilium 'siberia' tepals. The increased light intensity firstly triggered the Ca(2+) influx to cytoplasm, and then the gene expression of monoterpene synthases downstream was activated to regulate the biosynthesis and emission of monoterpenes. But in the signaling pathway other mechanisms were thought to be involved in the emission of monoterpenes regulated by light intensity, which need to be investigated in future research. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Anita C. Koehn; Robert L. Doudrick
1999-01-01
Diurnal patterns of chlorophyll fluorescence and CO2 fixation in orchard measurements were taken on sunny days in October 1996, on three Torreya taxifolia (Arn.) plants grown in an open canopy orchard. Information from chlorophyll fluorescence quenching analysis indicated that during periods of highest light intensity and temperatures there were...
High intensity portable fluorescent light
NASA Technical Reports Server (NTRS)
Kendall, F. B.
1972-01-01
Eight high intensity portable fluorescent lights were produced. Three prototype lights were also produced, two of which were subsequently updated to the physical and operational configuration of the qualification and flight units. Positioning of lamp apertures and reflectors in these lights is such that the light is concentrated and intensified in a specific pattern rather than widely diffused. Indium amalgam control of mercury vapor pressure in the lamp gives high output at lamp ambient temperatures up to 105 C. A small amount of amalgam applied to each electrode stem helps to obtain fast warm-up. Shrinking a Teflon sleeve on the tube and potting metal caps on each end of the lamp minimizes dispersion of mercury vapor and glass particles in the event of accidental lamp breakage. Operation at 20 kHz allows the lamps to consume more power than at low frequency, thus increasing their light output and raising their efficiency. When used to expose color photographic film, light from the lamps produces results approximately equal to sunlight.
Painting with light-powered bacteria.
Arlt, Jochen; Martinez, Vincent A; Dawson, Angela; Pilizota, Teuta; Poon, Wilson C K
2018-02-22
Self-assembly is a promising route for micro- and nano-fabrication with potential to revolutionise many areas of technology, including personalised medicine. Here we demonstrate that external control of the swimming speed of microswimmers can be used to self assemble reconfigurable designer structures in situ. We implement such 'smart templated active self assembly' in a fluid environment by using spatially patterned light fields to control photon-powered strains of motile Escherichia coli bacteria. The physics and biology governing the sharpness and formation speed of patterns is investigated using a bespoke strain designed to respond quickly to changes in light intensity. Our protocol provides a distinct paradigm for self-assembly of structures on the 10 μm to mm scale.
Sleep of 1- and 2-year-old children in intensive care.
Corser, N C
1996-01-01
Physiologic and psychologic changes associated with sleep disturbance decrease the ability of a critically ill child to adapt to hospitalization and thus hamper recovery. Research demonstrates that intensive care settings interfere with sleep of adults, but little is known about the impact of these settings on children's sleep. An exploratory field study was conducted to describe the sleep-wake patterns of 1- and 2-year-old children in intensive care, identify intensive care environmental stimuli associated with sleep and waking states, compare the intensive care sleep-wake pattern to the pre-illness sleep-wake pattern, and determine the time required for children to return to their pre-illness sleep-wake pattern. Twelve children aged 13 to 35 months composed the sample for the study. Pre-illness and postdischarge sleep patterns, sleep patterns during a 12-hour night in the pediatric intensive care unit (PICU), and external and internal environmental stimuli were measured. Prior to hospitalization, subjects demonstrated sleep similar to that documented in healthy children. Children in the PICU experienced a significant loss of sleep, frequent awakenings, and a virtual rapid eye movement (REM) sleep deprivation. External environmental stimuli of light, noise, and caregiver activity were negatively correlated with sleep state. Pain and treatment with benzodiazepines were associated with sleep acquisition. Sleep changes persisted after discharge from the PICU and the hospital. Total sleep time recovered more rapidly than nighttime awakening. Parents perceived that their child's sleep remained different longer than total sleep time and night awakening values demonstrated.
Decreased retinal sensitivity in depressive disorder: a controlled study.
Berman, G; Muttuvelu, D; Berman, D; Larsen, J I; Licht, R W; Ledolter, J; Kardon, R H
2018-03-01
To compare pupil responses in depressed patients with a seasonal pattern, depressed patients without a seasonal pattern and healthy controls as a function of daylight hours on the testing day. Patients suffering from a major depressive episode were included in wintertime. The pupil light reflex was measured at inclusion and in the following summer using a binocular pupillometer. A protocol of low (1 lux) and high (400 lux) intensity red and blue lights was used to assess rod, cone and melanopsin-containing intrinsic photosensitive retinal ganglion cell input to the pupil reflex. The mean group pupil responses associated with a melanopsin-mediated sustained pupil response at 400 lux blue light were significantly reduced in the depressed subjects (N = 39) as compared to the healthy controls (N = 24) (P = 0.023). Across all groups, a reduction in number of daylight hours was significantly associated with a reduction in sustained pupil response (P = 0.007). All groups showed an equal effect of daylight hours on the melanopsin-mediated sustained pupil response. The melanopsin-mediated sustained pupil contraction to offset of high-intensity blue light is reduced in depressed patients. These results further emphasize the interaction of light exposure with depression. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaels, J.E.; Hung, J.T.; Garfield, S.A.
1984-05-01
Very low hepatic glycogen levels are achieved by overnight fasting of adrenalectomized (ADX) rats. Subsequent injection of dexamethasone (DEX), a synthetic glucocorticoid, stimulates marked increases in glycogen synthesis. Using this system and injecting /sup 3/H-galactose as a glycogen precursor 1 hr prior to sacrifice, the intralobular and intracellular patterns of labeled glycogen deposition were studied by light (LM) and electron (EM) microscopic radioautography. LM radioautography revealed that 1 hr after DEX treatment, labeling patterns for both periportal and centrilobular hepatocytes resembled those in rats with no DEX treatment: 18% of the hepatocytes were unlabeled, and 82% showed light labeling. Twomore » hours after treatment with DEX, 14% of the hepatocytes remained unlabeled, and 78% were lightly labeled; however, 8% of the cells, located randomly throughout the lobule, were intensely labeled. An increased number of heavily labeled cells (26%) appeared 3 hr after DEX treatment; and by 5 hr 91% of the hepatocytes were intensely labeled. Label over the periportal cells at this time was aggregated, whereas centrilobular cells displayed dispersed label. EM radioautographs showed that 2 to 3 hr after DEX injection initial labeling of hepatocytes, regardless of their intralobular location, occurred over foci of smooth endoplasmic reticulum (SER) and small electron-dense particles of presumptive glycogen, and in areas of SER and distinct glycogen particles. After 5 hrs of treatment with DEX, the intracellular distribution of label reflected the glycogen patterns characteristic of periportal or centrilobular regions.« less
Acute alerting effects of light: A systematic literature review.
Souman, Jan L; Tinga, Angelica M; Te Pas, Susan F; van Ee, Raymond; Vlaskamp, Björn N S
2018-01-30
Periodic, well timed exposure to light is important for our health and wellbeing. Light, in particular in the blue part of the spectrum, is thought to affect alertness both indirectly, by modifying circadian rhythms, and directly, giving rise to acute effects. We performed a systematic review of empirical studies on direct, acute effects of light on alertness to evaluate the reliability of these effects. In total, we identified 68 studies in which either light intensity, spectral distribution, or both were manipulated, and evaluated the effects on behavioral measures of alertness, either subjectively or measured in reaction time performance tasks. The results show that increasing the intensity of polychromatic white light has been found to increase subjective ratings of alertness in a majority of studies, though a substantial proportion of studies failed to find significant effects, possibly due to small sample sizes or high baseline light intensities. The effect of the color temperature of white light on subjective alertness is less clear. Some studies found increased alertness with higher color temperatures, but other studies reported no detrimental effects of filtering out the short wavelengths from the spectrum. Similarly, studies that used monochromatic light exposure showed no systematic pattern for the effects of blue light compared to longer wavelengths. Far fewer studies investigated the effects of light intensity or spectrum on alertness as measured with reaction time tasks and of those, very few reported significant effects. In general, the small sample sizes used in studies on acute alerting effects of light make it difficult to draw definitive conclusions and better powered studies are needed, especially studies that allow for the construction of dose-response curves. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Hyeonseung; Lee, KyeoReh; Park, YongKeun
2017-02-01
Developing an efficient strategy for light focusing through scattering media is an important topic in the study of multiple light scattering. The enhancement factor of the light focusing, defined as the ratio between the optimized intensity and the background intensity is proportional to the number of controlling modes in a spatial light modulator (SLM). The demonstrated enhancement factors in previous studies are typically less than 1,000 due to several limiting factors, such as the slow refresh rate of a LCoS SLM, long optimization time, and lack of an efficient algorithm for high controlling modes. A digital micro-mirror device is an amplitude modulator, which is recently widely used for fast optimization through dynamic biological tissues. The fast frame rate of the DMD up to 16 kHz can also be exploited for increasing the number of controlling modes. However, the manipulation of large pattern data and efficient calculation of the optimized pattern remained as an issue. In this work, we demonstrate the enhancement factor more than 100,000 in focusing through scattering media by using 1 Mega controlling modes of a DMD. Through careful synchronization between a DMD, a photo-detector and an additional computer for parallel optimization, we achieved the unprecedented enhancement factor with 75 mins of the optimization time. We discuss the design principles of the system and the possible applications of the enhanced light focusing.
Soh, C B; Wang, B; Chua, S J; Lin, Vivian K X; Tan, Rayson J N; Tripathy, S
2008-10-08
We report on the fabrication of a nano-cone structured p-GaN surface for enhanced light extraction from tunable wavelength light emitting diodes (LEDs). Prior to p-contact metallization, self-assembled colloidal particles are deposited and used as a mask for plasma etching to create nano-cone structures on the p-GaN layer of LEDs. A well-defined periodic nano-cone array, with an average cone diameter of 300 nm and height of 150 nm, is generated on the p-GaN surface. The photoluminescence emission intensity recorded from the regions with the nano-cone array is increased by two times as compared to LEDs without surface patterning. The light output power from the LEDs with surface nano-cones shows significantly higher electroluminescence intensity at an injection current of 70 mA. This is due to the internal multiple scattering of light from the nano-cone sidewalls. Furthermore, we have shown that with an incorporation of InGaN nanostructures in the quantum well, the wavelength of these surface-patterned LEDs can be tuned from 517 to 488 nm with an increase in the injection current. This methodology may serve as a practical approach to increase the light extraction efficiency from wavelength tunable LEDs.
Cheng, Ko-Ting; Tang, Yi; Liu, Cheng-Kai
2016-10-03
This paper reports an electro-opto-thermal addressing bistable and re-addressable display device based on gelator-doped liquid crystals (LCs) in a poly(N-vinylcarbazole) film-coated LC cell. The bistability and re-addressability of the devices were achieved through the formation of a rubbery LC/gel mixture at room temperature. The desired patterns were addressed, erased, and re-addressed by controlling the temperature, applied voltage, and UV light illumination. Moreover, grayscales were obtained by adjusting UV light intensity. The initiation, relaxation, rise, and fall times of photoconductive poly(N-vinylcarbazole) via UV light illumination of various intensities were also examined.
Correlation between photoreceptor injury-regeneration and behavior in a zebrafish model.
Wang, Ya-Jie; Cai, Shi-Jiao; Cui, Jian-Lin; Chen, Yang; Tang, Xin; Li, Yu-Hao
2017-05-01
Direct exposure to intensive visible light can lead to solar retinopathy, including macular injury. The signs and symptoms include central scotoma, metamorphopsia, and decreased vision. However, there have been few studies examining retinal injury due to intensive light stimulation at the cellular level. Neural network arrangements and gene expression patterns in zebrafish photoreceptors are similar to those observed in humans, and photoreceptor injury in zebrafish can induce stem cell-based cellular regeneration. Therefore, the zebrafish retina is considered a useful model for studying photoreceptor injury in humans. In the current study, the central retinal photoreceptors of zebrafish were selectively ablated by stimulation with high-intensity light. Retinal injury, cell proliferation and regeneration of cones and rods were assessed at 1, 3 and 7 days post lesion with immunohistochemistry and in situ hybridization. Additionally, a light/dark box test was used to assess zebrafish behavior. The results revealed that photoreceptors were regenerated by 7 days after the light-induced injury. However, the regenerated cells showed a disrupted arrangement at the lesion site. During the injury-regeneration process, the zebrafish exhibited reduced locomotor capacity, weakened phototaxis and increased movement angular velocity. These behaviors matched the morphological changes of retinal injury and regeneration in a number of ways. This study demonstrates that the zebrafish retina has a robust capacity for regeneration. Visual impairment and stress responses following high-intensity light stimulation appear to contribute to the alteration of behaviors.
Generation of Olympic logo with freeform lens array
NASA Astrophysics Data System (ADS)
Liu, Chengkun; Huang, Qilu; Qiu, Yishen; Chen, Weijuan; Liao, Tingdi
2017-10-01
In this paper, the Olympic rings pattern is generated by using freeform lens array and illumination light source array. Based on nonimaging optics, the freeform lens array is designed for point light source, which can generate the focused pattern of annular light spot. In order to obtain the Olympic logo pattern of five rings, the array with five freeform lenses is used. By adjusting the emission angle of each light source, the annular spot is obtained at different positions of the target plane and the Olympic rings logo is formed. We used the shading plate on the surface of the freeform lens to reduce the local light intensity so that the light spot overall irradiance distribution is more uniform. We designed a freeform lens with aperture of 26.2mm, focal length of 2000mm and the diameter of a single annual spot is 400mm. We modeled freeform lens and simulated by optical software TracePro. The ray tracing results show that the Olympic rings with uniform illumination can be obtained on the target plane with the optical efficiency up to 85.7%. At the same time, this paper also studies the effects of the target plane defocusing on the spot pattern. Simulations show that when the distance of the receiving surface to the focal plane varies within 300mm, a reasonable uniform and small distorted light spot pattern can be obtained. Compared with the traditional projection method, our method of design has the advantages of high optical efficiency, low cost and the pattern is clear and uniform.
Müller-Riemenschneider, Falk; Ng, Sheryl Hui Xian; Koh, David; Chu, Anne Hin Yee
2016-06-01
To objectively assess sedentary behavior (SB), light- and moderate-to-vigorous intensity physical activity (MVPA), and steps among Singaporean office-based workers across days of the week. A convenience sample of office-based employees of a public University was recruited. Time spent for SB, light-, and MVPA using different validated accelerometry counts per minute (CPM), and step count were determined. Depending on applied CPM for SB (less than 100, less than 150 and less than 200 CPM), 107 working adults spent between 69.2% and 76.4% of their daily wakeful time in SB. Time spent in SB and MVPA were higher on weekdays than weekends. The hourly analysis highlights patterns of greater SB during usual working hours on weekdays but not on weekends. SB at work contributes greatly toward total daily sitting time. Low PA levels and high SB levels were found on weekends.
Xie, Hongtao; Yu, Mukui; Cheng, Xiangrong
2018-03-01
Light availability greatly affects plant growth and development. In shaded environments, plants must respond to reduced light intensity to ensure a regular rate of photosynthesis to maintain the dynamic balance of nutrients, such as leaf non-structural carbohydrates (NSCs), carbon (C), nitrogen (N) and phosphorus (P). To improve our understanding of the nutrient utilization strategies of understory shade-tolerant plants, we compared the variations in leaf NSCs, C, N and P in response to heterogeneous controlled light conditions between two subtropical evergreen broadleaf shade-tolerant species, Elaeocarpus sylvestris (E. sylvestris) and Illicium henryi (I. henryi). Light intensity treatments were applied at five levels (100%, 52%, 33%, 15% and 6% full sunlight) for 30 weeks to identify the effects of reduced light intensity on leaf NSC allocation patterns and leaf C:N:P stoichiometry characteristics. We found that leaf soluble sugar, starch and NSC concentrations in E. sylvestris showed decreasing trends with reduced light intensity, whereas I. henryi presented slightly increasing trends from 100% to 15% full sunlight and then significant decreases at extremely low light intensity (6% full sunlight). The soluble sugar/starch ratio of E. sylvestris decreased with decreasing light intensity, whereas that of I. henryi remained stable. Moreover, both species exhibited increasing trends in leaf N and P concentrations but limited leaf N:P and C:P ratio fluctuations with decreasing light intensity, revealing their adaptive strategies for poor light environments and their growth strategies under ideal light environments. There were highly significant correlations between leaf NSC variables and C:N:P stoichiometric variables in both species, revealing a trade-off in photosynthesis production between leaf NSC and carbon allocation. Thus, shade-tolerant plants readjusted their allocation of leaf NSCs, C, N and P in response to light acclimation. Redundancy analysis showed that leaf morphological features of both E. sylvestris and I. henryi affected their corresponding leaf nutrient traits. These results improve our understanding of the dynamic balance between leaf NSCs and leaf C, N and P components in the nutritional metabolism of shade-tolerant plants. Two species of understory shade-tolerant plants responded differently to varying light intensities in terms of leaf non-structural carbohydrate allocation and the utilization of carbon, nitrogen and phosphorus to balance nutritional metabolism and adapt to environmental stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode
NASA Astrophysics Data System (ADS)
Zhang, Z.; Li, R.; To, H.; Andonian, G.; Pirez, E.; Meade, D.; Maxson, J.; Musumeci, P.
2017-09-01
Nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hao; Li, Yufeng; Wang, Shuai
Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ∼20% and the luminance intensity has improved by 128%.more » Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.« less
Light and noise pollution interact to disrupt interspecific interactions.
McMahon, Taegan A; Rohr, Jason R; Bernal, Ximena E
2017-05-01
Studies on the consequences of urbanization often examine the effects of light, noise, and heat pollution independently on isolated species providing a limited understanding of how these combined stressors affect species interactions. Here, we investigate how these factors interact to affect parasitic frog-biting midges (Corethrella spp.) and their túngara frog (Engystomops pustulosus) hosts. A survey of túngara frog calling sites revealed that frog abundance was not significantly correlated with urbanization, light, noise, or temperature. In contrast, frog-biting midges were sensitive to light pollution and noise pollution. Increased light intensity significantly reduced midge abundance at low noise levels. At high noise intensity, there were no midges regardless of light level. Two field experiments controlling light and noise levels to examine attraction of the midges to their host and their feeding behavior confirmed the causality of these field patterns. These findings demonstrate that both light and noise pollution disrupt this host-parasite interaction and highlight the importance of considering interactions among species and types of pollutants to accurately assess the impacts of urbanization on ecological communities. © 2017 by the Ecological Society of America.
Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo
2017-01-01
An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs. PMID:28211516
NASA Astrophysics Data System (ADS)
Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo
2017-02-01
An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs.
Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo
2017-02-17
An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs.
[Classification of cardiac amyloidosis: an immunohistochemical analysis].
Li, L; Duan, X J; Sun, Y; Lu, Y; Xu, H Y; Wang, Q Z; Wang, H Y
2018-02-08
Objective: To evaluate the sensitivity and specificity of immunohistochemistry (IHC) in the classification of cardiac amyloidosis on endomyocardial biopsy (EMB) and heart allograft. Methods: Twenty cardiac tissues from 19 patients at Fuwai Hospital from January, 1990 to April, 2017 with histopathologic features of amyloidosis and Congo red staining positivity were included. IHC was performed with monoclonal antibodies against AA amyloid and polyclonal antibodies against transthyretin (ATTR), λ-light chain (AL-λ), κ-light chain (AL-κ), ApoAⅠ, ApoAⅡ, ApoA Ⅳ and β(2)-microglobin. The extent of interstitial staining was evaluated by light microscopy, and three patterns were recognized; these included diffuse pericellular pattern, discrete pericellular pattern, and nodular pattern. Two patterns of vascular deposition were also noted, including arterial pattern and venous pattern. Endocardial involvement was also assessed and recorded. Results: Nineteen cases were divided into three groups according to the pattern of proteins expression in specimens. The first group (5 cases) only showed single protein expression on EMB. The second group (6 cases) showed more than one protein expression, but one of them was intensely stained or any staining of any protein together with ApoA Ⅳ co-staining. The third group (8 cases) also showed more than one protein expression and all of them had intense staining. Amyloid deposits were successfully subtyped as AL-λ, ATTR, AL-κ and ApoAⅠby IHC in the former two groups with the sensitivity of 11/19. In the third group, amyloid deposits could not be subtyped by immunohistochemistry due to their poor specificity. The pericellular pattern tended to favor AL over ATTR amyloidosis and vascular deposition tended to favor ATTR. Conclusions: Amyloid deposits can be reliably subtyped in diagnostic cardiac specimens using IHC. The co-deposition of chaperon proteins, the distribution of amyloid proteins and clinical features are also auxiliary to subtype cardiac amyloidosis.
Constraining ejecta particle size distributions with light scattering
NASA Astrophysics Data System (ADS)
Schauer, Martin; Buttler, William; Frayer, Daniel; Grover, Michael; Lalone, Brandon; Monfared, Shabnam; Sorenson, Daniel; Stevens, Gerald; Turley, William
2017-06-01
The angular distribution of the intensity of light scattered from a particle is strongly dependent on the particle size and can be calculated using the Mie solution to Maxwell's equations. For a collection of particles with a range of sizes, the angular intensity distribution will be the sum of the contributions from each particle size weighted by the number of particles in that size bin. The set of equations describing this pattern is not uniquely invertible, i.e. a number of different distributions can lead to the same scattering pattern, but with reasonable assumptions about the distribution it is possible to constrain the problem and extract estimates of the particle sizes from a measured scattering pattern. We report here on experiments using particles ejected by shockwaves incident on strips of triangular perturbations machined into the surface of tin targets. These measurements indicate a bimodal distribution of ejected particle sizes with relatively large particles (median radius 2-4 μm) evolved from the edges of the perturbation strip and smaller particles (median radius 200-600 nm) from the perturbations. We will briefly discuss the implications of these results and outline future plans.
Warren, Timothy L; Weir, Peter T; Dickinson, Michael H
2018-05-11
Animals must use external cues to maintain a straight course over long distances. In this study, we investigated how the fruit fly Drosophila melanogaster selects and maintains a flight heading relative to the axis of linearly polarized light, a visual cue produced by the atmospheric scattering of sunlight. To track flies' headings over extended periods, we used a flight simulator that coupled the angular velocity of dorsally presented polarized light to the stroke amplitude difference of the animals' wings. In the simulator, most flies actively maintained a stable heading relative to the axis of polarized light for the duration of 15 min flights. We found that individuals selected arbitrary, unpredictable headings relative to the polarization axis, which demonstrates that D . melanogaster can perform proportional navigation using a polarized light pattern. When flies flew in two consecutive bouts separated by a 5 min gap, the two flight headings were correlated, suggesting individuals retain a memory of their chosen heading. We found that adding a polarized light pattern to a light intensity gradient enhanced flies' orientation ability, suggesting D . melanogaster use a combination of cues to navigate. For both polarized light and intensity cues, flies' capacity to maintain a stable heading gradually increased over several minutes from the onset of flight. Our findings are consistent with a model in which each individual initially orients haphazardly but then settles on a heading which is maintained via a self-reinforcing process. This may be a general dispersal strategy for animals with no target destination. © 2018. Published by The Company of Biologists Ltd.
Islam, M. Ashraful; Beardall, John
2017-01-01
Cyanobacteria are major bloom-forming organisms in freshwater ecosystems and many strains are known to produce toxins. Toxin production requires an investment in energy and resources. As light is one of the most important factors for cyanobacterial growth, any changes in light climate might affect cyanobacterial toxin production as well as their growth and physiology. To evaluate the effects of light on the growth and physiological parameters of both toxic and non-toxic strains of Microcystis aeruginosa and Anabaena circinalis, cultures were grown at a range of light intensities (10, 25, 50, 100, 150 and 200 µmol m−2 s−1). The study revealed that the toxic strains of both species (CS558 for M. aeruginosa and CS537 and CS541 for A. circinalis) showed growth (µ) saturation at a higher light intensity compared to the non-toxic strains (CS338 for M. aeruginosa and CS534 for A. circinalis). Both species showed differences in chlorophyll a, carotenoid, allophycocyanin (APC) and phycoerythrin (PE) content between strains. There were also differences in dark respiration (Rd), light saturated oxygen evolution rates (Pmax) and efficiency of light harvesting (α) between strains. All other physiological parameters showed no statistically significant differences between strains. This study suggest that the different strains respond differently to different light habitats. Thus, changes in light availability may affect bloom intensity of toxic and nontoxic strains of cyanobacteria by changing the dominance and succession patterns. PMID:28777340
Nanostructures and functional materials fabricated by interferometric lithography.
Xia, Deying; Ku, Zahyun; Lee, S C; Brueck, S R J
2011-01-11
Interferometric lithography (IL) is a powerful technique for the definition of large-area, nanometer-scale, periodically patterned structures. Patterns are recorded in a light-sensitive medium, such as a photoresist, that responds nonlinearly to the intensity distribution associated with the interference of two or more coherent beams of light. The photoresist patterns produced with IL are a platform for further fabrication of nanostructures and growth of functional materials and are building blocks for devices. This article provides a brief review of IL technologies and focuses on various applications for nanostructures and functional materials based on IL including directed self-assembly of colloidal nanoparticles, nanophotonics, semiconductor materials growth, and nanofluidic devices. Perspectives on future directions for IL and emerging applications in other fields are presented.
Portable lamp with dynamically controlled lighting distribution
Siminovitch, Michael J.; Page, Erik R.
2001-01-01
A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) arranged vertically with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum insures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. The lighting system may be designed for the home, hospitality, office or other environments.
Fiber-Optic Strain Sensors With Linear Characteristics
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1993-01-01
Fiber-optic modal domain strain sensors having linear characteristics over wide range of strains proposed. Conceived in effort to improve older fiber-optic strain sensors. Linearity obtained by appropriate choice of design parameters. Pattern of light and dark areas at output end of optical fiber produced by interference between electromagnetic modes in which laser beam propagates in fiber. Photodetector monitors intensity at one point in pattern.
NASA Astrophysics Data System (ADS)
Zhang, Minyan; Li, Yufeng; Li, Qiang; Su, Xilin; Wang, Shuai; Feng, Lungang; Tian, Zhenhuan; Guo, Maofeng; Zhang, Guowei; Ding, Wen; Yun, Feng
2018-03-01
GaN-based 500 nm light-emitting diodes (LEDs) with an air-cavity formed on a laser-drilled hemispherical patterned sapphire substrate (HPSS) were investigated. The cross-section transmission electron microscopy image of the HPSS-LED epilayer indicated that most of the threading dislocations were bent towards the lateral directions. It was found that in InGaN/GaN multiple quantum wells (MQWs) of HPSS-LEDs, there were fewer V-pits and lower surface roughness than those of conventional LEDs which were grown on flat sapphire substrates (FSSs). The high-resolution x-ray diffraction showed that the LED grown on a HPSS has better crystal quality than that grown on a FSS. Compared to FSS-LEDs, the photoluminescence (PL) intensity, the light output power, and the external quantum efficiency at an injected current of 20 mA for the HPSS-LED were enhanced by 81%, 65%, and 62%, respectively, such enhancements can be attributed to better GaN epitaxial quality and higher light extraction. The slightly peak wavelength blueshift of electroluminescence for the HPSS-LED indicated that the quantum confined Stark effect in the InGaN/GaN MQWs has been reduced. Furthermore, it was found that the far-field radiation patterns of the HPSS-LED have smaller view angles than that of the FSS-LED. In addition, the scanning near field optical microscope results revealed that the area above the air-cavity has a larger PL intensity than that without an air-cavity, and the closer to the middle of the air-cavity the stronger the PL intensity. These nano-light distribution findings were in good agreement with the simulation results obtained by the finite difference time domain method.
Balazs, Anna [University of Pittsburgh, Pittsburgh, Pennsylvania, United States
2017-12-09
Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.
Patterning via optical saturable transitions
NASA Astrophysics Data System (ADS)
Cantu, Precious
For the past 40 years, optical lithography has been the patterning workhorse for the semiconductor industry. However, as integrated circuits have become more and more complex, and as device geometries shrink, more innovative methods are required to meet these needs. In the far-field, the smallest feature that can be generated with light is limited to approximately half the wavelength. This, so called far-field diffraction limit or the Abbe limit (after Prof. Ernst Abbe who first recognized this), effectively prevents the use of long-wavelength photons >300nm from patterning nanostructures <100nm. Even with a 193nm laser source and extremely complicated processing, patterns below ˜20nm are incredibly challenging to create. Sources with even shorter wavelengths can potentially be used. However, these tend be much more expensive and of much lower brightness, which in turn limits their patterning speed. Multi-photon reactions have been proposed to overcome the diffraction limit. However, these require very large intensities for modest gain in resolution. Moreover, the large intensities make it difficult to parallelize, thus limiting the patterning speed. In this dissertation, a novel nanopatterning technique using wavelength-selective small molecules that undergo single-photon reactions, enabling rapid top-down nanopatterning over large areas at low-light intensities, thereby allowing for the circumvention of the far-field diffraction barrier is developed and experimentally verified. This approach, which I refer to as Patterning via Optical Saturable Transitions (POST) has the potential for massive parallelism, enabling the creation of nanostructures and devices at a speed far surpassing what is currently possible with conventional optical lithographic techniques. The fundamental understanding of this technique goes beyond optical lithography in the semiconductor industry and is applicable to any area that requires the rapid patterning of large-area two or three-dimensional complex geometries. At a basic level, this research intertwines the fields of electrochemistry, material science, electrical engineering, optics, physics, and mechanical engineering with the goal of developing a novel super-resolution lithographic technique.
NASA Astrophysics Data System (ADS)
Sun, Hemin; Wang, Anqian; Zhai, Jianqing; Huang, Jinlong; Wang, Yanjun; Wen, Shanshan; Zeng, Xiaofan; Su, Buda
2018-05-01
Regional precipitation patterns may change in a warmer climate, thereby increasing flood and drought risks. In this paper, annual, annual maximum, intense, heavy, moderate, light, and trace precipitation are employed as indicators to assess changes in precipitation patterns under two scenarios in which the global mean temperature increases by 1.5 °C and 2.0 °C relative to pre-industrial levels using the regional climate model COSMO-CLM (CCLM). The results show that annual precipitation in China will be approximately 2.5% higher under 1.5 °C warming relative to the present-day baseline (1980-2009), although it will decrease by approximately 4.0% under an additional 0.5 °C increase in global mean temperature. This trend is spatially consistent for regions with annual precipitation of 400-800 mm, which has experienced a drying trend during the past half century; thus, limiting global warming to 1.5 °C may mitigate these drying conditions. The annual maximum precipitation continues to increase from present day levels to the 2.0 °C warming scenario. Relative to the baseline period, the frequency of trace and light precipitation days exhibits a negative trend, while that of moderate, heavy, and intense precipitation days has a positive trend under the 1.5 °C warming scenario. For the 2.0 °C warming world, the frequency of days is projected to decrease for all precipitation categories, although the intensity of intense precipitation increases. Spatially, a decrease in the number of precipitation days is expected to continue in central and northern China, where a drying trend has persisted over the past half century. Southeastern China, which already suffers greatly from flooding, is expected to face more heavy and intense precipitation with an additional 0.5 °C increase in global mean temperature. Meanwhile, the intensity of intense precipitation is expected to increase in northern China, and the contribution of light and moderate precipitation to the annual precipitation is expected to decrease in southeastern China. Therefore, flood risk in northern China and drought risk in southern China should draw more attention for a global air temperature increase from 1.5 °C to 2.0 °C.
Single-pixel imaging by Hadamard transform and its application for hyperspectral imaging
NASA Astrophysics Data System (ADS)
Mizutani, Yasuhiro; Shibuya, Kyuki; Taguchi, Hiroki; Iwata, Tetsuo; Takaya, Yasuhiro; Yasui, Takeshi
2016-10-01
In this paper, we report on comparisons of single-pixel imagings using Hadamard Transform (HT) and the ghost imaging (GI) in the view point of the visibility under weak light conditions. For comparing the two methods, we have discussed about qualities of images based on experimental results and numerical analysis. To detect images by the TH method, we have illuminated the Hadamard-pattern mask and calculated by orthogonal transform. On the other hand, the GH method can detect images by illuminating random patterns and a correlation measurement. For comparing two methods under weak light intensity, we have controlled illuminated intensities of a DMD projector about 0.1 in signal-to-noise ratio. Though a process speed of the HT image was faster then an image via the GI, the GI method has an advantage of detection under weak light condition. An essential difference between the HT and the GI method is discussed about reconstruction process. Finally, we also show a typical application of the single-pixel imaging such as hyperspectral images by using dual-optical frequency combs. An optical setup consists of two fiber lasers, spatial light modulated for generating patten illumination, and a single pixel detector. We are successful to detect hyperspectrul images in a range from 1545 to 1555 nm at 0.01nm resolution.
Effective Light Directed Assembly of Building Blocks with Microscale Control.
Dinh, Ngoc-Duy; Luo, Rongcong; Christine, Maria Tankeh Asuncion; Lin, Weikang Nicholas; Shih, Wei-Chuan; Goh, James Cho-Hong; Chen, Chia-Hung
2017-06-01
Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phototropic growth in a reef flat acroporid branching coral species.
Kaniewska, Paulina; Campbell, Paul R; Fine, Maoz; Hoegh-Guldberg, Ove
2009-03-01
Many terrestrial plants form complex morphological structures and will alter these growth patterns in response to light direction. Similarly reef building corals have high morphological variation across coral families, with many species also displaying phenotypic plasticity across environmental gradients. In particular, the colony geometry in branching corals is altered by the frequency, location and direction of branch initiation and growth. This study demonstrates that for the branching species Acropora pulchra, light plays a key role in axial polyp differentiation and therefore axial corallite development--the basis for new branch formation. A. pulchra branches exhibited a directional growth response, with axial corallites only developing when light was available, and towards the incident light. Field experimentation revealed that there was a light intensity threshold of 45 micromol m(-2) s(-1), below which axial corallites would not develop and this response was blue light (408-508 nm) dependent. There was a twofold increase in axial corallite growth above this light intensity threshold and a fourfold increase in axial corallite growth under the blue light treatment. These features of coral branch growth are highly reminiscent of the initiation of phototropic branch growth in terrestrial plants, which is directed by the blue light component of sunlight.
Evaluation of True Power Luminous Efficiency from Experimental Luminance Values
NASA Astrophysics Data System (ADS)
Tsutsui, Tetsuo; Yamamato, Kounosuke
1999-05-01
A method for obtaining true external power luminous efficiencyfrom experimentally obtained luminance in organic light-emittingdiodes (LEDs) wasdemonstrated. Conventional two-layer organic LEDs with different electron-transport layer thicknesses wereprepared. Spatial distributions of emission intensities wereobserved. The large deviation in both emission spectra and spatialemission patterns were observed when the electron-transport layerthickness was varied. The deviation of emission patterns from thestandard Lambertian pattern was found to cause overestimations ofpower luminous efficiencies as large as 30%. A method for evaluatingcorrection factors was proposed.
Light propagation in dentin: influence of microstructure on anisotropy.
Kienle, Alwin; Forster, Florian K; Diebolder, Rolf; Hibst, Raimund
2003-01-21
We investigated the dependence of light propagation in human dentin on its microstructure. The main scatterers in dentin are the tubules, the shape of which can be approximated as long cylinders. We calculated the scattering of electromagnetic waves by an infinitely long cylinder and applied the results in a Monte Carlo code that simulates the light propagation in a dentin slab considering multi-scattering. The theory was compared with goniometric measurements. A pronounced anisotropic scattering pattern was found experimentally and theoretically. In addition, intensity peaks were measured which are shown to be caused by light diffraction by the tubules.
Wave-vector and polarization dependence of conical refraction.
Turpin, A; Loiko, Yu V; Kalkandjiev, T K; Tomizawa, H; Mompart, J
2013-02-25
We experimentally address the wave-vector and polarization dependence of the internal conical refraction phenomenon by demonstrating that an input light beam of elliptical transverse profile refracts into two beams after passing along one of the optic axes of a biaxial crystal, i.e. it exhibits double refraction instead of refracting conically. Such double refraction is investigated by the independent rotation of a linear polarizer and a cylindrical lens. Expressions to describe the position and the intensity pattern of the refracted beams are presented and applied to predict the intensity pattern for an axicon beam propagating along the optic axis of a biaxial crystal.
Doljansky, J T; Kannety, H; Dagan, Y
2005-01-01
A 47-yr-old male was admitted to the Institute for Fatigue and Sleep Medicine complaining of severe fatigue and daytime sleepiness. His medical history included diagnosis of depression and chronic fatigue syndrome. Antidepressant drugs failed to improve his condition. He described a gradual evolvement of an irregular sleep-wake pattern within the past 20 yrs, causing marked distress and severe impairment of daily functioning. He had to change to a part-time position 7 yrs ago, because he was unable to maintain a regular full-time job schedule. A 10-day actigraphic record revealed an irregular sleep-wake pattern with extensive day-to-day variability in sleep onset time and sleep duration, and a 36 h sampling of both melatonin level and oral temperature (12 samples, once every 3 h) showed abnormal patterns, with the melatonin peak around noon and oral temperature peak around dawn. Thus, the patient was diagnosed as suffering from irregular sleep-wake pattern. Treatment with melatonin (5 mg, 2 h before bedtime) did not improve his condition. A further investigation of the patient's daily habits and environmental conditions revealed two important facts. First, his occupation required work under a daylight intensity lamp (professional diamond-grading equipment of more than 8000 lux), and second, since the patient tended to work late, the exposure to bright light occurred mostly at night. To recover his circadian rhythmicity and stabilize his sleep-wake pattern, we recommended combined treatment consisting of evening melatonin ingestion combined with morning (09:00 h) bright light therapy (0800 lux for 1 h) plus the avoidance of bright light in the evening. Another 10-day actigraphic study done only 1 wk after initiating the combined treatment protocol revealed stabilization of the sleep-wake pattern with advancement of sleep phase. In addition, the patient reported profound improvement in maintaining wakefulness during the day. This case study shows that chronic exposure to bright light at the wrong biological time, during the nighttime, may have serious effects on the circadian sleep-wake patterns and circadian time structure. Therefore, night bright light exposure must be considered to be a risk factor of previously unrecognized occupational diseases of altered circadian time structure manifested as irregularity of the 24 h sleep-wake cycle and melancholy.
Scattering and the Point Spread Function of the New Generation Space Telescope
NASA Technical Reports Server (NTRS)
Schreur, Julian J.
1996-01-01
Preliminary design work on the New Generation Space Telescope (NGST) is currently under way. This telescope is envisioned as a lightweight, deployable Cassegrain reflector with an aperture of 8 meters, and an effective focal length of 80 meters. It is to be folded into a small-diameter package for launch by an Atlas booster, and unfolded in orbit. The primary is to consist of an octagon with a hole at the center, and with eight segments arranged in a flower petal configuration about the octagon. The comers of the petal-shaped segments are to be trimmed so that the package will fit atop the Atlas booster. This mirror, along with its secondary will focus the light from a point source into an image which is spread from a point by diffraction effects, figure errors, and scattering of light from the surface. The distribution of light in the image of a point source is called a point spread function (PSF). The obstruction of the incident light by the secondary mirror and its support structure, the trimmed corners of the petals, and the grooves between the segments all cause the diffraction pattern characterizing an ideal point spread function to be changed, with the trimmed comers causing the rings of the Airy pattern to become broken up, and the linear grooves causing diffraction spikes running radially away from the central spot, or Airy disk. Any figure errors the mirror segments may have, or any errors in aligning the petals with the central octagon will also spread the light out from the ideal point spread function. A point spread function for a mirror the size of the NGST and having an incident wavelength of 900 nm is considered. Most of the light is confined in a circle with a diameter of 0.05 arc seconds. The ring pattern ranges in intensity from 10(exp -2) near the center to 10(exp -6) near the edge of the plotted field, and can be clearly discerned in a log plot of the intensity. The total fraction of the light scattered from this point spread function is called the total integrated scattering (TIS), and the fraction remaining is called the Strehl ratio. The angular distribution of the scattered light is called the angle resolved scattering (ARS), and it shows a strong spike centered on a scattering angle of zero, and a broad , less intense distribution at larger angles. It is this scattered light, and its effect on the point spread function which is the focus of this study.
Direct laser interference patterning of magnetic thin films
NASA Astrophysics Data System (ADS)
Aktag, Aliekber
Recently, patterned magnetic thin films have attracted much attention for a variety of applications such as high density magnetic recording, magnetoresistive sensing, and magnetic random access memories. In the case of magnetic recording, one scheme calls for the films to be patterned into single domain "dots", where every dot represents a thermally stable bit. In this thesis, we extended a technique called direct laser interference patterning (DLIP), originally developed by Polushkin and co-workers, to pattern and locally modify the materials properties of magnetic thin films. In this technique, a high-intensity Nd:YAG pulse laser beam was split into two, three, or four beams, which are then recombined to interfere on a sample surface. The interference intensity maxima can modify the local materials properties of the film through local "annealing" or, more drastically, by ablation. We carried out some preliminary investigations of the DLIP process in several films including co-sputtered Co-C, amorphous Dy/Co:SiO2 multilayers, and Co/SiO2 multilayers in order to refine our techniques. We successfully produced regular arrays of lines, dots, or antidots formed by ablation of the thin film. The preliminary studies also showed that, in the regime of more modest pulse energies, it is possible to modify the magnetic properties of the films without noticeably changing the film topography. We then prepared perpendicular magnetic anisotropy Co/Pt multilayers with a SiO x passivation layer and applied DLIP at fairly modest intensities to pattern the film. We then studied the structural and magnetic changes that occurred in some detail. X-ray diffraction scans showed the Co/Pt:SiO x multilayer films to be nanocrystalline before and after patterning. Atomic force microscopy images showed no evidence for topographic changes of the Co/Pt:SiOx during patterning. In contrast, magnetic force microscopy showed regular periodic dot arrays, indicating that the local magnetic properties were significantly affected by the patterning process. Alternating-gradient-force magnetometry and magneto-optic measurements also showed that the magnetic properties were markedly changed by the DLIP process. Our results offer strong evidence that local heating causes the moments to change from perpendicular to in-plane, with the consequent formation of an "anisotropy lattice": dots of in-plane magnetization within a matrix of perpendicular magnetization. We also carried out some optical interference calculations to predict the light intensity distributions for two, three, and four interfering beams of light. We found that the patterns could be controlled by varying the angles of incidence, the polarizations of the beams, and the wavelength and intensity of the beams, and that a wide variety of patterns are possible. The predicted patterns were in quite good agreement with those observed experimentally.
Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode
Zhang, Z.; Li, R.; To, H.; ...
2016-11-22
Here, nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.
Optical ferris wheel for ultracold atoms
NASA Astrophysics Data System (ADS)
Franke-Arnold, S.; Leach, J.; Padgett, M. J.; Lembessis, V. E.; Ellinas, D.; Wright, A. J.; Girkin, J. M.; Ohberg, P.; Arnold, A. S.
2007-07-01
We propose a versatile optical ring lattice suitable for trapping cold and quantum degenerate atomic samples. We demonstrate the realisation of intensity patterns from pairs of Laguerre-Gauss (exp(iℓө) modes with different ℓ indices. These patterns can be rotated by introducing a frequency shift between the modes. We can generate bright ring lattices for trapping atoms in red-detuned light, and dark ring lattices suitable for trapping atoms with minimal heating in the optical vortices of blue-detuned light. The lattice sites can be joined to form a uniform ring trap, making it ideal for studying persistent currents and the Mott insulator transition in a ring geometry.
Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Li, R.; To, H.
Here, nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.
Emerging Novel Metal Electrodes for Photovoltaic Applications.
Lu, Haifei; Ren, Xingang; Ouyang, Dan; Choy, Wallace C H
2018-04-01
Emerging novel metal electrodes not only serve as the collector of free charge carriers, but also function as light trapping designs in photovoltaics. As a potential alternative to commercial indium tin oxide, transparent electrodes composed of metal nanowire, metal mesh, and ultrathin metal film are intensively investigated and developed for achieving high optical transmittance and electrical conductivity. Moreover, light trapping designs via patterning of the back thick metal electrode into different nanostructures, which can deliver a considerable efficiency improvement of photovoltaic devices, contribute by the plasmon-enhanced light-mattering interactions. Therefore, here the recent works of metal-based transparent electrodes and patterned back electrodes in photovoltaics are reviewed, which may push the future development of this exciting field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inversion method based on stochastic optimization for particle sizing.
Sánchez-Escobar, Juan Jaime; Barbosa-Santillán, Liliana Ibeth; Vargas-Ubera, Javier; Aguilar-Valdés, Félix
2016-08-01
A stochastic inverse method is presented based on a hybrid evolutionary optimization algorithm (HEOA) to retrieve a monomodal particle-size distribution (PSD) from the angular distribution of scattered light. By solving an optimization problem, the HEOA (with the Fraunhofer approximation) retrieves the PSD from an intensity pattern generated by Mie theory. The analyzed light-scattering pattern can be attributed to unimodal normal, gamma, or lognormal distribution of spherical particles covering the interval of modal size parameters 46≤α≤150. The HEOA ensures convergence to the near-optimal solution during the optimization of a real-valued objective function by combining the advantages of a multimember evolution strategy and locally weighted linear regression. The numerical results show that our HEOA can be satisfactorily applied to solve the inverse light-scattering problem.
NASA Astrophysics Data System (ADS)
Lembessis, V. E.; Babiker, M.; Andrews, D. L.
2009-01-01
It is shown how the total internal reflection of orbital-angular-momentum-endowed light can lead to the generation of evanescent light possessing rotational properties in which the intensity distribution is firmly localized in the vicinity of the surface. The characteristics of these surface optical vortices depend on the form of the incident light and on the dielectric mismatch of the two media. The interference of surface optical vortices is shown to give rise to interesting phenomena, including pattern rotation akin to a surface optical Ferris wheel. Applications are envisaged to be in atom lithography, optical surface tweezers, and spanners.
Dynamic Laser-Light Scattering Study on Bacterial Growth
NASA Astrophysics Data System (ADS)
Miike, Hidetoshi; Hideshima, Masao; Hashimoto, Hajime; Ebina, Yoshio
1984-08-01
The motility changes in growing bacteria in a culture medium were observed with a dynamic light-scattering technique used to analyse the frequency spectrum of the scattered light intensity. Two typical enterobacteriaceae, E. coil and P. morganii, were examined, and the change in the velocity distribution of the bacteria with time was analysed using the observed spectrum. The distribution pattern was found to change from a Gaussian-type to a Saclay-type with time, and the mean speed of the bacteria had a maximum value at around the turning point of the growth curve.
NASA Astrophysics Data System (ADS)
Li, Weijun; Zhu, Yaping; Luo, Jun; Peng, Sha; Lei, Yu; Tong, Qing; Zhang, Xinyu; Xie, Changsheng
2015-10-01
Current researches show that the surface plasmon-polariton modes (SPPMs) in metallic nanostructures can lead to a powerful localization of guided light signals, which is generally as small as a few nanometers and thus far beyond the diffraction limit of electromagnetic waves in dielectric media. In this paper, our attention is paid to the modeling and simulation of particular kinds of patterned metal-based nanostructure fabricated over several common wafers such as typical silicon dioxide. The nanostructures are designed for concentrating and delivering incident light energy into nanoscale regions. In our research, the factors, for instance, optical materials, patterned nano-structures, the distance arrangement between adjacent single nanopattern, and the frequency of incident electromagnetic wave, are taken as variables, and further the CST microwave studio is used to simulate optical behaviors of the devices developed by us. By comparing the transmittance and electric field intensity distribution in small area, the nano-light-emission effects are analyzed, and the conditions for obtaining near-field nanospots have been chosen.
Femtosecond self-reconfiguration of laser-induced plasma patterns in dielectrics
NASA Astrophysics Data System (ADS)
Déziel, Jean-Luc; Dubé, Louis J.; Messaddeq, Sandra H.; Messaddeq, Younès; Varin, Charles
2018-05-01
Laser-induced modification of transparent solids by intense femtosecond laser pulses allows fast integration of nanophotonic and nanofluidic devices with controlled optical properties. Experimental observations suggest that the local and dynamic nature of the interactions between light and the transient plasma plays an important role during fabrication. Current analytical models neglect these aspects and offer limited coverage of nanograting formation on dielectric surfaces. In this paper, we present a self-consistent dynamic treatment of the plasma buildup and its interaction with light within a three-dimensional electromagnetic framework. The main finding of this work is that local light-plasma interactions are responsible for the reorientation of laser-induced periodic plasma patterns with respect to the incident light polarization, when a certain energy density threshold is reached. Plasma reconfiguration occurs within a single laser pulse, on a femtosecond time scale. Moreover, we show that the reconfigured subwavelength plasma structures actually grow into the bulk of the sample, which agrees with the experimental observations of self-organized volume nanogratings. We find that mode coupling of the incident and transversely scattered light with the periodic plasma structures is sufficient to initiate the growth and self-organization of the pattern inside the medium with a characteristic half-wavelength periodicity.
Comparison of three coding strategies for a low cost structure light scanner
NASA Astrophysics Data System (ADS)
Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming
2014-12-01
Coded structure light is widely used for 3D scanning, and different coding strategies are adopted to suit for different goals. In this paper, three coding strategies are compared, and one of them is selected to implement a low cost structure light scanner under the cost of €100. To reach this goal, the projector and the video camera must be the cheapest, which will lead to some problems related to light coding. For a cheapest projector, complex intensity pattern can't be generated; even if it can be generated, it can't be captured by a cheapest camera. Based on Gray code, three different strategies are implemented and compared, called phase-shift, line-shift, and bit-shift, respectively. The bit-shift Gray code is the contribution of this paper, in which a simple, stable light pattern is used to generate dense(mean points distance<0.4mm) and accurate(mean error<0.1mm) results. The whole algorithm details and some example are presented in the papers.
NASA Astrophysics Data System (ADS)
Kajii, Hirotake
2018-05-01
In this review, we focus on the improved external quantum efficiency, field-effect mobility, and emission pattern of top-gate-type polymer light-emitting transistors (PLETs) based on ambipolar fluorene-type polymers. A low-temperature, high-efficiency, printable red phosphorescent PLET based on poly(alkylfluorene) with modified alkyl side chains fabricated by a film transfer process is demonstrated. Device fabrication based on oriented films leads to an improved EL intensity owing to the increase in field-effect mobility. There are three factors that affect the transport of carriers, i.e., the energy level, threshold voltage, and mobility of each layer for heterostructure PLETs, which result in various emission patterns such as the line-shaped, multicolor and in-plane emission pattern in the full-channel area between source and drain electrodes. Fundamentals and future prospects in heterostructure devices are discussed and reviewed.
Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish
Johnson, Ashley M.; Stanis, Shannon; Fuller, Rebecca C.
2013-01-01
Spatial variation in lighting environments frequently leads to population variation in colour patterns, colour preferences and visual systems. Yet lighting conditions also vary diurnally, and many aspects of visual systems and behaviour vary over this time scale. Here, we use the bluefin killifish (Lucania goodei) to compare how diurnal variation and habitat variation (clear versus tannin-stained water) affect opsin expression and the preference to peck at different-coloured objects. Opsin expression was generally lowest at midnight and dawn, and highest at midday and dusk, and this diurnal variation was many times greater than variation between habitats. Pecking preference was affected by both diurnal and habitat variation but did not correlate with opsin expression. Rather, pecking preference matched lighting conditions, with higher preferences for blue at noon and for red at dawn/dusk, when these wavelengths are comparatively scarce. Similarly, blue pecking preference was higher in tannin-stained water where blue wavelengths are reduced. In conclusion, L. goodei exhibits strong diurnal cycles of opsin expression, but these are not tightly correlated with light intensity or colour. Temporally variable pecking preferences probably result from lighting environment rather than from opsin production. These results may have implications for the colour pattern diversity observed in these fish. PMID:23698009
Behavioural environments and niche construction: the evolution of dim-light foraging in bees.
Wcislo, William T; Tierney, Simon M
2009-02-01
Most bees forage for floral resources during the day, but temporal patterns of foraging activity vary extensively, and foraging in dim-light environments has evolved repeatedly. Facultative dim-light foraging behaviour is known in five of nine families of bees, while obligate behaviour is known in four families and evolved independently at least 19 times. The light intensity under which bees forage varies by a factor of 10(8), and therefore the evolution of dim-light foraging represents the invasion of a new, extreme niche. The repeated evolution of dim-light foraging behaviour in bees allows tests of the hypothesis that behaviour acts as an evolutionary pacemaker. With the exception of one species of Apis, facultative dim-light foragers show no external structural traits that are thought to enable visually mediated flight behaviour in low-light environments. By contrast, most obligate dim-light foragers show a suite of convergent optical traits such as enlarged ocelli and compound eyes. In one intensively studied species (Megalopta genalis) these optical changes are associated with neurobiological changes to enhance photon capture. The available ecological evidence suggests that an escape from competition for pollen and nectar resources and avoidance of natural enemies are driving factors in the evolution of obligate dim-light foraging.
A new method to measure the polymerization shrinkage kinetics of light cured composites.
Lee, I B; Cho, B H; Son, H H; Um, C M
2005-04-01
This study was undertaken to develop a new measurement method to determine the initial dynamic volumetric shrinkage of composite resins during polymerization, and to investigate the effect of curing light intensity on the polymerization shrinkage kinetics. The instrument was basically an electromagnetic balance that was constructed with a force transducer using a position sensitive photo detector (PSPD) and a negative feedback servo amplifier. The volumetric change of composites during polymerization was detected continuously as a buoyancy change in distilled water by means of the Archimedes' principle. Using this new instrument, the dynamic patterns of the polymerization shrinkage of seven commercial composite resins were measured. The polymerization shrinkage of the composites was 1.92 approximately 4.05 volume %. The shrinkage of a packable composite was the lowest, and that of a flowable composite was the highest. The maximum rate of polymerization shrinkage increased with increasing light intensity but the peak shrinkage rate time decreased with increasing light intensity. A strong positive relationship was observed between the square root of the light intensity and the maximum shrinkage rate. The shrinkage rate per unit time, dVol%/dt, showed that the instrument can be a valuable research method for investigating the polymerization reaction kinetics. This new shrinkage-measuring instrument has some advantages that it was insensitive to temperature changes and could measure the dynamic volumetric shrinkage in real time without complicated processes. Therefore, it can be used to characterize the shrinkage kinetics in a wide range of commercial and experimental visible-light-cure materials in relation to their composition and chemistry.
Investigations on magnetic field induced optical transparency in magnetic nanofluids
NASA Astrophysics Data System (ADS)
Mohapatra, Dillip Kumar; Philip, John
2018-02-01
We study the magnetic field induced optical transparency and its origin in magnetic nanoemulsion of droplets of average size ∼200 nm containing superparamagnetic iron oxide nanoparticles. Beyond a certain volume fraction (Φ > 0.0021) of magnetic nanoemulsion and a critical magnetic field (Hc1), the transmitted light intensity increases drastically and reaches a maximum at another critical magnetic field (Hc2), beyond which the transmitted light intensity decreases and reaches a plateau. Interestingly, the transmitted light intensity at Hc2 is found to increase linearly with Φ and the critical magnetic fields Hc1 and Hc2 follow power law decay with Φ (i.e. Hc ∼ Φ-x), with exponents 0.48 and 0.27, respectively. The light intensity recovers to its initial value when the magnetic field is switched off, indicating the perfect reversibility of the field induced transparency process. The observed straight line scattered patterns above Hc2, on a screen placed perpendicular to the incident beam, confirms the formation of rod like anisotropic nanostructures perpendicular to the direction of light propagation. The magneto-optical measurements in the emulsion confirm that the observed field induced transparency in magnetic emulsions for Φ > 0.0021 is due to the optical birefringence caused by the rod like nanostructures. The reduced birefringence is found to be proportional to the square of the applied magnetic field. This finding offers several possibilities in using magnetic nanofluids in tunable optical devices.
Self-Organization of Light in Optical Media with Competing Nonlinearities.
Maucher, F; Pohl, T; Skupin, S; Krolikowski, W
2016-04-22
We study the propagation of light beams through optical media with competing nonlocal nonlinearities. We demonstrate that the nonlocality of competing focusing and defocusing nonlinearities gives rise to self-organization and stationary states with stable hexagonal intensity patterns, akin to transverse crystals of light filaments. Signatures of this long-range ordering are shown to be observable in the propagation of light in optical waveguides and even in free space. We consider a specific form of the nonlinear response that arises in atomic vapor upon proper light coupling. Yet, the general phenomenon of self-organization is a generic consequence of competing nonlocal nonlinearities, and may, hence, also be observed in other settings.
Chlorophyll Fluorescence Analysis of Cyanobacterial Photosynthesis and Acclimation
Campbell, Douglas; Hurry, Vaughan; Clarke, Adrian K.; Gustafsson, Petter; Öquist, Gunnar
1998-01-01
Cyanobacteria are ecologically important photosynthetic prokaryotes that also serve as popular model organisms for studies of photosynthesis and gene regulation. Both molecular and ecological studies of cyanobacteria benefit from real-time information on photosynthesis and acclimation. Monitoring in vivo chlorophyll fluorescence can provide noninvasive measures of photosynthetic physiology in a wide range of cyanobacteria and cyanolichens and requires only small samples. Cyanobacterial fluorescence patterns are distinct from those of plants, because of key structural and functional properties of cyanobacteria. These include significant fluorescence emission from the light-harvesting phycobiliproteins; large and rapid changes in fluorescence yield (state transitions) which depend on metabolic and environmental conditions; and flexible, overlapping respiratory and photosynthetic electron transport chains. The fluorescence parameters FV/FM, FV′/FM′,qp,qN, NPQ, and φPS II were originally developed to extract information from the fluorescence signals of higher plants. In this review, we consider how the special properties of cyanobacteria can be accommodated and used to extract biologically useful information from cyanobacterial in vivo chlorophyll fluorescence signals. We describe how the pattern of fluorescence yield versus light intensity can be used to predict the acclimated light level for a cyanobacterial population, giving information valuable for both laboratory and field studies of acclimation processes. The size of the change in fluorescence yield during dark-to-light transitions can provide information on respiration and the iron status of the cyanobacteria. Finally, fluorescence parameters can be used to estimate the electron transport rate at the acclimated growth light intensity. PMID:9729605
Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent
Göttfert, Fabian; Pleiner, Tino; Heine, Jörn; Westphal, Volker; Görlich, Dirk; Sahl, Steffen J.; Hell, Stefan W.
2017-01-01
Photobleaching remains a limiting factor in superresolution fluorescence microscopy. This is particularly true for stimulated emission depletion (STED) and reversible saturable/switchable optical fluorescence transitions (RESOLFT) microscopy, where adjacent fluorescent molecules are distinguished by sequentially turning them off (or on) using a pattern of light formed as a doughnut or a standing wave. In sample regions where the pattern intensity reaches or exceeds a certain threshold, the molecules are essentially off (or on), whereas in areas where the intensity is lower, that is, around the intensity minima, the molecules remain in the initial state. Unfortunately, the creation of on/off state differences on subdiffraction scales requires the maxima of the intensity pattern to exceed the threshold intensity by a large factor that scales with the resolution. Hence, when recording an image by scanning the pattern across the sample, each molecule in the sample is repeatedly exposed to the maxima, which exacerbates bleaching. Here, we introduce MINFIELD, a strategy for fundamentally reducing bleaching in STED/RESOLFT nanoscopy through restricting the scanning to subdiffraction-sized regions. By safeguarding the molecules from the intensity of the maxima and exposing them only to the lower intensities (around the minima) needed for the off-switching (on-switching), MINFIELD largely avoids detrimental transitions to higher molecular states. A bleaching reduction by up to 100-fold is demonstrated. Recording nanobody-labeled nuclear pore complexes in Xenopus laevis cells showed that MINFIELD-STED microscopy resolved details separated by <25 nm where conventional scanning failed to acquire sufficient signal. PMID:28193881
NASA Astrophysics Data System (ADS)
Jasenak, Brian
2017-02-01
Ultraviolet light-emitting diode (UV LED) adoption is accelerating; they are being used in new applications such as UV curing, germicidal irradiation, nondestructive testing, and forensic analysis. In many of these applications, it is critically important to produce a uniform light distribution and consistent surface irradiance. Flat panes of fused quartz, silica, or glass are commonly used to cover and protect UV LED arrays. However, they don't offer the advantages of an optical lens design. An investigation was conducted to determine the effect of a secondary glass optic on the uniformity of the light distribution and irradiance. Glass optics capable of transmitting UV-A, UV-B, and UV-C wavelengths can improve light distribution, uniformity, and intensity. In this work, two simulation studies were created to illustrate distinct irradiance patterns desirable for potential real world applications. The first study investigates the use of a multi-UV LED array and optic to create a uniform irradiance pattern on the flat two dimensional (2D) target surface. The uniformity was improved by designing both the LED array and molded optic to produce a homogenous pattern. The second study investigated the use of an LED light source and molded optic to improve the light uniformity on the inside of a canister. The case study illustrates the requirements for careful selection of LED based on light distribution and subsequent design of optics. The optic utilizes total internal reflection to create optimized light distribution. The combination of the LED and molded optic showed significant improvement in uniformity on the inner surface of the canister. The simulations illustrate how the application of optics can significantly improve UV light distribution which can be critical in applications such as UV curing and sterilization.
NASA Astrophysics Data System (ADS)
Eggleton, B. J.; Martijn de Sterke, C.; Slusher, R. E.; Krug, Peter A.; Sipe, J. E.
1996-12-01
To control the speed of a light pulse without absorbing its photons, or distorting its shape, is a challenging problem. However, this has been accomplished using fiber gratings, as part of a joint research program of the University of Sydney, the Australian Photonics Research Centre, Lucent Technologies, and the University of Toronto. The gratings are written in the optical fiber's core by directing a UV beam onto it via a periodic phase mask. Through a photochemical process still not well-understood, the periodic intensity pattern burns a permanent index of refraction change in the core.1-2 In our experiments, we use gratings with a period of about 350 nm chosen to reflect light at 1.05 u m and a length of 5.5 cm.3 Because the grating has over 150,000 periods, an index change of only 0.0003 is sufficient to limit the transmission to less than 30 dB on resonance. Essentially no light is transmitted by such a grating at the Bragg resonance; yet a nanometer away, light propagates through as if the grating were absent. As we tune away from resonance, the light's group velocity increases from zero to c/n (where c is the speed of light in a vacuum and n=1.46 is the refractive index of the core of the fiber), leading to a dispersion about 100,000 times larger than that of bare fiber. Gratings can thus slow down a pulse of light, but at the price of tearing it apart.4 At high light intensities a nonlinearly, with the index of refraction increasing with intensity.5 In the center of the pulse, where the intensity is the highest, the index is thus raised the most. Since regions of high index attract light, the nonlinearity acts as a "glue," counteracting the strong dispersive effects of the grating.
2016-01-01
Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p-type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination. PMID:28066690
Hölz, K; Lietard, J; Somoza, M M
2017-01-03
Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p -type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.
Yeste, Marc; Codony, Francesc; Estrada, Efrén; Lleonart, Miquel; Balasch, Sam; Peña, Alejandro; Bonet, Sergi; Rodríguez-Gil, Joan E.
2016-01-01
The present study evaluated the effects of exposing liquid-stored boar semen to different red light LED regimens on sperm quality and reproductive performance. Of all of the tested photo-stimulation procedures, the best pattern consisted of 10 min light, 10 min rest and 10 min of further light (10-10-10 pattern). This pattern induced an intense and transient increase in the majority of motility parameters, without modifying sperm viability and acrosome integrity. While incubating non-photo-stimulated sperm at 37 °C for 90 min decreased all sperm quality parameters, this reduction was prevented when the previously-described light procedure was applied. This effect was concomitant with an increase in the percentage of sperm with high mitochondrial membrane potential. When sperm were subjected to ‘in vitro’ capacitation, photo-stimulation also increased the percentage of sperm with capacitation-like changes in membrane structure. On the other hand, treating commercial semen doses intended for artificial insemination with the 10-10-10 photo-stimulation pattern significantly increased farrowing rates and the number of both total and live-born piglets for parturition. Therefore, our results indicate that a precise photo-stimulation procedure is able to increase the fertilising ability of boar sperm via a mechanism that could be related to mitochondrial function. PMID:26931070
Penin, Lucie; Vidal-Dupiol, Jeremie; Adjeroud, Mehdi
2013-06-01
Mass bleaching events resulting in coral mortality are among the greatest threats to coral reefs, and are projected to increase in frequency and intensity with global warming. Achieving a better understanding of the consistency of the response of coral assemblages to thermal stress, both spatially and temporally, is essential to determine which reefs are more able to tolerate climate change. We compared variations in spatial and taxonomic patterns between two bleaching events at the scale of an island (Moorea Island, French Polynesia). Despite similar thermal stress and light conditions, bleaching intensity was significantly lower in 2007 (approximately 37 % of colonies showed signs of bleaching) than in 2002, when 55 % of the colonies bleached. Variations in the spatial patterns of bleaching intensity were consistent between the two events. Among nine sampling stations at three locations and three depths, the stations at which the bleaching response was lowest in 2002 were those that showed the lowest levels of bleaching in 2007. The taxonomic patterns of susceptibility to bleaching were also consistent between the two events. These findings have important implications for conservation because they indicate that corals are capable of acclimatization and/or adaptation and that, even at small spatial scales, some areas are consistently more susceptible to bleaching than others.
Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.
1991-09-10
In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.
Skupsky, Stanley; Kessler, Terrance J.; Short, Robert W.; Craxton, Stephen; Letzring, Samuel A.; Soures, John
1991-01-01
In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.
[Primary study on photosynthetic characteristics of Dendrobium nobile].
Su, Wenhua; Zhang, Guangfei
2003-03-01
With LiCor-6400 Portable Photosynthesis System, carbon dioxide exchange pattern for leaves of Dendrobium nobile during 24 hours were studied in sunny day and rainy day, and the variation of CO2 exchange rate to light intensity was analysed. The results showed that in sunny day D. nobile absorbed CO2 in all day except at midday, at noon photorespiration took place. The CO2 exchange pattern was similar to Crassulacean Acid Metabolism(CAM). In rainy day CO2 uptake was in all day, at night CO2 uptake was monitored at 21:00, then CO2 released from 23:00 to dawn. Light saturation point was 1000 mumol/m2s. Over light saturation point photosynthesis, photoinhibition of photosynthesis will be induced by high-light. Exposed to high-light, the light saturation point and the CO2 uptake velocity would be decreased. With variation of environmental factors, photosynthetic pathway in D. nobile could change from CAM to C3 photosynthetic metabolism. It may be one of main reasons for D. nobile to adapt to the shade-requiring environment, the slow growth and rareness in nature.
Real-time observation of X-ray diffraction patterns with the Lixiscope
NASA Technical Reports Server (NTRS)
Chung, D. Y.; Tsang, T.; Yin, L. I.; Anderson, J. R.
1981-01-01
The feasibility of the Lixiscope (Low Intensity X-ray Imaging Scope) is demonstrated for real-time observation of transmission Laue patterns. Making use of the high-gain capability of microchannel plate (MCP) visible-light image intensifier tubes, X-ray images are converted to visible-light images by a scintillator. Pb discs are taped to the center of the Lixiscope input face, and crystal samples are held on a goniometer stage with modeling clay. With a compact size to facilitate off axis viewing, and real-time viewing to allow instantaneous response, the Lixiscope may prove useful in dynamic studies of the effects of plastic flows, stresses, high pressures, and low temperatures.
Navigational potential of e-vector sensing by marine animals
NASA Astrophysics Data System (ADS)
Waterman, Talbot H.
1993-02-01
This essay documents an informal talk about the central theme in the author's research career. That has mainly related to the visual physiology and orientation of aquatic animals, particularly with regard to underwater polarized light. This required pioneer measurements of underwater polarized light patterns, proof that oriented behavior could be determined by e- vector direction independently of intensity patterns or other secondary clues and a demonstration of the retinal dichroic mechanism involved, at least in crustacean compound eyes. The relevant visual data processing by two orthogonal channels was also analyzed with regard to oriented swimming behavior. Some current research by others and major unsolved problems are mentioned and the relevant part of the author's bibliography is appended.
Fernandes, Bruno D; Dragone, Giuliano M; Teixeira, José A; Vicente, António A
2010-05-01
The slow development of microalgal biotechnology is due to the failure in the design of large-scale photobioreactors (PBRs) where light energy is efficiently utilized. In this work, both the quality and the amount of light reaching a given point of the PBR were determined and correlated with cell density, light path length, and PBR geometry. This was made for two different geometries of the downcomer of an airlift PBR using optical fiber technology that allows to obtain information about quantitative and qualitative aspects of light patterns. This is important since the ability of microalgae to use the energy of photons is different, depending on the wavelength of the radiation. The results show that the circular geometry allows a more efficient light penetration, especially in the locations with a higher radial coordinate (r) when compared to the plane geometry; these observations were confirmed by the occurrence of a higher fraction of illuminated volume of the PBR for this geometry. An equation is proposed to correlate the relative light intensity with the penetration distance for both geometries and different microalgae cell concentrations. It was shown that the attenuation of light intensity is dependent on its wavelength, cell concentration, geometry of PBR, and the penetration distance of light.
NASA Astrophysics Data System (ADS)
Jo, Young Chang; Kim, Hae Na; Kang, Jae Hwan; Hong, Hyuck Ki; Choi, Yeon Shik; Jung, Suk Won; Kim, Sung Phil
2017-04-01
In this study, we examined the possibility of using a multispectral skin photomatrix (MSP) module as a novel biometric device. The MSP device measures optical patterns of the wrist skin tissue. Optical patterns consist of 2 × 8 photocurrent intensities of photodiode arrays, which are generated by optical transmission and diffuse reflection of photons from LED light sources with variable wavelengths into the wrist skin tissue. Optical patterns detected by the MSP device provide information on both the surface and subsurface characteristics of the human skin tissue. We found that in the 21 subjects we studied, they showed their unique characteristics, as determined using several wavelengths of light. The experimental results show that the best personal identification accuracy can be acquired using a combination of infrared light and yellow light. This novel biometric device, the MSP module, exhibited an excellent false acceptance rate (FAR) of 0.3% and a false rejection rate (FRR) of 0.0%, which are better than those of commercialized biometric devices such as a fingerprint biometric system. From these experimental results, we found that people exhibit unique optical patterns of their inner-wrist skin tissue and this uniqueness could be used for developing novel high-accuracy personal identification devices.
Detection of internal structure by scattered light intensity: Application to kidney cell sorting
NASA Technical Reports Server (NTRS)
Goolsby, C. L.; Kunze, M. E.
1985-01-01
Scattered light measurements in flow cytometry were sucessfully used to distinguish cells on the basis of differing morphology and internal structure. Differences in scattered light patterns due to changes in internal structure would be expected to occur at large scattering angles. Practically, the results of these calculations suggest that in experimental situations an array of detectors would be useful. Although in general the detection of the scattered light intensity at several intervals within the 10 to 60 region would be sufficient, there are many examples where increased sensitivity could be acheived at other angles. The ability to measure at many different angular intervals would allow the experimenter to empirically select the optimum intervals for the varying conditions of cell size, N/C ratio, granule size and internal structure from sample to sample. The feasibility of making scattered light measurements at many different intervals in flow cytometry was demonstrated. The implementation of simplified versions of these techniques in conjunction with independant measurements of cell size could potentially improve the usefulness of flow cytometry in the study of the internal structure of cells.
Fundamental characteristics of a synthesized light source for optical coherence tomography.
Sato, Manabu; Wakaki, Ichiro; Watanabe, Yuuki; Tanno, Naohiro
2005-05-01
We describe the fundamental characteristics of a synthesized light source (SLS) consisting of two low-coherence light sources to enhance the spatial resolution for optical coherence tomography (OCT). The axial resolution of OCT is given by half the coherence length of the light source. We fabricated a SLS with a coherence length of 2.3 microm and a side-lobe intensity of 45% with an intensity ratio of LED1:LED2 = 1:0.5 by combining two light sources, LED1, with a central wavelength of 691 nm and a spectral bandwidth of 99 nm, and LED2, with a central wavelength of 882 nm and a spectral bandwidth of 76 nm. The coherence length of 2.3 microm was 56% of the shorter coherence length in the two LEDs, which indicates that the axial resolution is 1.2 microm. The lateral resolution was measured at less than 4.4 microm by use of the phase-shift method and with a test pattern as a sample. The measured rough surfaces of a coin are illustrated and discussed.
Takeshita, Tsuyoshi; Ota, Shuhei; Yamazaki, Tomokazu; Hirata, Aiko; Zachleder, Vilém; Kawano, Shigeyuki
2014-04-01
The microalgae family Chlorella species are known to accumulate starch and lipids. Although nitrogen or phosphorous deficiencies promote starch and lipids formation in many microalgae, these deficiencies also limit their growth and productivity. Therefore, the Chlorellaceae strains were attempted to increase starch and lipids productivity under high-light-intensity conditions (600-μmol photons m(-2)s(-1)). The 12:12-h light-dark (LD) cycle conditions elicited more stable growth than the continuous light (LL) conditions, whereas the starch and lipids yields increased in LL conditions. The amount of starch and lipids per cell increased in Chlorella viscosa and Chlorella vulgaris in sulfur-deficient medium, and long-chain fatty acids with 20 or more carbon atoms accumulated in cells grown in sulfur-deficient medium. Accumulation of starch and lipids was investigated in eight strains. The accumulation was strain-dependent, and varied according to the medium and light conditions. Five of the eight Chlorella strains exhibited similar accumulation patterns. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nonclassicality Criteria in Multiport Interferometry
NASA Astrophysics Data System (ADS)
Rigovacca, L.; Di Franco, C.; Metcalf, B. J.; Walmsley, I. A.; Kim, M. S.
2016-11-01
Interference lies at the heart of the behavior of classical and quantum light. It is thus crucial to understand the boundaries between which interference patterns can be explained by a classical electromagnetic description of light and which, on the other hand, can only be understood with a proper quantum mechanical approach. While the case of two-mode interference has received a lot of attention, the multimode case has not yet been fully explored. Here we study a general scenario of intensity interferometry: we derive a bound on the average correlations between pairs of output intensities for the classical wavelike model of light, and we show how it can be violated in a quantum framework. As a consequence, this violation acts as a nonclassicality witness, able to detect the presence of sources with sub-Poissonian photon-number statistics. We also develop a criterion that can certify the impossibility of dividing a given interferometer into two independent subblocks.
NASA Astrophysics Data System (ADS)
Lieu, Richard
2018-01-01
A hierarchy of statistics of increasing sophistication and accuracy is proposed, to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level, with the help of high precision computers, to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this method of flux measurement is limited by the timing resolution of the detector and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is accuracy improvement in the bolometric flux measurement of a radio source.
Electrical and Optical Characterization of Nanowire based Semiconductor Devices
NASA Astrophysics Data System (ADS)
Ayvazian, Talin
This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand and optimize the electrical and optical properties of two types of nanoscale devices; in first type lithographically patterned nanowire electrodeposition (LPNE) method has been utilized to fabricate nanowire field effect transistors (NWFET) and second type involved the development of light emitting semiconductor nanowire arrays (NWLED). Field effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrode- position (LPNE) process on SiO2 /Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C x 4 h either with or without exposure to CdCl 2 in methanol a grain growth promoter. The influence of CdCl2 treatment was to increase the mean grain diameter as determined by X-ray diffraction pattern and to convert the crystal structure from cubic to wurtzite. Transfer characteristics showed an increase of the field effect mobility (mu eff) by an order of magnitude and increase of the Ion/I off ratio by a factor of 3-4. Light emitting devices (NW-LED) based on lithographically patterned pc-CdSe nanowire arrays have been investigated. Electroluminescence (EL) spectra of CdSe nanowires under various biases exhibited broad emission spectra centered at 750 nm close to the band gap of CdSe (1.7eV). To enhance the intensity of the emitted light and the external quantum efficiency (EQE), the distance between the contacts were reduced from 5 mum to less than 1 mum which increased the efficiency by an order of magnitude. Also, increasing the annealing temperature of nanowires from 300 °C x4 h to 450 This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand and optimize the electrical and optical properties of two types of nanoscale devices; in first type lithographically patterned nanowire electrodeposition (LPNE) method has been utilized to fabricate nanowire field effect transistors (NWFET) and second type involved the development of light emitting semiconductor nanowire arrays (NWLED). Field effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrode- position (LPNE) process on SiO2 /Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C x 4 h either with or without exposure to CdCl2 in methanol- a grain growth promoter. The influence of CdCl2 treatment was to increase the mean grain diameter as determined by X-ray diffraction pattern and to convert the crystal structure from cubic to wurtzite. Transfer characteristics showed an increase of the field effect mobility (mueff<) by an order of magnitude and increase of the Ion/Ioff ratio by a factor of 3-4. Light emitting devices (NW-LED) based on lithographically patterned pc-CdSe nanowire arrays have been investigated. Electroluminescence (EL) spectra of CdSe nanowires under various biases exhibited broad emission spectra centered at 750 nm close to the band gap of CdSe (1.7eV). To enhance the intensity of the emitted light and the external quantum efficiency (EQE), the distance between the contacts were reduced from 5 mum to less than 1 mum which increased the efficiency by an order of magnitude. Also, increasing the annealing temperature of nanowires from 300 °C x4 h to 450 °C x 1h enhanced grain growth confirmed by structural characterization including X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Raman Spectroscopy. Correspondingly the light emission intensity and EQE improved due to this grain growth. Kelvin probe force microscopy (KPFM) was utilized to understand mechanism of light emission in CdSe nanowires. Arrays of CdTe nanowires were electrodeposited using LPNE process where the elec- trodeposition of pc-CdTe was carried out at two temperatures: 20 °C (cold) and 55 °C (hot). Transmission electron microscopy (TEM) and X-ray diffraction (XRD) re- sults revealed higher crystallinity, larger grain size and presence of Te for nanowires prepared at 55°C compared to nanowires deposited at 20°C. Nanowires prepared at 55°C showed higher electrical conductivity and enhanced electroluminescence proper- ties, including higher light emission intensity and improved External Quantum Efficiency (EQE). Electrical conduction mechanism also investigated for CdTe nanowires. Thermionic emission over schottky barrier height was identified as the dominant charge transport mechanism in pc-CdTe nanowires.°C x 1h enhanced grain growth confirmed by structural characterization including X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Raman Spectroscopy. Correspondingly the light emission intensity and EQE improved due to this grain growth. Kelvin probe force microscopy (KPFM) was utilized to understand mechanism of light emission in CdSe nanowires. Arrays of CdTe nanowires were electrodeposited using LPNE process where the electrodeposition of pc-CdTe was carried out at two temperatures: 20 °C (cold) and 55 °C (hot). Transmission electron microscopy (TEM) and X-ray diffraction (XRD) re- sults revealed higher crystallinity, larger grain size and presence of Te for nanowires prepared at 55°C compared to nanowires deposited at 20°C. Nanowires prepared at 55°C showed higher electrical conductivity and enhanced electroluminescence properties, including higher light emission intensity and improved External Quantum Efficiency (EQE). Electrical conduction mechanism also investigated for CdTe nanowires. Thermionic emission over schottky barrier height was identified as the dominant charge transport mechanism in pc-CdTe nanowires.
Crepuscular flight activity of an invasive insect governed by interacting abiotic factors
Yigen Chen; Steven J. Seybold
2014-01-01
Seasonal and diurnal flight patterns of the invasive walnut twig beetle, Pityophthorus juglandis, were assessed between 2011 and 2014 in northern California, USA in the context of the effects of ambient temperature, light intensity, wind speed, and barometric pressure. Pityophthorus juglandis generally initiated flight in late...
Influence of light exposure at nighttime on sleep development and body growth of preterm infants
Kaneshi, Yosuke; Ohta, Hidenobu; Morioka, Keita; Hayasaka, Itaru; Uzuki, Yutaka; Akimoto, Takuma; Moriichi, Akinori; Nakagawa, Machiko; Oishi, Yoshihisa; Wakamatsu, Hisanori; Honma, Naoki; Suma, Hiroki; Sakashita, Ryuichi; Tsujimura, Sei-ichi; Higuchi, Shigekazu; Shimokawara, Miyuki; Cho, Kazutoshi; Minakami, Hisanori
2016-01-01
Previous studies have demonstrated that a light-dark cycle has promoted better sleep development and weight gain in preterm infants than constant light or constant darkness. However, it was unknown whether brief light exposure at night for medical treatment and nursing care would compromise the benefits brought about by such a light-dark cycle. To examine such possibility, we developed a special red LED light with a wavelength of >675 nm which preterm infants cannot perceive. Preterm infants born at <36 weeks’ gestational age were randomly assigned for periodic exposure to either white or red LED light at night in a light-dark cycle after transfer from the Neonatal Intensive Care Unit to the Growing Care Unit, used for supporting infants as they mature. Activity, nighttime crying and body weight were continuously monitored from enrolment until discharge. No significant difference in rest-activity patterns, nighttime crying, or weight gain was observed between control and experimental groups. The data indicate that nursing care conducted at 3 to 4-hour intervals exposing infants to light for <15 minutes does not prevent the infants from developing circadian rest-activity patterns, or proper body growth as long as the infants are exposed to regular light-dark cycles. PMID:26877166
McLay, Lucy Katherine; Nagarajan-Radha, Venkatesh; Green, Mark Philip; Jones, Therésa Melanie
2018-05-07
Humans are lighting the night-time environment with ever increasing extent and intensity, resulting in a variety of negative ecological effects in individuals and populations. Effects of light at night on reproductive fitness traits are demonstrated across taxa however, the mechanisms underlying these effects are largely untested. One possible mechanism is that light at night may result in perturbed reactive oxygen species (ROS) and oxidative stress levels. Here, we reared Drosophila melanogaster under either dim (10 lx) light or no light (0 lx) at night for three generations and then compared mating and lifetime oviposition patterns. In a second experiment, we explored whether exposure to light at night treatments resulted in variation in ROS levels in the heads and ovaries of six, 23- and 36-day-old females. We demonstrate that dim light at night affects mating and reproductive output: 10 lx flies courted for longer prior to mating, and female oviposition patterns differed to 0 lx females. ROS levels were lower in the ovaries but not heads, of 10 lx compared with 0 lx females. We suggest that reduced ROS levels may reflect changes in ovarian physiology and cell signaling, which may be related to the differences observed in oviposition patterns. Taken together, our results indicate negative consequences for invertebrates under more stressful, urban, lit conditions and further investigation into the mechanisms driving these changes is warranted to manage invertebrate communities in a brighter future. © 2018 Wiley Periodicals, Inc.
Meesters, Ybe; Dekker, Vera; Schlangen, Luc J M; Bos, Elske H; Ruiter, Martine J
2011-01-28
Photoreceptor cells containing melanopsin play a role in the phase-shifting effects of short-wavelength light. In a previous study, we compared the standard light treatment (SLT) of SAD with treatment using short-wavelength blue-enriched white light (BLT). Both treatments used the same illuminance (10,000 lux) and were equally highly effective. It is still possible, however, that neither the newly-discovered photoreceptor cells, nor the biological clock play a major role in the therapeutic effects of light on SAD. Alternatively, these effects may at least be partly mediated by these receptor cells, which may have become saturated as a result of the high illuminances used in the therapy. This randomized controlled study compares the effects of low-intensity BLT to those of high-intensity SLT. In a 22-day design, 22 patients suffering from a major depression with a seasonal pattern (SAD) were given light treatment (10,000 lux) for two weeks on workdays. Subjects were randomly assigned to either of the two conditions, with gender and age evenly distributed over the groups. Light treatment either consisted of 30 minutes SLT (5000 °K) with the EnergyLight® (Philips, Consumer Lifestyle) with a vertical illuminance of 10,000 lux at eye position or BLT (17,000 °K) with a vertical illuminance of 750 lux using a prototype of the EnergyLight® which emitted a higher proportion of short-wavelengths. All participants completed questionnaires concerning mood, activation and sleep quality on a daily basis. Mood and energy levels were also assessed on a weekly basis by means of the SIGH-SAD and other assessment tools. On day 22, SIGH-SAD ratings were significantly lower than on day 1 (SLT 65.2% and BLT 76.4%). On the basis of all assessments no statistically significant differences were found between the two conditions. With sample size being small, conclusions can only be preliminary. Both treatment conditions were found to be highly effective. The therapeutic effects of low-intensity blue-enriched light were comparable to those of the standard light treatment. Saturation effects may play a role, even with a light intensity of 750 lux. The therapeutic effects of blue-enriched white light in the treatment of SAD at illuminances as low as 750 lux help bring light treatment for SAD within reach of standard workplace and educational lighting systems.
Do monarch butterflies use polarized skylight for migratory orientation?
Stalleicken, Julia; Mukhida, Maya; Labhart, Thomas; Wehner, Rüdiger; Frost, Barrie; Mouritsen, Henrik
2005-06-01
To test if migratory monarch butterflies use polarized light patterns as part of their time-compensated sun compass, we recorded their virtual flight paths in a flight simulator while the butterflies were exposed to patches of naturally polarized blue sky, artificial polarizers or a sunny sky. In addition, we tested butterflies with and without the polarized light detectors of their compound eye being occluded. The monarchs' orientation responses suggested that the butterflies did not use the polarized light patterns as a compass cue, nor did they exhibit a specific alignment response towards the axis of polarized light. When given direct view of the sun, migratory monarchs with their polarized light detectors painted out were still able to use their time-compensated compass: non-clockshifted butterflies, with their dorsal rim area occluded, oriented in their typical south-southwesterly migratory direction. Furthermore, they shifted their flight course clockwise by the predicted approximately 90 degrees after being advance clockshifted 6 h. We conclude that in migratory monarch butterflies, polarized light cues are not necessary for a time-compensated celestial compass to work and that the azimuthal position of the sun disc and/or the associated light-intensity and spectral gradients seem to be the migrants' major compass cue.
Isotropic image in structured illumination microscopy patterned with a spatial light modulator.
Chang, Bo-Jui; Chou, Li-Jun; Chang, Yun-Ching; Chiang, Su-Yu
2009-08-17
We developed a structured illumination microscopy (SIM) system that uses a spatial light modulator (SLM) to generate interference illumination patterns at four orientations - 0 degrees, 45 degrees, 90 degrees, and 135 degrees, to reconstruct a high-resolution image. The use of a SLM for pattern alterations is rapid and precise, without mechanical calibration; moreover, our design of SLM patterns allows generating the four illumination patterns of high contrast and nearly equivalent periods to achieve a near isotropic enhancement in lateral resolution. We compare the conventional image of 100-nm beads with those reconstructed from two (0 degrees +90 degrees or 45 degrees +135 degrees) and four (0 degrees +45 degrees +90 degrees +135 degrees) pattern orientations to show the differences in resolution and image, with the support of simulations. The reconstructed images of 200-nm beads at various depths and fine structures of actin filaments near the edge of a HeLa cell are presented to demonstrate the intensity distributions in the axial direction and the prospective application to biological systems. (c) 2009 Optical Society of America
MODIFICATION OF SEA ANEMONE BEHAVIOR BY SYMBIOTIC ZOOXANTHELLAE: EXPANSION AND CONTRACTION.
Pearse, Vicki Buchsbaum
1974-12-01
The pattern of expansion and contraction by the sea anemone Anthopleura elegantissima differs in individuals with or without endosymbiotic zooxanthellae. Anemones without zooxanthellae, found in dark habitats, do not regularly expand or contract under changes in light. Anemones with zooxanthellae expand in moderate light and contract in intense light or in darkness, with striking uniformity. However, this behavior does not always depend directly on the presence of zooxanthellae. Anemones that have previously had endosymbiotic zooxanthellae subsequently expand and contract with changes in light in the absence of these algae. Thus, conditioned responses may be involved. It is suggested that expansion and contraction of the anemones may play an important role in favorably regulating the amount of light to which their zooxanthellae are exposed.
Validity of physical activity monitors for assessing lower intensity activity in adults.
Calabró, M Andrés; Lee, Jung-Min; Saint-Maurice, Pedro F; Yoo, Hyelim; Welk, Gregory J
2014-09-28
Accelerometers can provide accurate estimates of moderate-to-vigorous physical activity (MVPA). However, one of the limitations of these instruments is the inability to capture light activity within an acceptable range of error. The purpose of the present study was to determine the validity of different activity monitors for estimating energy expenditure (EE) of light intensity, semi-structured activities. Forty healthy participants wore a SenseWear Pro3 Armband (SWA, v.6.1), the SenseWear Mini, the Actiheart, ActiGraph, and ActivPAL monitors, while being monitored with a portable indirect calorimetry (IC). Participants engaged in a variety of low intensity activities but no formalized scripts or protocols were used during these periods. The Mini and SWA overestimated total EE on average by 1.0% and 4.0%, respectively, while the AH, the GT3X, and the AP underestimated total EE on average by 7.8%, 25.5%, and 22.2%, respectively. The pattern-recognition monitors yielded non-significant differences in EE estimates during the semi-structured period (p = 0.66, p = 0.27, and p = 0.21 for the Mini, SWA, and AH, respectively). The SenseWear Mini provided more accurate estimates of EE during light to moderate intensity semi-structured activities compared to other activity monitors. This monitor should be considered when there is interest in tracking low intensity activities in groups of individuals.
Zhang, Zhanjiang; Jiang, Chuangdao; Zhang, Jinzheng; Zhang, Huijin; Shi, Lei
2009-11-01
Rhus typhina L. (staghorn sumac) is a clonal woody species that is considered potentially invasive in its non-native habitats. It is slow growing as seedlings, but grows fast once established. Its growth in the early stages is limited by many abiotic factors, including light intensity. To evaluate its potential of becoming invasive in areas it has been introduced into, we conducted a field experiment to investigate the effects of light intensity on the physiology and growth of R. typhina. Two-month-old R. typhina seedlings were examined under five light levels, that is, 100% full sunlight (unlimited light), moderate stress (50% or 25% of full sunlight) and severe stress (10% or 5% of full sunlight), for 60 days in Hunshandak Sandland, China. Net photosynthetic rate (PN) was reduced significantly under severe light stress, but PN of the moderately stressed seedlings was unaffected. Light stress also led to a reduction in saturated light intensity of the moderately stressed seedlings by 20% and of the severely stressed seedlings by 40%, although the light saturation points were as high as 800 and 600 micromol m(-2) s(-1) for the moderately and severely stressed seedlings, respectively. Under severe light stress, the maximum quantum yield of Photosystem II (Fv/Fm) decreased significantly, but the minimal fluorescence yield (F0) increased compared to that of the control plants. The number of newly produced leaves and the stem height, however, decreased as the light intensity became lower. Root length and leaf area decreased, whereas specific leaf area significantly increased as light became increasingly lower. Biomass production was significantly reduced by light stress, but the allocation pattern was unaffected. Our results demonstrated that R. typhina seedlings can survive low light and grow well in other light conditions. The physiology and growth of R. typhina will likely enable it to acclimate to varying light conditions in Hunshandak Sandland, where R. typhina has been widely cultivated for sand stabilization and other purposes. Because of its ability to tolerate low light and to compete aggressively for light resource once established, that is, becoming invasive, we urge caution when it comes to introducing R. typhina into its non-native habitats, despite its many ecological benefits.
González-Moreno, A; Bordera, S; Leirana-Alcocer, J; Delfín-González, H
2012-06-01
The biology and behavior of insects are strongly influenced by environmental conditions such as temperature and precipitation. Because some of these factors present a within day variation, they may be causing variations on insect diurnal flight activity, but scant information exists on the issue. The aim of this work was to describe the patterns on diurnal variation of the abundance of Ichneumonoidea and their relation with relative humidity, temperature, light intensity, and wind speed. The study site was a tropical dry forest at Ría Lagartos Biosphere Reserve, Mexico; where correlations between environmental factors (relative humidity, temperature, light, and wind speed) and abundance of Ichneumonidae and Braconidae (Hymenoptera: Ichneumonoidea) were estimated. The best regression model for explaining abundance variation was selected using the second order Akaike Information Criterion. The optimum values of temperature, humidity, and light for flight activity of both families were also estimated. Ichneumonid and braconid abundances were significantly correlated to relative humidity, temperature, and light intensity; ichneumonid also showed significant correlations to wind speed. The second order Akaike Information Criterion suggests that in tropical dry conditions, relative humidity is more important that temperature for Ichneumonoidea diurnal activity. Ichneumonid wasps selected toward intermediate values of relative humidity, temperature and the lowest wind speeds; while Braconidae selected for low values of relative humidity. For light intensity, braconids presented a positive selection for moderately high values.
Sati, Leyla; Ovari, Laszlo; Bennett, David; Simon, Stephen D; Demir, Ramazan; Huszar, Gabor
2008-04-01
Individual spermatozoa were assessed with pairs of probes for persistent histones and cytoplasmic retention, persistent histones and DNA fragmentation, and persistent histones and apoptotic markers. The individual spermatozoa were treated sequentially with combinations of probes for these cytoplasmic and nuclear biochemical markers. Sperm fields were recorded with computer-assisted imaging, and staining patterns with the two probes in the same spermatozoa were examined and scored as light, intermediate or dark (mature to arrested-maturity spermatozoa). The effects of arrested sperm maturation were similar with respect to the cytoplasmic and nuclear characteristics of spermatozoa in 84% of cells, indicating that cytoplasmic and nuclear attributes of arrested sperm maturation are related. However, there were moderate (intermediate-dark or intermediate-light patterns, 14.5% of cells) or major (light-dark patterns, 1.6% of cells) discrepancies in the intensity of the double staining patterns. Thus, testing with single maturity markers may not be fully reliable. These findings are important with respect to: (i) arrested sperm maturation; (ii) potential efficacy of antioxidant and similar therapeutic strategies in subfertile men, as spermatozoa with infrastructure defects due to mismaturation or maturation arrest are unlikely to respond to interventions; and (iii) detection of adverse male environmental exposures.
Decoding mobile-phone image sensor rolling shutter effect for visible light communications
NASA Astrophysics Data System (ADS)
Liu, Yang
2016-01-01
Optical wireless communication (OWC) using visible lights, also known as visible light communication (VLC), has attracted significant attention recently. As the traditional OWC and VLC receivers (Rxs) are based on PIN photo-diode or avalanche photo-diode, deploying the complementary metal-oxide-semiconductor (CMOS) image sensor as the VLC Rx is attractive since nowadays nearly every person has a smart phone with embedded CMOS image sensor. However, deploying the CMOS image sensor as the VLC Rx is challenging. In this work, we propose and demonstrate two simple contrast ratio (CR) enhancement schemes to improve the contrast of the rolling shutter pattern. Then we describe their processing algorithms one by one. The experimental results show that both the proposed CR enhancement schemes can significantly mitigate the high-intensity fluctuations of the rolling shutter pattern and improve the bit-error-rate performance.
Robust sky light polarization detection with an S-wave plate in a light field camera.
Zhang, Wenjing; Zhang, Xuanzhe; Cao, Yu; Liu, Haibo; Liu, Zejin
2016-05-01
The sky light polarization navigator has many advantages, such as low cost, no decrease in accuracy with continuous operation, etc. However, current celestial polarization measurement methods often suffer from low performance when the sky is covered by clouds, which reduce the accuracy of navigation. In this paper we introduce a new method and structure based on a handheld light field camera and a radial polarizer, composed of an S-wave plate and a linear polarizer, to detect the sky light polarization pattern across a wide field of view in a single snapshot. Each micro-subimage has a special intensity distribution. After extracting the texture feature of these subimages, stable distribution information of the angle of polarization under a cloudy sky can be obtained. Our experimental results match well with the predicted properties of the theory. Because the polarization pattern is obtained through image processing, rather than traditional methods based on mathematical computation, this method is less sensitive to errors of pixel gray value and thus has better anti-interference performance.
Full-color stereoscopic single-pixel camera based on DMD technology
NASA Astrophysics Data System (ADS)
Salvador-Balaguer, Eva; Clemente, Pere; Tajahuerce, Enrique; Pla, Filiberto; Lancis, Jesús
2017-02-01
Imaging systems based on microstructured illumination and single-pixel detection offer several advantages over conventional imaging techniques. They are an effective method for imaging through scattering media even in the dynamic case. They work efficiently under low light levels, and the simplicity of the detector makes it easy to design imaging systems working out of the visible spectrum and to acquire multidimensional information. In particular, several approaches have been proposed to record 3D information. The technique is based on sampling the object with a sequence of microstructured light patterns codified onto a programmable spatial light modulator while light intensity is measured with a single-pixel detector. The image is retrieved computationally from the photocurrent fluctuations provided by the detector. In this contribution we describe an optical system able to produce full-color stereoscopic images by using few and simple optoelectronic components. In our setup we use an off-the-shelf digital light projector (DLP) based on a digital micromirror device (DMD) to generate the light patterns. To capture the color of the scene we take advantage of the codification procedure used by the DLP for color video projection. To record stereoscopic views we use a 90° beam splitter and two mirrors, allowing us two project the patterns form two different viewpoints. By using a single monochromatic photodiode we obtain a pair of color images that can be used as input in a 3-D display. To reduce the time we need to project the patterns we use a compressive sampling algorithm. Experimental results are shown.
Yamada, Akira; Terakawa, Mitsuhiro
2015-04-10
We present a design method of a bull's eye structure with asymmetric grooves for focusing oblique incident light. The design method is capable of designing transmission peaks to a desired oblique angle with capability of collecting light from a wider range of angles. The bull's eye groove geometry for oblique incidence is designed based on the electric field intensity pattern around an isolated subwavelength aperture on a thin gold film at oblique incidence, calculated by the finite difference time domain method. Wide angular transmission efficiency is successfully achieved by overlapping two different bull's eye groove patterns designed with different peak angles. Our novel design method would overcome the angular limitations of the conventional methods.
Direct k-space imaging of Mahan cones at clean and Bi-covered Cu(111) surfaces
NASA Astrophysics Data System (ADS)
Winkelmann, Aimo; Akin Ünal, A.; Tusche, Christian; Ellguth, Martin; Chiang, Cheng-Tien; Kirschner, Jürgen
2012-08-01
Using a specifically tailored experimental approach, we revisit the exemplary effect of photoemission from quasi-free electronic states in crystals. Applying a momentum microscope, we measure photoelectron momentum patterns emitted into the complete half-space above the sample after excitation from a linearly polarized laser light source. By the application of a fully three-dimensional (3D) geometrical model of direct optical transitions, we explain the characteristic intensity distributions that are formed by the photoelectrons in k-space under the combination of energy conservation and crystal momentum conservation in the 3D bulk as well as at the two-dimensional (2D) surface. For bismuth surface alloys on Cu(111), the energy-resolved photoelectron momentum patterns allow us to identify specific emission processes in which bulk excited electrons are subsequently diffracted by an atomic 2D surface grating. The polarization dependence of the observed intensity features in momentum space is explained based on the different relative orientations of characteristic reciprocal space directions with respect to the electric field vector of the incident light.
5D-Tracking of a nanorod in a focused laser beam--a theoretical concept.
Griesshammer, Markus; Rohrbach, Alexander
2014-03-10
Back-focal plane (BFP) interferometry is a very fast and precise method to track the 3D position of a sphere within a focused laser beam using a simple quadrant photo diode (QPD). Here we present a concept of how to track and recover the 5D state of a cylindrical nanorod (3D position and 2 tilt angles) in a laser focus by analyzing the interference of unscattered light and light scattered at the cylinder. The analytical theoretical approach is based on Rayleigh-Gans scattering together with a local field approximation for an infinitely thin cylinder. The approximated BFP intensities compare well with those from a more rigorous numerical approach. It turns out that a displacement of the cylinder results in a modulation of the BFP intensity pattern, whereas a tilt of the cylinder results in a shift of this pattern. We therefore propose the concept of a local QPD in the BFP of a detection lens, where the QPD center is shifted by the angular coordinates of the cylinder tilt.
Improvement of plastic optical fiber microphone based on moisture pattern sensing in devoiced breath
NASA Astrophysics Data System (ADS)
Taki, Tomohito; Honma, Satoshi; Morisawa, Masayuki; Muto, Shinzo
2008-03-01
Conversation is the most practical and common form in communication. However, people with a verbal handicap feel a difficulty to produce words due to variations in vocal chords. This research leads to develop a new devoiced microphone system based on distinguishes between the moisture patterns for each devoiced breaths, using a plastic optical fiber (POF) moisture sensor. In the experiment, five POF-type moisture sensors with fast response were fabricated by coating swell polymer with a slightly larger refractive index than that of fiber core and were set in front of mouth. When these sensors are exposed into humid air produced by devoiced breath, refractive index in cladding layer decreases by swelling and then the POF sensor heads change to guided type. Based on the above operation principle, the output light intensities from the five sensors set in front of mouth change each other. Using above mentioned output light intensity patterns, discernment of devoiced vowels in Japanese (a,i,u,e,o) was tried by means of DynamicProgramming-Matching (DP-matching) method. As the result, distinction rate over 90% was obtained to Japanese devoiced vowels. Therefore, using this system and a voice synthesizer, development of new microphone for the person with a functional disorder in the vocal chords seems to be possible.
NASA Astrophysics Data System (ADS)
Starshynov, I.; Paniagua-Diaz, A. M.; Fayard, N.; Goetschy, A.; Pierrat, R.; Carminati, R.; Bertolotti, J.
2018-04-01
The propagation of monochromatic light through a scattering medium produces speckle patterns in reflection and transmission, and the apparent randomness of these patterns prevents direct imaging through thick turbid media. Yet, since elastic multiple scattering is fundamentally a linear and deterministic process, information is not lost but distributed among many degrees of freedom that can be resolved and manipulated. Here, we demonstrate experimentally that the reflected and transmitted speckle patterns are robustly correlated, and we unravel all the complex and unexpected features of this fundamentally non-Gaussian and long-range correlation. In particular, we show that it is preserved even for opaque media with thickness much larger than the scattering mean free path, proving that information survives the multiple scattering process and can be recovered. The existence of correlations between the two sides of a scattering medium opens up new possibilities for the control of transmitted light without any feedback from the target side, but using only information gathered from the reflected speckle.
Fringing in MonoCam Y4 filter images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, J.; Fisher-Levine, M.; Nomerotski, A.
Here, we study the fringing patterns observed in MonoCam, a camera with a single Large Synoptic Survey Telescope (LSST) CCD sensor. Images were taken at the U.S. Naval Observatory in Flagstaff, Arizona (NOFS) employing its 1.3 m telescope and an LSST y4 filter. Fringing occurs due to the reflection of infrared light (700 nm or larger) from the bottom surface of the CCD which constructively or destructively interferes with the incident light to produce a net "fringe" pattern which is superimposed on all images taken. Emission lines from the atmosphere, dominated by hydroxyl (OH) spectra, can change in their relativemore » intensities as the night goes on, producing different fringe patterns in the images taken. We found through several methods that the general shape of the fringe patterns remained constant, though with slight changes in the amplitude and phase of the fringes. Lastly, we also found that a superposition of fringes from two monochromatic lines taken in the lab offered a reasonable description of the sky data.« less
The polarization patterns of skylight reflected off wave water surface.
Zhou, Guanhua; Xu, Wujian; Niu, Chunyue; Zhao, Huijie
2013-12-30
In this paper we propose a model to understand the polarization patterns of skylight when reflected off the surface of waves. The semi-empirical Rayleigh model is used to analyze the polarization of scattered skylight; the Harrison and Coombes model is used to analyze light radiance distribution; and the Cox-Munk model and Mueller matrix are used to analyze reflections from wave surface. First, we calculate the polarization patterns and intensity distribution of light reflected off wave surface. Then we investigate their relationship with incident radiation, solar zenith angle, wind speed and wind direction. Our results show that the polarization patterns of reflected skylight from waves and flat water are different, while skylight reflected on both kinds of water is generally highly polarized at the Brewster angle and the polarization direction is approximately parallel to the water's surface. The backward-reflecting Brewster zone has a relatively low reflectance and a high DOP in all observing directions. This can be used to optimally diminish the reflected skylight and avoid sunglint in ocean optics measurements.
Fringing in MonoCam Y4 filter images
Brooks, J.; Fisher-Levine, M.; Nomerotski, A.
2017-05-05
Here, we study the fringing patterns observed in MonoCam, a camera with a single Large Synoptic Survey Telescope (LSST) CCD sensor. Images were taken at the U.S. Naval Observatory in Flagstaff, Arizona (NOFS) employing its 1.3 m telescope and an LSST y4 filter. Fringing occurs due to the reflection of infrared light (700 nm or larger) from the bottom surface of the CCD which constructively or destructively interferes with the incident light to produce a net "fringe" pattern which is superimposed on all images taken. Emission lines from the atmosphere, dominated by hydroxyl (OH) spectra, can change in their relativemore » intensities as the night goes on, producing different fringe patterns in the images taken. We found through several methods that the general shape of the fringe patterns remained constant, though with slight changes in the amplitude and phase of the fringes. Lastly, we also found that a superposition of fringes from two monochromatic lines taken in the lab offered a reasonable description of the sky data.« less
NASA Astrophysics Data System (ADS)
Sohn, Hayley; Ackerman, Paul; Smalyukh, Ivan
Three-dimensional (3D) topological solitons arise in field theories ranging from particle physics to condensed matter and cosmology. They are the 3D counterparts of 2D skyrmions (often called ``baby skyrmions''), which attract a great deal of interest in studies of chiral ferromagnets and enable the emerging field of skyrmionics. In chiral nematic liquid crystals, the stability of such solitons is enhanced by the chiral medium's tendency to twist the director field describing the 3D spatial patterns of molecular alignment. However, their experimental realization, control and detailed studies remain limited. We combine experimental realization and numerical modeling of such light-responsive solitonic structures, including elementary torons and hopfions, in confined chiral nematic liquid crystals with photo-tunable cholesteric pitch. We show that the optical tunability of the pitch allows for using low-intensity light to control the soliton stability, dimensions, spatial patterning and dynamics.
Three-dimensional electron diffraction of plant light-harvesting complex
Wang, Da Neng; Kühlbrandt, Werner
1992-01-01
Electron diffraction patterns of two-dimensional crystals of light-harvesting chlorophyll a/b-protein complex (LHC-II) from photosynthetic membranes of pea chloroplasts, tilted at different angles up to 60°, were collected to 3.2 Å resolution at -125°C. The reflection intensities were merged into a three-dimensional data set. The Friedel R-factor and the merging R-factor were 21.8 and 27.6%, respectively. Specimen flatness and crystal size were critical for recording electron diffraction patterns from crystals at high tilts. The principal sources of experimental error were attributed to limitations of the number of unit cells contributing to an electron diffraction pattern, and to the critical electron dose. The distribution of strong diffraction spots indicated that the three-dimensional structure of LHC-II is less regular than that of other known membrane proteins and is not dominated by a particular feature of secondary structure. ImagesFIGURE 1FIGURE 2 PMID:19431817
Fast image processing with a microcomputer applied to speckle photography
NASA Astrophysics Data System (ADS)
Erbeck, R.
1985-11-01
An automated image recognition system is described for speckle photography investigations in fluid dynamics. The system is employed for characterizing the pattern of interference fringes obtained using speckle interferometry. A rotating ground glass serves as a screen on which laser light passing through a specklegraph plate, the flow and a compensation plate (CP) is shone to produce a compensated Young's pattern. The image produced on the ground glass is photographed by a video camera whose signal is digitized and processed through a microcomputer using a 6502 CPU chip. The normalized correlation function of the intensity is calculated in two directions of the recorded pattern to obtain the wavelength and the light deflection angle. The system has a capability of one picture every two seconds. Sample data are provided for a free jet of CO2 issuing into air in both laminar and turbulent form.
Reducing the ecological consequences of night-time light pollution: options and developments
Gaston, Kevin J; Davies, Thomas W; Bennie, Jonathan; Hopkins, John
2012-01-01
1. Much concern has been expressed about the ecological consequences of night-time light pollution. This concern is most often focused on the encroachment of artificial light into previously unlit areas of the night-time environment, but changes in the spectral composition, duration and spatial pattern of light are also recognized as having ecological effects. 2. Here, we examine the potential consequences for organisms of five management options to reduce night-time light pollution. These are to (i) prevent areas from being artificially lit; (ii) limit the duration of lighting; (iii) reduce the ‘trespass’ of lighting into areas that are not intended to be lit (including the night sky); (iv) change the intensity of lighting; and (v) change the spectral composition of lighting. 3. Maintaining and increasing natural unlit areas is likely to be the most effective option for reducing the ecological effects of lighting. However, this will often conflict with other social and economic objectives. Decreasing the duration of lighting will reduce energy costs and carbon emissions, but is unlikely to alleviate many impacts on nocturnal and crepuscular animals, as peak times of demand for lighting frequently coincide with those in the activities of these species. Reducing the trespass of lighting will maintain heterogeneity even in otherwise well-lit areas, providing dark refuges that mobile animals can exploit. Decreasing the intensity of lighting will reduce energy consumption and limit both skyglow and the area impacted by high-intensity direct light. Shifts towards ‘whiter’ light are likely to increase the potential range of environmental impacts as light is emitted across a broader range of wavelengths. 4. Synthesis and applications. The artificial lightscape will change considerably over coming decades with the drive for more cost-effective low-carbon street lighting solutions and growth in the artificially lit area. Developing lighting strategies that minimize adverse ecological impacts while balancing the often conflicting requirements of light for human utility, comfort and safety, aesthetic concerns, energy consumption and carbon emission reduction constitute significant future challenges. However, as both lighting technology and understanding of its ecological effects develop, there is potential to identify adaptive solutions that resolve these conflicts. PMID:23335816
Reducing the ecological consequences of night-time light pollution: options and developments.
Gaston, Kevin J; Davies, Thomas W; Bennie, Jonathan; Hopkins, John
2012-12-01
1. Much concern has been expressed about the ecological consequences of night-time light pollution. This concern is most often focused on the encroachment of artificial light into previously unlit areas of the night-time environment, but changes in the spectral composition, duration and spatial pattern of light are also recognized as having ecological effects.2. Here, we examine the potential consequences for organisms of five management options to reduce night-time light pollution. These are to (i) prevent areas from being artificially lit; (ii) limit the duration of lighting; (iii) reduce the 'trespass' of lighting into areas that are not intended to be lit (including the night sky); (iv) change the intensity of lighting; and (v) change the spectral composition of lighting.3. Maintaining and increasing natural unlit areas is likely to be the most effective option for reducing the ecological effects of lighting. However, this will often conflict with other social and economic objectives. Decreasing the duration of lighting will reduce energy costs and carbon emissions, but is unlikely to alleviate many impacts on nocturnal and crepuscular animals, as peak times of demand for lighting frequently coincide with those in the activities of these species. Reducing the trespass of lighting will maintain heterogeneity even in otherwise well-lit areas, providing dark refuges that mobile animals can exploit. Decreasing the intensity of lighting will reduce energy consumption and limit both skyglow and the area impacted by high-intensity direct light. Shifts towards 'whiter' light are likely to increase the potential range of environmental impacts as light is emitted across a broader range of wavelengths.4.Synthesis and applications. The artificial lightscape will change considerably over coming decades with the drive for more cost-effective low-carbon street lighting solutions and growth in the artificially lit area. Developing lighting strategies that minimize adverse ecological impacts while balancing the often conflicting requirements of light for human utility, comfort and safety, aesthetic concerns, energy consumption and carbon emission reduction constitute significant future challenges. However, as both lighting technology and understanding of its ecological effects develop, there is potential to identify adaptive solutions that resolve these conflicts.
Self-organization of multifunctional surfaces--the fingerprints of light on a complex system.
Reinhardt, Hendrik; Kim, Hee-Cheol; Pietzonka, Clemens; Kruempelmann, Julia; Harbrecht, Bernd; Roling, Bernhard; Hampp, Norbert
2013-06-25
Nanocomposite patterns and nanotemplates are generated by a single-step bottom-up concept that introduces laser-induced periodic surface structures (LIPSS) as a tool for site-specific reaction control in multicomponent systems. Periodic intensity fluctuations of this photothermal stimulus inflict spatial-selective reorganizations, dewetting scenarios and phase segregations, thus creating regular patterns of anisotropic physicochemical properties that feature attractive optical, electrical, magnetic, and catalytic properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bin Abdul Rahim, Hazli Rafis; Bin Lokman, Muhammad Quisar; Harun, Sulaiman Wadi; Hornyak, Gabor Louis; Sterckx, Karel; Mohammed, Waleed Soliman; Dutta, Joydeep
2016-07-01
The width of spiral-patterned zinc oxide (ZnO) nanorod coatings on plastic optical fiber (POF) was optimized theoretically for light-side coupling and found to be 5 mm. Structured ZnO nanorods were grown on large core POFs for the purpose of alcohol vapor sensing. The aim of the spiral patterns was to enhance signal transmission by reduction of the effective ZnO growth area, thereby minimizing light leakage due to backscattering. The sensing mechanism utilized changes in the output signal due to adsorption of methanol, ethanol, and isopropanol vapors. Three spectral bands consisting of red (620 to 750 nm), green (495 to 570 nm), and blue (450 to 495 nm) were applied in measurements. The range of relative intensity modulation (RIM) was determined to be for concentrations between 25 to 300 ppm. Methanol presented the strongest response compared to ethanol and isopropanol in all three spectral channels. With regard to alcohol detection RIM by spectral band, the green channel demonstrated the highest RIM values followed by the blue and red channels, respectively.
High-efficiency directional backlight design for an automotive display.
Chen, Bo-Tsuen; Pan, Jui-Wen
2018-06-01
We propose a high-efficiency directional backlight module (DBM) for automotive display applications. The DBM is composed of light sources, a light guide plate (LGP), and an optically patterned plate (OPP). The LGP has a collimator on the input surface that serves to control the angle of the light emitted to be in the horizontal direction. The OPP has an inverse prism to adjust the light emission angle in the vertical direction. The DBM has a simple structure and high optical efficiency. Compared with conventional backlight systems, the DBM has higher optical efficiency and a suitable viewing angle. This is an improvement in normalized on-axis luminous intensity of 2.6 times and a twofold improvement in optical efficiency. The viewing angles are 100° in the horizontal direction and 35° in the vertical direction. The angle of the half-luminous intensity is 72° in the horizontal direction and 20° in the vertical direction. The uniformity of the illuminance reaches 82%. The DBM is suitable for use in the center information displays of automobiles.
Simulation for light extraction efficiency of OLEDs with spheroidal microlenses in hexagonal array
NASA Astrophysics Data System (ADS)
Bae, Hyungchul; Kim, Jun Soo; Hong, Chinsoo
2018-05-01
A theoretical model based on ray optics is used to simulate the optical performance of organic light-emitting diodes (OLEDs) with spheroidal microlens arrays (MLAs) in a hexagonal array configuration using the Monte Carlo method. In simulations, ray tracing was performed until 20 reflections occurred from the metal cathode, with 10 consecutive reflections permitted in a single lens pattern. The parameters describing the shape and array of the lens pattern of a MLA are its radius, height, contact angle, and fill factor (FF). Many previous results on how these parameters affect light extraction efficiency (LEE) are inconsistent. In this paper, these contradictory results are discussed and explained by introducing a new parameter. To examine light extraction from an OLED through a MLA, the LEE enhancement is studied considering the effect of absorption by indium tin oxide during multiple reflections from the metal cathode. The device size where LEE enhancement is unchanged with changing lens pattern was identified for a fixed FF; under this condition, the optimal LEE enhancement, 84%, can be obtained using an OLED with a close-packed spheroidal MLA. An ideal maximum LEE enhancement of 120% was achieved with a device with an infinite-sized MLA. The angular intensity distribution of light emitted through a MLA is considered in addition to LEE enhancement for an optimized MLA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieu, Richard
A hierarchy of statistics of increasing sophistication and accuracy is proposed to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level with the help of high-precision computers to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this methodmore » of flux measurement is limited by the timing resolution of the detector and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is accuracy improvement in the signal-limited bolometric flux measurement of a radio source.« less
Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F.
2015-01-01
Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies. PMID:26460719
Advanced ballistic range technology
NASA Technical Reports Server (NTRS)
Yates, Leslie A.
1993-01-01
Experimental interferograms, schlieren, and shadowgraphs are used for quantitative and qualitative flow-field studies. These images are created by passing light through a flow field, and the recorded intensity patterns are functions of the phase shift and angular deflection of the light. As part of the grant NCC2-583, techniques and software have been developed for obtaining phase shifts from finite-fringe interferograms and for constructing optical images from Computational Fluid Dynamics (CFD) solutions. During the period from 1 Nov. 1992 - 30 Jun. 1993, research efforts have been concentrated in improving these techniques.
Leaf Starch Turnover Occurs in Long Days and in Falling Light at the End of the Day.
Fernandez, Olivier; Ishihara, Hirofumi; George, Gavin M; Mengin, Virginie; Flis, Anna; Sumner, Dean; Arrivault, Stéphanie; Feil, Regina; Lunn, John E; Zeeman, Samuel C; Smith, Alison M; Stitt, Mark
2017-08-01
We investigated whether starch degradation occurs at the same time as starch synthesis in Arabidopsis ( Arabidopsis thaliana ) leaves in the light. Starch accumulated in a linear fashion for about 12 h after dawn, then accumulation slowed and content plateaued. Following decreases in light intensity, the rate of accumulation of starch declined in proportion to the decline in photosynthesis if the decrease occurred <10 h after dawn, but accumulation ceased or loss of starch occurred if the same decrease in light intensity was imposed more than 10 h after dawn. These changes in starch accumulation patterns after prolonged periods in the light occurred at both high and low starch contents and were not related to time-dependent changes in either the rate of photosynthesis or the partitioning of assimilate between starch and Suc, as assessed from metabolite measurements and 14 CO 2 pulse experiments. Instead, measurements of incorporation of 13 C from 13 CO 2 into starch and of levels of the starch degradation product maltose showed that substantial starch degradation occurred simultaneously with synthesis at time points >14 h after dawn and in response to decreases in light intensity that occurred >10 h after dawn. Starch measurements in circadian clock mutants suggested that the clock influences the timing of onset of degradation. We conclude that the propensity for leaf starch to be degraded increases with time after dawn. The importance of this phenomenon for efficient use of carbon for growth in long days and for prevention of starvation during twilight is discussed. © 2017 American Society of Plant Biologists. All Rights Reserved.
Leaf Starch Turnover Occurs in Long Days and in Falling Light at the End of the Day1[OPEN
Mengin, Virginie; Arrivault, Stéphanie
2017-01-01
We investigated whether starch degradation occurs at the same time as starch synthesis in Arabidopsis (Arabidopsis thaliana) leaves in the light. Starch accumulated in a linear fashion for about 12 h after dawn, then accumulation slowed and content plateaued. Following decreases in light intensity, the rate of accumulation of starch declined in proportion to the decline in photosynthesis if the decrease occurred <10 h after dawn, but accumulation ceased or loss of starch occurred if the same decrease in light intensity was imposed more than 10 h after dawn. These changes in starch accumulation patterns after prolonged periods in the light occurred at both high and low starch contents and were not related to time-dependent changes in either the rate of photosynthesis or the partitioning of assimilate between starch and Suc, as assessed from metabolite measurements and 14CO2 pulse experiments. Instead, measurements of incorporation of 13C from 13CO2 into starch and of levels of the starch degradation product maltose showed that substantial starch degradation occurred simultaneously with synthesis at time points >14 h after dawn and in response to decreases in light intensity that occurred >10 h after dawn. Starch measurements in circadian clock mutants suggested that the clock influences the timing of onset of degradation. We conclude that the propensity for leaf starch to be degraded increases with time after dawn. The importance of this phenomenon for efficient use of carbon for growth in long days and for prevention of starvation during twilight is discussed. PMID:28663333
Characterization of random scattering media and related information retrieval
NASA Astrophysics Data System (ADS)
Wang, Zhenyu
There has been substantial interest in optical imaging in and through random media in applications as diverse as environmental sensing and tumor detection. The rich scatter environment also leads to multiple paths or channels, which may provide higher capacity for communication. Coherent light passing through random media produces an intensity speckle pattern when imaged, as a result of multiple scatter and the imaging optics. When polarized coherent light is used, the speckle pattern is sensitive to the polarization state, depending on the amount of scatter, and such measurements provide information about the random medium. This may form the basis for enhanced imaging of random media and provide information on the scatterers themselves. Second and third order correlations over laser scan frequency are shown to lead to the ensemble averaged temporal impulse response, with sensitivity to the polarization state in the more weakly scattering regime. A new intensity interferometer is introduced that provides information about two signals incident on a scattering medium. The two coherent beams, which are not necessarily overlapping, interfere in a scattering medium. A sinusoidal modulation in the second order intensity correlation with laser scan frequency is shown to be related to the relative delay of the two incident beams. An intensity spatial correlation over input position reveals that decorrelation occurs over a length comparable to the incident beam size. Such decorrelation is also related to the amount of scatter. Remarkably, with two beams incident at different angles, the intensity correlation over the scan position has a sinusoidal modulation that is related to the incidence angle difference between the two input beams. This spatial correlation over input position thus provides information about input wavevectors.
Weirich, S D; Cotler, H B; Narayana, P A; Hazle, J D; Jackson, E F; Coupe, K J; McDonald, C L; Langford, L A; Harris, J H
1990-07-01
Magnetic resonance imaging (MRI) provides a noninvasive method of monitoring the pathologic response to spinal cord injury. Specific MR signal intensity patterns appear to correlate with degrees of improvement in the neurologic status in spinal cord injury patients. Histologic correlation of two types of MR signal intensity patterns are confirmed in the current study using a rat animal model. Adult male Sprague-Dawley rats underwent spinal cord trauma at the midthoracic level using a weight-dropping technique. After laminectomy, 5- and 10-gm brass weights were dropped from designated heights onto a 0.1-gm impounder placed on the exposed dura. Animals allowed to regain consciousness demonstrated variable recovery of hind limb paraplegia. Magnetic resonance images were obtained from 2 hours to 1 week after injury using a 2-tesla MRI/spectrometer. Sacrifice under anesthesia was performed by perfusive fixation; spinal columns were excised en bloc, embedded, sectioned, and observed with the compound light microscope. Magnetic resonance axial images obtained during the time sequence after injury demonstrate a distinct correlation between MR signal intensity patterns and the histologic appearance of the spinal cord. Magnetic resonance imaging delineates the pathologic processes resulting from acute spinal cord injury and can be used to differentiate the type of injury and prognosis.
NASA Astrophysics Data System (ADS)
Liu, Runhan; Yuan, Ying; Long, Huabao; Peng, Sha; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
The intense surface plasmons (SPs) can be generated by patterned metal nano-structure arrays, through coupling incident light onto the functioned metal surface, so as to construct highly constrained surface electromagnetic modes. Therefore, a localized micro-nano-field array with a highly compressed surface electron distribution, can also be shaped and even nano-focused over the surface, which will lead to a lot of special physical effects such as anti-reflection effect, and thus indicate many new potential applications in the field of nano-photonics and -optoelectronics. In this paper, several typical patterned sub-wavelength metal nano-structure arrays were designed according to the process, in which common silicon wafer was employed as the substrate material and aluminum as the metal film with different structural size and arrangement circle. In addition, by adjusting the dielectric constant of metal material appropriately, the power control effect on metallic nanostructure was simulated. The key properties such as the excitation intensity of the surface plasmons were studied by simulating the reflectivity characteristic curves and the electric field distribution of the nanostructure excited by incident infrared beams. It is found that the angle of corners, the arrangement cycle and the metal material properties of the patterned nano-structures can be utilized as key factors to control the excitation intensity of surface plasmons.
Vijayakumar, A; Rosen, Joseph
2017-06-12
Recording digital holograms without wave interference simplifies the optical systems, increases their power efficiency and avoids complicated aligning procedures. We propose and demonstrate a new technique of digital hologram acquisition without two-wave interference. Incoherent light emitted from an object propagates through a random-like coded phase mask and recorded directly without interference by a digital camera. In the training stage of the system, a point spread hologram (PSH) is first recorded by modulating the light diffracted from a point object by the coded phase masks. At least two different masks should be used to record two different intensity distributions at all possible axial locations. The various recorded patterns at every axial location are superposed in the computer to obtain a complex valued PSH library cataloged to its axial location. Following the training stage, an object is placed within the axial boundaries of the PSH library and the light diffracted from the object is once again modulated by the same phase masks. The intensity patterns are recorded and superposed exactly as the PSH to yield a complex hologram of the object. The object information at any particular plane is reconstructed by a cross-correlation between the complex valued hologram and the appropriate element of the PSH library. The characteristics and the performance of the proposed system were compared with an equivalent regular imaging system.
Influence of room lighting on grey-scale perception with a CRT-and a TFT monitor display.
Haak, R; Wicht, M J; Hellmich, M; Nowak, G; Noack, M J
2002-05-01
To determine the influence of ambient lighting on grey-scale perception using a cathode-ray tube (CRT) and a thin film transistor (TFT) computer display. A cathode ray tube (Nokia XS 446) and a liquid crystal display (Panasonic LC 50S) were used at reduced room lighting (70 lux) and under conditions recommended for a dental operatory (1000 lux). Twenty-seven observers examined twice a modified SMPTE test pattern [0 to 255; 255 to 0] grey-scale values. The corresponding contrast differences were allocated to four ranges of grey levels (I: 0-63; II: 64-127; III: 128-191; IV: 192-255). The influences of monitor type, grey-scale range and illumination were evaluated by means of repeated measures analysis of variance. Detection of differences in monochromatic intensity was significantly earlier with reduced lighting (P<0.0001). When full ambient lighting was used, the TFT display was superior compared to the CRT monitor in ranges II and III (P<0.0001), whereas no differences could be detected for grey intensities between 0 and 63 (P=0.71) and between 192 and 255 (P=0.36). Background lighting hampers grey-scale perception on computer displays. In this study of one TFT and one CRT monitor, the TFT in full ambient lighting was associated with earlier detection of grey scale differences than CRT.
Diffracted light from latent images in photoresist for exposure control
Bishop, Kenneth P.; Brueck, Steven R. J.; Gaspar, Susan M.; Hickman, Kirt C.; McNeil, John R.; Naqvi, S. Sohail H.; Stallard, Brian R.; Tipton, Gary D.
1997-01-01
In microelectronics manufacturing, an arrangement for monitoring and control of exposure of an undeveloped photosensitive layer on a structure susceptible to variations in optical properties in order to attain the desired critical dimension for the pattern to be developed in the photosensitive layer. This is done by ascertaining the intensities for one or more respective orders of diffracted power for an incident beam of radiation corresponding to the desired critical dimension for the photosensitive layer as a function of exposure time and optical properties of the structure, illuminating the photosensitive layer with a beam of radiation of one or more frequencies to which the photosensitive layer is not exposure-sensitive, and monitoring the intensities of the orders of diffracted radiation due to said illumination including at least the first order of diffracted radiation thereof, such that when said predetermined intensities for the diffracted orders are reached during said illumination of photosensitive layer, it is known that a pattern having at least approximately the desired critical dimension can be developed on the photosensitive layer.
Patterns and Associated Factors of Physical Activity among Adolescents in Nigeria
Oyeyemi, Adewale L.; Ishaku, Cornelius M.; Oyekola, Jameela; Wakawa, Hajara D.; Lawan, Aliyu; Yakubu, Safira; Oyeyemi, Adetoyeje Y.
2016-01-01
Introduction Understanding the context where adolescents’ physical activity (PA) takes place could impact a more targeted approach to implement PA promotion and interventions in Africa. However, standardized data on adolescents’ PA behaviour is lacking in Nigeria. We described PA patterns in the various domains (home, school, transport, leisure-time) and intensity categories (light-intensity PA, moderate- to vigorous- intensity physical activity [MVPA] and total PA), and their associations with sociodemographic factors and socioeconomic status (SES) among secondary school adolescents in Nigeria. Methods A cross-sectional survey was conducted in a representative sample of 1006 secondary school adolescents (12–18 years, 50.4% girls) in Maiduguri, Nigeria. Self-reported PA was assessed with an adapted version of the Activity Questionnaire for Adolescents and Young Adults. Outcomes were weekly minutes (min/wk) of PA spent in the various domains and intensity categories. Multivariate ANOVA was used to examine associations of PA scores (domains and intensity levels) with adolescents’ sociodemographic characteristics and SES, and track differences in PA scores between subgroups. Results The total sample reported most PA at school (1525 min/wk), the least during active transportation (210 min/wk), and only 37% engaged in 60 min of MVPA daily. Boys reported significantly more leisure-time PA (P<0.001), active transportation (P<0.001), MVPA (P = 0.023) and total PA (P = 0.003) than girls, while girls reported more school-based PA (P = 0.009), home-based PA (P<0.001) and light-intensity PA (P<0.001) than boys. Moderate-intensity PA (P = 0.024) and total PA (P = 0.049) were significantly higher in younger age group than in older group. Household car ownership was associated with less active transportation (P = 0.009), less moderate-intensity PA (P = 0.048) and with more leisure-time PA (P = 0.013). High parental SES was associated with more leisure-time PA (P = 0.002), more MVPA (P = 0.047) and less active transportation (P<0.001). Adolescents of various weight status differed significantly in their leisure-time PA (P<0.001), moderate-intensity PA (P = 0.011) and total PA (P = 0.033). Conclusions The patterns and levels of physical activity among adolescents in Nigeria vary according to the adolescents’ age, gender, weight status and SES. These findings have important public health implications for identifying subgroups of Nigerian adolescents that should be targeted for effective physical activity promoting interventions. PMID:26901382
The ecological impacts of nighttime light pollution: a mechanistic appraisal.
Gaston, Kevin J; Bennie, Jonathan; Davies, Thomas W; Hopkins, John
2013-11-01
The ecological impacts of nighttime light pollution have been a longstanding source of concern, accentuated by realized and projected growth in electrical lighting. As human communities and lighting technologies develop, artificial light increasingly modifies natural light regimes by encroaching on dark refuges in space, in time, and across wavelengths. A wide variety of ecological implications of artificial light have been identified. However, the primary research to date is largely focused on the disruptive influence of nighttime light on higher vertebrates, and while comprehensive reviews have been compiled along taxonomic lines and within specific research domains, the subject is in need of synthesis within a common mechanistic framework. Here we propose such a framework that focuses on the cross-factoring of the ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways in which light influences biological systems, particularly the distinction between light as a resource and light as an information source. We review the evidence for each of the combinations of this cross-factoring. As artificial lighting alters natural patterns of light in space, time and across wavelengths, natural patterns of resource use and information flows may be disrupted, with downstream effects to the structure and function of ecosystems. This review highlights: (i) the potential influence of nighttime lighting at all levels of biological organisation (from cell to ecosystem); (ii) the significant impact that even low levels of nighttime light pollution can have; and (iii) the existence of major research gaps, particularly in terms of the impacts of light at population and ecosystem levels, identification of intensity thresholds, and the spatial extent of impacts in the vicinity of artificial lights. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
Optimum projection pattern generation for grey-level coded structured light illumination systems
NASA Astrophysics Data System (ADS)
Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramos-Garcia, Ruben
2017-04-01
Structured light illumination (SLI) systems are well-established optical inspection techniques for noncontact 3D surface measurements. A common technique is multi-frequency sinusoidal SLI that obtains the phase map at various fringe periods in order to estimate the absolute phase, and hence, the 3D surface information. Nevertheless, multi-frequency SLI systems employ multiple measurement planes (e.g. four phase shifted frames) to obtain the phase at a given fringe period. It is therefore an age old challenge to obtain the absolute surface information using fewer measurement frames. Grey level (GL) coding techniques have been developed as an attempt to reduce the number of planes needed, because a spatio-temporal GL sequence employing p discrete grey-levels and m frames has the potential to unwrap up to pm fringes. Nevertheless, one major disadvantage of GL based SLI techniques is that there are often errors near the border of each stripe, because an ideal stepwise intensity change cannot be measured. If the step-change in intensity is a single discrete grey-level unit, this problem can usually be overcome by applying an appropriate threshold. However, severe errors occur if the intensity change at the border of the stripe exceeds several discrete grey-level units. In this work, an optimum GL based technique is presented that generates a series of projection patterns with a minimal gradient in the intensity. It is shown that when using this technique, the errors near the border of the stripes can be significantly reduced. This improvement is achieved with the choice generated patterns, and does not involve additional hardware or special post-processing techniques. The performance of that method is validated using both simulations and experiments. The reported technique is generic, works with an arbitrary number of frames, and can employ an arbitrary number of grey-levels.
NASA Astrophysics Data System (ADS)
Sun, Yuan; Liu, Chang; Chen, Ping-Xing; Liu, Liang
2018-02-01
People have been paying attention to the role of atoms' complex internal level structures in the research of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic states and the atomic transitions' linkage structure, clear signatures of quantum interference induced by the probe and coupling light's polarizations can emerge from a typical EIT phenomena. We propose to study a four-state system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the polarization-induced interference enables polarization-dependent cross modulation between incident weak lights that can be effective even at the few-photon level. The theme is to gain more insight into the essential question: how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear optical interactions, valid for a wide range of incidence intensities down to the few-photon level?
NASA Astrophysics Data System (ADS)
Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro
2016-05-01
We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from human fingers.
Light-assisted, templated self-assembly of gold nanoparticle chains.
Jaquay, Eric; Martínez, Luis Javier; Huang, Ningfeng; Mejia, Camilo A; Sarkar, Debarghya; Povinelli, Michelle L
2014-09-10
We experimentally demonstrate the technique of light-assisted, templated self-assembly (LATS) to trap and assemble 200 nm diameter gold nanoparticles. We excite a guided-resonance mode of a photonic-crystal slab with 1.55 μm laser light to create an array of optical traps. Unlike our previous demonstration of LATS with polystyrene particles, we find that the interparticle interactions play a significant role in the resulting particle patterns. Despite a two-dimensionally periodic intensity profile in the slab, the particles form one-dimensional chains whose orientations can be controlled by the incident polarization of the light. The formation of chains can be understood in terms of a competition between the gradient force due to the excitation of the mode in the slab and optical binding between particles.
Ge, Hongmei; Xia, Ling; Zhou, Xuping; Zhang, Delu; Hu, Chunxiang
2014-02-01
A study on the effects of light intensity (40 and 80 μE/m(2)/sec) on the components and topographical structures of extracellular polysaccharides (EPS) was carried out in cyanobacteria Nostoc sp.. EPS yield increased with light intensity. However, light intensity did not significantly affect the EPS fractions and monosaccharide composition. Higher light intensity generally resulted in higher protein content of EPS in similar fractions. The topographical structure of EPS, investigated by atomic force microscopy, appeared as spherical lumps, chains and networks. The long chains were observed at higher light intensity. Thus, light intensity affected the yield and nature of EPS.
Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity.
Li, Jielin; Hassebrook, Laurence G; Guan, Chun
2003-01-01
Temporal frame-to-frame noise in multipattern structured light projection can significantly corrupt depth measurement repeatability. We present a rigorous stochastic analysis of phase-measuring-profilometry temporal noise as a function of the pattern parameters and the reconstruction coefficients. The analysis is used to optimize the two-frequency phase measurement technique. In phase-measuring profilometry, a sequence of phase-shifted sine-wave patterns is projected onto a surface. In two-frequency phase measurement, two sets of pattern sequences are used. The first, low-frequency set establishes a nonambiguous depth estimate, and the second, high-frequency set is unwrapped, based on the low-frequency estimate, to obtain an accurate depth estimate. If the second frequency is too low, then depth error is caused directly by temporal noise in the phase measurement. If the second frequency is too high, temporal noise triggers ambiguous unwrapping, resulting in depth measurement error. We present a solution for finding the second frequency, where intensity noise variance is at its minimum.
Compact illumination optic with three freeform surfaces for improved beam control.
Sorgato, Simone; Mohedano, Rubén; Chaves, Julio; Hernández, Maikel; Blen, José; Grabovičkić, Dejan; Benítez, Pablo; Miñano, Juan Carlos; Thienpont, Hugo; Duerr, Fabian
2017-11-27
Multi-chip and large size LEDs dominate the lighting market in developed countries these days. Nevertheless, a general optical design method to create prescribed intensity patterns for this type of extended sources does not exist. We present a design strategy in which the source and the target pattern are described by means of "edge wavefronts" of the system. The goal is then finding an optic coupling these wavefronts, which in the current work is a monolithic part comprising up to three freeform surfaces calculated with the simultaneous multiple surface (SMS) method. The resulting optic fully controls, for the first time, three freeform wavefronts, one more than previous SMS designs. Simulations with extended LEDs demonstrate improved intensity tailoring capabilities, confirming the effectiveness of our method and suggesting that enhanced performance features can be achieved by controlling additional wavefronts.
On the properties of organic heterostructures prepared with nano-patterned metallic electrode
NASA Astrophysics Data System (ADS)
Breazu, C.; Socol, M.; Preda, N.; Matei, E.; Rasoga, O.; Girtan, M.; Mallet, R.; Stanculescu, F.; Stanculescu, A.
2018-06-01
This paper presents a comparative study between the properties of the heterostructures realized with single/multi layer organic (zinc phthalocyanine or/and fullerene) prepared on Si substrate between flat or patterned aluminum (Al) layer metallic electrode and multi layer ZnO/Au/ZnO transparent conductor electrode (TCE). The UV-Nanoimprint Lithography was used for the realization of a 2D array of nanostructures (holes/pillars) characterized by a periodicity of 1.1 μm and cylindrical shape: diameter = 400 nm and depth/height = 300 nm. The effect of the electrode patterning on the properties of the organic heterostructures was analyzed. For the samples with patterned Al electrode was remarked a slight red shift of the peaks in the reflection spectra determined by an increased interaction between the organic molecules in the delimited region of the patterned holes. The shape of the emission spectra at excitation with UV light showed a narrow intense peak around 500 nm associated with the intense resonance phenomena between the energy of the incident light and the surface plasmons in the patterned Al layer. The TCE followed the morphology of the organic film on which it was deposited. The significant differences between the morphology of the top layer in the heterostructures realized on flat and patterned Al are correlated with the total thickness of the successively deposited layers and with the particularities of the molecular arrangement, leading to the preservation or deleting of patterning. An injection contact behavior was evidence for most heterostructures built on flat and patterned Al. The slight increase in current at an applied bias <1 V in the heterostructure Si/Al/ZnPc/TCE is attributed to the larger interfacial area between the patterned Al electrode and ZnPc layer compared to the interface area between flat Al and ZnPc. A buffer layer of 1,4,5,8-naphthalen-tetracarboxylic dianhydride (NTCDA), sandwiched between the flat metallic electrode and organic film in the heterostructure Si/Al/C60/ZnPc/TCE has determined an increase in the current at low applied voltages.
Sol-Gel Glass Holographic Light-Shaping Diffusers
NASA Technical Reports Server (NTRS)
Yu, Kevin; Lee, Kang; Savant, Gajendra; Yin, Khin Swe (Lillian)
2005-01-01
Holographic glass light-shaping diffusers (GLSDs) are optical components for use in special-purpose illumination systems (see figure). When properly positioned with respect to lamps and areas to be illuminated, holographic GLSDs efficiently channel light from the lamps onto specified areas with specified distributions of illumination for example, uniform or nearly uniform irradiance can be concentrated with intensity confined to a peak a few degrees wide about normal incidence, over a circular or elliptical area. Holographic light diffusers were developed during the 1990s. The development of the present holographic GLSDs extends the prior development to incorporate sol-gel optical glass. To fabricate a holographic GLSD, one records a hologram on a sol-gel silica film formulated specially for this purpose. The hologram is a quasi-random, micro-sculpted pattern of smoothly varying changes in the index of refraction of the glass. The structures in this pattern act as an array of numerous miniature lenses that refract light passing through the GLSD, such that the transmitted light beam exhibits a precisely tailored energy distribution. In comparison with other light diffusers, holographic GLSDs function with remarkably high efficiency: they typically transmit 90 percent or more of the incident lamp light onto the designated areas. In addition, they can withstand temperatures in excess of 1,000 C. These characteristics make holographic GLSDs attractive for use in diverse lighting applications that involve high temperatures and/or requirements for high transmission efficiency for ultraviolet, visible, and near-infrared light. Examples include projectors, automobile headlights, aircraft landing lights, high-power laser illuminators, and industrial and scientific illuminators.
High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces
NASA Astrophysics Data System (ADS)
Jiang, Hongzhi; Zhao, Huijie; Li, Xudong
2012-10-01
This paper presents a novel 3-D scanning technique for high-reflective surfaces based on phase-shifting fringe projection method. High dynamic range fringe acquisition (HDRFA) technique is developed to process the fringe images reflected from the shiny surfaces, and generates a synthetic fringe image by fusing the raw fringe patterns, acquired with different camera exposure time and the illumination fringe intensity from the projector. Fringe image fusion algorithm is introduced to avoid saturation and under-illumination phenomenon by choosing the pixels in the raw fringes with the highest fringe modulation intensity. A method of auto-selection of HDRFA parameters is developed and largely increases the measurement automation. The synthetic fringes have higher signal-to-noise ratio (SNR) under ambient light by optimizing HDRFA parameters. Experimental results show that the proposed technique can successfully measure objects with high-reflective surfaces and is insensitive to ambient light.
Intense X-ray and EUV light source
Coleman, Joshua; Ekdahl, Carl; Oertel, John
2017-06-20
An intense X-ray or EUV light source may be driven by the Smith-Purcell effect. The intense light source may utilize intense electron beams and Bragg crystals. This may allow the intense light source to range from the extreme UV range up to the hard X-ray range.
14 CFR 23.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Equipment Lights § 23.1389 Position light distribution and intensities. (a) General. The intensities prescribed in this section must be provided by new equipment with each light cover and color filter in place... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light distribution and intensities...
14 CFR 23.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Equipment Lights § 23.1389 Position light distribution and intensities. (a) General. The intensities prescribed in this section must be provided by new equipment with each light cover and color filter in place... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light distribution and intensities...
14 CFR 23.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Equipment Lights § 23.1389 Position light distribution and intensities. (a) General. The intensities prescribed in this section must be provided by new equipment with each light cover and color filter in place... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light distribution and intensities...
A laboratory analogue of the event horizon using slow light in an atomic medium.
Leonhardt, Ulf
2002-01-24
Singularities underlie many optical phenomena. The rainbow, for example, involves a particular type of singularity-a ray catastrophe-in which light rays become infinitely intense. In practice, the wave nature of light resolves these infinities, producing interference patterns. At the event horizon of a black hole, time stands still and waves oscillate with infinitely small wavelengths. However, the quantum nature of light results in evasion of the catastrophe and the emission of Hawking radiation. Here I report a theoretical laboratory analogue of an event horizon: a parabolic profile of the group velocity of light brought to a standstill in an atomic medium can cause a wave singularity similar to that associated with black holes. In turn, the quantum vacuum is forced to create photon pairs with a characteristic spectrum, a phenomenon related to Hawking radiation. The idea may initiate a theory of 'quantum' catastrophes, extending classical catastrophe theory.
Spectral line intensity irreversibility in circulatory plasma magnetization processes
NASA Astrophysics Data System (ADS)
Qu, Z. Q.; Dun, G. T.
2012-01-01
Spectral line intensity variation is found to be irreversible in circulatory plasma magnetization process by experiments described in this paper, i.e., the curves illustrating spectral line photon fluxes irradiated from a light source immerged in a magnetic field by increasing the magnetic induction cannot be reproduced by decreasing the magnetic induction within the errors. There are two plasma magnetization patterns found. One shows that the intensities are greater at the same magnetic inductions during the magnetic induction decreasing process after the increasing, and the other gives the opposite effect. This reveals that the magneto-induced excitation and de-excitation process is irreversible like ferromagnetic magnetization. But the two irreversible processes are very different in many aspects stated in the text.
Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.
2016-01-01
We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264
Biophotonic perception on Desmodesmus sp. VIT growth, lipid and carbohydrate content.
Sriram, Srinivasan; Seenivasan, Ramasubbu
2015-12-01
Constant and fluctuating light intensity significantly affects the growth and biochemical composition of microalgae and it is essential to identify suitable illumination conditions for commercial microalgae biofuel production. In the present study, effects of light intensities, light:dark cycles, incremental light intensity strategies and fluctuating light intensities simulating different sky conditions in indoor photobioreactor on Desmodesmus sp. VIT growth, lipid and carbohydrate content were analyzed in batch culture. The results revealed that Desmodesmus sp. VIT obtained maximum lipid content (22.5%) and biomass production (1.033 g/L) under incremental light intensity strategy. The highest carbohydrate content of 25.4% was observed under constant light intensity of 16,000 lx and 16:08 h light:dark cycle. The maximum biomass productivity of Desmodesmus sp. VIT (53.38 mg/L/d) was occurred under fluctuating light intensity simulating intermediate overcast sky condition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Siminovitch, Michael J.; Page, Erik R.
2002-01-01
A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) or other lamps arranged vertically, i.e. one lamp above the other, with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum ensures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. In a particular configuration, the reflective septum is bowl shaped, with the upper CFL sitting in the bowl, and a luminous shade hanging down from the bowl. The lower CFL provides both task lighting and uniform shade luminance. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. However, other types of lamps, including incandescent, halogen, and LEDs can also be used in the fixture. The lighting system may be designed for the home, hospitality, office or other environments.
Qin, Yuan; Michalowski, Andreas; Weber, Rudolf; Yang, Sen; Graf, Thomas; Ni, Xiaowu
2012-11-19
Ray-tracing is the commonly used technique to calculate the absorption of light in laser deep-penetration welding or drilling. Since new lasers with high brilliance enable small capillaries with high aspect ratios, diffraction might become important. To examine the applicability of the ray-tracing method, we studied the total absorptance and the absorbed intensity of polarized beams in several capillary geometries. The ray-tracing results are compared with more sophisticated simulations based on physical optics. The comparison shows that the simple ray-tracing is applicable to calculate the total absorptance in triangular grooves and in conical capillaries but not in rectangular grooves. To calculate the distribution of the absorbed intensity ray-tracing fails due to the neglected interference, diffraction, and the effects of beam propagation in the capillaries with sub-wavelength diameter. If diffraction is avoided e.g. with beams smaller than the entrance pupil of the capillary or with very shallow capillaries, the distribution of the absorbed intensity calculated by ray-tracing corresponds to the local average of the interference pattern found by physical optics.
Sheets, Erin S; Bujarski, Spencer; Leventhal, Adam M; Ray, Lara A
2015-08-01
The ability to recognize and label discrete emotions, termed emotion differentiation, is particularly pertinent to overall emotion regulation abilities. Patterns of deficient emotion differentiation have been associated with mood and anxiety disorders but have yet to be examined in relation to nicotine dependence. This study employed ecological momentary assessment to examine smokers' subjective experience of discrete emotions during 24-h of forced tobacco abstinence. Thirty daily smokers rated their emotions up to 23 times over the 24-hour period, and smoking abstinence was biologically verified. From these data, we computed individual difference measures of emotion differentiation, overall emotion intensity, and emotional variability. As hypothesized, heavy smokers reported poorer negative emotion differentiation than light smokers (d=0.55), along with more intense negative emotion (d=0.97) and greater negative emotion variability (d=0.97). No differences were observed in positive emotion differentiation. Across the sample, poorer negative emotion differentiation was associated with greater endorsement of psychological motives to smoke, including negative and positive reinforcement motives, while positive emotion differentiation was not. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sjöström, A; Abrahamsson, M
1994-04-01
In a previous experimental study on anaesthetized cat it was shown that a short latency (35-40 ms) cortical potential changed polarity due to the presence or absence of a pattern in the flash stimulus. The results suggested one pathway of neuronal activation in the cortex to a pattern that was within the level of resolution and another to patterns that were not. It was implied that a similar difference in impulse transmission to pattern and non-pattern stimuli may be recorded in humans. The present paper describes recordings of the short-latency visual evoked response to varying light flash checkerboard pattern stimuli of high intensity in visually normal and amblyopic children and adults. When stimulating the normal eye a visual evoked response potential with a peak latency between 35 to 40 ms showed a polarity change to patterned compared to non-patterned stimulation. The visual evoked response resolution limit could be correlated to a visual acuity of 0.5 and below. In amblyopic eyes the shift in polarity was recorded at the acuity limit level. The latency of the pattern depending potential was increased in patients with amblyopia compared to normal, but not directly related to amblyopic degree. It is concluded that the short latency, visual evoked response that mainly represents the retino-geniculo-cortical activation may be used to estimate visual resolution below 0.5 in acuity level.(ABSTRACT TRUNCATED AT 250 WORDS)
Deshmukh, Priti B; Puppalwar, S P; Dhoble, N S; Dhoble, S J
2015-02-01
Eu(3+) -activated MAl(SO4 )2 Br phosphors (where M = Mg or Sr) are successfully prepared using a wet chemical reaction technique. The samples are characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopies. The XRD pattern revealed that both the samples are microcrystalline in nature. PL of Eu(3+) -doped SrAl(SO4 )2 Br and MgAl(SO4 )2 Br phosphors exhibited characteristic red emission coming from the (5) D0 → (7) F2 (616 nm) electron transition, when excited by 396 nm wavelength of light. The maximum intensity of luminescence was observed at a concentration of 1 mol% Eu(3+) . The intensity of the electric dipole transition at 616 nm is greater than that of the magnetic dipole transition at 594 nm. The results showed that MAl(SO4 )2 Br:Eu(3+) , (M = Mg, Sr) phosphors have potential application in near-UV light-emitting diodes as efficient red-emitting phosphor. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen; Panda, Jayanta
2006-01-01
A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 10 kHz. A high power CW laser beam is focused at a point in a heated air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature, velocity, and density of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. Power spectral density calculations of temperature, velocity, and density fluctuations, as well as mean and fluctuating quantities are demonstrated for various radial locations in the jet flow at a fixed axial distance from the jet exit plane. Results are compared with constant current anemometry and pitot probe measurements at the same locations.
33 CFR 84.15 - Intensity of lights.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Intensity of lights. 84.15... NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.15 Intensity of lights. (a) The minimum luminous intensity of lights will be calculated by using the formula: I = 3.43 × 106...
Light-evoked S-nitrosylation in the retina
Tooker, Ryan E; Vigh, Jozsef
2015-01-01
Nitric oxide (NO) synthesis in the retina is triggered by light stimulation. NO has been shown to modulate visual signal processing at multiple sites in the vertebrate retina, via activation of the most sensitive target of NO signaling, soluble guanylate cyclase. NO can also alter protein structure and function and exert biological effects directly by binding to free thiol groups of cysteine residues in a chemical reaction called S-nitrosylation. However, in the central nervous system, including the retina, this reaction has not been considered to be significant under physiological conditions. Here we provide immunohistochemical evidence for extensive S-nitrosylation that takes place in the goldfish and mouse retinas under physiologically relevant light intensities, in an intensity-dependent manner, with a strikingly similar pattern in both species. Pre-treatment with NEM, which occludes S-nitrosylation, or with TRIM, an inhibitor of neuronal NO synthase, eliminated the light-evoked increase in S-nitrosylated protein immunofluorescence (SNI) in the retinas of both species. Similarly, light did not increase SNI, above basal levels, in retinas of transgenic mice lacking neuronal NO synthase. Qualitative analysis of the light-adapted mouse retina with mass spectrometry revealed more than 300 proteins that were S-nitrosylated upon illumination, many of which are known to participate directly in retinal signal processing. Our data strongly suggest that in the retina, light-evoked NO production leads to extensive S-nitrosylation and that this process is a significant post-translational modification affecting a wide range of proteins under physiological conditions. PMID:25823749
Intensity output and effectiveness of light curing units in dental offices.
Omidi, Baharan-Ranjbar; Gosili, Armin; Jaber-Ansari, Mona; Mahdkhah, Ailin
2018-06-01
The aims of the study were measuring the light intensity of light curing units used in Qazvin's dental offices, determining the relationship between the clinical age of these units and their light intensity, and identifying the reasons for repairing them. In this cross-sectional study, the output intensity of 95 light curing devices was evaluated using a radiometer. The average output intensity was divided up into four categories (less than 200, 200-299, 300-500, and more than 500 mW/cm2). In addition, a questionnaire was designed to obtain information mainly about the type, clinical age, and frequency of maintenance of the units and the reasons for fixing them. Data were analyzed using Kolmogorov-Smirnov, chi-squared, and t-tests ( p < 0.05) on SPSS 24. A total of 95 light curing units were examined, with 61 (64.2%) of them being of the LED type and 34 (35.8%) of the QTH type. While average light intensity in LED units was significantly higher than in QTH devices, the two device types were not significantly different regarding desirable light intensity (i.e., ≥ 300 mw/cm2). A negative correlation was observed between clinical age and light intensity. In addition, bulb replacement in QTH devices was over three times as much as in LED units. Also, repairing QTHs was more than twice as much frequent as fixing LEDs. The most common reason for repair was the breakage of the tip of the device. The light intensity of LED units is significantly higher than that of QTH devices, and the frequency of repairing in QTHs was significantly more than in LEDs. Furthermore, light intensity decreases with aging, and dentists should regularly monitor the conditions of light units. Key words: Light curing unit, radiometer, light intensity, dental equipment, dental offices.
360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation.
Servin, Manuel; Padilla, Moises; Garnica, Guillermo
2016-01-11
360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details.
POF-yarn weaves: controlling the light out-coupling of wearable phototherapy devices
Quandt, Brit M.; Pfister, Marisa S.; Lübben, Jörn F.; Spano, Fabrizio; Rossi, René M.; Bona, Gian-Luca; Boesel, Luciano F.
2017-01-01
Neonatal jaundice (hyperbilirubinaemia) is common in neonates and, often, intensive blue-light phototherapy is required to prevent long-term effects. A photonic textile can overcome three major incubator-related concerns: Insulation of the neonate, human contact, and usage restraints. This paper describes the development of a homogeneous luminous textile from polymer optical fibres to use as a wearable, long-term phototherapy device. The bend out-coupling of light from the POFs was related to the weave production, e.g. weave pattern and yarn densities. Comfort, determined by friction against a skin model and breathability, was investigated additionally. Our textile is the first example of phototherapeutic clothing that is produced sans post-processing allowing for faster commercial production. PMID:29082067
Optical calculation of correlation filters for a robotic vision system
NASA Technical Reports Server (NTRS)
Knopp, Jerome
1989-01-01
A method is presented for designing optical correlation filters based on measuring three intensity patterns: the Fourier transform of a filter object, a reference wave and the interference pattern produced by the sum of the object transform and the reference. The method can produce a filter that is well matched to both the object, its transforming optical system and the spatial light modulator used in the correlator input plane. A computer simulation was presented to demonstrate the approach for the special case of a conventional binary phase-only filter. The simulation produced a workable filter with a sharp correlation peak.
NASA Astrophysics Data System (ADS)
Chen, Chun-Jen; Wu, Wen-Hong; Huang, Kuo-Cheng
2009-08-01
A multi-function lens test instrument is report in this paper. This system can evaluate the image resolution, image quality, depth of field, image distortion and light intensity distribution of the tested lens by changing the tested patterns. This system consists of a tested lens, a CCD camera, a linear motorized stage, a system fixture, an observer LCD monitor, and a notebook for pattern providing. The LCD monitor displays a serious of specified tested patterns sent by the notebook. Then each displayed pattern goes through the tested lens and images in the CCD camera sensor. Consequently, the system can evaluate the performance of the tested lens by analyzing the image of CCD camera with special designed software. The major advantage of this system is that it can complete whole test quickly without interruption due to part replacement, because the tested patterns are statically displayed on monitor and controlled by the notebook.
Micromilled optical elements for edge-lit illumination panels
NASA Astrophysics Data System (ADS)
Ronny, Rahima Afrose; Knopf, George K.; Bordatchev, Evgueni; Nikumb, Suwas
2013-04-01
Edge-lit light guide panels (LGPs) with micropatterned surfaces represent a new technology for developing small- and medium-sized illumination sources for application such as automotive, residential lighting, and advertising displays. The shape, density, and spatial distribution of the micro-optical structures (MOSs) imprinted on the transparent LGP must be selected to achieve high brightness and uniform luminance over the active surface. We examine how round-tip cylindrical MOSs fabricated by precision micromilling can be used to create patterned surfaces on low-cost transparent polymethyl-methacrylate substrates for high-intensity illumination applications. The impact of varying the number, pitch, spatial distribution, and depth of the optical microstructures on lighting performance is initially investigated using LightTools™ simulation software. To illustrate the microfabrication process, several 100×100×6 mm3 LGP prototypes are constructed and tested. The prototypes include an "optimized" array of MOSs that exhibit near-uniform illumination (approximately 89%) across its active light-emitting surface. Although the average illumination was 7.3% less than the value predicted from numerical simulation, it demonstrates how LGPs can be created using micromilling operations. Customized MOS arrays with a bright rectangular pattern near the center of the panel and a sequence of MOSs that illuminate a predefined logo are also presented.
Prabhakaran, Priya M; Sheeba, Vasu
2014-10-01
Recent studies under semi-natural conditions have revealed various unique features of activity/rest rhythms in Drosophilids that differ from those under standard laboratory conditions. An additional afternoon peak (A-peak) has been reported for Drosophila melanogaster and another species D. malerkotliana while D. ananassae exhibited mostly unimodal diurnal activity. To tease apart the role of light and temperature in mediating these species-specific behaviours of four Drosophilid species D. melanogaster, D. malerkotliana, D. ananassae, and Zaprionus indianus we simulated gradual natural light and/or temperature cycles conditions in laboratory. The pattern observed under semi-natural conditions could be reproduced in the laboratory for all the species under a variety of simulated conditions. D. melanogaster and D. malerkotliana showed similar patterns where as D. ananassae consistently exhibited predominant morning activity under almost all regimes. Z. indianus showed clearly rhythmic activity mostly when temperature cycles were provided. We find that gradually changing light intensities reaching a sufficiently high peak value can elicit A-peak in D. melanogaster, D. malerkotliana, and D. ananassae even at mild ambient temperature. Furthermore, we show that high mid-day temperature could induce A-peak in all species even under constant light conditions suggesting that this A-peak is likely to be a stress response.
Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina
2016-01-01
The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject.
Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina
2016-01-01
The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject. PMID:26943121
33 CFR 84.15 - Intensity of lights.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Intensity of lights. 84.15... NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.15 Intensity of lights. (a) The minimum luminous intensity of lights shall be calculated by using the formula: I=3.43×106×T...
33 CFR 84.15 - Intensity of lights.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Intensity of lights. 84.15... NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.15 Intensity of lights. (a) The minimum luminous intensity of lights will be calculated by using the formula: I=3.43×106 ×T...
33 CFR 84.15 - Intensity of lights.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Intensity of lights. 84.15... NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.15 Intensity of lights. (a) The minimum luminous intensity of lights will be calculated by using the formula: I=3.43×106 ×T...
33 CFR 84.15 - Intensity of lights.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Intensity of lights. 84.15... NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.15 Intensity of lights. (a) The minimum luminous intensity of lights shall be calculated by using the formula: I=3.43×106×T...
Stone, Julia E; Sletten, Tracey L; Magee, Michelle; Ganesan, Saranea; Mulhall, Megan D; Collins, Allison; Howard, Mark; Lockley, Steven W; Rajaratnam, Shantha M W
2018-06-01
Shift work is highly prevalent and is associated with significant adverse health impacts. There is substantial inter-individual variability in the way the circadian clock responds to changing shift cycles. The mechanisms underlying this variability are not well understood. We tested the hypothesis that light-dark exposure is a significant contributor to this variability; when combined with diurnal preference, the relative timing of light exposure accounted for 71% of individual variability in circadian phase response to night shift work. These results will drive development of personalised approaches to manage circadian disruption among shift workers and other vulnerable populations to potentially reduce the increased risk of disease in these populations. Night shift workers show highly variable rates of circadian adaptation. This study examined the relationship between light exposure patterns and the magnitude of circadian phase resetting in response to night shift work. In 21 participants (nursing and medical staff in an intensive care unit) circadian phase was measured using 6-sulphatoxymelatonin at baseline (day/evening shifts or days off) and after 3-4 consecutive night shifts. Daily light exposure was examined relative to individual circadian phase to quantify light intensity in the phase delay and phase advance portions of the light phase response curve (PRC). There was substantial inter-individual variability in the direction and magnitude of phase shift after three or four consecutive night shifts (mean phase delay -1:08 ± 1:31 h; range -3:43 h delay to +3:07 h phase advance). The relative difference in the distribution of light relative to the PRC combined with diurnal preference accounted for 71% of the variability in phase shift. Regression analysis incorporating these factors estimated phase shift to within ±60 min in 85% of participants. No participants met criteria for partial adaptation to night work after three or four consecutive night shifts. Our findings provide evidence that the phase resetting that does occur is based on individual light exposure patterns relative to an individual's baseline circadian phase. Thus, a 'one size fits all' approach to promoting adaptation to shift work using light therapy, implemented without knowledge of circadian phase, may not be efficacious for all individuals. © 2018 Monash University. The Journal of Physiology © 2018 The Physiological Society.
NASA Astrophysics Data System (ADS)
Frankowski, G.; Hainich, R.
2009-02-01
Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.
2001-06-06
X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.
Evenson, Kelly R; Wen, Fang; Hales, Derek; Herring, Amy H
2016-05-03
Applying latent class analysis (LCA) to accelerometry can help elucidated underlying patterns. This study described the patterns of accelerometer-determined sedentary behavior and physical activity among youth by applying LCA to a nationally representative United States (US) sample. Using 2003-2006 National Health and Nutrition Examination Survey data, 3998 youths 6-17 years wore an ActiGraph 7164 accelerometer for one week, providing > =3 days of wear for > =8 h/day from 6:00 am-midnight. Cutpoints defined sedentary behavior (<100 counts/minute), light activity (100-2295 counts/minute), moderate to vigorous physical activity (MVPA; > = 2296 counts/minute), and vigorous activity (> = 4012 counts/minute). To account for wear time differences, outcomes were expressed as percent of day in a given intensity. LCA was used to classify daily (Monday through Sunday) patterns of average counts/minute, sedentary behavior, light activity, MVPA, and vigorous activity separately. The latent classes were explored overall and by age (6-11, 12-14, 15-17 years), gender, and whether or not youth attended school during measurement. Estimates were weighted to account for the sampling frame. For average counts/minute/day, four classes emerged from least to most active: 40.9% of population (mean 323.5 counts/minute/day), 40.3% (559.6 counts/minute/day), 16.5% (810.0 counts/minute/day), and 2.3% (1132.9 counts/minute/day). For percent of sedentary behavior, four classes emerged: 13.5% of population (mean 544.6 min/day), 30.1% (455.1 min/day), 38.5% (357.7 min/day), and 18.0% (259.2 min/day). For percent of light activity, four classes emerged: 12.3% of population (mean 222.6 min/day), 29.3% (301.7 min/day), 41.8% (384.0 min/day), and 16.6% (455.5 min/day). For percent of MVPA, four classes emerged: 59.9% of population (mean 25.0 min/day), 33.3% (60.9 min/day), 3.1% (89.0 min/day), and 3.6% (109.3 min/day). For percent of vigorous activity, three classes emerged: 76.8% of population (mean 7.1 min/day), 18.5% (23.9 min/day), and 4.7% (47.4 min/day). Classes were developed by age, gender, and school attendance since some patterns differed when stratifying by these factors. The models supported patterns for average intensity, sedentary behavior, light activity, MVPA, and vigorous activity. These latent class derived patterns can be used in other youth studies to explore correlates or outcomes and to target sedentary behavior or physical activity interventions.
Confining standing waves in optical corrals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babayan, Y.; McMahon, J. M.; Li, S.
2009-03-01
Near-field scanning optical microscopy images of solid wall, circular, and elliptical microscale corrals show standing wave patterns confined inside the structures with a wavelength close to that of the incident light. The patterns inside the corrals can be tuned by changing the size and material of the walls, the wavelength of incident light, and polarization direction for elliptical corrals. Finite-difference time-domain calculations of the corral structures agree with the experimental observations and reveal that the electric and magnetic field intensities are out of phase inside the corral. A theoretical modal analysis indicates that the fields inside the corrals can bemore » attributed to p- and s-polarized waveguide modes, and that the superposition of the propagating and evanescent modes can explain the phase differences between the fields. These experimental and theoretical results demonstrate that electromagnetic fields on a dielectric surface can be controlled in a predictable manner.« less
NASA Astrophysics Data System (ADS)
Zhou, Yi; Hu, Xiaoyong; Gao, Wei; Song, Hanfa; Chu, Saisai; Yang, Hong; Gong, Qihuang
2018-06-01
Two-dimensional van der Waals materials are interesting for fundamental physics exploration and device applications because of their attractive physical properties. Here, we report a strategy to realize photoluminescence (PL) enhancement of two-dimensional transition-metal dichalcogenides (TMDCs) in the visible range using a plasmonic microstructure with patterned gold nanoantennas and a metal-insulator-semiconductor-insulator-metal structure. The PL intensity was enhanced by a factor of two under Y-polarization due to the increased radiative decay rate by the surface plasmon radiation channel in the gold nanoantennas and the decreased nonradiative decay rate by suppressing exciton quenching in the SiO2 isolation layer. The fluorescence lifetime of monolayer tungsten disulfide in this structure was shorter than that of a sample without patterned gold nanoantennas. Tailoring the light-matter interactions between two-dimensional TMDCs and plasmonic nanostructures may provide highly efficient optoelectronic devices such as TMDC-based light emitters.
'In a dark place, we find ourselves': light intensity in critical care units.
Durrington, Hannah J; Clark, Richard; Greer, Ruari; Martial, Franck P; Blaikley, John; Dark, Paul; Lucas, Robert J; Ray, David W
2017-12-01
Intensive care units provide specialised care for critically ill patients around the clock. However, intensive care unit patients have disrupted circadian rhythms. Furthermore, disrupted circadian rhythms are associated with worse outcome. As light is the most powerful 're-setter' of circadian rhythm, we measured light intensity on intensive care unit. Light intensity was low compared to daylight during the 'day'; frequent bright light interruptions occurred over 'night'. These findings are predicted to disrupt circadian rhythms and impair entrainment to external time. Bright lighting during daytime and black out masks at night might help maintain biological rhythms in critically ill patients and improve clinical outcomes.
Experiments and Theory of Induced Optical Magnetization
NASA Astrophysics Data System (ADS)
Fisher, Alexander A.
This thesis reports the results of light scattering experiments at moderate optical intensities (˜ 108 W/cm2) in which the magnetic component of light induces magnetic dipolar response of unprecedented intensity by a novel nonlinear mechanism. Both experimentally and theoretically the amplitude of induced magnetization is found to be as large as electric polarization (M = cP) at intensities above ~ 108 W/cm2 in different materials, greatly exceeding the conventional bounds of the multipole expansion. The transverse nature of the magnetization, its frequency, and its quadratic dependence on incident light intensity are in agreement with an exact theory which identifies the importance of magnetically-induced torque in achieving 2-photon resonance of this ultrafast process. In this work we report and compare the intensity dependence of cross-polarized scattering in the transparent molecular liquids CCl4, SiCl 4, SiBr4, SnCl4, C6H6, C 6D6, C6H5NH2, and C 6H5CN and the crystalline solid Gd3Ga5O 12. Complete radiation patterns of co-polarized and cross-polarized light scattering were recorded as a function of intensity in these homogeneous media and subsequently decomposed into polarized and unpolarized components to provide a more complete picture of scattering dynamics than has been possible in past experiments. The cross-polarized scattering observed from spherical-top molecules CCl4, SiCl4, SiBr4, and SnCl4 and crystalline GGG is argued to originate from magnetic dipoles induced by a second-order optical nonlinearity driven jointly by the E and B fields of light. Among the spherical top molecular liquids, SnCl4 developed more intense magnetic scattering at a fixed intensity than CCl4, in agreement with the predicted dependence on rotational frequency and damping. Cross-polarized scattering in anisotropic molecules C6H6, C6D6, C6 H5NH2, and C6H5CN, on the other hand, is known to originate from optical orientation of permanent electric dipole moments in first-order or differential polarizability in third-order. The importance of rotational dynamics to depolarization in all the liquids studied is outlined and confirmed through observation of an isotopic effect in the scattering from C6H6 vs. C6D 6. Finally, the new nonlinear optical process investigated here provides a method for generating oriented rotations of molecules.
Rintamäki, E; Salonen, M; Suoranta, U M; Carlberg, I; Andersson, B; Aro, E M
1997-11-28
An immunological approach using a polyclonal phosphothreonine antibody is introduced for the analysis of thylakoid protein phosphorylation in vivo. Virtually the same photosystem II (PSII) core phosphoproteins (D1, D2, CP43, and the psbH gene product) and the light-harvesting chlorophyll a/b complex II (LHCII) phosphopolypeptides (LHCB1 and LHCB2), as earlier identified by radiolabeling experiments, were recognized in both pumpkin and spinach leaves. Notably, the PSII core proteins and LHCII polypeptides were found to have a different phosphorylation pattern in vivo with respect to increasing irradiance. Phosphorylation of the PSII core proteins in leaf discs attained the saturation level at the growth light intensity, and this level was also maintained at high irradiances. Maximal phosphorylation of LHCII polypeptides only occurred at low light intensities, far below the growth irradiance, and then drastically decreased at higher irradiances. These observations are at variance with traditional studies in vitro, where LHCII shows a light-dependent increase in phosphorylation, which is maintained even at high irradiances. Only a slow restoration of the phosphorylation capacity for LHCII polypeptides at the low light conditions occurred in vivo after the high light-induced inactivation. Furthermore, if thylakoid membranes were isolated from the high light-inactivated leaves, no restoration of LHCII phosphorylation took place in vitro. However, both the high light-induced inactivation and low light-induced restoration of LHCII phosphorylation seen in vivo could be mimicked in isolated thylakoid membranes by incubating with reduced and oxidized dithiothreitol, respectively. We propose that stromal components are involved in the regulation of LHCII phosphorylation in vivo, and inhibition of LHCII phosphorylation under increasing irradiance results from reduction of the thiol groups in the LHCII kinase.
NASA Astrophysics Data System (ADS)
Chu, H.; Lai, C.; Wu, C.; Hsia, Y.
2008-12-01
CO2 fluxes were measured by an open/closed path eddy covariance system at a natural regenerated 50-years-old yellow cypress (Chamaecyparis obtusa var. formosana) forest at Chi-Lan Mountain site (CLM site, 24°35'N, 121°25'E, 1650 m elevation), north-eastern Taiwan. CLM site is located at a relative uniform south-eastern-facing valley slope (15°) characterized with year round fog occurrence and diurnal mountain-valley wind and can be classified as subtropical montane cloud forest. Based on measurement from July 2007 to June 2008, seasonal and diurnal patterns of CO2 fluxes were described and patterns under different cloudiness and foggy conditions were presented. Comparing with other cypress forests in temperate region, there is only a weak seasonal pattern of the CO2 fluxes at CLM site. Throughout the year, average incident photosynthetically active radiation in summer was almost the double of that in winter, whereas the difference of mean daytime CO2 fluxes among seasons was much less than the seasonal light difference. During summer when light intensity was higher, mean daytime CO2 fluxes reached -7.5 μmol/m2/s in July and -8.8 μmol/m2/s in August. As heavy fog accounted for 64% and 67% of the time in November and February, mean daytime CO2 fluxes dropped to -6.9 and -6.1 μmol/m2/s respectively. With comparable higher incident radiation intensity (>1000 μmol/m2/s), the CO2 fluxes were higher in overcast days than in clear days. In July 2007, clear days accounted for 30% of the month, light intensity reached its peak at midday, and however, CO2 fluxes didn't reach its highest value in the meanwhile. Canopy conductance calculated from the Penman-Monteith equation and measured latent heat fluxes both showed a midday depression at clear days, which indicated the regulation of transpiration by plant physiological mechanism. With comparable lower incident radiation intensity (<1000 μmol/m2/s), the CO2 fluxes were higher in overcast days than in foggy days. The difference suggested that water droplets deposited on leaves might partially block the pathway of the gas exchange through stomata as canopy immersed in the very humid air. However, CO2 fluxes did not cease during foggy periods, as also supported by sap flow and leaf chamber measurements, the morphological characteristics of leaf or/and canopy structure might contribute to the well adaptability of this subtropical montane cloud forest to the humid environment.
Sun, Yahui; Liao, Qiang; Huang, Yun; Xia, Ao; Fu, Qian; Zhu, Xun; Fu, Jingwei; Li, Jun
2018-05-01
Considering the variations of optimal light intensity required by microalgae cells along with growth phases, growth-phase light-feeding strategies were proposed and verified in this paper, aiming at boosting microalgae lipid productivity from the perspective of light conditions optimization. Experimental results demonstrate that under an identical time-averaged light intensity, the light-feeding strategies characterized by stepwise incremental light intensities showed a positive effect on biomass and lipid accumulation. The lipid productivity (235.49 mg L -1 d -1 ) attained under light-feeding strategy V (time-averaged light intensity: 225 μmol m -2 s -1 ) was 52.38% higher over that obtained under a constant light intensity of 225 μmol m -2 s -1 . Subsequently, based on light-feeding strategy V, microalgae lipid productivity was further elevated to 312.92 mg L -1 d -1 employing a two-stage based light-feeding strategy V 560 (time-averaged light intensity: 360 μmol m -2 s -1 ), which was 79.63% higher relative to that achieved under a constant light intensity of 360 μmol m -2 s -1 . Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lasagni, Andrés Fabián
2017-06-01
Fabrication of two- and three-dimensional (2D and 3D) structures in the micro- and nano-range allows a new degree of freedom to the design of materials by tailoring desired material properties and, thus, obtaining a superior functionality. Such complex designs are only possible using novel fabrication techniques with high resolution, even in the nanoscale range. Starting from a simple concept, transferring the shape of an interference pattern directly to the surface of a material, laser interferometric processing methods have been continuously developed. These methods enable the fabrication of repetitive periodic arrays and microstructures by irradiation of the sample surface with coherent beams of light. This article describes the capabilities of laser interference lithographic methods for the treatment of both photoresists and solid materials. Theoretical calculations are used to calculate the intensity distributions of patterns that can be realized by changing the number of interfering laser beams, their polarization, intensity and phase. Finally, different processing systems and configurations are described and, thus, demonstrating the possibility for the fast and precise tailoring of material surface microstructures and topographies on industrial relevant scales as well as several application cases for both methods.
Tongtaksin, A; Leevailoj, C
This study investigated the influence of battery charge levels on the stability of light-emitting diode (LED) curing-light intensity by measuring the intensity from fully charged through fully discharged batteries. The microhardness of resin composites polymerized by the light-curing units at various battery charge levels was measured. The light intensities of seven fully charged battery LED light-curing units-1) LY-A180, 2) Bluephase, 3) Woodpecker, 4) Demi Plus, 5) Saab II, 6) Elipar S10, and 7) MiniLED-were measured with a radiometer (Kerr) after every 10 uses (20 seconds per use) until the battery was discharged. Ten 2-mm-thick cylindrical specimens of A3 shade nanofilled resin composite (PREMISE, Kerr) were prepared per LED light-curing unit group. Each specimen was irradiated by the fully charged light-curing unit for 20 seconds. The LED light-curing units were then used until the battery charge fell to 50%. Specimens were prepared again as described above. This was repeated again when the light-curing units' battery charge fell to 25% and when the light intensity had decreased to 400 mW/cm 2 . The top/bottom surface Knoop hardness ratios of the specimens were determined. The microhardness data were analyzed by one-way analysis of variance with Tukey test at a significance level of 0.05. The Pearson correlation coefficient was used to determine significant correlations between surface hardness and light intensity. We found that the light intensities of the Bluephase, Demi Plus, and Elipar S10 units were stable. The intensity of the MiniLED unit decreased slightly; however, it remained above 400 mW/cm 2 . In contrast, the intensities of the LY-A180, Woodpecker, and Saab II units decreased below 400 mW/cm 2 . There was also a significant decrease in the surface microhardnesses of the resin composite specimens treated with MiniLED, LY-A180, Woodpecker, and Saab II. In conclusion, the light intensity of several LED light-curing units decreased as the battery was discharged, with a coincident reduction in the units' ability to polymerize resin composite. Therefore, the intensity of an LED light-curing unit should be evaluated during the life of its battery charge to ensure that sufficient light intensity is being generated.
Reality and Surreality of 3-D Displays: Holodeck and Beyond
2000-01-01
are 2-D interference patterns and may, in principal, be written on a 2-D recording medium whose response is a function of intensity (e.g. photographic...devices based on reflective digital micromirror devices ( DMD ), or 1-D grading light valves. Photorefractive crystals include tantalum dioxide, lithium...Hologram readout is a diffractive interference phenomenon, which becomes significant when electromagnetic radiation encounters structures (e.g. pixels of
Light intensity modulates corneal power and refraction in the chick eye exposed to continuous light.
Cohen, Yuval; Belkin, Michael; Yehezkel, Oren; Avni, Isaac; Polat, Uri
2008-09-01
Continuous exposure of chicks to light was shown to result in severe hyperopia, accompanied by anterior segment changes, such as severe corneal flattening. Since rearing chicks in complete darkness results only in mild hyperopia and minor changes in corneal curvature, we hypothesized that light intensity may play a role in the development of refractive changes under continuous light illumination. To test this hypothesis, we examined the effects of rearing chicks under various continuous light intensities. More specifically, we investigated the refractive parameters of the chicks' eyes, and avoided light cycling effects on ocular development. To this end, thirty-eight chicks were reared under 24-h incandescent illumination, at three different light intensities: 10,000 lux (n=13), 500 lux (n=12), and 50 lux (n=13). Their eyes underwent repeated retinoscopy, keratometry, and ultrasound biometry, as well as caliper measurements of enucleated eyes. Both refraction and corneal refractive power were found to be correlated with light intensity. On day 90 after hatching, exposure to light intensities of 10,000, 500, and 50 lux resulted in hyperopia of +11.97+/-3.7 (mean+/-SD) +7.9+/-4.08 and +0.63+/-3.61 diopters (D), respectively. Under those intensities, corneal refractive power was 46.10+/-3.62, 49.72+/-4.16, and 56.88+/-4.92D, respectively. Axial length did not differ significantly among the groups. The vitreous chamber was significantly deeper in the high than in the low-intensity groups. Thus, during the early life of chicks exposed to continuous lighting, light intensity affects the vitreous chamber depth as well as the anterior segment parameters, most notably the cornea. The higher the intensity, the more severe was the corneal flattening observed and the hyperopia that developed, whereas continuous illumination at low intensities resulted in emmetropia. Thus, light intensity is an important factor that should be taken into account when studying refractive development.
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1982-01-01
Subjects exposed to periodic variations in gravitoinertial force (2-G peak) in parabolic flight maneuvers quickly come to perceive the peak force level as having decreased in intensity. By the end of a 40-parabola flight, the decrease in apparent force is approximately 40%. On successive flight days, the apparent intensity of the force loads seems to decrease as well, indicating a cumulative adaptive effect. None of the subjects reported feeling abnormally 'light' for more than a minute or two after return to 1-G background force levels. The pattern of findings suggests a context-specific adaptation to high-force levels.
Dependency between light intensity and refractive development under light-dark cycles.
Cohen, Yuval; Belkin, Michael; Yehezkel, Oren; Solomon, Arieh S; Polat, Uri
2011-01-01
The emmetropization process involves fine-tuning the refractive state by altering the refractive components toward zero refraction. In this study, we provided light-dark cycle conditions at several intensities and examined the effect of light intensity on the progression of chicks' emmetropization. Chicks under high-, medium-, and low-light intensities (10,000, 500, and 50 lux, respectively) were followed for 90 days by retinoscopy, keratometry, as well as ultrasound measurements. Emmetropization was reached from days 30-50 and from days 50-60 for the low- and medium-intensity groups, respectively. On day 90, most chicks in the low-intensity group were myopic, with a mean refraction of -2.41D (95% confidence interval (CI) -2.9 to -1.8D), whereas no chicks in the high-intensity group developed myopia, but they exhibited a stable mean hyperopia of +1.1D. The medium-intensity group had a mean refraction of +0.03D. The low-intensity group had a deeper vitreous chamber depth and a longer axial length compared with the high-intensity group, and shifted refraction to the myopic side. The low-intensity group had a flatter corneal curvature, a deeper anterior chamber, and a thinner lens compared with the high-intensity group, and shifted refraction to the hyperopic side. In all groups the corneal power was correlated with the three examined levels of log light intensity for all examined times (e.g., day 20 r = 0.6 P < 0.0001, day 90 r = 0.56 P < 0.0001). Thus, under light-dark cycles, light intensity is an environmental factor that modulates the process of emmetropization, and the low intensity of ambient light is a risk factor for developing myopia. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aguzzi, Jacopo; Sbragaglia, Valerio; Tecchio, Samuele; Navarro, Joan; Company, Joan B.
2015-01-01
Light-intensity cycles drive the relentless motion of species in the oceans, and water column migrants may cyclically make contact with the seabed, hence influencing the temporal dynamism of benthic ecosystems. The influence of light on this process remains largely unknown to date. In this study, we focus on the occurrence of day-night changes in benthic communities on the western Mediterranean continental shelf (100 m depth) and slope (400 m depth) as a potential result of a behaviourally sustained benthopelagic coupling. We analysed fluctuations in species abundance based on trawling at hourly intervals over a 4-day period as a proxy of activity rhythms at the seabed. We also measured light in situ to assess how the depth-related decrease of its intensity influences species rhythms and the occurrence of the putative benthopelagic synchronisation. Temporal similarities in the catch patterns for different species were screened by dendrogram analysis. On the continental shelf, species performing diel migrations (i.e., over a 24 h period) that were either vertical (i.e., benthopelagic) or horizontal across depths (i.e., nektobenthic) clustered together separately from the more sedentary endobenthic and epibenthic species. At the same depth, waveform analysis showed a significant diurnal increase in the catch of water column species and benthic species at night. Such coupling was absent on the continental slope, where light intensity was several orders of magnitude lower than that on the shelf. Our data indicate that diel activity rhythms, which are well known for vertical pelagic migrators, are also evident in the benthos. We discuss the role of light as a major evolutionary driver shaping the composition and biodiversity of benthic communities via visual predation.
Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases.
García-Guzmán, Graciela; Heil, Martin
2014-03-01
Plant pathogens affect the fitness of their hosts and maintain biodiversity. However, we lack theories to predict the type and intensity of infections in wild plants. Here we demonstrate using fungal pathogens of tropical plants that an examination of the life histories of hosts and pathogens can reveal general patterns in their interactions. Fungal infections were more commonly reported for light-demanding than for shade-tolerant species and for evergreen rather than for deciduous hosts. Both patterns are consistent with classical defence theory, which predicts lower resistance in fast-growing species and suggests that the deciduous habit can reduce enemy populations. In our literature survey, necrotrophs were found mainly to infect shade-tolerant woody species whereas biotrophs dominated in light-demanding herbaceous hosts. Far-red signalling and its inhibitory effects on jasmonic acid signalling are likely to explain this phenomenon. Multiple changes between the necrotrophic and the symptomless endophytic lifestyle at the ecological and evolutionary scale indicate that endophytes should be considered when trying to understand large-scale patterns in the fungal infections of plants. Combining knowledge about the molecular mechanisms of pathogen resistance with classical defence theory enables the formulation of testable predictions concerning general patterns in the infections of wild plants by fungal pathogens. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Weber, Anke; Hochmann, Sarah; Cimalla, Peter; Gärtner, Maria; Kuscha, Veronika; Hans, Stefan; Geffarth, Michaela; Kaslin, Jan; Koch, Edmund; Brand, Michael
2013-01-01
Light-induced lesions are a powerful tool to study the amazing ability of photoreceptors to regenerate in the adult zebrafish retina. However, the specificity of the lesion towards photoreceptors or regional differences within the retina are still incompletely understood. We therefore characterized the process of degeneration and regeneration in an established paradigm, using intense white light from a fluorescence lamp on swimming fish (diffuse light lesion). We also designed a new light lesion paradigm where light is focused through a microscope onto the retina of an immobilized fish (focused light lesion). Focused light lesion has the advantage of creating a locally restricted area of damage, with the additional benefit of an untreated control eye in the same animal. In both paradigms, cell death is observed as an immediate early response, and proliferation is initiated around 2 days post lesion (dpl), peaking at 3 dpl. We furthermore find that two photoreceptor subtypes (UV and blue sensitive cones) are more susceptible towards intense white light than red/green double cones and rods. We also observed specific differences within light lesioned areas with respect to the process of photoreceptor degeneration: UV cone debris is removed later than any other type of photoreceptor in light lesions. Unspecific damage to retinal neurons occurs at the center of a focused light lesion territory, but not in the diffuse light lesion areas. We simulated the fish eye optical properties using software simulation, and show that the optical properties may explain the light lesion patterns that we observe. Furthermore, as a new tool to study retinal degeneration and regeneration in individual fish in vivo, we use spectral domain optical coherence tomography. Collectively, the light lesion and imaging assays described here represent powerful tools for studying degeneration and regeneration processes in the adult zebrafish retina. PMID:24303018
Neural coding underlying the cue preference for celestial orientation
el Jundi, Basil; Warrant, Eric J.; Byrne, Marcus J.; Khaldy, Lana; Baird, Emily; Smolka, Jochen; Dacke, Marie
2015-01-01
Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity. PMID:26305929
Neural coding underlying the cue preference for celestial orientation.
el Jundi, Basil; Warrant, Eric J; Byrne, Marcus J; Khaldy, Lana; Baird, Emily; Smolka, Jochen; Dacke, Marie
2015-09-08
Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity.
Physiological effects of light on the human circadian pacemaker
NASA Technical Reports Server (NTRS)
Shanahan, T. L.; Czeisler, C. A.
2000-01-01
The physiology of the human circadian pacemaker and its influence and on the daily organization of sleep, endocrine and behavioral processes is an emerging interest in science and medicine. Understanding the development, organization and fundamental properties underlying the circadian timing system may provide insight for the application of circadian principles to the practice of clinical medicine, both diagnostically (interpretation of certain clinical tests are dependent on time of day) and therapeutically (certain pharmacological responses vary with the time of day). The light-dark cycle is the most powerful external influence acting upon the human circadian pacemaker. It has been shown that timed exposure to light can both synchronize and reset the phase of the circadian pacemaker in a predictable manner. The emergence of detectable circadian rhythmicity in the neonatal period is under investigation (as described elsewhere in this issue). Therefore, the pattern of light exposure provided in the neonatal intensive care setting has implications. One recent study identified differences in both amount of sleep time and weight gain in infants maintained in a neonatal intensive care environment that controlled the light-dark cycle. Unfortunately, neither circadian phase nor the time of day has been considered in most clinical investigations. Further studies with knowledge of principles characterizing the human circadian timing system, which governs a wide array of physiological processes, are required to integrate these findings with the practice of clinical medicine.
Dim light at night: physiological effects and ecological consequences for infectious disease.
Kernbach, Meredith E; Hall, Richard J; Burkett-Cadena, Nathan; Unnasch, Thomas R; Martin, Lynn B
2018-06-23
Light pollution has emerged as a pervasive component of land development over the past century. Several detrimental impacts of this anthropogenic influence have been identified in night shift workers, laboratory rodents, and a plethora of wildlife species. Circadian, or daily, patterns are interrupted by the presence of light at night and have the capacity to alter rhythmic physiological or behavioral characteristics. Indeed, biorhythm disruption can lead to metabolic, reproductive, and immunological dysfunction depending on the intensity, timing, duration and wavelength of light exposure. Light pollution, in many forms and by many pathways, is thus apt to affect the nature of host-pathogen interactions. However, no research has yet investigated this possibility. The goal of this manuscript is to outline how dim light at night (dLAN), a relevant and common form of light pollution, may affect disease dynamics by interrupting circadian rhythms and regulation of immune responses as well as opportunities for host-parasite interactions and subsequent transmission risk including spillover into humans. We close by proposing some promising interventions including alternative lighting methods or vector control efforts.
A method of solving tilt illumination for multiple distance phase retrieval
NASA Astrophysics Data System (ADS)
Guo, Cheng; Li, Qiang; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun
2018-07-01
Multiple distance phase retrieval is a technique of using a series of intensity patterns to reconstruct a complex-valued image of object. However, tilt illumination originating from the off-axis displacement of incident light significantly impairs its imaging quality. To eliminate this affection, we use cross-correlation calibration to estimate oblique angle of incident light and a Fourier-based strategy to correct tilted illumination effect. Compared to other methods, binary and biological object are both stably reconstructed in simulation and experiment. This work provides a simple but beneficial method to solve the problem of tilt illumination for lens-free multi-distance system.
Manipulation of Micro Scale Particles in an Optical Trap Using Interferometry
NASA Technical Reports Server (NTRS)
Seibel, Robin
2002-01-01
This research shows that micro particles can be manipulated via interferometric patterns superimposed on an optical tweezers beam. Interferometry allows the manipulation of intensity distributions, and thus, force distributions on a trapped particle. To demonstrate the feasibility of such manipulation, 458 nm light, from an argon-ion laser, was injected into a Mach Zender interferometer. One mirror in the interferometer was oscillated with a piezoelectric phase modulator. The light from the interferometer was then injected into a microscope to trap a 9.75 micron polystyrene sphere. By varying the phase modulation, the sphere was made to oscillate in a controlled fashion.
Laser-Induced Fabrication of Metallic Interlayers and Patterns in Polyimide Films
NASA Technical Reports Server (NTRS)
Miner, Gilda A. (Inventor); Stoakley, Diane M. (Inventor); Gaddy, Gregory A. (Inventor); Koplitz, Brent D. (Inventor); Simpson, Steven M. (Inventor); Lynch, Michael F. (Inventor); Ruffner, Samuel C. (Inventor)
2010-01-01
Self-metallizing polyimide films are created by doping polyamic acid solutions with metallic ions and solubilizing agents. Upon creating a film, the film is exposed to coherent light for a specific time and then cured. The resulting film has been found to have a metallic surface layer and a metallic subsurface layer (interlayer). The layer separating the metallic layer has a uniform dispersion of small metal particulates within the polymer. The layer below the interlayer has larger metal particulates uniformly distributed within the polymer. By varying the intensity or time of exposure to the coherent light, three-dimensional control of metal formation within the film is provided.
Accelerometer-derived physical activity and sedentary time by cancer type in the United States.
Thraen-Borowski, Keith M; Gennuso, Keith P; Cadmus-Bertram, Lisa
2017-01-01
The 2003-2004 and 2005-2006 cycles of the National Health and Nutrition Examination Survey (NHANES) were among the first population-level studies to incorporate objectively measured physical activity and sedentary behavior, allowing for greater understanding of these behaviors. However, there has yet to be a comprehensive examination of these data in cancer survivors, including short- and long-term survivors of all cancer types. Therefore, the purpose of this analysis was to use these data to describe activity behaviors in short- and long-term cancer survivors of various types. A secondary aim was to compare activity patterns of cancer survivors to that of the general population. Cancer survivors (n = 508) and age-matched individuals not diagnosed with cancer (n = 1,016) were identified from a subsample of adults with activity measured by accelerometer. Physical activity and sedentary behavior were summarized across cancer type and demographics; multivariate regression was used to evaluate differences between survivors and those not diagnosed with cancer. On average, cancer survivors were 61.4 (95% CI: 59.6, 63.2) years of age; 57% were female. Physical activity and sedentary behavior patterns varied by cancer diagnosis, demographic variables, and time since diagnosis. Survivors performed 307 min/day of light-intensity physical activity (95% CI: 295, 319), 16 min/day of moderate-vigorous intensity activity (95% CI: 14, 17); only 8% met physical activity recommendations. These individuals also reported 519 (CI: 506, 532) minutes of sedentary time, with 86 (CI: 84, 88) breaks in sedentary behavior per day. Compared to non-cancer survivors, after adjustment for potential confounders, survivors performed less light-intensity activity (P = 0.01), were more sedentary (P = 0.01), and took fewer breaks in sedentary time (P = 0.04), though there were no differences in any other activity variables. These results suggest that cancer survivors are insufficiently active. Relative to adults of similar age not diagnosed with cancer, they engage in more sedentary time with fewer breaks. As such, sedentary behavior and light-intensity activity may be important intervention targets, particularly for those for whom moderate-to-vigorous activity is not well accepted.
Anisotropic scattering of discrete particle arrays.
Paul, Joseph S; Fu, Wai Chong; Dokos, Socrates; Box, Michael
2010-05-01
Far-field intensities of light scattered from a linear centro-symmetric array illuminated by a plane wave of incident light are estimated at a series of detector angles. The intensities are computed from the superposition of E-fields scattered by the individual array elements. An average scattering phase function is used to model the scattered fields of individual array elements. The nature of scattering from the array is investigated using an image (theta-phi plot) of the far-field intensities computed at a series of locations obtained by rotating the detector angle from 0 degrees to 360 degrees, corresponding to each angle of incidence in the interval [0 degrees 360 degrees]. The diffraction patterns observed from the theta-Phi plot are compared with those for isotropic scattering. In the absence of prior information on the array geometry, the intensities corresponding to theta-Phi pairs satisfying the Bragg condition are used to estimate the phase function. An algorithmic procedure is presented for this purpose and tested using synthetic data. The relative error between estimated and theoretical values of the phase function is shown to be determined by the mean spacing factor, the number of elements, and the far-field distance. An empirical relationship is presented to calculate the optimal far-field distance for a given specification of the percentage error.
Method for non-destructive evaluation of ceramic coatings
Peterson, Kristen A.; Rosen, Elias P.; Jordan, Eric H.; Shahbazmohamadi, Sina; Vakhtin, Andrei B.
2016-11-08
A method for evaluating the condition of a ceramic coating deposited on a substrate comprising illuminating the ceramic coating with light, measuring the intensity of light returned from the ceramic coating as function of depth in the coating and transverse position on the coating, and analyzing the measured light intensities to obtain one or more of intensity of the light returned from the exposed coating surface relative to the intensity of light returned from the coating/substrate interface, intensity of the light returned from the coating/substrate interface relative to the intensity of light returned from the bulk of the ceramic coating, determination of roughness at the exposed surface of the ceramic coating, and determination of roughness of the interface between the ceramic coating and underlying bond coat or substrate.
Intensity autocorrelation measurements of frequency combs in the terahertz range
NASA Astrophysics Data System (ADS)
Benea-Chelmus, Ileana-Cristina; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jérôme
2017-09-01
We report on direct measurements of the emission character of quantum cascade laser based frequency combs, using intensity autocorrelation. Our implementation is based on fast electro-optic sampling, with a detection spectral bandwidth matching the emission bandwidth of the comb laser, around 2.5 THz. We find the output of these frequency combs to be continuous even in the locked regime, but accompanied by a strong intensity modulation. Moreover, with our record temporal resolution of only few hundreds of femtoseconds, we can resolve correlated intensity modulation occurring on time scales as short as the gain recovery time, about 4 ps. By direct comparison with pulsed terahertz light originating from a photoconductive emitter, we demonstrate the peculiar emission pattern of these lasers. The measurement technique is self-referenced and ultrafast, and requires no reconstruction. It will be of significant importance in future measurements of ultrashort pulses from quantum cascade lasers.
NASA Astrophysics Data System (ADS)
Yoo, Byungwook; Kim, Youngmin; Han, Chul Jong; Oh, Min Suk; Kim, Jong-Woong
2018-01-01
Recent studies have revealed that silver nanowires (AgNWs) are a promising material for highly flexible transparent electrodes. Here we introduce a novel photoinduced recyclable approach to AgNW patterning to overcome the issue of loss of material during fabrication of AgNW patterns, which is a leading factor in the high fabrication costs of AgNW-based electrodes. Our patterning scheme involves the selective irradiation of an AgNW/polymer composite with high-intensity pulsed light, followed by immersion of the sample in a liquid and an ultrasonication treatment. The nanowires that detach during sonication could be recycled, and the recycled AgNWs achieved comparable performance to that of pristine AgNWs. The recycled AgNWs were also superior to commercial indium tin oxide films and other competing materials. We successfully demonstrated a high performance transparent heater by employing the recyclable patterning method and recycled AgNWs.
Active dynamics of colloidal particles in time-varying laser speckle patterns
Bianchi, Silvio; Pruner, Riccardo; Vizsnyiczai, Gaszton; Maggi, Claudio; Di Leonardo, Roberto
2016-01-01
Colloidal particles immersed in a dynamic speckle pattern experience an optical force that fluctuates both in space and time. The resulting dynamics presents many interesting analogies with a broad class of non-equilibrium systems like: active colloids, self propelled microorganisms, transport in dynamical intracellular environments. Here we show that the use of a spatial light modulator allows to generate light fields that fluctuate with controllable space and time correlations and a prescribed average intensity profile. In particular we generate ring-shaped random patterns that can confine a colloidal particle over a quasi one-dimensional random energy landscape. We find a mean square displacement that is diffusive at both short and long times, while a superdiffusive or subdiffusive behavior is observed at intermediate times depending on the value of the speckles correlation time. We propose two alternative models for the mean square displacement in the two limiting cases of a short or long speckles correlation time. A simple interpolation formula is shown to account for the full phenomenology observed in the mean square displacement across the entire range from fast to slow fluctuating speckles. PMID:27279540
Light induced dielectric constant of Alumina doped lead silicate glass based on silica sands
NASA Astrophysics Data System (ADS)
Diantoro, Markus; Natalia, Desi Ayu; Mufti, Nandang; Hidayat, Arif
2016-04-01
Numerous studies on glass ceramic compounds have been conducted intensively. Two major problems to be solved are to simplify the fabrication process by reducing melting temperature as well as improving various properties for various fields of technological application. To control the dielectric constant, the researchers generally use a specific dopant. So far there is no comprehensive study to control the dielectric constant driven by both of dopant and light intensity. In this study it is used Al2O3 dopant to increase the light induced dielectric constant of the glass. The source of silica was taken from local silica sands of Bancar Tuban. The sands were firstly leached using hydrochloric acid to improve the purity of silica which was investigated by means of XRF. Fabricating the glass samples were performed by using melting-glass method. Silica powder was mixed with various ratio of SiO2:Na2CO3:PbO:Al2O3. Subsequently, a mixture of various Al2O3 doped lead silicate glasses were melted at 970°C and directy continued by annealed at 300°C. The samples were investigated by XRD, FTIR, SEM-EDX and measuring dielectric constant was done using dc-capacitance meter with various light intensities. The investigation result of XRD patterns showed that the crystal structures of the samples are amorphous state. The introduction of Al2O3 does not alter the crystal structure, but significantly change the structure of the functional glass bonding PbO-SiO2 which was shown by the FTIR spectra. It was noted that some new peak peaks were exist in the doped samples. Measuring result of dielectricity shows that the dielectric constant of glass increases with the addition of Al2O3. Increasing the light intensity gives rise to increase their dielectric constant in general. A detail observation of the dielectric seen that there are discontinuous step-like of dielectric. Most likely a specific quantization mechanism occurs when glass exposed under light.
NASA Astrophysics Data System (ADS)
Fukasawa, Hirotoshi; Horiuchi, Toshiyuki
2009-08-01
The patterning characteristics of matrix projection exposure using an analog liquid crystal display (LCD) panel in place of a reticle were investigated, in particular for oblique patterns. In addition, a new method for fabricating practical thick resist molds was developed. At first, an exposure system fabricated in past research was reconstructed. Changes in the illumination optics and the projection lens were the main improvements. Using fly's eye lenses, the illumination light intensity distribution was homogenized. The projection lens was changed from a common camera lens to a higher-grade telecentric lens. In addition, although the same metal halide lamp was used as an exposure light source, the central exposure wavelength was slightly shortened from 480 to 450 nm to obtain higher resist sensitivity while maintaining almost equivalent contrast between black and white. Circular and radial patterns with linewidths of approximately 6 µm were uniformly printed in all directions throughout the exposure field owing to these improvements. The patterns were smoothly printed without accompanying stepwise roughness caused by the cell matrix array. On the bases of these results, a new method of fabricating thick resist molds for electroplating was investigated. It is known that thick resist molds fabricated using the negative resist SU-8 (Micro Chem) are useful because very high aspect patterns are printable and the side walls are perpendicular to the substrate surfaces. However, the most suitable exposure wavelength of SU-8 is 365 nm, and SU-8 is insensitive to light of 450 nm wavelength, which is most appropriate for LCD matrix exposure. For this reason, a novel multilayer resist process was proposed, and micromolds of SU-8 of 50 µm thickness were successfully obtained. As a result, feasibility for fabricating complex resist molds including oblique patterns was demonstrated.
Ma, Zhongyuan; Ni, Xiaodong; Zhang, Wenping; Jiang, Xiaofan; Yang, Huafeng; Yu, Jie; Wang, Wen; Xu, Ling; Xu, Jun; Chen, Kunji; Feng, Duan
2014-11-17
A significant enhancement of blue light emission from amorphous oxidized silicon nitride (a-SiNx:O) films is achieved by introduction of ordered and size-controllable arrays of Ag nanoparticles between the silicon substrate and a-SiNx:O films. Using hexagonal arrays of Ag nanoparticles fabricated by nanosphere lithography, the localized surface plasmons (LSPs) resonance can effectively increase the internal quantum efficiency from 3.9% to 13.3%. Theoretical calculation confirms that the electromagnetic field-intensity enhancement is through the dipole surface plasma coupling with the excitons of a-SiNx:O films, which demonstrates a-SiNx:O films with enhanced blue emission are promising for silicon-based light-emitting applications by patterned Ag arrays.
On the dual-cone nature of the conical refraction phenomenon.
Turpin, A; Loiko, Yu; Kalkandjiev, T K; Tomizawa, H; Mompart, J
2015-04-15
In conical refraction (CR), a focused Gaussian input beam passing through a biaxial crystal and parallel to one of the optic axes is transformed into a pair of concentric bright rings split by a dark (Poggendorff) ring at the focal plane. Here, we show the generation of a CR transverse pattern that does not present the Poggendorff fine splitting at the focal plane, i.e., it forms a single light ring. This light ring is generated from a nonhomogeneously polarized input light beam obtained by using a spatially inhomogeneous polarizer that mimics the characteristic CR polarization distribution. This polarizer allows modulating the relative intensity between the two CR light cones in accordance with the recently proposed dual-cone model of the CR phenomenon. We show that the absence of interfering rings at the focal plane is caused by the selection of one of the two CR cones.
Flies and humans share a motion estimation strategy that exploits natural scene statistics
Clark, Damon A.; Fitzgerald, James E.; Ales, Justin M.; Gohl, Daryl M.; Silies, Marion A.; Norcia, Anthony M.; Clandinin, Thomas R.
2014-01-01
Sighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations. Here we show that fly and human visual systems encode the combined direction and contrast polarity of moving edges using triple correlations that enhance motion estimation in natural environments. Both species extract triple correlations with neural substrates tuned for light or dark edges, and sensitivity to specific triple correlations is retained even as light and dark edge motion signals are combined. Thus, both species separately process light and dark image contrasts to capture motion signatures that can improve estimation accuracy. This striking convergence argues that statistical structures in natural scenes have profoundly affected visual processing, driving a common computational strategy over 500 million years of evolution. PMID:24390225
Santos, Paula Clara; Abreu, Sandra; Moreira, Carla; Santos, Rute; Ferreira, Margarida; Alves, Odete; Moreira, Pedro; Mota, Jorge
2016-01-01
Background Physical activity (PA) patterns during pregnancy have not been explored in depth and most previous studies lack assessment of variables such as type, frequency, duration and intensity of activity. Objectives This study had two goals: 1) to analyze PA patterns during pregnancy according to weekly time spent on different types of activity; and 2) to determine women’s perception about health care providers regarding PA advisement during pregnancy. Patients and Methods A longitudinal prospective study was carried out with a 118-pregnant women cohort. Participants were evaluated during all trimesters. Self-reported questionnaires were used to collect personal and obstetric data. Type, duration and frequency of PA were evaluated using the pregnancy physical activity questionnaire (PPAQ) and intensity levels were calculated. Repeated measure analysis of variance was performed to determine differences between trimesters, and Wilcoxon signed-rank test was performed when appropriate. Results A decrease in values of self-reported PA (MET.h.wk-1) was found from the first to the second and the first to the third trimester of pregnancy, respectively; total (270.91 vs 220.54 vs 210.35; P < 0.01), light (109.45 vs 95.11vs 92.40; P < 0.01) and moderate intensity (81.99 vs 50.69 vs 62.94; P = 0.002). Time spent on most activities remained fairly stable throughout pregnancy. Women spent most of their weekly time during the entire pregnancy on household and caregiving activities, occupational activities and leisure, except sport activities. Swimming was the most reported organized PA, reaching its highest proportion (12.7%) in the second trimester. Prenatal exercise classes were reported by 39.8% of women during the 3rd trimester. Pregnant women reported that PA was recommended by health professionals: 53.9% in the 1st trimester, 70.4% in the 2nd trimester and 56.8% in the 3rd trimester. Conclusions Self-reported PA decreased, especially from the first to the second trimester, in total, light and moderate intensity. Women spent most of their weekly time on domestic, occupational and leisure activities, except sport activities. There are some health care providers that do not recommend physical activity during pregnancy. PMID:27247788
Santos, Paula Clara; Abreu, Sandra; Moreira, Carla; Santos, Rute; Ferreira, Margarida; Alves, Odete; Moreira, Pedro; Mota, Jorge
2016-03-01
Physical activity (PA) patterns during pregnancy have not been explored in depth and most previous studies lack assessment of variables such as type, frequency, duration and intensity of activity. This study had two goals: 1) to analyze PA patterns during pregnancy according to weekly time spent on different types of activity; and 2) to determine women's perception about health care providers regarding PA advisement during pregnancy. A longitudinal prospective study was carried out with a 118-pregnant women cohort. Participants were evaluated during all trimesters. Self-reported questionnaires were used to collect personal and obstetric data. Type, duration and frequency of PA were evaluated using the pregnancy physical activity questionnaire (PPAQ) and intensity levels were calculated. Repeated measure analysis of variance was performed to determine differences between trimesters, and Wilcoxon signed-rank test was performed when appropriate. A decrease in values of self-reported PA (MET.h.wk(-1)) was found from the first to the second and the first to the third trimester of pregnancy, respectively; total (270.91 vs 220.54 vs 210.35; P < 0.01), light (109.45 vs 95.11vs 92.40; P < 0.01) and moderate intensity (81.99 vs 50.69 vs 62.94; P = 0.002). Time spent on most activities remained fairly stable throughout pregnancy. Women spent most of their weekly time during the entire pregnancy on household and caregiving activities, occupational activities and leisure, except sport activities. Swimming was the most reported organized PA, reaching its highest proportion (12.7%) in the second trimester. Prenatal exercise classes were reported by 39.8% of women during the 3rd trimester. Pregnant women reported that PA was recommended by health professionals: 53.9% in the 1st trimester, 70.4% in the 2nd trimester and 56.8% in the 3rd trimester. Self-reported PA decreased, especially from the first to the second trimester, in total, light and moderate intensity. Women spent most of their weekly time on domestic, occupational and leisure activities, except sport activities. There are some health care providers that do not recommend physical activity during pregnancy.
NASA Astrophysics Data System (ADS)
Danila, B.; McGurn, A. R.
2005-03-01
A theoretical discussion is given of the diffuse scattering of p -polarized electromagnetic waves from a vacuum-dielectric interface characterized by a one-dimensional disorder in the form of parallel, Gaussian shaped, dielectric ridges positioned at random on a planar semi-infinite dielectric substrate. The parameters of the surface roughness are chosen so that the surface is characterized as weakly rough with a low ridge concentration. The emphasis is on phase coherent features in the speckle pattern of light scattered from the surface. These features are determined from the intensity-intensity correlation function of the speckle pattern and are studied as functions of the frequency of light for frequencies near the dielectric frequency resonances of the ridge material. In the first part of the study, the ridges on the substrate are taken to be identical, made from either GaAs, NaF, or ZnS. The substrate for all cases is CdS. In a second set of studies, the heights and widths of the ridges are statistically distributed. The effects of these different types of randomness on the scattering from the random array of dielectric ridges is determined near the dielectric resonance frequency of the ridge material. The work presented is an extension of studies [A. B. McGurn and R. M. Fitzgerald, Phys. Rev. B 65, 155414 (2002)] that originally treated only the differential reflection coefficient of the diffuse scattering of light (not speckle correlation functions) from a system of identical ridges. The object of the present work is to demonstrate the effects of the dielectric frequency resonances of the ridge materials on the phase coherent features found in the speckle patterns of the diffusely scattered light. The dielectric frequency resonances are shown to enhance the observation of the weak localization of electromagnetic surface waves at the random interface. The frequencies treated in this work are in the infrared. Previous weak localization studies have concentrated mainly on the visible and ultraviolet.
Design of LED fish lighting attractors using horizontal/vertical LIDC mapping method.
Shen, S C; Huang, H J
2012-11-19
This study employs a sub-module concept to develop high-brightness light-emitting diode (HB-LED) fishing light arrays to replace traditional fishing light attractors. The horizontal/vertical (H/V) plane light intensity distribution curve (LIDC) of a LED light source are mapped to assist in the design of a non-axisymmetric lens with a fish-attracting light pattern that illuminates sufficiently large areas and alternates between bright and dark. These LED fishing light attractors are capable of attracting schools of fish toward the perimeter of the luminous zone surrounding fishing boats. Three CT2 boats (10 to 20 ton capacity) were recruited to conduct a field test for 1 y on the sea off the southwestern coast of Taiwan. Field tests show that HB-LED fishing light array installed 5 m above the boat deck illuminated a sea surface of 5 × 12 m and achieved an illuminance of 2000 lx. The test results show that the HB-LED fishing light arrays increased the mean catch of the three boats by 5% to 27%. In addition, the experimental boats consumed 15% to 17% less fuel than their counterparts.
Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye
NASA Astrophysics Data System (ADS)
Roorda, Austin; Campbell, Melanie C. W.; Bobier, W. R.
1995-08-01
In eccentric photorefraction, light returning from the retina of the eye is photographed by a camera focused on the eye's pupil. We use a geometrical model of eccentric photorefraction to generate intensity profiles across the pupil image. The intensity profiles for three different monochromatic aberration functions induced in a single eye are predicted and show good agreement with the measured eccentric photorefraction intensity profiles. A directional reflection from the retina is incorporated into the calculation. Intensity profiles for symmetric and asymmetric aberrations are generated and measured. The latter profile shows a dependency on the source position and the meridian. The magnitude of the effect of thresholding on measured pattern extents is predicted. Monochromatic aberrations in human eyes will cause deviations in the eccentric photorefraction measurements from traditional crescents caused by defocus and may cause misdiagnoses of ametropia or anisometropia. Our results suggest that measuring refraction along the vertical meridian is preferred for screening studies with the eccentric photorefractor.
Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majumder, Apratim, E-mail: apratim.majumder@utah.edu; Wan, Xiaowen; Masid, Farhana
2016-06-15
Absorbance-Modulation-Optical Lithography (AMOL) has been previously demonstrated to be able to confine light to deep sub-wavelength dimensions and thereby, enable patterning of features beyond the diffraction limit. In AMOL, a thin photochromic layer that converts between two states via light exposure is placed on top of the photoresist layer. The long wavelength photons render the photochromic layer opaque, while the short-wavelength photons render it transparent. By simultaneously illuminating a ring-shaped spot at the long wavelength and a round spot at the short wavelength, the photochromic layer transmits only a highly confined beam at the short wavelength, which then exposes themore » underlying photoresist. Many photochromic molecules suffer from a giant mismatch in quantum yields for the opposing reactions such that the reaction initiated by the absorption of the short-wavelength photon is orders of magnitude more efficient than that initiated by the absorption of the long-wavelength photon. As a result, large intensities in the ring-shaped spot are required for deep sub-wavelength nanopatterning. In this article, we overcome this problem by using the long-wavelength photons to expose the photoresist, and the short-wavelength photons to confine the “exposing” beam. Thereby, we demonstrate the patterning of features as thin as λ/4.7 (137 nm for λ = 647 nm) using extremely low intensities (4-30 W/m{sup 2}, which is 34 times lower than that required in conventional AMOL). We further apply a rigorous model to explain our experiments and discuss the scope of the reverse-AMOL process.« less
Khajepour, Fateme; Hosseini, Seyed Abbas; Ghorbani Nasrabadi, Rasoul; Markou, Giorgos
2015-08-01
A study was conducted to investigate the effect of light intensity (21, 42, and 63 μmol photons m(-2) s(-1)) and photoperiod (8:16, 12:12, and 16:8 h light/dark) on the biomass production and its biochemical composition (total carotenoids, chlorophyll a, phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC), total protein, and carbohydrates) of a local isolate of Nostoc calcicola. The results revealed that N. calcicola prefers dim light; however, the most of the levels of light intensity and photoperiod investigated did not have a significant impact on biomass production. Increasing light intensity biomass content of chlorophyll a, PE, PC, APC, and total protein decreased, while total carotenoids and carbohydrate increased. The same behavior was observed also when light duration (photoperiod) increased. The interaction effect of increasing light intensity and photoperiod resulted in an increase of carbohydrate and total carotenoids, and to the decrease of chlorophyll a, PE, PC, APC, and total protein content. The results indicate that varying the light regime, it is capable to manipulate the biochemical composition of the local isolate of N. calcicola, producing either valuable phycobiliproteins or proteins under low light intensity and shorter photoperiods, or producing carbohydrates and carotenoids under higher light intensities and longer photoperiods.
Computational ghost imaging using deep learning
NASA Astrophysics Data System (ADS)
Shimobaba, Tomoyoshi; Endo, Yutaka; Nishitsuji, Takashi; Takahashi, Takayuki; Nagahama, Yuki; Hasegawa, Satoki; Sano, Marie; Hirayama, Ryuji; Kakue, Takashi; Shiraki, Atsushi; Ito, Tomoyoshi
2018-04-01
Computational ghost imaging (CGI) is a single-pixel imaging technique that exploits the correlation between known random patterns and the measured intensity of light transmitted (or reflected) by an object. Although CGI can obtain two- or three-dimensional images with a single or a few bucket detectors, the quality of the reconstructed images is reduced by noise due to the reconstruction of images from random patterns. In this study, we improve the quality of CGI images using deep learning. A deep neural network is used to automatically learn the features of noise-contaminated CGI images. After training, the network is able to predict low-noise images from new noise-contaminated CGI images.
Sopori, Bhushan L.
1995-01-01
Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities.
Sopori, B.L.
1995-04-11
Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. 20 figures.
Center for the Integration of Optical Computing
1993-10-15
medium-high-speed two- beam coupling that could be used in systems as an all- optical interconnect. The basis of our studies was the fact that operating at...to investigate near-band edge photorefractivity for optical interconnects, at least when used at small beam ratio or in phase conjugate resonators. I...field pattern a mess. Their poor beam quality makes laser diode arrays ill suited for many applications, such as launching intense light into single
Rushford, Michael C.
1990-02-06
In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.
Rushford, Michael C.
1990-01-01
In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.
Clusters in intense x-ray pulses
NASA Astrophysics Data System (ADS)
Bostedt, Christoph
2012-06-01
Free-electron lasers can deliver extremely intense, coherent x-ray flashes with femtosecond pulse length, opening the door for imaging single nanoscale objects in a single shot. All matter irradiated by these intense x-ray pulses, however, will be transformed into a highly-excited non-equilibrium plasma within femtoseconds. During the x-ray pulse complex electron dynamics and the onset of atomic disorder will be induced, leading to a time-varying sample. We have performed first experiments about x-ray laser pulse -- cluster interaction with a combined spectroscopy and imaging approach at both, the FLASH free electron laser in Hamburg (Germany) and the LCLS x-ray free-electron laser in Stanford (California). Atomic clusters are ideal for investigating the light - matter interaction because their size can be tuned from the molecular to the bulk regime, thus allowing to distinguish between intra and inter atomic processes. Imaging experiments with xenon clusters show power-density dependent changes in the scattering patterns. Modeling the scattering data indicates that the optical constants of the clusters change during the femtosecond pulse due to the transient creation of high charge states. The results show that ultra fast scattering is a promising approach to study transient states of matter on a femtosecond time scale. Coincident recording of time-of-flight spectra and scattering patterns allows the deconvolution of focal volume and particle size distribution effects. Single-shot single-particle experiments with keV x-rays reveal that for the highest power densities an highly excited and hot cluster plasma is formed for which recombination is suppressed. Time resolved infrared pump -- x-ray probe experiments have started. Here, the clusters are pumped into a nanoplasma state and their time evolution is probed with femtosecond x-ray scattering. The data show strong variations in the scattering patterns stemming from electronic reconfigurations in the cluster plasma. The results will be compared to theoretical predictions and discussed in light of current developments at free-electron laser sources.
Far-field coupling in nanobeam photonic crystal cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousseau, Ian, E-mail: ian.rousseau@epfl.ch; Sánchez-Arribas, Irene; Carlin, Jean-François
2016-05-16
We optimized the far-field emission pattern of one-dimensional photonic crystal nanobeams by modulating the nanobeam width, forming a sidewall Bragg cross-grating far-field coupler. By setting the period of the cross-grating to twice the photonic crystal period, we showed using three-dimensional finite-difference time-domain simulations that the intensity extracted to the far-field could be improved by more than three orders of magnitude compared to the unmodified ideal cavity geometry. We then experimentally studied the evolution of the quality factor and far-field intensity as a function of cross-grating coupler amplitude. High quality factor (>4000) blue (λ = 455 nm) nanobeam photonic crystals were fabricated out ofmore » GaN thin films on silicon incorporating a single InGaN quantum well gain medium. Micro-photoluminescence spectroscopy of sets of twelve identical nanobeams revealed a nine-fold average increase in integrated far-field emission intensity and no change in average quality factor for the optimized structure compared to the unmodulated reference. These results are useful for research environments and future nanophotonic light-emitting applications where vertical in- and out-coupling of light to nanocavities is required.« less
Lee, KyeoReh; Park, YongKeun
2016-10-31
The word 'holography' means a drawing that contains all of the information for light-both amplitude and wavefront. However, because of the insufficient bandwidth of current electronics, the direct measurement of the wavefront of light has not yet been achieved. Though reference-field-assisted interferometric methods have been utilized in numerous applications, introducing a reference field raises several fundamental and practical issues. Here we demonstrate a reference-free holographic image sensor. To achieve this, we propose a speckle-correlation scattering matrix approach; light-field information passing through a thin disordered layer is recorded and retrieved from a single-shot recording of speckle intensity patterns. Self-interference via diffusive scattering enables access to impinging light-field information, when light transport in the diffusive layer is precisely calibrated. As a proof-of-concept, we demonstrate direct holographic measurements of three-dimensional optical fields using a compact device consisting of a regular image sensor and a diffusor.
Controlled patterns of daytime light exposure improve circadian adjustment in simulated night work.
Dumont, Marie; Blais, Hélène; Roy, Joanie; Paquet, Jean
2009-10-01
Circadian misalignment between the endogenous circadian signal and the imposed rest-activity cycle is one of the main sources of sleep and health troubles in night shift workers. Timed bright light exposure during night work can reduce circadian misalignment in night workers, but this approach is limited by difficulties in incorporating bright light treatment into most workplaces. Controlled light and dark exposure during the daytime also has a significant impact on circadian phase and could be easier to implement in real-life situations. The authors previously described distinctive light exposure patterns in night nurses with and without circadian adaptation. In the present study, the main features of these patterns were used to design daytime light exposure profiles. Profiles were then tested in a laboratory simulation of night work to evaluate their efficacy in reducing circadian misalignment in night workers. The simulation included 2 day shifts followed by 4 consecutive night shifts (2400-0800 h). Healthy subjects (15 men and 23 women; 20-35 years old) were divided into 3 groups to test 3 daytime light exposure profiles designed to produce respectively a phase delay (delay group, n=12), a phase advance (advance group, n=13), or an unchanged circadian phase (stable group, n=13). In all 3 groups, light intensity was set at 50 lux during the nights of simulated night work. Salivary dim light melatonin onset (DLMO) showed a significant phase advance of 2.3 h (+/-1.3 h) in the advance group and a significant phase delay of 4.1 h (+/-1.3 h) in the delay group. The stable group showed a smaller but significant phase delay of 1.7 h (+/-1.6 h). Urinary 6-sulfatoxymelatonin (aMT6s) acrophases were highly correlated to salivary DLMOs. Urinary aMT6s acrophases were used to track daily phase shifts. They showed that phase shifts occurred rapidly and differed between the 3 groups by the 3rd night of simulated night work. These results show that significant phase shifts can be achieved in night workers by controlling daytime light exposure, with no nighttime intervention.
NASA Technical Reports Server (NTRS)
2001-01-01
X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.
Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements
NASA Technical Reports Server (NTRS)
Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen
2006-01-01
A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.
The infant incubator in the neonatal intensive care unit: unresolved issues and future developments.
Antonucci, Roberto; Porcella, Annalisa; Fanos, Vassilios
2009-01-01
Since the 19th century, devices termed incubators were developed to maintain thermal stability in low birth weight (LBW) and sick newborns, thus improving their chances of survival. Remarkable progress has been made in the production of infant incubators, which are currently highly technological devices. However, they still need to be improved in many aspects. Regarding the temperature and humidity control, future incubators should minimize heat loss from the neonate and eddies around him/her. An unresolved issue is exposure to high noise levels in the Neonatal Intensive Care Unit (NICU). Strategies aimed at modifying the behavior of NICU personnel, along with structural improvements in incubator design, are required to reduce noise exposure. Light environment should be taken into consideration in designing new models of incubators. In fact, ambient NICU illumination may cause visual pathway sequelae or possibly retinopathy of prematurity (ROP), while premature exposure to continuous lighting may adversely affect the rest-activity patterns of the newborn. Accordingly, both the use of incubator covers and circadian lighting in the NICU might attenuate these effects. The impact of electromagnetic fields (EMFs) on infant health is still unclear. However, future incubators should be designed to minimize the EMF exposure of the newborn.
NASA Astrophysics Data System (ADS)
Zou, X. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.; Lai, M.
2018-04-01
A multi-band absorber constructed from prism-incorporated one-dimensional photonic crystal (1D-PhC) containing graphene defects is achieved theoretically in the visible and near-infrared (vis-NIR) spectral range. By means of the transfer matrix method (TMM), the effect of structural parameters on the optical response of the structure has been investigated. It is possible to achieve multi-peak and complete optical absorption. The simulations reveal that the light intensity is enhanced at the graphene plane, and the resonant wavelength and the absorption intensity can also be tuned by tilting the incidence angle of the impinging light. In particular, multiple graphene sheets are embedded in the arrays, without any demand of manufacture process to cut them into periodic patterns. The proposed concept can be extended to other two-dimensional (2D) materials and engineered for promising applications, including selective or multiplex filters, multiple channel sensors, and photodetectors.
NASA Astrophysics Data System (ADS)
Mo, Ran; Choi, Ji Eun; Kim, Hyeong Jin; Jeong, Junseok; Kim, Jong Chan; Kim, Yong-Jin; Jeong, Hu Young; Hong, Young Joon
2017-10-01
This study investigates the influence of voids on the electroluminescence (EL) emission color of ZnO microdisk/p-GaN heterojunction light-emitting diodes (LEDs). For this study, position-controlled microdisk arrays were fabricated on patterned p-GaN via wet chemical epitaxy of ZnO, and specifically, the use of trisodium citrate dihydrate (TCD) yielded high-density voids at the bottom of the microdisk. Greenish yellow or whitish blue EL was emitted from the microdisk LEDs formed with or without TCD, respectively, at reverse-bias voltages. Such different EL colors were found to be responsible for the relative EL intensity ratio between indigo and yellow emission peaks, which were originated from radiative recombination at p-GaN and ZnO, respectively. The relative EL intensity between dichromatic emissions is discussed in terms of (i) junction edge effect provoked by interfacial voids and (ii) electron tunneling probability depending on the depletion layer geometry.
Noise filtering via electromagnetically induced transparency
NASA Astrophysics Data System (ADS)
Jeong, Taek; Bae, In-Ho; Moon, Han Seb
2017-01-01
We report on the intensity-noise reduction of pseudo-thermal light via electromagnetically induced transparency (EIT) in the Λ-type system of the 5S1/2-5P1/2 transition in 87Rb. Noise filtering of the pseudo-thermal probe light was achieved via an EIT filter and measured according to the degree of intensity noise of the pseudo-thermal probe light. Reductions in the intensity and spectral noise of the pseudo-thermal probe light with the EIT filter were observed using the direct intensity fluctuation and heterodyne detection technique, respectively. Comparison of the intensity noise of the pseudo-thermal probe light before and after passing through the EIT filter revealed a significant reduction in the intensity noise.
NASA Astrophysics Data System (ADS)
Cover, Keith S.; van Asperen, Niek; de Jong, Joost; Verdaasdonk, Rudolf M.
2013-03-01
Infection following neurosurgery is all too common. One possible source of infection is the transportation of dust and other contaminates into the open wound by airflow within the operating theatre. While many modern operating theatres have a filtered, uniform and gentle flow of air cascading down over the operating table from a large area fan in the ceiling, many obstacles might introduce turbulence into the laminar flow including lights, equipment and personal. Schlieren imaging - which is sensitive to small disturbances in the laminar flow such as breathing and turbulence caused by air warmed by a hand at body temperature - was used to image the air flow due to activities in an operating theatre. Color intensity projections (CIPs) were employed to reduce the workload of analyzing the large amount of video data. CIPs - which has been applied to images in angiography, 4D CT, nuclear medicine and astronomy - summarizes the changes over many gray scale images in a single color image in a way which most interpreters find intuitive. CIPs uses the hue, saturation and brightness of the color image to encode the summary. Imaging in an operating theatre showed substantial disruptions to the airflow due to equipment such as the lighting. When these disruptions are combined with such minor factors as heat from the hand, reversal of the preferred airflow patterns can occur. These reversals of preferred airflow patterns have the potential to transport contaminates into the open wound. Further study is required to understand both the frequency of the reversed airflow patterns and the impact they may have on infection rates.
NASA Astrophysics Data System (ADS)
Arifin, A.; Lusiana; Yunus, Muhammad; Dewang, Syamsir
2018-03-01
This research discusses the light intensity sensor based on plastic optical fiber. This light intensity sensor is made of plastic optical fiber consisting of two types, namely which is cladding and without cladding. Plastic optical fiber used multi-mode step-index type made of polymethyl metacrylate (PMMA). The infrared LED emits light into the optical fiber of the plastic and is subsequently received by the phototransistor to be converted to an electric voltage. The sensor configuration is made with three models: straight configuration, U configuration and gamma configuration with cladding and without cladding. The measured light source uses a 30 Watt high power LED with a light intensity of 0 to 10 Klux. The measured light intensity will affect the propagation of light inside the optical fiber sensor. The greater the intensity of the measured light, the greater the output voltage that is read on the computer. The results showed that the best optical fiber sensor characteristics were obtained in U configuration. Sensors with U-configuration without cladding had the best sensitivity and resolution values of 0.0307 volts/Klux and 0.0326 Klux. The advantages of this measuring light intensity based on the plastic optical fiber instrument are simple, easy-to-make operational systems, low cost, high sensitivity and resolution.
Light and lunar cycle as cues to diel migration of a sound-scattering layer
NASA Astrophysics Data System (ADS)
Benoit-Bird, Kelly J.; Au, Whitlow W. L.
2001-05-01
The Hawaiian mesopelagic boundary community is an island-associated midwater scattering layer comprised of small fishes, shrimps, and squids that undergoes diel vertical as well as horizontal migrations. It has been hypothesized that light levels are an important cue or trigger for vertical migration and presumably, horizontal migration. The migration pattern of the scattering layer was measured over complete lunar cycles while the incident light levels were recorded. Due to differences in the rise and set times of the moon and cloud cover, light and lunar cycle were not completely coupled, allowing separation of the light effects of moon phase and other cues associated with lunar cycle. Four calibrated echosounder moorings were deployed with approximately even spacing, perpendicular to the leeward coast of Oahu. Moorings were deployed for one complete lunar cycle at each of three locations, recording 10 echoes every 15 min. Light sensors measured the nocturnal light intensity at 30-s intervals. Statistical analysis revealed significant effects of both light and other lunar cycle cues. Overall, the effect size was very low considering the light transmission characteristics of the subtropical Pacific, making measurement from stationary acoustic platforms critical.
14 CFR 29.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... be provided by new equipment with light covers and color filters in place. Intensities must be... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1389...
14 CFR 29.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... be provided by new equipment with light covers and color filters in place. Intensities must be... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1389...
14 CFR 29.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... be provided by new equipment with light covers and color filters in place. Intensities must be... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1389...
14 CFR 29.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... be provided by new equipment with light covers and color filters in place. Intensities must be... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1389...
Foraging mechanisms of siscowet lake trout (Salvelinus namaycush siscowet) on pelagic prey
Keyler, Trevor D.; Hrabik, Thomas R.; Austin, C. Lee; Gorman, Owen T.; Mensinger, Allen F.
2015-01-01
The reaction distance, angle of attack, and foraging success were determined for siscowet lake trout (Salvelinus namaycush siscowet) during laboratory trials under lighting conditions that approximated downwelling spectral irradiance and intensity (9.00 × 108–1.06 × 1014 photons m− 2 s− 1) at daytime depths. Siscowet reaction distance in response to golden shiners (Notemigonus crysoleucas) was directly correlated with increasing light intensity until saturation at 1.86 × 1011 photons m− 2 s− 1, above which reaction distance was constant within the range of tested light intensities. At the lowest tested light intensity, sensory detection was sufficient to locate prey at 25 ± 2 cm, while increasing light intensities increased reaction distance up to 59 ± 2 cm at 1.06 × 1014 photons m− 2 s− 1. Larger prey elicited higher reaction distances than smaller prey at all light intensities while moving prey elicited higher reaction distances than stationary prey at the higher light intensities (6.00 × 109 to 1.06 × 1014 photons m− 2 s− 1). The capture and consumption of prey similarly increased with increasing light intensity while time to capture decreased with increasing light intensity. The majority of orientations toward prey occurred within 120° of the longitudinal axis of the siscowet's eyes, although reaction distances among 30° increments along the entire axis were not significantly different. The developed predictive model will help determine reaction distances for siscowet in various photic environments and will help identify the mechanisms and behavior that allow for low light intensity foraging within freshwater systems.
Lang, Brian Hung-Hin; Wong, Carlos K H; Hung, Hing Tsun; Wong, Kai Pun; Mak, Ka Lun; Au, Kin Bun
2017-01-01
Because the fluorescent light intensity on an indocyanine green fluorescence angiography reflects the blood perfusion within a focused area, the fluorescent light intensity in the remaining in situ parathyroid glands may predict postoperative hypocalcemia risk after total thyroidectomy. Seventy patients underwent intraoperative indocyanine green fluorescence angiography after total thyroidectomy. Any parathyroid glands with a vascular pedicle was left in situ while any parathyroid glands without pedicle or inadvertently removed was autotransplanted. After total thyroidectomy, an intravenous 2.5 mg indocyanine green fluorescence angiography was given and real-time fluorescent images of the thyroid bed were recorded using the SPY imaging system (Novadaq, Ontario, Canada). The fluorescent light intensity of each indocyanine green fluorescence angiography as well as the average and greatest fluorescent light intensity in each patient were calculated. Postoperative hypocalcemia was defined as adjusted calcium <2.00 mmol/L within 24 hours. The fluorescent light intensity between discolored and normal-looking indocyanine green fluorescence angiographies was similar (P = .479). No patients with a greatest fluorescent light intensity >150% developed postoperative hypocalcemia while 9 (81.8%) patients with a greatest fluorescent light intensity ≤150% did. Similarly, no patients with an average fluorescent light intensity >109% developed PH while 9 (30%) with an average fluorescent light intensity ≤109% did. The greatest fluorescent light intensity was more predictive than day-0 postoperative hypocalcemia (P = .027) and % PTH drop day-0 to 1 (P < .001). Indocyanine green fluorescence angiography is a promising operative adjunct in determining residual parathyroid glands function and predicting postoperative hypocalcemia risk after total thyroidectomy. Copyright © 2016 Elsevier Inc. All rights reserved.
Shah, Vandana Sandip; Ghanchi, Mohsin Jiva; Gosavi, Sandesh Sachchidanand; Srivastava, Himanshu Mahesh; Pachore, Nivedita Javahir
2016-01-01
Introduction Odontogenic cysts viz Odontogenic Keratocyst (OKC), Dentigerous Cyst (DC) and Radicular Cyst (RC) occur commonly in the oral and maxillofacial region. Cytokeratin (CK) expression studies have been done to evaluate diagnostic accuracy, role in pathogenesis, elucidate behaviour and role in treatment protocols. However, variations have been reported in the expression of CK patterns in these odontogenic cysts, which could be due to the lack of standardization of laboratory techniques. The present study has tried to shed light on CK 18 and 19 expression in odontogenic cysts and offer the brief review of previous studies on these CK. Aim The aim of the present study was to evaluate the intensity and expression patterns of CK 18 and 19 in OKCs, DCs and RCs. Materials and Methods A total of 60 cases, 20 each of OKC, DC and RC were confirmed histologically and evaluated for immunohistochemical expression pattern and intensity of CK 18 and 19. Results A focal and variable expression of CK 18 was observed in 25% of OKCs, 15% of DCs and 10% of RCs. CK 19 was expressed in 75% of OKCs and 100% in DCs as well as RCs. Conclusion The intensity and expression of Cytokeratin 19 was more in all three cysts compared to Cytokeratin 18. PMID:27630961
Optical second harmonic generation from V-shaped chromium nanohole arrays
NASA Astrophysics Data System (ADS)
Khoa Quang, Ngo; Miyauchi, Yoshihiro; Mizutani, Goro; Charlton, Martin D.; Chen, Ruiqi; Boden, Stuart; Rutt, Harvey
2014-02-01
We observed rotational anisotropy of optical second harmonic generation (SHG) from an array of V-shaped chromium nanoholes fabricated by electron beam lithography. Phenomenological analysis indicated that the effective nonlinear susceptibility element \\chi _{313}^{(2)} had a characteristic contribution to the observed anisotropic SHG intensity patterns. Here, coordinate 1 is in the direction of the tip of V shapes in the substrate plane, and 3 indicates the direction perpendicular to the sample surface. The SHG intensity for the S-polarized output light was very weak, probably owing to the cancellation effect of the image dipoles generated at the metal-air boundary. The possible origin of the observed nonlinearity is discussed in terms of the susceptibility elements obtained.
Generation of Crystal-Structure Transverse Patterns via a Self-Frequency-Doubling Laser
Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Wang, Zhengping; Wang, Jiyang; Petrov, V.
2013-01-01
Two-dimensional (2D) visible crystal-structure patterns analogous to the quantum harmonic oscillator (QHO) have been experimentally observed in the near- and far-fields of a self-frequency-doubling (SFD) microchip laser. Different with the fundamental modes, the localization of the SFD light is changed with the propagation. Calculation based on Hermite-Gaussian (HG) functions and second harmonic generation theory reproduces well the patterns both in the near- and far-field which correspond to the intensity distribution in coordinate and momentum spaces, respectively. Considering the analogy of wave functions of the transverse HG mode and 2D harmonic oscillator, we propose that the simple monolithic SFD lasers can be used for developing of new materials and devices and testing 2D quantum mechanical theories. PMID:23336067
Generation of crystal-structure transverse patterns via a self-frequency-doubling laser.
Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Wang, Zhengping; Wang, Jiyang; Petrov, V
2013-01-01
Two-dimensional (2D) visible crystal-structure patterns analogous to the quantum harmonic oscillator (QHO) have been experimentally observed in the near- and far-fields of a self-frequency-doubling (SFD) microchip laser. Different with the fundamental modes, the localization of the SFD light is changed with the propagation. Calculation based on Hermite-Gaussian (HG) functions and second harmonic generation theory reproduces well the patterns both in the near- and far-field which correspond to the intensity distribution in coordinate and momentum spaces, respectively. Considering the analogy of wave functions of the transverse HG mode and 2D harmonic oscillator, we propose that the simple monolithic SFD lasers can be used for developing of new materials and devices and testing 2D quantum mechanical theories.
Liu, Ying; Dong, Li-fang; Niu, Xue-jiao; Zhang, Chao
2016-02-01
The hexagonal super-lattice pattern composed of the light spot and the dim spot is firstly observed and investigated in the discharge of gas mixture of air and argon by using the dielectric barrier discharge device with double water electrodes. It is found that the dim spot is located at the center of its surrounding three light spots by observing the discharge image. Obviously, the brightness of the light spot and the dim spot are different, which indicates that the plasma states of the light spot and the dim spot may be different. The optical emission spectrum method is used to further study the several plasma parameters of the light spot and the dim spot in different argon content. The emission spectra of the N₂ second positive band (C³IIu --> B³IIg) are measured, from which the molecule vibration temperatures of the light spot and the dim spot are calculated. Based on the relative intensity ratio of the line at 391.4 nm and the N₂ line at 394.1 nm, the average electron energies of the light spot and the dim spot are investigated. The broadening of spectral line 696.57 nm (2P₂-1S₅) is used to study the electron densities of the light spot and the dim spot. The experiment shows that the molecule vibration temperature, average electron energy and the electron density of the dim spot are higher than those of the light spot in the same argon content. The molecule vibration temperature and electron density of the light spot and dim spot increase with the argon content increasing from 70% to 95%, while average electron energies of the light spot and dim spot decrease gradually. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges (SDs). The surface discharge induced by the volume discharge (VD) has the decisive effect on the formation of the dim spot. The experiment above plays an important role in studying the formation mechanism of the hexagonal super-lattice pattern with light spot and dim spot. In addition, the studies exert influences on the application of surface discharge and volume discharge in different fields.
Light-Irradiation Wavelength and Intensity Changes Influence Aflatoxin Synthesis in Fungi
Suzuki, Tadahiro
2018-01-01
Fungi respond to light irradiation by forming conidia and occasionally synthesizing mycotoxins. Several light wavelengths, such as blue and red, affect the latter. However, the relationship between light irradiation and mycotoxin synthesis varies depending on the fungal species or strain. This study focused on aflatoxin (AF), which is a mycotoxin, and the types of light irradiation that increase AF synthesis. Light-irradiation tests using the visible region indicated that blue wavelengths in the lower 500 nm region promoted AF synthesis. In contrast, red wavelengths of 660 nm resulted in limited significant changes compared with dark conditions. Irradiation tests with different intensity levels indicated that a low light intensity increased AF synthesis. For one fungal strain, light irradiation decreased the AF synthesis under all wavelength conditions. However, the decrease was mitigated by 525 nm low intensity irradiation. Thus, blue-green low intensity irradiation may increase AF synthesis in fungi. PMID:29304012
14 CFR 25.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1389 Position...
14 CFR 27.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1389 Position...
14 CFR 27.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1389 Position...
14 CFR 25.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1389 Position...
14 CFR 27.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1389 Position...
14 CFR 25.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1389 Position...
14 CFR 25.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1389 Position...
14 CFR 27.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1389 Position...
Application of a liquid crystal spatial light modulator to laser marking.
Parry, Jonathan P; Beck, Rainer J; Shephard, Jonathan D; Hand, Duncan P
2011-04-20
Laser marking is demonstrated using a nanosecond (ns) pulse duration laser in combination with a liquid crystal spatial light modulator to generate two-dimensional patterns directly onto thin films and bulk metal surfaces. Previous demonstrations of laser marking with such devices have been limited to low average power lasers. Application in the ns regime enables more complex, larger scale marks to be generated with more widely available and industrially proven laser systems. The dynamic nature of the device is utilized to improve mark quality by reducing the impact of the inherently speckled intensity distribution across the generated image and reduce thermal effects in the marked surface. © 2011 Optical Society of America
Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy.
Jiang, Shihong; Walker, John
2010-01-20
We report a differential fluorescence speckle confocal microscope that acquires an image in a fraction of a second by exploiting the very high frame rate of modern digital micromirror devices (DMDs). The DMD projects a sequence of predefined binary speckle patterns to the sample and modulates the intensity of the returning fluorescent light simultaneously. The fluorescent light reflecting from the DMD's "on" and "off" pixels is modulated by correlated speckle and anticorrelated speckle, respectively, to form two images on two CCD cameras in parallel. The sum of the two images recovers a widefield image, but their difference gives a near-confocal image in real time. Experimental results for both low and high numerical apertures are shown.
Bumblebees Perform Well-Controlled Landings in Dim Light.
Reber, Therese; Dacke, Marie; Warrant, Eric; Baird, Emily
2016-01-01
To make a smooth touchdown when landing, an insect must be able to reliably control its approach speed as well as its body and leg position-behaviors that are thought to be regulated primarily by visual information. Bumblebees forage and land under a broad range of light intensities and while their behavior during the final moments of landing has been described in detail in bright light, little is known about how this is affected by decreasing light intensity. Here, we investigate this by characterizing the performance of bumblebees, B. terrestris, landing on a flat platform at two different orientations (horizontal and vertical) and at four different light intensities (ranging from 600 lx down to 19 lx). As light intensity decreased, the bees modified their body position and the distance at which they extended their legs, suggesting that the control of landing in these insects is visually mediated. Nevertheless, the effect of light intensity was small and the landings were still well controlled, even in the dimmest light. We suggest that the changes in landing behavior that occurred in dim light might represent adaptations that allow the bees to perform smooth landings across the broad range of light intensities at which they are active.
Physical activity in low-income postpartum women.
Wilkinson, Susan; Huang, Chiu-Mieh; Walker, Lorraine O; Sterling, Bobbie Sue; Kim, Minseong
2004-01-01
To validate the 7-day physical activity recall (PAR), including alternative PAR scoring algorithms, using pedometer readings with low-income postpartum women, and to describe physical activity patterns of a low-income population of postpartum women. Forty-four women (13 African American, 19 Hispanic, and 12 White) from the Austin New Mothers Study (ANMS) were interviewed at 3 months postpartum. Data were scored alternatively according to the Blair (sitting treated as light activity) and Welk (sitting excluded from light activity and treated as rest) algorithms. Step counts based on 3 days of wearing pedometers served as the validation measure. Using the Welk algorithm, PAR components significantly correlated with step counts were: minutes spent in light activity, total activity (sum of light to very hard activity), and energy expenditure. Minutes spent in sitting were negatively correlated with step counts. No PAR component activities derived with the Blair algorithm were significantly related to step counts. The largest amount of active time was spent in light activity: 384.4 minutes with the Welk algorithm. Mothers averaged fewer than 16 minutes per day in moderate or high intensity activity. Step counts measured by pedometers averaged 6,262 (SD = 2,712) per day. The findings indicate support for the validity of the PAR as a measure of physical activity with low-income postpartum mothers when scored according to the Welk algorithm. On average, low-income postpartum women in this study did not meet recommendations for amount of moderate or high intensity physical activity.
Weak light emission of soft tissues induced by heating
NASA Astrophysics Data System (ADS)
Spinelli, Antonello E.; Durando, Giovanni; Boschi, Federico
2018-04-01
The main goal of this work is to show that soft tissue interaction with high-intensity focused ultrasound (HIFU) or direct heating leads to a weak light emission detectable using a small animal optical imaging system. Our results show that the luminescence signal is detectable after 30 min of heating, resembling the time scale of delayed luminescence. The imaging of a soft tissue after heating it using an HIFU field shows that the luminescence pattern closely matches the shape of the cone typical of the HIFU beam. We conclude that heating a soft tissue using two different sources leads to the emission of a weak luminescence signal from the heated region with a decay half-life of a few minutes (4 to 6 min). The origin of such light emission needs to be further investigated.
In-volume structuring of a bilayered polymer foil using direct laser interference patterning
NASA Astrophysics Data System (ADS)
Rößler, Florian; Günther, Katja; Lasagni, Andrés F.
2018-05-01
Periodic surface patterns can provide materials with special optical properties, which are usable in decorative or security applications. However, they can be sensitive to contact wear and thus their lifetime and functionality are limited. This study describes the use of direct laser interference patterning for structuring a multilayered polymer film at its interface creating periodic in-volume structures which are resistant to contact wear. The spatial period of the structures are varied in the range of 1.0 μm to 2.0 μm in order to produce decorative elements. The pattern formation at the interface is explained using cross sectional observations and a thermal simulation of the temperature evolution during the laser treatment at the interface. Both, the diffraction efficiency and direct transmission are characterized by light intensity measurements to describe the optical behavior of the produced periodic structures and a decorative application example is presented.
Validity of an Integrative Method for Processing Physical Activity Data.
Ellingson, Laura D; Schwabacher, Isaac J; Kim, Youngwon; Welk, Gregory J; Cook, Dane B
2016-08-01
Accurate assessments of both physical activity and sedentary behaviors are crucial to understand the health consequences of movement patterns and to track changes over time and in response to interventions. The study evaluates the validity of an integrative, machine learning method for processing activity monitor data in relation to a portable metabolic analyzer (Oxycon mobile [OM]) and direct observation (DO). Forty-nine adults (age 18-40 yr) each completed 5-min bouts of 15 activities ranging from sedentary to vigorous intensity in a laboratory setting while wearing ActiGraph (AG) on the hip, activPAL on the thigh, and OM. Estimates of energy expenditure (EE) and categorization of activity intensity were obtained from the AG processed with Lyden's sojourn (SOJ) method and from our new sojourns including posture (SIP) method, which integrates output from the AG and activPAL. Classification accuracy and estimates of EE were then compared with criterion measures (OM and DO) using confusion matrices and comparisons of the mean absolute error of log-transformed data (MAE ln Q). The SIP method had a higher overall classification agreement (79%, 95% CI = 75%-82%) than the SOJ (56%, 95% CI = 52%-59%) based on DO. Compared with OM, estimates of EE from SIP had lower mean absolute error of log-transformed data than SOJ for light-intensity (0.21 vs 0.27), moderate-intensity (0.33 vs 0.42), and vigorous-intensity (0.16 vs 0.35) activities. The SIP method was superior to SOJ for distinguishing between sedentary and light activities as well as estimating EE at higher intensities. Thus, SIP is recommended for research in which accuracy of measurement across the full range of activity intensities is of interest.
Generation of attosecond electron beams in relativistic ionization by short laser pulses
NASA Astrophysics Data System (ADS)
Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.
2018-03-01
Ionization by relativistically intense short laser pulses is studied in the framework of strong-field quantum electrodynamics. Distinctive patterns are found in the energy probability distributions of photoelectrons, which are sensitive to the properties of a driving laser field. It is demonstrated that these electrons are generated in the form of solitary attosecond wave packets. This is particularly important in light of various applications of attosecond electron beams such as in ultrafast electron diffraction and crystallography, or in time-resolved electron microscopy of physical, chemical, and biological processes. We also show that, for intense laser pulses, high-energy ionization takes place in narrow regions surrounding the momentum spiral, the exact form of which is determined by the shape of a driving pulse. The self-intersections of the spiral define the momenta for which the interference patterns in the energy distributions of photoelectrons are observed. Furthermore, these interference regions lead to the synthesis of single-electron wave packets characterized by coherent double-hump structures.
NASA Astrophysics Data System (ADS)
Izyumskaya, N.; Okur, S.; Zhang, F.; Monavarian, M.; Avrutin, V.; Özgür, Ü.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.
2014-03-01
Nonpolar m-plane GaN layers were grown on patterned Si (112) substrates by metal-organic chemical vapor deposition (MOCVD). A two-step growth procedure involving a low-pressure (30 Torr) first step to ensure formation of the m-plane facet and a high-pressure step (200 Torr) for improvement of optical quality was employed. The layers grown in two steps show improvement of the optical quality: the near-bandedge photoluminescence (PL) intensity is about 3 times higher than that for the layers grown at low pressure, and deep emission is considerably weaker. However, emission intensity from m-GaN is still lower than that of polar and semipolar (1 100 ) reference samples grown under the same conditions. To shed light on this problem, spatial distribution of optical emission over the c+ and c- wings of the nonpolar GaN/Si was studied by spatially resolved cathodoluminescence and near-field scanning optical microscopy.
Choice and Constraint in the Negotiation of the Grandparent Role: A Mixed-Methods Study.
McGarrigle, Christine A; Timonen, Virpi; Layte, Richard
2018-01-01
Few studies have examined how the allocation and consequences of grandchild care vary across different socioeconomic groups. We analyze qualitative data alongside data from The Irish Longitudinal Study on Ageing (TILDA), in a convergent mixed-methods approach. Regression models examined characteristics associated with grandchild care, and the relationship between grandchild care and depressive symptoms and well-being. Qualitative data shed light on processes and choices that explain patterns of grandchild care provision. Tertiary-educated grandparents provided less intensive grandchild care compared with primary educated. Qualitative data indicated that this pattern stems from early boundary-drawing among higher educated grandparents while lower socioeconomic groups were constrained and less able to say no. Intensive grandchild care was associated with more depressive symptoms and lower well-being and was moderated by participation in social activities and level of education attainment. The effect of grandchild care on well-being of grandparents depends on whether it is provided by choice or obligation.
Choice and Constraint in the Negotiation of the Grandparent Role: A Mixed-Methods Study
McGarrigle, Christine A.; Timonen, Virpi; Layte, Richard
2018-01-01
Few studies have examined how the allocation and consequences of grandchild care vary across different socioeconomic groups. We analyze qualitative data alongside data from The Irish Longitudinal Study on Ageing (TILDA), in a convergent mixed-methods approach. Regression models examined characteristics associated with grandchild care, and the relationship between grandchild care and depressive symptoms and well-being. Qualitative data shed light on processes and choices that explain patterns of grandchild care provision. Tertiary-educated grandparents provided less intensive grandchild care compared with primary educated. Qualitative data indicated that this pattern stems from early boundary-drawing among higher educated grandparents while lower socioeconomic groups were constrained and less able to say no. Intensive grandchild care was associated with more depressive symptoms and lower well-being and was moderated by participation in social activities and level of education attainment. The effect of grandchild care on well-being of grandparents depends on whether it is provided by choice or obligation. PMID:29372176
Wang, Liling; Dai, Yang; Chen, Wanping; Shao, Yanchun; Chen, Fusheng
2016-12-21
Light is a crucial environmental signal for fungi. In this work, the effects of different light intensities and colors on biomass, Monascus pigments (MPs) and citrinin production of Monascus ruber M7 were investigated. We have demonstrated that low intensity of blue light (500 lx) decreased Monascus biomass, increased MPs accumulation via upregulation of MpigA, MpigB, and MpigJ genes expression, but had no significant influence on citrinin production. High intensity of blue light (1500 lx) decreased citrinin accumulation but had no significant influence on biomass and MPs production after 14 days cultivation. Low intensity of green light (500 lx) stimulated citrinin production via upregulation of pksCT, mrl1, mrl2, and ctnA genes expression. One putative red light photoreceptor and two putative green light photoreceptors were identified in M. ruber M7. These observations will not only guide the practical production of Monascus but also contribute to our understanding light effects on Monascus.
Optically programmable encoder based on light propagation in two-dimensional regular nanoplates.
Li, Ya; Zhao, Fangyin; Guo, Shuai; Zhang, Yongyou; Niu, Chunhui; Zeng, Ruosheng; Zou, Bingsuo; Zhang, Wensheng; Ding, Kang; Bukhtiar, Arfan; Liu, Ruibin
2017-04-07
We design an efficient optically controlled microdevice based on CdSe nanoplates. Two-dimensional CdSe nanoplates exhibit lighting patterns around the edges and can be realized as a new type of optically controlled programmable encoder. The light source is used to excite the nanoplates and control the logical position under vertical pumping mode by the objective lens. At each excitation point in the nanoplates, the preferred light-propagation routes are along the normal direction and perpendicular to the edges, which then emit out from the edges to form a localized lighting section. The intensity distribution around the edges of different nanoplates demonstrates that the lighting part with a small scale is much stronger, defined as '1', than the dark section, defined as '0', along the edge. These '0' and '1' are the basic logic elements needed to compose logically functional devices. The observed propagation rules are consistent with theoretical simulations, meaning that the guided-light route in two-dimensional semiconductor nanoplates is regular and predictable. The same situation was also observed in regular CdS nanoplates. Basic theoretical analysis and experiments prove that the guided light and exit position follow rules mainly originating from the shape rather than material itself.
Magneto-optical visualization of three spatial components of inhomogeneous stray fields
NASA Astrophysics Data System (ADS)
Ivanov, V. E.
2012-08-01
The article deals with the physical principles of magneto-optical visualization (MO) of three spatial components of inhomogeneous stray fields with the help of FeCo metal indicator films in the longitudinal Kerr effect geometry. The inhomogeneous field is created by permanent magnets. Both p- and s-polarization light is used for obtaining MO images with their subsequent summing, subtracting and digitizing. As a result, the MO images and corresponding intensity coordinate dependences reflecting the distributions of the horizontal and vertical magnetization components in pure form have been obtained. Modeling of both the magnetization distribution in the indicator film and the corresponding MO images shows that corresponding to polar sensitivity the intensity is proportional to the normal field component, which permits normal field component mapping. Corresponding to longitudinal sensitivity, the intensity of the MO images reflects the angular distribution of the planar field component. MO images have singular points in which the planar component is zero and their movement under an externally homogeneous planar field permits obtaining of additional information on the two planar components of the field under study. The intensity distribution character in the vicinity of sources and sinks (singular points) remains the same under different orientations of the light incidence plane. The change of incident plane orientation by π/2 alters the distribution pattern in the vicinity of the saddle points.
Tokunaga, Rumi; Logvinenko, Alexander D; Maloney, Laurence T
2008-01-01
Observers viewed two side-by-side arrays each of which contained three yellow Munsell papers, three blue, and one neutral Munsell. Each array was illuminated uniformly and independently of the other. The neutral light source intensities were 1380, 125, or 20 lux. All six possible combinations of light intensities were set as illumination conditions. On each trial, observers were asked to rate the dissimilarity between each chip in one array and each chip in the other by using a 30-point scale. Each pair of surfaces in each illumination condition was judged five times. We analyzed this data using non-metric multi-dimensional scaling to determine how light intensity and surface chroma contributed to dissimilarity and how they interacted. Dissimilarities were captured by a three-dimensional configuration in which one dimension corresponded to differences in light intensity.
On the Intensity Profile of Electric Lamps and Light Bulbs
ERIC Educational Resources Information Center
Bacalla, Xavier; Salumbides, Edcel John
2013-01-01
We demonstrate that the time profile of the light intensity from domestic lighting sources exhibits simple yet interesting properties that foster lively student discussions. We monitor the light intensity of an industrial fluorescent lamp (also known as TL) and an incandescent bulb using a photodetector connected to an oscilloscope. The light…
Light-mediated predation by northern squawfish on juvenile Chinook salmon
Petersen, James H.; Gadomski, Dena M.
1994-01-01
Northern squawfish Ptychocheilus oregonensis cause significant mortality of juvenile salmon in the lower Columbia River Basin (U.S.A.). The effects of light intensity on this predator-prey interaction were examined with laboratory experiments and modelling studies. In laboratory experiments, the rate of capture of subyearling chinook salmon Oncorhynchus tshawytscha by northern squawfish was inversely related to light intensity. In a large raceway, about five times more salmon were captured during 4 h periods of relative darkness (0–03 Ix) than during periods with high light intensity (160 Ix). The rate of predation could be manipulated by increasing or decreasing light intensity.A simulation model was developed for visual predators that encounter, attack, and capture juvenile salmon, whose schooling behaviour was light-sensitive. The model was fitted to laboratory results using a Monte Carlo filtering procedure. Model-predicted predation rate was especially sensitive to the visual range of predators at low light intensity and to predator search speed at high light. Modelling results also suggested that predation by northern squawfish on juvenile salmon may be highest across a narrow window of fight intensity.
Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination
Ambrosio, Antonio; Marrucci, Lorenzo; Borbone, Fabio; Roviello, Antonio; Maddalena, Pasqualino
2012-01-01
When an azobenzene-containing polymer film is exposed to non-uniform illumination, a light-induced mass migration process may be induced, leading to the formation of relief patterns on the polymer-free surface. Despite many years of research effort, several aspects of this phenomenon remain poorly understood. Here we report the appearance of spiral-shaped relief patterns on the polymer film under the illumination of focused Laguerre–Gauss beams with helical wavefronts and an optical vortex at their axis. The induced spiral reliefs are sensitive to the vortex topological charge and to the wavefront handedness. These findings are unexpected because the doughnut-shaped intensity profile of Laguerre–Gauss beams contains no information about the wavefront handedness. We propose a model that explains the main features of this phenomenon through the surface-mediated interference of the longitudinal and transverse components of the optical field. These results may find applications in optical nanolithography and optical-field nanoimaging. PMID:22871808
Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films
NASA Astrophysics Data System (ADS)
Sharma, Vivek; Zhang, Yiran; Yilixiati, Subinuer
Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freely standing thin films. We distinguish nanoscopic rims, mesas and craters, and follow their emergence and growth. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), these topological features involve discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm. These non-flat features result from oscillatory, periodic, supramolecular structural forces that arise in confined fluids, and arise due to complex coupling of hydrodynamic and thermodynamic effects at the nanoscale.
Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films
NASA Astrophysics Data System (ADS)
Yilixiati, Subinuer; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek
Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freestanding thin films. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm are visualized and analyzed using IDIOM protocols. We distinguish nanoscopic rims, mesas and craters and show that the non-flat features are sculpted by oscillatory, periodic, supramolecular structural forces that arise in confined fluids
In-situ photoluminescence imaging for passivation-layer etching process control for photovoltaics
NASA Astrophysics Data System (ADS)
Lee, J. Z.; Michaelson, L.; Munoz, K.; Tyson, T.; Gallegos, A.; Sullivan, J. T.; Buonassisi, T.
2014-07-01
Light-induced plating (LIP) of solar-cell metal contacts is a scalable alternative to silver paste. However, LIP requires an additional patterning step to create openings in the silicon nitride (SiNx) antireflection coating (ARC) layer prior to metallization. One approach to pattern the SiNx is masking and wet chemical etching. In-situ real-time photoluminescence imaging (PLI) is demonstrated as a process-monitoring method to determine when SiNx has been fully removed during etching. We demonstrate that the change in PLI signal intensity during etching is caused by a combination of (1) decreasing light absorption from the reduction in SiNx ARC layer thickness and (2) decreasing surface lifetime as the SiNx/Si interface transitions to an etch-solution/Si. Using in-situ PLI to guide the etching process, we demonstrate a full-area plated single-crystalline silicon device. In-situ PLI has the potential to be integrated into a commercial processing line to improve process control and reliability.
Votsi, Nefta-Eleftheria P; Kallimanis, Athanasios S; Pantis, Ioannis D
2017-02-01
Quietness exists in places without human induced noise sources and could offer multiple benefits to citizens. Unlit areas are sites free of human intense interference at night time. The aim of this research is to develop an integrated environmental index of noise and light pollution. In order to achieve this goal the spatial pattern of quietness and darkness of Europe was identified, as well as their overlap. The environmental index revealed that the spatial patterns of Quiet and Unlit Areas differ to a great extent highlighting the importance of preserving quietness as well as darkness in EU. The spatial overlap of these two environmental characteristics covers 32.06% of EU surface area, which could be considered a feasible threshold for protection. This diurnal and nocturnal metric of environmental quality accompanied with all direct and indirect benefits to human well-being could indicate a target for environmental protection in the EU policy and practices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Does Acacia dealbata express shade tolerance in Mediterranean forest ecosystems of South America?
Aguilera, Narciso; Sanhueza, Carolina; Guedes, Lubia M; Becerra, José; Carrasco, Sebastián; Hernández, Víctor
2015-01-01
The distribution of Acacia dealbata Link (Fabaceae) in its non-native range is associated with disturbed areas. However, the possibility that it can penetrate the native forest during the invasion process cannot be ruled out. This statement is supported by the fact that this species has been experimentally established successfully under the canopy of native forest. Nonetheless, it is unknown whether A. dealbata can express shade tolerance traits to help increase its invasive potential. We investigated the shade tolerance of A. dealbata under the canopy of two native forests and one non-native for three consecutive years, as well as its early growth and photosynthetic performance at low light intensities (9, 30, and 70 μmol m−2sec−1) under controlled conditions. We found many A. dealbata plants surviving and growing under the canopy of native and non-native forests. The number of plants of this invasive species remained almost constant under the canopy of native forests during the years of study. However, the largest number of A. dealbata plants was found under the canopy of non-native forest. In every case, the distribution pattern varied with a highest density of plants in forest edges decreasing progressively toward the inside. Germination and early growth of A. dealbata were slow but successful at three low light intensities tested under controlled conditions. For all tested light regimes, we observed that in this species, most of the energy was dissipated by photochemical processes, in accordance with the high photosynthetic rates that this plant showed, despite the really low light intensities under which it was grown. Our study reveals that A. dealbata expressed shade tolerance traits under the canopy of native and non-native forests. This behavior is supported by the efficient photosynthetic performance that A. dealbata showed at low light intensities. Therefore, these results suggest that Mediterranean forest ecosystems of South America can become progressively invaded by A. dealbata and provide a basis for estimating the possible impacts that this invasive species can cause in these ecosystems in a timescale. PMID:26380668
NASA Astrophysics Data System (ADS)
Bai, Nan
A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have been performed to reveal the time dependent nature of scattering patterns. The experimental work has been compared with simulation results and demonstrated the feasibility of extending this technique for microcolony identification. Lastly, a quantitative phase imaging technique based on the phase gradient driven intensity variation has been studied and implemented to render the 2D phase map of the colony sample.
The effect of light intensity on image quality in endoscopic ear surgery.
McCallum, R; McColl, J; Iyer, A
2018-05-16
Endoscopic ear surgery is a rapidly developing field with many advantages. But endoscopes can reach temperatures of over 110°C at the tip, raising safety concerns. Reducing the intensity of the light source reduces temperatures produced. However, quality of images at lower light intensities has not yet been studied. We set out to study the effect of light intensity on image quality in EES. Prospective study of patients undergoing EES from April to October 2016. Consecutive images of the same operative field at 10%, 30%, 50% and 100% light intensities were taken. Eight international experts were asked to each evaluate 100 anonymised, randomised images. District General Hospital. Twenty patients. Images were evaluated on a 5-point Likert scale (1 = significantly worse than average; 5 = significantly better than average) for detail of anatomy; colour contrast; overall quality; and suitability for operating. Mean scores for photographs at 10%, 30%, 50% and 100% light intensity were 3.22 (SD 0.93), 3.15 (SD 0.84), 3.08 (SD 0.88) and 3.10 (SD 0.86), respectively. In ANOVA models for the scores on each of the scales (anatomy, colour contrast, overall quality and suitability for operating), the effects of rater and patient were highly significant (P < .0005) but light intensity was non-significant (P = .34, .32, .21, .15, respectively). Images taken during surgery by our endoscope and operative camera have no loss of quality when taken at lower light intensities. We recommend the surgeon considers use of lower light intensities in endoscopic ear surgery. © 2018 John Wiley & Sons Ltd.
A method for improving the light intensity distribution in dental light-curing units.
Arikawa, Hiroyuki; Takahashi, Hideo; Minesaki, Yoshito; Muraguchi, Kouichi; Matsuyama, Takashi; Kanie, Takahito; Ban, Seiji
2011-01-01
A method for improving the uniformity of the radiation light from dental light-curing units (LCUs), and the effect on the polymerization of light-activated composite resin are investigated. Quartz-tungsten halogen, plasma-arc, and light-emitting diode LCUs were used, and additional optical elements such as a mixing tube and diffusing screen were employed to reduce the inhomogeneity of the radiation light. The distribution of the light intensity from the light guide tip was measured across the guide tip, as well as the distribution of the surface hardness of the light-activated resin emitted with the LCUs. Although the additional optical elements caused 13.2-25.9% attenuation of the light intensity, the uniformity of the light intensity of the LCUs was significantly improved in the modified LCUs, and the uniformity of the surface hardness of the resin was also improved. Our results indicate that the addition of optical elements to the LCU may be a simple and effective method for reducing inhomogeneity in radiation light from the LCUs.
NASA Astrophysics Data System (ADS)
van Keuren, Jeffrey Robert
A bio-optical study was undertaken to quantify the relationships which exist between counter-illuminating organisms and the downwelling spectral light field in which they exist. The basic hypothesis behind counter-illumination is that the animal emits light using ventrally-oriented photophores to disrupt or eliminate the shadowed area on ventral surfaces. An organism lacking photophores sharply silhouettes against the highly directional downwelling irradiance, whereas by distributing photophores over the ventral surface of the body and closely matching the spectral and intensity characteristics of the downwelling light, this silhouette is obscured. Analysis carried out on changes in vertical distribution patterns in response to low-level intensity changes in ambient surface light suggested that diel migrating organisms begin to shift vertically in the water column when surface scalar irradiance decreased below or increased above 1.0 times10^{-2} muEin m^{-2} sec^ {-1}. Maximum aggregations of organisms, as defined by MOCNESS net sampling or single-frequency acoustic backscatter, appeared to remain within definable in situ blue-green isolume ranges varying less than a factor of ten throughout each night. Comparisons made between organism counter-illumination capacity and modeled in situ downwelling irradiance levels suggested that euphausiids, decapods and myctophids use between 1-10 percent of their maximum counter-illumination capacity to match the ambient downwelling light conditions. Modeling also suggested that up to 40 percent of the maximum measured bioluminescence output is required to match ambient irradiance in the shallower surface zones where aggregations of copepods, potential food sources, were commonly found at night. An optical study to quantify the radiative transfer of bioluminescence from a point source revealed that non -isotropic point sources produce radiance patterns that cannot be simply explained by inverse square losses. Therefore simple inverse-square estimates of bioluminescent propagation loss rates from organisms in the ocean are an oversimplification of the radiative transfer processes that occur when these emissions occur. Additionally, in evaluating counter-illumination, the distance of the receptor, such as the eyes of a potential predator, is critical in determining the effectiveness of the organisms in matching the uniform light field of their surrounding environment and ultimately avoiding detection and predation.
Holographic microscopy for in situ studies of microorganism motility
NASA Astrophysics Data System (ADS)
Nadeau, J.; Hu, S.; Jericho, S.; Lindensmith, C.
2011-12-01
Robust technologies for the detection and identification of microorganisms at low concentrations in complex liquid media are needed for numerous applications: environmental and medical microbiology, food safety, and for the search for microbial life elsewhere in the Solar System. The best current method for microbial enumeration is specific labeling with fluorescent dyes followed by high-resolution light microscopy. However, fluorescent techniques are difficult to use in situ in extreme environments (such as the Arctic and Antarctic or the open ocean) due to the fragility of the instruments and their high power demands. In addition, light microscopic techniques rarely provide insight into microbial motility behaviors. Tracking single cells would provide important insight into the physics of micron-scale motility as well as into key microbial phenomena such as surface attachment and invasiveness. An alternative to traditional light microscopy that is attracting increasing attention is holographic microscopy. Holographic microscopy works by illuminating the object of interest with coherent light from a laser. The light reflected from (or transmitted through) the object is then combined with a coherent reference beam to create an interference pattern that contains the phase and intensity information required to reconstruct a three dimensional image of the object. The interference pattern is recorded on a high resolution detector and can be used to computationally reconstruct a 3D image of the object. The lateral resolution of the image depends upon the wavelength of the light used, the laser power, camera quality, and external noise sources (vibration, stray light, and so forth). Although the principle is simple, technological barriers have prevented wider use of holographic microscopy. Laser sources and CCD cameras with the appropriate properties have only very recently become affordable. In addition, holographic microscopy leads to large data sets that are computationally intensive to reconstruct images from, so the technology to store and process large amounts of data are required. We have successfully deployed a digital in-line holographic microscope in lakes of the Canadian High Arctic and the open ocean. We present characteristic data sets from these experiments, as well as discussing how data acquisition and instrumentation can be improved. A design for a new type of autonomous, submersible holographic microscope incorporating an off-axis reference beam is presented, and future plans for controlled microbe-polymer studies are detailed.
Caustics and Rogue Waves in an Optical Sea.
Mathis, Amaury; Froehly, Luc; Toenger, Shanti; Dias, Frédéric; Genty, Goëry; Dudley, John M
2015-08-06
There are many examples in physics of systems showing rogue wave behaviour, the generation of high amplitude events at low probability. Although initially studied in oceanography, rogue waves have now been seen in many other domains, with particular recent interest in optics. Although most studies in optics have focussed on how nonlinearity can drive rogue wave emergence, purely linear effects have also been shown to induce extreme wave amplitudes. In this paper, we report a detailed experimental study of linear rogue waves in an optical system, using a spatial light modulator to impose random phase structure on a coherent optical field. After free space propagation, different random intensity patterns are generated, including partially-developed speckle, a broadband caustic network, and an intermediate pattern with characteristics of both speckle and caustic structures. Intensity peaks satisfying statistical criteria for rogue waves are seen especially in the case of the caustic network, and are associated with broader spatial spectra. In addition, the electric field statistics of the intermediate pattern shows properties of an "optical sea" with near-Gaussian statistics in elevation amplitude, and trough-to-crest statistics that are near-Rayleigh distributed but with an extended tail where a number of rogue wave events are observed.
Caustics and Rogue Waves in an Optical Sea
Mathis, Amaury; Froehly, Luc; Toenger, Shanti; Dias, Frédéric; Genty, Goëry; Dudley, John M.
2015-01-01
There are many examples in physics of systems showing rogue wave behaviour, the generation of high amplitude events at low probability. Although initially studied in oceanography, rogue waves have now been seen in many other domains, with particular recent interest in optics. Although most studies in optics have focussed on how nonlinearity can drive rogue wave emergence, purely linear effects have also been shown to induce extreme wave amplitudes. In this paper, we report a detailed experimental study of linear rogue waves in an optical system, using a spatial light modulator to impose random phase structure on a coherent optical field. After free space propagation, different random intensity patterns are generated, including partially-developed speckle, a broadband caustic network, and an intermediate pattern with characteristics of both speckle and caustic structures. Intensity peaks satisfying statistical criteria for rogue waves are seen especially in the case of the caustic network, and are associated with broader spatial spectra. In addition, the electric field statistics of the intermediate pattern shows properties of an “optical sea” with near-Gaussian statistics in elevation amplitude, and trough-to-crest statistics that are near-Rayleigh distributed but with an extended tail where a number of rogue wave events are observed. PMID:26245864
Altered Circadian Food Anticipatory Activity Rhythms in PACAP Receptor 1 (PAC1) Deficient Mice
Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan
2016-01-01
Light signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) entrain the circadian clock and regulate negative masking. Two neurotransmitters, glutamate and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP), found in the ipRGCs transmit light signals to the brain via glutamate receptors and the specific PACAP type 1 (PAC1) receptor. Light entrainment occurs during the twilight zones and has little effect on clock phase during daytime. When nocturnal animals have access to food only for a few hours during the resting phase at daytime, they adapt behavior to the restricted feeding (RF) paradigm and show food anticipatory activity (FAA). A recent study in mice and rats demonstrating that light regulates FAA prompted us to investigate the role of PACAP/PAC1 signaling in the light mediated regulation of FAA. PAC1 receptor knock out (PAC1-/-) and wild type (PAC1+/+) mice placed in running wheels were examined in a full photoperiod (FPP) of 12:12 h light/dark (LD) and a skeleton photoperiod (SPP) 1:11:1:11 h L:DD:L:DD at 300 and 10 lux light intensity. Both PAC1-/- mice and PAC1+/+ littermates entrained to FPP and SPP at both light intensities. However, when placed in RF with access to food for 4–5 h during the subjective day, a significant change in behavior was observed in PAC1-/- mice compared to PAC1+/+ mice. While PAC1-/- mice showed similar FAA as PAC1+/+ animals in FPP at 300 lux, PAC1-/- mice demonstrated an advanced onset of FAA with a nearly 3-fold increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light information to the brain is involved. PMID:26757053
Altered Circadian Food Anticipatory Activity Rhythms in PACAP Receptor 1 (PAC1) Deficient Mice.
Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan
2016-01-01
Light signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) entrain the circadian clock and regulate negative masking. Two neurotransmitters, glutamate and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP), found in the ipRGCs transmit light signals to the brain via glutamate receptors and the specific PACAP type 1 (PAC1) receptor. Light entrainment occurs during the twilight zones and has little effect on clock phase during daytime. When nocturnal animals have access to food only for a few hours during the resting phase at daytime, they adapt behavior to the restricted feeding (RF) paradigm and show food anticipatory activity (FAA). A recent study in mice and rats demonstrating that light regulates FAA prompted us to investigate the role of PACAP/PAC1 signaling in the light mediated regulation of FAA. PAC1 receptor knock out (PAC1-/-) and wild type (PAC1+/+) mice placed in running wheels were examined in a full photoperiod (FPP) of 12:12 h light/dark (LD) and a skeleton photoperiod (SPP) 1:11:1:11 h L:DD:L:DD at 300 and 10 lux light intensity. Both PAC1-/- mice and PAC1+/+ littermates entrained to FPP and SPP at both light intensities. However, when placed in RF with access to food for 4-5 h during the subjective day, a significant change in behavior was observed in PAC1-/- mice compared to PAC1+/+ mice. While PAC1-/- mice showed similar FAA as PAC1+/+ animals in FPP at 300 lux, PAC1-/- mice demonstrated an advanced onset of FAA with a nearly 3-fold increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light information to the brain is involved.
Large area pulsed solar simulator
NASA Technical Reports Server (NTRS)
Kruer, Mark A. (Inventor)
1999-01-01
An advanced solar simulator illuminates the surface a very large solar array, such as one twenty feet by twenty feet in area, from a distance of about twenty-six feet with an essentially uniform intensity field of pulsed light of an intensity of one AMO, enabling the solar array to be efficiently tested with light that emulates the sun. Light modifiers sculpt a portion of the light generated by an electrically powered high power Xenon lamp and together with direct light from the lamp provide uniform intensity illumination throughout the solar array, compensating for the square law and cosine law reduction in direct light intensity, particularly at the corner locations of the array. At any location within the array the sum of the direct light and reflected light is essentially constant.
Martin, Kathryn R; Koster, Annemarie; Murphy, Rachel A; Van Domelen, Dane R; Hung, Ming-yang; Brychta, Robert J; Chen, Kong Y; Harris, Tamara B
2014-07-01
To compare daily and hourly activity patterns according to sex and age. Cross-sectional, observational. Nationally representative community sample: National Health and Nutrition Examination Survey (NHANES) 2003-04 and 2005-06. Individuals (n = 5,788) aged 20 and older with 4 or more valid days of monitor wear-time, no missing data on valid wear-time minutes, and covariates. Activity was examined as average counts per minute (CPM) during wear-time; percentage of time spent in nonsedentary activity; and time (minutes) spent in sedentary (<100 counts), light (100-759), and moderate to vigorous physical activity (MVPA (≥ 760)). Analyses accounted for survey design, adjusted for covariates, and were sex specific. In adjusted models, men spent slightly more time (~1-2%) in nonsedentary activity than women aged 20 to 34, with levels converging at age 35 to 59, although the difference was not significant. Women aged 60 and older spent significantly more time (~3-4%) in nonsedentary activity than men, despite similarly achieved average CPM. With increasing age, all nonsedentary activity decreased in men; light activity remained constant in women (~30%). Older men had fewer CPM at night (~20), more daytime sedentary minutes (~3), fewer daytime light physical activity minutes (~4), and more MVPA minutes (~1) until early evening than older women. Although sex differences in average CPM declined with age, differences in nonsedentary activity time emerged as men increased sedentary behavior and reduced MVPA time. Maintained levels of light-intensity activity suggest that women continue engaging in common daily activities into older age more than men. Findings may help inform the development of behavioral interventions to increase intensity and overall activity levels, particularly in older adults. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.
14 CFR 29.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in the horizontal plane of forward and rear position lights. 29.1391 Section 29.1391 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 29.1391 Minimum intensities in the horizontal plane of forward and rear position lights...
14 CFR 25.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in the horizontal plane of forward and rear position lights. 25.1391 Section 25.1391 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 25.1391 Minimum intensities in the horizontal plane of forward and rear position lights...
14 CFR 27.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in the horizontal plane of forward and rear position lights. 27.1391 Section 27.1391 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 27.1391 Minimum intensities in the horizontal plane of forward and rear position lights...
14 CFR 27.1393 - Minimum intensities in any vertical plane of forward and rear position lights.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum intensities in any vertical plane of forward and rear position lights. 27.1393 Section 27.1393 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 27.1393 Minimum intensities in any vertical plane of forward and rear position lights...
14 CFR 27.1395 - Maximum intensities in overlapping beams of forward and rear position lights.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 27.1395 Section 27.1395 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 27.1395 Maximum intensities in overlapping beams of forward and rear position lights. No...
14 CFR 29.1393 - Minimum intensities in any vertical plane of forward and rear position lights.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum intensities in any vertical plane of forward and rear position lights. 29.1393 Section 29.1393 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 29.1393 Minimum intensities in any vertical plane of forward and rear position lights...
14 CFR 25.1395 - Maximum intensities in overlapping beams of forward and rear position lights.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 25.1395 Section 25.1395 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 25.1395 Maximum intensities in overlapping beams of forward and rear position lights. No...
14 CFR 25.1393 - Minimum intensities in any vertical plane of forward and rear position lights.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum intensities in any vertical plane of forward and rear position lights. 25.1393 Section 25.1393 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 25.1393 Minimum intensities in any vertical plane of forward and rear position lights...
14 CFR 29.1395 - Maximum intensities in overlapping beams of forward and rear position lights.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 29.1395 Section 29.1395 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 29.1395 Maximum intensities in overlapping beams of forward and rear position lights. No...
Apparatus and method for a light direction sensor
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
2011-01-01
The present invention provides a light direction sensor for determining the direction of a light source. The system includes an image sensor; a spacer attached to the image sensor, and a pattern mask attached to said spacer. The pattern mask has a slit pattern that as light passes through the slit pattern it casts a diffraction pattern onto the image sensor. The method operates by receiving a beam of light onto a patterned mask, wherein the patterned mask as a plurality of a slit segments. Then, diffusing the beam of light onto an image sensor and determining the direction of the light source.
Wang, Byung-Yong; Yoo, Tae-Hee; Song, Yong-Won; Lim, Dae-Soon; Oh, Young-Jei
2013-05-22
Direct printing techniques that utilize nanoparticles to mitigate environmental pollution and reduce the processing time of the routing and formation of electrodes have received much attention lately. In particular, copper (Cu) nanoink using Cu nanoparticles offers high conductivity and can be prepared at low cost. However, it is difficult to produce homogeneous nanoparticles and ensure good dispersion within the ink. Moreover, Cu particles require a sintering process over an extended time at a high temperature due to high melting temperature of Cu. During this process, the nanoparticles oxidize quickly in air. To address these problems, the authors developed a Cu ion ink that is free of Cu particles or any other impurities. It consequently does not require separate dispersion stability. In addition, the developed ink is environmentally friendly and can be sintered even at low temperatures. The Cu ion ink was sintered on a flexible substrate using intense pulsed light (IPL), which facilitates large-area, high-speed calcination at room temperature and at atmospheric pressures. As the applied light energy increases, the Cu2O phase diminishes, leaving only the Cu phase. This is attributed to the influence of formic acid (HCOOH) on the Cu ion ink. Only the Cu phase was observed above 40 J cm(-2). The Cu-patterned film after sintering showed outstanding electrical resistivity in a range of 3.21-5.27 μΩ·cm at an IPL energy of 40-60 J cm(-2). A spiral-type micropattern with a line width of 160 μm on a PI substrate was formed without line bulges or coffee ring effects. The electrical resistivity was 5.27 μΩ·cm at an energy level of 40.6 J cm(-2).
Avoidance of strobe lights by zooplankton
Hamel, Martin J.; Richards, Nathan S.; Brown, Michael L.; Chipps, Steven R.
2010-01-01
Underwater strobe lights can influence the behavior and distribution of fishes and are increasingly used as a technique to divert fish away from water intake structures on dams. However, few studies examine how strobe lights may affect organisms other than targeted species. To gain insight on strobe lighting effects on nontarget invertebrates, we investigated whether underwater strobe lights influence zooplankton distributions and abundance in Lake Oahe, South Dakota. Zooplankton were collected using vertical tows at 3 discrete distances from an underwater strobe light to quantify the influence of light intensity on zooplankton density. Samples were collected from 3 different depth ranges (0–10 m, 10–20 m and 20–30 m) at <1 m, 15 m and ⩾100 m distance intervals away from the strobe light. Copepods represented 67.2% and Daphnia spp. represented 23.3% of all zooplankton sampled from 17 August to 15 September 2004. Night time zooplankton densities significantly decreased in surface waters when strobe lights were activated. Copepods exhibited the greatest avoidance patterns, while Daphnia avoidance varied throughout sampling depths. These results indicate that zooplankton display negative phototaxic behavior to strobe lights and that researchers must be cognizant of potential effects to the ecosystem such as altering predator–prey interactions or affecting zooplankton distribution and growth.
Ma, Rui; Lu, Fan; Bi, Yonghong; Hu, Zhengyu
2015-08-01
To assess the effects of light intensity and quality on the growth and phycobiliproteins (PBP) accumulation in Nostoc sphaeroides Kützing (N. sphaeroides). Dry weights, dry matter, protein, chlorophyll and PBP contents were higher under 90 μmol m(-2) s(-1) than under other intensities (both higher and lower). Phycocyanin and allophycocyanin increased with light intensity while phycoerythrin decreased. Fresh weights, protein and PBP contents increased at the highest rates under blue light. Red light resulted in higher values of dry matter, phycocyanin and chlorophyll a. White light at 90 μmol m(-2) s(-1) or blue light 30 μmol m(-2) s(-1) were optimal for the growth and phycobiliprotein accumulation in N. sphaeroides.
Raap, Thomas; Sun, Jiachen; Pinxten, Rianne; Eens, Marcel
2017-11-01
Light pollution or artificial light at night (ALAN) is an increasing anthropogenic environmental pollutant posing an important potential threat for wildlife. Evidence of its effects on animal physiology and behaviour is accumulating. However, in order to effectively mitigate light pollution it is important to determine which factors contribute to the severity of effects of ALAN. In this experimental study we explored whether there are seasonal-dependent effects of ALAN on sleep in free-living great tits (Parus major), an important model species. Additionally, we looked at whether light intensity determined the severity of effects of ALAN on sleep. We therefore exposed animals to artificial light inside the nest box (3lx) in December (winter) and February (pre-breeding season). Results from February were compared with the results from a previous study in February, using a lower light intensity (1.6lx). We found little evidence for a season-dependent response. Effects of ALAN hardly differed between high and low light intensity. ALAN disrupted sleep with as main effect a decrease in sleep duration (≈-40min) as animals woke up earlier (≈-24min). However, compared to a natural dark situation sleep onset was delayed by high but not by low light intensity of ALAN. Our study underlines earlier found disruptive effects of ALAN on sleep of free-living animals. While we found no conclusive evidence for seasonal or light intensity-dependent effects of ALAN, additional experimental work using lower light intensities might show such differences. Examining potential management options is crucial in mitigating disruptive effects of light pollution, which will be an important focus for future studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Füzéki, Eszter; Engeroff, Tobias; Banzer, Winfried
2017-09-01
The health effects of light-intensity physical activity (PA) are not well known today. We conducted a systematic review to assess the association of accelerometer-measured light-intensity PA with modifiable health outcomes in adults and older adults. A systematic literature search up to March 2016 was performed in the PubMed, EMBASE, Web of Science and Google Scholar electronic databases, without language limitations, for studies of modifiable health outcomes in adults and older adults in the National Health and Nutrition Examination Survey accelerometer dataset. Overall, 37 cross-sectional studies and three longitudinal studies were included in the analysis, with considerable variation observed between the studies with regard to their operationalization of light-intensity PA. Light-intensity PA was found to be beneficially associated with obesity, markers of lipid and glucose metabolism, and mortality. Few data were available on musculoskeletal outcomes and results were mixed. Observational evidence that light-intensity PA can confer health benefits is accumulating. Currently inactive or insufficiently active people should be encouraged to engage in PA of any intensity. If longitudinal and intervention studies corroborate our findings, the revision of PA recommendations to include light-intensity activities, at least for currently inactive populations, might be warranted.
Apparatus for measuring particle properties
Rader, Daniel J.; Castaneda, Jaime N.; Grasser, Thomas W.; Brockmann, John E.
1998-01-01
An apparatus for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle's size can be determined from the intensity of the light scattered. The particle's velocity can be determined from the elapsed time between various intensities of the light scattered.
Götzinger, Erich; Pircher, Michael; Baumann, Bernhard; Hirn, Cornelia; Vass, Clemens; Hitzenberger, Christoph K.
2010-01-01
Purpose To analyze the physical origin of atypical scanning laser polarimetry (SLP) patterns. To compare polarization-sensitive optical coherence tomography (PS-OCT) scans to SLP images. To present a method to obtain pseudo-SLP images by PS-OCT that are free of atypical artifacts. Methods Forty-one eyes of healthy subjects, subjects with suspected glaucoma, and patients with glaucoma were imaged by SLP (GDx VCC) and a prototype spectral domain PS-OCT system. The PS-OCT system acquires three-dimensional (3D) datasets of intensity, retardation, and optic axis orientation simultaneously within 3 seconds. B-scans of intensity and retardation and en face maps of retinal nerve fiber layer (RNFL) retardation were derived from the 3D PS-OCT datasets. Results were compared with those obtained by SLP. Results Twenty-two eyes showed atypical retardation patterns, and 19 eyes showed normal patterns. From the 22 atypical eyes, 15 showed atypical patterns in both imaging modalities, five were atypical only in SLP images, and two were atypical only in PS-OCT images. In most (15 of 22) atypical cases, an increased penetration of the probing beam into the birefringent sclera was identified as the source of atypical patterns. In such cases, the artifacts could be eliminated in PS-OCT images by depth segmentation and exclusion of scleral signals. Conclusions PS-OCT provides deeper insight into the contribution of different fundus layers to SLP images. Increased light penetration into the sclera can distort SLP retardation patterns of the RNFL. PMID:19036999
Carr, Lucas J; Mahar, Matthew T
2012-01-01
Purpose. To examine the accuracy of intensity and inclinometer output of three physical activity monitors during various sedentary and light-intensity activities. Methods. Thirty-six participants wore three physical activity monitors (ActiGraph GT1M, ActiGraph GT3X+, and StepWatch) while completing sedentary (lying, sitting watching television, sitting using computer, and standing still) light (walking 1.0 mph, pedaling 7.0 mph, pedaling 15.0 mph) intensity activities under controlled settings. Accuracy for correctly categorizing intensity was assessed for each monitor and threshold. Accuracy of the GT3X+ inclinometer function (GT3X+Incl) for correctly identifying anatomical position was also assessed. Percentage agreement between direct observation and the monitor recorded time spent in sedentary behavior and light intensity was examined. Results. All monitors using all thresholds accurately identified over 80% of sedentary behaviors and 60% of light-intensity walking time based on intensity output. The StepWatch was the most accurate in detecting pedaling time but unable to detect pedal workload. The GT3X+Incl accurately identified anatomical position during 70% of all activities but demonstrated limitations in discriminating between activities of differing intensity. Conclusions. Our findings suggest that all three monitors accurately measure most sedentary and light-intensity activities although choice of monitors should be based on study-specific needs.
Bann, David; Hire, Don; Manini, Todd; Cooper, Rachel; Botoseneanu, Anda; McDermott, Mary M; Pahor, Marco; Glynn, Nancy W; Fielding, Roger; King, Abby C; Church, Timothy; Ambrosius, Walter T; Gill, Thomas M; Gill, Thomas
2015-01-01
Identifying modifiable determinants of fat mass and muscle strength in older adults is important given their impact on physical functioning and health. Light intensity physical activity and sedentary behavior are potential determinants, but their relations to these outcomes are poorly understood. We evaluated associations of light intensity physical activity and sedentary time-assessed both objectively and by self-report-with body mass index (BMI) and grip strength in a large sample of older adults. We used cross-sectional baseline data from 1130 participants of the Lifestyle Interventions and Independence for Elders (LIFE) study, a community-dwelling sample of relatively sedentary older adults (70-89 years) at heightened risk of mobility disability. Time spent sedentary and in light intensity activity were assessed using an accelerometer worn for 3-7 days (Actigraph GT3X) and by self-report. Associations between these exposures and measured BMI and grip strength were evaluated using linear regression. Greater time spent in light intensity activity and lower sedentary times were both associated with lower BMI. This was evident using objective measures of lower-light intensity, and both objective and self-reported measures of higher-light intensity activity. Time spent watching television was positively associated with BMI, while reading and computer use were not. Greater time spent in higher but not lower intensities of light activity (assessed objectively) was associated with greater grip strength in men but not women, while neither objectively assessed nor self-reported sedentary time was associated with grip strength. In this cross-sectional study, greater time spent in light intensity activity and lower sedentary times were associated with lower BMI. These results are consistent with the hypothesis that replacing sedentary activities with light intensity activities could lead to lower BMI levels and obesity prevalence among the population of older adults. However, longitudinal and experimental studies are needed to strengthen causal inferences.
Fundamental Combustion Processes of Particle-Laden Shear Flows in Solid Fuel Ramjets
1990-05-17
permitted observation of the high- intensity , near- surface flame zone. The intensity of the near-surface flame was so strong that it overpowered the light ... intensity of the 100 watt tungsten-halogen lamp used as the schlieren system light source. Figure 9a shows the burning of a 10/40/50 B/Mg/PTFE...rf five millivo’ts from the photodiode), an aorupt increase in light emission, and maximum light intensity . As the heat flux increases, the time for
NASA Astrophysics Data System (ADS)
Li, Lu-Ming; Zhu, Qian; Zhang, Zhi-Guo; Cai, Zhi-Min; Liao, Zhi-Jun; Hu, Zhen-Yan
2017-04-01
In this paper, a light intensity monitoring method based on FBG is proposed. The method establishes a light intensity monitoring model with cantilever beam structure and BP neural network algorithm, which is based on fiber grating sensing technology. The accuracy of the model can meet the requirements of engineering project and it can monitor light intensity in real time. The experimental results show that the method has good stability and high sensitivity.
NASA Astrophysics Data System (ADS)
Hering, Julian; Waller, Erik H.; von Freymann, Georg
2017-02-01
Since a large number of optical systems and devices are based on differently shaped focal intensity distributions (point-spread-functions, PSF), the PSF's quality is crucial for the application's performance. E.g., optical tweezers, optical potentials for trapping of ultracold atoms as well as stimulated-emission-depletion (STED) based microscopy and lithography rely on precisely controlled intensity distributions. However, especially in high numerical aperture (NA) systems, such complex laser modes are easily distorted by aberrations leading to performance losses. Although different approaches addressing phase retrieval algorithms have been recently presented[1-3], fast and automated aberration compensation for a broad variety of complex shaped PSFs in high NA systems is still missing. Here, we report on a Gerchberg-Saxton[4] based algorithm (GSA) for automated aberration correction of arbitrary PSFs, especially for high NA systems. Deviations between the desired target intensity distribution and the three-dimensionally (3D) scanned experimental focal intensity distribution are used to calculate a correction phase pattern. The target phase distribution plus the correction pattern are displayed on a phase-only spatial-light-modulator (SLM). Focused by a high NA objective, experimental 3D scans of several intensity distributions allow for characterization of the algorithms performance: aberrations are reliably identified and compensated within less than 10 iterations. References 1. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, "Phase-retrieved pupil functions in wide-field fluorescence microscopy," J. of Microscopy 216(1), 32-48 (2004). 2. A. Jesacher, A. Schwaighofer, S. Frhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, "Wavefront correction of spatial light modulators using an optical vortex image," Opt. Express 15(9), 5801-5808 (2007). 3. A. Jesacher and M. J. Booth, "Parallel direct laser writing in three dimensions with spatially dependent aberration correction," Opt. Express 18(20), 21090-21099 (2010). 4. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik 35(2), 237-246 (1972).
Pallas, J. E.; Michel, B. E.; Harris, D. G.
1967-01-01
Cotton plants, Gossypium hirsutum L. were grown in a growth room under incident radiation levels of 65, 35, and 17 Langleys per hour to determine the effects of vapor pressure deficits (VPD's) of 2, 9, and 17 mm Hg at high soil water potential, and the effects of decreasing soil water potential and reirrigation on transpiration, leaf temperature, stomatal activity, photosynthesis, and respiration at a VPD of 9 mm Hg. Transpiration was positively correlated with radiation level, air VPD and soil water potential. Reirrigation following stress led to slow recovery, which may be related to root damage occurring during stress. Leaf water potential decreased with, but not as fast as, soil water potential. Leaf temperature was usually positively correlated with light intensity and negatively correlated with transpiration, air VPD, and soil water. At high soil water, leaf temperatures ranged from a fraction of 1 to a few degrees above ambient, except at medium and low light and a VPD of 19 mm Hg when they were slightly below ambient, probably because of increased transpirational cooling. During low soil water leaf temperatures as high as 3.4° above ambient were recorded. Reirrigation reduced leaf temperature before appreciably increasing transpiration. The upper leaf surface tended to be warmer than the lower at the beginning of the day and when soil water was adequate; otherwise there was little difference or the lower surface was warmer. This pattern seemed to reflect transpiration cooling and leaf position effects. Although stomata were more numerous in the lower than the upper epidermis, most of the time a greater percentage of the upper were open. With sufficient soil water present, stomata opened with light and closed with darkness. Fewer stomata opened under low than high light intensity and under even moderate, as compared with high soil water. It required several days following reirrigation for stomata to regain original activity levels. Apparent photosynthesis of cotton leaves occasionally oscillated with variable amplitude and frequency. When soil water was adequate, photosynthesis was nearly proportional to light intensity, with some indication of higher rates at higher VPD's. As soil water decreased, photosynthesis first increased and then markedly decreased. Following reirrigation, photosynthesis rapidly recovered. Respiration was slowed moderately by decreasing soil water but increased before watering. Respiration slowed with increasing leaf age only on leaves that were previously under high light intensity. PMID:16656488
Image-enhanced endoscopy for diagnosis of colorectal tumors in view of endoscopic treatment
Yoshida, Naohisa; Yagi, Nobuaki; Yanagisawa, Akio; Naito, Yuji
2012-01-01
Recently, image-enhanced endoscopy (IEE) has been used to diagnose gastrointestinal tumors. This method is a change from conventional white-light (WL) endoscopy without dyeing solution, requiring only the push of a button. In IEE, there are many advantages in diagnosis of neoplastic tumors, evaluation of invasion depth for cancerous lesions, and detection of neoplastic lesions. In narrow band imaging (NBI) systems (Olympus Medical Co., Tokyo, Japan), optical filters that allow narrow-band light to pass at wavelengths of 415 and 540 nm are used. Mucosal surface blood vessels are seen most clearly at 415 nm, which is the wavelength that corresponds to the hemoglobin absorption band, while vessels in the deep layer of the mucosa can be detected at 540 nm. Thus, NBI also can detect pit-like structures named surface pattern. The flexible spectral imaging color enhancement (FICE) system (Fujifilm Medical Co., Tokyo, Japan) is also an IEE but different to NBI. FICE depends on the use of spectral-estimation technology to reconstruct images at different wavelengths based on WL images. FICE can enhance vascular and surface patterns. The autofluorescence imaging (AFI) video endoscope system (Olympus Medical Co., Tokyo, Japan) is a new illumination method that uses the difference in intensity of autofluorescence between the normal area and neoplastic lesions. AFI light comprises a blue light for emitting and a green light for hemoglobin absorption. The aim of this review is to highlight the efficacy of IEE for diagnosis of colorectal tumors for endoscopic treatment. PMID:23293724
Extraordinary variation of pump light intensity inside a four-level solid-state laser medium
NASA Astrophysics Data System (ADS)
Qin, Hua; Fu, Rulian; Wang, Zhaoqi; Liu, Juan
2008-08-01
A theoretical investigation of the absorption of the pump light at different intensities through a four-level solid-state laser medium is presented. It is found that the variation of the pump intensity inside the laser medium cannot always simply be dominated by Beer's law. Transmission of the pump light through this laser medium is closely related to the pump intensity itself. In fact, when the pump intensity is relatively low, whose values depend on the characteristics of the medium, the variation of the pump light through the laser medium is consistent with Beer's law. However, while the pump intensity is high enough, the relationship between the transmission of the pump light and its propagation distance is demonstrated to be linear. These theoretical results have been confirmed by the experiment with a medium of YAG:Nd.
Light intensity and the oestrous cycle in albino and normally pigmented mice.
Donnelly, H; Saibaba, P
1993-10-01
The effects of light intensity (15-20 lux & 220-290 lux) on the oestrous cycle of albino and normally pigmented mice were examined. The oestrous cycle of both types of mice was shorter at the lower intensity but the difference was significant only with the black mice. The proportion of albino mice from which embryos were recovered was significantly smaller than the proportion of black mice at 15-20 lux but not at 220-290 lux. No significant differences due to strain or light intensity were found in the number of embryos recovered. We conclude that pigmented mice respond in the same way as albino mice to changes in light intensity within the range normally found in laboratory animal accommodation. That is, increased light intensity prolongs the oestrous cycle and the period of vaginal cornification.
Stray light calibration of the Dawn Framing Camera
NASA Astrophysics Data System (ADS)
Kovacs, Gabor; Sierks, Holger; Nathues, Andreas; Richards, Michael; Gutierrez-Marques, Pablo
2013-10-01
Sensitive imaging systems with high dynamic range onboard spacecrafts are susceptible to ghost and stray-light effects. During the design phase, the Dawn Framing Camera was laid out and optimized to minimize those unwanted, parasitic effects. However, the requirement of low distortion to the optical design and use of a front-lit focal plane array induced an additional stray light component. This paper presents the ground-based and in-flight procedures characterizing the stray-light artifacts. The in-flight test used the Sun as the stray light source, at different angles of incidence. The spacecraft was commanded to point predefined solar elongation positions, and long exposure images were recorded. The PSNIT function was calculated by the known illumination and the ground based calibration information. In the ground based calibration, several extended and point sources were used with long exposure times in dedicated imaging setups. The tests revealed that the major contribution to the stray light is coming from the ghost reflections between the focal plan array and the band pass interference filters. Various laboratory experiments and computer modeling simulations were carried out to quantify the amount of this effect, including the analysis of the diffractive reflection pattern generated by the imaging sensor. The accurate characterization of the detector reflection pattern is the key to successfully predict the intensity distribution of the ghost image. Based on the results, and the properties of the optical system, a novel correction method is applied in the image processing pipeline. The effect of this correction procedure is also demonstrated with the first images of asteroid Vesta.
Signal intensity influences on the atomic Faraday filter.
Luo, Bin; Yin, Longfei; Xiong, Junyu; Chen, Jingbiao; Guo, Hong
2018-06-01
Previous studies of the Faraday anomalous dispersion optical filter (FADOF) mainly focus on the weak signal light filtering, without regard for the influences of the signal light intensity on the filter itself. However, in some applications the signal light is strong enough to change the filter's performance. In this work, the influences of the signal light intensity on the transmittance spectrum is experimentally investigated in a 780 nm Rb85 FADOF in both the line-center and wings operation modes. The results show that the transmittance spectrum varies significantly with the signal light intensity. As the signal light increases, some existing transmittance peaks decline, some new transmittance peaks appear, and the maximum transmittance peak frequency may change. The spectrum in strong signal lights can be quite different from those calculated by programs in the condition of weak signal lights. These results are important for applications of the FADOF in the condition of strong signal lights.
Phytoluminographic Detection of Dynamic Variations in Leaf Gaseous Conductivity 1
Ellenson, James L.
1985-01-01
Gas exchange and plant luminescence (delayed light emission) of a single red kidney bean leaf undergoing synchronous oscillations in gas exchange were recorded and analyzed. Introduction of 1.1 microliter per liter SO2 during these oscillations produced increases in plant luminescence that, when averaged over a portion of the leaf, oscillated in phase with the gas exchange oscillations. However, examination of a video record of the plant luminescence showed not only that luminescence intensities tended to be localized within discrete areas of the leaf, but that the time-dependence of luminescence intensities within these regions varied considerably from the period, amplitude, and often phase of the overall gas exchange oscillations. The video recording also showed that changes in luminescence intensities appeared to migrate across the leaf in wave-like patterns. These data are interpreted in terms of localized fluctuations in gaseous conductances of the leaf. Images Fig. 3 PMID:16664350
NASA Astrophysics Data System (ADS)
Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing
2018-02-01
The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.
Jammed-array wideband sawtooth filter.
Tan, Zhongwei; Wang, Chao; Goda, Keisuke; Malik, Omer; Jalali, Bahram
2011-11-21
We present an all-optical passive low-cost spectral filter that exhibits a high-resolution periodic sawtooth spectral pattern without the need for active optoelectronic components. The principle of the filter is the partial masking of a phased array of virtual light sources with multiply jammed diffraction orders. We utilize the filter's periodic linear map between frequency and intensity to demonstrate fast sensitive interrogation of fiber Bragg grating sensor arrays and ultrahigh-frequency electrical sawtooth waveform generation. © 2011 Optical Society of America
2017-07-10
The light of a new day on Saturn illuminates the planet's wavy cloud patterns and the smooth arcs of the vast rings. The light has traveled around 80 minutes since it left the sun's surface by the time it reaches Saturn. The illumination it provides is feeble; Earth gets 100 times the intensity since it's roughly ten times closer to the sun. Yet compared to the deep blackness of space, everything at Saturn still shines bright in the sunlight, be it direct or reflected. This view looks toward the sunlit side of the rings from about 10 degrees above the ring plane. The image was taken with the Cassini spacecraft wide-angle camera on Feb. 25, 2017 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 939 nanometers. The view was obtained at a distance of approximately 762,000 miles (1.23 million kilometers) from Saturn. Image scale is 45 miles (73 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21336
Lee, KyeoReh; Park, YongKeun
2016-01-01
The word ‘holography' means a drawing that contains all of the information for light—both amplitude and wavefront. However, because of the insufficient bandwidth of current electronics, the direct measurement of the wavefront of light has not yet been achieved. Though reference-field-assisted interferometric methods have been utilized in numerous applications, introducing a reference field raises several fundamental and practical issues. Here we demonstrate a reference-free holographic image sensor. To achieve this, we propose a speckle-correlation scattering matrix approach; light-field information passing through a thin disordered layer is recorded and retrieved from a single-shot recording of speckle intensity patterns. Self-interference via diffusive scattering enables access to impinging light-field information, when light transport in the diffusive layer is precisely calibrated. As a proof-of-concept, we demonstrate direct holographic measurements of three-dimensional optical fields using a compact device consisting of a regular image sensor and a diffusor. PMID:27796290
Growth studies at bulk III-Vs by image processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donecker, J.; Hempel, G.; Kluge, J.
1996-12-01
The patterns of inhomogeneities in GaAs and InP are studied by scattering and diffraction of light. An adapted version of laser scattering tomography is used for observations with short exposure times and large fields. The information about the three-dimensional distribution of the scatterers in GaAs are evaluated by video travels through the crystal and images of intensities added in interesting directions. Near-infrared transmission and striation distance mapping act like special data compression techniques due to their optical principles. In general, columnar extension of cellular patterns and striations could not be detected in s.i. GaAs. Long-range correlations exist for lineages andmore » slip lines. The comparison with the behavior of striations in doped InP cannot confirm the idea that cellular patterns in GaAs originate from constitutional supercooling during solidification.« less
Delivering the lateral inhibition punchline: it's all about the timing.
Axelrod, Jeffrey D
2010-10-26
Experimental and theoretical biologists have long been fascinated with the emergence of self-organizing patterns in developing organisms, and much attention has focused on Notch-mediated lateral inhibition. Within sheets of cells that may adopt either of two possible cell fates, lateral inhibition establishes patterns through the activity of a negative intercellular feedback loop involving the receptor, Notch, and its ligands Delta or Serrate. Despite a long history of intensive study in Drosophila, where the mechanism was first described, as well as in other organisms, new work continues to yield important insights. Mathematical modeling, combined with biological analyses, has now shed light on two features of the process: how antagonistic and activating ligand-receptor interactions work together to accelerate inhibition and ensure fidelity, and how filopodial dynamics contribute to the observed pattern refinement and spacing.
Krzemińska, Izabela; Piasecka, Agata; Nosalewicz, Artur; Simionato, Diana; Wawrzykowski, Jacek
2015-11-01
Chlorella protothecoides is a valuable source of lipids that may be used for biodiesel production. The present work shows analysis of the potential of photoheterotrophic cultivation of C. protothecoides under various light intensities aiming to identify the conditions with maximal biomass and lipid content. An increase in light intensity was associated with an increased specific growth rate and a shortened doubling time. Also, the relative total lipid content increased from 24.8% to 37.5% with increase of light intensity. The composition of fatty acid methyl esters was affected by light intensity with the C16-18 fatty acids increased from 76.97% to 90.24% of total fatty acids. However, the content of linolenic acids decreased with the increase of the culture irradiance. These studies indicate that cultures irradiated with high light intensities achieve the minimal specifications for biodiesel quality on linolenic acids and thus are suitable for biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dewan, Karuna; Benloucif, Susan; Reid, Kathryn; Wolfe, Lisa F.; Zee, Phyllis C.
2011-01-01
Study Objectives: To evaluate the effect of increasing the intensity and/or duration of exposure on light-induced changes in the timing of the circadian clock of humans. Design: Multifactorial randomized controlled trial, between and within subject design Setting: General Clinical Research Center (GCRC) of an academic medical center Participants: 56 healthy young subjects (20-40 years of age) Interventions: Research subjects were admitted for 2 independent stays of 4 nights/3 days for treatment with bright or dim-light (randomized order) at a time known to induce phase delays in circadian timing. The intensity and duration of the bright light were determined by random assignment to one of 9 treatment conditions (duration of 1, 2, or 3 hours at 2000, 4000, or 8000 lux). Measurements and Results: Treatment-induced changes in the dim light melatonin onset (DLMO) and dim light melatonin offset (DLMOff) were measured from blood samples collected every 20-30 min throughout baseline and post-treatment nights. Comparison by multi-factor analysis of variance (ANOVA) of light-induced changes in the time of the circadian melatonin rhythm for the 9 conditions revealed that changing the duration of the light exposure from 1 to 3 h increased the magnitude of light-induced delays. In contrast, increasing from moderate (2,000 lux) to high (8,000 lux) intensity light did not alter the magnitude of phase delays of the circadian melatonin rhythm. Conclusions: Results from the present study suggest that for phototherapy of circadian rhythm sleep disorders in humans, a longer period of moderate intensity light may be more effective than a shorter exposure period of high intensity light. Citation: Dewan K; Benloucif S; Reid K; Wolfe LF; Zee PC. Light-induced changes of the circadian clock of humans: increasing duration is more effective than increasing light intensity. SLEEP 2011;34(5):593-599. PMID:21532952
Gando, Yuko; Murakami, Haruka; Kawakami, Ryoko; Tanaka, Noriko; Sanada, Kiyoshi; Tabata, Izumi; Higuchi, Mitsuru; Miyachi, Motohiko
2014-02-01
It is unclear whether light physical activity is beneficially associated with insulin resistance, similar to moderate and/or vigorous physical activity. This cross-sectional study was performed to determine the relationship between the amount of light physical activity, as determined with a triaxial accelerometer, and insulin resistance. A total of 807 healthy men and women participated in this study. Physical activity was measured using a triaxial accelerometer worn for 28 days and summarized as light intensity (1.1-2.9 METs) or moderate to vigorous intensity (≥ 3.0 METs). Insulin resistance was evaluated by HOMA_R (FPG [mg/dL] × IRI [μU/mL]/405). The daily time spent in light physical activity was inversely associated with HOMA_R (r = -0.173, P < 0.05). After adjustment for confounders, the association between light physical activity and HOMA_R remained statistically significant (β = -0.119, P < .05). Light physical activity remained significantly associated with HOMA_R following further adjustment for moderate to vigorous intensity activity (β = -0.125, P < .05). Similar results were observed when light physical activity was modeled as quartiles, especially in elderly women. These cross-sectional data suggest that light-intensity physical activity is beneficially associated with insulin resistance in elderly Japanese women.
González-Camejo, J; Barat, R; Pachés, M; Murgui, M; Seco, A; Ferrer, J
2018-02-01
The aim of this study was to evaluate the effect of light intensity and temperature on nutrient removal and biomass productivity in a microalgae-bacteria culture and their effects on the microalgae-bacteria competition. Three experiments were carried out at constant temperature and various light intensities: 40, 85 and 125 µE m -2 s -1 . Other two experiments were carried out at variable temperatures: 23 ± 2°C and 28 ± 2°C at light intensity of 85 and 125 µE m -2 s -1 , respectively. The photobioreactor was fed by the effluent from an anaerobic membrane bioreactor. High nitrogen and phosphorus removal efficiencies (about 99%) were achieved under the following operating conditions: 85-125 µE m -2 s -1 and 22 ± 1°C. In the microalgae-bacteria culture studied, increasing light intensity favoured microalgae growth and limited the nitrification process. However, a non-graduated temperature increase (up to 32°C) under the light intensities studied caused the proliferation of nitrifying bacteria and the nitrite and nitrate accumulation. Hence, light intensity and temperature are key parameters in the control of the microalgae-bacteria competition. Biomass productivity significantly increased with light intensity, reaching 50.5 ± 9.6, 80.3 ± 6.5 and 94.3 ± 7.9 mgVSS L -1 d -1 for a light intensity of 40, 85 and 125 µE m -2 s -1 , respectively.
Characterising laser beams with liquid crystal displays
NASA Astrophysics Data System (ADS)
Dudley, Angela; Naidoo, Darryl; Forbes, Andrew
2016-02-01
We show how one can determine the various properties of light, from the modal content of laser beams to decoding the information stored in optical fields carrying orbital angular momentum, by performing a modal decomposition. Although the modal decomposition of light has been known for a long time, applied mostly to pattern recognition, we illustrate how this technique can be implemented with the use of liquid-crystal displays. We show experimentally how liquid crystal displays can be used to infer the intensity, phase, wavefront, Poynting vector, and orbital angular momentum density of unknown optical fields. This measurement technique makes use of a single spatial light modulator (liquid crystal display), a Fourier transforming lens and detector (CCD or photo-diode). Such a diagnostic tool is extremely relevant to the real-time analysis of solid-state and fibre laser systems as well as mode division multiplexing as an emerging technology in optical communication.
Spin-orbit optical cross-phase-modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brasselet, Etienne
2010-12-15
We show experimentally that optical phase singularities (PSs) can be written and erased, locally and in a controllable manner, into a light beam using the giant Kerr optical nonlinearities of liquid crystals. The method relies on the nonlinear optical spin-orbit coupling experienced by a collimated probe beam when a collinear focused pump beam imprints a radial birefringent pattern into a nematic film. In addition, experimental data are quantitatively described, accounting for the elastic anisotropy of the material and its nonlocal spatial response to the pump light field. Since we show that the optical intensity of a light beam (the 'pump')more » controls the phase of another beam (the 'probe') in a singular fashion (i.e., with the generation of a screw PS) via their interaction in a nonlinear medium that involves spin-orbit coupling, we dubbed such a nonlinear optical process as spin-orbit optical cross-phase-modulation.« less
NASA Astrophysics Data System (ADS)
Sheremet, V.; Genç, M.; Gheshlaghi, N.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2018-01-01
Enhancement of InGaN/GaN based light emitting diode performance with step graded electron injectors through a two-step passivation is reported. Perimeter passivation of LED dies with SiO2 immediately following ICP mesa etch in addition to conventional Si3N4 dielectric surface passivation leads to decrease in the reverse bias leakage current by a factor of two as well as a decrease in the shunt current under forward bias by an order of magnitude. Mitigation of the leakage currents owing to the two-step passivation leads to significant increase in the radiant intensity of LEDs by more than a factor of two compared to the conventional single step surface passivation. Further, micro-dome patterned surface of Si3N4 passivation layer allow enhanced light extraction from LEDs.
A Guide to the Librarian's Responsibility in Achieving Quality in Lighting and Ventilation.
ERIC Educational Resources Information Center
Mason, Ellsworth
1967-01-01
Quality, not intensity, is the keystone to good library lighting. The single most important problem in lighting is glare caused by extremely intense centers of light. Multiple interfiling of light rays is a factor required in library lighting. A fixture that diffuses light well is basic when light emerges from the fixture. It scatters widely,…
The rat suprachiasmatic nucleus: the master clock ticks at 30 Hz
Tsuji, Takahiro; Tsuji, Chiharu; Ludwig, Mike
2016-01-01
Key points Light‐responsive neurones in the rat suprachiasmatic nucleus discharge with a harmonic distribution of interspike intervals, whereas unresponsive neurones seldom do.This harmonic patterning has a fundamental frequency of close to 30 Hz, and is the same in light‐on cells as in light‐off cells, and is unaffected by exposure to light.Light‐on cells are more active than light‐off cells in both subjective day and subjective night, and both light‐on cells and light‐off cells respond more strongly to changes in light intensity during the subjective night than during the subjective day.Paired recordings indicate that the discharge of adjacent light‐responsive cells is very tightly synchronized.The gap junction inhibitor carbenoxolone increases the spontaneous activity of suprachiasmatic nucleus neurones but does not block the harmonic discharge patterning. Abstract The suprachiasmatic nucleus (SCN) of the hypothalamus has an essential role in orchestrating circadian rhythms of behaviour and physiology. In the present study, we recorded from single SCN neurons in urethane‐anaesthetized rats, categorized them by the statistical features of their electrical activity and by their responses to light, and examined how activity in the light phase differs from activity in the dark phase. We classified cells as light‐on cells or light‐off cells according to how their firing rate changed in acute response to light, or as non‐responsive cells. In both sets of light‐responsive neurons, responses to light were stronger at subjective night than in subjective day. Neuronal firing patterns were analysed by constructing hazard functions from interspike interval data. For most light‐responsive cells, the hazard functions showed a multimodal distribution, with a harmonic sequence of modes, indicating that spike activity was driven by an oscillatory input with a fundamental frequency of close to 30 Hz; this harmonic pattern was rarely seen in non‐responsive SCN cells. The frequency of the rhythm was the same in light‐on cells as in light‐off cells, was the same in subjective day as at subjective night, and was unaffected by exposure to light. Paired recordings indicated that the discharge of adjacent light‐responsive neurons was very tightly synchronized, consistent with electrical coupling. PMID:27061101
Interferometer Control of Optical Tweezers
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2002-01-01
This paper discusses progress in using spatial light modulators and interferometry to control the beam profile of an optical tweezers. The approach being developed is to use a spatial light modulator (SLM) to control the phase profile of the tweezers beam and to use a combination of the SLM and interferometry to control the intensity profile. The objective is to perform fine and calculable control of the moments and forces on a tip or tool to be used to manipulate and interrogate nanostructures. The performance of the SLM in generating multiple and independently controllable tweezers beams is also reported. Concurrent supporting research projects are mentioned and include tweezers beam scattering and neural-net processing of the interference patterns for control of the tweezers beams.
Luminescence properties of Dy 3+ -doped Li 2 SrSiO 4 for NUV-excited white LEDs
NASA Astrophysics Data System (ADS)
You, Panli; Yin, Guangfu; Chen, Xianchun; Yue, Bo; Huang, Zhongbing; Liao, Xiaoming; Yao, Yadong
2011-09-01
A series of single-phase full color phosphors, Dy 3+-doped Li 2SrSiO 4 was synthesized by a solid-state reaction method. The phase of the as-prepared powders was measured by X-ray diffraction pattern (XRD) and the chemical composition was characterized using energy dispersive spectroscopy (EDS). The luminescent properties of Li 2SrSiO 4:Dy 3+ were systematically investigated by concentration quenching, decay behavior and thermal stability measurements. The results suggested that the emission intensity of the Li 2SrSiO 4:Dy 3+ was much stronger than that of Li 2SrSiO 4:Eu 2+. It was worth to mention that Li 2SrSiO 4:Dy 3+ phosphor possessed excellent thermal stability for use in light-emitting diodes (LEDs) and the emission intensity measured at 300 °C was only decreased 8% comparing with that measured at room temperature. Furthermore, the Commission International del'Eclairage (CIE) chromaticity coordinates of Li 2SrSiO 4:Dy 3+ moved toward the ideal white light coordinates (0.33, 0.33). All results demonstrated that Li 2SrSiO 4:Dy 3+ might be a potential phosphor for NUV-based white light-emitting diodes.
Apparatus for measuring particle properties
Rader, D.J.; Castaneda, J.N.; Grasser, T.W.; Brockmann, J.E.
1998-08-11
An apparatus is described for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle`s size can be determined from the intensity of the light scattered. The particle`s velocity can be determined from the elapsed time between various intensities of the light scattered. 11 figs.
The ratioed image film thickness meter
NASA Astrophysics Data System (ADS)
Husen, Nicholas M.; Liu, Tianshu; Sullivan, John P.
2018-06-01
A technique for measuring the thickness of a fluorescent oil film is presented. Incident light is cast upon the oil film and the intensity of the luminescent signal from the fluorescent dye is ratioed with the intensity of the incident light which is scattered from the surface of the model. The quotient is independent of the intensity of the incident light and proportional to the film thickness. Experiments are presented supporting that for sufficiently thin films the ratio is independent of the intensity of the incident light as well as independent of the angle from which the experiment is imaged and the angle from which the incident light is cast.
Nesterenko, T V; Tikhomirov, A A; Shikhov, V N
2012-01-01
The effect of exciting light intensity and leaves age on characteristics of slow stage of chlorophyll fluorescence induction (CFI) of radish leaves has been investigated. Light dependence of the relationship of maximum fluorescence intensity in the peak P and the stationary fluorescence level (F(P)/F(S)) and also light dependence of temporal characteristics of CFI (T0.5 - half decrease of chlorophyll fluorescence intensity during slow stage of fluorescence induction and tmin - summarized CFI characteristics derived by calculating via integral proportional to variable part of illuminated in the result of chlorophyll fluorescence energy during slow stage of CFI) have been studied. Plants were grown in controlled conditions of light culture at 100 Wt/m2 of photosynthetic active radiation (PAR). It has been shown that variability of the characteristics under study, associated with the effect of leaves age, significantly decreases at exciting light intensity equal to 40 Wt/m2 of PAR and more. The lowest effect of leaves age on the value of fluorescence characteristics for T0.5 and tmin and also for F(P)/F(S) ratio was observed at the intensity of exciting fluorescence light of 60 Wt/m2 of PAR. In the researched range of light intensities the temporal characteristics of T0.5 and tmin for uneven-aged radish leaves appeared to be by an order less responsive to the intensity changes of exciting fluorescence light as compared with F(P)/F(S) ratio.
Variation in light intensity with height and time from subsequent lightning return strokes
NASA Technical Reports Server (NTRS)
Jordan, D. M.; Uman, M. A.
1983-01-01
Photographic measurements of relative light intensity as a function of height and time have been conducted for seven return strokes in two lightning flashes at 7.8 and 8.7 km ranges, using film which possesses an approximately constant spectral response in the 300-670 nm range. The amplitude of the initial light peak is noted to decrease exponentially with height, with a decay constant of 0.6-0.8 km. The logarithm of the peak light intensity near the ground is found to be approximately proportional to the initial peak electric field intensity, implying that the current decrease with height may be much slower than the light decrease. Absolute light intensity is presently estimated through the integration of the photographic signals from individual channel segments, in order to simulate the calibrated, all-sky photoelectric data of Guo and Krider (1982).
Smart trigger logic for focal plane arrays
Levy, James E; Campbell, David V; Holmes, Michael L; Lovejoy, Robert; Wojciechowski, Kenneth; Kay, Randolph R; Cavanaugh, William S; Gurrieri, Thomas M
2014-03-25
An electronic device includes a memory configured to receive data representing light intensity values from pixels in a focal plane array and a processor that analyzes the received data to determine which light values correspond to triggered pixels, where the triggered pixels are those pixels that meet a predefined set of criteria, and determines, for each triggered pixel, a set of neighbor pixels for which light intensity values are to be stored. The electronic device also includes a buffer that temporarily stores light intensity values for at least one previously processed row of pixels, so that when a triggered pixel is identified in a current row, light intensity values for the neighbor pixels in the previously processed row and for the triggered pixel are persistently stored, as well as a data transmitter that transmits the persistently stored light intensity values for the triggered and neighbor pixels to a data receiver.
Moreno-Arias, G A; Ferrando, J
2001-01-01
Few reports about melanocytic lesions treatment by means of noncoherent-intense-pulsed light (NCIPL) have been published. Here we evaluate the clinical results of a relapsing hairy intradermal melanocytic nevus treated with a noncoherent-intense-pulsed light source. A facial repigmented hairy intradermal melanocytic nevus that relapsed after shave excision, received four treatment sessions of a noncoherent-intense-pulsed light source (EpiLight, ESC Medical Systems Ltd, Israel) with the following parameters: 755 nm, a fluence energy of 40-42.5 J/cm(2), triple mode, a pulse width of 3.8 ms, and a delay of 20 ms, at 4-week intervals. Complete pigment clearance and hair removal was obtained. We have neither observed repigmentation nor hair regrowth after a 6 month-follow-up. No side effects were documented. Noncoherent-intense-pulse light is an effective treatment for hairy-pigmented melanocytic nevus. Copyright 2001 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Zhao, Yifan; Du, Jing; Zhang, Jinrun; Shen, Li; Wang, Jian
2018-04-01
Mid-infrared (2-20 μm) light has been attracting great attention in many areas of science and technology. Beyond the extended wavelength range from visible and near-infrared to mid-infrared, shaping spatial structures may add opportunities to grooming applications of mid-infrared photonics. Here, we design and fabricate a reflection-enhanced plasmonic metasurface and demonstrate efficient generation of structured light with the phase helix and intensity helix at 2 μm. This work includes two distinct aspects. First, structured light (phase helix, intensity helix) generation at 2 μm, which is far beyond the ability of conventional spatial light modulators, is enabled by the metasurface with sub-wavelength engineered structures. Second, the self-referenced intensity helix against environmental noise is generated without using a spatially separated light. The demonstrations may open up advanced perspectives to structured light applications at 2 μm, such as phase helix for communications and non-communications (imaging, sensing) and intensity helix for enhanced microscopy and advanced metrology.
An estimation methode for measurement of ultraviolet radiation during nondestructive testing
NASA Astrophysics Data System (ADS)
Hosseinipanah, M.; Movafeghi, A.; Farvadin, D.
2018-04-01
Dye penetrant testing and magnetic particle testing are among conventional NDT methods. For increased sensitivity, fluorescence dyes and particles can be used with ultraviolet (black) lights. UV flaw detection lights have different spectra. With the help of photo-filters, the output lights are transferred to UV-A and visible zones. UV-A light can be harmful to human eyes in some conditions. In this research, UV intensity and spectrum were obtained by a Radio-spectrometer for two different UV flaw detector lighting systems. According to the standards such as ASTM E709, UV intensity must be at least 10 W/m2 at a distance of 30 cm. Based on our measurements; these features not achieved in some lamps. On the other hand, intensity and effective intensity of UV lights must be below the some limits for prevention of unprotected eye damage. NDT centers are usually using some type of UV measuring devices. A method for the estimation of effective intensity of UV light has been proposed in this research.
Simons, Koen S; Boeijen, Enzio R K; Mertens, Marlies C; Rood, Paul; de Jager, Cornelis P C; van den Boogaard, Mark
2018-05-01
Exposure to bright light has alerting effects. In nurses, alertness may be decreased because of shift work and high work pressure, potentially reducing work performance and increasing the risk for medical errors. To determine whether high-intensity dynamic light improves cognitive performance, self-reported depressive signs and symptoms, fatigue, alertness, and well-being in intensive care unit nurses. In a single-center crossover study in an intensive care unit of a teaching hospital in the Netherlands, 10 registered nurses were randomly divided into 2 groups. Each group worked alternately for 3 to 4 days in patients' rooms with dynamic light and 3 to 4 days in control lighting settings. High-intensity dynamic light was administered through ceiling-mounted fluorescent tubes that delivered bluish white light up to 1700 lux during the daytime, versus 300 lux in control settings. Cognitive performance, self-reported depressive signs and symptoms, fatigue, and well-being before and after each period were assessed by using validated cognitive tests and questionnaires. Cognitive performance, self-reported depressive signs and symptoms, and fatigue did not differ significantly between the 2 light settings. Scores of subjective well-being were significantly lower after a period of working in dynamic light. Daytime lighting conditions did not affect intensive care unit nurses' cognitive performance, perceived depressive signs and symptoms, or fatigue. Perceived quality of life, predominantly in the psychological and environmental domains, was lower for nurses working in dynamic light. © 2018 American Association of Critical-Care Nurses.
A parallel bubble column system for the cultivation of phototrophic microorganisms.
Havel, Jan; Franco-Lara, Ezequiel; Weuster-Botz, Dirk
2008-07-01
An incubator with up to 16 parallel bubble columns was equipped with artificial light sources assuring a light supply with a homogenous light spectrum directly above the bioreactors. Cylindrical light reflecting tubes were positioned around every single bubble column to avoid light scattering effects and to redirect the light from the top onto the cylindrical outer glass surface of each bubble column. The light reflecting tubes were equipped with light intensity filters to control the total light intensity for every single photo-bioreactor. Parallel cultivations of the unicellular obligate phototrophic cyanobacterium, Synechococcus PCC7942, were studied under different constant light intensities ranging from 20 to 102 microE m(-2)s(-1) at a constant humidified air flow rate supplemented with CO(2).
Al Shaafi, Mm; Maawadh, Am; Al Qahtani, Mq
2011-01-01
The purpose of this study was to evaluate the light intensity output of quartz-tungsten-halogen (QTH) and light emitting diode (LED) curing devices located at governmental health institutions in Riyadh, Saudi Arabia.Eight governmental institutions were involved in the study. The total number of evaluated curing devices was 210 (120 were QTH and 90 were LED). The reading of the light intensity output for each curing unit was achieved using a digital spectrometer; (Model USB4000 Spectrometer, Ocean Optics Inc, Dunedin, FL, USA). The reading procedure was performed by a single investigator; any recording of light intensity below 300 mW/cm2 was considered unsatisfactory.The result found that the recorded mean values of light intensity output for QTH and LED devices were 260 mW/cm2 and 598 mW/cm2, respectively. The percentage of QTH devices and LED devices considered unsatisfactory was 67.5% and 15.6%, respectively. Overall, the regular assessment of light curing devices using light meters is recommended to assure adequate output for clinical use.
2014-01-01
Background Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Methods Physical activity energy expenditure and minutes per day (min/d) spent sedentary and in light, moderate, and vigorous intensity physical activity were assessed in 825 adolescents from the ROOTS study (43.5% boys; mean age 15.0 ± 0.30 years), by 4 days of individually calibrated combined heart rate and movement sensing. Measurement days were classified as weekday or weekend and according to the three school terms: summer (April-July), autumn (September-December), and spring (January-March). Gender and age were self-reported and area-level SES determined by postcode data. Body composition was measured by anthropometry and bio-electrical impedance. Variability in physical activity and sedentary time was analysed by linear multilevel modelling, and logistic multilevel regression was used to determine factors associated with physical inactivity (<60 min moderate-to-vigorous intensity physical activity/d). Results During awake hours (15.8 ± 0.9 hrs/d), adolescents primarily engaged in light intensity physical activity (517 min/d) and sedentary time (364 min/d). Boys were consistently more physically active and less sedentary than girls, but gender differences were smaller at weekends, as activity levels in boys dropped more markedly when transitioning from weekday to weekend. Boys were more sedentary on both weekend days compared to during the week, whereas girls were more sedentary on Sunday but less sedentary on Saturday. In both genders light intensity physical activity was lower in spring, while moderate physical activity was lower in autumn and spring terms, compared to the summer term; sedentary time was also higher in spring than summer term. Adolescents with higher fatness engaged in less vigorous intensity physical activity. Factors associated with increased odds of physical inactivity were female gender, both weekend days in boys, and specifically Sunday in girls. Conclusions Physical activity components vary by gender, temporal factors and body composition in UK adolescents. The available data indicate that in adolescence, girls should be the primary targets of interventions designed to increase physical activity levels. PMID:24564949
Collings, Paul J; Wijndaele, Katrien; Corder, Kirsten; Westgate, Kate; Ridgway, Charlotte L; Dunn, Valerie; Goodyer, Ian; Ekelund, Ulf; Brage, Soren
2014-02-24
Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Physical activity energy expenditure and minutes per day (min/d) spent sedentary and in light, moderate, and vigorous intensity physical activity were assessed in 825 adolescents from the ROOTS study (43.5% boys; mean age 15.0 ± 0.30 years), by 4 days of individually calibrated combined heart rate and movement sensing. Measurement days were classified as weekday or weekend and according to the three school terms: summer (April-July), autumn (September-December), and spring (January-March). Gender and age were self-reported and area-level SES determined by postcode data. Body composition was measured by anthropometry and bio-electrical impedance. Variability in physical activity and sedentary time was analysed by linear multilevel modelling, and logistic multilevel regression was used to determine factors associated with physical inactivity (<60 min moderate-to-vigorous intensity physical activity/d). During awake hours (15.8 ± 0.9 hrs/d), adolescents primarily engaged in light intensity physical activity (517 min/d) and sedentary time (364 min/d). Boys were consistently more physically active and less sedentary than girls, but gender differences were smaller at weekends, as activity levels in boys dropped more markedly when transitioning from weekday to weekend. Boys were more sedentary on both weekend days compared to during the week, whereas girls were more sedentary on Sunday but less sedentary on Saturday. In both genders light intensity physical activity was lower in spring, while moderate physical activity was lower in autumn and spring terms, compared to the summer term; sedentary time was also higher in spring than summer term. Adolescents with higher fatness engaged in less vigorous intensity physical activity. Factors associated with increased odds of physical inactivity were female gender, both weekend days in boys, and specifically Sunday in girls. Physical activity components vary by gender, temporal factors and body composition in UK adolescents. The available data indicate that in adolescence, girls should be the primary targets of interventions designed to increase physical activity levels.
Suorsa, Marjaana; Rantala, Marjaana; Aro, Eva-Mari
2015-01-01
Photosystem II (PSII) core and light-harvesting complex II (LHCII) proteins in plant chloroplasts undergo reversible phosphorylation upon changes in light intensity (being under control of redox-regulated STN7 and STN8 kinases and TAP38/PPH1 and PSII core phosphatases). Shift of plants from growth light to high light results in an increase of PSII core phosphorylation, whereas LHCII phosphorylation concomitantly decreases. Exactly the opposite takes place when plants are shifted to lower light intensity. Despite distinct changes occurring in thylakoid protein phosphorylation upon light intensity changes, the excitation balance between PSII and photosystem I remains unchanged. This differs drastically from the canonical-state transition model induced by artificial states 1 and 2 lights that concomitantly either dephosphorylate or phosphorylate, respectively, both the PSII core and LHCII phosphoproteins. Analysis of the kinase and phosphatase mutants revealed that TAP38/PPH1 phosphatase is crucial in preventing state transition upon increase in light intensity. Indeed, tap38/pph1 mutant revealed strong concomitant phosphorylation of both the PSII core and LHCII proteins upon transfer to high light, thus resembling the wild type under state 2 light. Coordinated function of thylakoid protein kinases and phosphatases is shown to secure balanced excitation energy for both photosystems by preventing state transitions upon changes in light intensity. Moreover, PROTON GRADIENT REGULATION5 (PGR5) is required for proper regulation of thylakoid protein kinases and phosphatases, and the pgr5 mutant mimics phenotypes of tap38/pph1. This shows that there is a close cooperation between the redox- and proton gradient-dependent regulatory mechanisms for proper function of the photosynthetic machinery. PMID:25902812
Photophoretic trampoline—Interaction of single airborne absorbing droplets with light
NASA Astrophysics Data System (ADS)
Esseling, Michael; Rose, Patrick; Alpmann, Christina; Denz, Cornelia
2012-09-01
We present the light-induced manipulation of absorbing liquid droplets in air. Ink droplets from a printer cartridge are used to demonstrate that absorbing liquids—just like their solid counterparts—can interact with regions of high light intensity due to the photophoretic force. It is shown that droplets follow a quasi-ballistic trajectory after bouncing off a high intensity light sheet. We estimate the intensities necessary for this rebound of airborne droplets and change the droplet trajectories through a variation of the manipulating light field.
In situ strain and temperature measurement and modelling during arc welding
Chen, Jian; Yu, Xinghua; Miller, Roger G.; ...
2014-12-26
In this study, experiments and numerical models were applied to investigate the thermal and mechanical behaviours of materials adjacent to the weld pool during arc welding. In the experiment, a new high temperature strain measurement technique based on digital image correlation (DIC) was developed and applied to measure the in situ strain evolution. In contrast to the conventional DIC method that is vulnerable to the high temperature and intense arc light involved in fusion welding processes, the new technique utilised a special surface preparation method to produce high temperature sustaining speckle patterns required by the DIC algorithm as well asmore » a unique optical illumination and filtering system to suppress the influence of the intense arc light. These efforts made it possible for the first time to measure in situ the strain field 1 mm away from the fusion line. The temperature evolution in the weld and the adjacent regions was simultaneously monitored by an infrared camera. Finally and additionally, a thermal–mechanical finite element model was applied to substantiate the experimental measurement.« less
Factors that affect the EVA encapsulant discoloration rate upon accelerated exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pern, F.J.
1994-12-31
Several factors that may affect the net discoloration rate of the ethylene-vinyl acetate (EVA) copolymer encapsulants used in crystalline-Si photovoltaic (c-Si PV) modules upon accelerated exposure have been investigated by employing UV-visible spectrophotometry, spectrocolorimetry, and fluorescence analysis. A number of laminated films, including the two typical EVA formulations, A9918 and 15295, were studied. The results indicate that the rate of EVA discoloration is affected by the (1) curing agent and curing conditions; (2) presence and concentration of curing-generated, UV-excitable chromophores; (3) UV light intensity; (4) loss rate of the UV absorber, Cyasorb UV 531; (5) lamination; (6) film thickness; andmore » (7) photobleaching rate due to the diffusion of air into the laminated films. In general, the loss rate of the UV absorber and the rate of discoloration from light yellow to brown follow a sigmoidal pattern. A reasonable correlation for net changes in transmittance at 420 nm, yellowness index, and fluorescence peak area (or intensity) ratio is obtained as the extent of EVA discoloration progressed.« less
Speckle-based three-dimensional velocity measurement using spatial filtering velocimetry.
Iversen, Theis F Q; Jakobsen, Michael L; Hanson, Steen G
2011-04-10
We present an optical method for measuring the real-time three-dimensional (3D) translational velocity of a diffusely scattering rigid object observed through an imaging system. The method is based on a combination of the motion of random speckle patterns and regular fringe patterns. The speckle pattern is formed in the observation plane of the imaging system due to reflection from an area of the object illuminated by a coherent light source. The speckle pattern translates in response to in-plane translation of the object, and the presence of an angular offset reference wave coinciding with the speckle pattern in the observation plane gives rise to interference, resulting in a fringe pattern that translates in response to the out-of-plane translation of the object. Numerical calculations are performed to evaluate the dynamic properties of the intensity distribution and the response of realistic spatial filters designed to measure the three components of the object's translational velocity. Furthermore, experimental data are presented that demonstrate full 3D velocity measurement. © 2011 Optical Society of America
Björkman, Karin M.; Church, Matthew J.; Doggett, Joseph K.; Karl, David M.
2015-01-01
The light effect on photoheterotrophic processes in Prochlorococcus, and primary and bacterial productivity in the oligotrophic North Pacific Subtropical Gyre was investigated using 14C-bicarbonate and 3H-leucine. Light and dark incubation experiments were conducted in situ throughout the euphotic zone (0–175 m) on nine expeditions to Station ALOHA over a 3-year period. Photosynthetrons were also used to elucidate rate responses in leucine and inorganic carbon assimilation as a function of light intensity. Taxonomic group and cell-specific rates were assessed using flow cytometric sorting. The light:dark assimilation rate ratios of leucine in the top 150 m were ∼7:1 for Prochlorococcus, whereas the light:dark ratios for the non-pigmented bacteria (NPB) were not significant different from 1:1. Prochlorococcus assimilated leucine in the dark at per cell rates similar to the NPB, with a contribution to the total community bacterial production, integrated over the euphotic zone, of approximately 20% in the dark and 60% in the light. Depth-resolved primary productivity and leucine incorporation showed that the ratio of Prochlorococcus leucine:primary production peaked at 100 m then declined steeply below the deep chlorophyll maximum (DCM). The photosynthetron experiments revealed that, for Prochlorococcus at the DCM, the saturating irradiance (Ek) for leucine incorporation was reached at approximately half the light intensity required for light saturation of 14C-bicarbonate assimilation. Additionally, high and low red fluorescing Prochlorococcus populations (HRF and LRF), co-occurring at the DCM, had similar Ek values for their respective substrates, however, maximum assimilation rates, for both leucine and inorganic carbon, were two times greater for HRF cells. Our results show that Prochlorococcus contributes significantly to bacterial production estimates using 3H-leucine, whether or not the incubations are conducted in the dark or light, and this should be considered when making assessments of bacterial production in marine environments where Prochlorococcus is present. Furthermore, Prochlorococcus primary productivity showed rate to light-flux patterns that were different from its light enhanced leucine incorporation. This decoupling from autotrophic growth may indicate a separate light stimulated mechanism for leucine acquisition. PMID:26733953
Performance of Arrowroot (Marantha arundinacea) in various light intensities
NASA Astrophysics Data System (ADS)
Oktafani, M. B.; Supriyono; Budiastuti, MTh S.; Purnomo, D.
2018-03-01
Arrowroot (Marantha arundinacea) is one of the potential food crops to support food security programs. Light intensity is one of the important factors for plant growth. Arrowroot cultivation technology still need further development. Traditionally, arrowroot grows wild under canopy without intentisification of cultivating which have low productivity. The purpose of research was to investigate the suitable light intensity for arrowroot. The experiment was conducted at Jumantono as Experimental Field of Faculty of Agricultural, University of Sebelas Maret Surakarta located in Karanganyar, from March to September 2016. The experiment used a complete randomized block design (CRBD) of light intensity level there are 27400 lux (full sun light), 18900 lux (shaded 31%), 13500 lux (shaded 51%) and 7400 lux (shaded 72%). Each treatment was replicated six times so there were 24 experimental units. The results showed that arrowroot is a low light adaptive plant. Arrowroot under the light intensity 7400 lux (27% full light), the number of leaves and tillers is not significantly different than under full light, although the plant is higher. The highest tuber diameter and length were 1.91 and 25.06 cm, respectively, and tuber weight reached 607.5-651.67 g per plant.
Light Intensity is Important for Hydrogen Production in NaHSO3-Treated Chlamydomonas reinhardtii.
Wei, Lanzhen; Yi, Jing; Wang, Lianjun; Huang, Tingting; Gao, Fudan; Wang, Quanxi; Ma, Weimin
2017-03-01
Chlamydomonas reinhardtii is a unicellular green alga that can use light energy to produce H2 from H2O in the background of NaHSO3 treatment. However, the role of light intensity in such H2 production remains elusive. Here, light intensity significantly affected the yield of H2 production in NaHSO3-treated C. reinhardtii, which was consistent with its effects on the content of O2 and the expression and activity of hydrogenase. Further, NaHSO3 was found to be able to remove O2 via a reaction of bisulfite with superoxide anion produced at the acceptor side of PSI, and light intensity affected the reaction rate significantly. Accordingly, high light and strong light but not low light can create an anaerobic environment, which is important to activate hydrogenase and produce H2. Based on the above results, we conclude that light intensity plays an important role in removing O2 and consequently activating hydrogenase and producing H2 in NaHSO3-treated C. reinhardtii. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Characterization of fracture aperture for groundwater flow and transport
NASA Astrophysics Data System (ADS)
Sawada, A.; Sato, H.; Tetsu, K.; Sakamoto, K.
2007-12-01
This paper presents experiments and numerical analyses of flow and transport carried out on natural fractures and transparent replica of fractures. The purpose of this study was to improve the understanding of the role of heterogeneous aperture patterns on channelization of groundwater flow and dispersion in solute transport. The research proceeded as follows: First, a precision plane grinder was applied perpendicular to the fracture plane to characterize the aperture distribution on a natural fracture with 1 mm of increment size. Although both time and labor were intensive, this approach provided a detailed, three dimensional picture of the pattern of fracture aperture. This information was analyzed to provide quantitative measures for the fracture aperture distribution, including JRC (Joint Roughness Coefficient) and fracture contact area ratio. These parameters were used to develop numerical models with corresponding synthetic aperture patterns. The transparent fracture replica and numerical models were then used to study how transport is affected by the aperture spatial pattern. In the transparent replica, transmitted light intensity measured by a CCD camera was used to image channeling and dispersion due to the fracture aperture spatial pattern. The CCD image data was analyzed to obtain the quantitative fracture aperture and tracer concentration data according to Lambert-Beer's law. The experimental results were analyzed using the numerical models. Comparison of the numerical models to the transparent replica provided information about the nature of channeling and dispersion due to aperture spatial patterns. These results support to develop a methodology for defining representative fracture aperture of a simplified parallel fracture model for flow and transport in heterogeneous fractures for contaminant transport analysis.
Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)
NASA Astrophysics Data System (ADS)
Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying
2016-02-01
The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.
Optimal time following fluorescein instillation to evaluate rigid gas permeable contact lens fit.
Wolffsohn, James S; Tharoo, Ali; Lakhlani, Nikita
2015-04-01
To examine the optimum time at which fluorescein patterns of gas permeable lenses (GPs) should be evaluated. Aligned, 0.2mm steep and 0.2mm flat GPs were fitted to 17 patients (aged 20.6 ± 1.1 years, 10 male). Fluorescein was applied to their upper temporal bulbar conjunctiva with a moistened fluorescein strip. Digital slit lamp images (CSO, Italy) at 10× magnification of the fluorescein pattern viewed with blue light through a yellow filter were captured every 15s. Fluorescein intensity in central, mid peripheral and edge regions of the superior, inferior, temporal and nasal quadrants of the lens were graded subjectively using a +2 to -2 scale and using ImageJ software on the simultaneously captured images. Subjectively graded and objectively image analysed fluorescein intensity changed with time (p < 0.001), lens region (centre, mid-periphery and edge: p < 0.05) and there was interaction between lens region with lens fit (p < 0.001). For edge band width, there was a significant effect of time (F = 118.503, p < 0.001) and lens fit (F = 5.1249, p = 0.012). The expected alignment, flat and steep fitting patterns could be seen from approximately after 30 to 180 s subjectively and 15 to 105 s in captured images. Although the stability of fluorescein intensity can start to decline in as little as 45 s post fluorescein instillation, the diagnostic pattern of alignment, steep or flat fit is seen in each meridian by subjective observation from about 30s to 3 min indicating this is the most appropriate time window to evaluate GP lenses in clinical practice. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter
Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less
Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; ...
2015-12-11
Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less
Red light-induced suppression of gravitropism in moss protonemata
NASA Astrophysics Data System (ADS)
Kern, V. D.; Sack, F. D.
1999-01-01
Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of Ceratodon protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral red light. Phototropism is phytochrome-mediated. To determine whether any gravitropism persists during irradiation, cultures were turned at various angles with respect to gravity and illuminated so that the light and gravity vectors acted either in the same or in different directions. Red light for 24h (≥140nmol m-2s-1) caused the protonemata to be oriented directly towards the light. Similarly, protonemata grew directly towards the light regardless of light position with respect to gravity indicating that all growth is oriented strictly by phototropism, not gravitropism. At light intensities ≤100nmol m-2s-1, no phototropism occurs and the mean protonemal tip angle remains above the horizontal, which is the criterion for negative gravitropism. But those protonemata are not as uniformly upright as they would be in the dark indicating that low intensity red light permits gravitropism but also modulates the response. Protonemata of the aphototropic mutant ptr1 that lacks a functional Pfr chromophore, exhibit gravitropism regardless of red light intensity. This indicates that red light acts via Pfr to modulate gravitropism at low intensities and to suppress gravitropism at intensities ≥140nmol m-2s-1.
White, Robert D
2004-06-01
Meeting the varied lighting needs of infants, caregivers, and families has become more complex as our understanding of visual development and perception and the effect of light on circadian rhythms advances. Optimal lighting strategies are discussed for new unit construction, as well as modifications to consider for existing units. In either case, the key concept is that lighting should be provided for the individual needs of each person, rather than the full-room lighting schemes previously used. Ideas gleaned from nonhospital settings, re-introduction of natural light into the neonatal intensive care unit, and new devices such as light-emitting diodes will dramatically change the lighting and visual environment of future neonatal intensive care units.
Effect of various infection-control methods for light-cure units on the cure of composite resins.
Chong, S L; Lam, Y K; Lee, F K; Ramalingam, L; Yeo, A C; Lim, C C
1998-01-01
This study (1) compared the curing-light intensity with various barrier infection-control methods used to prevent cross contamination, (2) compared the Knoop hardness value of cured composite resin when various barrier control methods were used, and (3) correlated the hardness of the composite resin with the light-intensity output when different infection-control methods were used. The light-cure unit tips were covered with barriers, such as cellophane wrap, plastic gloves, Steri-shields, and finger cots. The control group had no barrier. Composite resins were then cured for each of the five groups, and their Knoop hardness values recorded. The results showed that there was significant statistical difference in the light-intensity output among the five groups. However, there was no significant statistical difference in the Knoop hardness values among any of the groups. There was also no correlation between the Knoop hardness value of the composite resin with the light-intensity output and the different infection-control methods. Therefore, any of the five infection-control methods could be used as barriers for preventing cross-contamination of the light-cure unit tip, for the light-intensity output for all five groups exceeded the recommended value of 300 W/m2. However, to allow a greater margin of error in clinical situations, the authors recommend that the plastic glove or the cellophane wrap be used to wrap the light-cure tip, since these barriers allowed the highest light-intensity output.
14 CFR 23.1391 - Minimum intensities in the horizontal plane of position lights.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in the horizontal plane of position lights. 23.1391 Section 23.1391 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Equipment Lights § 23.1391 Minimum intensities in the horizontal plane of position...
Low Light Diagnostics in Thin-Film Photovoltaics
NASA Astrophysics Data System (ADS)
Shvydka, Diana; Karpov, Victor; Compaan, Alvin
2003-03-01
We study statistics of the major photovoltaic (PV) parameters such as open circuit voltage, short circuit current and fill factor vs. light intensity on a set of nominally identical CdTe/CdS solar cells. We found the most probable parameter values to change with the light intensity as predicted by the standard diode model, while their relative fluctuations increase dramatically under low light. The crossover light intensity is found below which the relative fluctuations of the PV parameters diverge inversely proportional to the square root of the light intensity. We propose a model where the observed fluctuations are due to lateral nonuniformities in the device structure. In particular, the crossover is attributed to the lateral nonuniformity screening length exceeding the device size. >From the practical standpoint, our study introduces a simple uniformity diagnostic technique.
Ravi, Bolleddu; Chakraborty, Snigdha; Bhattacharjee, Mitradip; Mitra, Shirsendu; Ghosh, Abir; Gooh Pattader, Partho Sarathi; Bandyopadhyay, Dipankar
2017-01-11
Chemical pattern directed spin-dewetting of a macroscopic droplet composed of a dilute organic solution of liquid crystal (LC) formed an ordered array of micro- and nanoscale LC droplets. Controlled evaporation of the spin-dewetted droplets through vacuum drying could further miniaturize the size to the level of ∼90 nm. The size, periodicity, and spacing of these mesoscale droplets could be tuned with the variations in the initial loading of LC in the organic solution, the strength of the centripetal force on the droplet, and the duration of the evaporation. A simple theoretical model was developed to predict the spacing between the spin-dewetted droplets. The patterned LC droplets showed a reversible phase transition from nematic to isotropic and vice versa with the periodic exposure of a solvent vapor and its removal. A similar phase transition behavior was also observed with the periodic increase or reduction of temperature, suggesting their usefulness as vapor or temperature sensors. Interestingly, when the spin-dewetted droplets were confined between a pair of electrodes and an external electric field was applied, the droplets situated at the hydrophobic patches showed light-reflecting properties under the polarization microscopy highlighting their importance in the development of micro- or nanoscale LC displays. The digitized LC droplets, which were stationary otherwise, showed dielectrophoretic locomotion under the guidance of the external electric field beyond a threshold intensity of the field. Remarkably, the motion of these droplets could be restricted to the hydrophilic zones, which were confined between the hydrophobic patches of the chemically patterned surface. The findings could significantly contribute in the development of futuristic vapor or temperature sensors, light reflectors, and self-propellers using the micro- or nanoscale digitized LC droplets.
Jackson, Benjamin C.; Campos, José L.; Haddrill, Penelope R.; Charlesworth, Brian
2017-01-01
Four-fold degenerate coding sites form a major component of the genome, and are often used to make inferences about selection and demography, so that understanding their evolution is important. Despite previous efforts, many questions regarding the causes of base composition changes at these sites in Drosophila remain unanswered. To shed further light on this issue, we obtained a new whole-genome polymorphism data set from D. simulans. We analyzed samples from the putatively ancestral range of D. simulans, as well as an existing polymorphism data set from an African population of D. melanogaster. By using D. yakuba as an outgroup, we found clear evidence for selection on 4-fold sites along both lineages over a substantial period, with the intensity of selection increasing with GC content. Based on an explicit model of base composition evolution, we suggest that the observed AT-biased substitution pattern in both lineages is probably due to an ancestral reduction in selection intensity, and is unlikely to be the result of an increase in mutational bias towards AT alone. By using two polymorphism-based methods for estimating selection coefficients over different timescales, we show that the selection intensity on codon usage has been rather stable in D. simulans in the recent past, but the long-term estimates in D. melanogaster are much higher than the short-term ones, indicating a continuing decline in selection intensity, to such an extent that the short-term estimates suggest that selection is only active in the most GC-rich parts of the genome. Finally, we provide evidence for complex evolutionary patterns in the putatively neutral short introns, which cannot be explained by the standard GC-biased gene conversion model. These results reveal a dynamic picture of base composition evolution. PMID:28082609
Sakai, T; Kagawa, T; Kasahara, M; Swartz, T E; Christie, J M; Briggs, W R; Wada, M; Okada, K
2001-06-05
UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1 npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1 npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner.
14 CFR 23.1393 - Minimum intensities in any vertical plane of position lights.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in any vertical plane... CATEGORY AIRPLANES Equipment Lights § 23.1393 Minimum intensities in any vertical plane of position lights... above or below the horizontal plane Intensity, l 0° 1.00 0° to 5° 0.90 5° to 10° 0.80 10° to 15° 0.70 15...
14 CFR 29.1393 - Minimum intensities in any vertical plane of forward and rear position lights.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in any vertical plane... Equipment Lights § 29.1393 Minimum intensities in any vertical plane of forward and rear position lights... above or below the horizontal plane Intensity, I 0° 1.00 0° to 5° .90 5° to 10° .80 10° to 15° .70 15...
USDA-ARS?s Scientific Manuscript database
In a study of temperature and light intensity, 9 treatments consisted of 3 levels (Low=15.6, Moderate=21.1, High=26.7 °C) of temperatures and 3 levels (0.5, 3.0, 20 lx) of light intensities from d 8 to 56 d of age. Across all light levels at d 56, broilers subjected to high temperature significantly...
Strong-Field Driven Dynamics of Metal and Dielectric Nanoparticles
NASA Astrophysics Data System (ADS)
Powell, Jeffrey
The motion of electrons in atoms, molecules, and solids in the presence of intense electromagnetic radiation is an important research topic in physics and physical chemistry because of its fundamental nature and numerous practical applications, ranging from precise machining of materials to optical control of chemical reactions and light-driven electronic devices. Mechanisms of light-matter interactions critically depend on the dimensions of the irradiated system and evolve significantly from single atoms or molecules to the macroscopic bulk. Nanoparticles provide the link between these two extremes. In this thesis, I take advantage of this bridge to study light-matter interactions as a function of nanoparticle size, shape, and composition. I present here three discrete, but interconnected, experiments contributing to our knowledge of nanoparticle properties and their response to intense, short-pulsed light fields. First, I investigate how individual nanoparticles interact with each other in solution, studying their temperature-dependent solubility. The interaction potential between 5.5nm gold nanoparticles, ligated by an alkanethiol was found to be -0.165eV, in reasonable agreement with a phenomenological model. The other two experiments explore ultrafast dynamics driven by intense femtosecond lasers in isolated, gas-phase metallic and dielectric nanoparticles. Photoelectron momentum imaging is applied to study the response of gold, silica, and gold-shell/silica-core nanoparticles (ranging from single to several hundred nanometers in size) with near-infrared (NIR), 25 fs laser pulses in the intensity range of 1011 - 1014 W/cm2. These measurements, which constitute the bulk of my graduate work, reveal the complex interplay between the external optical field and the induced near-field of the nanoparticle, resulting in the emission of very energetic electrons that are much faster than those emitted from isolated atoms or molecules exposed to the same light pulses. The highest photoelectron energies ("cutoffs") were measured as a function of laser intensity, nanoparticle material and size. We found that the energy cutoffs increase monotonically with laser intensity and nanoparticle size, except for the gold/silica hybrid where the plasmon resonance response modifies this behavior at low intensities. The measured photoelectron spectra for metallic nanoparticles display a large energy enhancement over silica. Finally, the last part of this thesis explores the possibility to apply time-resolved x-ray scattering as a probe of the ultrafast dynamics in isolated nanoparticles driven by very intense ( 1015 W/cm2) NIR laser radiation. To do this, I developed and built a nanoparticle source capable of injecting single, gas-phase nanoparticles with a narrow size distribution into the laser focus. We used femtosecond x-ray pulses from an x-ray free electron laser (XFEL) to map the evolution of the laser-irradiated nanoparticle. The ultrafast dynamics were observed in the single-shot x-ray diffraction patterns measured as a function of delay between the NIR and x-ray pulses, which allows for femtosecond temporal and nanometer spatial resolution. We found that the intense IR laser pulse rapidly ionizes the nanoparticle, effectively turning it into a nanoplasma within less than a picosecond, and observed signatures of the nanoparticle surface softening on a few hundred-femtosecond time scale.
Method and apparatus for optical temperature measurements
Angel, S.M.; Hirschfeld, T.B.
1986-04-22
A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illiminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature. 3 figs.
Method and apparatus for optical temperature measurements
Angel, S. Michael; Hirschfeld, Tomas B.
1988-01-01
A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illuminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature.
The influence of reduced light intensity on the response of benthic diatoms to herbicide exposure.
Wood, Rebecca J; Mitrovic, Simon M; Lim, Richard P; Kefford, Ben J
2016-09-01
Herbicide pollution events in aquatic ecosystems often coincide with increased turbidity and reduced light intensity. It is therefore important to determine whether reduced light intensity can influence herbicide toxicity, especially to primary producers such as benthic diatoms. Benthic diatoms collected from 4 rivers were exposed to herbicides in 48 h rapid toxicity tests under high light (100 µmol m(-2) s(-1) ) and low light (20 µmol m(-2) s(-1) ) intensities. The effects of 2 herbicides (atrazine and glyphosate) were assessed on 26 freshwater benthic diatom taxa. There was no significant interaction of light and herbicide effects at the community level or on the majority (22 of 26) of benthic diatom taxa. This indicates that low light levels will likely have only a minor influence on the response of benthic diatoms to herbicides. Environ Toxicol Chem 2016;35:2252-2260. © 2016 SETAC. © 2016 SETAC.
A method to eliminate the influence of incident light variations in spectral analysis
NASA Astrophysics Data System (ADS)
Luo, Yongshun; Li, Gang; Fu, Zhigang; Guan, Yang; Zhang, Shengzhao; Lin, Ling
2018-06-01
The intensity of the light source and consistency of the spectrum are the most important factors influencing the accuracy in quantitative spectrometric analysis. An efficient "measuring in layer" method was proposed in this paper to limit the influence of inconsistencies in the intensity and spectrum of the light source. In order to verify the effectiveness of this method, a light source with a variable intensity and spectrum was designed according to Planck's law and Wien's displacement law. Intra-lipid samples with 12 different concentrations were prepared and divided into modeling sets and prediction sets according to different incident lights and solution concentrations. The spectra of each sample were measured with five different light intensities. The experimental results showed that the proposed method was effective in eliminating the influence caused by incident light changes and was more effective than normalized processing.
Fluorescent optical position sensor
Weiss, Jonathan D.
2005-11-15
A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.
Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice.
Reisman, Matthew D; Markow, Zachary E; Bauer, Adam Q; Culver, Joseph P
2017-04-01
Optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional brain hemodynamics in rodents. Recent wide field-of-view implementations of OIS have provided efficient maps of functional connectivity from spontaneous brain activity in mice. However, OIS requires scalp retraction and is limited to superficial cortical tissues. Diffuse optical tomography (DOT) techniques provide noninvasive imaging, but previous DOT systems for rodent neuroimaging have been limited either by sparse spatial sampling or by slow speed. Here, we develop a DOT system with asymmetric source-detector sampling that combines the high-density spatial sampling (0.4 mm) detection of a scientific complementary metal-oxide-semiconductor camera with the rapid (2 Hz) imaging of a few ([Formula: see text]) structured illumination (SI) patterns. Analysis techniques are developed to take advantage of the system's flexibility and optimize trade-offs among spatial sampling, imaging speed, and signal-to-noise ratio. An effective source-detector separation for the SI patterns was developed and compared with light intensity for a quantitative assessment of data quality. The light fall-off versus effective distance was also used for in situ empirical optimization of our light model. We demonstrated the feasibility of this technique by noninvasively mapping the functional response in the somatosensory cortex of the mouse following electrical stimulation of the forepaw.
Milne, A D; Brousseau, P A; Brousseau, C A
2014-12-01
A bench-top study was performed to assess the effects of different laryngoscope handles on the light intensity delivered from disposable metal or plastic laryngoscope blades. The light intensity from both the handle light sources themselves and the combined handle and laryngoscope blade sets was measured using a custom-designed testing system and light meter. Five samples of each disposable blade type were tested and compared with a standard re-usable stainless steel blade using three different handle/light sources (Vital Signs LED, Heine 2.5 V Xenon and 3.5 V Xenon). The light intensity delivered by the disposable blades ranged from 790 to 3846 lux for the different handle types. Overall, the 3.5 V Heine handle delivered the highest light output (p < 0.007) in comparison with the other handles. For the disposable blades, the overall light output was significantly higher from the plastic than the metal blades (p < 0.001). © 2014 The Association of Anaesthetists of Great Britain and Ireland.
Wei, Zi-Zhong; Zhao, Wen
2014-01-01
The effects of light intensity (0, 1000, 2000 and 3000 1x) on the growth and digestive enzyme activity of juvenile sea cucumber Apostichopus japonicus under two kinds of culture methods (compound Chinese medicine preparation and microbial preparation) were studied. Results showed that the relative mass gain rate (WGR) and the specific growth rate (SGR) of juvenile sea cucumber were significantly affected by light intensity (P < 0.05) , and the orders of WGR and SGR (form high to low) of juvenile sea cucumber under different light intensities were 2000 1x > 1000 1x > 3000 1x > 0 1x. Under the same light intensity, the growth of juvenile sea cucumber under the two kinds of culture methods were significantly different (P < 0.05), with the WGR and SGR of the Chinese medicine treatment being greater than those of the microbial treatment. The light intensity also significantly affected the digestive enzyme activity of juvenile sea cucumber. The order of amylase and lipase activity was 2000 1x > 1000 1x > 3000 1x > 0 1x, while that of protease activity was 1000 1x > 2000 1x > 0 1x > 3000 1x. Under the same light intensity, the digestive enzyme activities of the Chinese medicine treatment were generally higher than those of the microbial treatment.
Dense Deposit Disease Mimicking a Renal Small Vessel Vasculitis
Singh, Lavleen; Bhardwaj, Swati; Sinha, Aditi; Bagga, Arvind; Dinda, Amit
2016-01-01
Dense deposit disease is caused by fluid-phase dysregulation of the alternative complement pathway and frequently deviates from the classic membranoproliferative pattern of injury on light microscopy. Other patterns of injury described for dense deposit disease include mesangioproliferative, acute proliferative/exudative, and crescentic GN. Regardless of the histologic pattern, C3 glomerulopathy, which includes dense deposit disease and C3 GN, is defined by immunofluorescence intensity of C3c two or more orders of magnitude greater than any other immune reactant (on a 0–3 scale). Ultrastructural appearances distinguish dense deposit disease and C3 GN. Focal and segmental necrotizing glomerular lesions with crescents, mimicking a small vessel vasculitis such as ANCA-associated GN, are a very rare manifestation of dense deposit disease. We describe our experience with this unusual histologic presentation and distinct clinical course of dense deposit disease, discuss the pitfalls in diagnosis, examine differential diagnoses, and review the relevant literature. PMID:26361799
Hodson, Nicholas A; Dunne, Stephen M; Pankhurst, Caroline L
2005-04-01
Dental curing lights are vulnerable to contamination with oral fluids during routine intra-oral use. This controlled study aimed to evaluate whether or not disposable transparent barriers placed over the light-guide tip would affect light output intensity or the subsequent depth of cure of a composite restoration. The impact on light intensity emitted from high-, medium- and low-output light-cure units in the presence of two commercially available disposable infection-control barriers was evaluated against a no-barrier control. Power density measurements from the three intensity light-cure units were recorded with a radiometer, then converted to a digital image using an intra-oral camera and values determined using a commercial computer program. For each curing unit, the measurements were repeated on ten separate occasions with each barrier and the control. Depth of cure was evaluated using a scrape test in a natural tooth model. At each level of light output, the two disposable barriers produced a significant reduction in the mean power density readings compared to the no-barrier control (P<0.005). The cure sleeve inhibited light output to a greater extent than either the cling film or the control (P<0.005). Only composite restorations light-activated by the high level unit demonstrated a small but significant decrease in the depth of cure compared to the control (P<0.05). Placing disposable barriers over the light-guide tip reduced the light intensity from all three curing lights. There was no impact on depth of cure except for the high-output light, where a small decrease in cure depth was noted but this was not considered clinically significant. Disposable barriers can be recommended for use with light-cure lights.
Torres, Camila de Araujo; Lürling, Miquel; Marinho, Marcelo Manzi
2016-05-01
In this study, we tested the hypothesis that Planktothrix agardhii strains isolated from a tropical water body were better competitors for light than Microcystis aeruginosa strains. These cyanobacteria are common in eutrophic systems, where light is one of the main drivers of phytoplankton, and Planktothrix is considered more shade-adapted and Microcystis more high-light tolerant. First, the effect of light intensities on growth was studied in batch cultures. Next, the minimum requirement of light (I*) and the effect of light limitation on the outcome of competition was investigated in chemostats. All strains showed similar growth at 10 μmol photons m(-2) s(-1), demonstrating the ability of the two species to grow in low light. The optimum light intensity was lower for P. agardhii, but at the highest light intensity, Microcystis strains reached higher biovolume, confirming that P. agardhii has higher sensitivity to high light. Nonetheless, P. agardhii grew in light intensities considered high (500 μmol photons m(-2) s(-1)) for this species. M. aeruginosa showed a higher carrying capacity in light-limited condition, but I* was similar between all the strains. Under light competition, Microcystis strains displaced P. agardhii and dominated. In two cases, there was competitive exclusion and in the other two P. agardhii managed to remain in the system with a low biovolume (≈15%). Our findings not only show that strains of P. agardhii can grow under higher light intensities than generally assumed but also that strains of M. aeruginosa are better competitors for light than supposed. These results help to understand the co-occurrence of these species in tropical environments and the dominance of M. aeruginosa even in low-light conditions.
Multi-texture local ternary pattern for face recognition
NASA Astrophysics Data System (ADS)
Essa, Almabrok; Asari, Vijayan
2017-05-01
In imagery and pattern analysis domain a variety of descriptors have been proposed and employed for different computer vision applications like face detection and recognition. Many of them are affected under different conditions during the image acquisition process such as variations in illumination and presence of noise, because they totally rely on the image intensity values to encode the image information. To overcome these problems, a novel technique named Multi-Texture Local Ternary Pattern (MTLTP) is proposed in this paper. MTLTP combines the edges and corners based on the local ternary pattern strategy to extract the local texture features of the input image. Then returns a spatial histogram feature vector which is the descriptor for each image that we use to recognize a human being. Experimental results using a k-nearest neighbors classifier (k-NN) on two publicly available datasets justify our algorithm for efficient face recognition in the presence of extreme variations of illumination/lighting environments and slight variation of pose conditions.
Ji, Seok Young; Choi, Wonsuk; Jeon, Jin-Woo; Chang, Won Seok
2018-01-01
The development of printing technologies has enabled the realization of electric circuit fabrication on a flexible substrate. However, the current technique remains restricted to single-layer patterning. In this paper, we demonstrate a fully solution-processable patterning approach for multi-layer circuits using a combined method of laser sintering and ablation. Selective laser sintering of silver (Ag) nanoparticle-based ink is applied to make conductive patterns on a heat-sensitive substrate and insulating layer. The laser beam path and irradiation fluence are controlled to create circuit patterns for flexible electronics. Microvia drilling using femtosecond laser through the polyvinylphenol-film insulating layer by laser ablation, as well as sequential coating of Ag ink and laser sintering, achieves an interlayer interconnection between multi-layer circuits. The dimension of microvia is determined by a sophisticated adjustment of the laser focal position and intensity. Based on these methods, a flexible electronic circuit with chip-size-package light-emitting diodes was successfully fabricated and demonstrated to have functional operations. PMID:29425144
NASA Astrophysics Data System (ADS)
Cochran, J. F.; From, M.; Heinrich, B.
1998-06-01
Brillouin light scattering experiments have been used to investigate the intensity of 5145 Å laser light backscattered from spin waves in 20 monolayer thick Fe(001) films. The experiments have shown that the ratio of frequency upshifted light intensity to frequency downshifted light intensity depends upon the material of the substrate used to support the iron films. For a fixed magnetic field and for a fixed angle of incidence of the laser light this intensity ratio is much larger for an iron film deposited on a sulphur passivated GaAs(001) substrate than for an iron film deposited on a Ag(001) substrate. The data have been compared with a calculation that takes into account multiple scattering of the optical waves in the iron film and in a protective gold overlayer. The observations are in qualitative agreement with the theory, except for angles of incidence greater than 60°.
Cambras, Trinitat; Díez-Noguera, Antoni
2012-07-01
Circadian rhythms are strongly influenced by light intensity, the effects of which may persist beyond the duration of light exposure (aftereffects). Here, the authors constructed period-illuminance curves for the motor activity circadian rhythm of male and female rats by recording the effects of a series of small upward and downward steps in light intensity (illuminance ranging between .01 lux of dim red light and 1 lux of white light) on their activity. In all cases, stepwise changes were made in five logarithmic steps (irradiance: dim red light: .692 µW/cm(2) and white light: .006, .016, .044, .12, and .315 µW/cm(2), corresponding, respectively, to .02, .05, .14, .13, and 1 lux measured at cage level), with changes in intensity every 2 wks. One group of rats (DLD) started in dim red light, moved up to 1 lux white light, and then back down to the original light intensity. Another group (LDL) started at 1 lux, moved down to .01 lux, and then back up to the original intensity. Motor activity data were recorded throughout the experiment and tau values, the percentage of variance explained by the rhythm, and the mean motor activity for each stage and group were calculated. The results show differences in the dynamics of tau values between the DLD and LDL groups and between males and females. In the LDL group, the tau values of both males and females were dependent on light intensity, and were similar for the forward and backward transitions. In other words, no aftereffects were found, and no differences were detected between males and females. In the DLD group, however, differences were found between males and females. Males had a tau value of 24 h 20 min under dim red light, 25 h 40 min under 1 lux, and 24 h 50 min on return to dim red light. It is noticeable that the tau values of the backward branch of the illuminance curve contradicted classical predictions, since at .38 and .14 lux the tau values were shorter than those found under the same intensities after exposure to 1 lux. Females became arrhythmic at 1 lux, and only one half of them recovered their circadian rhythm at .02 lux. The other one half remained arrhythmic even under dim red light. Thus, some of the results of this paper contradict the predictions of standard descriptions of the functioning of the circadian clock, possibly due to the effects of dim light.
Li, Heng; Cheng, Hui-Yu; Chen, Wei-Liang; Huang, Yi-Hsin; Li, Chi-Kang; Chang, Chiao-Yun; Wu, Yuh-Renn; Lu, Tien-Chang; Chang, Yu-Ming
2017-03-30
We performed depth-resolved PL and Raman spectral mappings of a GaN-based LED structure grown on a patterned sapphire substrate (PSS). Our results showed that the Raman mapping in the PSS-GaN heterointerface and the PL mapping in the In x Ga 1-x N/GaN MQWs active layer are spatially correlated. Based on the 3D construction of E 2 (high) Raman peak intensity and frequency shift, V-shaped pits in the MQWs can be traced down to the dislocations originated in the cone tip area of PSS. Detail analysis of the PL peak distribution further revealed that the indium composition in the MQWs is related to the residual strain propagating from the PSS-GaN heterointerface toward the LED surface. Numerical simulation based on the indium composition distribution also led to a radiative recombination rate distribution that shows agreement with the experimental PL intensity distribution in the In x Ga 1-x N/GaN MQWs active layer.
Li, Heng; Cheng, Hui-Yu; Chen, Wei-Liang; Huang, Yi-Hsin; Li, Chi-Kang; Chang, Chiao-Yun; Wu, Yuh-Renn; Lu, Tien-Chang; Chang, Yu-Ming
2017-01-01
We performed depth-resolved PL and Raman spectral mappings of a GaN-based LED structure grown on a patterned sapphire substrate (PSS). Our results showed that the Raman mapping in the PSS-GaN heterointerface and the PL mapping in the InxGa1−xN/GaN MQWs active layer are spatially correlated. Based on the 3D construction of E2(high) Raman peak intensity and frequency shift, V-shaped pits in the MQWs can be traced down to the dislocations originated in the cone tip area of PSS. Detail analysis of the PL peak distribution further revealed that the indium composition in the MQWs is related to the residual strain propagating from the PSS-GaN heterointerface toward the LED surface. Numerical simulation based on the indium composition distribution also led to a radiative recombination rate distribution that shows agreement with the experimental PL intensity distribution in the InxGa1−xN/GaN MQWs active layer. PMID:28358119
Jia, Huijun; Yuan, Qiuyan
2018-04-01
In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L). At the lowest light intensity of 1000 Lux, algae biomass concentration, light wavelength, and light cycle did not show a significant effect on the performance of algal-bacterial consortium. Furthermore, the ammonia removal rate was approximately 83 ± 1.0 mg N/L/days, which was up to 40% faster than at the light intensity of 2500 Lux. It was concluded that the algae-bacteria consortia can effectively remove nitrogen from wastewater and the removal performance can be stabilized and enhanced using the low light intensity of 1000 Lux that is also a cost-effective strategy.
Saha, Rajib; Liu, Deng; Hoynes-O’Connor, Allison; Liberton, Michelle; Yu, Jingjie; Bhattacharyya-Pakrasi, Maitrayee; Balassy, Andrea; Zhang, Fuzhong; Maranas, Costas D.
2016-01-01
ABSTRACT Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper) were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H), and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP+ showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium. PMID:27143387
DOT National Transportation Integrated Search
2013-08-01
Research was conducted to determine the effective intensity of flashing lights that incorporate light-emitting diodes (LEDs). LEDs require less power and have the ability to flash without the addition of moving parts. Compared with incandescent bulbs...
Northern Red Oak Seedling Growth Varies by Light Intensity and Seed Source
Charles E. McGee
1968-01-01
Northern red oak seedlings from each of three seed sources were subjected for one growing season to one of four intensities of light: full light, 70 percent light, 37 percent light, and 8 percent light. Seedlings grown in the open were taller than those grown in the shade and had more, generally heavier leaves. Height and leaf growth decreased as the amount of light...
NASA Astrophysics Data System (ADS)
Hakobyan, H. L.; Beskin, V. S.; Philippov, A. A.
2017-08-01
Our previous paper outlined the general aspects of the theory of radio light curve and polarization formation for pulsars. We predicted the one-to-one correspondence between the tilt of the linear polarization position angle of the the circular polarization. However, some of the radio pulsars indicate a clear deviation from that correlation. In this paper, we apply the theory of the radio wave propagation in the pulsar magnetosphere for the analysis of individual effects leading to these deviations. We show that within our theory the circular polarization of a given mode can switch its sign, without the need to introduce a new radiation mode or other effects. Moreover, we show that the generation of different emission modes on different altitudes can explain pulsars, that presumably have the X-O-X light-curve pattern, different from what we predict. General properties of radio emission within our propagation theory are also discussed. In particular, we calculate the intensity patterns for different radiation altitudes and present light curves for different observer viewing angles. In this context we also study the light curves and polarization profiles for pulsars with interpulses. Further, we explain the characteristic width of the position angle curves by introducing the concept of a wide emitting region. Another important feature of radio polarization profiles is the shift of the position angle from the centre, which in some cases demonstrates a weak dependence on the observation frequency. Here we demonstrate that propagation effects do not necessarily imply a significant frequency-dependent change of the position angle curve.
Comparisons of luminaires: Efficacies and system design
NASA Technical Reports Server (NTRS)
Albright, L. D.; Both, A. J.
1994-01-01
Lighting designs for architectural (aesthetic) purposes, vision and safety, and plant growth have many features in common but several crucial ones that are not. The human eye is very sensitive to the color (wavelength) of light, whereas plants are less so. There are morphological reactions, particularly to the red and blue portions of the light spectrum but, in general, plants appear to accept and use light for photosynthesis everywhere over the PAR region of the spectrum. In contrast, the human eye interprets light intensity on a logarithmic scale, making people insensitive to significant differences of light intensity. As a rough rule, light intensity must change by 30 to 50% for the human eye to recognize the difference. Plants respond much more linearly to light energy, at least at intensities below photosynthetic saturation. Thus, intensity differences not noticeable to the human eye can have significant effects on total plant growth and yield, and crop timing. These factors make luminaire selection and lighting system design particularly important when designing supplemental lighting systems for plant growth. Supplemental lighting for plant growth on the scale of commercial greenhouses is a relatively expensive undertaking. Light intensities are often much higher than required for task (vision) lighting, which increases both installation and operating costs. However, and especially in the northern regions of the United States (and Canada, Europe, etc.), supplemental lighting during winter may be necessary to produce certain crops (e.g., tomatoes) and very useful to achieve full plant growth potential and crop timing with most other greenhouse crops. Operating costs over the life of a luminaire typically will exceed the initial investment, making lighting efficacy a major consideration. This report reviews tests completed to evaluate the efficiencies of various commercially-available High-Pressure Sodium luminaires, and then describes the results of using a commercial lighting design computer program, Lumen-Micro, to explore how to place luminaires within greenhouses and plant growth chambers to achieve light (PAR) uniformity and relatively high lighting efficacies. Several suggestions are presented which could encourage systematic design of plant lighting systems.
14 CFR 25.1393 - Minimum intensities in any vertical plane of forward and rear position lights.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in any vertical plane... Equipment Lights § 25.1393 Minimum intensities in any vertical plane of forward and rear position lights... above or below the horizontal plane Intensity, l 0° 1.00 0° to 5° 0.90 5° to 10° 0.80 10° to 15° 0.70 15...
14 CFR 27.1393 - Minimum intensities in any vertical plane of forward and rear position lights.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in any vertical plane... Equipment Lights § 27.1393 Minimum intensities in any vertical plane of forward and rear position lights... above or below the horizontal plane Intensity, l 0° 1.00 0° to 5° 0.90 5° to 10° 0.80 10° to 15° 0.70 15...
Yu, Yue; Li, Zhanming; Pan, Jinming
2016-01-01
Objective. The objective of this study was to investigate changes in pigment, spectral transmission and element content of chicken eggshells with different intensities of pink pigment during the incubation period. We also investigated the effects of the region (small pole, equator and large pole) and pink pigment intensity of the chicken eggshell on the percent transmission of light passing through the chicken eggshells. Method. Eggs of comparable weight from a meat-type breeder (Meihuang) were used, and divided based on three levels of pink pigment (light, medium and dark) in the eggshells. During the incubation (0-21 d), the values of the eggshell pigment (ΔE, L (∗), a (∗), b (∗)) were measured. The percent transmission of light for different regions and intensities of eggshell pigmentation was measured by using the visible wavelength range of 380-780 nm. Result. Three measured indicators of eggshell color, ΔE, L (∗) and a (∗), did not change significantly during incubation. Compared with other regions and pigment intensities, eggshell at the small pole and with light pigmentation intensity showed the highest percent transmission of light. The transmission value varied significantly (P < 0.001) with incubation time. The element analysis of eggshells with different levels of pink pigment showed that the potassium content of the eggshells for all pigment levels decreased significantly during incubation. Conclusion. In summary, pigment intensity and the region of the eggshell influenced the percent transmission of light of eggshell. Differences in the spectral characteristics of different eggshells may influence the effects of photostimulation during the incubation of eggs. All of these results will be applicable for perfecting the design of light intensity for lighted incubation to improve productivity.
Yu, Yue; Li, Zhanming
2016-01-01
Objective. The objective of this study was to investigate changes in pigment, spectral transmission and element content of chicken eggshells with different intensities of pink pigment during the incubation period. We also investigated the effects of the region (small pole, equator and large pole) and pink pigment intensity of the chicken eggshell on the percent transmission of light passing through the chicken eggshells. Method. Eggs of comparable weight from a meat-type breeder (Meihuang) were used, and divided based on three levels of pink pigment (light, medium and dark) in the eggshells. During the incubation (0–21 d), the values of the eggshell pigment (ΔE, L∗, a∗, b∗) were measured. The percent transmission of light for different regions and intensities of eggshell pigmentation was measured by using the visible wavelength range of 380–780 nm. Result. Three measured indicators of eggshell color, ΔE, L∗ and a∗, did not change significantly during incubation. Compared with other regions and pigment intensities, eggshell at the small pole and with light pigmentation intensity showed the highest percent transmission of light. The transmission value varied significantly (P < 0.001) with incubation time. The element analysis of eggshells with different levels of pink pigment showed that the potassium content of the eggshells for all pigment levels decreased significantly during incubation. Conclusion. In summary, pigment intensity and the region of the eggshell influenced the percent transmission of light of eggshell. Differences in the spectral characteristics of different eggshells may influence the effects of photostimulation during the incubation of eggs. All of these results will be applicable for perfecting the design of light intensity for lighted incubation to improve productivity. PMID:27019785
Li, Jin-Ling; Zhao, Zhi; Liu, Hong-Chang; Luo, Chun-Li; Wang, Hua-Lei
2017-11-01
To ascertain the influence of light intensity and water content of medium on the total dendrobine of Dendrobium nobile (D. nobile). The principal component analysis combined with total dendrobine accumulation was conducted to assess the yield and quality of D. nobile in all treatments. In the experiment, D. nobile plants were cultivated in greenhouse as tested materials, and complete test of 9 treatments was adopted with relative light intensities 75.02%, 39.74%, 29.93% and relative water content of medium 50%, 65%, 80%. The plants were treated in June and harvested till December. Indexes including agronomic traits, fresh weight and dry weight of stem and leaf, ash content, extract, and dendrobine were measured. Under the light intensity treatments of 75.02% with 50%, 65%, 80% water content of medium, the basal stems of plants were comparatively thicker with more leaves, and the fresh weight and dry weight of stems and leaves were significantly higher than other 6 treatments. Leaves in all treatments contained dendrobine. Under the light intensity treatments of 75.02% with 50%, 65%, 80% water content of medium, dendrobine content of leaves was lower while dendrobine contents of other treatments were more than 0.60%. After comprehensive assessment through the principal component analysis and total dendrobine accumulation, the results showed that 3 treatments with relative light intensity of 75.02% ranked the top three. In brief, the moderately strong light intensity and water content of medium from low to medium can facilitate the growth and yield of D. nobile plants, while light intensity from moderately weak to weak can enhance the dendrobine content. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Simulation of Forward and Inverse X-ray Scattering From Shocked Materials
NASA Astrophysics Data System (ADS)
Barber, John; Marksteiner, Quinn; Barnes, Cris
2012-02-01
The next generation of high-intensity, coherent light sources should generate sufficient brilliance to perform in-situ coherent x-ray diffraction imaging (CXDI) of shocked materials. In this work, we present beginning-to-end simulations of this process. This includes the calculation of the partially-coherent intensity profiles of self-amplified stimulated emission (SASE) x-ray free electron lasers (XFELs), as well as the use of simulated, shocked molecular-dynamics-based samples to predict the evolution of the resulting diffraction patterns. In addition, we will explore the corresponding inverse problem by performing iterative phase retrieval to generate reconstructed images of the simulated sample. The development of these methods in the context of materials under extreme conditions should provide crucial insights into the design and capabilities of shocked in-situ imaging experiments.
Dual-mode optical microscope based on single-pixel imaging
NASA Astrophysics Data System (ADS)
Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.
2016-07-01
We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.
Analysis of periodically patterned metallic nanostructures for infrared absorber
NASA Astrophysics Data System (ADS)
Peng, Sha; Yuan, Ying; Long, Huabao; Liu, Runhan; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
With rapid advancement of infrared detecting technology in both military and civil domains, the photo-electronic performances of near-infrared detectors have been widely concerned. Currently, near-infrared detectors demonstrate some problems such as low sensitivity, low detectivity, and relatively small array scale. The current studies show that surface plasmons (SPs) stimulated over the surface of metallic nanostructures by incident light can be used to break the diffraction limit and thus concentrate light into sub-wavelength scale, so as to indicate a method to develop a new type of infrared absorber or detector with very large array. In this paper, we present the design and characterization of periodically patterned metallic nanostructures that combine nanometer thickness aluminum film with silicon wafer. Numerical computations show that there are some valleys caused by surface plasmons in the reflection spectrum in the infrared region, and both red shift and blue shift of the reflection spectrum were observed through changing the nanostructural parameters such as angle α and diameters D. Moreover, the strong E-field intensity is located at the sharp corner of the nano-structures.
Rushford, Michael C.
1988-01-01
A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten metal in an atomic vapor laser isotope separation (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. To accomplish this, the assembly utilizes the combination of interference filter and a liquid crystal notch filter. The latter which preferably includes a cholesteric liquid crystal arrangement is configured to pass light at all wavelengths, except a relatively narrow wavelength band which defines the filter's notch, and includes means for causing the notch to vary to at least a limited extent with the intensity of light at its light incidence surface.
Apparatus and process for active pulse intensity control of laser beam
Wilcox, Russell B.
1992-01-01
An optically controlled laser pulse energy control apparatus and process is disclosed wherein variations in the energy of a portion of the laser beam are used to vary the resistance of a photodetector such as a photoresistor through which a control voltage is fed to a light intensity controlling device through which a second portion of the laser beam passes. Light attenuation means are provided to vary the intensity of the laser light used to control the resistance of the photodetector. An optical delay path is provided through which the second portion of the beam travels before reaching the light intensity controlling device. The control voltage is supplied by a variable power supply. The apparatus may be tuned to properly attenuate the laser beam passing through the intensity controlling device by adjusting the power supply, the optical delay path, or the light attenuating means.
Bonnineau, Chloé; Sague, Irene Gallardo; Urrea, Gemma; Guasch, Helena
2012-05-01
In multiple stress situations, the co-occurrence of environmental and chemical factors can influence organisms' ability to cope with toxicity. In this context, the influence of light adaptation on the response of freshwater biofilms to sudden light changes or to herbicides exposure was investigated by determining various parameters: diatom community composition, photosynthetic parameters, chlorophyll a content, antioxidant enzyme activities. Biofilms were grown in microcosms under sub-optimal, saturating, and high light intensities and showed already described characteristics of shade/light adaptation (community structure, photosynthetic adaptation, etc.). Light history modulated antioxidant and photosynthetic responses of biofilms to the stress caused by short-term exposure to sudden light changes or to herbicides. First biofilms adapted to sub-optimal light intensity (shade-adapted) were found to be more sensitive to an increase in light intensity than high-light adapted ones to a reduction in light intensity. Second, while light history influenced biofilms' response to glyphosate, it had little influence on biofilms' response to copper and none on its response to oxyfluorfen. Indeed glyphosate exposure led to a stronger decrease in photosynthetic efficiency of shade-adapted biofilms (EC(50) = 11.7 mg L(-1)) than of high-light adapted communities (EC(50) = 35.6 mg L(-1)). Copper exposure led to an activation of ascorbate peroxidase (APX) in biofilms adapted to sub-optimal and saturating light intensity while the protein content decreased in all biofilms exposed to copper. Oxyfluorfen toxicity was independent of light history provoking an increase in APX activity. In conclusion this study showed that both previous exposure to contaminants and physical habitat characteristics might influence community tolerance to disturbances strongly.
Nanostructured Antireflective and Thermoisolative Cicada Wings.
Morikawa, Junko; Ryu, Meguya; Seniutinas, Gediminas; Balčytis, Armandas; Maximova, Ksenia; Wang, Xuewen; Zamengo, Massimiliano; Ivanova, Elena P; Juodkazis, Saulius
2016-05-10
Inter-related mechanical, thermal, and optical macroscopic properties of biomaterials are defined at the nanoscale by their constituent structures and patterns, which underpin complex functions of an entire bio-object. Here, the temperature diffusivity of a cicada (Cyclochila australasiae) wing with nanotextured surfaces was measured using two complementary techniques: a direct contact method and IR imaging. The 4-6-μm-thick wing section was shown to have a thermal diffusivity of α⊥ = (0.71 ± 0.15) × 10(-7) m(2)/s, as measured by the contact temperature wave method along the thickness of the wing; it corresponds to the inherent thermal property of the cuticle. The in-plane thermal diffusivity value of the wing was determined by IR imaging and was considerably larger at α∥ = (3.6 ± 0.2) × 10(-7) m(2)/s as a result of heat transport via air. Optical properties of wings covered with nanospikes were numerically simulated using an accurate 3D model of the wing pattern and showed that light is concentrated between spikes where intensity is enhanced by up to 3- to 4-fold. The closely packed pattern of nanospikes reduces the reflectivity of the wing throughout the visible light spectrum and over a wide range of incident angles, hence acting as an antireflection coating.
High brightness nonpolar a-plane (11-20) GaN light-emitting diodes
NASA Astrophysics Data System (ADS)
Jung, Sukkoo; Chang, Younghak; Bang, Kyu-Hyun; Kim, Hyung-Gu; Choi, Yoon-Ho; Hwang, Sung-Min; Baik, Kwang Hyeon
2012-02-01
We report on high brightness nonpolar a-plane InGaN/GaN LEDs using patterned lateral overgrowth (PLOG) epitaxy. High crystal-quality and smooth surfaces for a-plane GaN (a-GaN) films were achieved using PLOG with an array of hexagonal SiO2 patterns. The XRC FWHMs of as-grown PLOG a-GaN films were found to be 414 and 317 arcsec (450 and 455 arcsec for planar a-GaN films) along the c-axis and m-axis directions, respectively. Plan-view CL clearly reveals the periodic hexagonal patterns with higher band edge emission intensity, implying that the luminescence properties of a-GaN films lying above the SiO2 mask are improved. The light output powers of a-InGaN/GaN PLOG LEDs were measured to be 7.5 mW and 20 mW at drive currents of 20 mA and 100 mA, respectively. A negligible blue-shift was observed in the peak emission wavelength with increasing drive current up to 100 mA, indicating that there are no strong internal fields in nonpolar a-InGaN/GaN LEDs. We believe that nonpolar a-plane InGaN/GaN LEDs hold promise for efficient nitride emitters if the growth conditions are further optimized.
Sturm, Sabine; Engelken, Johannes; Gruber, Ansgar; Vugrinec, Sascha; Kroth, Peter G; Adamska, Iwona; Lavaud, Johann
2013-07-30
Light, the driving force of photosynthesis, can be harmful when present in excess; therefore, any light harvesting system requires photoprotection. Members of the extended light-harvesting complex (LHC) protein superfamily are involved in light harvesting as well as in photoprotection and are found in the red and green plant lineages, with a complex distribution pattern of subfamilies in the different algal lineages. Here, we demonstrate that the recently discovered "red lineage chlorophyll a/b-binding-like proteins" (RedCAPs) form a monophyletic family within this protein superfamily. The occurrence of RedCAPs was found to be restricted to the red algal lineage, including red algae (with primary plastids) as well as cryptophytes, haptophytes and heterokontophytes (with secondary plastids of red algal origin). Expression of a full-length RedCAP:GFP fusion construct in the diatom Phaeodactylum tricornutum confirmed the predicted plastid localisation of RedCAPs. Furthermore, we observed that similarly to the fucoxanthin chlorophyll a/c-binding light-harvesting antenna proteins also RedCAP transcripts in diatoms were regulated in a diurnal way at standard light conditions and strongly repressed at high light intensities. The absence of RedCAPs from the green lineage implies that RedCAPs evolved in the red lineage after separation from the the green lineage. During the evolution of secondary plastids, RedCAP genes therefore must have been transferred from the nucleus of the endocytobiotic alga to the nucleus of the host cell, a process that involved complementation with pre-sequences allowing import of the gene product into the secondary plastid bound by four membranes. Based on light-dependent transcription and on localisation data, we propose that RedCAPs might participate in the light (intensity and quality)-dependent structural or functional reorganisation of the light-harvesting antennae of the photosystems upon dark to light shifts as regularly experienced by diatoms in nature. Remarkably, in plastids of the red lineage as well as in green lineage plastids, the phycobilisome based cyanobacterial light harvesting system has been replaced by light harvesting systems that are based on members of the extended LHC protein superfamily, either for one of the photosystems (PS I of red algae) or for both (diatoms). In their proposed function, the RedCAP protein family may thus have played a role in the evolutionary structural remodelling of light-harvesting antennae in the red lineage.
NASA Astrophysics Data System (ADS)
Gitle Hauge, Bjørn; Strand, Erling
2013-04-01
Transient louminous phenomenas has been observed in and over the Hessdalen valley for over 100 years. These phenomena's has been nicknamed "Hessdalen phenomenas", HP, and has been under permanent scientific investigation since 1998, when Norwegian, Italian and later French researchers installed different types of monitoring equipment in the valley. The earth's magnetic field, electromagnetic radiation in different bands, radioactive radiation, electrical resistance in the ground, ultrasound, and seismic activity are some of the signals/parameters that has been monitored. The valley has also been surveillanced by radar, optical spectrometers and automatic video recording devices. So far no electromagnetic radiation, except in the optical band, has been detected that can be coupled to the HP. The phenomenon is characterized by its horizontal movement, intense optical radiation when a transformation process occurs, different colours where white/yellow dominates, no sound, high speed, unpredictable flight patterns, seen by radar while optical invisible and often observed with continuous optical spectrum. The phenomena have been seen touching ground, without leaving burning marks and flying in higher altitudes over the valley apparently ignoring wind/weather conditions. The Hessdalen valley is located in the middle of Norway and is famous for its mines with iron, zinc and copper ore. Big deposits of ore still reside inside the valley, and the mountains are penetrated by several mineshafts, some has depth down to 1000m. No exact birthplace has been located and the phenomenon seems to emerge "out of thin air" anywhere in the valley. Any activity coupled to mineshafts has not been observed. In September 2006 a birth and transformation process was observed and several optical spectrums was obtained. The phenomena appear as a big white light possibly not more than some hundred meters above the ground in a desolated area. The phenomenon starts a transformation process dividing itself into two light balls where the light-intensity increases and showing a continuous optical spectrum. Later on the light intensity decreases and the continuous optical spectrum is broken up and emission lines appearing, as if the phenomenon goes from a plasma to a gas state. The process ends up when two round light balls are formed, with low optical intensity and red colour, showing sign of a thermal process loosing energy. This observation is to be documented and analyzed.
A low-cost polarimeter for an undergraduate laboratory to study the polarization pattern of skylight
NASA Astrophysics Data System (ADS)
Abayaratne, Chula P.; Bandara, Vibodha
2017-03-01
A simple, low-cost, fully automated polarimeter, which demonstrates fundamental properties of skylight scattering and polarization for undergraduate physics students, is described. The polarimeter includes a microprocessor-based control unit, a Sun tracker, an elevation-azimuth mount with two degrees of freedom, and a polarization sensor unit equipped with a light-dependent resistor for measuring light intensity. Results obtained in the principal plane of the Sun using the polarimeter on a relatively clear day, together with the theoretically expected results for a molecular atmosphere, are presented. A root-mean-square error comparison indicates fairly good agreement between theory and experiment. Construction and experimentation with the polarimeter will provide students with insight into important physical concepts involved in skylight scattering and polarization as well as improve their instrumentation capabilities.
NASA Technical Reports Server (NTRS)
Pollock, N. W.; Natoli, M. J.; Martina, S. D.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.
2016-01-01
Musculoskeletal activity accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation (nucleation) and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity are likely critical to the net effect. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a 4.3 psia exposure in non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity - one employing cycling and non-cycling exercise (CEVIS: 'cycle ergometer vibration isolation system') and one relying on non-cycling exercise only (ISLE: 'in-suit light exercise'). Current efforts investigate whether light exercise normal to 1 G environments increases the risk of DCS over microgravity simulation.
Ourmazd, Abbas [University of Wisconsin, Milwaukee, Wisconsin, USA
2017-12-09
Ever shattered a valuable vase into 10 to the 6th power pieces and tried to reassemble it under a light providing a mean photon count of 10 minus 2 per detector pixel with shot noise? If you can do that, you can do single-molecule crystallography. This talk will outline how this can be done in principle. In more technical terms, the talk will describe how the combination of scattering physics and Bayesian algorithms can be used to reconstruct the 3-D diffracted intensity distribution from a collection of individual 2-D diffiraction patterns down to a mean photon count of 10 minus 2 per pixel, the signal level anticipated from the Linac Coherent Light Source, and hence determine the structure of individual macromolecules and nanoparticles.
Individuals underestimate moderate and vigorous intensity physical activity.
Canning, Karissa L; Brown, Ruth E; Jamnik, Veronica K; Salmon, Art; Ardern, Chris I; Kuk, Jennifer L
2014-01-01
It is unclear whether the common physical activity (PA) intensity descriptors used in PA guidelines worldwide align with the associated percent heart rate maximum method used for prescribing relative PA intensities consistently between sexes, ethnicities, age categories and across body mass index (BMI) classifications. The objectives of this study were to determine whether individuals properly select light, moderate and vigorous intensity PA using the intensity descriptions in PA guidelines and determine if there are differences in estimation across sex, ethnicity, age and BMI classifications. 129 adults were instructed to walk/jog at a "light," "moderate" and "vigorous effort" in a randomized order. The PA intensities were categorized as being below, at or above the following %HRmax ranges of: 50-63% for light, 64-76% for moderate and 77-93% for vigorous effort. On average, people correctly estimated light effort as 51.5±8.3%HRmax but underestimated moderate effort as 58.7±10.7%HRmax and vigorous effort as 69.9±11.9%HRmax. Participants walked at a light intensity (57.4±10.5%HRmax) when asked to walk at a pace that provided health benefits, wherein 52% of participants walked at a light effort pace, 19% walked at a moderate effort and 5% walked at a vigorous effort pace. These results did not differ by sex, ethnicity or BMI class. However, younger adults underestimated moderate and vigorous intensity more so than middle-aged adults (P<0.05). When the common PA guideline descriptors were aligned with the associated %HRmax ranges, the majority of participants underestimated the intensity of PA that is needed to obtain health benefits. Thus, new subjective descriptions for moderate and vigorous intensity may be warranted to aid individuals in correctly interpreting PA intensities.
Design of a Borescope for Extravehicular Non-Destructive Applications
NASA Technical Reports Server (NTRS)
Bachnak, Rafic
2003-01-01
Anomalies such as corrosion, structural damage, misalignment, cracking, stress fiactures, pitting, or wear can be detected and monitored by the aid of a borescope. A borescope requires a source of light for proper operation. Today s current lighting technology market consists of incandescent lamps, fluorescent lamps and other types of electric arc and electric discharge vapor lamp. Recent advances in LED technology have made LEDs viable for a number of applications, including vehicle stoplights, traffic lights, machine-vision-inspection, illumination, and street signs. LEDs promise significant reduction in power consumption compared to other sources of light. This project focused on comparing images taken by the Olympus IPLEX, using two different light sources. One of the sources is the 50-W internal metal halide lamp and the other is a 1 W LED placed at the tip of the insertion tube. Images acquired using these two light sources were quantitatively compared using their histogram, intensity profile along a line segment, and edge detection. Also, images were qualitatively compared using image registration and transformation [l]. The gray-level histogram, edge detection, image profile and image registration do not offer conclusive results. The LED light source, however, produces good images for visual inspection by an operator. Analysis using pattern recognition using Eigenfaces and Gaussian Pyramid in face recognition may be more useful.
Effect of inhomogeneity of light from light curing units on the surface hardness of composite resin.
Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Takahashi, Hideo; Ban, Seiji
2008-01-01
This study investigated the characteristics of output light from different types of light curing units, and their effects on polymerization of light-activated composite resin. Three quartz-tungsten-halogen lamps, one plasma arc lamp, and one LED light curing unit were used. Intensity distribution of light emitted from the light guide tip was measured at 1.0-mm intervals across the guide tip. Distribution of Knoop hardness number on the surface of resin irradiated with the light curing units was also measured. For all units, inhomogeneous distribution of light intensity across the guide tip was observed. Minimum light intensity values were 19-80% of the maximum values. In terms of surface hardness, inhomogeneous distribution was also observed for the materials irradiated with the tested units. Minimum values were 53-92% of the maximum values. Our results indicated that markedly inhomogeneous light emitted from light curing unit could result in inhomogeneous polymerization in some areas of the restoration below the light guide tip.
NASA Astrophysics Data System (ADS)
Lojpur, Vesna; Mitrić, Miodrag; Validžić, Ivana Lj
2018-05-01
We report here an optic/lens system that we used so far, for cooling the surface of solar cells, the reduction of light intensity and the change of light distribution that reaches the surface of the solar cell. The objective was to improve photovoltaic characteristics under very low light illumination, as well as to understand the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells. It was found that for all so far designed thin-film solar cells made and based on the synthesized Sb2S3, optics/lens system causes an increase in open circuit voltage (VOC) and short circuit current (ISC) and thus the efficiencies of made solar devices. Values of energy gaps for the thin-films made devices were in the range from 1.4 to 2 eV. Improvements of the photovoltaic response of the designed devices are found to be better at the lower light intensity (5% sun), than at higher intensities of light. For the same intensity of light used optic/lens improves the efficiency of the devices, by changing the light distribution. Other processes that are related to the optics/lens system, leading to an increase in ISC and VOC and consequently to an increase in efficiencies of the designed devices, are investigated.
Sakai, Tatsuya; Kagawa, Takatoshi; Kasahara, Masahiro; Swartz, Trevor E.; Christie, John M.; Briggs, Winslow R.; Wada, Masamitsu; Okada, Kiyotaka
2001-01-01
UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner. PMID:11371609
Emergent Phototactic Responses of Cyanobacteria under Complex Light Regimes
Chau, Rosanna Man Wah
2017-01-01
ABSTRACT Environmental cues can stimulate a variety of single-cell responses, as well as collective behaviors that emerge within a bacterial community. These responses require signal integration and transduction, which can occur on a variety of time scales and often involve feedback between processes, for example, between growth and motility. Here, we investigate the dynamics of responses of the phototactic, unicellular cyanobacterium Synechocystis sp. PCC6803 to complex light inputs that simulate the natural environments that cells typically encounter. We quantified single-cell motility characteristics in response to light of different wavelengths and intensities. We found that red and green light primarily affected motility bias rather than speed, while blue light inhibited motility altogether. When light signals were simultaneously presented from different directions, cells exhibited phototaxis along the vector sum of the light directions, indicating that cells can sense and combine multiple signals into an integrated motility response. Under a combination of antagonistic light signal regimes (phototaxis-promoting green light and phototaxis-inhibiting blue light), the ensuing bias was continuously tuned by competition between the wavelengths, and the community response was dependent on both bias and cell growth. The phototactic dynamics upon a rapid light shift revealed a wavelength dependence on the time scales of photoreceptor activation/deactivation. Thus, Synechocystis cells achieve exquisite integration of light inputs at the cellular scale through continuous tuning of motility, and the pattern of collective behavior depends on single-cell motility and population growth. PMID:28270586
Photorefractive Tungsten Bronze Crystals for Optical Limiters and Filters.
1996-01-01
vector , X is the laser light wavelength, 0 is the half- angle between the two crossing laser beams, and k0 is the Debye screening wave vector given by...between the grating and the dielectric constant E’ = 950) such that the grating’ vector is interference pattern, the intensities of the output beams from...substituting Io, I, and Id into expression 0 ple d 2o0o 25i00 (8), we can calculate the phase shift between the grating and Applied Electric Feild in V
NASA Technical Reports Server (NTRS)
1987-01-01
Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.
NASA Astrophysics Data System (ADS)
Baránek, M.; Běhal, J.; Bouchal, Z.
2018-01-01
In the phase retrieval applications, the Gerchberg-Saxton (GS) algorithm is widely used for the simplicity of implementation. This iterative process can advantageously be deployed in the combination with a spatial light modulator (SLM) enabling simultaneous correction of optical aberrations. As recently demonstrated, the accuracy and efficiency of the aberration correction using the GS algorithm can be significantly enhanced by a vortex image spot used as the target intensity pattern in the iterative process. Here we present an optimization of the spiral phase modulation incorporated into the GS algorithm.
Light intensity related to stand density in mature stands of the western white pine type
C. A. Wellner
1948-01-01
Where tolerance of forest trees or subordinate vegetation is a factor in management, the forester needs a simple field method of Estimating or forecasting light intensities in forest stands. The following article describes a method developed for estimating light intensity beneath the canopy in western white pine forests which may have application in other types.
Effects of digital phase-conjugate light intensity on time-reversal imaging through animal tissue.
Toda, Sogo; Kato, Yuji; Kudo, Nobuki; Shimizu, Koichi
2018-04-01
For transillumination imaging of animal tissues, we have attempted to suppress the scattering effect in a turbid medium using the time-reversal principle of phase-conjugate light. We constructed a digital phase-conjugate system to enable intensity modulation and phase modulation. Using this system, we clarified the effectiveness of the intensity information for restoration of the original light distribution through a turbid medium. By varying the scattering coefficient of the medium, we clarified the limit of time-reversal ability with intensity information of the phase-conjugate light. Experiment results demonstrated the applicability of the proposed technique to animal tissue.
NASA Astrophysics Data System (ADS)
Liang, Ying; Mai, Kang-Sen; Sun, Shi-Chun; Yu, Dao-Zhan
2001-09-01
The effect of light intensity (1500 lx and 5000 lx) on the total lipid and fatty acid composition of six strains of marine diatoms Cylindrotheca fusiformis (B211), Phaeodactylum tricornutum (B114, B118 and B221) Nitzschia closterium (B222) and Chaetoceros gracilis (B13) was investigated. The total lipids of B13, B114, and B211 grown at 5000 lx were lower than those grown at 1500 lx. No evident changes were observed in B118, B221 and B222. Fatty acid composition changed considerably at different light intensity although no consistent correlation between the relative proportion of a single FA and light intensity. The major fatty acids of the 6 strains were 14∶0, 16∶0, 16∶1 (n-7) and 20∶5(n-3). Cylindrotheca fusiformis had high percentage of 20∶4n 6(9.2 10.9%). The total polyunsaturated fatty acid in all 6 strains decreased with increasing light intensity. The percentage of the highly unsaturated fatty acid eicosapentaenoic acid (EPA) decreased with increasing light intensity in all strains except Chaetoceros gracilis.
Implications of the focal beam profile in serial femtosecond crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, Lorenzo; Chapman, Henry N.; Metcalf, Peter
The photon density profile of an X-ray free-electron laser (XFEL) beam at the focal position is a critical parameter for serial femtosecond crystallography (SFX), but is difficult to measure because of the destructive power of the beam. A novel high intensity radiation induced phasing method (HIRIP) has been proposed as a general experimental approach for protein structure determination, but has proved to be sensitive to variations of the X-ray intensity, with uniform incident fluence desired for best performance. Here we show that experimental SFX data collected at the nano-focus chamber of the Coherent X-ray Imaging end-station at the Linac Coherentmore » Light Source using crystals with a limited size distribution suggests an average profile of the X-ray beam that has a large variation of intensity. We propose a new method to improve the quality of high fluence data for HI-RIP, by identifying and removing diffraction patterns from crystals exposed to the low intensity region of the beam. The method requires crystals of average size comparable to the width of the focal spot.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurman-Keup, R.; Lorman, E.; Meyer, T.
2005-05-01
This paper discusses the implementation of abort gap beam intensity monitoring at the Tevatron collider at Fermilab. There are two somewhat independent monitors which measure the intensity of the synchrotron light emitted by particles in the abort gaps. One system uses a gated Photomultiplier Tube (PMT) to measure the light intensity, and the other system uses a single lens telescope, gated image intensifier, and Charge Injection Device (CID) camera to image the beam.
Kim, Hyo-Jun; Shin, Min-Ho; Lee, Jae-Yong; Kim, Ji-Hoon; Kim, Young-Joo
2017-05-15
An optically efficient liquid-crystal display (LCD) structure using a patterned quantum dot (QD) film and a short-pass filter (SPF) was proposed and fabricated. The patterned QD film contributed to the generation of 95% in the area ratio (or 90% in the coverage ratio) of the Rec. 2020 color gamut. This was achieved by avoiding the problem of interaction between white backlight and broad transmittance spectra of color filters (CFs) as seen in a conventional LCD with a mixed QD film as a reference. The patterned QD film can maintain the narrow bandwidth of the green and the red QD colors before passing through the CFs. Additionally, the optical intensities of the red, green, and blue spectra were enhanced to 1.63, 1.72, and 2.16 times the reference LCD values, respectively. This was a result of separated emission of the red and green patterned QD film and reflection of the red and green light to the forward direction by the SPF.
Schlieren optics for leak detection
NASA Technical Reports Server (NTRS)
Peale, Robert E.; Ruffin, Alranzo B.
1995-01-01
The purpose of this research was to develop an optical method of leak detection. Various modifications of schlieren optics were explored with initial emphasis on leak detection of the plumbing within the orbital maneuvering system of the space shuttle (OMS pod). The schlieren scheme envisioned for OMS pod leak detection was that of a high contrast pattern on flexible reflecting material imaged onto a negative of the same pattern. We find that the OMS pod geometry constrains the characteristic length scale of the pattern to the order of 0.001 inch. Our experiments suggest that optical modulation transfer efficiency will be very low for such patterns, which will limit the sensitivity of the technique. Optical elements which allow a negative of the scene to be reversibly recorded using light from the scene itself were explored for their potential in adaptive single-ended schlieren systems. Elements studied include photochromic glass, bacteriorhodopsin, and a transmissive liquid crystal display. The dynamics of writing and reading patterns were studied using intensity profiles from recorded images. Schlieren detection of index gradients in air was demonstrated.
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Kosten, Susan E.
1994-01-01
Proposed optical-fiber sensor detects small changes in pressure in elastomeric O-ring or similar pressure seal, which may indicate deterioration of seal and interpreted as indications of incipient failure. According to concept, length of optical fiber embedded in seal. Light-emitting diode illuminates one end of fiber; photodetector measures intensity of light emerging from other end. Pressure-induced changes in seal bend fiber slightly, altering microbending-induced loss of light from fiber and alter intensity of light at photodetector. Change in intensity approximately proportional to change in pressure.
Dynamic control of supplemental lighting for greenhouse
NASA Astrophysics Data System (ADS)
Wang, Yuanxv; Wei, Ruihua; Xu, Lihong
2018-04-01
The development of light-emitting diodes (LED) technology to a large extent reduce the energy consumption of greenhouse, however, the light control methods to realize the energy saving still have great potential. The aim of this paper is to develop a more efficient control method of dynamic control of the LED top-lighting (TL) intensity and the LED inter-lighting (IL) intensity for the greatest economic benefits. A dynamic lighting control algorithm (DLC) based on model is proposed, which defines the economic benefit performance criterion of the supplemental lighting control. The optimal light intensity of TL and IL is calculated in real time according to the algorithm. The simulation shows that economic benefit can be increased by up to 107.35% compared to TL on-off control. It is concluded that DLC is a feasible supplemental light control method, especially under low natural light conditions.