DOE Office of Scientific and Technical Information (OSTI.GOV)
Brann, Michelle; Suter, Jonathan D.; Addleman, R. Shane
There is a need for imaging and sensing instrumentation that can monitor transitions in biofilm structure in order to better understand biofilm development and emergent properties such as anti-microbial resistance. Herein, we expanded on our previously reported technique for measuring and monitoring the thickness and topology of live biofilms using white-light interferometry (WLI). A flow cell designed for WLI enabled the use of this non-disruptive imaging method for the capture of high resolution three-dimensional profile images of biofilm growth over time. The fine axial resolution (3 nm) and wide field of view (>1 mm by 1 mm) enabled detection ofmore » biofilm formation as early as three hours after inoculation of the flow cell with a live bacterial culture (Pseudomonas fluorescens). WLI imaging facilitated monitoring the early stages of biofilm development and subtle variations in the structure of mature biofilms. Minimally-invasive imaging enabled monitoring of biofilm structure with surface metrology metrics (e.g., surface roughness). The system was used to observe a transition in biofilm structure that occurred in response to expsoure to a common antiseptic. In the future, WLI and the biofilm imaging cell described herein may be used to test the effectiveness of biofilm-specific therapies to combat common diseases associated with biofilm formation such as cystic fibrosis and periodontitis.« less
Are those bugs reflective? Non-destructive biofilm imaging with white light interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larimer, Curtis J.; Brann, Michelle R.; Suter, Jonathan D.
White light interferometry (WLI) is not typically used to image bacterial biofilms that are immersed in water because there is insufficient refractive index contrast to induce reflection from the biofilm’s interface. The soft structure and water-like bulk properties of hydrated biofilms make them difficult to characterize in situ by any means, especially in a non-destructive manner. Here we describe a new method for measuring and monitoring the thickness and topology of live biofilms using a WLI microscope. A microfluidic system was used to create a reflective interface on the surface of biofilms. Live biofilm samples were monitored non-destructively over time.more » The method enables surface metrology measurements (roughness, surface area) and a novel approach to measuring thickness of the thin hydrated biofilms. Increase in surface roughness preceded observable increase in biofilm thickness, indicating that this measure may be used to predict future development of biofilms. We have also developed a flow cell that enables WLI biofilm imaging in a dynamic environment. We have used this flow cell to observe changes in biofilm structure in response to changes in environmental conditions - flow velocity, availability of nutrients, and presence of biocides.« less
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Pramanik, Manojit
2018-02-01
Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.
Design of a dynamic biofilm imaging cell for white-light interferometric microscopy
NASA Astrophysics Data System (ADS)
Larimer, Curtis; Brann, Michelle; Suter, Jonathan D.; Addleman, R. Shane
2017-11-01
In microbiology research, there is a strong need for next-generation imaging and sensing instrumentation that will enable minimally invasive and label-free investigation of soft, hydrated structures, such as in bacterial biofilms. White-light interferometry (WLI) can provide high-resolution images of surface topology without the use of fluorescent labels but is not typically used to image biofilms because there is insufficient refractive index contrast to induce reflection from the biofilm's interface. The soft structure and water-like bulk properties of hydrated biofilms make them difficult to characterize in situ, especially in a nondestructive manner. We build on our prior description of static biofilm imaging and describe the design of a dynamic growth flow cell that enables monitoring of the thickness and topology of live biofilms over time using a WLI microscope. The microfluidic system is designed to grow biofilms in dynamic conditions and to create a reflective interface on the surface while minimizing disruption of fragile structures. The imaging cell was also designed to accommodate limitations imposed by the depth of focus of the microscope's objective lens. Example images of live biofilm samples are shown to illustrate the ability of the flow cell and WLI instrument to (1) support bacterial growth and biofilm development, (2) image biofilm structure that reflects growth in flow conditions, and (3) monitor biofilm development over time nondestructively. In future work, the apparatus described here will enable surface metrology measurements (roughness, surface area, etc.) of biofilms and may be used to observe changes in biofilm structure in response to changes in environmental conditions (e.g., flow velocity, availability of nutrients, and presence of biocides). This development will open opportunities for the use of WLI in bioimaging.
Design of a dynamic biofilm imaging cell for white-light interferometric microscopy
Larimer, Curtis; Brann, Michelle; Suter, Jonathan D.; ...
2017-05-10
In microbiology research there is a strong need for next generation imaging and sensing instrumentation that will enable minimally invasive and label-free investigation of soft, hydrated structures such as in bacterial biofilms. White light interferometry (WLI) can provide high resolution images of surface topology without the use of fluorescent labels but is not typically used to image biofilms because there is insufficient refractive index contrast to induce reflection from the biofilm’s interface. The soft structure and water-like bulk properties of hydrated biofilms make them difficult to characterize in situ, especially in a non-destructive manner. In this report, we build onmore » our prior description of static biofilm imaging and describe the design of a dynamic imaging flow cell that enables monitoring the thickness and topology of live biofilms over time using a WLI microscope. The microfluidic system is specifically designed to create a reflective interface on the surface of biofilms while minimizing disruption of fragile structures. The imaging cell was also designed to accommodate limitations imposed by the depth of focus of the microscope’s objective lens. Example images of live biofilm samples are shown in order to illustrate the ability of the flow cell and WLI instrument to 1) support bacterial growth and biofilm development, 2) image biofilm structure that reflects growth in flow conditions, and 3) monitor biofilm development over time non-destructively. In future work, the apparatus described here will enable surface metrology measurements (roughness, surface area, etc.) of biofilms and may be used to observe changes in biofilm structure in response to changes in environmental conditions (e.g., flow velocity, availability of nutrients, and presence of biocides). Furthermore, this development will open new opportunities for the use of WLI in bioimaging.« less
Design of a dynamic biofilm imaging cell for white-light interferometric microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larimer, Curtis; Brann, Michelle; Suter, Jonathan D.
In microbiology research there is a strong need for next generation imaging and sensing instrumentation that will enable minimally invasive and label-free investigation of soft, hydrated structures such as in bacterial biofilms. White light interferometry (WLI) can provide high resolution images of surface topology without the use of fluorescent labels but is not typically used to image biofilms because there is insufficient refractive index contrast to induce reflection from the biofilm’s interface. The soft structure and water-like bulk properties of hydrated biofilms make them difficult to characterize in situ, especially in a non-destructive manner. In this report, we build onmore » our prior description of static biofilm imaging and describe the design of a dynamic imaging flow cell that enables monitoring the thickness and topology of live biofilms over time using a WLI microscope. The microfluidic system is specifically designed to create a reflective interface on the surface of biofilms while minimizing disruption of fragile structures. The imaging cell was also designed to accommodate limitations imposed by the depth of focus of the microscope’s objective lens. Example images of live biofilm samples are shown in order to illustrate the ability of the flow cell and WLI instrument to 1) support bacterial growth and biofilm development, 2) image biofilm structure that reflects growth in flow conditions, and 3) monitor biofilm development over time non-destructively. In future work, the apparatus described here will enable surface metrology measurements (roughness, surface area, etc.) of biofilms and may be used to observe changes in biofilm structure in response to changes in environmental conditions (e.g., flow velocity, availability of nutrients, and presence of biocides). Furthermore, this development will open new opportunities for the use of WLI in bioimaging.« less
Useful surface parameters for biomaterial discrimination.
Etxeberria, Marina; Escuin, Tomas; Vinas, Miquel; Ascaso, Carlos
2015-01-01
Topographical features of biomaterials' surfaces are determinant when addressing their application site. Unfortunately up to date there has not been an agreement regarding which surface parameters are more representative in discriminating between materials. Discs (n = 16) of different currently used materials for implant prostheses fabrication, such as cast cobalt-chrome, direct laser metal soldered (DLMS) cobalt-chrome, titanium grade V, zirconia (Y-TZP), E-glass fiber-reinforced composite and polyetheretherketone (PEEK) were manufactured. Nanoscale topographical surface roughness parameters generated by atomic force microscopy (AFM), microscale surface roughness parameters obtained by white light interferometry (WLI) and water angle values obtained by the sessile-water-drop method were analyzed in order to assess which parameter provides the best optimum surface characterization method. Correlations between nanoroughness, microroughness, and hydrophobicity data were performed to achieve the best parameters giving the highest discriminatory power. A subset of six parameters for surface characterization were proposed. AFM and WLI techniques gave complementary information. Wettability did not correlate with any of the nanoroughness parameters while it however showed a weak correlation with microroughness parameters. © Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhao, Xuefeng; Cui, Yanjun; Wei, Heming; Kong, Xianglong; Zhang, Pinglei; Sun, Changsen
2013-06-01
In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost.
Paggi, Silvia; Mogavero, Giuseppe; Amato, Arnaldo; Rondonotti, Emanuele; Andrealli, Alida; Imperiali, Gianni; Lenoci, Nicoletta; Mandelli, Giovanna; Terreni, Natalia; Conforti, Francesco Simone; Conte, Dario; Spinzi, Giancarlo; Radaelli, Franco
2018-04-01
Linked color imaging (LCI) is a newly developed image-enhancing endoscopy technology that provides bright endoscopic images and increases color contrast. We investigated whether LCI improves the detection of neoplastic lesions in the right colon when compared with high definition white-light imaging (WLI). Consecutive patients undergoing colonoscopy were randomized (1:1) after cecal intubation into right colon inspection at first pass by LCI or by WLI. At the hepatic flexure, the scope was reintroduced to the cecum under LCI and a second right colon inspection was performed under WLI in previously LCI-scoped patients (LCI-WLI group) and vice versa (WLI-LCI group). Lesions detected on first- and second-pass examinations were used to calculate detection and miss rates, respectively. The primary outcome was the right colon adenoma miss rate. Of the 600 patients enrolled, 142 had at least one adenoma in the right colon, with similar right colon adenoma detection rates (r-ADR) in the two groups (22.7 % in LCI-WLI and 24.7 % in WLI-LCI). At per-polyp analysis, double inspection of the right colon in the LCI-WLI and WLI-LCI groups resulted in an 11.8 % and 30.6 % adenoma miss rate, respectively ( P < 0.001). No significant difference in miss rate was found for advanced adenomas or sessile serrated lesions. At per-patient analysis, at least one adenoma was identified in the second pass only (incremental ADR) in 2 of 300 patients (0.7 %) in the LCI - WLI group and in 13 of 300 patients (4.3 %) in the WLI - LCI group ( P = 0.01). LCI could reduce the miss rate of neoplastic lesions in the right colon. © Georg Thieme Verlag KG Stuttgart · New York.
Handheld White Light Interferometer for Measuring Defect Depth in Windows
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Simmons, Stephen; Cox, Robert
2010-01-01
Accurate quantification of defects (scratches and impacts) is vital to the certification of flight hardware and other critical components. The amount of damage to a particular component contributes to the performance, reliability, and safety of a system, which ultimately affects the success or failure of a mission or test. The launch-commit criteria on a Space Shuttle Orbiter window are governed by the depth of the defects that are identified by a visual inspection. This measurement of a defect is not easy to obtain given the environment, size of the defect, and location of the window(s). The determination of depth has typically been performed by taking a mold impression and measuring the impression with an optical profiling instrument. Another method of obtaining an estimate of the depth is by using a refocus microscope. To use a refocus microscope, the surface of the glass and bottom of the defect are, in turn, brought into focus by the operator. The amount of movement between the two points corresponds to the depth of the defect. The refocus microscope requires a skilled operator and has been proven to be unreliable when used on Orbiter windows. White light interferometry was chosen as a candidate to replace the refocus microscope. The White Light Interferometer (WLI) was developed to replace the refocus microscope as the instrument used for measuring the depth of defects in Orbiter windows. The WLI consists of a broadband illumination source, interferometer, detector, motion control, displacement sensor, mechanical housing, and support electronics. The illumination source for the WLI is typically a visible light emitting diode (LED) or a near-infrared superluminescent diode (SLD) with power levels of less than a milliwatt. The interferometer is a Michelson configuration consisting of a 1-in. (2.5-cm) cube beam splitter, a 0.5-in. (1.3-cm) optical window as a movable leg (used to closely match the return intensity of the fixed leg from the window), and a mirrored prism to fold the optics into the mechanical housing. The detector may be one of many C-mount CCD (charge-coupled device) cameras. Motion is provided by a commercial nanostepping motor with a serial interface. The displacement sensor is a custom device specifically designed for this application. The mechanical housing and support electronics were designed to integrate the various components into an instrument that could be physically handled by a technician and easily transported.
Horimatsu, Takahiro; Sano, Yasushi; Tanaka, Shinji; Kawamura, Takuji; Saito, Shoichi; Iwatate, Mineo; Oka, Shiro; Uno, Koji; Yoshimura, Kenichi; Ishikawa, Hideki; Muto, Manabu; Tajiri, Hisao
2015-07-01
Previous studies have yielded conflicting results on the colonic polyp detection rate with narrow-band imaging (NBI) compared with white-light imaging (WLI). We compared the mean number of colonic polyps detected per patient for NBI versus WLI using a next-generation NBI system (EVIS LUCERA ELITE; Olympus Medical Systems) used with standard-definition (SD) colonoscopy and wide-angle (WA) colonoscopy. this study is a 2 × 2 factorial, prospective, multicenter randomized controlled trial. this study was conducted at five academic centers in Japan. patients were allocated to one of four groups: (1) WLI with SD colonoscopy (H260AZI), (2) NBI with SD colonoscopy (H260AZI), (3) WLI with WA colonoscopy (CF-HQ290), and (4) NBI with WA colonoscopy (CF-HQ290). the mean numbers of polyps detected per patient were compared between the four groups: WLI with/without WA colonoscopy and NBI with/without WA colonoscopy. Of the 454 patients recruited, 431 patients were enrolled. The total numbers of polyps detected by WLI with SD, NBI with SD, WLI with WA, and NBI with WA were 164, 176, 188, and 241, respectively. The mean number of polyps detected per patient was significantly higher in the NBI group than in the WLI group (2.01 vs 1.56; P = 0.032). The rate was not higher in the WA group than in the SD group (1.97 vs 1.61; P = 0.089). Although WA colonoscopy did not improve the polyp detection, next-generation NBI colonoscopy represents a significant improvement in the detection of colonic polyps.
Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents.
Gunasekera, Deshani H A T; Kuek, SzeLee; Hasanaj, Denis; He, Yinfeng; Tuck, Christopher; Croft, Anna K; Wildman, Ricky D
2016-08-15
1-Ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) and 1-butyl-3-methylimidazolium acetate ([C4C1Im][OAc]) have been used as solvents for the dissolution and ink-jet printing of cellulose from 1.0 to 4.8 wt%, mixed with the co-solvents 1-butanol and DMSO. 1-Butanol and DMSO were used as rheological modifiers to ensure consistent printing, with DMSO in the range of 41-47 wt% producing samples within the printable range of a DIMATIX print-head used (printability parameter < 10) at 55 °C, whilst maintaining cellulose solubility. Regeneration of cellulose from printed samples using water was demonstrated, with the resulting structural changes to the cellulose sample assessed by scanning electron microscopy (SEM) and white light interferometry (WLI). These results indicate the potential of biorenewable materials to be used in the 3D additive manufacture process to generate single-component and composite materials.
Royhman, Dmitry; Radhakrishnan, Rashmi; Yuan, Judy Chia-Chun; Mathew, Mathew T; Mercuri, Louis G; Sukotjo, Cortino
2014-10-01
To investigate the corrosion behaviour of commonly used TMJ implants alloys (CoCrMo and Ti6Al4V) under simulated physiological conditions. Corrosion behaviour was evaluated using standard electrochemical corrosion techniques and galvanic corrosion techniques as per ASTM standards. Standard electrochemical tests (E(corr), I(corr), R(p) and C(f)) were conducted in bovine calf serum (BCS), as a function of alloys type and different pHs. Galvanic corrosion tests were conducted in BCS at a pH of 7.6. Alloy surfaces were characterized using white-light interferometry (WLI) and scanning electron microscopy (SEM). The potentiodynamic test results exhibited the enhanced passive layer growth and a better corrosion resistance of Ti6Al4V compared to CoCrMo. Electrochemical impedance spectroscopy measurements demonstrated the influence of protein as a function of pH on corrosion mechanisms/kinetics. Galvanic coupling was not a major contributor to corrosion. SEM and WLI images demonstrated a significantly higher in surface roughness in CoCrMo after corrosion. The results of this study suggest that Ti6Al4V shows superior corrosion behaviour to CoCrMo due to its strong passive layer, simulated joint fluid components can affect the electrochemical nature of the metal/electrolyte interface as a function of pH, and the galvanic effect of coupling CoCrMo and Ti6Al4V in a single joint is weak. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Schmit, Joanna; Novak, Matt; Bui, Son
2015-09-01
3D microscopes based on white light interference (WLI) provide precise measurement for the topography of engineering surfaces. However, the display of an object in its true colors as observed under white illumination is often desired; this traditionally has presented a challenge for WLI-based microscopes. Such 3D color display is appealing to the eye and great for presentations, and also provides fast evaluation of certain characteristics like defects, delamination, or deposition of different materials. Determination of color as observed by interferometric objectives is not straightforward; we will present how color imaging capabilities similar to an ordinary microscope can be obtained in interference microscopes based on WLI and we will give measurement and imaging examples of a few industrial samples.
Analysis of accuracy in photogrammetric roughness measurements
NASA Astrophysics Data System (ADS)
Olkowicz, Marcin; Dąbrowski, Marcin; Pluymakers, Anne
2017-04-01
Regarding permeability, one of the most important features of shale gas reservoirs is the effective aperture of cracks opened during hydraulic fracturing, both propped and unpropped. In a propped fracture, the aperture is controlled mostly by proppant size and its embedment, and fracture surface roughness only has a minor influence. In contrast, in an unpropped fracture aperture is controlled by the fracture roughness and the wall displacement. To measure fracture surface roughness, we have used the photogrammetric method since it is time- and cost-efficient. To estimate the accuracy of this method we compare the photogrammetric measurements with reference measurements taken with a White Light Interferometer (WLI). Our photogrammetric setup is based on high resolution 50 Mpx camera combined with a focus stacking technique. The first step for photogrammetric measurements is to determine the optimal camera positions and lighting. We compare multiple scans of one sample, taken with different settings of lighting and camera positions, with the reference WLI measurement. The second step is to perform measurements of all studied fractures with the parameters that produced the best results in the first step. To compare photogrammetric and WLI measurements we regrid both data sets onto a regular 10 μm grid and determined the best fit, followed by a calculation of the difference between the measurements. The first results of the comparison show that for 90 % of measured points the absolute vertical distance between WLI and photogrammetry is less than 10 μm, while the mean absolute vertical distance is 5 μm. This proves that our setup can be used for fracture roughness measurements in shales.
NASA Astrophysics Data System (ADS)
Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus
The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.
Topography and nanostructural evaluation of chemically and thermally modified titanium substrates.
Salemi, Hoda; Behnamghader, Aliasghar; Afshar, Abdollah
2016-10-01
In this research, the effects of chemical and thermal treatment on the morphological and compositional aspects of titanium substrates and so, potentially, on development of biomimetic bone like layers formation during simulated body fluid (SBF) soaking was investigated. The HF, HF/HNO3 and NaOH solutions were used for chemical treatment and some of alkali-treated samples followed a heat treatment at 600°C. The treated samples before and after soaking were subjected to material characterization tests using scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). White light interferometry (WLI) was used to determine the roughness parameters such as Ra, Rq, RKu and Rsk. The significance of the obtained data was assessed using ANOVA variance analysis between all samples. It was observed that the reaction at grain boundaries and sodium titanate intermediate layers play a great role in the nucleation of calcium phosphate layers. Based on the obtained results in this work, the calcium phosphate microstructure deposited on titanium substrates was more affected by chemical modification than surface topography.
NASA Astrophysics Data System (ADS)
Lorenz, P.; Bayer, L.; Ehrhardt, M.; Zimmer, K.; Engisch, L.
2015-03-01
Micro- and nanostructures exhibit a growing commercial interest where a fast, cost-effective, and large-area production is attainable. Laser methods have a great potential for the easy fabrication of surface structures into flexible polymer foils like polyimide (PI). In this study two different concepts for the structuring of polymer foils using a KrF excimer laser were tested and compared: the laser-induced ablation and the laser-induced shock wave structuring. The direct front side laser irradiation of these polymers allows the fabrication of different surface structures. For example: The low laser fluence treatment of PI results in nano-sized cone structures where the cone density can be controlled by the laser parameters. This allows inter alia the laser fabrication of microscopic QR code and high-resolution grey-tone images. Furthermore, the laser treatment of the front side of the polymer foil allows the rear side structuring due to a laserinduced shock wave. The resultant surface structures were analysed by optical and scanning electron microscopy (SEM) as well as white light interferometry (WLI).
NASA Astrophysics Data System (ADS)
Tang, Yubo; Carns, Jennifer; Polydorides, Alexandros D.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca R.
2016-08-01
A modular video endoscope is developed to enable both white light imaging (WLI) and vital-dye fluorescence imaging (VFI) in a single-endoscopic insertion for the early detection of cancer in Barrett's esophagus (BE). We demonstrate that VFI can be achieved in conjunction with white light endoscopy, where appropriate white balance is used to correct for the presence of the emission filter. In VFI mode, a contrast enhancement feature is implemented in real time to further highlight glandular patterns in BE and related malignancies without introducing artifacts. In a pilot study, we demonstrate accurate correlation of images in two widefield modalities, with representative images showing the disruption and effacement of glandular architecture associated with cancer development in BE. VFI images of these alterations exhibit enhanced contrast when compared to WLI. Results suggest that the usefulness of VFI in the detection of BE-related neoplasia should be further evaluated in future in vivo studies.
Wang, Xiaoli; Knapp, Peter; Vaynman, S; Graham, M E; Cao, Jian; Ulmer, M P
2014-09-20
The desire for continuously gaining new knowledge in astronomy has pushed the frontier of engineering methods to deliver lighter, thinner, higher quality mirrors at an affordable cost for use in an x-ray observatory. To address these needs, we have been investigating the application of magnetic smart materials (MSMs) deposited as a thin film on mirror substrates. MSMs have some interesting properties that make the application of MSMs to mirror substrates a promising solution for making the next generation of x-ray telescopes. Due to the ability to hold a shape with an impressed permanent magnetic field, MSMs have the potential to be the method used to make light weight, affordable x-ray telescope mirrors. This paper presents the experimental setup for measuring the deformation of the magnetostrictive bimorph specimens under an applied magnetic field, and the analytical and numerical analysis of the deformation. As a first step in the development of tools to predict deflections, we deposited Terfenol-D on the glass substrates. We then made measurements that were compared with the results from the analytical and numerical analysis. The surface profiles of thin-film specimens were measured under an external magnetic field with white light interferometry (WLI). The analytical model provides good predictions of film deformation behavior under various magnetic field strengths. This work establishes a solid foundation for further research to analyze the full three-dimensional deformation behavior of magnetostrictive thin films.
NASA Astrophysics Data System (ADS)
Liao, Kaixing; Li, Jinke; Kong, Xianglong; Sun, Changsen; Zhao, Xuefeng
2017-04-01
After years of operation, the safety of the prestressed concrete containment vessel (PCCV) structure of Nuclear Power Plant (NPP) is an important aspect. In order to detect the strength degradation and the structure deformation, several sensors such as vibrating wire strain gauge, invar wires and pendulums were installed in PCCV. However, the amounts of sensors above are limited due to the cost. Due to the well durability of fiber optic sensors, three kinds of fiber optic sensors were chosen to install on the surface of PCCV to monitor the deformation during Integrated Leakage Rate Test (ILRT). The three kinds of fiber optic sensors which had their own advantages and disadvantages are Fiber Bragg Grating (FBG), white light interferometry (WLI) and Brillouin Optical Time Domain Analysis (BOTDA). According to the measuring data, the three fiber optic sensors worked well during the ILRT. After the ILRT, the monitoring strain was recoverable thus the PCCV was still in the elastic stage. If these three kinds of fiber optic sensors are widely used in the PCCV, the unusual deformations are easier to detect. As a consequence, the three fiber optic sensors have good potential in the structure health monitoring of PCCV.
Viotti, Sara; Converso, Daniela
2016-12-01
The present study aims at investigating whether and how (1) job demands and job resources are associated with work-to-private-life interference (WLI) and (2) job resources moderate the relationship between job demands and WLI. Data were collected by a self-report questionnaire from three hospitals in Italy. The sample consisted of 889 health-care workers. All job demands (i.e., quantitative demands, disproportionate patient expectations, and verbal aggression) and job resources (i.e., job autonomy, support from superiors and colleagues, fairness, and organizational support), with the exception of skill discretion, were related to WLI. The effects of quantitative demands on WLI were moderated by support from superiors; fairness and organizational support moderate the effects of all job demands considered. Support from colleagues moderated only verbal aggression. Job autonomy did not buffer any job demands. The present study suggests that the work context has a central importance in relation to the experience of WLI among health-care workers. The results indicated that intervention in the work context may help to contain WLI. Such interventions would especially be aimed at improving the social climate within the unit and quality of the organizational process.
Kumar, Manish; Chandel, Madhu; Kaur, Paramjeet; Pandit, Kritika; Kaur, Varinder; Kaur, Sandeep; Kaur, Satwinderjeet
2016-01-01
From the centuries, Lawsonia inermis L. (Henna) is utilized in traditional health care system as a medicinal and cosmetic agent. The present study was intended to assess antiradical, DNA protective and antiproliferative activity of water extract of Lawsonia inermis L. leaves (W-LI). Antioxidant activity was estimated using various in vitro assays such as DPPH, ABTS, superoxide anion radical scavenging, FRAP, deoxyribose degradation and DNA protection assay. Growth inhibitory effects of W-LI were assessed using MTT assay against different cancer cell lines viz. HeLa, MCF-7, A549, C6 and COLO-205. From the results of antioxidant assays, it was found that W-LI quenched DPPH and ABTS cation radicals with IC50 value of 352.77 µg/ml and 380.87 µg/ml respectively. It demonstrated hydroxyl radical scavenging potential of 59.75 % at highest test dose of 1000 µg/ml in deoxyribose degradation assay. The results of FRAP assay showed that W-LI also possesses significant reducing activity. Extract inhibited hydroxyl radical induced pBR322 plasmid DNA strand scission, thus conferring DNA protection. Growth inhibition of various cancer cell lines was achieved to the varying extent on treatment with W-LI. Further, it was observed that activity was quite promising against colon cancer COLO-205 cells (GI50 121.03 µg/ml). HPLC profiling of W-LI revealed the presence of different polyphenolic compounds such as ellagic acid, catechin, quercetin, kaempferol etc. which might be contributing towards antioxidant and cytotoxic activity. The present study demonstrated that polyphenols rich W-LI extract from leaves of L. inermis possesses ability to inhibit oxidative radicals and cancer cells proliferation. PMID:28337113
Bell, Charreau S; Obstein, Keith L; Valdastri, Pietro
2013-11-01
Colorectal cancer is one of the leading causes of cancer-related deaths in the world, although it can be effectively treated if detected early. Teleoperated flexible endoscopes are an emerging technology to ease patient apprehension about the procedure, and subsequently increase compliance. Essential to teleoperation is robust feedback reflecting the change in pose (i.e., position and orientation) of the tip of the endoscope. The goal of this study is to first describe a novel image-based tracking system for teleoperated flexible endoscopes, and subsequently determine its viability in a clinical setting. The proposed approach leverages artificial neural networks (ANNs) to learn the mapping that links the optical flow between two sequential images to the change in the pose of the camera. Secondly, the study investigates for the first time how narrow band illumination (NBI) - today available in commercial gastrointestinal endoscopes - can be applied to enhance feature extraction, and quantify the effect of NBI and white light illumination (WLI), as well as their color information, on the strength of features extracted from the endoscopic camera stream. In order to provide the best features for the neural networks to learn the change in pose based on the image stream, we investigated two different imaging modalities - WLI and NBI - and we applied two different spatial partitions - lumen-centered and grid-based - to create descriptors used as input to the ANNs. An experiment was performed to compare the error of these four variations, measured in root mean square error (RMSE) from ground truth given by a robotic arm, to that of a commercial state-of-the-art magnetic tracker. The viability of this technique for a clinical setting was then tested using the four ANN variations, a magnetic tracker, and a commercial colonoscope. The trial was performed by an expert endoscopist (>2000 lifetime procedures) on a colonoscopy training model with porcine blood, and the RMSE of the ANN output was calculated with respect to the magnetic tracker readings. Using the image stream obtained from the commercial endoscope, the strength of features extracted was evaluated. In the first experiment, the best ANNs resulted from grid-based partitioning under WLI (2.42mm RMSE) for position, and from lumen-centered partitioning under NBI (1.69° RMSE) for rotation. By comparison, the performance of the tracker was 2.49mm RMSE in position and 0.89° RMSE in rotation. The trial with the commercial endoscope indicated that lumen-centered partitioning was the best overall, while NBI outperformed WLI in terms of illumination modality. The performance of lumen-centered partitioning with NBI was 1.03±0.8mm RMSE in positional degrees of freedom (DOF), and 1.26±0.98° RMSE in rotational DOF, while with WLI, the performance was 1.56±1.15mm RMSE in positional DOF and 2.45±1.90° RMSE in rotational DOF. Finally, the features extracted under NBI were found to be twice as strong as those extracted under WLI, but no significance in feature strengths was observed between a grayscale version of the image, and the red, blue, and green color channels. This work demonstrates that both WLI and NBI, combined with feature partitioning based on the anatomy of the colon, provide valid mechanisms for endoscopic camera pose estimation via image stream. Illumination provided by WLI and NBI produce ANNs with similar performance which are comparable to that of a state-of-the-art magnetic tracker. However, NBI produces features that are stronger than WLI, which enables more robust feature tracking, and better performance of the ANN in terms of accuracy. Thus, NBI with lumen-centered partitioning resulted the best approach among the different variations tested for vision-based pose estimation. The proposed approach takes advantage of components already available in commercial gastrointestinal endoscopes to provide accurate feedback about the motion of the tip of the endoscope. This solution may serve as an enabling technology for closed-loop control of teleoperated flexible endoscopes. Copyright © 2013 Elsevier B.V. All rights reserved.
Integrative Metabolic Signatures for Hepatic Radiation Injury
Su, Gang; Meng, Fan; Liu, Laibin; Mohney, Robert; Kulkarni, Shilpa; Guha, Chandan
2015-01-01
Background Radiation-induced liver disease (RILD) is a dose-limiting factor in curative radiation therapy (RT) for liver cancers, making early detection of radiation-associated liver injury absolutely essential for medical intervention. A metabolomic approach was used to determine metabolic signatures that could serve as biomarkers for early detection of RILD in mice. Methods Anesthetized C57BL/6 mice received 0, 10 or 50 Gy Whole Liver Irradiation (WLI) and were contrasted to mice, which received 10 Gy whole body irradiation (WBI). Liver and plasma samples were collected at 24 hours after irradiation. The samples were processed using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry. Results Twenty four hours after WLI, 407 metabolites were detected in liver samples while 347 metabolites were detected in plasma. Plasma metabolites associated with 50 Gy WLI included several amino acids, purine and pyrimidine metabolites, microbial metabolites, and most prominently bradykinin and 3-indoxyl-sulfate. Liver metabolites associated with 50 Gy WLI included pentose phosphate, purine, and pyrimidine metabolites in liver. Plasma biomarkers in common between WLI and WBI were enriched in microbial metabolites such as 3 indoxyl sulfate, indole-3-lactic acid, phenyllactic acid, pipecolic acid, hippuric acid, and markers of DNA damage such as 2-deoxyuridine. Metabolites associated with tryptophan and indoles may reflect radiation-induced gut microbiome effects. Predominant liver biomarkers in common between WBI and WLI were amino acids, sugars, TCA metabolites (fumarate), fatty acids (lineolate, n-hexadecanoic acid) and DNA damage markers (uridine). Conclusions We identified a set of metabolomic markers that may prove useful as plasma biomarkers of RILD and WBI. Pathway analysis also suggested that the unique metabolic changes observed after liver irradiation was an integrative response of the intestine, liver and kidney. PMID:26046990
Nanosecond laser-induced back side wet etching of fused silica with a copper-based absorber liquid
NASA Astrophysics Data System (ADS)
Lorenz, Pierre; Zehnder, Sarah; Ehrhardt, Martin; Frost, Frank; Zimmer, Klaus; Schwaller, Patrick
2014-03-01
Cost-efficient machining of dielectric surfaces with high-precision and low-roughness for industrial applications is still challenging if using laser-patterning processes. Laser induced back side wet etching (LIBWE) using UV laser pulses with liquid heavy metals or aromatic hydrocarbons as absorber allows the fabrication of well-defined, nm precise, free-form surfaces with low surface roughness, e.g., needed for optical applications. The copper-sulphatebased absorber CuSO4/K-Na-Tartrate/NaOH/formaldehyde in water is used for laser-induced deposition of copper. If this absorber can also be used as precursor for laser-induced ablation, promising industrial applications combining surface structuring and deposition within the same setup could be possible. The etching results applying a KrF excimer (248 nm, 25 ns) and a Nd:YAG (1064 nm, 20 ns) laser are compared. The topography of the etched surfaces were analyzed by scanning electron microscopy (SEM), white light interferometry (WLI) as well as laser scanning microscopy (LSM). The chemical composition of the irradiated surface was studied by energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). For the discussion of the etching mechanism the laser-induced heating was simulated with finite element method (FEM). The results indicate that the UV and IR radiation allows micro structuring of fused silica with the copper-based absorber where the etching process can be explained by the laser-induced formation of a copper-based absorber layer.
NASA Astrophysics Data System (ADS)
Rashid, Zeeshan; Atay, Ipek; Soydan, Seren; Yagci, M. Baris; Jonáš, Alexandr; Yilgor, Emel; Kiraz, Alper; Yilgor, Iskender
2018-05-01
Polymer surfaces reversibly switchable from superhydrophobic to superhydrophilic by exposure to oxygen plasma and subsequent thermal treatment are demonstrated. Two inherently different polymers, hydrophobic segmented polydimethylsiloxane-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) are modified with fumed silica nanoparticles to prepare superhydrophobic surfaces with roughness on nanometer to micrometer scale. Smooth TPSC and PMMA surfaces are also used as control samples. Regardless of their chemical structure and surface topography, all surfaces display completely reversible wetting behavior changing from hydrophobic to hydrophilic and back for many cycles upon plasma oxidation followed by thermal annealing. Influence of plasma power, plasma exposure time, annealing temperature and annealing time on the wetting behavior of polymeric surfaces are investigated. Surface compositions, textures and topographies are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and white light interferometry (WLI), before and after oxidation and thermal annealing. Wetting properties of the surfaces are determined by measuring their static, advancing and receding water contact angle. We conclude that the chemical structure and surface topography of the polymers play a relatively minor role in reversible wetting behavior, where the essential factors are surface oxidation and migration of polymer molecules to the surface upon thermal annealing. Reconfigurable water channels on polymer surfaces are produced by plasma treatment using a mask and thermal annealing cycles. Such patterned reconfigurable hydrophilic regions can find use in surface microfluidics and optofluidics applications.
Whole Lung Irradiation for Adults With Pulmonary Metastases From Ewing Sarcoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, Dana L.; Alektiar, Kaled M.; Gerber, Naamit K.
Purpose: To evaluate feasibility and patterns of failure in adult patients with Ewing sarcoma (ES) treated with whole lung irradiation (WLI) for pulmonary metastases. Methods and Materials: Retrospective review of all ES patients treated at age 18 or older with 12-15 Gy WLI for pulmonary metastases at a single institution between 1990 and 2014. Twenty-six patients met the study criteria. Results: The median age at WLI was 23 years (range, 18-40). The median follow-up time of the surviving patients was 3.8 years (range, 1.0-9.6). The 3-year cumulative incidence of pulmonary relapse (PR) was 55%, with a 3-year cumulative incidence of PR as themore » site of first relapse of 42%. The 3-year event-free survival (EFS) and overall survival (OS) were 38 and 45%, respectively. Patients with exclusively pulmonary metastases had better outcomes than did those with extrapulmonary metastases: the 3-year PR was 45% in those with exclusively lung metastases versus 76% in those with extrapulmonary metastases (P=.01); the 3-year EFS was 49% versus 14% (P=.003); and the 3-year OS was 61% versus 13% (P=.009). Smoking status was a significant prognostic factor for EFS: the 3-year EFS was 61% in nonsmokers versus 11% in smokers (P=.04). Two patients experienced herpes zoster in the radiation field 6 and 12 weeks after radiation. No patients experienced pneumonitis or cardiac toxicity, and no significant acute or late sequelae were observed among the survivors. Conclusion: WLI in adult patients with ES and lung metastases is well tolerated and is associated with freedom from PR of 45% at 3 years. Given its acceptable toxicity and potential therapeutic effect, WLI for pulmonary metastases in ES should be considered for adults, as it is in pediatric patients. All patients should be advised to quit smoking before receiving WLI.« less
Detection of palisade vessels as a landmark for Barrett's esophagus in a Western population.
Schölvinck, Dirk W; Goto, Osamu; Seldenrijk, Cornelis A; Bisschops, Raf; Horii, Joichiro; Ochiai, Yasutoshi; Schoon, Erik J; Schenk, Boudewijn E; Uraoka, Toshio; van Oijen, Martijn G H; Bergman, Jacques J G H M; Yahagi, Naohisa; Weusten, Bas L A M
2016-07-01
In Japan, palisade vessels (PV) are used to distinguish the esophagogastric junction (EGJ). Elsewhere, the EGJ is defined by the upper end of the gastric folds (GF) and PV are considered difficult to detect. This study evaluated the detection rate of PV in Western patients with Barrett's esophagus (BE) using white light imaging (WLI) and narrow band imaging (NBI), and quantified any discordance between Western and Japanese criteria for the EGJ. In 25 BE patients, the presence and location of PV and GF were determined and biopsies were obtained. High-quality images of the EGJ were collected under different conditions (insufflations-desufflation, WLI-NBI, forward-retroflex approach), resulting in eight different images per patient. The presence of PV on each still image was assessed by a panel of six Western and Japanese endoscopists with expertise in BE. PV were observed in ≥ 1 images by a majority of the panel (≥ 4 raters) in 100 % of patients during insufflation versus 60 % during desufflation (p < 0.001). WLI and NBI detected PV in 100 and 92 %, respectively (p = 0.50). Interobserver agreement of the panel was 'moderate' (κ = 0.51). During endoscopy PV were located a median of 1 cm distal of the GF in 15 patients (63 %), with intestinal metaplasia (IM) in this discordant zone, in 27 % of patients. PV are visible in most Western BE patients and are best inspected during insufflation. The location of the GF and PV differed in a substantial group of patients, partially with IM in this discordant zone.
Cardiac-Sparing Whole Lung IMRT in Children With Lung Metastasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalapurakal, John A., E-mail: j-kalapurakal@northwestern.edu; Zhang, Yunkai; Kepka, Alan
Purpose: To demonstrate the dosimetric advantages of cardiac-sparing (CS) intensity modulated radiation therapy (IMRT) in children undergoing whole lung irradiation (WLI). Methods and Materials: Chest CT scans of 22 children who underwent simulation with 3-dimensional (n=10) or 4-dimensional (n=12) techniques were used for this study. Treatment planning was performed using standard anteroposterior-posteroanterior (S-RT) technique and CS-IMRT. Left and right flank fields were added to WLI fields to determine whether CS-IMRT offered any added protection to normal tissues at the junction between these fields. The radiation dose to the lung PTV, cardiac structures, liver, and thyroid were analyzed and compared. Results:more » CS-IMRT had 4 significant advantages over S-RT: (1) superior cardiac protection (2) superior 4-dimensional lung planning target volume coverage, (3) superior dose uniformity in the lungs with fewer hot spots, and (4) significantly lower dose to the heart when flank RT is administered after WLI. Conclusions: The use of CS-IMRT and 4-dimensional treatment planning has the potential to improve tumor control rates and reduce cardiac toxicity in children receiving WLI.« less
2016-05-01
Visible-light long baseline interferometry holds the promise of advancing a number of important applications in fundamental astronomy, including the...advance the field of visible-light interferometry requires development of instruments capable of combing light from 15 baselines (6 telescopes
Tunable-optical-filter-based white-light interferometry for sensing.
Yu, Bing; Wang, Anbo; Pickrell, Gary; Xu, Juncheng
2005-06-15
We describe tunable-optical-filter-based white-light interferometry for sensor interrogation. By introducing a tunable optical filter into a white-light interferometry system, one can interrogate an interferometer with either quadrature demodulation or spectral-domain detection at low cost. To demonstrate the feasibility of effectively demodulating various types of interferometric sensor, experiments have been performed using an extrinsic Fabry-Perot tunable filter to interrogate two extrinsic Fabry-Perot interferometric temperature sensors and a diaphragm-based pressure sensor.
Curvilinear relationships between resource allocation and life domain-specific interference.
Waldrop, Jessica S; Erb, Kaitlyn R; Grawitch, Matthew J
2017-10-01
This study investigated the inherent complexities of the work-life interface (WLI) by examining the relationship between resource allocation (i.e., time and energy dedicated to a particular domain) and perceived interference of individual life domains. Much of the research on the WLI is based on the assumption that a linear pattern best describes the relationship between resource allocation and the interference caused by various life domains; however, this study examined the possibility that curvilinear relationships may be a more appropriate representation. Results indicated that resource allocation is a meaningful predictor of interference, and for many life domains a curvilinear relationship accounts for more variance than a linear one; a breakdown of the sample also revealed this relationship varies by gender. Overall, findings suggest that the nature of the WLI is more individualized and complex than is currently conceptualized in the field. Copyright © 2016 John Wiley & Sons, Ltd.
Park, Jun-Beom; Yang, Seung-Min; Ko, Youngkyung
2015-12-01
The purpose of this study was to evaluate the surface characteristics of various implant abutment materials, such as of titanium alloy (Ti6Al4V; Ma), machined cobalt-chrome-molybdenum alloy (CCM), titanium nitride coating on a titanium alloy disc (TiN), anodic oxidized titanium alloy disc (AO), composite resin coating on a titanium alloy disc (Res), and zirconia disc (Zr), using confocal microscopy and white light interferometry. Measurements from the 2 methods were evaluated to see if these methods would give equivalent results. The precision of measurements were evaluated by the coefficient of variation. Five discs each of Ma, CCM, TiN, AO, Res, and Zr were used. The surface roughness was evaluated by confocal laser microscopy and white light interferometry. Confocal microscopy showed that the Res group showed significantly greater Ra, Rq, Rz, Sa, Sq, and Sz values compared with those of the Ma group (P < 0.05). The white light interferometry results showed that the Res group had significantly higher Ra, Rq, Rz, Rt, Sa, Sq, Sz, and Sdr values compared with the Ma group (P < 0.05). All the roughness parameters obtained from the 2 methods differed, and the Sa values of the Zr group from confocal microscopy were greater by 0.163 μm than those obtained by white light interferometry. Least difference was seen in the TiN group where the difference was 0.058 μm. Roughness parameters of different abutment materials varied significantly. Precision of measurement differed according to the characteristics of the material used. White light interferometry could be recommended for measurement of TiN and AO. Confocal microscopy gave more precise measurements for Ma and CCM groups. The optical characteristics of the surface should be considered before choosing the examination method.
Hämmig, Oliver; Brauchli, Rebecca; Bauer, Georg F
2012-05-31
Effort-reward imbalance (ERI) and work-life imbalance (WLI) are recognised risk factors for work stress and burnout but have not been investigated conjointly so far and compared with each other in this regard. The present cross-sectional study provides initial evidence by studying associations of ERI and WLI with general stress and burnout simultaneously. The study was based on survey data collected in 2007 among the personnel of a large public hospital in the canton of Zurich covering a random sample of 502 employees of all professions and positions. Prevalence rates, correlation coefficients, standardised regression coefficients and odds ratios were calculated as measures of association. Concerning the main research question and relating to the entire study sample, WLI was found to be more strongly associated with general stress and burnout than ERI. As stratified analyses with regard to burnout have shown, this applied especially to nursing, technical care and emergency staffs who account for more than three fifths of the study population. But for other professional categories like physicians, therapists and medical-technical personnel the opposite of a stronger association of ERI with burnout was found. Results also suggested that general stress plays a (rather minor) mediating role in the relationships between ERI and burnout and particularly between WLI and burnout. For the prevention of chronic stress and burnout one should consider both high efforts put into work as well as all job demands that are competing and interfering with family responsibilities or other private activities should be considered.
Nakamura, Maria; Kitasako, Yuichi; Nakashima, Syozi; Sadr, Alireza; Tagami, Junji
2015-10-01
To evaluate the influence of brushing using toothpastes marketed under different categories on abrasion of sound and eroded enamel in vitro at nanometer scale using a white light interferometer (WLI). Enamel surface of resin-embedded bovine incisors were fine polished with diamond slurry and divided into testing area (approximately 2 mm x 4 mm) and reference area using a nail varnish. The enamel specimens were randomly assigned to 10 groups (n = 10 each); six of which were subjected to erosive challenge. The testing area in these eroded groups was exposed to 10 ml of Coca-Cola for 90 seconds and then rinsed for 10 seconds in deionized water (DW). Enamel specimens, except for those in one eroded group, were brushed by an automatic brushing machine with 120 linear motion strokes in 60 seconds under load of 250 g with/without toothpaste slurry. After the toothbrushing abrasion, each specimen was rinsed for 10 seconds with DW followed by immersion in artificial saliva for 2 hours. Toothpaste slurries were prepared containing one of the four toothpastes used and DW in a ratio of 1:2. The erosion-abrasion cycle was repeated three times. Then, the nail varnish was removed and enamel surface loss (SL) was measured by the WLI. Data were statistically analyzed by one-way ANOVA followed by Bonferroni's correction at significance level of 0.05. For eroded specimens, the mean SL values of groups not brushed and brushed with no toothpaste were not significantly different, but were significantly lower than those of whitening, anti-erosion and anti-caries toothpaste groups (P < 0.001). The whitening toothpaste group showed significantly higher SL than all other groups (P < 0.001). For sound enamel specimens, SL was not measured except for the whitening toothpaste group.
Nanoscale optical interferometry with incoherent light
Li, Dongfang; Feng, Jing; Pacifici, Domenico
2016-01-01
Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications. PMID:26880171
Nanoscale optical interferometry with incoherent light.
Li, Dongfang; Feng, Jing; Pacifici, Domenico
2016-02-16
Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications.
Autonomous formation flying sensor for the Star Light Mission
NASA Technical Reports Server (NTRS)
Aung, M.; Purcell, G.; Tien, J.; Young, L.; Srinivasan, J.; Ciminera, M. A.; Chong, Y. J.; Amaro, L. R.; Young, L. E.
2002-01-01
The StarLight Mission, an element of NASA's Origins Program, was designed for first-time demonstration of two technologies: formation flying optical interferometry between spacecraft and autonomous precise formation flying of an array of spacecraft to support optical interferometry. The design overview and results of the technology effort are presented in this paper.
Development of Speckle Interferometry Algorithm and System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsir, A. A. M.; Jafri, M. Z. M.; Lim, H. S.
2011-05-25
Electronic speckle pattern interferometry (ESPI) method is a wholefield, non destructive measurement method widely used in the industries such as detection of defects on metal bodies, detection of defects in intergrated circuits in digital electronics components and in the preservation of priceless artwork. In this research field, this method is widely used to develop algorithms and to develop a new laboratory setup for implementing the speckle pattern interferometry. In speckle interferometry, an optically rough test surface is illuminated with an expanded laser beam creating a laser speckle pattern in the space surrounding the illuminated region. The speckle pattern is opticallymore » mixed with a second coherent light field that is either another speckle pattern or a smooth light field. This produces an interferometric speckle pattern that will be detected by sensor to count the change of the speckle pattern due to force given. In this project, an experimental setup of ESPI is proposed to analyze a stainless steel plate using 632.8 nm (red) wavelength of lights.« less
Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J.; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2012-01-01
A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system’s dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system’s good measurement performance and feasibility of the hybrid measurement method. PMID:22368463
Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2012-01-01
A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system's dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system's good measurement performance and feasibility of the hybrid measurement method.
Holodiagram: elliptic visualizing interferometry, relativity, and light-in-flight.
Abramson, Nils H
2014-04-10
In holographic interferometry, there is usually a static distance separating the point of illumination and the point of observation. In Special Relativity, this separation is dynamic and is caused by the velocity of the observer. The corrections needed to compensate for these separations are similar in the two fields. We use the ellipsoids of the holodiagram for measurement and in a graphic way to explain and evaluate optical resolution, gated viewing, radar, holography, three-dimensional interferometry, Special Relativity, and light-in-flight recordings. Lorentz contraction together with time dilation is explained as the result of the eccentricity of the measuring ellipsoid, caused by its velocity. The extremely thin ellipsoid of the very first light appears as a beam aimed directly at the observer, which might explain the wave or ray duality of light and entanglement. Finally, we introduce the concept of ellipsoids of observation.
Defect Depth Measurement Using White Light Interferometry
NASA Technical Reports Server (NTRS)
Parker, Don; Starr, Stan
2009-01-01
The objectives of the White Light Interferometry project are the following: (1) Demonstrate a small hand-held instrument capable of performing inspections of identified defects on Orbiter outer pane window surfaces. (2) Build and field-test a prototype device using miniaturized optical components. (3) Modify the instrument based on field testing and begin the conversion of the unit to become a certified shop-aid.
During air cool process aerosol absorption detection with photothermal interferometry
NASA Astrophysics Data System (ADS)
Li, Baosheng; Xu, Limei; Huang, Junling; Ma, Fei; Wang, Yicheng; Li, Zhengqiang
2014-11-01
This paper studies the basic principle of laser photothermal interferometry method of aerosol particles absorption coefficient. The photothermal interferometry method with higher accuracy and lower uncertainty can directly measure the absorption coefficient of atmospheric aerosols and not be affected by scattered light. With Jones matrix expression, the math expression of a special polarization interferometer is described. This paper using folded Jamin interferometer, which overcomes the influence of vibration on measuring system. Interference come from light polarization beam with two orthogonal and then combine to one beam, finally aerosol absorption induced refractive index changes can be gotten with four beam of phase orthogonal light. These kinds of styles really improve the stability of system and resolution of the system. Four-channel detections interact with interference fringes, to reduce the light intensity `zero drift' effect on the system. In the laboratory, this device typical aerosol absorption index, it shows that the result completely agrees with actual value. After heated by laser, cool process of air also show the process of aerosol absorption. This kind of instrument will be used to monitor ambient aerosol absorption and suspended particulate matter chemical component. Keywords: Aerosol absorption coefficient; Photothermal interferometry; Suspended particulate matter.
NASA Astrophysics Data System (ADS)
Li, Dongfang; Pacifici, Domenico
The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.
Modulated Source Interferometry with Combined Amplitude and Frequency Modulation
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor)
1998-01-01
An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.
Measuring the Dispersion in Laser Cavity Mirrors using White-Light Interferometry
2008-03-01
mirrors. Two AlGaInP (aluminum gallium indium phosphide ) diode lasers are aligned such that one is polarized vertically while one is polarized...linear crystals, where the index of refraction depends on beam intensity. Short pulses with high peak intensities are well 14 suited to induce the...MEASURING THE DISPERSION OF LASER CAVITY MIRRORS USING WHITE-LIGHT INTERFEROMETRY THESIS Allison S
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Chen, Yi-Shiuan; Chang, Yi-Wei; Lin, Shyh-Tsong; Yeh, Sheng Lih
2013-01-01
In this research, new nano-scale measurement methodology based on spectrally-resolved chromatic confocal interferometry (SRCCI) was successfully developed by employing integration of chromatic confocal sectioning and spectrally-resolve white light interferometry (SRWLI) for microscopic three dimensional surface profilometry. The proposed chromatic confocal method (CCM) using a broad band while light in combination with a specially designed chromatic dispersion objective is capable of simultaneously acquiring multiple images at a large range of object depths to perform surface 3-D reconstruction by single image shot without vertical scanning and correspondingly achieving a high measurement depth range up to hundreds of micrometers. A Linnik-type interferometric configuration based on spectrally resolved white light interferometry is developed and integrated with the CCM to simultaneously achieve nanoscale axis resolution for the detection point. The white-light interferograms acquired at the exit plane of the spectrometer possess a continuous variation of wavelength along the chromaticity axis, in which the light intensity reaches to its peak when the optical path difference equals to zero between two optical arms. To examine the measurement accuracy of the developed system, a pre-calibrated accurate step height target with a total step height of 10.10 μm was measured. The experimental result shows that the maximum measurement error was verified to be less than 0.3% of the overall measuring height.
Holographic interferometry of transparent media using light scattered by embedded test objects
NASA Technical Reports Server (NTRS)
Prikryl, I.; Vest, C. M.
1982-01-01
Fringe formation and localization in holographic interferometry of transparent media are discussed for configurations in which light enters the medium and is scattered back through it by an embedded diffuse object. Fringe order numbers are doubled, and the fringe localization region is translated and compressed by a factor of two. The results are applicable to tomographic reconstruction of aerodynamic density fields around opaque test objects.
NASA Astrophysics Data System (ADS)
Matthews, Nolan; Kieda, David; LeBohec, Stephan
2018-06-01
We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.
Forward scattering in two-beam laser interferometry
NASA Astrophysics Data System (ADS)
Mana, G.; Massa, E.; Sasso, C. P.
2018-04-01
A fractional error as large as 25 pm mm-1 at the zero optical-path difference has been observed in an optical interferometer measuring the displacement of an x-ray interferometer used to determine the lattice parameter of silicon. Detailed investigations have brought to light that the error was caused by light forward-scattered from the beam feeding the interferometer. This paper reports on the impact of forward-scattered light on the accuracy of two-beam optical interferometry applied to length metrology, and supplies a model capable of explaining the observed error.
Longcroft-Wheaton, G; Brown, J; Cowlishaw, D; Higgins, B; Bhandari, P
2012-10-01
The resolution of endoscopes has increased in recent years. Modern Fujinon colonoscopes have a charge-coupled device (CCD) pixel density of 650,000 pixels compared with the 410,000 pixel CCD in standard-definition scopes. Acquiring high-definition scopes represents a significant capital investment and their clinical value remains uncertain. The aim of the current study was to investigate the impact of high-definition endoscopes on the in vivo histology prediction of colonic polyps. Colonoscopy procedures were performed using Fujinon colonoscopes and EPX-4400 processor. Procedures were randomized to be performed using either a standard-definition EC-530 colonoscope or high-definition EC-530 and EC-590 colonoscopes. Polyps of <10 mm were assessed using both white light imaging (WLI) and flexible spectral imaging color enhancement (FICE), and the predicted diagnosis was recorded. Polyps were removed and sent for histological analysis by a pathologist who was blinded to the endoscopic diagnosis. The predicted diagnosis was compared with the histology to calculate the accuracy, sensitivity, and specificity of in vivo assessment using either standard or high-definition scopes. A total of 293 polyps of <10 mm were examined–150 polyps using the standard-definition colonoscope and 143 polyps using high-definition colonoscopes. There was no difference in sensitivity, specificity or accuracy between the two scopes when WLI was used (standard vs. high: accuracy 70% [95% CI 62–77] vs. 73% [95% CI 65–80]; P=0.61). When FICE was used, high-definition colonoscopes showed a sensitivity of 93% compared with 83% for standard-definition colonoscopes (P=0.048); specificity was 81% and 82%, respectively. There was no difference between high- and standard-definition colonoscopes when white light was used, but FICE significantly improved the in vivo diagnosis of small polyps when high-definition scopes were used compared with standard definition.
Detection of deoxynivalenol using biolayer interferometry
USDA-ARS?s Scientific Manuscript database
Biolayer interferometry allows for the real time monitoring of the interactions between molecules without the need for reagents with enzymatic, fluorescent, or radioactive labels. The technology is based upon the changes in interference pattern of light reflected from the surface of an optical fiber...
Arosa, Yago; Lago, Elena López; Varela, Luis Miguel; de la Fuente, Raúl
2016-07-25
In this paper we apply spectrally resolved white light interferometry to measure refractive and group index over a wide spectral band from 400 to 1000 nm. The output of a Michelson interferometer is spectrally decomposed by a homemade prism spectrometer with a high resolution camera. The group index is determined directly from the phase extracted from the spectral interferogram while the refractive index is estimated once its value at a given wavelength is known.
Methods To Determine the Silicone Oil Layer Thickness in Sprayed-On Siliconized Syringes.
Loosli, Viviane; Germershaus, Oliver; Steinberg, Henrik; Dreher, Sascha; Grauschopf, Ulla; Funke, Stefanie
2018-01-01
The silicone lubricant layer in prefilled syringes has been investigated with regards to siliconization process performance, prefilled syringe functionality, and drug product attributes, such as subvisible particle levels, in several studies in the past. However, adequate methods to characterize the silicone oil layer thickness and distribution are limited, and systematic evaluation is missing. In this study, white light interferometry was evaluated to close this gap in method understanding. White light interferometry demonstrated a good accuracy of 93-99% for MgF 2 coated, curved standards covering a thickness range of 115-473 nm. Thickness measurements for sprayed-on siliconized prefilled syringes with different representative silicone oil distribution patterns (homogeneous, pronounced siliconization at flange or needle side, respectively) showed high instrument (0.5%) and analyst precision (4.1%). Different white light interferometry instrument parameters (autofocus, protective shield, syringe barrel dimensions input, type of non-siliconized syringe used as base reference) had no significant impact on the measured average layer thickness. The obtained values from white light interferometry applying a fully developed method (12 radial lines, 50 mm measurement distance, 50 measurements points) were in agreement with orthogonal results from combined white and laser interferometry and 3D-laser scanning microscopy. The investigated syringe batches (lot A and B) exhibited comparable longitudinal silicone oil layer thicknesses ranging from 170-190 nm to 90-100 nm from flange to tip and homogeneously distributed silicone layers over the syringe barrel circumference (110- 135 nm). Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. A silicone oil layer thickness of 100-200 nm was thus sufficient for adequate functionality in this particular study. Filling the syringe with a surrogate solution including short-term exposure and emptying did not significantly influence the silicone oil layer at the investigated silicone level. It thus appears reasonable to use this approach to characterize silicone oil layers in filled syringes over time. The developed method characterizes non-destructively the layer thickness and distribution of silicone oil in empty syringes and provides fast access to reliable results. The gained information can be further used to support optimization of siliconization processes and increase the understanding of syringe functionality. LAY ABSTRACT: Silicone oil layers as lubricant are required to ensure functionality of prefilled syringes. Methods evaluating these layers are limited, and systematic evaluation is missing. The aim of this study was to develop and assess white light interferometry as an analytical method to characterize sprayed-on silicone oil layers in 1 mL prefilled syringes. White light interferometry showed a good accuracy (93-99%) as well as instrument and analyst precision (0.5% and 4.1%, respectively). Different applied instrument parameters had no significant impact on the measured layer thickness. The obtained values from white light interferometry applying a fully developed method concurred with orthogonal results from 3D-laser scanning microscopy and combined white light and laser interferometry. The average layer thicknesses in two investigated syringe lots gradually decreased from 170-190 nm at the flange to 100-90 nm at the needle side. The silicone layers were homogeneously distributed over the syringe barrel circumference (110-135 nm) for both lots. Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. Syringe filling with a surrogate solution, including short-term exposure and emptying, did not significantly affect the silicone oil layer. The developed, non-destructive method provided reliable results to characterize the silicone oil layer thickness and distribution in empty siliconized syringes. This information can be further used to support optimization of siliconization processes and increase understanding of syringe functionality. © PDA, Inc. 2018.
Sciammarella, C A; Gilbert, J A
1976-09-01
Utilizing the light scattering property of transparent media, holographic interferometry is applied to the measurement of displacement at the interior planes of three dimensional bodies. The use of a double beam illumination and the introduction of a fictitious displacement make it feasible to obtain information corresponding to components of displacement projected on the scattering plane. When the proposed techniques are invoked, it is possible to eliminate the use of a matching index of refraction fluid in many problems involving symmetrically loaded prismatic bodies. Scattered light holographic interferometry is limited in its use to small changes in the index of refraction and to low values of relative retardation. In spite of these restrictions, a large number of technical problems in both statics and dynamics can be solved.
Application of SPM interferometry in MEMS vibration measurement
NASA Astrophysics Data System (ADS)
Tang, Chaowei; He, Guotian; Xu, Changbiao; Zhao, Lijuan; Hu, Jun
2007-12-01
The resonant frequency measurement of cantilever has an important position in MEMS(Micro Electro Mechanical Systems) research. Meanwhile the SPM interferometry is a high-precision optical measurement technique, which can be used in physical quantity measurement of vibration, displacement, surface profile. Hence, in this paper we propose to apply SPM(SPM) interferometry in measuring the vibration of MEMS cantilever and in the experiment the vibration of MEMS cantilever was driven by light source. Then this kind of vibration was measured in nm precision. Finally the relational characteristics of MEMS cantilever vibration under optical excitation can be gotten and the measurement principle is analyzed. This method eliminates the influence on the measuring precision caused by external interference and light intensity change through feedback control loop. Experiment results prove that this measurement method has a good effect.
Mode-resolved frequency comb interferometry for high-accuracy long distance measurement
van den Berg, Steven. A.; van Eldik, Sjoerd; Bhattacharya, Nandini
2015-01-01
Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10−8 for a distance of 50 m. PMID:26419282
High-Speed Digital Interferometry
NASA Technical Reports Server (NTRS)
De Vine, Glenn; Shaddock, Daniel A.; Ware, Brent; Spero, Robert E.; Wuchenich, Danielle M.; Klipstein, William M.; McKenzie, Kirk
2012-01-01
Digitally enhanced heterodyne interferometry (DI) is a laser metrology technique employing pseudo-random noise (PRN) codes phase-modulated onto an optical carrier. Combined with heterodyne interferometry, the PRN code is used to select individual signals, returning the inherent interferometric sensitivity determined by the optical wavelength. The signal isolation arises from the autocorrelation properties of the PRN code, enabling both rejection of spurious signals (e.g., from scattered light) and multiplexing capability using a single metrology system. The minimum separation of optical components is determined by the wavelength of the PRN code.
Presurgical weight loss affects tumour traits and circulating biomarkers in men with prostate cancer
Demark-Wahnefried, Wendy; Rais-Bahrami, Soroush; Desmond, Renee A; Gordetsky, Jennifer B; Hunter, Gary R; Yang, Eddy S; Azrad, Maria; Frugé, Andrew D; Tsuruta, Yuko; Norian, Lyse A; Segal, Roanne; Grizzle, William E
2017-01-01
Background: Obesity is associated with aggressive prostate cancer. To explore whether weight loss favourably affects tumour biology and other outcomes, we undertook a presurgical trial among overweight and obese men with prostate cancer. Methods: This single-blinded, two-arm randomised controlled trial explored outcomes of a presurgical weight loss intervention (WLI) that promoted ∼1 kg per week loss via caloric restriction and increased physical activity (PA). Forty overweight/obese men with clinically confirmed prostate cancer were randomised to the WLI presurgery or to a control arm; changes in weight, body composition, quality-of-life, circulating biomarkers, gene expression, and immunohistochemical markers in tumour and benign prostatic tissue were evaluated. Results: The study period averaged 50 days. Mean (s.d.) change scores for the WLI vs control arms were as follows: weight: −4.7 (3.1) kg vs −2.2 (4.4) kg (P=0.0508); caloric intake: −500 (636) vs −159 (600) kcal per day (P=0.0034); PA: +0.9 (3.1) vs +1.7 (4.6) MET-hours per day (NS); vitality: +5.3 (7.l4) vs −1.8 (8.1) (P=0.0491); testosterone: +55.1 (86.0) vs −48.3 (203.7) ng dl−1 (P=0.0418); sex hormone-binding globulin: +14.0 (14.6) vs +1.8 (7.6) nmol l−1 (P=0.0023); and leptin: −2.16 (2.6) vs −0.03 (3.75) (P=0.0355). Follow-up Ki67 was significantly higher in WLI vs control arms; median (interquartile range): 5.0 (2.5,10.0) vs 0.0 (0.0,2.5) (P=0.0061) and several genes were upregulated, for example, CTSL, GSK3B, MED12, and LAMC2. Conclusions: Intentional weight loss shows mixed effects on circulating biomarkers, tumour gene expression, and proliferative markers. More study is needed before recommending weight loss, in particular rapid weight loss, among men with prostate cancer. PMID:28881355
Shin, Kyung-Ok; Chung, Keun-Hee; Park, Hyun-Suh
2010-10-01
This study was conducted to prepare basic materials and offer advice regarding dietary habits to prevent and cure childhood obesity by comparing and analyzing dietary habit, nutritional status, blood factors, and mineral contents of hair. All subjects were stratified by their weight-length index (WLI). According to the standard WLI values, 64.9% of children were within the normal value, 13.5% of children were underweight, and 21.6% of children were overweight and obese (WLI ≥ 110%). Overall, the score assessed dietary habit for all children was 21.32 ± 2.55 point (921 subjects), with 5.1% of children having excellent dietary habits and 3.1% having poor dietary habits. Additionally, 37.9% of underweight children, 37.6% of normal weight children, and 43.2% of overweight and obese children consumed higher amounts of protein than underweight children did (meat, fish, eggs, and soy products) (P < 0.05). Overweight and obese children consumed more fried foods than underweight or normal weight children (P < 0.05). Moreover, 38.0% of the children had hemoglobin levels of 12 g/dl, while 7.6% were anemic (11.1 g/dl). When a hematocrit level of 33% was taken as the standard, 11.0% of children were anemic. The plasma transferrin content was 263.76 ± 54.52 mg/dl in overweight and obese children. The mean values of Fe, Cu, Ca, Cr, Mn, Se, Na, K, Li, V, Co, and Mo were within the reference values, but the Zn concentrations of underweight, normal weight, and overweight and obese children were 67.97 ± 28.51 ppm, 70.09 ± 30.81 ppm, and 73.99 ± 30.36 ppm, respectively. The Zn concentration of overweight and obese children (73.99 ± 30.36 ppm) was lower than that of the standard value (180~220 ppm). Therefore, a nutritional education program and new guidance for dietary pattern should be developed to reduce the number of underweight and overweight and obese children.
Development of a dual-modality, dual-view smartphone-based imaging system for oral cancer detection
NASA Astrophysics Data System (ADS)
Uthoff, Ross D.; Song, Bofan; Birur, Praveen; Kuriakose, Moni Abraham; Sunny, Sumsum; Suresh, Amritha; Patrick, Sanjana; Anbarani, Afarin; Spires, Oliver; Wilder-Smith, Petra; Liang, Rongguang
2018-02-01
Oral cancer is a rising health issue in many low and middle income countries (LMIC). Proposed is an implementation of autofluorescence imaging (AFI) and white light imaging (WLI) on a smartphone platform providing inexpensive early detection of cancerous conditions in the oral cavity. Interchangeable modules allow both whole mouth imaging for an overview of the patients' oral health and an intraoral imaging probe for localized information. Custom electronics synchronize image capture and external LED operation for the excitation of tissue fluorescence. A custom Android application captures images and an image processing algorithm provides likelihood estimates of cancerous conditions. Finally, all data can be uploaded to a cloud server where a convolutional neural network classifies the images and a remote specialist can provide diagnosis and triage instructions.
Interferometry in the Era of Very Large Telescopes
NASA Technical Reports Server (NTRS)
Barry, Richard K.
2010-01-01
Research in modern stellar interferometry has focused primarily on ground-based observatories, with very long baselines or large apertures, that have benefited from recent advances in fringe tracking, phase reconstruction, adaptive optics, guided optics, and modern detectors. As one example, a great deal of effort has been put into development of ground-based nulling interferometers. The nulling technique is the sparse aperture equivalent of conventional coronography used in filled aperture telescopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. Nulling interferometry has helped to advance our understanding of the astrophysics of many distant objects by providing the spatial resolution necessary to localize the various faint emission sources near bright objects. We illustrate the current capabilities of this technique by describing the first scientific results from the Keck Interferometer Nuller that combines the light from the two largest optical telescopes in the world including new, unpublished measurements of exozodiacal dust disks. We discuss prospects in the near future for interferometry in general, the capabilities of secondary masking interferometry on very large telescopes, and of nulling interferometry using outriggers on very large telescopes. We discuss future development of a simplified space-borne NIR nulling architecture, the Fourier-Kelvin Stellar Interferometer, capable of detecting and characterizing an Earth twin in the near future and how such a mission would benefit from the optical wavelength coverage offered by large, ground-based instruments.
Atom Interferometry in a Warm Vapor
Biedermann, G. W.; McGuinness, H. J.; Rakholia, A. V.; ...
2017-04-17
Here, we demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. Lastly, this interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.
Optical Interferometry Motivation and History
NASA Technical Reports Server (NTRS)
Lawson, Peter
2006-01-01
A history and motivation of stellar interferometry is presented. The topics include: 1) On Tides, Organ Pipes, and Soap Bubbles; 2) Armand Hippolyte Fizeau (1819-1896); 3) Fizeau Suggests Stellar Interferometry 1867; 4) Edouard Stephan (1837-1923); 5) Foucault Refractor; 6) Albert A. Michelson (1852-1931); 7) On the Application of Interference Methods to Astronomy (1890); 8) Moons of Jupiter (1891); 9) Other Applications in 19th Century; 10) Timeline of Interferometry to 1938; 11) 30 years goes by; 12) Mount Wilson Observatory; 13) Michelson's 20 ft Interferometer; 14) Was Michelson Influenced by Fizeau? 15) Work Continues in the 1920s and 30s; 16) 50 ft Interferometer (1931-1938); 17) Light Paths in the 50 ft Interferometer; 18) Ground-level at the 50 ft; 19) F.G. Pease (1881-1938); 20) Timeline of Optical Interferometry to 1970; 21) A New Type of Stellar Interferometer (1956); 22) Intensity Interferometer (1963- 1976; 23) Robert Hanbury Brown; 24) Interest in Optical Interferometry in the 1960s; 25) Interferometry in the Early 1970s; and 26) A New Frontier is Opened up in 1974.
Hyperspectral interferometry: Sizing microscale surface features in the pine bark beetle.
Beach, James M; Uertz, James L; Eckhardt, Lori G
2015-10-01
A new method of interferometry employing a Fabry-Perot etalon model was used to locate and size microscale features on the surface of the pine bark beetle. Oscillations in the reflected light spectrum, caused by self-interference of light reflecting from surfaces of foreleg setae and spores on the elytrum, were recorded using white light hyperspectral microscopy. By making the assumption that pairs of reflecting surfaces produce an etalon effect, the distance between surfaces could be determined from the oscillation frequency. Low frequencies of less than 0.08 nm(-1) were observed in the spectrum below 700 nm while higher frequencies generally occupied wavelengths from 600 to 850 nm. In many cases, two frequencies appeared separately or in combination across the spectrum. The etalon model gave a mean spore size of 3.04 ± 1.27 μm and a seta diameter of 5.44 ± 2.88 μm. The tapering near the setae tip was detected as a lowering of frequency. Spatial fringes were observed together with spectral oscillations from surfaces on the exoskeleton at higher magnification. These signals were consistent with embedded multi-layer reflecting surfaces. Possible applications for hyperspectral interferometry include medical imaging, detection of spore loads in insects and other fungal carriers, wafer surface and subsurface inspection, nanoscale materials, biological surface analysis, and spectroscopy calibration. This is, to our knowledge, the first report of oscillations directly observed by microscopy in the reflected light spectra from Coleoptera, and the first demonstration of broadband hyperspectral interferometry using microscopy that does not employ an internal interferometer. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chizhov, P A; Ushakov, A A; Bukin, V V
2015-05-31
We propose a scheme for measuring the spatial distribution of the THz pulse electric field strength in an electro-optic crystal using optical interferometry. The resulting images of the field distribution from a test source with a spherical wave front are presented. (extreme light fields and their applications)
Applications of wavelets in interferometry and artificial vision
NASA Astrophysics Data System (ADS)
Escalona Z., Rafael A.
2001-08-01
In this paper we present a different point of view of phase measurements performed in interferometry, image processing and intelligent vision using Wavelet Transform. In standard and white-light interferometry, the phase function is retrieved by using phase-shifting, Fourier-Transform, cosinus-inversion and other known algorithms. Our novel technique presented here is faster, robust and shows excellent accuracy in phase determinations. Finally, in our second application, fringes are no more generate by some light interaction but result from the observation of adapted strip set patterns directly printed on the target of interest. The moving target is simply observed by a conventional vision system and usual phase computation algorithms are adapted to an image processing by wavelet transform, in order to sense target position and displacements with a high accuracy. In general, we have determined that wavelet transform presents properties of robustness, relative speed of calculus and very high accuracy in phase computations.
Microanalysis of an oxidized cobalt oxide: Zirconia eutectic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentley, J.; McKernan, S.; Carter, C.B.
The compositions of CoO, Co{sub 3}O{sub 4}, and Ca-stabilized cubic ZrO{sub 2} in an oxidized directionally solidified CoO-ZrO{sub 2} eutectic were determined by PEELS and EDS. An oxygen gradient exists across the Co{sub 3}O{sub 4} with highest levels near the ZrO{sub 2} interface. Oxygen ELNES for CoO and Co{sub 3}O{sub 4} are quite different; published oxygen ELNES have been incorrectly attributed to CoO. Normalized Co-L{sub 23} white line intensity (WLI) ratios for CoO and Co{sub 3}O{sub 4} are similar (0.53 {plus_minus} 0.02) but L{sub 3}/L{sub 2} WLI ratios are 3.88 and 2.58, respectively. ELCE data suggest Co{sub 3}O{sub 4} hasmore » the inverse spinel structure.« less
Astronomical Optical Interferometry. I. Methods and Instrumentation
NASA Astrophysics Data System (ADS)
Jankov, S.
2010-12-01
Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas) resolution and astrometry with micro-arcsecond (muas) precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are disscused as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers). Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.
Baryshev, Sergey V; Erck, Robert A; Moore, Jerry F; Zinovev, Alexander V; Tripa, C Emil; Veryovkin, Igor V
2013-02-27
In materials science and engineering it is often necessary to obtain quantitative measurements of surface topography with micrometer lateral resolution. From the measured surface, 3D topographic maps can be subsequently analyzed using a variety of software packages to extract the information that is needed. In this article we describe how white light interferometry, and optical profilometry (OP) in general, combined with generic surface analysis software, can be used for materials science and engineering tasks. In this article, a number of applications of white light interferometry for investigation of surface modifications in mass spectrometry, and wear phenomena in tribology and lubrication are demonstrated. We characterize the products of the interaction of semiconductors and metals with energetic ions (sputtering), and laser irradiation (ablation), as well as ex situ measurements of wear of tribological test specimens. Specifically, we will discuss: i. Aspects of traditional ion sputtering-based mass spectrometry such as sputtering rates/yields measurements on Si and Cu and subsequent time-to-depth conversion. ii. Results of quantitative characterization of the interaction of femtosecond laser irradiation with a semiconductor surface. These results are important for applications such as ablation mass spectrometry, where the quantities of evaporated material can be studied and controlled via pulse duration and energy per pulse. Thus, by determining the crater geometry one can define depth and lateral resolution versus experimental setup conditions. iii. Measurements of surface roughness parameters in two dimensions, and quantitative measurements of the surface wear that occur as a result of friction and wear tests. Some inherent drawbacks, possible artifacts, and uncertainty assessments of the white light interferometry approach will be discussed and explained.
Baryshev, Sergey V.; Erck, Robert A.; Moore, Jerry F.; Zinovev, Alexander V.; Tripa, C. Emil; Veryovkin, Igor V.
2013-01-01
In materials science and engineering it is often necessary to obtain quantitative measurements of surface topography with micrometer lateral resolution. From the measured surface, 3D topographic maps can be subsequently analyzed using a variety of software packages to extract the information that is needed. In this article we describe how white light interferometry, and optical profilometry (OP) in general, combined with generic surface analysis software, can be used for materials science and engineering tasks. In this article, a number of applications of white light interferometry for investigation of surface modifications in mass spectrometry, and wear phenomena in tribology and lubrication are demonstrated. We characterize the products of the interaction of semiconductors and metals with energetic ions (sputtering), and laser irradiation (ablation), as well as ex situ measurements of wear of tribological test specimens. Specifically, we will discuss: Aspects of traditional ion sputtering-based mass spectrometry such as sputtering rates/yields measurements on Si and Cu and subsequent time-to-depth conversion. Results of quantitative characterization of the interaction of femtosecond laser irradiation with a semiconductor surface. These results are important for applications such as ablation mass spectrometry, where the quantities of evaporated material can be studied and controlled via pulse duration and energy per pulse. Thus, by determining the crater geometry one can define depth and lateral resolution versus experimental setup conditions. Measurements of surface roughness parameters in two dimensions, and quantitative measurements of the surface wear that occur as a result of friction and wear tests. Some inherent drawbacks, possible artifacts, and uncertainty assessments of the white light interferometry approach will be discussed and explained. PMID:23486006
Study on a multi-delay spectral interferometry for stellar radial velocity measurement
NASA Astrophysics Data System (ADS)
Zhang, Kai; Jiang, Haijiao; Tang, Jin; Ji, Hangxin; Zhu, Yongtian; Wang, Liang
2014-08-01
High accuracy radial velocity measurement isn't only one of the most important methods for detecting earth-like Exoplanets, but also one of the main developing fields of astronomical observation technologies in future. Externally dispersed interferometry (EDI) generates a kind of particular interference spectrum through combining a fixed-delay interferometer with a medium-resolution spectrograph. It effectively enhances radial velocity measuring accuracy by several times. Another further study on multi-delay interferometry was gradually developed after observation success with only a fixed-delay, and its relative instrumentation makes more impressive performance in near Infrared band. Multi-delay is capable of giving wider coverage from low to high frequency in Fourier field so that gives a higher accuracy in radial velocity measurement. To study on this new technology and verify its feasibility at Guo Shoujing telescope (LAMOST), an experimental instrumentation with single fixed-delay named MESSI has been built and tested at our lab. Another experimental study on multi-delay spectral interferometry given here is being done as well. Basically, this multi-delay experimental system is designed in according to the similar instrument named TEDI at Palomar observatory and the preliminary test result of MESSI. Due to existence of LAMOST spectrograph at lab, a multi-delay interferometer design actually dominates our work. It's generally composed of three parts, respectively science optics, phase-stabilizing optics and delay-calibrating optics. To switch different fixed delays smoothly during observation, the delay-calibrating optics is possibly useful to get high repeatability during switching motion through polychromatic interferometry. Although this metrology is based on white light interferometry in theory, it's different that integrates all of interference signals independently obtained by different monochromatic light in order to avoid dispersion error caused by broad band in big optical path difference (OPD).
Space beam combiner for long-baseline interferometry
NASA Astrophysics Data System (ADS)
Lin, Yao; Bartos, Randall D.; Korechoff, Robert P.; Shaklan, Stuart B.
1999-04-01
An experimental beam combiner (BC) is being developed to support the space interferometry program at the JPL. The beam combine forms the part of an interferometer where star light collected by the sidestats or telescopes is brought together to produce white light fringes, and to provide wavefront tilt information via guiding spots and beam walk information via shear spots. The assembly and alignment of the BC has been completed. The characterization test were performed under laboratory conditions with an artificial star and optical delay line. Part of each input beam was used to perform star tracking. The white light interference fringes were obtained over the selected wavelength range from 450 nm to 850 nm. A least-square fit process was used to analyze the fringe initial phase, fringe visibilities and shift errors of the optical path difference in the delay line using the dispersed white-light fringes at different OPD positions.
Manipulation of Micro Scale Particles in an Optical Trap Using Interferometry
NASA Technical Reports Server (NTRS)
Seibel, Robin
2002-01-01
This research shows that micro particles can be manipulated via interferometric patterns superimposed on an optical tweezers beam. Interferometry allows the manipulation of intensity distributions, and thus, force distributions on a trapped particle. To demonstrate the feasibility of such manipulation, 458 nm light, from an argon-ion laser, was injected into a Mach Zender interferometer. One mirror in the interferometer was oscillated with a piezoelectric phase modulator. The light from the interferometer was then injected into a microscope to trap a 9.75 micron polystyrene sphere. By varying the phase modulation, the sphere was made to oscillate in a controlled fashion.
DH and ESPI laser interferometry applied to the restoration shrinkage assessment
NASA Astrophysics Data System (ADS)
Campos, L. M. P.; Parra, D. F.; Vasconcelos, M. R.; Vaz, M.; Monteiro, J.
2014-01-01
In dental restoration postoperative marginal leakage is commonly associated to polymerization shrinkage effects. In consequence the longevity and quality of restorative treatment depends on the shrinkage mechanisms of the composite filling during the polymerization. In this work the development of new techniques for evaluation of those effects under light-induced polymerization of dental nano composite fillings is reported. The composite resins activated by visible light, initiate the polymerization process by absorbing light in wavelengths at about 470 nm. The techniques employed in the contraction assessment were digital holography (DH) and Electronic Speckle Pattern Interferometry (ESPI) based on laser interferometry. A satisfactory resolution was achieved in the non-contact displacement field measurements on small objects concerning the experimental dental samples. According to a specific clinical protocol, natural teeth were used (human mandibular premolars). A class I cavity was drilled and restored with nano composite material, according to Black principles. The polymerization was monitored by DH and ESPI in real time during the cure reaction of the restoration. The total displacement reported for the material in relation of the tooth wall was 3.7 μm (natural tooth). The technique showed the entire tooth surface (wall) deforming during polymerization shrinkage.
ERIC Educational Resources Information Center
Toal, Vincent; Mihaylova, Emilia M.
2009-01-01
This note describes how white light interference fringes can be seen by observing the Moon through a double-glazed window. White light interferometric fringes are normally observed only in a well-aligned interferometer whose optical path difference is less than the coherence length of the light source, which is approximately one micrometer for…
Optical measurement methods in thermogasdynamics
NASA Technical Reports Server (NTRS)
Stursberg, K.; Erhardt, K.; Krahr, W.; Becker, M.
1978-01-01
A review is presented of a number of optical methods of flow measurements. Consideration is given to such spectroscopic methods as emission and absorption techniques, electron beam-stimulated fluorescence, and light scattering - Rayleigh, Raman and Mie - methods. The following visualization methods are also discussed: shadow photography, schlieren photography, interferometry, holographic interferometry, laser anemometry, particle holography, and electron-excitation imaging. A large bibliography is presented and the work is copiously illustrated with figures and photographs.
Command History 1970. Volume 2. Sanitized
1970-01-01
included authorizations for physicians, dentists, pharmacists , and other specialists- the clinical field was short 232 physicians. (S) By 1973 the...progrztm for lmpeiomentativil and designated the CEIMP as Uti - stirglo source document ior ItVNA V C -E: W&L.I1 Vietnanlization of US Advisor Cocrn
NASA Astrophysics Data System (ADS)
Zhou, Yi; Tang, Yan; Deng, Qinyuan; Zhao, Lixin; Hu, Song
2017-08-01
Three-dimensional measurement and inspection is an area with growing needs and interests in many domains, such as integrated circuits (IC), medical cure, and chemistry. Among the methods, broadband light interferometry is widely utilized due to its large measurement range, noncontact and high precision. In this paper, we propose a spatial modulation depth-based method to retrieve the surface topography through analyzing the characteristics of both frequency and spatial domains in the interferogram. Due to the characteristics of spatial modulation depth, the technique could effectively suppress the negative influences caused by light fluctuations and external disturbance. Both theory and experiments are elaborated to confirm that the proposed method can greatly improve the measurement stability and sensitivity with high precision. This technique can achieve a superior robustness with the potential to be applied in online topography measurement.
Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry.
Scrimgeour, Jan; Curtis, Jennifer E
2012-06-18
We present a new technique for the correction of optical aberrations in wide-field fluorescence microscopy. Segmented-Pupil Image Interferometry (SPII) uses a liquid crystal spatial light modulator placed in the microscope's pupil plane to split the wavefront originating from a fluorescent object into an array of individual beams. Distortion of the wavefront arising from either system or sample aberrations results in displacement of the images formed from the individual pupil segments. Analysis of image registration allows for the local tilt in the wavefront at each segment to be corrected with respect to a central reference. A second correction step optimizes the image intensity by adjusting the relative phase of each pupil segment through image interferometry. This ensures that constructive interference between all segments is achieved at the image plane. Improvements in image quality are observed when Segmented-Pupil Image Interferometry is applied to correct aberrations arising from the microscope's optical path.
Resolving microstructures in Z pinches with intensity interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apruzese, J. P.; Kroupp, E.; Maron, Y.
2014-03-15
Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the workmore » of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.« less
Optical aperture synthesis with electronically connected telescopes
Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.
2015-01-01
Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705
NASA Astrophysics Data System (ADS)
Axelsson, Anders; Marucci, Mariagrazia
2008-12-01
In this review holographic interferometry and electron speckle pattern interferometry are discussed as efficient techniques for diffusion measurements in biochemical and pharmaceutical applications. Transport phenomena can be studied, quantitatively and qualitatively, in gels, liquids and membranes. Detailed information on these phenomena is required to design effective chromatography bioseparation processes using gel beads or ultrafiltration membranes, and in the design of controlled-release pharmaceuticals using membrane-coated pellets or tablets. The influence of gel concentration, ion strength in the liquid and the size of diffusing protein molecules can easily be studied with good accuracy. When studying membranes, the resistance can be quantified, and it is also possible to discriminate between permeable and semi-permeable membranes. In this review the influence of temperature, natural convection and light deflection on the accuracy of the diffusion measurements is also discussed.
Holographic interferometry of transparent media with reflection from imbedded test objects
NASA Technical Reports Server (NTRS)
Prikryl, I.; Vest, C. M.
1981-01-01
In applying holographic interferometry, opaque objects blocking a portion of the optical beam used to form the interferogram give rise to incomplete data for standard computer tomography algorithms. An experimental technique for circumventing the problem of data blocked by opaque objects is presented. The missing data are completed by forming an interferogram using light backscattered from the opaque object, which is assumed to be diffuse. The problem of fringe localization is considered.
Mishima, T; Kao, K C
1982-03-15
New laser interferometry has been developed, based on the principle that a 2-D fringe pattern can be produced by interference of spatially coherent light beams. To avoid the effect of reflection from the back surface of the substrate, the Brewster angle of incidence is adopted; to suppress the effect of diffraction, a lens or a lens system is used. This laser interferometry is an efficient nondestructive technique for the determination of thickness distributions or uniformities of low absorbing films on transparent substrates over a large area without involving laborious computations. The limitation of spatial resolution, thickness resolution, and visibility of fringes is fully analyzed.
Optical device for measuring a surface characteristic of an object by multi-color interferometry
NASA Technical Reports Server (NTRS)
Meyer, William V. (Inventor); Smart, Anthony E. (Inventor)
2001-01-01
An interferometer having a light beam source that produces a plurality of separate and distinct wavelengths of light. Optic fibers are used to transport the wavelengths of light toward an object surface and to allow light reflected from the object to pass through a polarizer to improve the polarization ratio of the reflected light to determine a characteristic of the object surface.
ESA to test the smartest technique for detecting extrasolar planets from the ground
NASA Astrophysics Data System (ADS)
2002-03-01
GENIE will use ESO's Very Large Telescopes Credits: European Southern Observatory This photo shows an aerial view of the observing platform on the top of Paranal mountain (from late 1999), with the four enclosu Three 1.8-m VLTI Auxiliary Telescopes (ATs) and paths of the light beams have been superposed on the photo. Also seen are some of the 30 'stations' where the ATs will be positioned for observations and from where the light beams from the telescopes can enter the Interferometric Tunnel below. The straight structures are supports for the rails on which the telescopes can move from one station to another. The Interferometric Laboratory (partly subterranean) is at the centre of the platform. How nulling interferometry works Credits: ESA 2002/Medialab How nulling interferometry works In nulling interferometry, light from a distant star (red beams) hits each telescope, labelled T1 and T2, simultaneously. Before the resultant light beams are combined, the beam from one telescope is delayed by half a wavelength. This means that when the rays are brought together, peaks from one telescope line up with troughs from the other and so are cancelled out (represented by the straight red line), leaving no starlight. Light from a planet (blue beams), orbiting the star, enters the telescopes at an angle. This introduces a delay in the light reaching the second telescope. So, even after the half wavelength change in one of the rays, when the beams are combined they are reinforced (represented by the large blue waves) rather than cancelled out. Illustration by Medialab. Nulling interferometry combines the signal from a number of different telescopes in such a way that the light from the central star is cancelled out, leaving the much fainter planet easier to see. This is possible because light is a wave with peaks and troughs. Usually when combining light from two or more telescopes, a technique called interferometry, the peaks are lined up with one another to boost the signal. In nulling interferometry, however, the peaks are lined up with the troughs so they cancel out to nothing and the star disappears. Planets in orbit around the star show up, however, because they are offset from the central star and their light takes different paths through the telescope system. ESA and ESO will build a new instrument called GENIE (Ground-based European Nulling Interferometer Experiment) to perform nulling interferometry using ESO's Very Large Telescope (VLT), a collection of four 8-metre telescopes in Chile. It will be the biggest investigation of nulling interferometry to date. "It's being tested in the lab in a number of places but we can do more," says Malcolm Fridlund, project scientist for the Darwin mission at the European Space Research and Technology Centre, the Netherlands. "We intend to use the world's largest telescope and the world's largest interferometer to get very high resolution." Using GENIE to perfect this technique will provide invaluable information for engineers about how to build the 'hub' spacecraft of the Darwin flotilla. Scheduled for launch in the middle of the next decade Darwin is a collection of six space telescopes and two other spacecraft, which will together search for Earth-like planets around nearby stars. The hub will combine the light from the telescopes. "If you see the way of getting to Darwin as being outlined by a number of technological milestones this is one of the most important ones," says Malcolm Fridlund. Once up and running, GENIE will also provide a training ground for astronomers who will later use Darwin. For example, it will allow them to perfect their methods of interpreting Darwin data because, as well as the engineering tests, GENIE will be capable of real science. One of its greatest tasks will be to develop the target list of stars for Darwin to study. As recently discovered by ESA's Ulysses spaceprobe, the signature of a planetary system is probably a ring of dust surrounding the central star. GENIE will be able to look for these dust rings and make sure that the dust is not so dense that it will mask the planets from view. GENIE will see failed stars, known as brown dwarfs and, if the instrument performs to expectations, may also see some of the already-discovered giant planets. So far, these worlds have never been seen, only inferred to exist by the effect they have on their parent stars. From Earth, two things handicap nulling interferometry. Firstly, the atmosphere smears out the starlight so that its cancellation is a hundred times less effective than it will be in space. Secondly, planets are most easily seen using infrared wavelengths because they are warm. So, observing from the surface of Earth, itself a planet emitting infrared radiation, is like peering through fog. In space, these two problems disappear and Darwin will be able to see smaller, Earth-like worlds. "We have calculated that with Darwin we could see an 'Earth' if it were ten light-years away with a few hours of observation time. With the VLT, it would be impossible because of the atmosphere. Even if the atmosphere weren't there it would take 450 days because of the infrared background released by the Earth. So we have to go into space," says Fridlund. GENIE is expected to be on-line by 2006.
Luo, Xi; Guo, Xiao-Xu; Wang, Wei-Feng; Peng, Li-Hua; Yang, Yun-Sheng; Uedo, Noriya
2016-01-01
AIM: To investigate whether autofluorescence imaging (AFI) endoscopy can distinguish non-erosive reflux disease (NERD) from functional heartburn (FH). METHODS: In this prospective observational trial, 127 patients presenting with typical reflux symptoms for > 6 mo were screened. All the participants underwent endoscopy, during which white light imaging (WLI) was followed by AFI. Finally 84 patients with normal esophageal appearance on WLI were enrolled. It was defined as being suggestive of NERD if one or more longitudinal purple lines longer than one centimeter were visualized in the distal part of the esophagus during AFI endoscopy. Ambulatory 24-h multichannel intraluminal impedance and pH monitoring was also performed. After standard proton-pump inhibitor (PPI) tests, subjects were divided into an NERD group and an FH group and the diagnostic performance of AFI endoscopy to differentiate NERD from FH was evaluated. RESULTS: Of 84 endoscopy-negative patients, 36 (42.9%) had a normal pH/impedance test. Of these, 26 patients with favorable responses to PPI tests were classified as having NERD. Finally 10 patients were diagnosed with FH and the others with NERD. Altogether, 68 (81.0%) of the 84 patients were positive on AFI endoscopy. In the NERD group, there were 67 (90.5%) patients with abnormal esophageal findings on AFI endoscopy while only 1 (10%) patient was positive on AFI endoscopy in the FH group. The sensitivity and specificity of AFI in differentiating NERD from FH were 90.5% (95%CI: 81.5%-96.1%) and 90.0% (95%CI: 55.5%-99.7%), respectively. Meanwhile, the accuracy, positive predictive value and negative predictive value of AFI in differentiating between NERD and FH were 90.5% (95%CI: 84.2%-96.8%), 98.5% (95%CI: 92.1%-99.9%) and 56.3% (95%CI: 30.0%-80.2%), respectively. CONCLUSION: Autofluorescence imaging may serve as a complementary method in evaluating patients with NERD and FH. PMID:27076770
Luo, Xi; Guo, Xiao-Xu; Wang, Wei-Feng; Peng, Li-Hua; Yang, Yun-Sheng; Uedo, Noriya
2016-04-14
To investigate whether autofluorescence imaging (AFI) endoscopy can distinguish non-erosive reflux disease (NERD) from functional heartburn (FH). In this prospective observational trial, 127 patients presenting with typical reflux symptoms for > 6 mo were screened. All the participants underwent endoscopy, during which white light imaging (WLI) was followed by AFI. Finally 84 patients with normal esophageal appearance on WLI were enrolled. It was defined as being suggestive of NERD if one or more longitudinal purple lines longer than one centimeter were visualized in the distal part of the esophagus during AFI endoscopy. Ambulatory 24-h multichannel intraluminal impedance and pH monitoring was also performed. After standard proton-pump inhibitor (PPI) tests, subjects were divided into an NERD group and an FH group and the diagnostic performance of AFI endoscopy to differentiate NERD from FH was evaluated. Of 84 endoscopy-negative patients, 36 (42.9%) had a normal pH/impedance test. Of these, 26 patients with favorable responses to PPI tests were classified as having NERD. Finally 10 patients were diagnosed with FH and the others with NERD. Altogether, 68 (81.0%) of the 84 patients were positive on AFI endoscopy. In the NERD group, there were 67 (90.5%) patients with abnormal esophageal findings on AFI endoscopy while only 1 (10%) patient was positive on AFI endoscopy in the FH group. The sensitivity and specificity of AFI in differentiating NERD from FH were 90.5% (95%CI: 81.5%-96.1%) and 90.0% (95%CI: 55.5%-99.7%), respectively. Meanwhile, the accuracy, positive predictive value and negative predictive value of AFI in differentiating between NERD and FH were 90.5% (95%CI: 84.2%-96.8%), 98.5% (95%CI: 92.1%-99.9%) and 56.3% (95%CI: 30.0%-80.2%), respectively. Autofluorescence imaging may serve as a complementary method in evaluating patients with NERD and FH.
NASA Astrophysics Data System (ADS)
Zhu, Yizheng; Li, Chengshuai
2016-03-01
Morphological assessment of spermatozoa is of critical importance for in vitro fertilization (IVF), especially intracytoplasmic sperm injection (ICSI)-based IVF. In ICSI, a single sperm cell is selected and injected into an egg to achieve fertilization. The quality of the sperm cell is found to be highly correlated to IVF success. Sperm morphology, such as shape, head birefringence and motility, among others, are typically evaluated under a microscope. Current observation relies on conventional techniques such as differential interference contrast microscopy and polarized light microscopy. Their qualitative nature, however, limits the ability to provide accurate quantitative analysis. Here, we demonstrate quantitative morphological measurement of sperm cells using two types of spectral interferometric techniques, namely spectral modulation interferometry and spectral multiplexing interferometry. Both are based on spectral-domain low coherence interferometry, which is known for its exquisite phase determination ability. While spectral modulation interferometry encodes sample phase in a single spectrum, spectral multiplexing interferometry does so for sample birefringence. Therefore they are capable of highly sensitive phase and birefringence imaging. These features suit well in the imaging of live sperm cells, which are small, dynamic objects with only low to moderate levels of phase and birefringence contrast. We will introduce the operation of both techniques and demonstrate their application to measuring the phase and birefringence morphology of sperm cells.
Nonclassicality Criteria in Multiport Interferometry
NASA Astrophysics Data System (ADS)
Rigovacca, L.; Di Franco, C.; Metcalf, B. J.; Walmsley, I. A.; Kim, M. S.
2016-11-01
Interference lies at the heart of the behavior of classical and quantum light. It is thus crucial to understand the boundaries between which interference patterns can be explained by a classical electromagnetic description of light and which, on the other hand, can only be understood with a proper quantum mechanical approach. While the case of two-mode interference has received a lot of attention, the multimode case has not yet been fully explored. Here we study a general scenario of intensity interferometry: we derive a bound on the average correlations between pairs of output intensities for the classical wavelike model of light, and we show how it can be violated in a quantum framework. As a consequence, this violation acts as a nonclassicality witness, able to detect the presence of sources with sub-Poissonian photon-number statistics. We also develop a criterion that can certify the impossibility of dividing a given interferometer into two independent subblocks.
Interferometer Control of Optical Tweezers
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2002-01-01
This paper discusses progress in using spatial light modulators and interferometry to control the beam profile of an optical tweezers. The approach being developed is to use a spatial light modulator (SLM) to control the phase profile of the tweezers beam and to use a combination of the SLM and interferometry to control the intensity profile. The objective is to perform fine and calculable control of the moments and forces on a tip or tool to be used to manipulate and interrogate nanostructures. The performance of the SLM in generating multiple and independently controllable tweezers beams is also reported. Concurrent supporting research projects are mentioned and include tweezers beam scattering and neural-net processing of the interference patterns for control of the tweezers beams.
NASA Technical Reports Server (NTRS)
Thorpe, James Ira
2010-01-01
A key challenge for all gravitational wave detectors in the detection of changes in the fractional difference between pairs of test masses with sufficient precision to measure astrophysical strains with amplitudes on the order of approx.10(exp -21). ln the case of the five million km arms of LISA, this equates to distance measurements on the ten picometer level. LISA interferometry utilizes a decentralized topology, in which each of the sciencecraft houses its own light sources, detectors, and electronics. The measurements made at each of the sciencecraft are then telemetered to ground and combined to extract the strain experienced by the constellation as a whole. I will present an overview of LISA interferometry and highlight some of the key components and technologies that make it possible.
Random sequences generation through optical measurements by phase-shifting interferometry
NASA Astrophysics Data System (ADS)
François, M.; Grosges, T.; Barchiesi, D.; Erra, R.; Cornet, A.
2012-04-01
The development of new techniques for producing random sequences with a high level of security is a challenging topic of research in modern cryptographics. The proposed method is based on the measurement by phase-shifting interferometry of the speckle signals of the interaction between light and structures. We show how the combination of amplitude and phase distributions (maps) under a numerical process can produce random sequences. The produced sequences satisfy all the statistical requirements of randomness and can be used in cryptographic schemes.
NASA Astrophysics Data System (ADS)
Machikhin, Alexander; Burmak, Ludmila; Pozhar, Vitold
2018-04-01
The manuscript addresses the advantages and possible applications of acousto-optic image spectral filtration in lowcoherence interferometry. In particular, an effective operation of acousto-optical tunable filters in combination with Michelson-type interferometers is shown. The results of original experiments are presented. It is demonstrated that amplitude and phase spatial distributions of light waves reflected from or transmitted through the object can be fast determined in contactless manner for any spectral intervals with use of the presented techniques.
NASA Technical Reports Server (NTRS)
Marn, Jure
1989-01-01
Holographic interferometry is a nonintrusive method and as such possesses considerable advantages such as not disturbing the velocity and temperature field by creating obstacles which would alter the flow field. These optical methods have disadvantages as well. Holography, as one of the interferometry methods, retains the accuracy of older methods, and at the same time eliminates the system error of participating components. The holographic interferometry consists of comparing the objective beam with the reference beam and observing the difference in lengths of optical paths, which can be observed during the propagation of the light through a medium with locally varying refractive index. Thus, change in refractive index can be observed as a family of nonintersecting surfaces in space (wave fronts). The object of the investigation was a rectangular heat pipe. The goal was to measure temperatures in the heat pipe, which yields data for computer code or model assessment. The results were obtained by calculating the temperatures by means of finite fringes.
Higher-dimensional phase imaging
NASA Astrophysics Data System (ADS)
Huntley, Jonathan M.
2010-04-01
Traditional full-field interferometric techniques (speckle, moiré, holography etc) provide 2-D phase images, which encode the surface deformation state of the object under test. Over the past 15 years, the use of additional spatial or temporal dimensions has been investigated by a number of research groups. Early examples include the measurement of 3-D surface profiles by temporally-varying projected fringe patterns, and dynamic speckle interferometry. More recently (the past 5 years) a family of related techniques (Wavelength Scanning Interferometry, Phase Contrast Spectral Optical Coherence Tomography (OCT), and Tilt Scanning Interferometry) has emerged that provides the volume deformation state of the object. The techniques can be thought of as a marriage between the phase sensing capabilities of Phase Shifting Interferometry and the depth-sensing capabilities of OCT. Finally, in the past 12 months a technique called Hyperspectral Interferometry has been proposed in which absolute optical path distributions are obtained in a single shot through the spectral decomposition of a white light interferogram, and for which the additional dimension therefore corresponds to the illumination wavenumber. An overview of these developments, and the related issue of robust phase unwrapping of noisy 3-D wrapped phase volumes, is presented in this paper.
Temporal intensity interferometry for characterization of very narrow spectral lines
NASA Astrophysics Data System (ADS)
Tan, P. K.; Kurtsiefer, C.
2017-08-01
Some stellar objects exhibit very narrow spectral lines in the visible range additional to their blackbody radiation. Natural lasing has been suggested as a mechanism to explain narrow lines in Wolf-Rayet stars. However, the spectral resolution of conventional astronomical spectrographs is still about two orders of magnitude too low to test this hypothesis. We want to resolve the linewidth of narrow spectral emissions in starlight. A combination of spectral filtering with single-photon-level temporal correlation measurements breaks the resolution limit of wavelength-dispersing spectrographs by moving the linewidth measurement into the time domain. We demonstrate in a laboratory experiment that temporal intensity interferometry can determine a 20-MHz-wide linewidth of Doppler-broadened laser light and identify a coherent laser light contribution in a blackbody radiation background.
Zhou, Yong; Zeng, Nan; Ji, Yanhong; Li, Yao; Dai, Xiangsong; Li, Peng; Duan, Lian; Ma, Hui; He, Yonghong
2011-01-01
We present a method of glucose concentration detection in the anterior chamber with a differential absorption optical low-coherent interferometry (LCI) technique. Back-reflected light from the iris, passing through the anterior chamber twice, was selectively obtained with the LCI technique. Two light sources, one centered within (1625 nm) and the other centered outside (1310 nm) of a glucose absorption band were used for differential absorption measurement. In the eye model and pig eye experiments, we obtained a resolution glucose level of 26.8 mg/dL and 69.6 mg/dL, respectively. This method has a potential application for noninvasive detection of glucose concentration in aqueous humor, which is related to the glucose concentration in blood. PMID:21280906
Adaptive optics and interferometry
NASA Technical Reports Server (NTRS)
Beichman, Charles A.; Ridgway, Stephen
1991-01-01
Adaptive optics and interferometry, two techniques that will improve the limiting resolution of optical and infrared observations by factors of tens or even thousands, are discussed. The real-time adjustment of optical surfaces to compensate for wavefront distortions will improve image quality and increase sensitivity. The phased operation of multiple telescopes separated by large distances will make it possible to achieve very high angular resolution and precise positional measurements. Infrared and optical interferometers that will manipulate light beams and measure interference directly are considered. Angular resolutions of single telescopes will be limited to around 10 milliarcseconds even using the adaptive optics techniques. Interferometry would surpass this limit by a factor of 100 or more. Future telescope arrays with 100-m baselines (resolution of 2.5 milliarcseconds at a 1-micron wavelength) are also discussed.
Optical interferometry and Gaia parallaxes for a robust calibration of the Cepheid distance scale
NASA Astrophysics Data System (ADS)
Kervella, Pierre; Mérand, Antoine; Gallenne, Alexandre; Trahin, Boris; Borgniet, Simon; Pietrzynski, Grzegorz; Nardetto, Nicolas; Gieren, Wolfgang
2018-04-01
We present the modeling tool we developed to incorporate multi-technique observations of Cepheids in a single pulsation model: the Spectro-Photo-Interferometry of Pulsating Stars (SPIPS). The combination of angular diameters from optical interferometry, radial velocities and photometry with the coming Gaia DR2 parallaxes of nearby Galactic Cepheids will soon enable us to calibrate the projection factor of the classical Parallax-of-Pulsation method. This will extend its applicability to Cepheids too distant for accurate Gaia parallax measurements, and allow us to precisely calibrate the Leavitt law's zero point. As an example application, we present the SPIPS model of the long-period Cepheid RS Pup that provides a measurement of its projection factor, using the independent distance estimated from its light echoes.
Spectrally controlled interferometry for measurements of flat and spherical optics
NASA Astrophysics Data System (ADS)
Salsbury, Chase; Olszak, Artur G.
2017-10-01
Conventional interferometry is widely used to measure spherical and at surfaces with nanometer level precision but is plagued by back reflections. We describe a new method of isolating the measurement surface by controlling spectral properties of the source (Spectrally Controlled Interferometry - SCI). Using spectral modulation of the interferometer's source enables formation of localized fringes where the optical path difference is non-zero. As a consequence it becomes possible to form white-light like fringes in common path interferometers, such as the Fizeau. The proposed setup does not require mechanical phase shifting, resulting in simpler instruments and the ability to upgrade existing interferometers. Furthermore, it allows absolute measurement of distance, including radius of curvature of lenses in a single setup with possibility of improving the throughput and removing some modes of failure.
NASA Astrophysics Data System (ADS)
Zhou, Yi; Tang, Yan; Deng, Qinyuan; Liu, Junbo; Wang, Jian; Zhao, Lixin
2017-08-01
Dimensional metrology for micro structure plays an important role in addressing quality issues and observing the performance of micro-fabricated products. In white light interferometry, the proposed method is expected to measure three-dimensional topography through modulation depth in spatial frequency domain. A normalized modulation depth is first obtained in the xy plane (image plane) for each CCD image individually. After that, the modulation depth of each pixel is analyzed along the scanning direction (z-axis) to reshape the topography of micro samples. Owing to the characteristics of modulation depth in broadband light interferometry, the method could effectively suppress the negative influences caused by light fluctuations and external irradiance disturbance. Both theory and experiments are elaborated in detail to verify that the modulation depth-based method can greatly level up the stability and sensitivity with satisfied precision in the measurement system. This technique can achieve an improved robustness in a complex measurement environment with the potential to be applied in online topography measurement such as chemistry and medical domains.
Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED
NASA Astrophysics Data System (ADS)
Guo, Rongli; Wang, Fan; Hu, Xiaoying; Yang, Wenqian
2017-11-01
Off-axis digital holographic interferometry with the light source of a light emitting diode (LED) is presented and its application for quantitative phase imaging in a large range with low noise is demonstrated. The scheme is implemented in a grating based Mach-Zehnder interferometer. To achieve off-axis interferometry, firstly, the collimated beam emitted from an LED is diffracted into multiple orders by a grating and they are split into two copies by a beam splitter; secondly, in the object arm the zero order of one copy is filtered in the Fourier plane and is reshaped to illuminate the sample, while in the reference arm one of its first order of another copy is selected to serve as the reference beam, and then an off-axis hologram can be obtained at the image plane. The main advantage stemming from an LED illumination is its high spatial phase resolution, due to the subdued speckle effect. The off-axis geometry enables one-shot recording of the hologram in the millisecond scale. The utility of the proposed setup is illustrated with measurements of a resolution target and part of a wing of green-lacewing, and dynamic evaporation process of an ethanol film.
27 CFR 447.21 - The U.S. Munitions Import List.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Support and Service Craft: (1) Tugs (YTB, YTL, YTM) (2) Tankers (YO, YOG, YW) (3) Lighters (YC, YCF, YCV, YF, YFN, YFNB, YFNX, YFR, YFRN, YFU, YG, YGN, YOGN, YON, YOS, YSR, YWN) (4) Floating Dry Docks (AFDB...) Icebreakers (WAGB) (4) Oceanography Vessels (WAGO) (5) Special Vessels (WIX) (6) Buoy Tenders (WLB, WLM, WLI...
Advanced wave field sensing using computational shear interferometry
NASA Astrophysics Data System (ADS)
Falldorf, Claas; Agour, Mostafa; Bergmann, Ralf B.
2014-07-01
In this publication we give a brief introduction into the field of Computational Shear Interferometry (CoSI), which allows for determining arbitrary wave fields from a set of shear interferograms. We discuss limitations of the method with respect to the coherence of the underlying wave field and present various numerical methods to recover it from its sheared representations. Finally, we show experimental results on Digital Holography of objects with rough surface using a fiber coupled light emitting diode and quantitative phase contrast imaging as well as numerical refocusing in Differential Interference Contrast (DIC) microscopy.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
NASA Astrophysics Data System (ADS)
Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.
2018-03-01
We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.
Classical analogues of two-photon quantum interference.
Kaltenbaek, R; Lavoie, J; Resch, K J
2009-06-19
Chirped-pulse interferometry (CPI) captures the metrological advantages of quantum Hong-Ou-Mandel (HOM) interferometry in a completely classical system. Modified HOM interferometers are the basis for a number of seminal quantum-interference effects. Here, the corresponding modifications to CPI allow for the first observation of classical analogues to the HOM peak and quantum beating. They also allow a new classical technique for generating phase super-resolution exhibiting a coherence length dramatically longer than that of the laser light, analogous to increased two-photon coherence lengths in entangled states.
Novel phase-locked electronic speckle pattern interferometry
NASA Astrophysics Data System (ADS)
Yue, Kaiduan; Zhang, Feng; Wang, Chuangshe; Tan, Yushan
1997-03-01
The theory, design, and characteristics of a Phase-locked Electronic Speckle Pattern Interferometry (ESPI) are described. The main principle of the Phase-lock system is to use the characteristics of spatial frequency of the object light to get the information of the phase of the objects' vibration and the disturbance of air. By using the information, we eliminate not only the influence of the objects' vibration, but also the influence of the disturbance of the air. So we can get more stable image of ESPI, and more reliable measurement result.
White Light Heterodyne Interferometry SNR
2015-04-09
interferometers in the visible- and near-IR, where shot - noise -limited detectors are available. In the LWIR, the advantage of a direct detection...wavebands where shot - noise -limited detection is possible with direct detection systems, the relationship changes in the mid-wave infrared (MWIR) and...flux, without either having to split the light N – 1 ways or take the extra shot - noise penalty from Fizeau beam combining light from all apertures
Phase-Shifted Laser Feedback Interferometry
NASA Technical Reports Server (NTRS)
Ovryn, Benjie
1999-01-01
Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.
Zhang, Jiwei; Di, Jianglei; Li, Ying; Xi, Teli; Zhao, Jianlin
2015-10-19
We present a method for dynamically measuring the refractive index distribution in a large range based on the combination of digital holographic interferometry and total internal reflection. A series of holograms, carrying the index information of mixed liquids adhered on a total reflection prism surface, are recorded with CCD during the diffusion process. Phase shift differences of the reflected light are reconstructed exploiting the principle of double-exposure holographic interferometry. According to the relationship between the reflection phase shift difference and the liquid index, two dimensional index distributions can be directly figured out, assuming that the index of air near the prism surface is constant. The proposed method can also be applied to measure the index of solid media and monitor the index variation during some chemical reaction processes.
Development of phase detection schemes based on surface plasmon resonance using interferometry.
Kashif, Muhammad; Bakar, Ahmad Ashrif A; Arsad, Norhana; Shaari, Sahbudin
2014-08-28
Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.
Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry
Kashif, Muhammad; Bakar, Ahmad Ashrif A.; Arsad, Norhana; Shaari, Sahbudin
2014-01-01
Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors. PMID:25171117
Satellite Communications for Coast Guard Homeland Defense
2002-03-01
WAN Wide Area Network WHEC High Endurance Cutter WIX Training Cutter WLB Seagoing Buoy Tenders WLI Inland Buoy Tenders WLIC...WMEC), Icebreakers (WAGB), and the Training Cutter ( WIX ) 9 MILSATCOM (UHF) Secure Voice, Record Message Traffic, Tactical data (OTIXICS...onboard CG vessels. [Ref. 3, p.19] By supporting different platforms throughout the CG fleet, we increase the complexity of the network, and thus
Variable ratio beam splitter for laser applications
NASA Technical Reports Server (NTRS)
Brown, R. M.
1971-01-01
Beam splitter employing birefringent optics provides either widely different or precisely equal beam ratios, it can be used with laser light source systems for interferometry of lossy media, holography, scattering measurements, and precise beam ratio applications.
Adaptive Nulling for Interferometric Detection of Planets
NASA Technical Reports Server (NTRS)
Lay, Oliver P.; Peters, Robert D.
2010-01-01
An adaptive-nulling method has been proposed to augment the nulling-optical- interferometry method of detection of Earth-like planets around distant stars. The method is intended to reduce the cost of building and aligning the highly precise optical components and assemblies needed for nulling. Typically, at the mid-infrared wavelengths used for detecting planets orbiting distant stars, a star is millions of times brighter than an Earth-sized planet. In order to directly detect the light from the planet, it is necessary to remove most of the light coming from the star. Nulling interferometry is one way to suppress the light from the star without appreciably suppressing the light from the planet. In nulling interferometry in its simplest form, one uses two nominally identical telescopes aimed in the same direction and separated laterally by a suitable distance. The light collected by the two telescopes is processed through optical trains and combined on a detector. The optical trains are designed such that the electric fields produced by an on-axis source (the star) are in anti-phase at the detector while the electric fields from the planet, which is slightly off-axis, combine in phase, so that the contrast ratio between the star and the planet is greatly decreased. If the electric fields from the star are exactly equal in amplitude and opposite in phase, then the star is effectively nulled out. Nulling is effective only if it is complete in the sense that it occurs simultaneously in both polarization states and at all wavelengths of interest. The need to ensure complete nulling translates to extremely tight demands upon the design and fabrication of the complex optical trains: The two telescopes must be highly symmetric, the reflectivities of the many mirrors in the telescopes and other optics must be carefully tailored, the optical coatings must be extremely uniform, sources of contamination must be minimized, optical surfaces must be nearly ideal, and alignments must be extremely precise. Satisfaction of all of these requirements entails substantial cost.
High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Huang, Yao-Ting; Chang, Pi-Bai
2006-10-01
The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.
An Overview of the StarLight Mission
NASA Technical Reports Server (NTRS)
Lay, Oliver; Blackwood, Gary; Dubovitsky, Serge; Duren, Riley
2004-01-01
An overview of the Starlight Mission is presented. Mission summary: June 2006 launch to heliocentric orbit; Nominal 6 month mission with option of additional 6 month extension; Validate autonomous formation flying system: range control to 10 cm bearing, control to 4 arcmin; Demonstrate formation flying optical interferometry.The original 3 spacecraft design did not fit the budget. 2 spacecraft concept demonstrates all key areas of formation flying interferometry. Collector flown on the surface of a virtual paraboloid, with combiner at the focus. It Gives a baseline of 125 m with a fixed delay of only 14 m.
Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.
2014-05-28
We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.
Non-contact angle measurement based on parallel multiplex laser feedback interferometry
NASA Astrophysics Data System (ADS)
Zhang, Song; Tan, Yi-Dong; Zhang, Shu-Lian
2014-11-01
We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non-cooperative targets. Experimental results show that PLFI has an accuracy of 8″ within a range of 1400″. The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A.
Dual exposure interferometry. [gas dynamics and flow visualization
NASA Technical Reports Server (NTRS)
Smeets, G.; George, A.
1982-01-01
The application of dual exposure differential interferometry to gas dynamics and flow visualization is discussed. A differential interferometer with Wallaston prisms can produce two complementary interference fringe systems, depending on the polarization of the incident light. If these two systems are superimposed on a film, with one exposure during a phenomenon, the other before or after, the phenomenon will appear on a uniform background. By regulating the interferometer to infinite fringe distance, a resolution limit of approximately lambda/500 can be obtained in the quantitative analysis of weak phase objects. This method was successfully applied to gas dynamic investigations.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Strum, R.; Stiles, D.
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
Liu, Y.; Strum, R.; Stiles, D.; ...
2017-11-20
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
NASA Technical Reports Server (NTRS)
Kersten, Ralf T. (Editor)
1990-01-01
Recent advances in fiber-optic sensor (FOS) technology are examined in reviews and reports. Sections are devoted to components for FOSs, special fibers for FOSs, interferometry, FOS applications, and sensing principles and influence. Particular attention is given to solder glass sealing technology for FOS packaging, the design of optical-fiber current sensors, pressure and temperature effects on beat length in highly birefringent optical fibers, a pressure FOS based on vibrating-quartz-crystal technology, remote sensing of flammable gases using a fluoride-fiber evanescent probe, a displacement sensor with electronically scanned white-light interferometer, the use of multimode laser diodes in low-coherence coupled-cavity interferometry, electronic speckle interferometry compensated for environmentally induced phase noise, a dual-resolution noncontact vibration and displacement sensor based on a two-wavelength source, and fiber optics in composite materials.
Near-Earth Object Astrometric Interferometry
NASA Technical Reports Server (NTRS)
Werner, Martin R.
2005-01-01
Using astrometric interferometry on near-Earth objects (NEOs) poses many interesting and difficult challenges. Poor reflectance properties and potentially no significant active emissions lead to NEOs having intrinsically low visual magnitudes. Using worst case estimates for signal reflection properties leads to NEOs having visual magnitudes of 27 and higher. Today the most sensitive interferometers in operation have limiting magnitudes of 20 or less. The main reason for this limit is due to the atmosphere, where turbulence affects the light coming from the target, limiting the sensitivity of the interferometer. In this analysis, the interferometer designs assume no atmosphere, meaning they would be placed at a location somewhere in space. Interferometer configurations and operational uncertainties are looked at in order to parameterize the requirements necessary to achieve measurements of low visual magnitude NEOs. This analysis provides a preliminary estimate of what will be required in order to take high resolution measurements of these objects using interferometry techniques.
Zhang, Yanyan; Zhao, Jianlin; Di, Jianglei; Jiang, Hongzhen; Wang, Qian; Wang, Jun; Guo, Yunzhu; Yin, Dachuan
2012-07-30
We report a real-time measurement method of the solution concentration variation during the growth of protein-lysozyme crystals based on digital holographic interferometry. A series of holograms containing the information of the solution concentration variation in the whole crystallization process is recorded by CCD. Based on the principle of double-exposure holographic interferometry and the relationship between the phase difference of the reconstructed object wave and the solution concentration, the solution concentration variation with time for arbitrary point in the solution can be obtained, and then the two-dimensional concentration distribution of the solution during crystallization process can also be figured out under the precondition which the refractive index is constant through the light propagation direction. The experimental results turns out that it is feasible to in situ, full-field and real-time monitor the crystal growth process by using this method.
A decade of innovation with laser speckle metrology
NASA Astrophysics Data System (ADS)
Ettemeyer, Andreas
2003-05-01
Speckle Pattern Interferometry has emerged from the experimental substitution of holographic interferometry to become a powerful problem solving tool in research and industry. The rapid development of computer and digital imaging techniques in combination with minaturization of the optical equipment led to new applications which had not been anticipated before. While classical holographic interferometry had always required careful consideration of the environmental conditions such as vibration, noise, light, etc. and could generally only be performed in the optical laboratory, it is now state of the art, to handle portable speckle measuring equipment at almost any place. During the last decade, the change in design and technique has dramatically influenced the range of applications of speckle metrology and opened new markets. The integration of recent research results into speckle measuring equipment has led to handy equipment, simplified the operation and created high quality data output.
A novel plasmonic interferometry and the potential applications
NASA Astrophysics Data System (ADS)
Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Chiangga, S.; Jaglan, J.; Amiri, I. S.; Yupapin, P.
2018-03-01
In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility) can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.
Polarization Effects Aboard the Space Interferometry Mission
NASA Technical Reports Server (NTRS)
Levin, Jason; Young, Martin; Dubovitsky, Serge; Dorsky, Leonard
2006-01-01
For precision displacement measurements, laser metrology is currently one of the most accurate measurements. Often, the measurement is located some distance away from the laser source, and as a result, stringent requirements are placed on the laser delivery system with respect to the state of polarization. Such is the case with the fiber distribution assembly (FDA) that is slated to fly aboard the Space Interferometry Mission (SIM) next decade. This system utilizes a concatenated array of couplers, polarizers and lengthy runs of polarization-maintaining (PM) fiber to distribute linearly-polarized light from a single laser to fourteen different optical metrology measurement points throughout the spacecraft. Optical power fluctuations at the point of measurement can be traced back to the polarization extinction ration (PER) of the concatenated components, in conjunction with the rate of change in phase difference of the light along the slow and fast axes of the PM fiber.
An accurate surface topography restoration algorithm for white light interferometry
NASA Astrophysics Data System (ADS)
Yuan, He; Zhang, Xiangchao; Xu, Min
2017-10-01
As an important measuring technique, white light interferometry can realize fast and non-contact measurement, thus it is now widely used in the field of ultra-precision engineering. However, the traditional recovery algorithms of surface topographies have flaws and limits. In this paper, we propose a new algorithm to solve these problems. It is a combination of Fourier transform and improved polynomial fitting method. Because the white light interference signal is usually expressed as a cosine signal whose amplitude is modulated by a Gaussian function, its fringe visibility is not constant and varies with different scanning positions. The interference signal is processed first by Fourier transform, then the positive frequency part is selected and moved back to the center of the amplitude-frequency curve. In order to restore the surface morphology, a polynomial fitting method is used to fit the amplitude curve after inverse Fourier transform and obtain the corresponding topography information. The new method is then compared to the traditional algorithms. It is proved that the aforementioned drawbacks can be effectively overcome. The relative error is less than 0.8%.
Statement on National WorkLife Priorities
Cherniack, Martin; Henning, Rob; Merchant, James A.; Punnett, Laura; Sorensen, Glorian R.; Wagner, Gregory
2018-01-01
The National Institute for Occupational Safety and Health (NIOSH) WorkLife Initiative (WLI) [http://www.cdc.gov/niosh/worklife] seeks to promote workplace programs, policies, and practices that result in healthier, more productive employees through a focus simultaneously on disease prevention, health promotion, and accommodations to age, family, and life stage. The Initiative incorporates the Institute’s foundational commitment to workplaces free of recognized hazards into broader consideration of the factors that affect worker health and wellbeing. Workplace hazards, such as physical demands, chemical exposures, and work organization, often interact with non-work factors such as family demands and health behaviors to increase health and safety risks. New workplace interventions being tested by the first three NIOSH WLI Centers of WorkLife Excellence are exploring innovative models for employee health programs to reduce the human, social, and economic costs of compromised health and quality of life. Many parties in industry, labor, and government share the goals of improving employee health while controlling health care costs. NIOSH convened a workshop in 2008 with representatives of the three Centers of Excellence to develop a comprehensive, long-range strategy for advancing the WorkLife Initiative. The recommendations below fall into three areas: practice, research, and policy. Responding to these recommendations would permit the WorkLife Center system to establish a new infrastructure for workplace prevention programs by compiling and disseminating the innovative practices being developed and tested at the Centers, and elsewhere. The WLI would also extend the customary scope of NIOSH by engaging with multiple NIH Institutes that are already generating research-to-practice programs involving the working-age population, in areas such as chronic disease prevention and management. Research to Practice (r2p) is a concept focused on the translation of research findings, technologies, and information into evidence-based prevention practices and products that are adopted in the workplace or other “real-world” settings. NIOSH’s goal is to overcome the translational issues that now prevent state-of-the-art occupational health, health promotion, and chronic disease research findings from benefiting working age populations immediately, regardless of workplace size, work sector, or region of the country. PMID:20949545
Gerber, Philipp A; Locher, Rebecca; Zuellig, Richard A; Tschopp, Oliver; Ajdler-Schaeffler, Evelyne; Kron, Philipp; Oberkofler, Christian; Brändle, Michael; Spinas, Giatgen A; Lehmann, Roger
2015-10-01
Long-term data of patients with type 1 diabetes mellitus (T1D) after simultaneous islet-kidney (SIK) or islet-after-kidney transplantation (IAK) are rare and have never been compared to intensified insulin therapy (IIT). Twenty-two patients with T1D and end-stage renal failure undergoing islet transplantation were compared to 70 patients matched for age and diabetes duration treated with IIT and to 13 patients with kidney transplantation alone or simultaneous pancreas-kidney after loss of pancreas function (waiting list for IAK [WLI]). Glycemic control, severe hypoglycemia, insulin requirement, and direct medical costs were analyzed. Glycated hemoglobin decreased significantly from 8.2 ± 1.5 to 6.7 ± 0.9% at the end of follow-up (mean 7.2 ± 2.5 years) in the SIK/IAK and remained constant in IIT (7.8 ± 1.0% and 7.6 ± 1.0) and WLI (7.8 ± 0.8 and 7.9 ± 1.0%). Daily insulin requirement decreased from 0.53 ± 0.15 to 0.29 ± 0.26 U/kg and remained constant in IIT (0.59 ± 0.19 and 0.58 ± 0.23 U/kg) and in WLI (0.76 ± 0.28 and 0.73 ± 0.11 U/kg). Severe hypoglycemia dropped in SIK/IAK from 4.5 ± 9.7 to 0.3 ± 0.7/patient-year and remained constant in IIT (0.1 ± 0.7 and 0.2 ± 0.8/patient-year). Detailed cost analysis revealed US $57,525 of additional cost for islet transplantation 5 years after transplantation. Based on a 5- and 10-year analysis, cost neutrality is assumed to be achieved 15 years after transplantation. This long-term cohort with more than 7 years of follow-up shows that glycemic control in patients with T1D after SIK/IAK transplantation improved, and the rate of severe hypoglycemia decreased significantly as compared to control groups. Cost analysis revealed that islet transplantation is estimated to be cost neutral at 15 years after transplantation.
NASA Astrophysics Data System (ADS)
de Castro, A.; Sepetys, A.; González, M.; Tabarés, F. L.
2018-04-01
Liquid metal (LM) divertor concepts explore an alternative solution to the challenging power/particle exhaust issues in future magnetic fusion reactors. Among them, lithium (Li) is the most promising material. Its use has shown important advantages in terms of improved H-mode plasma confinement and heat handling capabilities. In such scenario, a possible combination of tungsten (W) on the first wall and liquid Li on the divertor could be an acceptable solution, but several issues related to material compatibility remain open. In particular, the co-deposition of Li and hydrogen isotopes on W components could increase the associated tritium retention and represent a safety risk, especially if these co-deposits can uncontrollably grow in remote/plasma shadowed zones of the first wall. In this work, the retention of Li and deuterium (D) on tungsten at different surface temperature (200 °C-400 °C) has been studied by exposing W samples to Li evaporation under several D2 gaseous environments. Deuterium retention in the W-Li films has been quantified by using laser induced desorption-mass spectrometry (LID-QMS). Additional techniques as thermal desorption spectroscopy, secondary ion mass spectrometry, profilemetry and flame atomic emission spectroscopy were implemented to corroborate the retention results and for the qualitative and quantitative characterization of the films. The results showed a negligible (below LID sensibility) D uptake at T surface = 225 °C, when the W-Li layer is exposed to simultaneous Li evaporation and D2 gas exposition (0.67 Pa). Pre-lithiated samples were also exposed to higher D2 pressures (133.3 Pa) at different temperatures (200 °C-400 °C). A non-linear drastic reduction in the D retention with increasing temperatures was found on the W-Li films, presenting a D/Li atomic ratio at 400 °C lower than 0.1 at.% on a thin film of ≈100 nm thick. These results bode well (in terms of tritium inventory) for the potential utilization of this material combination in a real reactor scenario.
Statement on national worklife priorities.
Cherniack, Martin; Henning, Rob; Merchant, James A; Punnett, Laura; Sorensen, Glorian R; Wagner, Gregory
2011-01-01
The National Institute for Occupational Safety and Health (NIOSH) WorkLife Initiative (WLI) [http://www.cdc.gov/niosh/worklife] seeks to promote workplace programs, policies, and practices that result in healthier, more productive employees through a focus simultaneously on disease prevention, health promotion, and accommodations to age, family, and life stage. The Initiative incorporates the Institute's foundational commitment to workplaces free of recognized hazards into broader consideration of the factors that affect worker health and wellbeing. Workplace hazards, such as physical demands, chemical exposures, and work organization, often interact with non-work factors such as family demands and health behaviors to increase health and safety risks. New workplace interventions being tested by the first three NIOSH WLI Centers of WorkLife Excellence are exploring innovative models for employee health programs to reduce the human, social, and economic costs of compromised health and quality of life. Many parties in industry, labor, and government share the goals of improving employee health while controlling health care costs. NIOSH convened a workshop in 2008 with representatives of the three Centers of Excellence to develop a comprehensive, long-range strategy for advancing the WorkLife Initiative. The recommendations below fall into three areas: practice, research, and policy. Responding to these recommendations would permit the WorkLife Center system to establish a new infrastructure for workplace prevention programs by compiling and disseminating the innovative practices being developed and tested at the Centers, and elsewhere. The WLI would also extend the customary scope of NIOSH by engaging with multiple NIH Institutes that are already generating research-to-practice programs involving the working-age population, in areas such as chronic disease prevention and management. Research to Practice (r2p) is a concept focused on the translation of research findings, technologies, and information into evidence-based prevention practices and products that are adopted in the workplace or other "real-world" settings. NIOSH's goal is to overcome the translational issues that now prevent state-of-the-art occupational health, health promotion, and chronic disease research findings from benefiting working age populations immediately, regardless of workplace size, work sector, or region of the country. 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.
1998-12-01
We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.
Modeling of low-finesse, extrinsic fiber optic Fabry-Perot white light interferometers
NASA Astrophysics Data System (ADS)
Ma, Cheng; Tian, Zhipeng; Wang, Anbo
2012-06-01
This article introduces an approach for modeling the fiber optic low-finesse extrinsic Fabry-Pérot Interferometers (EFPI), aiming to address signal processing problems in EFPI demodulation algorithms based on white light interferometry. The main goal is to seek physical interpretations to correlate the sensor spectrum with the interferometer geometry (most importantly, the optical path difference). Because the signal demodulation quality and reliability hinge heavily on the understanding of such relationships, the model sheds light on optimizing the sensor performance.
ERIC Educational Resources Information Center
Eaton, Bruce G., Ed.
1981-01-01
Describes experiments and apparatus to: (1) allow astronomy students to test resolution limit of their eyes at several wavelengths; (2) analyze laser mode phases by interferometry; (3) demonstrate a Cartesian diver with an overhead projector; and (4) generate conical beams of light for smoke-chamber demonstrations. (JN)
Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry.
Winkler, Amy M; Bonnema, Garret T; Barton, Jennifer K
2011-06-10
Optical polarimetry is used in pharmaceutical drug testing and quality control for saccharide-containing products (juice, honey). More recently, it has been proposed as a method for noninvasive glucose sensing for diabetic patients. Sagnac interferometry is commonly used in optical gyroscopes, measuring minute Doppler shifts resulting from mechanical rotation. In this work, we demonstrate that Sagnac interferometers are also sensitive to optical rotation, or the rotation of linearly polarized light, and are therefore useful in optical polarimetry. Results from simulation and experiment show that Sagnac interferometers are advantageous in optical polarimetry as they are insensitive to net linear birefringence and alignment of polarization components.
Measurement of Poisson's ratio of nonmetallic materials by laser holographic interferometry
NASA Astrophysics Data System (ADS)
Zhu, Jian T.
1991-12-01
By means of the off-axis collimated plane wave coherent light arrangement and a loading device by pure bending, Poisson's ratio values of CFRP (carbon fiber-reinforced plactics plates, lay-up 0 degree(s), 90 degree(s)), GFRP (glass fiber-reinforced plactics plates, radial direction) and PMMA (polymethyl methacrylate, x, y direction) have been measured. In virtue of this study, the ministry standard for the Ministry of Aeronautical Industry (Testing method for the measurement of Poisson's ratio of non-metallic by laser holographic interferometry) has been published. The measurement process is fast and simple. The measuring results are reliable and accurate.
1989-09-01
energy polarized in the TE direction is couple ,’ out of the zero-order reflected beam . Careful variations of grating depth and profile must be...the necessary decrease in the ,ero-order reflected and transmitted beams . Yamashita et al. [22] treated the coupling prob~em wli:hin the Rayleigh...OC(koh) 2, increase in the SPW intensity with grating depth for shallow gratings, saturation of the SPW intensity at a coupling efficiency near 100
Rahayu, Rachmawati Noviana; Irawan, Bambang; Soegianto, Agoes
2016-01-01
This study measured the levels of total mercury (tHg) in the whole tissues of cockles (Anadara granosa and A. antiquata) harvested from three estuaries of Western Lombok Island (WLI), Indonesia. This paper also evaluated the hazard level posed by the mercury in relation to the maximum residual limit for human consumption and to estimate the weekly intake and compare it with the provisional tolerable weekly intake (PTWI). The tHg concentrations in A. granosa ranged from 0.020 to 0.070 mg kg(-1), and those in A. antiquata were between 0.032 and 0.077 mg kg(-1) at all locations. All samples of cockles harvested from WLI contain tHg below the permissible limit for human consumption. The maximum weekly intakes for total mercury by coastal people range from 0.28 to 1.08 µg kg(-1) b.w., and they are below the recommended values of PTWI (5.6 µg kg(-1) b.w.). If it is assumed that 100% of the Hg in cockles is methyl mercury (MeHg), consumption of the indicated amounts at the measured values wouldn't exceed the MeHg PTWI (1.6 µg kg(-1) b.w.).
Huang, Yi Fu; Ruan, Wen Hong; Lin, Dong Ling; Zhang, Ming Qiu
2017-01-11
Substituting conventional electrolyte for redox electrolyte has provided a new intriguing method for extending battery life. The efficiency of utilizing the contained redox species (RS) in the redox electrolyte can benefit from increasing the specific surface area of battery electrodes from the electrode side of the electrode-electrolyte interface, but is not limited to that. Herein, a new strategy using nanocomposite electrolyte is proposed to enlarge the interface with the aid of nanoinclusions from the electrolyte side. To do this, graphene oxide (GO) sheets are first dispersed in the electrolyte solution of tungstosilicic salt/lithium sulfate/poly(vinyl alcohol) (SiWLi/Li 2 SO 4 /PVA), and then the sheets are bridged to electrode, after casting and evaporating the solution on the electrode surface. By applying in situ conductive atomic force microscopy and Raman spectra, it is confirmed that the GO sheets doped with RS of SiWLi/Li 2 SO 4 can be bridged and electrically reduced as an extended electrode-electrolyte interface. As a result, the RS-coated GO sheets bridged to LiTi 2 (PO 4 ) 3 //LiMn 2 O 4 battery electrodes are found to deliver extra energy capacity (∼30 mAh/g) with excellent electrochemical cycling stability, which successfully extends the battery life by over 50%.
Methods to Measure, Predict and Relate Friction, Wear and Fuel Economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gravante, Steve; Fenske, George; Demas, Nicholas
High-fidelity measurements of the coefficient of friction and the parasitic friction power of the power cylinder components have been made for the Isuzu 5.2L 4H on-highway engine. In particular, measurements of the asperity friction coefficient were made with test coupons using Argonne National Lab’s (ANL) reciprocating test rig for the ring-on-liner and skirt-on-liner component pairs. These measurements correlated well with independent measurements made by Electro-Mechanical Associates (EMA). In addition, surface roughness measurements of the Isuzu components were made using white light interferometer (WLI). The asperity friction and surface characterization are key inputs to advanced CAE simulation tools such as RINGPAKmore » and PISDYN which are used to predict the friction power and wear rates of power cylinder components. Finally, motored friction tests were successfully performed to quantify the friction mean effective pressure (FMEP) of the power cylinder components for various oils (High viscosity 15W40, low viscosity 5W20 with friction modifier (FM) and specially blended oil containing consisting of PAO/ZDDP/MoDTC) at 25, 50, and 110°C.« less
Imaging of dental material by polarization-sensitive optical coherence tomography
NASA Astrophysics Data System (ADS)
Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.
1999-05-01
Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.
Development of a portable frequency-domain angle-resolved low coherence interferometry system
NASA Astrophysics Data System (ADS)
Pyhtila, John W.; Wax, Adam
2007-02-01
Improved methods for detecting dysplasia, or pre-cancerous growth, are a current clinical need. Random biopsy and subsequent diagnosis through histological analysis is the current gold standard in endoscopic surveillance for dysplasia. However, this approach only allows limited examination of the at-risk tissue and has the drawback of a long delay in time-to-diagnosis. In contrast, optical scattering spectroscopy methods offer the potential to assess cellular structure and organization in vivo, thus allowing for instantaneous diagnosis and increased coverage of the at-risk tissue. Angle-resolved low coherence interferometry (a/LCI), a novel scattering spectroscopy technique, combines the ability of low-coherence interferometry to isolate scattered light from sub-surface tissue layers with the ability of light scattering spectroscopy to obtain structural information on sub-wavelength scales, specifically by analyzing the angular distribution of the backscattered light. In application to examining tissue, a/LCI enables depthresolved quantitative measurements of changes in the size and texture of cell nuclei, which are characteristic biomarkers of dysplasia. The capabilities of a/LCI were demonstrated initially by detecting pre-cancerous changes in epithelial cells within intact, unprocessed, animal tissues. Recently, we have developed a new frequency-domain a/LCI system, with sub-second acquisition time and a novel fiber optic probe. Preliminary results using the fa/LCI system to examine human esophageal tissue in Barrett's esophagus patients demonstrate the clinical viability of the approach. In this paper, we present a new portable system which improves upon the design of the fa/LCI system to allow for higher quality data to be collected in the clinic. Accurate sizing of polystyrene microspheres and cell nuclei from ex vivo human esophageal tissue is presented. These results demonstrate the promise of a/LCI as a clinically viable diagnostic tool.
Studying the inner regions of young stars and their disks with aperture masking interferometry
NASA Astrophysics Data System (ADS)
Greenbaum, Alexandra; Sivaramakrishnan, Anand; GPI Instrument Team; NIRISS Instrument Team
2017-01-01
High resolution aperture masking interferometry complements coronagraphic imagers to provide a unique perspective on star and planet formation at more moderate contrast. By targeting young stars, especially those with disks, we aim to understand complex protoplanetary environments. Ground-based non-redundant masking (NRM) paired with spectrographs and polarimeters probes both thermally emitting young companions, possibly embedded in the disk or gap and scattered light in protoplanetary disks. And soon the community will have access to the most stable NRM conditions yet, with the Near Infrared Imager and Slitless Spectrograph (NIRISS) Aperture Masking Interferometry (AMI) mode on the James Webb Space Telescope. I will present my thesis work commissioning the Gemini Planet Imager’s NRM, highlighting results through both its spectroscopy and polarimetry modes, which set the stage for future space-based imaging. I will also give an overview of NIRISS-AMI capabilities and performance predictions for imaging young low-mass companions and disks, and how it will complement other instruments on JWST.
Isotope-selective high-order interferometry with large organic molecules in free fall
NASA Astrophysics Data System (ADS)
Rodewald, Jonas; Dörre, Nadine; Grimaldi, Andrea; Geyer, Philipp; Felix, Lukas; Mayor, Marcel; Shayeghi, Armin; Arndt, Markus
2018-03-01
Interferometry in the time domain has proven valuable for matter-wave based measurements. This concept has recently been generalized to cold molecular clusters using short-pulse standing light waves which realized photo-depletion gratings, arranged in a time-domain Talbot–Lau interferometer (OTIMA). Here we extend this idea further to large organic molecules and demonstrate a new scheme to scan the emerging molecular interferogram in position space. The capability of analyzing different isotopes of the same monomer under identical conditions opens perspectives for studying the interference fringe shift as a function of time in gravitational free fall. The universality of OTIMA interferometry allows one to handle a large variety of particles. In our present work, quasi-continuous laser evaporation allows transferring fragile organic molecules into the gas phase, covering more than an order of magnitude in mass between 614 amu and 6509 amu, i.e. 300% more massive than in previous OTIMA experiments. For all masses, we find about 30% fringe visibility.
Trägårdh, Johanna; Gersen, Henkjan
2013-07-15
We show how a combination of near-field scanning optical microscopy with crossed beam spectral interferometry allows a local measurement of the spectral phase and amplitude of light propagating in photonic structures. The method only requires measurement at the single point of interest and at a reference point, to correct for the relative phase of the interferometer branches, to retrieve the dispersion properties of the sample. Furthermore, since the measurement is performed in the spectral domain, the spectral phase and amplitude could be retrieved from a single camera frame, here in 70 ms for a signal power of less than 100 pW limited by the dynamic range of the 8-bit camera. The method is substantially faster than most previous time-resolved NSOM methods that are based on time-domain interferometry, which also reduced problems with drift. We demonstrate how the method can be used to measure the refractive index and group velocity in a waveguide structure.
NASA Astrophysics Data System (ADS)
Wang, Xiaoli; Yao, Youwei; Cao, Jian; Vaynman, Semyon; Graham, Michael E.; Liu, Tianchen; Ulmer, M. P.
2015-09-01
Our goal is to improve initially fabricated X-ray optics figures by applying a magnetic field to drive a magnetic smart material (MSM) coating on the non-reflecting side of the mirror. The consequent deformation of the surface should be three-dimensional. Here we will report on the results of working with a glass sample of 50x50x0.2 mm that has been coated with MSMs. The coated glass can be deformed in 3 dimensions and its surface profile was measured under our Zygo NewView white light interferometer (WLI). The driving magnetic field was produced via a pseudo-magnetic write head made up of two permanent magnet posts. The magnet posts were moved about the bottom of the glass sample with a 3-d computer controlled translation stage. The system allowed four degrees of freedom of motion, i.e., up and down, side to side, back and forth, and rotation of the posts (3.175 mm diameter) about the vertical axis to allow us to change the orientation of the magnetic field in the (horizontal) plane of the sample. We established a finite element analysis (FEA) model to predict deformations and compare with the observed results in order to guide the application of the magnetically controlled MSMs to improve the future X-ray optics figures.
NASA Astrophysics Data System (ADS)
Lorenz, Pierre; Zhao, Xiongtao; Ehrhardt, Martin; Zagoranskiy, Igor; Zimmer, Klaus; Han, Bing
2018-02-01
Large area, high speed, nanopatterning of surfaces by laser ablation is challenging due to the required high accuracy of the optical and mechanical systems fulfilling the precision of nanopatterning process. Utilization of self-organization approaches can provide an alternative decoupling spot precision and field of machining. The laser-induced front side etching (LIFE) and laser-induced back side dry etching (LIBDE) of fused silica were studied using single and double flash nanosecond laser pulses with a wavelength of 532 nm where the time delay Δτ of the double flash laser pulses was adjusted from 50 ns to 10 μs. The fused silica can be etched at both processes assisted by a 10 nm chromium layer where the etching depth Δz at single flash laser pulses is linear to the laser fluence and independent on the number of laser pulses, from 2 to 12 J/cm2, it is Δz = δLIFE/LIBDE . Φ with δLIFE 16 nm/(J/cm2) and δLIBDE 5.2 nm/(J/cm2) 3 . δLIFE. At double flash laser pulses, the Δz is dependent on the time delay Δτ of the laser pulses and the Δz slightly increased at decreasing Δτ. Furthermore, the surface nanostructuring of fused silica using IPSM-LIFE (LIFE using in-situ pre-structured metal layer) method with a single double flash laser pulse was tested. The first pulse of the double flash results in a melting of the metal layer. The surface tension of the liquid metal layer tends in a droplet formation process and dewetting process, respectively. If the liquid phase life time ΔtLF is smaller than the droplet formation time the metal can be "frozen" in an intermediated state like metal bare structures. The second laser treatment results in a evaporation of the metal and in a partial evaporation and melting of the fused silica surface, where the resultant structures in the fused silica surface are dependent on the lateral geometry of the pre-structured metal layer. A successful IPSM-LIFE structuring could be achieved assisted by a 20 nm molybdenum layer at Δτ >= 174 ns. That path the way for the high speed ultra-fast nanostructuring of dielectric surfaces by self-organizing processes. The different surface structures were analyzed by scanning electron microscopy (SEM) and white light interferometry (WLI).
Apodization of beams in an optical interferometer
NASA Technical Reports Server (NTRS)
Ames, Lawrence L. (Inventor); Dutta, Kalyan (Inventor)
2006-01-01
An interferometry apparatus comprises one or more beam generators, a detector, and a plurality of optical paths along which one or more beams of light propagate. Disposed along at least one of the optical paths is an apodization mask to shape one of the beams.
Refractive index measurements in absorbing media with white light spectral interferometry.
Arosa, Yago; Lago, Elena López; de la Fuente, Raúl
2018-03-19
White light spectral interferometry is applied to measure the refractive index in absorbing liquids in the spectral range of 400-1000 nm. We analyze the influence of absorption on the visibility of interferometric fringes and, accordingly, on the measurement of the refractive index. Further, we show that the refractive index in the absorption band can be retrieved by a two-step process. The procedure requires the use of two samples of different thickness, the thicker one to retrieve the refractive index in the transparent region and the thinnest to obtain the data in the absorption region. First, the refractive index values are retrieved with good accuracy in the transparent region of the material for 1-mm-thick samples. Second, these refractive index values serve also to precisely calculate the thickness of a thinner sample (~150 µm) since the accuracy of the methods depends strongly on the thickness of the sample. Finally, the refractive index is recovered for the entire spectral range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poilane, C.; Sandoz, P.; Departement d'Optique PM Duffieux, Institut FEMTO-ST, UMR CNRS 6174, Universite de Franche-Comte, 25030 Besancon, Cedex
2006-05-15
A double-side optical profilometer based on white-light interferometry was developed for thickness measurement of nontransparent films. The profile of the sample is measured simultaneously on both sides of the film. The resulting data allow the computation of the roughness, the flatness and the parallelism of the sides of the film, and the average thickness of the film. The key point is the apparatus calibration, i.e., the accurate determination of the distance between the reference mirrors of the complementary interferometers. Specific samples were processed for that calibration. The system is adaptable to various thickness scales as long as calibration can bemore » made accurately. A thickness accuracy better than 30 nm for films thinner than 200 {mu}m is reported with the experimental material used. In this article, we present the principle of the method as well as the calibration methodology. Limitation and accuracy of the method are discussed. Experimental results are presented.« less
Aknoun, Sherazade; Savatier, Julien; Bon, Pierre; Galland, Frédéric; Abdeladim, Lamiae; Wattellier, Benoit; Monneret, Serge
2015-01-01
Single-cell dry mass measurement is used in biology to follow cell cycle, to address effects of drugs, or to investigate cell metabolism. Quantitative phase imaging technique with quadriwave lateral shearing interferometry (QWLSI) allows measuring cell dry mass. The technique is very simple to set up, as it is integrated in a camera-like instrument. It simply plugs onto a standard microscope and uses a white light illumination source. Its working principle is first explained, from image acquisition to automated segmentation algorithm and dry mass quantification. Metrology of the whole process, including its sensitivity, repeatability, reliability, sources of error, over different kinds of samples and under different experimental conditions, is developed. We show that there is no influence of magnification or spatial light coherence on dry mass measurement; effect of defocus is more critical but can be calibrated. As a consequence, QWLSI is a well-suited technique for fast, simple, and reliable cell dry mass study, especially for live cells.
NASA Astrophysics Data System (ADS)
Aref, Seyed Hashem
2017-11-01
In this letter, the sensitivity to strain, curvature, and temperature of a sensor based on in-line fiber Mach-Zahnder interferometer (IFMZI) is studied and experimentally demonstrated. The sensing structure is simply a section of single mode fiber sandwiched between two abrupt tapers to achieve a compact IFMZI. The phase of interferometer changes with the measurand interaction, which is the basis for considering this structure for sensing. The physical parameter sensitivity of IFMZI sensor has been evaluated using differential white light interferometry (DWLI) technique as a phase read-out system. The differential configuration of the IFMZI sensor is used to achieve a high phase resolving power of ±0.062° for read-out interferometer by means of omission of phase noise of environment perturbations. The sensitivity of the sensor to the strain, curvature, and temperature has been measured 0.0199 degree/με, 757.00 degree/m-1, and 3.25 degree/°C, respectively.
Speckle interferometry of asteroids. I - 433 Eros
NASA Technical Reports Server (NTRS)
Drummond, J. D.; Cocke, W. J.; Hege, E. K.; Strittmatter, P. A.; Lambert, J. V.
1985-01-01
Analytical expressions are derived for the semimajor and semiminor axes and orientation angle of the ellipse projected by a triaxial asteroid, and the results are applied speckle-interferometry observations of the 433 Eros asteroid. The expressions were calculated as functions of the dimensions and pole of the body and of the asterocentric position of the earth and the sun. On the basis of the analytical expressions, the dimensions of 433 Eros are obtained. The light curve from December 18, 1981 is compared to the dimensions to obtain a geometric albedo of 0.156 (+ or - 0.010). A series of two-dimensional power spectra and autocorrelation functions for 433 Eros show that it is spinning in space.
Chromatic dispersion effects in ultra-low coherence interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lychagov, V V; Ryabukho, V P
2015-06-30
We consider the properties of an interference signal shift from zero-path-difference position in the presence of an uncompensated dispersive layer in one of the interferometer arms. It is experimentally shown that in using an ultra-low coherence light source, the formation of the interference signal is also determined by the group velocity dispersion, which results in a nonlinear dependence of the position of the interference signal on the geometrical thickness of the dispersive layer. The discrepancy in the dispersive layer and compensator refractive indices in the third decimal place is experimentally shown to lead to an interference signal shift that ismore » an order of magnitude greater than the pulse width. (interferometry)« less
Challenging the ‘Big G’ measurement with atoms and light
NASA Astrophysics Data System (ADS)
Rosi, Gabriele
2016-10-01
The measurement of the Newtonian gravity constant G is a formidable task. Starting from the first determination made by Henry Cavendish in 1798, several attempts have been made in order to improve knowledge of its value. Nevertheless, despite these efforts, its uncertainty has decreased only by a factor of ten per century. Cold atom interferometry represents a conceptually different technique to challenge the G measurement, a feature that is crucial in order to identify discrepancies among previous measurements. In this review paper, after a short introduction on the traditional measurement techniques, I will describe and discuss past and ongoing G determination based on atom interferometry, highlighting for each of them the most significant aspects.
NASA Astrophysics Data System (ADS)
Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh
2016-03-01
We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.
Genome-wide transcriptome profiling of nitrogen fixation in Paenibacillus sp. WLY78.
Shi, Hao-wen; Wang, Li-ying; Li, Xin-xin; Liu, Xiao-meng; Hao, Tian-yi; He, Xiao-juan; Chen, San-feng
2016-03-01
Diazotrophic (nitrogen-fixing) Gram-positive and endospore-formed Paenibacillus spp. have potential uses as a bacterial fertilizer in agriculture. The transcriptional analysis of nitrogen fixation in Paenibacillus is lacking, although regulation mechanisms of nitrogen fixation have been well studied in Gram-negative diazotrophs. Here we report a global transcriptional profiling analysis of nitrogen fixation in Paenibacillus sp. WLY78 cultured under N2-fixing condition (without O2 and NH4(+)) and non-N2-fixing condition (air and 100 mM NH4(+)). The nif (nitrogen fixation) gene operon composed of 9 genes (nifBHDKENXhesAnifV) in this bacterium was significantly up-regulated in N2-fixing condition compared to non-N2-fixing condition, indicating that nif gene transcription is strictly controlled by NH4(+) and O2. qRT-PCR confirmed that these nif genes were differently expressed. Non-nif genes specifically required in nitrogen fixation, such as mod, feoAB and cys encoding transporters of Mo, Fe and S atoms, were coordinately transcribed with nif genes in N2-fixing condition. The transcript abundance of suf operon specific for synthesis of Fe-S cluster was up-regulated in N2-fixing condition, suggesting that Sul system, which takes place of nifS and nifU, plays important role in the synthesis of nitrogenase. We discover potential specific electron transporters which might provide electron from Fe protein to MoFe protein of nitrogenase. The glnR whose predicted protein might mediate nif transcription regulation by NH4(+) is significantly up-regulated in N2-fixing condition. The transcription levels of nitrogen metabolism and anaerobic respiration were also analyzed. The nif gene operon (nifBHDKENXhesAnifV) in Paenibacillus sp. WLY78 is significantly up-regulated in N2-fixing condition compared to non-N2-fixing condition. Non-nif genes specifically required in nitrogen fixation were also significantly up-regulated in N2-fixing condition. Fur and Fnr which are involved in anaerobic regulation and GlnR which might mediate nif gene transcription regulation by NH4(+) were significantly up-regulated in N2-fixing condition. This study provides valuable insights into nitrogen fixation process and regulation in Gram-positive firmicutes.
NASA Astrophysics Data System (ADS)
Gravity Collaboration; Abuter, R.; Accardo, M.; Amorim, A.; Anugu, N.; Ávila, G.; Azouaoui, N.; Benisty, M.; Berger, J. P.; Blind, N.; Bonnet, H.; Bourget, P.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cassaing, F.; Chapron, F.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; de Wit, W.; de Zeeuw, P. T.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; Dexter, J.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Fédou, P.; Finger, G.; Garcia, P.; Garcia Dabo, C. E.; Garcia Lopez, R.; Gendron, E.; Genzel, R.; Gillessen, S.; Gonte, F.; Gordo, P.; Grould, M.; Grözinger, U.; Guieu, S.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haussmann, F.; Henning, Th.; Hippler, S.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jochum, L.; Jocou, L.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Klein, R.; Kok, Y.; Kolb, J.; Kulas, M.; Lacour, S.; Lapeyrère, V.; Lazareff, B.; Le Bouquin, J.-B.; Lèna, P.; Lenzen, R.; Lévêque, S.; Lippa, M.; Magnard, Y.; Mehrgan, L.; Mellein, M.; Mérand, A.; Moreno-Ventas, J.; Moulin, T.; Müller, E.; Müller, F.; Neumann, U.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Plewa, P. M.; Popovic, D.; Rabien, S.; Ramírez, A.; Ramos, J.; Rau, C.; Riquelme, M.; Rohloff, R.-R.; Rousset, G.; Sanchez-Bermudez, J.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Spyromilio, J.; Straubmeier, C.; Sturm, E.; Suarez, M.; Tristram, K. R. W.; Ventura, N.; Vincent, F.; Waisberg, I.; Wank, I.; Weber, J.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yazici, S.; Ziegler, D.; Zins, G.
2017-06-01
GRAVITY is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m2. The instrument comprises fiber fed integrated optics beam combination, high resolution spectroscopy, built-in beam analysis and control, near-infrared wavefront sensing, phase-tracking, dual-beam operation, and laser metrology. GRAVITY opens up to optical/infrared interferometry the techniques of phase referenced imaging and narrow angle astrometry, in many aspects following the concepts of radio interferometry. This article gives an overview of GRAVITY and reports on the performance and the first astronomical observations during commissioning in 2015/16. We demonstrate phase-tracking on stars as faint as mK ≈ 10 mag, phase-referenced interferometry of objects fainter than mK ≈ 15 mag with a limiting magnitude of mK ≈ 17 mag, minute long coherent integrations, a visibility accuracy of better than 0.25%, and spectro-differential phase and closure phase accuracy better than 0.5°, corresponding to a differential astrometric precision of better than ten microarcseconds (μas). The dual-beam astrometry, measuring the phase difference of two objects with laser metrology, is still under commissioning. First observations show residuals as low as 50 μas when following objects over several months. We illustrate the instrument performance with the observations of archetypical objects for the different instrument modes. Examples include the Galactic center supermassive black hole and its fast orbiting star S2 for phase referenced dual-beam observations and infrared wavefront sensing, the high mass X-ray binary BP Cru and the active galactic nucleus of PDS 456 for a few μas spectro-differential astrometry, the T Tauri star S CrA for a spectro-differential visibility analysis, ξ Tel and 24 Cap for high accuracy visibility observations, and η Car for interferometric imaging with GRAVITY.
Time-Delay Interferometry for Space-based Gravitational Wave Searches
NASA Technical Reports Server (NTRS)
Armstrong, J.; Estabrook, F.; Tinto, M.
1999-01-01
Ground-based, equal-arm-length laser interferometers are being built to measure high-frequency astrophysical graviatational waves. Because of the arm-length equality, laser light experiences the same delay in each arm and thus phase or frequency noise from the laser itself precisely cancels at the photodetector.
Method to Enhance the Operation of an Optical Inspection Instrument Using Spatial Light Modulators
NASA Technical Reports Server (NTRS)
Trolinger, James; Lal, Amit; Jo, Joshua; Kupiec, Stephen
2012-01-01
For many aspheric and freeform optical components, existing interferometric solutions require a custom computer-generated hologram (CGH) to characterize the part. The overall objective of this research is to develop hardware and a procedure to produce a combined, dynamic, Hartmann/ Digital Holographic interferometry inspection system for a wide range of advanced optical components, including aspheric and freeform optics. This new instrument would have greater versatility and dynamic range than currently available measurement systems. The method uses a spatial light modulator to pre-condition wavefronts for imaging, interferometry, and data processing to improve the resolution and versatility of an optical inspection instrument. Existing interferometers and Hartmann inspection systems have either too small a dynamic range or insufficient resolution to characterize conveniently unusual optical surfaces like aspherical and freeform optics. For interferometers, a specially produced, computer-generated holographic optical element is needed to transform the wavefront to within the range of the interferometer. A new hybrid wavefront sensor employs newly available spatial light modulators (SLMs) as programmable holographic optical elements (HOEs). The HOE is programmed to enable the same instrument to inspect an optical element in stages, first by a Hartmann measurement, which has a very large dynamic range but less resolution. The first measurement provides the information required to precondition a reference wave that avails the measurement process to the more precise phase shifting interferometry. The SLM preconditions a wavefront before it is used to inspect an optical component. This adds important features to an optical inspection system, enabling not just wavefront conditioning for null testing and dynamic range extension, but also the creation of hybrid measurement procedures. This, for example, allows the combination of dynamic digital holography and Hartmann sensing procedures to cover a virtually unlimited dynamic range with high resolution. Digital holography technology brings all of the power and benefits of digital holographic interferometry to the requirement, while Hartmann-type wavefront sensors bring deflectometry technologies to the solution. The SLM can be used to generate arbitrary wavefronts in one leg of the interferometer, thereby greatly simplifying its use and extending its range. The SLM can also be used to modify the system into a dynamic Shack-Hartmann system, which is useful for optical components with large amounts of slope. By integrating these capabilities into a single instrument, the system will have tremendous flexibility to measure a variety of optical shapes accurately.
Laser interferometry force-feedback sensor for an interfacial force microscope
Houston, Jack E.; Smith, William L.
2004-04-13
A scanning force microscope is provided with a force-feedback sensor to increase sensitivity and stability in determining interfacial forces between a probe and a sample. The sensor utilizes an interferometry technique that uses a collimated light beam directed onto a deflecting member, comprising a common plate suspended above capacitor electrodes situated on a substrate forming an interference cavity with a probe on the side of the common plate opposite the side suspended above capacitor electrodes. The probe interacts with the surface of the sample and the intensity of the reflected beam is measured and used to determine the change in displacement of the probe to the sample and to control the probe distance relative to the surface of the sample.
Sensitivity of Atom Interferometry to Ultralight Scalar Field Dark Matter.
Geraci, Andrew A; Derevianko, Andrei
2016-12-23
We discuss the use of atom interferometry as a tool to search for dark matter (DM) composed of virialized ultralight fields (VULFs). Previous work on VULF DM detection using accelerometers has considered the possibility of equivalence-principle-violating effects whereby gradients in the dark matter field can directly produce relative accelerations between media of differing composition. In atom interferometers, we find that time-varying phase signals induced by coherent oscillations of DM fields can also arise due to changes in the atom rest mass that can occur between light pulses throughout the interferometer sequence as well as changes in Earth's gravitational field. We estimate that several orders of magnitude of unexplored phase space for VULF DM couplings can be probed due to these new effects.
Fercher, A; Hitzenberger, C; Sticker, M; Zawadzki, R; Karamata, B; Lasser, T
2001-12-03
Dispersive samples introduce a wavelength dependent phase distortion to the probe beam. This leads to a noticeable loss of depth resolution in high resolution OCT using broadband light sources. The standard technique to avoid this consequence is to balance the dispersion of the sample byarrangingadispersive materialinthereference arm. However, the impact of dispersion is depth dependent. A corresponding depth dependent dispersion balancing technique is diffcult to implement. Here we present a numerical dispersion compensation technique for Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) based on numerical correlation of the depth scan signal with a depth variant kernel. It can be used a posteriori and provides depth dependent dispersion compensation. Examples of dispersion compensated depth scan signals obtained from microscope cover glasses are presented.
Zhu, Yizheng; Terry, Neil G; Wax, Adam
2012-01-01
Angle-resolved low-coherence interferometry (a/LCI) is an optical biopsy technique that measures scattered light from tissue to determine nuclear size with submicron-level accuracy. The a/LCI probe can be deployed through the accessory channel of a standard endoscope and provides feedback to physicians to guide physical biopsies. The technique has been validated in animal and ex vivo human studies, and has been used to detect dysplasia in Barrett’s esophagus patients in vivo. In a recent clinical study of 46 Barrett’s esophagus patients, a/LCI was able to detect dysplasia with 100% sensitivity and 84% specificity. This report reviews the technique and discusses its potential clinical utility. PMID:22149580
Portable Holographic Interferometry Testing System: Application to crack patching quality control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heslehurst, R.B.; Baird, J.P.; Williamson, H.M.
Over recent years the repair of metallic structures has been improved through the use of patches fabricated from composite materials and adhesively bonded to the damaged area. This technology is termed crack patching, and has been successfully and extensively used by the RAAF and the USAF. However, application of the technology to civilian registered aircraft has had limited success due to the apparent lack of suitable quality assurance testing methods and the airworthiness regulators concern overpatch adhesion integrity. Holographic interferometry has previously shown the advantages of detecting out-of-plane deformations of the order of the wavelength of light (1{mu}). Evidence willmore » be presented that holography is able to detect changes in load path due to debonds and weakened adhesion in an adhesively bonded patch. A Portable Holographic Interferometry Testing System (PHITS) which overcomes the vibration isolation problem associated with conventional holography techniques has been developed. The application of PHITS to crack patching technology now provides a suitable method to verify the integrity of bonded patches in-situ.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedermann, G. W.; McGuinness, H. J.; Rakholia, A. V.
Here, we demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. Lastly, this interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.
The Light Microscopy Module: An On-Orbit Multi-User Microscope Facility
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Snead, John H.
2002-01-01
The Light Microscopy Module (LMM) is planned as a remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and operation of fluids and biology experiments within the Fluids and Combustion Facility (FCF) Fluids Integrated Rack (FIR) on the International Space Station (ISS). The LMM will be the first integrated payload with the FIR to conduct four fluid physics experiments. A description of the LMM diagnostic capabilities, including video microscopy, interferometry, laser tweezers, confocal, and spectrophotometry, will be provided.
NASA Astrophysics Data System (ADS)
Zhou, Yunfei; Cai, Hongzhi; Zhong, Liyun; Qiu, Xiang; Tian, Jindong; Lu, Xiaoxu
2017-05-01
In white light scanning interferometry (WLSI), the accuracy of profile measurement achieved with the conventional zero optical path difference (ZOPD) position locating method is closely related with the shape of interference signal envelope (ISE), which is mainly decided by the spectral distribution of illumination source. For a broadband light with Gaussian spectral distribution, the corresponding shape of ISE reveals a symmetric distribution, so the accurate ZOPD position can be achieved easily. However, if the spectral distribution of source is irregular, the shape of ISE will become asymmetric or complex multi-peak distribution, WLSI cannot work well through using ZOPD position locating method. Aiming at this problem, we propose time-delay estimation (TDE) based WLSI method, in which the surface profile information is achieved by using the relative displacement of interference signal between different pixels instead of the conventional ZOPD position locating method. Due to all spectral information of interference signal (envelope and phase) are utilized, in addition to revealing the advantage of high accuracy, the proposed method can achieve profile measurement with high accuracy in the case that the shape of ISE is irregular while ZOPD position locating method cannot work. That is to say, the proposed method can effectively eliminate the influence of source spectrum.
Digital holographic interferometry applied to the investigation of ignition process.
Pérez-Huerta, J S; Saucedo-Anaya, Tonatiuh; Moreno, I; Ariza-Flores, D; Saucedo-Orozco, B
2017-06-12
We use the digital holographic interferometry (DHI) technique to display the early ignition process for a butane-air mixture flame. Because such an event occurs in a short time (few milliseconds), a fast CCD camera is used to study the event. As more detail is required for monitoring the temporal evolution of the process, less light coming from the combustion is captured by the CCD camera, resulting in a deficient and underexposed image. Therefore, the CCD's direct observation of the combustion process is limited (down to 1000 frames per second). To overcome this drawback, we propose the use of DHI along with a high power laser in order to supply enough light to increase the speed capture, thus improving the visualization of the phenomenon in the initial moments. An experimental optical setup based on DHI is used to obtain a large sequence of phase maps that allows us to observe two transitory stages in the ignition process: a first explosion which slightly emits visible light, and a second stage induced by variations in temperature when the flame is emerging. While the last stage can be directly monitored by the CCD camera, the first stage is hardly detected by direct observation, and DHI clearly evidences this process. Furthermore, our method can be easily adapted for visualizing other types of fast processes.
Hybrid shearing and phase-shifting point diffraction interferometer
Goldberg, Kenneth Alan; Naulleau, Patrick P.
2003-06-03
A new interferometry configuration combines the strengths of two existing interferometry methods, improving the quality and extending the dynamic range of both. On the same patterned mask, placed near the image-plane of an optical system under test, patterns for phase-shifting point diffraction interferometry and lateral shearing interferometry coexist. The former giving verifiable high accuracy for the measurement of nearly diffraction-limited optical systems. The latter enabling the measurement of optical systems with more than one wave of aberration in the system wavefront. The interferometry configuration is a hybrid shearing and point diffraction interferometer system for testing an optical element that is positioned along an optical path including: a source of electromagnetic energy in the optical path; a first beam splitter that is secured to a device that includes means for maneuvering the first beam splitter in a first position wherein the first beam splitter is in the optical path dividing light from the source into a reference beam and a test beam and in a second position wherein the first beam splitter is outside the optical path: a hybrid mask which includes a first section that defines a test window and at least one reference pinhole and a second section that defines a second beam splitter wherein the hybrid mask is secured to a device that includes means for maneuvering either the first section or the second section into the optical path positioned in an image plane that is created by the optical element, with the proviso that the first section of the hybrid mask is positioned in the optical path when first beam splitter is positioned in the optical path; and a detector positioned after the hybrid mask along the optical path.
1987-05-01
Maintarer.e ground water 2 scil borinF 8 hand auger 12 Disna:-e Area No. 10 (DA-10) - Entomology Bldg UO soil boring 6 13 Landfil: Nc. 1 (LF-1) ground...l’JSZIL I ’ SCIL SO V ; 7 ILill ( oi[ ;Q0 SO IL. $;I 60 . *O (3 .1 *, W i ; Q,. t.t WLi it hI OX aoPit IV 3 ’ Table F-1 (Cont.) 6OIOOtO LAB WPLIAT
Improved self-reliance shearing interferometric technique for collimation testing
NASA Astrophysics Data System (ADS)
Zhao, Mingshan; Li, Guohua; Wang, Zhaobing; Jing, Yaling; Li, Yi
1995-06-01
Self-reference single plate shearing interferometric technique used for collimation testing of light beams are briefly reviewed. Two improved configurations of this self-reference interferometry with an inclined screen and matched half-field interferograms are described in detail. Sensitivity of these configurations is analyzed and compared with that of the existing ones.
Fourier-domain angle-resolved low coherence interferometry for clinical detection of dysplasia
NASA Astrophysics Data System (ADS)
Terry, Neil G.; Zhu, Yizheng; Wax, Adam
2010-02-01
Improved methods for detecting dysplasia, or pre-cancerous growth are a current clinical need, particularly in the esophagus. The currently accepted method of random biopsy and histological analysis provides only a limited examination of tissue in question while being coupled with a long time delay for diagnosis. Light scattering spectroscopy, in contrast, allows for inspection of the cellular structure and organization of tissue in vivo. Fourier-domain angle-resolved low-coherence interferometry (a/LCI) is a novel light scattering spectroscopy technique that provides quantitative depth-resolved morphological measurements of the size and optical density of the examined cell nuclei, which are characteristic biomarkers of dysplasia. Previously, clinical viability of the a/LCI system was demonstrated through analysis of ex vivo human esophageal tissue in Barrett's esophagus patients using a portable a/LCI, as was the development of a clinical a/LCI system. Data indicating the feasibility of the technique in other organ sites (colon, oral cavity) will be presented. We present an adaptation of the a/LCI system that will be used to investigate the presence of dysplasia in vivo in Barrett's esophagus patients.
TOPSIS based parametric optimization of laser micro-drilling of TBC coated nickel based superalloy
NASA Astrophysics Data System (ADS)
Parthiban, K.; Duraiselvam, Muthukannan; Manivannan, R.
2018-06-01
The technique for order of preference by similarity ideal solution (TOPSIS) approach was used for optimizing the process parameters of laser micro-drilling of nickel superalloy C263 with Thermal Barrier Coating (TBC). Plasma spraying was used to deposit the TBC and a pico-second Nd:YAG pulsed laser was used to drill the specimens. Drilling angle, laser scan speed and number of passes were considered as input parameters. Based on the machining conditions, Taguchi L8 orthogonal array was used for conducting the experimental runs. The surface roughness and surface crack density (SCD) were considered as the output measures. The surface roughness was measured using 3D White Light Interferometer (WLI) and the crack density was measured using Scanning Electron Microscope (SEM). The optimized result achieved from this approach suggests reduced surface roughness and surface crack density. The holes drilled at an inclination angle of 45°, laser scan speed of 3 mm/s and 400 number of passes found to be optimum. From the Analysis of variance (ANOVA), inclination angle and number of passes were identified as the major influencing parameter. The optimized parameter combination exhibited a 19% improvement in surface finish and 12% reduction in SCD.
NASA Astrophysics Data System (ADS)
Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.
2015-08-01
Context. A long-held vision has been to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, and reveal interacting gas flows in binary systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and also used for intensity interferometry. Second-order spatial coherence of light is obtained by cross correlating intensity fluctuations measured in different pairs of telescopes. With no optical links between them, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are approximately one meter, making the method practically immune to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Aims: Previous theoretical modeling has shown that full images should be possible to retrieve from observations with such telescope arrays. This project aims at verifying diffraction-limited imaging experimentally with groups of detached and independent optical telescopes. Methods: In a large optics laboratory, artificial stars (single and double, round and elliptic) were observed by an array of small telescopes. Using high-speed photon-counting solid-state detectors and real-time electronics, intensity fluctuations were cross-correlated over up to 180 baselines between pairs of telescopes, producing coherence maps across the interferometric Fourier-transform plane. Results: These interferometric measurements were used to extract parameters about the simulated stars, and to reconstruct their two-dimensional images. As far as we are aware, these are the first diffraction-limited images obtained from an optical array only linked by electronic software, with no optical connections between the telescopes. Conclusions: These experiments serve to verify the concepts for long-baseline aperture synthesis in the optical, somewhat analogous to radio interferometry.
Optical Multi-Channel Intensity Interferometry - Or: How to Resolve O-Stars in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Trippe, Sascha; Kim, Jae-Young; Lee, Bangwon; Choi, Changsu; Oh, Junghwan; Lee, Taeseok; Yoon, Sung-Chul; Im, Myungshin; Park, Yong-Sun
2014-12-01
Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as m_R≈14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass--radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade--Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.
The generation of higher-order Laguerre-Gauss optical beams for high-precision interferometry.
Carbone, Ludovico; Fulda, Paul; Bond, Charlotte; Brueckner, Frank; Brown, Daniel; Wang, Mengyao; Lodhia, Deepali; Palmer, Rebecca; Freise, Andreas
2013-08-12
Thermal noise in high-reflectivity mirrors is a major impediment for several types of high-precision interferometric experiments that aim to reach the standard quantum limit or to cool mechanical systems to their quantum ground state. This is for example the case of future gravitational wave observatories, whose sensitivity to gravitational wave signals is expected to be limited in the most sensitive frequency band, by atomic vibration of their mirror masses. One promising approach being pursued to overcome this limitation is to employ higher-order Laguerre-Gauss (LG) optical beams in place of the conventionally used fundamental mode. Owing to their more homogeneous light intensity distribution these beams average more effectively over the thermally driven fluctuations of the mirror surface, which in turn reduces the uncertainty in the mirror position sensed by the laser light. We demonstrate a promising method to generate higher-order LG beams by shaping a fundamental Gaussian beam with the help of diffractive optical elements. We show that with conventional sensing and control techniques that are known for stabilizing fundamental laser beams, higher-order LG modes can be purified and stabilized just as well at a comparably high level. A set of diagnostic tools allows us to control and tailor the properties of generated LG beams. This enabled us to produce an LG beam with the highest purity reported to date. The demonstrated compatibility of higher-order LG modes with standard interferometry techniques and with the use of standard spherical optics makes them an ideal candidate for application in a future generation of high-precision interferometry.
Stellar Temporal Intensity Interferometry
NASA Astrophysics Data System (ADS)
Kian, Tan Peng
Stellar intensity interferometry was developed by Hanbury-Brown & Twiss [1954, 1956b, 1957, 1958] to bypass the diffraction limit of telescope apertures, with successful measurements including the determination of 32 stellar angular diameters using the Narrabri Stellar Intensity Interferometer [Hanbury-Brown et al., 1974]. This was achieved by measuring the intensity correlations between starlight received by a pair of telescopes separated by varying baselines b which, by invoking the van Cittert-Zernicke theorem [van Cittert, 1934; Zernicke, 1938], are related to the angular intensity distributions of the stellar light sources through a Fourier transformation of the equal-time complex degree of coherence gamma(b) between the two telescopes. This intensity correlation, or the second order correlation function g(2) [Glauber, 1963], can be described in terms of two-photoevent coincidence measurements [Hanbury-Brown, 1974] for our use of photon-counting detectors. The application of intensity interferometry in astrophysics has been largely restricted to the spatial domain but not found widespread adoption due to limitations by its signal-to-noise ratio [Davis et al., 1999; Foellmi, 2009; Jensen et al., 2010; LeBohec et al., 2008, 2010], although there is a growing movement to revive its use [Barbieri et al., 2009; Capraro et al., 2009; Dravins & Lagadec, 2014; Dravins et al., 2015; Dravins & LeBohec, 2007]. In this thesis, stellar intensity interferometry in the temporal domain is investigated instead. We present a narrowband spectral filtering scheme [Tan et al., 2014] that allows direct measurements of the Lorentzian temporal correlations, or photon bunching, from the Sun, with the preliminary Solar g(2)(tau = 0) = 1.3 +/- 0.1, limited mostly by the photon detector response [Ghioni et al., 2008], compared to the theoretical value of g(2)(0) = 2. The measured temporal photon bunching signature of the Sun exceeded the previous records of g(2)(0) = 1.03 [Karmakar et al., 2012] and g(2)(0) = 1.04 [Liu et al., 2014] by an order of magnitude. In order to study possible effects of atmospheric turbulence [Blazej et al., 2008; Cavazzani et al., 2012; Dravins et al., 1997] on temporal intensity interferometry, the filtering scheme was improved so that the required integration time of measurement reduced from 45 minutes previously to only 4 minutes, which allowed for timing correlation measurements of Sunlight in 1° intervals of elevation angular position to probe the atmospheric dependence. The instruments were used to measure the temporal photon bunching signal of the Sun from 11:36 am to 5:36 pm, covering Solar elevation angles from approximately 70° just before noon to about 20° by the evening, corresponding to different depths of atmospheric air column [Bennett, 1982; Marini & Murray, 1973] the sunlight passed through. The thereby obtained Solar g (2)(tau = 0) = 1.693 +/- 0.003 exceeded our previous record, due to improved suppression of the blackbody spectrum outside the target bandwidth. The Solar photon bunching signature was compatible with control measurements of an Argon arc lamp with g(2)(tau = 0) = 1.687 +/- 0.004, which served as a blackbody light source of temperature T = 6000K. This suggests that the atmospheric and weather conditions have no measurable effects on temporal intensity interferometry for a 2GHz optical bandwidth after narrowband spectral filtering. The instruments were exposed to a light source simulating astrophysical scenarios, created by mixing the blackbody radiation from the Argon arc lamp with laser light at 513.8 nm. The spectral filtering scheme was able to isolate the laser light by filtering the blackbody spectrum to only Deltanu FWHM ≈ 2GHz and thus suppressing the blackbody contribution to the order of 104 photoevents/sec. The instruments were thus able to identify coherent laser light contributions of 3 x 10 4 photoevents/sec within the blackbody spectrum, which is a situation that Optical SETI [Drake, 1961; Dyson, 1960; Forgan, 2014; Korpela et al., 2011; Merali, 2015; Sagan & Drake, 1975; Townes, 1983] may have to identify. The final scenario tested was to identify the laser light at 513.8 nm that has been Doppler broadened by a suspension of mono-dispersive microspheres [Dravins & Lagadec, 2014; Dravins et al., 2015]. We found that g(2)(0) = 1.227 +/- 0.005 and determined the coherence time of the broadened laser signal to be tauc = 44 +/- 2 ns, corresponding to a linewidth of about 23MHz which is comparable to the predicted linewidth values for natural lasers [Dravins & Germana, 2008; Griest et al., 2010; Johansson & Letokhov, 2005; Roche et al., 2012; Strelnitski et al., 1995; Taylor, 1983; Tellis & Marcy, 2015]. These results suggest that the narrowband spectral filtering technique developed in this thesis may provide a useful tool for revisiting intensity correlation measurements in astronomy again.
A wide angle low coherence interferometry based eye length optometer
NASA Astrophysics Data System (ADS)
Meadway, Alexander; Siegwart, John; Wildsoet, Christine; Norton, Thomas; Zhang, Yuhua
2015-03-01
Interest in eye growth regulation has burgeoned with the rise in myopia prevalence world-wide. Eye length and eye shape are fundamental metrics for related research, but current in vivo measurement techniques are generally limited to the optical axis of the eye. We describe a high resolution, time domain low coherence interferometry based optometer for measuring the eye length of small animals over a wide field of view. The system is based upon a Michelson interferometer using a superluminescent diode as a source, including a sample arm and a reference arm. The sample arm is split into two paths by a polarisation beam splitter; one focuses the light on the cornea and the other focuses the light on the retina. This method has a high efficiency of detection for reflections from both surfaces. The reference arm contains a custom high speed linear motor with 25 mm stroke and equipped with a precision displacement encoder. Light reflected from the cornea and the retina is combined with the reference beam to generate low coherence interferograms. Two galvo scanners are employed to steer the light to different angles so that the eye length over a field of view of 20° × 20° can be measured. The system has an axial resolution of 6.8 μm (in air) and the motor provides accurate movement, allowing for precise and repeatable measurement of coherence peak positions. Example scans from a tree shrew are presented.
Unequal-Arm Interferometry and Ranging in Space
NASA Technical Reports Server (NTRS)
Tinto, Massimo
2005-01-01
Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (millihertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-traveltimes will necessarily be unequal, time-varying, and (due to aberration) have different time delays on up- and down-links. By using knowledge of the inter-spacecraft light-travel-times and their time evolution it is possible to cancel in post-processing the otherwise dominant laser phase noise and obtain a variety of interferometric data combinations sensitive to gravitational radiation. This technique, which has been named Time-Delay Interferometry (TDI), can be implemented with constellations of three or more formation-flying spacecraft that coherently track each other. As an example application we consider the Laser Interferometer Space Antenna (LISA) mission and show that TDI combinations can be synthesized by properly time-shifting and linearly combining the phase measurements performed on board the three spacecraft. Since TDI exactly suppresses the laser noises when the delays coincide with the light-travel-times, we then show that TDI can also be used for estimating the time-delays needed for its implementation. This is done by performing a post-processing non-linear minimization procedure, which provides an effective, powerful, and simple way for making measurements of the inter-spacecraft light-travel-times. This processing technique, named Time-Delay Interferometric Ranging (TDIR), is highly accurate in estimating the time-delays and allows TDI to be successfully implemented without the need of a dedicated ranging subsystem.
Vacuum-Compatible Wideband White Light and Laser Combiner Source System
NASA Technical Reports Server (NTRS)
Azizi, Alineza; Ryan, Daniel J.; Tang, Hong; Demers, Richard T.; Kadogawa, Hiroshi; An, Xin; Sun, George Y.
2010-01-01
For the Space Interferometry Mission (SIM) Spectrum Calibration Development Unit (SCDU) testbed, wideband white light is used to simulate starlight. The white light source mount requires extremely stable pointing accuracy (<3.2 microradians). To meet this and other needs, the laser light from a single-mode fiber was combined, through a beam splitter window with special coating from broadband wavelengths, with light from multimode fiber. Both lights were coupled to a photonic crystal fiber (PCF). In many optical systems, simulating a point star with broadband spectrum with stability of microradians for white light interferometry is a challenge. In this case, the cameras use the white light interference to balance two optical paths, and to maintain close tracking. In order to coarse align the optical paths, a laser light is sent into the system to allow tracking of fringes because a narrow band laser has a great range of interference. The design requirements forced the innovators to use a new type of optical fiber, and to take a large amount of care in aligning the input sources. The testbed required better than 1% throughput, or enough output power on the lowest spectrum to be detectable by the CCD camera (6 nW at camera). The system needed to be vacuum-compatible and to have the capability for combining a visible laser light at any time for calibration purposes. The red laser is a commercially produced 635-nm laser 5-mW diode, and the white light source is a commercially produced tungsten halogen lamp that gives a broad spectrum of about 525 to 800 nm full width at half maximum (FWHM), with about 1.4 mW of power at 630 nm. A custom-made beam splitter window with special coating for broadband wavelengths is used with the white light input via a 50-mm multi-mode fiber. The large mode area PCF is an LMA-8 made by Crystal Fibre (core diameter of 8.5 mm, mode field diameter of 6 mm, and numerical aperture at 625 nm of 0.083). Any science interferometer that needs a tracking laser fringe to assist in alignment can use this system.
Mashiko, Hiroki; Yamaguchi, Tomohiko; Oguri, Katsuya; Suda, Akira; Gotoh, Hideki
2014-01-01
In many atomic, molecular and solid systems, Lorentzian and Fano profiles are commonly observed in a broad research fields throughout a variety of spectroscopies. As the profile structure is related to the phase of the time-dependent dipole moment, it plays an important role in the study of quantum properties. Here we determine the dipole phase in the inner-shell transition using spectral phase interferometry for direct electric-field reconstruction (SPIDER) with isolated attosecond pulses (IAPs). In addition, we propose a scheme for pulse generation and compression by manipulating the inner-shell transition. The electromagnetic radiation generated by the transition is temporally compressed to a few femtoseconds in the extreme ultraviolet (XUV) region. The proposed pulse-compression scheme may provide an alternative route to producing attosecond pulses of light. PMID:25510971
Effects of a weight-loss program for obese children: a "mix of attributes" approach.
Yin, Teresa J C; Wu, Fei-Ling; Liu, Ying-Lung; Yu, Shu
2005-03-01
Childhood obesity is an important global public health issue. There is a need for more effective, low cost and child-centered intervention programs for reducing body weight. In response to this need, we developed a mix of attributes approach (including content, interactivity, control, channel, and objectivity) to help obese children (weight-for-length index, WLI >/= 1.20) reduce their body weight and improve their knowledge, attitude, and behavior. The prevalence of obesity in our sample was 15.9 % (140 obese children out of 882 children studying in the fourth grade) . An experimental, randomized research design was conducted in this study. Anthropometric measurements (including Body Mass Index [BMI] , WLI, body fat percentage, triceps, and subscapular skinfold thickness) and questionnaires (including the Scale of Obesity and Body Weight Loss Knowledge, Attitude, and Practice) were evaluated at baseline (pretest) and after one month of the intervention (posttest) for all obese children. Of 140 obese children, 118 completed this study (66 in the experimental group, 52 in the control group). The mix of attributes approach significantly reduced the degree of obesity revealed in anthropometric measurements. (p < .05). This approach also significantly improved obese children ' s knowledge (p < .001) and slightly improved their behaviors (p = .057); however, this program did not change the children ' s attitudes so easily (p = .597). To more effectively lose weight, we suggest an additional attribute, " individuality, " as a means of increasing efforts to change attitudes in obese children.
Local therapy to distant metastatic sites in stage IV rhabdomyosarcoma.
Mohan, Arvind C; Venkatramani, Rajkumar; Okcu, M Fatih; Nuchtern, Jed G; Vasudevan, Sanjeev A; Mahajan, Anita; Rainusso, Nino C; Allen-Rhoades, Wendy; Chintagumpala, Murali; Paulino, Arnold C
2018-02-01
To determine the impact of surgery and/or radiation therapy on distant metastatic sites (DMS) in children with stage IV rhabdomyosarcoma (RMS). A retrospective chart review was conducted on all patients with stage IV RMS at Texas Children's Hospital from 1992 to 2012. Data analyzed included age, gender, primary site, histologic subtype, number and sites of metastases, treatment including local therapy to DMS, and Oberlin score. The 5-year progression-free survival (PFS) and overall survival (OS) rates were 20% and 25%. The 5-year PFS in patients receiving local therapy to all DMS (n = 16) and to less than all DMS (n = 19) was 31.3% versus 0% (P = 0.002), whereas the 5-year OS was 37.3% versus 0% (P < 0.001), respectively. The 5-year PFS in patients with isolated lung metastasis versus other types of metastasis was 29% versus 7% (P = n.s.), whereas the 5-year OS was 43% versus 10% (P = 0.01). The 5-year pulmonary local control was improved by the use of whole lung irradiation (WLI; 56% vs. 10%, P = 0.03). Local treatment to all metastatic sites was associated with improved PFS and OS at 5 years. The use of WLI improved pulmonary control in patients with lung metastasis. We recommend an aggressive approach including local therapy to DMS in children with stage IV RMS. © 2017 Wiley Periodicals, Inc.
A system for a multiframing interferometry and its application to a plasma focus experiment.
Hirano, K; Shimoda, K; Emori, S
1979-10-01
A four-framing Mach-Zehnder interferometer system which has variable intervals from frame to frame is developed. TEA N(2) lasers that are operated with atmospheric-pressure N(2) gas are employed as light sources. Applicability of the system is demonstrated for a rapidly changing plasma in the plasma focus discharge.
Beam shaping optics to enhance performance of interferometry techniques in grating manufacture
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei
2018-02-01
Improving of industrial holographic and interferometry techniques is of great importance in interference lithography, computer-generated holography, holographic data storage, interferometry recording of Bragg gratings as well as gratings of various types in semiconductor industry. Performance of mentioned techniques is essentially enhanced by providing a light beam with flat phase front and flat-top irradiance distribution. Therefore, transformation of Gaussian distribution of a TEM00 laser to flat-top (top hat, uniform) distribution is an important optical task. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality demanding holography and interferometry. As a solution it is suggested to apply refractive field mapping beam shaping optics πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. High optical quality of resulting flat-top beam allows applying additional optical components to build various imaging optical systems for variation of beam size and shape to fulfil requirements of a particular application. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in holography and laser interference lithography. Examples of real implementations and experimental results will be presented as well.
NASA Astrophysics Data System (ADS)
Anderson, Benjamin; Bernhardt, Elizabeth; Kuzyk, Mark
2012-10-01
Several organic dyes have been shown to self heal when doped in a polymer matrix. Most measurements to date use optical absorbance, amplified spontaneous emission, or digital imaging as a probe. Each method determines a subset of the relevant parameters. We have constructed a white light interferometric microscope, which measures the absorption spectrum and change in refractive index during decay and recovery simultaneously at multiple points in the material. We report on preliminary measurements and results concerning the microscopes spatial resolution.
Jet printing of convex and concave polymer micro-lenses.
Blattmann, M; Ocker, M; Zappe, H; Seifert, A
2015-09-21
We describe a novel approach for fabricating customized convex as well as concave micro-lenses using substrates with sophisticated pinning architecture and utilizing a drop-on-demand jet printer. The polymeric lens material deposited on the wafer is cured by UV light irradiation yielding lenses with high quality surfaces. Surface shape and roughness of the cured polymer lenses are characterized by white light interferometry. Their optical quality is demonstrated by imaging an USAF1951 test chart. The evaluated modulation transfer function is compared to Zemax simulations as a benchmark for the fabricated lenses.
Resolution experiments using the white light speckle method.
Conley, E; Cloud, G
1991-03-01
Noncoherent light speckle methods have been successfully applied to gauge the motion of glaciers and buildings. Resolution of the optical method was limited by the aberrating turbulent atmosphere through which the images were collected. Sensitivity limitations regarding this particular application of speckle interferometry are discussed and analyzed. Resolution limit experiments that were incidental to glacier flow studies are related to the basic theory of astronomical imaging. Optical resolution of the ice flow measurement technique is shown to be in substantial agreement with the sensitivity predictions of astronomy theory.
The brilliant beauty of the eye: light reflex from the cornea and tear film.
Goto, Eiki
2006-12-01
Light reflex from the cornea and tear film as contributors to beautiful eyes ("eye sparkling") are reviewed. A systematic literature review was conducted using "Purkinje-Sanson image," "corneal light reflex," "corneal topography," "corneal wavefront aberration," and "tear interference image" as search terms. Articles on corneal surface regularity and stability and tear interferometry of the precorneal tear lipid layer were reviewed. PS-1 image, that is light reflex from the cornea and tear film, is widely used in practical ophthalmic examination. To achieve a brilliant beauty of the eye ("eye sparkling"), it is important that the tear film (aqueous layer) surface is smooth and stable with adequate tear volume and that the tear lipid layer is present in adequate thickness.
Techniques in Broadband Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erskine, D J
2004-01-04
This is a compilation of my patents issued from 1997 to 2002, generally describing interferometer techniques that modify the coherence properties of broad-bandwidth light and other waves, with applications to Doppler velocimetry, range finding, imaging and spectroscopy. Patents are tedious to read in their original form. In an effort to improve their readability I have embedded the Figures throughout the manuscript, put the Figure captions underneath the Figures, and added section headings. Otherwise I have resisted the temptation to modify the words, though I found many places which could use healthy editing. There may be minor differences with the officialmore » versions issued by the US Patent and Trademark Office, particularly in the claims sections. In my shock physics work I measured the velocities of targets impacted by flyer plates by illuminating them with laser light and analyzing the reflected light with an interferometer. Small wavelength changes caused by the target motion (Doppler effect) were converted into fringe shifts by the interferometer. Lasers having long coherence lengths were required for the illumination. While lasers are certainly bright sources, and their collimated beams are convenient to work with, they are expensive. Particularly if one needs to illuminate a wide surface area, then large amounts of power are needed. Orders of magnitude more power per dollar can be obtained from a simple flashlamp, or for that matter, a 50 cent light bulb. Yet these inexpensive sources cannot practically be used for Doppler velocimetry because their coherence length is extremely short, i.e. their bandwidth is much too wide. Hence the motivation for patents 1 & 2 is a method (White Light Velocimetry) for allowing use of these powerful but incoherent lamps for interferometry. The coherence of the illumination is modified by passing it through a preparatory interferometer.« less
Lim, Helena; Li, Fang-Chi; Friedman, Shimon; Kishen, Anil
2016-09-01
Residual microstrain influences the resistance to crack propagation in a biomaterial. This study evaluated the residual microstrain and microdefects formed in dentin after canal instrumentation in teeth maintained in hydrated and nonhydrated environments. Canals of 18 extracted human premolars with single-root canals were instrumented in accordance with 3 groups: the ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland) group: ProTaper Universal (S1, S2, F1, and F2) used in rotation, the WaveOne Primary (Dentsply Maillefer) group: the WaveOne (Primary) used in reciprocal motion, and the control group: hand files. Half the specimens (3/group) were maintained in deionized water (hydrated) and half in ambient relative humidity conditions (22°C, 55% RH) for 72 hours (nonhydrated). Customized high-sensitivity digital moiré interferometry was used to qualitatively evaluate pre- and postinstrumentation dentinal microstrain. Subsequently, specimens were examined for dentinal microdefects with micro-computed tomographic imaging and polarized light microscopy. Digital moiré interferometry showed only minor changes in postinstrumentation microstrain in hydrated dentin in all groups, suggestive of a stress relaxation behavior. Nonhydrated dentin in all groups showed localized concentration of postinstrumentation microstrain, which appeared higher in the WaveOne group than in the other groups. No dentinal microdefects were detected by micro-computed tomographic imaging and polarized light microscopy in hydrated and nonhydrated specimens in all groups. This study suggested that the biomechanical response of root dentin to instrumentation was influenced by hydration. Reciprocating, rotary, and hand instrumentation of well-hydrated roots did not cause an increase in residual microstrain or the formation of microdefects in root dentin. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Zhi-Guo; Chen, Qi-Feng; Gu, Yun-Jun; Zheng, Jun; Chen, Xiang-Rong
2016-10-01
The accurate hydrodynamic description of an event or system that addresses the equations of state, phase transitions, dissociations, ionizations, and compressions, determines how materials respond to a wide range of physical environments. To understand dense matter behavior in extreme conditions requires the continual development of diagnostic methods for accurate measurements of the physical parameters. Here, we present a comprehensive diagnostic technique that comprises optical pyrometry, velocity interferometry, and time-resolved spectroscopy. This technique was applied to shock compression experiments of dense gaseous deuterium-helium mixtures driven via a two-stage light gas gun. The advantage of this approach lies in providing measurements of multiple physical parameters in a single experiment, such as light radiation histories, particle velocity profiles, and time-resolved spectra, which enables simultaneous measurements of shock velocity, particle velocity, pressure, density, and temperature and expands understanding of dense high pressure shock situations. The combination of multiple diagnostics also allows different experimental observables to be measured and cross-checked. Additionally, it implements an accurate measurement of the principal Hugoniots of deuterium-helium mixtures, which provides a benchmark for the impedance matching measurement technique.
NASA Astrophysics Data System (ADS)
Hammer, Daniel X.; Noojin, Gary D.; Thomas, Robert J.; Stolarski, David J.; Rockwell, Benjamin A.; Welch, Ashley J.
1999-06-01
Spectrally resolved white-light interferometry (SRWLI) was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. The accuracy of the technique was assessed by measurement of fused silica and water, the refractive indices of which have been measured at several different wavelengths. The dispersion of bovine and rabbit aqueous and vitreous humor was measured from 400 to 1100 nm. Also, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humor extracted from goat and rhesus monkey eyes. For the humors, the dispersion did not deviate significantly from water. In an additional experiment, the dispersion of aqueous and vitreous humor that had aged up to a month was compared to freshly harvested material. No difference was found between the fresh and aged media. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. Future refinement may allow measurement of the dispersion of cornea and lens across the entire visible and near-infrared wavelength band. The principles of white- light interferometry including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.
Retrieving the axial position of fluorescent light emitting spots by shearing interferometry
NASA Astrophysics Data System (ADS)
Schindler, Johannes; Schau, Philipp; Brodhag, Nicole; Frenner, Karsten; Osten, Wolfgang
2016-12-01
A method for the depth-resolved detection of fluorescent radiation based on imaging of an interference pattern of two intersecting beams and shearing interferometry is presented. The illumination setup provides the local addressing of the excitation of fluorescence and a coarse confinement of the excitation volume in axial and lateral directions. The reconstruction of the depth relies on the measurement of the phase of the fluorescent wave fronts. Their curvature is directly related to the distance of a source to the focus of the imaging system. Access to the phase information is enabled by a lateral shearing interferometer based on a Michelson setup. This allows the evaluation of interference signals even for spatially and temporally incoherent light such as emitted by fluorophors. An analytical signal model is presented and the relations for obtaining the depth information are derived. Measurements of reference samples with different concentrations and spatial distributions of fluorophors and scatterers prove the experimental feasibility of the method. In a setup optimized for flexibility and operating in the visible range, sufficiently large interference signals are recorded for scatterers placed in depths in the range of hundred micrometers below the surface in a material with scattering properties comparable to dental enamel.
One- and two-mode squeezed light in correlated interferometry
NASA Astrophysics Data System (ADS)
Ruo-Berchera, I.; Degiovanni, I. P.; Olivares, S.; Samantaray, N.; Traina, P.; Genovese, M.
2015-11-01
We study in detail a system of two interferometers aimed at detecting extremely faint phase fluctuations. This system can represent a breakthrough for detecting a faint correlated signal that would remain otherwise undetectable even using the most sensitive individual interferometric devices, as in the case of so-called holographic noise. The signature of this kind of noise emerges as a correlation between the output signals of the interferometers. On the other hand, when holographic noise is absent one expects uncorrelated signals since the time-averaged fluctuations due to shot noise and other independent contributions vanish (though limiting the overall sensitivity). We show how injecting quantum light in the free ports of the interferometers can reduce the photon noise of the system beyond the shot noise, enhancing the resolution in the phase-correlation estimation. We analyze the use of both the two-mode squeezed vacuum and two independent squeezed states. Our results confirm the benefit of using squeezed beams together with strong coherent beams in interferometry. We also investigate the possible use of the two-mode squeezed vacuum, discovering interesting and unexplored areas of application of bipartite entanglement, in particular the possibility of reaching in principle a surprising uncertainty reduction.
Study of density distribution in a near-critical simple fluid (19-IML-1)
NASA Technical Reports Server (NTRS)
Michels, Teun
1992-01-01
This experiment uses visual observation, interferometry, and light scattering techniques to observe and analyze the density distribution in SF6 above and below the critical temperature. Below the critical temperature, the fluid system is split up into two coexisting phases, liquid and vapor. The spatial separation of these phases on earth, liquid below and vapor above, is not an intrinsic property of the fluid system; it is merely an effect of the action of the gravity field. At a fixed temperature, the density of each of the coexisting phases is in principle fixed. However, near T sub c where the fluid is strongly compressible, gravity induced hydrostatic forces will result in a gradual decrease in density with increasing height in the sample container. This hydrostatic density profile is even more pronounced in the one phase fluid at temperatures slightly above T sub c. The experiment is set up to study the intrinsic density distributions and equilibration rates of a critical sample in a small container. Interferometry will be used to determine local density and thickness of surface and interface layers. The light scattering data will reveal the size of the density fluctuations on a microscopic scale.
Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry.
Hua, Liwei; Song, Yang; Cheng, Baokai; Zhu, Wenge; Zhang, Qi; Xiao, Hai
2017-12-11
This paper presents a new optical fiber distributed sensing concept based on coherent microwave-photonics interferometry (CMPI), which uses a microwave modulated coherent light source to interrogate cascaded interferometers for distributed measurement. By scanning the microwave frequencies, the complex microwave spectrum is obtained and converted to time domain signals at known locations by complex Fourier transform. The amplitudes of these time domain pulses are a function of the optical path differences (OPDs) of the distributed interferometers. Cascaded fiber Fabry-Perot interferometers (FPIs) fabricated by femtosecond laser micromachining were used to demonstrate the concept. The experimental results indicated that the strain measurement resolution can be better than 0.6 µε using a FPI with a cavity length of 1.5 cm. Further improvement of the strain resolution to the nε level is achievable by increasing the cavity length of the FPI to over 1m. The tradeoff between the sensitivity and dynamic range was also analyzed in detail. To minimize the optical power instability (either from the light source or the fiber loss) induced errors, a single reflector was added in front of an individual FPI as an optical power reference for the purpose of compensation.
Retrieving the axial position of fluorescent light emitting spots by shearing interferometry.
Schindler, Johannes; Schau, Philipp; Brodhag, Nicole; Frenner, Karsten; Osten, Wolfgang
2016-12-01
A method for the depth-resolved detection of fluorescent radiation based on imaging of an interference pattern of two intersecting beams and shearing interferometry is presented. The illumination setup provides the local addressing of the excitation of fluorescence and a coarse confinement of the excitation volume in axial and lateral directions. The reconstruction of the depth relies on the measurement of the phase of the fluorescent wave fronts. Their curvature is directly related to the distance of a source to the focus of the imaging system. Access to the phase information is enabled by a lateral shearing interferometer based on a Michelson setup. This allows the evaluation of interference signals even for spatially and temporally incoherent light such as emitted by fluorophors. An analytical signal model is presented and the relations for obtaining the depth information are derived. Measurements of reference samples with different concentrations and spatial distributions of fluorophors and scatterers prove the experimental feasibility of the method. In a setup optimized for flexibility and operating in the visible range, sufficiently large interference signals are recorded for scatterers placed in depths in the range of hundred micrometers below the surface in a material with scattering properties comparable to dental enamel.
Zhuang, Fengjiang; Jungbluth, Bernd; Gronloh, Bastian; Hoffmann, Hans-Dieter; Zhang, Ge
2013-07-20
We present a continuous-wave (CW) intracavity frequency-doubled Yb:YAG laser providing 1030 and 515 nm output simultaneously. This laser system was designed for photothermal common-path interferometry to measure spatially resolved profiles of the linear absorption in dielectric media and coatings for visible or infrared light as well as of the nonlinear absorption for the combination of both. A Z-shape laser cavity was designed, providing a beam waist in which an LBO crystal was located for effective second-harmonic generation (SHG). Suitable frequency conversion parameters and cavity configurations were discussed to achieve the optimal performance of a diode-pumped CW SHG laser. A 12.4 W 1030 nm laser and 5.4 W 515 nm laser were developed simultaneously in our experiment.
Phonon counting and intensity interferometry of a nanomechanical resonator
NASA Astrophysics Data System (ADS)
Cohen, Justin D.; Meenehan, Seán M.; Maccabe, Gregory S.; Gröblacher, Simon; Safavi-Naeini, Amir H.; Marsili, Francesco; Shaw, Matthew D.; Painter, Oskar
2015-04-01
In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms to secure quantum communication. Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light. As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes, as well as to develop technologies for precision sensing and quantum information processing. Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser. Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 +/- 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled, including the generation and heralding of single-phonon Fock states and the quantum entanglement of remote mechanical elements.
Resolution enhancement of partial coherence interferometry by dispersion compensation
NASA Astrophysics Data System (ADS)
Baumgartner, Angela; Hitzenberger, Christoph K.; Drexler, Wolfgang; Fercher, Adolf F.
1997-12-01
In the past ten years partial coherence interferometry and optical coherence tomography have been developed for high precision biometry and tomography of the human eye in vivo. The longitudinal resolution of the optical coherence tomography technique depends on the spectral bandwidth of the light source used and on the dispersion of the media to be measured. In nondispersive media the resolution is approximately equal to the coherence length of the light used, which is inversely proportional to the width of the emission spectrum. Hence, a broad emission spectrum yields a short coherence length and consequently a good resolution. However, if the tissue under investigation is dispersive, the coherence envelope of the signal broadens leading to a decrease in resolution and interference fringe contrast. This effect becomes predominant if measurements through the dispersive media of the eye to the retina are performed with source bandwidths larger than approximately 25 nm. In order to achieve optimum resolution of OCT by applying a light source with a broad emission spectrum, the dispersion of the object to be measured, i.e. in this case of the ocular media, has to be compensated. Within the scope of this work we demonstrate the resolution improvement that is obtained by compensating the dispersive effects of the ocular media and using broadband light sources. Furthermore, we present the first optical coherence tomogram recorded with this technique in the retina of a human eye in vivo with an axial geometrical resolution of approximately 6 micrometers which is a two-fold improvement compared to presently used technology.
MO-AB-BRA-03: Calorimetry-Based Absorbed Dose to Water Measurements Using Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores-Martinez, E; Malin, M; DeWerd, L
2015-06-15
Purpose: Interferometry-based calorimetry is a novel technique to measure radiation-induced temperature changes allowing the measurement of absorbed dose to water (ADW). There are no mechanical components in the field. This technique also has the possibility of obtaining 2D dose distributions. The goal of this investigation is to calorimetrically-measure doses between 2.5 and 5 Gy over a single projection in a photon beam using interferometry and compare the results with doses calculated using the TG-51 linac calibration. Methods: ADW was determined by measuring radiation-induced phase shifts (PSs) of light passing through water irradiated with a 6 MV photon beam. A 9×9×9more » cm{sup 3} glass phantom filled with water and placed in an arm of a Michelson interferometer was irradiated with 300, 400, 500 and 600 monitor units. The whole system was thermally insulated to achieve sufficient passive temperature control. The depth of measurement was 4.5 cm with a field size of 7×7 cm{sup 2}. The intensity of the fringe pattern was monitored with a photodiode and used to calculate the time-dependent PS curve. Data was acquired 60 s before and after the irradiation. The radiation-induced PS was calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. Results were compared to computed doses. Results: Average comparison of calculated ADW values with interferometry-measured values showed an agreement to within 9.5%. k=1 uncertainties were 4.3% for calculations and 14.7% for measurements. The dominant source of uncertainty for the measurements was a temperature drift of about 30 µK/s caused by heat conduction from the interferometer’s surroundings. Conclusion: This work presented the first absolute ADW measurements using interferometry in the dose range of linac-based radiotherapy. Future work to improve measurements’ reproducibility includes the implementation of active thermal control techniques.« less
Farinas, J; Verkman, A S
1996-12-01
The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers.
Application of Phase Shifted, Laser Feedback Interferometry to Fluid Physics
NASA Technical Reports Server (NTRS)
Ovryn, Ben; Eppell, Steven J.; Andrews, James H.; Khaydarov, John
1996-01-01
We have combined the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce a new instrument that can measure both optical path length (OPL) changes and discern sample reflectivity variations. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. LFI can yield a high signal-to-noise ratio even for low reflectivity samples. By combining PSI and LFI, we have produced a robust instrument, based upon a HeNe laser, with high dynamic range that can be used to measure either static (dc) or oscillatory changes along the optical path. As with other forms of interferometry, large changes in OPL require phase unwrapping. Conversely, small phase changes are limited by the fraction of a fringe that can be measured. We introduce the phase shifts with an electro-optic modulator (EOM) and use either the Carre or Hariharan algorithms to determine the phase and visibility. We have determined the accuracy and precision of our technique by measuring both the bending of a cantilevered piezoelectric bimorph and linear ramps to the EOM. Using PSI, sub-nanometer displacements can be measured. We have combined our interferometer with a commercial microscope and scanning piezoelectric stage and have measured the variation in OPL and visibility for drops of PDMS (silicone oil) on coated single crystal silicon. Our measurement of the static contact angle agrees with the value of 68 deg stated in the literature.
Mehta, N S; Wang, L; Redei, E E
2013-10-01
Major depressive disorder (MDD) is a common, debilitating illness with high prevalence of comorbid anxiety. The incidence of depression and of comorbid anxiety is much higher in women than in men. These gender biases appear after puberty and their etiology is mostly unknown. Selective breeding of the Wistar Kyoto (WKY) rat strain, an accepted model of adult and adolescent depression, resulted in two fully inbred substrains. Adult WKY more immobile (WMI) rats of both sexes consistently show increased depression-like behavior in the forced swim test when compared with the control WKY less immobile (WLI) strain. In contrast, here we show that while adult female WMIs and WLIs both display high anxiety-like behaviors, only WLI males, but not WMI males, show this behavior. Moreover, the behavioral profile of WMI males is consistent from early adolescence to adulthood, but the high depression- and anxiety-like behaviors of the female WMIs appear only in adulthood. These sex-specific behavioral patterns are paralleled by marked sex differences in hippocampal gene expression differences established by genome-wide transcriptional analyses of 13th generation WMIs and WLIs. Moreover, sex- and age-specific differences in transcript levels of selected genes are present in the hippocampus of the current, fully inbred WMIs and WLIs. Thus, the contribution of specific genes and/or the influence of the gonadal hormonal environment to depression- and anxiety-like behaviors may differ between male and female WMIs, resulting in their distinct behavioral and transcriptomic profiles despite shared sequences of the somatic chromosomes. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Synchronizing Photography For High-Speed-Engine Research
NASA Technical Reports Server (NTRS)
Chun, K. S.
1989-01-01
Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.
Thinning of PLZT ceramic wafers for sensor integration
NASA Astrophysics Data System (ADS)
Jin, Na; Liu, Weiguo
2010-08-01
Characteristics of transparent PLZT ceramics can be tailored by controlling the component of them, and therefore showed excellent dielectric, piezoelectric, pyroelectric and ferroelectric properties. To integrate the ceramics with microelectronic circuit to realize integrated applications, the ceramic wafers have to be thinned down to micrometer scale in thickness. A7/65/35 PLZT ceramic wafer was selected in this study for the thinning process. Size of the wafer was 10×10mm with an initial thickness of 300μm. A novel membrane transfer process (MTP) was developed for the thinning and integration of the ceramic wafers. In the MTP process, the ceramic wafer was bonded to silicon wafer using a polymer bonding method. Mechanical grinding method was applied to reduce the thickness of the ceramic. To minimize the surface damage in the ceramic wafer caused by the mechanical grinding, magnetorheological finishing (MRF) method was utilized to polish the wafer. White light interference (WLI) apparatus was used to monitor the surface qualities of the grinded and ploished ceramic wafers. For the PLZT membrane obtained from the MTP process, the final thickness of the thinned and polished wafer was 10μm, the surface roughness was below 1nm in rms, and the flatness was better than λ/5.
Optical monitoring of protein crystal growth
NASA Technical Reports Server (NTRS)
Choudry, A.
1988-01-01
The possibility of using various optical techniques for detecting the onset of nucleation in protein crystal growth was investigated. Direct microscopy, general metrologic techniques, light scattering, ultraviolet absorption, and interferometry are addressed along with techniques for determining pH value. The necessity for collecting basic data on the optical properties of the growth solution as a prerequisite to the evaluation of monitoring techniques is pointed out.
NASA Astrophysics Data System (ADS)
Mathar, Richard J.
Long-baseline interferometry detects fringes created by superposition of two beams of light collected by two telescopes pointing into a common direction. The external path difference is commonly compensated by adding a variable optical path length (delay) through air for one beam such that the optical path difference between the beams remains close to zero near the detector. The ABCD formula assigns a (wrapped) phase to the signals A to D of an interference pattern shifted by multiples of 90 degrees in phase. We study the interplay between a broad spectral passband of the optics and the dispersion of the air in the compensating delay, which leads to small deviations between the ABCD phase and the reduced, monochromatic group-delay representation of the wave packets. This adds dispersion to the effects that have been discussed for evacuated interferometers before (Milman 2005).
Zhang, Tao; Gao, Feng; Jiang, Xiangqian
2017-10-02
This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.
Very large ground-based telescopes for optical and IR astronomy
NASA Technical Reports Server (NTRS)
Angel, J. R. P.
1982-01-01
Methods for improving the light grasp by an order of magnitude for earth-based observations of astrophysical objects are reviewed. Noting that the atmosphere is opaque below 0.3 micron and that techniques have been developed to make corrections for the atmospheric distortion, fully diffraction limited IR performance at 10 microns is asserted to be practicable. The use of mirror-seeing with metal mirrors with thin faceplates and air cooling is outlined as a means to achieve subarcsec resolution. Designs are considered which involve multiple sections to gain effective large aperture viewing for spectroscopy, using Si CCD detectors, and heterodyne IR interferometry, but not for direct interferometry or certain IR measurements. The Multiple Mirror Telescope is described, including designs for four 7.5 m honeycomb glass primaries co-aligned in a single mount. Further discussion is devoted to the fabrication of mirror elements and electronic image stabilization.
Intensity Interferometry: Imaging Stars with Kilometer Baselines
NASA Astrophysics Data System (ADS)
Dravins, Dainis
2018-04-01
Microarcsecond imaging will reveal stellar surfaces but requires kilometer-scale interferometers. Intensity interferometry circumvents atmospheric turbulence by correlating intensity fluctuations between independent telescopes. Telescopes connect only electronically, and the error budget relates to electronic timescales of nanoseconds (light-travel distances on the order of a meter), enabling the use of imperfect optics in a turbulent atmosphere. Once pioneered by Hanbury Brown and Twiss, digital versions have now been demonstrated in the laboratory, reconstructing diffraction-limited images from hundreds of optical baselines. Arrays of Cherenkov telescopes (primarily erected for gamma-ray studies) will extend over a few km, enabling an optical equivalent of radio interferometers. Resolutions in the tens of microarcseconds will resolve rotationally flattened stars with their circumstellar disks and winds, or possibly even the silhouettes of transiting exoplanets. Applying the method to mirror segments in extremely large telescopes (even with an incompletely filled main mirror, poor seeing, no adaptive optics), the diffraction limit in the blue may be reached.
A microchip laser source with stable intensity and frequency used for self-mixing interferometry.
Zhang, Shaohui; Zhang, Shulian; Tan, Yidong; Sun, Liqun
2016-05-01
We present a stable 40 × 40 × 30 mm(3) Laser-diode (LD)-pumped-microchip laser (ML) laser source used for self-mixing interferometry which can measure non-cooperative targets. We simplify the coupling process of pump light in order to make its polarization and intensity robust against environmental disturbance. Thermal frequency stabilization technology is used to stabilize the laser frequency of both LD and ML. Frequency stability of about 1 × 10(-7) and short-term intensity fluctuation of 0.1% are achieved. The theoretical long-term displacement accuracy limited by frequency and intensity fluctuation is about 10 nm when the measuring range is 0.1 m. The line-width of this laser is about 25 kHz corresponding to 12 km coherent length and 6 km measurement range for self-mixing interference. The laser source has been equipped to a self-mixing interferometer, and it works very well.
NASA Astrophysics Data System (ADS)
Ebbeni, Jean
Included in this volume are papers on real-time image enhancement by simple video systems, automatic identification and data collection via barcode laser scanning, the optimization of the cutting up of a strip of float glass, optical sensors for factory automation, and the use of a digital theodolite with infrared radiation. Attention is also given to ISIS (integrated shape imaging system), a new system for follow-up of scoliosis; optical diffraction extensometers; a cross-spectrum technique for high-sensitivity remote vibration analysis by optical interferometry; the compensation and measurement of any motion of three-dimensional objects in holographic interferometry; and stereoscreen. Additional papers are on holographic double pulse YAG lasers, miniature optic connectors, stress-field analysis in an adhesively bonded joint with laser photoelasticimetry, and the locking of the light pulse delay in externally triggered gas lasers.
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Leisawitz, David; Maher, Steve; Rinehart, Stephen
2012-01-01
The Wide-field Imaging Interferometer testbed (WIIT) at NASA's Goddard Space Flight Center uses a dual-Michelson interferometric technique. The WIIT combines stellar interferometry with Fourier-transform interferometry to produce high-resolution spatial-spectral data over a large field-of-view. This combined technique could be employed on future NASA missions such as the Space Infrared Interferometric Telescope (SPIRIT) and the Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS). While both SPIRIT and SPECS would operate at far-infrared wavelengths, the WIIT demonstrates the dual-interferometry technique at visible wavelengths. The WIIT will produce hyperspectral image data, so a true hyperspectral object is necessary. A calibrated hyperspectral image projector (CHIP) has been constructed to provide such an object. The CHIP uses Digital Light Processing (DLP) technology to produce customized, spectrally-diverse scenes. CHIP scenes will have approximately 1.6-micron spatial resolution and the capability of . producing arbitrary spectra in the band between 380 nm and 1.6 microns, with approximately 5-nm spectral resolution. Each pixel in the scene can take on a unique spectrum. Spectral calibration is achieved with an onboard fiber-coupled spectrometer. In this paper we describe the operation of the CHIP. Results from the WIIT observations of CHIP scenes will also be presented.
Interferometry in the era of time-domain astronomy
NASA Astrophysics Data System (ADS)
Schaefer, Gail H.; Cassan, Arnaud; Gallenne, Alexandre; Roettenbacher, Rachael M.; Schneider, Jean
2018-04-01
The physical nature of time variable objects is often inferred from photometric light-curves and spectroscopic variations. Long-baseline optical interferometry has the power to resolve the spatial structure of time variable sources directly in order to measure their physical properties and test the physics of the underlying models. Recent interferometric studies of variable objects include measuring the angular expansion and spatial structure during the early stages of novae outbursts, studying the transits and tidal distortions of the components in eclipsing and interacting binaries, measuring the radial pulsations in Cepheid variables, monitoring changes in the circumstellar discs around rapidly rotating massive stars, and imaging starspots. Future applications include measuring the image size and centroid displacements in gravitational microlensing events, and imaging the transits of exoplanets. Ongoing and upcoming photometric surveys will dramatically increase the number of time-variable objects detected each year, providing many potential targets to observe interferometrically. For short-lived transient events, it is critical for interferometric arrays to have the flexibility to respond rapidly to targets of opportunity and optimize the selection of baselines and beam combiners to provide the necessary resolution and sensitivity to resolve the source as its brightness and size change. We discuss the science opportunities made possible by resolving variable sources using long baseline optical interferometry.
The Era After the ELT: Optical Interferometry With Kilometer Baselines
NASA Astrophysics Data System (ADS)
Bakker, Eric J.
2007-12-01
The 8-meter class telescopes seen first light in 1993-1998 (Keck, 1993, VLT 1998). The ELT will see first light in the 2013-2018 time frame. The follow-up of the ELT will see first light around 2023. That is 15 years from today. The sequence from 8-meter to 30 meter telescopes (started as a goal of 100m), will suggest a follow-up telescope with an aperture of 300 meter as initial goal. Cleary a 300 meter or more ambitiously a 1000-meter telescope can no longer be structural one piece that has to point to any point on the sky and track the objects. The more likely scenario is to follow the process applied in radio astronomy and move from single telescopes to interferometers. Optical interferometry is maturing very quickly with the de-commissioning of experimental instruments (COAST, GT2I, IOTA, and probably PTI and ISI in the near future) and the use of precision mechanics and automation. The remaining interferometers are grouped in three categories: large telescopes (VLTI and KECK-I), mid-size interferometers (MROI) and small interferometers (CHARA and NPOI). The Magdalena Ridge Observatory Interferometer (MROI) is scheduled for first light/fringe in 2009 and will provide unique observing capabilities to astronomers with limiting magnitudes in the same range as those currently achieved by Keck-I and VLTI. The Magdalena Ridge Observatory Interferometer (near Socorro, NM) invites interested engineers, scientists, and astronomers to participate in the construction and science program of MRO at all levels. Ranging from visitors instruments, support of large procurements in return for access, to individual contributions related to the science program, shared risk observations, etc. For more information, contact the Project Manager at the Magdalena Ridge Observatory Interferometer.
Analysis of Truss Frames by Method of the Stiffness Matrix
1990-12-01
of the web members of the truss. There also are variations in the truss frame given by the geometric shape of the frame, also referred to in some...at the elastic center, 0 (Figure .3.2), are: R AX = Wix - Hot RBX W2x -Ho, RAY =WIY + Vo, (1) RBy WLy - Vo, MAB =- Mo + CH. + aVo + CMA, MBA =M - CH...o Co Ce Substituting the results of Equation (7) into Equations (1), x c D x RAY = Wix + + -- (eA - GO - D (8)C x C x C cx x cx AY a D RAY
Integrated optics prototype beam combiner for long baseline interferometry in the L and M bands
NASA Astrophysics Data System (ADS)
Tepper, J.; Labadie, L.; Diener, R.; Minardi, S.; Pott, J.-U.; Thomson, R.; Nolte, S.
2017-06-01
Context. Optical long baseline interferometry is a unique way to study astronomical objects at milli-arcsecond resolutions not attainable with current single-dish telescopes. Yet, the significance of its scientfic return strongly depends on a dense coverage of the uv-plane and a highly stable transfer function of the interferometric instrument. In the last few years, integrated optics (IO) beam combiners have facilitated the emergence of 4-telescope interferometers such as PIONIER or GRAVITY, boosting the imaging capabilities of the VLTI. However, the spectral range beyond 2.2 μm is not ideally covered by the conventional silica based IO. Here, we consider new laser-written IO prototypes made of gallium lanthanum sulfide (GLS) glass, a material that permits access to the mid-infrared spectral regime. Aims: Our goal is to conduct a full characterization of our mid-IR IO two-telescope coupler in order to measure the performance levels directly relevant for long-baseline interferometry. We focus in particular on the exploitation of the L and M astronomical bands. Methods: We use a dedicated Michelson-interferometer setup to perform Fourier transform spectroscopy on the coupler and measure its broadband interferometric performance. We also analyze the polarization properties of the coupler, the differential dispersion and phase degradation, as well as the modal behavior and the total throughput. Results: We measure broadband interferometric contrasts of 94.9% and 92.1% for unpolarized light in the L and M bands. Spectrally integrated splitting ratios are close to 50%, but show chromatic dependence over the considered bandwidths. Additionally, the phase variation due to the combiner is measured and does not exceed 0.04 rad and 0.07 rad across the L and M band, respectively. The total throughput of the coupler including Fresnel and injection losses from free-space is 25.4%. Furthermore, differential birefringence is low (<0.2 rad), in line with the high contrasts reported for unpolarized light. Conclusions: The laser-written IO GLS prototype combiners prove to be a reliable technological solution with promising performance for mid-infrared long-baseline interferometry. In the next steps, we will consider more advanced optical functions, as well as a fiber-fed input, and we will revise the optical design parameters in order to further enhance the total throughput and achromatic behavior.
Achievements and perspectives of fiber gyros
NASA Astrophysics Data System (ADS)
Boehm, Manfred
1986-01-01
After evaluating the development history and current status of fiber-optic gyros employing the Sagnac effect, attention is given to a novel class of inertial fiber-optic motion devices having their basis in the Kennedy-Thorndike (1932) interferometry experiments. These devices promise high performance strapdown inertial navigation systems that dispense with accelerometers. The prospective performance of such devices is discussed in light of an analysis of Sagnac, Michelson, and Kennedy-Thorndike interferometers.
Enhanced Interferometry with Programmable Spatial Light Modulator
2010-06-07
metrolaserinc.com6-7-2010-Monday 6 Simulated by Zemax Lenslet diameters, d, define spatial resolution over the wavefront being measured. (sensitivity...MetroLaser Irvine, California Fitted Zernike Polynomials upto 36 terms, found and put into Zemax Simulated Cats’ eye wavefronts by ZEMAX Experimental...measurement Simulated Fringes Leftover < 0.1λ 23 Cat’s eye wavefronts by ZEMAX based on Experimental results Jtrolinger@metrolaserinc.com6-7-2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.
2007-03-23
Surface features of tungsten carbide composites processed by bound abrasive deterministic microgrinding and magnetorheological finishing (MRF) were studied for five WC-Ni composites, including one binderless material. All the materials studied were nonmagnetic with different microstructures and mechanical properties. White-light interferometry, scanning electron microscopy, and atomic force microscopy were used to characterize the surfaces after various grinding steps, surface etching, and MRF spot-taking.
Nanoparticle light scattering on interferometric surfaces
NASA Astrophysics Data System (ADS)
Hayrapetyan, K.; Arif, K. M.; Savran, C. A.; Nolte, D. D.
2011-03-01
We present a model based on Mie Surface Double Interaction (MSDI) to explore bead-based detection mechanisms using imaging and scanning. The application goal of this work is to explore the trade-offs between the sensitivity and throughput among various detection methods. Experimentally we use thermal oxide on silicon to establish and control surface interferometric conditions. Surface-captured gold beads are detected using Molecular Interferometric Imaging (MI2) and Spinning-Disc Interferometry (SDI).
NASA Technical Reports Server (NTRS)
Barry, Richard K.; Danchi, William C.; Lopez, Bruno; Rinehart, Stephen; Absil, Olivier; Augereau, Jean-Charles; Beust, Herve; Bonfils, Xavier; Borde, Pascal; Defrere, Denis;
2009-01-01
In recent years, the evolution of technology has led to significant advances in high angular resolution astronomy and the precision of new observations. In particular, the interferometric combination of light from physically separated telescopes has shown both great promise and great challenge. We describe the first scientific results from the Keck Interferometer Nuller an instrument that combines the light of the two largest optical telescopes in the world in the context of the historic development of interferometry from its beginning in the work of Fizeau, Stephan and Michelson. We also describe our efforts to build a space-borne mid-infrared interferometer the Fourier Kelvin Stellar Interferometer (FKSI) - for the characterization of exoplanets. We report results of a recent engineering study on an enhanced version of FKSI that includes 1-meter primary mirrors, 20-meter boom length, and an advanced sun shield that will provide a 45-degree FOR and 40K operating temperature for all optics, including siderostats, enabling the characterization of exozodiacal debris disks, extrasolar planets and other phenomena requiring extremely high spatial resolution. We are further investigating the possibility of characterizing the atmospheres of several super-Earths and a few Earth twins by a combination of spatial modulation and spectral analysis.
State of the metal core in nanosecond exploding wires and related phenomena
NASA Astrophysics Data System (ADS)
Sarkisov, G. S.; Sasorov, P. V.; Struve, K. W.; McDaniel, D. H.
2004-08-01
Experiments show that an expanding metal wire core that results from a nanosecond electrical explosion in vacuum consists primarily of three different states: solid, microdrop, and gas-plasma. The state of the wire core depends both on the amount of energy deposited before the voltage breakdown and on the heating conditions. For small amounts of deposited energy (on the order of solid-stage enthalpy), the wire core remains in a solid state or is partially disintegrated. For a high level of deposited energy (more than vaporization energy) the wire core is in a gas-plasma state. For an intermediate level of deposited energy (more than melting but less than vaporization), the wire disintegrates into hot liquid microdrops or clusters of submicron size. For a wire core in the cluster state, interferometry demonstrates weak (or even absent) phaseshift. Light emission shows a "firework effect"—the long late-time radiation related to the emission by the expanding cylinder of hot microparticles. For the wire core in a gas-plasma state, interferometry demonstrates a large phaseshift and a fast reduction in light emission due to adiabatic cooling of the expanding wire core. The simulation of this firework effect agrees well with experimental data, assuming submicron size and a temperature approaching boiling for the expanded microparticles cylinder.
Ho, Derek; Drake, Tyler K.; Bentley, Rex C.; Valea, Fidel A.; Wax, Adam
2015-01-01
We evaluate a new hybrid algorithm for determining nuclear morphology using angle-resolved low coherence interferometry (a/LCI) measurements in ex vivo cervical tissue. The algorithm combines Mie theory based and continuous wavelet transform inverse light scattering analysis. The hybrid algorithm was validated and compared to traditional Mie theory based analysis using an ex vivo tissue data set. The hybrid algorithm achieved 100% agreement with pathology in distinguishing dysplastic and non-dysplastic biopsy sites in the pilot study. Significantly, the new algorithm performed over four times faster than traditional Mie theory based analysis. PMID:26309741
Hanbury Brown and Twiss interferometry with twisted light
Magaña-Loaiza, Omar S.; Mirhosseini, Mohammad; Cross, Robert M.; Rafsanjani, Seyed Mohammad Hashemi; Boyd, Robert W.
2016-01-01
The rich physics exhibited by random optical wave fields permitted Hanbury Brown and Twiss to unveil fundamental aspects of light. Furthermore, it has been recognized that optical vortices are ubiquitous in random light and that the phase distribution around these optical singularities imprints a spectrum of orbital angular momentum onto a light field. We demonstrate that random fluctuations of intensity give rise to the formation of correlations in the orbital angular momentum components and angular positions of pseudothermal light. The presence of these correlations is manifested through distinct interference structures in the orbital angular momentum–mode distribution of random light. These novel forms of interference correspond to the azimuthal analog of the Hanbury Brown and Twiss effect. This family of effects can be of fundamental importance in applications where entanglement is not required and where correlations in angular position and orbital angular momentum suffice. We also suggest that the azimuthal Hanbury Brown and Twiss effect can be useful in the exploration of novel phenomena in other branches of physics and astrophysics. PMID:27152334
Hanbury Brown and Twiss interferometry with twisted light.
Magaña-Loaiza, Omar S; Mirhosseini, Mohammad; Cross, Robert M; Rafsanjani, Seyed Mohammad Hashemi; Boyd, Robert W
2016-04-01
The rich physics exhibited by random optical wave fields permitted Hanbury Brown and Twiss to unveil fundamental aspects of light. Furthermore, it has been recognized that optical vortices are ubiquitous in random light and that the phase distribution around these optical singularities imprints a spectrum of orbital angular momentum onto a light field. We demonstrate that random fluctuations of intensity give rise to the formation of correlations in the orbital angular momentum components and angular positions of pseudothermal light. The presence of these correlations is manifested through distinct interference structures in the orbital angular momentum-mode distribution of random light. These novel forms of interference correspond to the azimuthal analog of the Hanbury Brown and Twiss effect. This family of effects can be of fundamental importance in applications where entanglement is not required and where correlations in angular position and orbital angular momentum suffice. We also suggest that the azimuthal Hanbury Brown and Twiss effect can be useful in the exploration of novel phenomena in other branches of physics and astrophysics.
Lim, Patrick H; Wert, Stephanie L; Tunc-Ozcan, Elif; Marr, Robert; Ferreira, Adriana; Redei, Eva E
2018-02-25
Aging and major depressive disorder are risk factors for dementia, including Alzheimer's Disease (AD), but the mechanism(s) linking depression and dementia are not known. Both AD and depression show greater prevalence in women. We began to investigate this connection using females of the genetic model of depression, the inbred Wistar Kyoto More Immobile (WMI) rat. These rats consistently display depression-like behavior compared to the genetically close control, the Wistar Kyoto Less Immobile (WLI) strain. Hippocampus-dependent contextual fear memory did not differ between young WLI and WMI females, but, by middle-age, female WMIs showed memory deficits compared to same age WLIs. This deficit, measured as duration of freezing in the fear provoking-context was not related to activity differences between the strains prior to fear conditioning. Hippocampal expression of AD-related genes, such as amyloid precursor protein, amyloid beta 42, beta secretase, synucleins, total and dephosphorylated tau, and synaptophysin, did not differ between WLIs and WMIs in either age group. However, hippocampal transcript levels of catalase (Cat) and hippocampal and frontal cortex expression of insulin-like growth factor 2 (Igf2) and Igf2 receptor (Igf2r) paralleled fear memory differences between middle-aged WLIs and WMIs. This data suggests that chronic depression-like behavior that is present in this genetic model is a risk factor for early spatial memory decline in females. The molecular mechanisms of this early memory decline likely involve the interaction of aging processes with the genetic components responsible for the depression-like behavior in this model. Copyright © 2018 Elsevier B.V. All rights reserved.
Physical and non-physical energy in scattered wave source-receiver interferometry.
Meles, Giovanni Angelo; Curtis, Andrew
2013-06-01
Source-receiver interferometry allows Green's functions between sources and receivers to be estimated by means of convolution and cross-correlation of other wavefields. Source-receiver interferometry has been observed to work surprisingly well in practical applications when theoretical requirements (e.g., complete enclosing boundaries of other sources and receivers) are contravened: this paper contributes to explain why this may be true. Commonly used inter-receiver interferometry requires wavefields to be generated around specific stationary points in space which are controlled purely by medium heterogeneity and receiver locations. By contrast, application of source-receiver interferometry constructs at least kinematic information about physically scattered waves between a source and a receiver by cross-convolution of scattered waves propagating from and to any points on the boundary. This reduces the ambiguity in interpreting wavefields generated using source-receiver interferometry with only partial boundaries (as is standard in practical applications), as it allows spurious or non-physical energy in the constructed Green's function to be identified and ignored. Further, source-receiver interferometry (which includes a step of inter-receiver interferometry) turns all types of non-physical or spurious energy deriving from inter-receiver interferometry into what appears to be physical energy. This explains in part why source-receiver interferometry may perform relatively well compared to inter-receiver interferometry when constructing scattered wavefields.
Farinas, J; Verkman, A S
1996-01-01
The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 6 PMID:8968620
Improving the phase response of an atom interferometer by means of temporal pulse shaping
NASA Astrophysics Data System (ADS)
Fang, Bess; Mielec, Nicolas; Savoie, Denis; Altorio, Matteo; Landragin, Arnaud; Geiger, Remi
2018-02-01
We study theoretically and experimentally the influence of temporally shaping the light pulses in an atom interferometer, with a focus on the phase response of the interferometer. We show that smooth light pulse shapes allow rejecting high frequency phase fluctuations (above the Rabi frequency) and thus relax the requirements on the phase noise or frequency noise of the interrogation lasers driving the interferometer. The light pulse shape is also shown to modify the scale factor of the interferometer, which has to be taken into account in the evaluation of its accuracy budget. We discuss the trade-offs to operate when choosing a particular pulse shape, by taking into account phase noise rejection, velocity selectivity, and applicability to large momentum transfer atom interferometry.
NASA Astrophysics Data System (ADS)
Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.
2017-06-01
In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.
Intrinsic Kinetics Fluctuations as Cause of Growth Inhomogeneity in Protein Crystals
NASA Technical Reports Server (NTRS)
Vekilov, Peter G.; Rosenberger, Franz
1998-01-01
Intrinsic kinetics instabilities in the form of growth step bunching during the crystallization of the protein lysozyme from solution were characterized by in situ high-resolution optical interferometry. Compositional variations (striations) in the crystal, which potentially decrease its utility, e.g., for molecular structure studies by diffraction methods, were visualized by polarized light reflection microscopy. A spatiotemporal correlation was established between the sequence of moving step bunches and the striations.
Whole-Field Experimental Stress Analysis Using Laser Speckle Interferometry.
1981-02-14
region. UNCLASSIFIED SECURITY CLASSIFICATtON OF THIS PAGE(When Data Entrerd) ACKNOWLEDGMENTS The author expresses appreciation to Mr. J. A. Schaeffel ...for Aperture Analysis of Interferograms A system for analyzing interferograms developed by Schaeffel [6] was used to analyze selected areas on the...found in Schaeffel [6]. A Spectra Physics Model 125 He-Ne laser was used as the light source with the beam expanded through a Spectra Physics model 332
Local determination of thin liquid film profiles using colour interferometry.
Butler, Calum S; Seeger, Zoe L E; Bell, Toby D M; Bishop, Alexis I; Tabor, Rico F
2016-02-01
We explore theoretically the interference of white light between two interfaces as a function of the optical conditions, using separately: a) idealised conditions where the light is composed of three discrete wavelengths; b) a more typically experimentally realisable case where light comprises a sum of three Gaussian wavelength distributions; and c) unfiltered white light from a broadband source comprising a broad distribution of wavelengths. It is demonstrated that the latter case is not only optically simple to arrange, but also provides unambiguous absolute separation information over the range 0-1μm --a useful range in studies of cell adhesion, thin liquid films and lubrication-- when coupled to detection using a typical colour camera. The utility of this technique is verified experimentally by exploring the air film between a cylinder and surface, as well as arbitrary liquid films beneath air bubbles that are interacting with solid surfaces.
The LISA benchtop simulator at the University of Florida
NASA Astrophysics Data System (ADS)
Thorpe, James; Cruz, Rachel; Guntaka, Sridhar; Mueller, Guido
2006-11-01
The Laser Interferometer Space Antenna (LISA) is a joint NASA-ESA mission to detect gravitational radiation in space. The detector is designed to see gravitational waves from various exciting sources in the frequency range of 3x10-5 to 1 Hz. LISA consists of three spacecraft forming a triangle with 5x10^9 m long arms. The spacecraft house proof masses and act to shield the proof masses from external forces so that they act as freely-falling test particles of the gravitational radiation. Laser interferometry is used to monitor the distance between proof masses on different spacecraft and will be designed to see variations on the order of 10 pm. Pre-stabilization, arm-locking, and time delay interferometry (TDI) will be employed to meet this sensitivity. At the University of Florida, we are developing an experimental LISA simulator to test aspects of LISA interferometry. The foundation of the simulator is a pair of cavity-stabilized lasers that provide realistic, LISA-like phase noise for our measurements. The light travel time between spacecraft is recreated in the lab by use of an electronic phase delay technique. Initial tests of the simulator have focused on phasemeter implementation, first-generation TDI, and arm-locking. We will present results from these experiments as well as discuss current and future upgrades in the effort to make the LISA simulator as realistic as possible.
1989-01-01
cable) U.S. Army Corps of E~ngineers Southern Methodist Universa~y IFort Worth District 6CADORfSS Cft ,,1TgWnd ZIP Co`*) 7 b ADDRESS (City. $tote, and...34, ili t i, l ,, -loam . :: lt loe’ S N111, G Ca ( al, Ii l ;A lh oll cft wli I S 1rhl1ltor•t ort cfml |’ct terroris k’lont’l cnon1 Geomorphic In...survey. No visible remains were century ’to the present. noted during th~t current survey, and thesi .-~ could not be relocated. In all, three person
Large-aperture ground glass surface profile measurement using coherence scanning interferometry.
Bae, Eundeok; Kim, Yunseok; Park, Sanguk; Kim, Seung-Woo
2017-01-23
We present a coherence scanning interferometer configured to deal with rough glass surfaces exhibiting very low reflectance due to severe sub-surface light scattering. A compound light source is prepared by combining a superluminescent light-emitting diode with an ytterbium-doped fiber amplifier. The light source is attuned to offer a short temporal coherence length of 15 μm but with high spatial coherence to secure an adequate correlogram contrast by delivering strongly unbalanced optical power to the low reflectance target. In addition, the infrared spectral range of the light source is shifted close to the visible side at a 1,038 nm center wavelength, so a digital camera of multi-mega pixels available for industrial machine vision can be used to improve the correlogram contrast further with better lateral image resolutions. Experimental results obtained from a ground Zerodur mirror of 200 mm aperture size and 0.9 μm rms roughness are discussed to validate the proposed interferometer system.
Harmonics rejection in pixelated interferograms using spatio-temporal demodulation.
Padilla, J M; Servin, M; Estrada, J C
2011-09-26
Pixelated phase-mask interferograms have become an industry standard in spatial phase-shifting interferometry. These pixelated interferograms allow full wavefront encoding using a single interferogram. This allows the study of fast dynamic events in hostile mechanical environments. Recently an error-free demodulation method for ideal pixelated interferograms was proposed. However, non-ideal conditions in interferometry may arise due to non-linear response of the CCD camera, multiple light paths in the interferometer, etc. These conditions generate non-sinusoidal fringes containing harmonics which degrade the phase estimation. Here we show that two-dimensional Fourier demodulation of pixelated interferograms rejects most harmonics except the complex ones at {-3(rd), +5(th), -7(th), +9(th), -11(th),…}. We propose temporal phase-shifting to remove these remaining harmonics. In particular, a 2-step phase-shifting algorithm is used to eliminate the -3(rd) and +5(th) complex harmonics, while a 3-step one is used to remove the -3(rd), +5<(th), -7(th) and +9(th) complex harmonics. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Hsiu, Feng-Ming; Chen, Shean-Jen; Tsai, Chien-Hung; Tsou, Chia-Yuan; Su, Y.-D.; Lin, G.-Y.; Huang, K.-T.; Chyou, Jin-Jung; Ku, Wei-Chih; Chiu, S.-K.; Tzeng, C.-M.
2002-09-01
Surface plasmon resonance (SPR) imaging system is presented as a novel technique based on modified Mach-Zehnder phase-shifting interferometry (PSI) for biomolecular interaction analysis (BIA), which measures the spatial phase variation of a resonantly reflected light in biomolecular interaction. In this technique, the micro-array SPR biosensors with over a thousand probe NDA spots can be detected simultaneously. Owing to the feasible and swift measurements, the micro-array SPR biosensors can be extensively applied to the nonspecific adsorption of protein, the membrane/protein interactions, and DNA hybridization. The detection sensitivity of the SPR PSI imaging system is improved to about 1 pg/mm2 for each spot over the conventional SPR imaging systems. The SPR PSI imaging system and its SPR sensors have been successfully used to observe slightly index change in consequence of argon gas flow through the nitrogen in real time, with high sensitivity, and at high-throughout screening rates.
Froula, D H; Boni, R; Bedzyk, M; Craxton, R S; Ehrne, F; Ivancic, S; Jungquist, R; Shoup, M J; Theobald, W; Weiner, D; Kugland, N L; Rushford, M C
2012-10-01
A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (~1 - μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10(4) with respect to all wavelengths outside of the 263 ± 2 nm measurement range.
Extreme ultraviolet interferometry of warm dense matter in laser plasmas.
Gartside, L M R; Tallents, G J; Rossall, A K; Wagenaars, E; Whittaker, D S; Kozlová, M; Nejdl, J; Sawicka, M; Polan, J; Kalal, M; Rus, B
2010-11-15
We demonstrate that interferometric probing with extreme ultraviolet (EUV) laser light enables determination of the degree of ionization of the "warm dense matter" produced between the critical and ablation surfaces of laser plasmas. Interferometry has been utilized to measure both transmission and phase information for an EUV laser beam at the photon energy of 58.5 eV, probing longitudinally through laser-irradiated plastic (parylene-N) targets (thickness 350 nm) irradiated by a 300 ps duration pulse of wavelength 438 nm and peak irradiance 10(12) W cm(-2). The transmission of the EUV probe beam provides a measure of the rate of target ablation, as ablated plasma becomes close to transparent when the photon energy is less than the ionization energy of the predominant ion species. We show that refractive indices η below the solid parylene N (η(solid) = 0.946) and expected plasma values are produced in the warm dense plasma created by laser irradiation due to bound-free absorption in C(+).
Polarization interferometry for real-time spectroscopic plasmonic sensing.
Otto, Lauren M; Mohr, Daniel A; Johnson, Timothy W; Oh, Sang-Hyun; Lindquist, Nathan C
2015-03-07
We present quantitative, spectroscopic polarization interferometry phase measurements on plasmonic surfaces for sensing applications. By adding a liquid crystal variable wave plate in our beam path, we are able to measure phase shifts due to small refractive index changes on the sensor surface. By scanning in a quick sequence, our technique is extended to demonstrate real-time measurements. While this optical technique is applicable to different sensor geometries-e.g., nanoparticles, nanogratings, or nanoapertures-the plasmonic sensors we use here consist of an ultrasmooth gold layer with buried linear gratings. Using these devices and our phase measurement technique, we calculate a figure of merit that shows improvement over measuring only surface plasmon resonance shifts from a reflected intensity spectrum. To demonstrate the general-purpose versatility of our phase-resolved measurements, we also show numerical simulations with another common device architecture: periodic plasmonic slits. Since our technique inherently measures both the intensity and phase of the reflected or transmitted light simultaneously, quantitative sensor device characterization is possible.
Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices
NASA Astrophysics Data System (ADS)
Uehara, Masato; Yashiro, Wataru; Momose, Atsushi
2013-10-01
It is difficult to inspect packaged devices such as IC packages and power modules because the devices contain various components, such as semiconductors, metals, ceramics, and resin. In this paper, we demonstrated the effectiveness of X-ray grating interferometry (XGI) using a laboratory X-ray tube for the industrial inspection of packaged devices. The obtained conventional absorption image showed heavy-elemental components such as metal wires and electrodes, but the image did not reveal the defects in the light-elemental components. On the other hand, the differential phase-contrast image obtained by XGI revealed microvoids and scars in the encapsulant of the samples. The visibility contrast image also obtained by XGI showed some cracks in the ceramic insulator of power module sample. In addition, the image showed the silicon plate surrounded by the encapsulant having the same X-ray absorption coefficient. While these defects and components are invisible in the conventional industrial X-ray imaging, XGI thus has an attractive potential for the industrial inspection of the packaged devices.
NASA Astrophysics Data System (ADS)
Froula, D. H.; Boni, R.; Bedzyk, M.; Craxton, R. S.; Ehrne, F.; Ivancic, S.; Jungquist, R.; Shoup, M. J.; Theobald, W.; Weiner, D.; Kugland, N. L.; Rushford, M. C.
2012-10-01
A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)], 10.1051/jp4:2006133015. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (˜1 - μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 104 with respect to all wavelengths outside of the 263 ± 2 nm measurement range.
Furuichi, Yoshihiro; Kasai, Yoshitaka; Takeuchi, Hirohito; Yoshimasu, Yuu; Kawai, Takashi; Sugimoto, Katsutoshi; Kobayashi, Yoshiyuki; Nakamura, Ikuo; Itoi, Takao
2017-08-01
A 58-year-old man with hepatitis B cirrhosis noticed black stools and underwent an endoscopy at a community hospital. The presence of esophageal varices (EVs) was confirmed, but the bleeding point was not found. He was referred to our institution and underwent a second endoscopy. Extensive white patches of esophageal candidiasis were visible on endoscopy by white-light imaging (WLI), but it was difficult to find the fibrin cap of the EVs. This was easier under narrow-band imaging (NBI), however, as the color turned red from absorption by hemoglobin adhered to it. We retrospectively measured the color differences (CD) between the fibrin cap and the surrounding mucosa 10 times using the CIE (L*a*b*) color space method. The median value of CD increased after NBI (13.9 → 43.0, p < 0.001), with increased visibility. However, the median CD between the white patch and surrounding mucosa decreased after NBI (44.8 → 30.3, p < 0.001). The fibrin cap was paler than the white patch of candidiasis, but the increased visibility of the fibrin cap by NBI enabled it to be found more easily. This is the first report of a case in which NBI was helpful in locating a fibrin cap of EVs.
A modular and programmable development platform for capsule endoscopy system.
Khan, Tareq Hasan; Shrestha, Ravi; Wahid, Khan A
2014-06-01
The state-of-the-art capsule endoscopy (CE) technology offers painless examination for the patients and the ability to examine the interior of the gastrointestinal tract by a noninvasive procedure for the gastroenterologists. In this work, a modular and flexible CE development system platform consisting of a miniature field programmable gate array (FPGA) based electronic capsule, a microcontroller based portable data recorder unit and computer software is designed and developed. Due to the flexible and reprogrammable nature of the system, various image processing and compression algorithms can be tested in the design without requiring any hardware change. The designed capsule prototype supports various imaging modes including white light imaging (WLI) and narrow band imaging (NBI), and communicates with the data recorder in full duplex fashion, which enables configuring the image size and imaging mode in real time during examination. A low complexity image compressor based on a novel color-space is implemented inside the capsule to reduce the amount of RF transmission data. The data recorder contains graphical LCD for real time image viewing and SD cards for storing image data. Data can be uploaded to a computer or Smartphone by SD card, USB interface or by wireless Bluetooth link. Computer software is developed that decompresses and reconstructs images. The fabricated capsule PCBs have a diameter of 16 mm. An ex-vivo animal testing has also been conducted to validate the results.
Khan, Tareq H.; Wahid, Khan A.
2014-01-01
In this paper, a new low complexity and lossless image compression system for capsule endoscopy (CE) is presented. The compressor consists of a low-cost YEF color space converter and variable-length predictive with a combination of Golomb-Rice and unary encoding. All these components have been heavily optimized for low-power and low-cost and lossless in nature. As a result, the entire compression system does not incur any loss of image information. Unlike transform based algorithms, the compressor can be interfaced with commercial image sensors which send pixel data in raster-scan fashion that eliminates the need of having large buffer memory. The compression algorithm is capable to work with white light imaging (WLI) and narrow band imaging (NBI) with average compression ratio of 78% and 84% respectively. Finally, a complete capsule endoscopy system is developed on a single, low-power, 65-nm field programmable gate arrays (FPGA) chip. The prototype is developed using circular PCBs having a diameter of 16 mm. Several in-vivo and ex-vivo trials using pig's intestine have been conducted using the prototype to validate the performance of the proposed lossless compression algorithm. The results show that, compared with all other existing works, the proposed algorithm offers a solution to wireless capsule endoscopy with lossless and yet acceptable level of compression. PMID:25375753
Seeing Stars - Intensity Interferometry in the Laboratory & on the Ground
NASA Astrophysics Data System (ADS)
Carlile, Colin; Dravins, Dainis
2018-04-01
In many ways it is a golden age for astronomy. Spectacular new discoveries, for example the detection of gravitational waves, are very dependent upon instrumental development. The specific instrument development we propose, Intensity Interferometry (II), aims toimprove the spatial resolution of optical telescopes by 100x to 50µas [1]. This is impractical to achieve by increasing the size of telescopes or by extending the capabilities of phase interferometry. II, if implemented on the Cherenkov Telescope Array (CTA) currently being installed in La Palma and Paranal, would record the light intensity – the photon train - from many different telescopes, up to 2 km apart, on a nanosecond timescale and compare them. The signal from the many pairs of telescopes would quantify the degree of correlation by extracting the second-order correlation function, and thus create an image. This is not a real space image. However we can invert the data by Fourier Transform and create a real image. The more telescopes, the better resolved and more physical is the image, enabling the study of sunspots on nearby stars; orbiting binary stars; or exoplanets traversing the disc of their own star. We understand the Sun well but we have little experimental knowledge of how representative it is of main sequence stars. To test the II method, at Lund Observatory we have set up a laboratory analogue comprising ten small telescopes observing an artificial star created by light from a laser. The method has been shown to work [2] and the telescope array has now been extended to two dimensions. We are in discussion with other groups to explore the possibility of implementing this method on real telescopes observing actual stars. We plan to do this with the prototype Small Size Telescopes being built by groups in Europe, and ultimately with the CTA itself. A Science Working Group for II has now been set up within the CTA Consortium, of which Lund University is an integral part. A Letter of Intent has been sent to CTA expressing these intentions. An attractive aspect of II is its complementarity to the principle goal of CTA - the exploration of high energy cosmic rays via the Cherenkov light they generate in the atmosphere. This can only be observed under the most demanding atmospheric conditions whereas II can be recorded when conditions are poor: with a bright Moon, during periods of turbulence; in hazy conditions; or after dusk and before dawn. Two further advantages of implementing an II option on CTA are the minimal marginal costs incurred to an already 400M€ investment and, secondly, that even a few telescopes would produce unique scientific results even in the early days when the CTA array is far from complete. [1] Dainis Dravins and Colin Carlile, SPIE Newsroom (2016), http://spie.org/newsroom/6504-kilometer-baseline-optical-intensity-interferometry-for-stellar-surface-observations [2] D. Dravins, T. Lagadec, P.D. Nuñez, Nature Communications 6, 6852 (2015)
Atom beams split by gentle persuasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pool, R.
1994-02-25
Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state.
Franson Interference Generated by a Two-Level System
NASA Astrophysics Data System (ADS)
Peiris, M.; Konthasinghe, K.; Muller, A.
2017-01-01
We report a Franson interferometry experiment based on correlated photon pairs generated via frequency-filtered scattered light from a near-resonantly driven two-level semiconductor quantum dot. In contrast to spontaneous parametric down-conversion and four-wave mixing, this approach can produce single pairs of correlated photons. We have measured a Franson visibility as high as 66%, which goes beyond the classical limit of 50% and approaches the limit of violation of Bell's inequalities (70.7%).
How can attosecond pulse train interferometry interrogate electron dynamics?
NASA Astrophysics Data System (ADS)
Arnold, C. L.; Isinger, M.; Busto, D.; Guénot, D.; Nandi, S.; Zhong, S.; Dahlström, J. M.; Gisselbrecht, M.; l'Huillier, A.
2018-04-01
Light pulses of sub-100 as (1 as=10-18 s) duration, with photon energies in the extreme-ultraviolet (XUV) spectral domain, represent the shortest event in time ever made and controlled by human beings. Their first experimental observation in 2001 has opened the door to investigating the fundamental dynamics of the quantum world on the natural time scale for electrons in atoms, molecules and solids and marks the beginning of the scientific field now called attosecond science.
Single-beam, dark toroidal optical traps for cold atoms
NASA Astrophysics Data System (ADS)
Fatemi, Fredrik K.; Olson, Spencer E.; Bashkansky, Mark; Dutton, Zachary; Terraciano, Matthew
2007-02-01
We demonstrate the generation of single-beam dark toroidal optical intensity distributions, which are of interest for neutral atom storage and atom interferometry. We demonstrate experimentally and numerically optical potentials that contain a ring-shaped intensity minimum, bounded in all directions by higher intensity. We use a spatial light modulator to alter the phase of an incident laser beam, and analyze the resulting optical propagation characteristics. For small toroidal traps (< 50 μm diameter), we find an optimal superposition of Laguerre-Gaussian modes that allows the formation of single-beam toroidal traps. We generate larger toroidal bottle traps by focusing hollow beams with toroidal lenses imprinted onto the spatial light modulator.
Speckle interferometry of asteroids. IV - Reconstructed images of 4 Vesta
NASA Technical Reports Server (NTRS)
Drummond, J.; Eckart, A.; Hege, E. K.
1988-01-01
The images of 4 Vesta obtained by means of speckle interferometric observations on November 16 and 17, 1983, support a 5-hr 20.5-min rotational period. The 4 Vesta visible light curve was approximately matched by the placing of circular 'spots' with 135-km diameter over the three dark and three bright features, followed by the assigning of albedos of 0 to the dark spots and 2 to the bright. The light curve is found to be primarily defined by albedo structure, rather than shape; this results in one maximum and one minimum/rotation, rather than the two of each that would be associated with 4 Vesta's triaxial ellipsoid morphology.
Light propagation in the micro-size capillary injected by high temperature liquid
NASA Astrophysics Data System (ADS)
Li, Yan-jun; Li, Edward; Xiao, Hai
2016-11-01
The high temperature liquid is injected into the micro-size capillary and its light propagation behavior is investigated. We focus on two different liquid pumping methods. The first method can pump the high temperature liquid tin into the micro-size capillary by using a high pressure difference system. After pumping, a single mode fiber (SMF) connected with the optical carrier based microwave interferometry (OCMI) system is used to measure different liquid tin levels in the micro-size capillary. The second method can pump the room temperature engine oil into the capillary by using a syringe pump. This method can avoid the air bubbles when the liquids are pumped into the capillary.
Nonimaging speckle interferometry for high-speed nanometer-scale position detection.
van Putten, E G; Lagendijk, A; Mosk, A P
2012-03-15
We experimentally demonstrate a nonimaging approach to displacement measurement for complex scattering materials. By spatially controlling the wavefront of the light that incidents on the material, we concentrate the scattered light in a focus on a designated position. This wavefront acts as a unique optical fingerprint that enables precise position detection of the illuminated material by simply measuring the intensity in the focus. By combining two fingerprints we demonstrate position detection along one in-plane dimension with a displacement resolution of 2.1 nm. As our approach does not require an image of the scattered field, it is possible to employ fast nonimaging detectors to enable high-speed position detection of scattering materials.
Three-dimensional displacement measurement of image point by point-diffraction interferometry
NASA Astrophysics Data System (ADS)
He, Xiao; Chen, Lingfeng; Meng, Xiaojie; Yu, Lei
2018-01-01
This paper presents a method for measuring the three-dimensional (3-D) displacement of an image point based on point-diffraction interferometry. An object Point-light-source (PLS) interferes with a fixed PLS and its interferograms are captured by an exit pupil. When the image point of the object PLS is slightly shifted to a new position, the wavefront of the image PLS changes. And its interferograms also change. Processing these figures (captured before and after the movement), the wavefront difference of the image PLS can be obtained and it contains the information of three-dimensional (3-D) displacement of the image PLS. However, the information of its three-dimensional (3-D) displacement cannot be calculated until the distance between the image PLS and the exit pupil is calibrated. Therefore, we use a plane-parallel-plate with a known refractive index and thickness to determine this distance, which is based on the Snell's law for small angle of incidence. Thus, since the distance between the exit pupil and the image PLS is a known quantity, the 3-D displacement of the image PLS can be simultaneously calculated through two interference measurements. Preliminary experimental results indicate that its relative error is below 0.3%. With the ability to accurately locate an image point (whatever it is real or virtual), a fiber point-light-source can act as the reticle by itself in optical measurement.
Gravitational wave detection using laser interferometry beyond the standard quantum limit
NASA Astrophysics Data System (ADS)
Heurs, M.
2018-05-01
Interferometric gravitational wave detectors (such as advanced LIGO) employ high-power solid-state lasers to maximize their detection sensitivity and hence their reach into the universe. These sophisticated light sources are ultra-stabilized with regard to output power, emission frequency and beam geometry; this is crucial to obtain low detector noise. However, even when all laser noise is reduced as far as technically possible, unavoidable quantum noise of the laser still remains. This is a consequence of the Heisenberg Uncertainty Principle, the basis of quantum mechanics: in this case, it is fundamentally impossible to simultaneously reduce both the phase noise and the amplitude noise of a laser to arbitrarily low levels. This fact manifests in the detector noise budget as two distinct noise sources-photon shot noise and quantum radiation pressure noise-which together form a lower boundary for current-day gravitational wave detector sensitivities, the standard quantum limit of interferometry. To overcome this limit, various techniques are being proposed, among them different uses of non-classical light and alternative interferometer topologies. This article explains how quantum noise enters and manifests in an interferometric gravitational wave detector, and gives an overview of some of the schemes proposed to overcome this seemingly fundamental limitation, all aimed at the goal of higher gravitational wave event detection rates. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.
Gravitational wave detection using laser interferometry beyond the standard quantum limit.
Heurs, M
2018-05-28
Interferometric gravitational wave detectors (such as advanced LIGO) employ high-power solid-state lasers to maximize their detection sensitivity and hence their reach into the universe. These sophisticated light sources are ultra-stabilized with regard to output power, emission frequency and beam geometry; this is crucial to obtain low detector noise. However, even when all laser noise is reduced as far as technically possible, unavoidable quantum noise of the laser still remains. This is a consequence of the Heisenberg Uncertainty Principle, the basis of quantum mechanics: in this case, it is fundamentally impossible to simultaneously reduce both the phase noise and the amplitude noise of a laser to arbitrarily low levels. This fact manifests in the detector noise budget as two distinct noise sources-photon shot noise and quantum radiation pressure noise-which together form a lower boundary for current-day gravitational wave detector sensitivities, the standard quantum limit of interferometry. To overcome this limit, various techniques are being proposed, among them different uses of non-classical light and alternative interferometer topologies. This article explains how quantum noise enters and manifests in an interferometric gravitational wave detector, and gives an overview of some of the schemes proposed to overcome this seemingly fundamental limitation, all aimed at the goal of higher gravitational wave event detection rates.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).
Mach-Zehnder interferometry using spin- and valley-polarized quantum Hall edge states in graphene.
Wei, Di S; van der Sar, Toeno; Sanchez-Yamagishi, Javier D; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo; Halperin, Bertrand I; Yacoby, Amir
2017-08-01
Confined to a two-dimensional plane, electrons in a strong magnetic field travel along the edge in one-dimensional quantum Hall channels that are protected against backscattering. These channels can be used as solid-state analogs of monochromatic beams of light, providing a unique platform for studying electron interference. Electron interferometry is regarded as one of the most promising routes for studying fractional and non-Abelian statistics and quantum entanglement via two-particle interference. However, creating an edge-channel interferometer in which electron-electron interactions play an important role requires a clean system and long phase coherence lengths. We realize electronic Mach-Zehnder interferometers with record visibilities of up to 98% using spin- and valley-polarized edge channels that copropagate along a pn junction in graphene. We find that interchannel scattering between same-spin edge channels along the physical graphene edge can be used to form beamsplitters, whereas the absence of interchannel scattering along gate-defined interfaces can be used to form isolated interferometer arms. Surprisingly, our interferometer is robust to dephasing effects at energies an order of magnitude larger than those observed in pioneering experiments on GaAs/AlGaAs quantum wells. Our results shed light on the nature of edge-channel equilibration and open up new possibilities for studying exotic electron statistics and quantum phenomena.
Peggs, G N; Yacoot, A
2002-05-15
This paper reviews recent work in the field of displacement measurement using optical and X-ray interferometry at the sub-nanometre level of accuracy. The major sources of uncertainty in optical interferometry are discussed and a selection of recent designs of ultra-precise, optical-interferometer-based, displacement measuring transducers presented. The use of X-ray interferometry and its combination with optical interferometry is discussed.
Bibliography of spatial interferometry in optical astronomy
NASA Technical Reports Server (NTRS)
Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude
1990-01-01
The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.
Speckle interferometry of asteroids
NASA Technical Reports Server (NTRS)
Drummond, Jack
1988-01-01
This final report for NASA Contract NAGw-867 consists of abstracts of the first three papers in a series of four appearing in Icarus that were funded by the preceding contract NAGw-224: (1) Speckle Interferometry of Asteroids I. 433 Eros; (2) Speckle Interferometry of Asteroids II. 532 Herculina; (3) Speckle Interferometry of Asteroids III. 511 Davida and its Photometry; and the fourth abstract attributed to NAGw-867, (4) Speckle Interferometry of Asteroids IV. Reconstructed images of 4 Vesta; and a review of the results from the asteroid interferometry program at Steward Observatory prepared for the Asteroids II book, (5) Speckle Interferometry of Asteroids. Two papers on asteroids, indirectly related to speckle interferometry, were written in part under NAGw-867. One is in press and its abstract is included here: Photometric Geodesy of Main-Belt Asteroids. II. Analysis of Lightcurves for Poles, Periods and Shapes; and the other paper, Triaxial Ellipsoid Dimensions and Rotational Pole of 2 Pallas from Two Stellar Occultations, is included in full.
Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm
NASA Astrophysics Data System (ADS)
Yu, Zhihua; Zhang, Qi; Zhang, Mingyu; Dai, Haolong; Zhang, Jingjing; Liu, Li; Zhang, Lijun; Jin, Xing; Wang, Gaifang; Qi, Guang
2018-05-01
A novel optical fiber-distributed vibration-sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase-generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson interferometry to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000 m sensing fiber and demodulated correctly. The spatial resolution is 10 m, and the noise level of the Φ-OTDR system we proposed is about 10-3 rad/\\surd {Hz}, and the signal-to-noise ratio is about 30.34 dB.
Azzam, R M A
2017-08-10
A quarter-wave layer (QWL) of high refractive index, which is deposited on a transparent prism of low refractive index, can be designed to split an incident p-polarized light beam at the Brewster angle (BA) of the air-substrate interface into p-polarized reflected and transmitted beams of equal intensity (50% each) that travel in orthogonal directions. For reflection of p-polarized light at the BA, the supported QWL functions as a free-standing (unsupported) pellicle. An exemplary design is presented that uses Si x Ge 1-x QWL deposited on an IRTRAN1 prism for applications (such as Michelson and Mach-Zehnder interferometry) with a variable compositional fraction x in the 2-6 μm mid-IR spectral range.
Measurement of the configuration of a concave surface by the interference of reflected light
NASA Technical Reports Server (NTRS)
Kumazawa, T.; Sakamoto, T.; Shida, S.
1985-01-01
A method whereby a concave surface is irradiated with coherent light and the resulting interference fringes yield information on the concave surface is described. This method can be applied to a surface which satisfies the following conditions: (1) the concave face has a mirror surface; (2) the profile of the face is expressed by a mathematical function with a point of inflection. In this interferometry, multilight waves reflected from the concave surface interfere and make fringes wherever the reflected light propagates. Interference fringe orders. Photographs of the fringe patterns for a uniformly loaded thin silicon plate clamped at the edge are shown experimentally. The experimental and the theoretical values of the maximum optical path difference show good agreement. This simple method can be applied to obtain accurate information on concave surfaces.
Precision depth measurement of through silicon vias (TSVs) on 3D semiconductor packaging process.
Jin, Jonghan; Kim, Jae Wan; Kang, Chu-Shik; Kim, Jong-Ahn; Lee, Sunghun
2012-02-27
We have proposed and demonstrated a novel method to measure depths of through silicon vias (TSVs) at high speed. TSVs are fine and deep holes fabricated in silicon wafers for 3D semiconductors; they are used for electrical connections between vertically stacked wafers. Because the high-aspect ratio hole of the TSV makes it difficult for light to reach the bottom surface, conventional optical methods using visible lights cannot determine the depth value. By adopting an optical comb of a femtosecond pulse laser in the infra-red range as a light source, the depths of TSVs having aspect ratio of about 7 were measured. This measurement was done at high speed based on spectral resolved interferometry. The proposed method is expected to be an alternative method for depth inspection of TSVs.
NASA Astrophysics Data System (ADS)
Ni, Wei-Tou; Han, Sen; Jin, Tao
2016-11-01
With the LIGO announcement of the first direct detection of gravitational waves (GWs), the GW Astronomy was formally ushered into our age. After one-hundred years of theoretical investigation and fifty years of experimental endeavor, this is a historical landmark not just for physics and astronomy, but also for industry and manufacturing. The challenge and opportunity for industry is precision and innovative manufacturing in large size - production of large and homogeneous optical components, optical diagnosis of large components, high reflectance dielectric coating on large mirrors, manufacturing of components for ultrahigh vacuum of large volume, manufacturing of high attenuating vibration isolation system, production of high-power high-stability single-frequency lasers, production of high-resolution positioning systems etc. In this talk, we address the requirements and methods to satisfy these requirements. Optical diagnosis of large optical components requires large phase-shifting interferometer; the 1.06 μm Phase Shifting Interferometer for testing LIGO optics and the recently built 24" phase-shifting Interferometer in Chengdu, China are examples. High quality mirrors are crucial for laser interferometric GW detection, so as for ring laser gyroscope, high precision laser stabilization via optical cavities, quantum optomechanics, cavity quantum electrodynamics and vacuum birefringence measurement. There are stringent requirements on the substrate materials and coating methods. For cryogenic GW interferometer, appropriate coating on sapphire or silicon are required for good thermal and homogeneity properties. Large ultrahigh vacuum components and high attenuating vibration system together with an efficient metrology system are required and will be addressed. For space interferometry, drag-free technology and weak-light manipulation technology are must. Drag-free technology is well-developed. Weak-light phase locking is demonstrated in the laboratories while weak-light manipulation technology still needs developments.
Atmospheric turbulence compensation with laser phase shifting interferometry
NASA Astrophysics Data System (ADS)
Rabien, S.; Eisenhauer, F.; Genzel, R.; Davies, R. I.; Ott, T.
2006-04-01
Laser guide stars with adaptive optics allow astronomical image correction in the absence of a natural guide star. Single guide star systems with a star created in the earth's sodium layer can be used to correct the wavefront in the near infrared spectral regime for 8-m class telescopes. For possible future telescopes of larger sizes, or for correction at shorter wavelengths, the use of a single guide star is ultimately limited by focal anisoplanatism that arises from the finite height of the guide star. To overcome this limitation we propose to overlap coherently pulsed laser beams that are expanded over the full aperture of the telescope, traveling upwards along the same path which light from the astronomical object travels downwards. Imaging the scattered light from the resultant interference pattern with a camera gated to a certain height above the telescope, and using phase shifting interferometry we have found a method to retrieve the local wavefront gradients. By sensing the backscattered light from two different heights, one can fully remove the cone effect, which can otherwise be a serious handicap to the use of laser guide stars at shorter wavelengths or on larger telescopes. Using two laser beams multiconjugate correction is possible, resulting in larger corrected fields. With a proper choice of laser, wavefront correction could be expanded to the visible regime and, due to the lack of a cone effect, the method is applicable to any size of telescope. Finally the position of the laser spot could be imaged from the side of the main telescope against a bright background star to retrieve tip-tilt information, which would greatly improve the sky coverage of the system.
Relativistic electron kinetic effects on laser diagnostics in burning plasmas
NASA Astrophysics Data System (ADS)
Mirnov, V. V.; Den Hartog, D. J.
2018-02-01
Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.
Optical Diagnostics in Medicine
NASA Astrophysics Data System (ADS)
Iftimia, Nicusor
2003-03-01
Light has a unique potential for non-invasive tissue diagnosis. The relatively short wavelength of light allows imaging of tissue at the resolution of histopathology. While strong multiple scattering of light in tissue makes attainment of this resolution difficult for thick tissues, most pathology emanates from epithelial surfaces. Therefore, high-resolution diagnosis of many important diseases may be achieved by transmitting light to the surface of interest. The recent fiber-optic implementation of technologies that reject multiple scattering, such as confocal microscopy and optical low coherence interferometry, have brought us one step closer to realizing non-invasive imaging of architectural and cellular features of tissue. Optical coherence tomography (OCT) can produce high-resolution cross-sectional images of biological structures. Clinical OCT studies conducted in the gastrointestinal tract and cardiovascular system have shown that OCT is capable of providing images of the architectural (> 20 µm) microanatomy of a variety of epithelial tissues, including the layered structure of squamous epithelium and arterial vessels. Fine Needle Aspiration- Low Coherence Interferometry (FNA-LCI) is another optical diagnostics technique, which is a suitable solution to increase the effectiveness of the FNA procedures. LCI is capable of measuring depth resolved (axial, z) tissue structure, birefringence, flow (Doppler shift), and spectra at a resolution of several microns. Since LCI systems are fiber-optic based, LCI probes may easily fit within the bore of a fine gauge needle, allowing diagnostic information to be obtained directly from the FNA biopsy site. Fiber optic spectrally encoded confocal microscopy (SECM) is a new confocal microscopy method, which eliminates the need for rapid beam scanning within the optical probe. This advance enables confocal microscopy to be performed through small diameter probes and will allow assessment of internal human tissues in vivo at the cellular level. A detailed description of several fiber optics based systems for early diseases diagnosis, as well as preliminary clinic results, will be presented.
NASA Astrophysics Data System (ADS)
Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.
2018-05-01
This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.
Algorithms and Array Design Criteria for Robust Imaging in Interferometry
NASA Astrophysics Data System (ADS)
Kurien, Binoy George
Optical interferometry is a technique for obtaining high-resolution imagery of a distant target by interfering light from multiple telescopes. Image restoration from interferometric measurements poses a unique set of challenges. The first challenge is that the measurement set provides only a sparse-sampling of the object's Fourier Transform and hence image formation from these measurements is an inherently ill-posed inverse problem. Secondly, atmospheric turbulence causes severe distortion of the phase of the Fourier samples. We develop array design conditions for unique Fourier phase recovery, as well as a comprehensive algorithmic framework based on the notion of redundant-spaced-calibration (RSC), which together achieve reliable image reconstruction in spite of these challenges. Within this framework, we see that classical interferometric observables such as the bispectrum and closure phase can limit sensitivity, and that generalized notions of these observables can improve both theoretical and empirical performance. Our framework leverages techniques from lattice theory to resolve integer phase ambiguities in the interferometric phase measurements, and from graph theory, to select a reliable set of generalized observables. We analyze the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures and corroborate this analysis with simulation results. We apply techniques from the field of compressed sensing to perform image reconstruction from the estimates of the object's Fourier coefficients. The end result is a comprehensive strategy to achieve well-posed and easily-predictable reconstruction performance in optical interferometry.
Forest Structure Retrieval From EcoSAR P-Band Single-Pass Interferometry
NASA Technical Reports Server (NTRS)
Osmanoglu, Batuhan; Rincon, Rafael; Lee, Seung Kuk; Fatoyinbo, Temilola; Bollian, Tobias
2017-01-01
EcoSAR is a single-pass (dual antenna) digital beamforming, P-band radar system that is designed for remote sensing of dense forest structure. Forest structure retrievals require the measurement related to the vertical dimension, for which several techniques have been developed over the years. These techniques use polarimetric and interferometric aspects of the SAR data, which can be collected using EcoSAR. In this paper we describe EcoSAR system in light of its interferometric capabilities and investigate forest structure retrieval techniques.
NASA Astrophysics Data System (ADS)
Ahlers, H.; Müntinga, H.; Wenzlawski, A.; Krutzik, M.; Tackmann, G.; Abend, S.; Gaaloul, N.; Giese, E.; Roura, A.; Kuhl, R.; Lämmerzahl, C.; Peters, A.; Windpassinger, P.; Sengstock, K.; Schleich, W. P.; Ertmer, W.; Rasel, E. M.
2016-04-01
We employ light-induced double Bragg diffraction of delta-kick collimated Bose-Einstein condensates to create three symmetric Mach-Zehnder interferometers. They rely on (i) first-order, (ii) two successive first-order, and (iii) second-order processes which demonstrate the scalability of the corresponding momentum transfer. With respect to devices based on conventional Bragg scattering, these symmetric interferometers double the scale factor and feature a better suppression of noise and systematic uncertainties intrinsic to the diffraction process. Moreover, we utilize these interferometers as tiltmeters for monitoring their inclination with respect to gravity.
Phonon Counting and Intensity Interferometry of a Nanomechanical Resonator
2014-10-04
photon detectors, Γdark, and the residual pump laser light which is transmitted through the filters. In this work we use a cascaded pair of tunable...T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, Nature Photon . 7, 210 6 a b 0 1 10−1 FIG. 5. FEM simulations . a, Electric... photon detection we have performed effective phonon counting measurements of the acoustic emission and absorption processes in a nanomechanical res
Strain analysis of a disk subjected to diametral compression by means of holographic interferometry.
Sciammarella, C A; Gilbert, J A
1973-08-01
Two simultaneous holograms and several directions of observation are utilized to determine the components of displacement and strain in the disk. A reference strip is introduced to relate the fringe orders in the two holograms. A very good agreement is obtained between the holographic results and the elasticity theory solution. The obtained displacement field is estimated to be accurate to 8 x 10(-6) cm, which is approximately one-eighth the wavelength of the laser light utilized to obtain the holograms.
Distributed measurement of birefringence dispersion in polarization-maintaining fibers
NASA Astrophysics Data System (ADS)
Tang, Feng; Wang, Xiang-Zhao; Zhang, Yimo; Jing, Wencai
2006-12-01
A new method to measure the birefringence dispersion in high-birefringence polarization-maintaining fibers is presented using white-light interferometry. By analyzing broadening of low-coherence interferograms obtained in a scanning Michelson interferometer, the birefringence dispersion and its variation along different fiber sections are acquired with high sensitivity and accuracy. Birefringence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011 ps/(km nm) and 0.018 ps/(km nm), respectively. Distributed measurement capability of the method is also verified experimentally.
NASA Technical Reports Server (NTRS)
Thorpe, James I.
2009-01-01
An overview of LISA Long-Arm Interferometry is presented. The contents include: 1) LISA Interferometry; 2) Constellation Design; 3) Telescope Design; 4) Constellation Acquisition; 5) Mechanisms; 6) Optical Bench Design; 7) Phase Measurement Subsystem; 8) Phasemeter Demonstration; 9) Time Delay Interferometry; 10) TDI Limitations; 11) Active Frequency Stabilization; 12) Spacecraft Level Stabilization; 13) Arm-Locking; and 14) Embarassment of Riches.
Space Interferometry Science Working Group
NASA Astrophysics Data System (ADS)
Ridgway, Stephen T.
1992-12-01
Decisions taken by the astronomy and astrophysics survey committee and the interferometry panel which lead to the formation of the Space Interferometry Science Working Group (SISWG) are outlined. The SISWG was formed by the NASA astrophysics division to provide scientific and technical input from the community in planning for space interferometry and in support of an Astrometric Interferometry Mission (AIM). The AIM program hopes to measure the positions of astronomical objects with a precision of a few millionths of an arcsecond. The SISWG science and technical teams are described and the outcomes of its first meeting are given.
Robust interferometry against imperfections based on weak value amplification
NASA Astrophysics Data System (ADS)
Fang, Chen; Huang, Jing-Zheng; Zeng, Guihua
2018-06-01
Optical interferometry has been widely used in various high-precision applications. Usually, the minimum precision of an interferometry is limited by various technical noises in practice. To suppress such kinds of noises, we propose a scheme which combines the weak measurement with the standard interferometry. The proposed scheme dramatically outperforms the standard interferometry in the signal-to-noise ratio and the robustness against noises caused by the optical elements' reflections and the offset fluctuation between two paths. A proof-of-principle experiment is demonstrated to validate the amplification theory.
Ghost Spectroscopy with Classical Thermal Light Emitted by a Superluminescent Diode
NASA Astrophysics Data System (ADS)
Janassek, Patrick; Blumenstein, Sébastien; Elsäßer, Wolfgang
2018-02-01
We propose and realize the first classical ghost-imaging (GI) experiment in the frequency or wavelength domain, thus performing ghost spectroscopy using thermal light exhibiting photon bunching. The required wavelength correlations are provided by light emitted by spectrally broadband near-infrared amplified spontaneous emission of a semiconductor-based superluminescent diode. They are characterized by wavelength-resolved intensity cross-correlation measurements utilizing two-photon-absorption interferometry. Finally, a real-world spectroscopic application of this ghost spectroscopy with a classical light scheme is demonstrated in which an absorption band of trichloromethane (chloroform) at 1214 nm is reconstructed with a spectral resolution of 10 nm as a proof-of-principle experiment. This ghost-spectroscopy work fills the gap of a hitherto missing analogy between the spatial and the spectral domain in classical GI modalities, with the expectation of contributing towards a broader dissemination of correlated photon ghost modalities, hence paving the way towards more applications which exploit the favorable advantages.
Ruggiero, Anthony J.
2005-05-03
An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.
Composite-Light-Pulse Technique for High-Precision Atom Interferometry
NASA Astrophysics Data System (ADS)
Berg, P.; Abend, S.; Tackmann, G.; Schubert, C.; Giese, E.; Schleich, W. P.; Narducci, F. A.; Ertmer, W.; Rasel, E. M.
2015-02-01
We realize beam splitters and mirrors for atom waves by employing a sequence of light pulses rather than individual ones. In this way we can tailor atom interferometers with improved sensitivity and accuracy. We demonstrate our method of composite pulses by creating a symmetric matter-wave interferometer which combines the advantages of conventional Bragg- and Raman-type concepts. This feature leads to an interferometer with a high immunity to technical noise allowing us to devise a large-area Sagnac gyroscope yielding a phase shift of 6.5 rad due to the Earth's rotation. With this device we achieve a rotation rate precision of 120 nrad s-1 Hz-1 /2 and determine the Earth's rotation rate with a relative uncertainty of 1.2%.
NASA Astrophysics Data System (ADS)
Girish, B. S.; Pandey, Deepak; Ramachandran, Hema
2017-08-01
We present a compact, inexpensive multichannel module, APODAS (Avalanche Photodiode Output Data Acquisition System), capable of detecting 0.8 billion photons per second and providing real-time recording on a computer hard-disk, of channel- and time-tagged information of the arrival of upto 0.4 billion photons per second. Built around a Virtex-5 Field Programmable Gate Array (FPGA) unit, APODAS offers a temporal resolution of 5 nanoseconds with zero deadtime in data acquisition, utilising an efficient scheme for time and channel tagging and employing Gigabit ethernet for the transfer of data. Analysis tools have been developed on a Linux platform for multi-fold coincidence studies and time-delayed intensity interferometry. As illustrative examples, the second-order intensity correlation function ( g 2) of light from two commonly used sources in quantum optics —a coherent laser source and a dilute atomic vapour emitting spontaneously, constituting a thermal source— are presented. With easy reconfigurability and with no restriction on the total record length, APODAS can be readily used for studies over various time scales. This is demonstrated by using APODAS to reveal Rabi oscillations on nanosecond time scales in the emission of ultracold atoms, on the one hand, and, on the other hand, to measure the second-order correlation function on the millisecond time scales from tailored light sources. The efficient and versatile performance of APODAS promises its utility in diverse fields, like quantum optics, quantum communication, nuclear physics, astrophysics and biology.
Suppression of contrast-related artefacts in phase-measuring structured light techniques
NASA Astrophysics Data System (ADS)
Burke, Jan; Zhong, Liang
2017-06-01
Optical metrology using phase measurements has benefited significantly from the introduction of phase-shifting methods, first in interferometry, then also in fringe projection and fringe reflection. As opposed to interferometry, the latter two techniques generally use a spatiotemporal phase-shifting approach: A sequence of fringe patterns with varying spacing is used, and a phase map of each is generated by temporal phase shifting, to allow unique assignments of projector or screen pixels to camera pixels. One ubiquitous problem with phase-shifting structured-light techniques is that phase artefacts appear near regions of the image where the modulation amplitude of the projected or reflected fringes changes abruptly, e.g. near dirt/dust particles on the surface in deflectometry or bright-dark object colour transitions in fringe projection. Near the bright-dark boundaries, responses in the phase maps appear that are not plausible as actual surface features. The phenomenon has been known for a long time but is usually ignored because it does not compromise the overall reliability of results. In deflectometry, however, often the objective is to find and classify small defects, and of course it is then important to distinguish between bogus phase responses caused by fringe modulation changes, and actual surface defects. We present, for what we believe is the first time, an analytical derivation of the error terms, study the parameters influencing the phase artefacts (in particular the fringe period), and suggest some simple algorithms to minimise them.
Force transformation in spider strain sensors: white light interferometry
Schaber, Clemens F.; Gorb, Stanislav N.; Barth, Friedrich G.
2012-01-01
Scanning white light interferometry and micro-force measurements were applied to analyse stimulus transformation in strain sensors in the spider exoskeleton. Two compound or ‘lyriform’ organs consisting of arrays of closely neighbouring, roughly parallel sensory slits of different lengths were examined. Forces applied to the exoskeleton entail strains in the cuticle, which compress and thereby stimulate the individual slits of the lyriform organs. (i) For the proprioreceptive lyriform organ HS-8 close to the distal joint of the tibia, the compression of the slits at the sensory threshold was as small as 1.4 nm and hardly more than 30 nm, depending on the slit in the array. The corresponding stimulus forces were as small as 0.01 mN. The linearity of the loading curve seems reasonable considering the sensor's relatively narrow biological intensity range of operation. The slits' mechanical sensitivity (slit compression/force) ranged from 106 down to 13 nm mN−1, and gradually decreased with decreasing slit length. (ii) Remarkably, in the vibration-sensitive lyriform organ HS-10 on the metatarsus, the loading curve was exponential. The organ is thus adapted to the detection of a wide range of vibration amplitudes, as they are found under natural conditions. The mechanical sensitivities of the two slits examined in this organ in detail differed roughly threefold (522 and 195 nm mN−1) in the biologically most relevant range, again reflecting stimulus range fractionation among the slits composing the array. PMID:22031733
NASA Astrophysics Data System (ADS)
Pushin, Dmitry
Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.
TDRS orbit determination by radio interferometry
NASA Technical Reports Server (NTRS)
Pavloff, Michael S.
1994-01-01
In support of a NASA study on the application of radio interferometry to satellite orbit determination, MITRE developed a simulation tool for assessing interferometry tracking accuracy. The Orbit Determination Accuracy Estimator (ODAE) models the general batch maximum likelihood orbit determination algorithms of the Goddard Trajectory Determination System (GTDS) with the group and phase delay measurements from radio interferometry. ODAE models the statistical properties of tracking error sources, including inherent observable imprecision, atmospheric delays, clock offsets, station location uncertainty, and measurement biases, and through Monte Carlo simulation, ODAE calculates the statistical properties of errors in the predicted satellites state vector. This paper presents results from ODAE application to orbit determination of the Tracking and Data Relay Satellite (TDRS) by radio interferometry. Conclusions about optimal ground station locations for interferometric tracking of TDRS are presented, along with a discussion of operational advantages of radio interferometry.
Depth-resolved measurement of ocular fundus pulsations by low-coherence tissue interferometry
NASA Astrophysics Data System (ADS)
Dragostinoff, Nikolaus; Werkmeister, René M.; Gröschl, Martin; Schmetterer, Leopold
2009-09-01
A device that allows for the measurement of ocular fundus pulsations at preselected axial positions of a subject's eye is presented. Unlike previously presented systems, which only allow for observation of the strongest reflecting retinal layer, our system enables the measurement of fundus pulsations at a preselected ocular layer. For this purpose the sample is illuminated by light of low temporal coherence. The layer is then selected by positioning one mirror of a Michelson interferometer according to the depth of the layer. The device contains a length measurement system based on partial coherence interferometry and a line scan charge-coupled device camera for recording and online inspection of the fringe system. In-vivo measurements in healthy humans are performed as proof of principle. The algorithms used for enhancing the recorded images are briefly introduced. The contrast of the observed interference pattern is evaluated for different positions of the measurement mirror and at various distances from the front surface of the cornea. The applications of such a system may be wide, including assessment of eye elongation during myopia development and blood-flow-related changes in intraocular volume.
Basis-neutral Hilbert-space analyzers
Martin, Lane; Mardani, Davood; Kondakci, H. Esat; Larson, Walker D.; Shabahang, Soroush; Jahromi, Ali K.; Malhotra, Tanya; Vamivakas, A. Nick; Atia, George K.; Abouraddy, Ayman F.
2017-01-01
Interferometry is one of the central organizing principles of optics. Key to interferometry is the concept of optical delay, which facilitates spectral analysis in terms of time-harmonics. In contrast, when analyzing a beam in a Hilbert space spanned by spatial modes – a critical task for spatial-mode multiplexing and quantum communication – basis-specific principles are invoked that are altogether distinct from that of ‘delay’. Here, we extend the traditional concept of temporal delay to the spatial domain, thereby enabling the analysis of a beam in an arbitrary spatial-mode basis – exemplified using Hermite-Gaussian and radial Laguerre-Gaussian modes. Such generalized delays correspond to optical implementations of fractional transforms; for example, the fractional Hankel transform is the generalized delay associated with the space of Laguerre-Gaussian modes, and an interferometer incorporating such a ‘delay’ obtains modal weights in the associated Hilbert space. By implementing an inherently stable, reconfigurable spatial-light-modulator-based polarization-interferometer, we have constructed a ‘Hilbert-space analyzer’ capable of projecting optical beams onto any modal basis. PMID:28344331
Analysis of localized fringes in the holographic optical Schlieren system
NASA Technical Reports Server (NTRS)
Kurtz, R. L.
1980-01-01
The relation between localization of interference fringes in classical and holographic interferometry is reviewed and an application of holographic interferometry is considered for which the object is a transparent medium with nonhomogeneous refractive index. The technique is based on the analysis of the optical path length change of the object wave as it propagates through a transparent medium. Phase shifts due to variations of the speed of light within the medium give rise to an interference pattern. The resulting interferogram can be used to determine the physical properties of the medium or transparent object. Such properties include the mass density of fluids, electron densities of plasmas, the temperature of fluids, the chemical species concentration of fluids, and the state of stress in solids. The optical wave used can be either a simple plane or spherical wave, or it may be a complicated spatial wave scattered by a diffusing screen. The mathematical theory on the formation and analysis of localized fringes, the general theoretical concepts used, and a computer code for analysis are included along with the inversion of fringe order data.
NASA Astrophysics Data System (ADS)
Dubey, Satish Kumar; Singh Mehta, Dalip; Anand, Arun; Shakher, Chandra
2008-01-01
We demonstrate simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography (OCT). The swept-source OCT system comprises a superluminescent diode (SLD) as broad-band light source, an acousto-optic tunable filter (AOTF) as frequency tuning device, and a compact, nearly common-path interferometer. Both the amplitude and the phase map of the interference fringe signal are reconstructed. Optical sectioning of the latent fingerprint sample is obtained by selective Fourier filtering and the topography is retrieved from the phase map. Interferometry, selective filtering, low coherence and hence better resolution are some of the advantages of the proposed system over the conventional fingerprint detection techniques. The present technique is non-invasive in nature and does not require any physical or chemical processing. Therefore, the quality of the sample does not alter and hence the same fingerprint can be used for other types of forensic test. Exploitation of low-coherence interferometry for fingerprint detection itself provides an edge over other existing techniques as fingerprints can even be lifted from low-reflecting surfaces. The proposed system is very economical and compact.
Depth Profilometry via Multiplexed Optical High-Coherence Interferometry
Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B.; Hajian, Arsen R.
2015-01-01
Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry. PMID:25803289
Fazio, Massimo A; Bruno, Luigi; Reynaud, Juan F; Poggialini, Andrea; Downs, J Crawford
2012-03-01
We proposed and validated a compensation method that accounts for the optical distortion inherent in measuring displacements on specimens immersed in aqueous solution. A spherically-shaped rubber specimen was mounted and pressurized on a custom apparatus, with the resulting surface displacements recorded using electronic speckle pattern interferometry (ESPI). Point-to-point light direction computation is achieved by a ray-tracing strategy coupled with customized B-spline-based analytical representation of the specimen shape. The compensation method reduced the mean magnitude of the displacement error induced by the optical distortion from 35% to 3%, and ESPI displacement measurement repeatability showed a mean variance of 16 nm at the 95% confidence level for immersed specimens. The ESPI interferometer and numerical data analysis procedure presented herein provide reliable, accurate, and repeatable measurement of sub-micrometer deformations obtained from pressurization tests of spherically-shaped specimens immersed in aqueous salt solution. This method can be used to quantify small deformations in biological tissue samples under load, while maintaining the hydration necessary to ensure accurate material property assessment.
Search for light scalar dark matter with atomic gravitational wave detectors
NASA Astrophysics Data System (ADS)
Arvanitaki, Asimina; Graham, Peter W.; Hogan, Jason M.; Rajendran, Surjeet; Van Tilburg, Ken
2018-04-01
We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass and amplitude determined by the local dark matter density. The result is a modulation of atomic transition energies. We point out a new time-domain signature of this effect in a type of gravitational wave detector that compares two spatially separated atom interferometers referenced by a common laser. Such a detector can improve on current searches for electron-mass or electric-charge modulus dark matter by up to 10 orders of magnitude in coupling, in a frequency band complementary to that of other proposals. It demonstrates that this class of atomic sensors is qualitatively different from other gravitational wave detectors, including those based on laser interferometry. By using atomic-clock-like interferometers, laser noise is mitigated with only a single baseline. These atomic sensors can thus detect scalar signals in addition to tensor signals.
Stochastic characterization of phase detection algorithms in phase-shifting interferometry
Munteanu, Florin
2016-11-01
Phase-shifting interferometry (PSI) is the preferred non-contact method for profiling sub-nanometer surfaces. Based on monochromatic light interference, the method computes the surface profile from a set of interferograms collected at separate stepping positions. Errors in the estimated profile are introduced when these positions are not located correctly. In order to cope with this problem, various algorithms that minimize the effects of certain types of stepping errors (linear, sinusoidal, etc.) have been developed. Despite the relatively large number of algorithms suggested in the literature, there is no unified way of characterizing their performance when additional unaccounted random errors are present. Here,more » we suggest a procedure for quantifying the expected behavior of each algorithm in the presence of independent and identically distributed (i.i.d.) random stepping errors, which can occur in addition to the systematic errors for which the algorithm has been designed. As a result, the usefulness of this method derives from the fact that it can guide the selection of the best algorithm for specific measurement situations.« less
Design considerations and validation of the MSTAR absolute metrology system
NASA Astrophysics Data System (ADS)
Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan; Jeganathan, Muthu
2004-08-01
Absolute metrology measures the actual distance between two optical fiducials. A number of methods have been employed, including pulsed time-of-flight, intensity-modulated optical beam, and two-color interferometry. The rms accuracy is currently limited to ~5 microns. Resolving the integer number of wavelengths requires a 1-sigma range accuracy of ~0.1 microns. Closing this gap has a large pay-off: the range (length measurement) accuracy can be increased substantially using the unambiguous optical phase. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. In this paper, we present recent experiments that use dispersed white light interferometry to independently validate the zero-point of the system. We also describe progress towards reducing the size of optics, and stabilizing the laser wavelength for operation over larger target ranges. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.
Pixel level optical-transfer-function design based on the surface-wave-interferometry aperture
Zheng, Guoan; Wang, Yingmin; Yang, Changhuei
2010-01-01
The design of optical transfer function (OTF) is of significant importance for optical information processing in various imaging and vision systems. Typically, OTF design relies on sophisticated bulk optical arrangement in the light path of the optical systems. In this letter, we demonstrate a surface-wave-interferometry aperture (SWIA) that can be directly incorporated onto optical sensors to accomplish OTF design on the pixel level. The whole aperture design is based on the bull’s eye structure. It composes of a central hole (diameter of 300 nm) and periodic groove (period of 560 nm) on a 340 nm thick gold layer. We show, with both simulation and experiment, that different types of optical transfer functions (notch, highpass and lowpass filter) can be achieved by manipulating the interference between the direct transmission of the central hole and the surface wave (SW) component induced from the periodic groove. Pixel level OTF design provides a low-cost, ultra robust, highly compact method for numerous applications such as optofluidic microscopy, wavefront detection, darkfield imaging, and computational photography. PMID:20721038
Depth profilometry via multiplexed optical high-coherence interferometry.
Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B; Hajian, Arsen R
2015-01-01
Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry.
Validating Laser-Induced Birefringence Theory with Plasma Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Cecilia; Cornell Univ., Ithaca, NY
2015-09-02
Intense laser beams crossing paths in plasma is theorized to induce birefringence in the medium, resulting from density and refractive index modulations that affect the polarization of incoming light. The goal of the associated experiment, conducted on Janus at Lawrence Livermore’s Jupiter Laser Facility, was to create a tunable laser-plasma waveplate to verify the relationship between dephasing angle and beam intensity, plasma density, plasma temperature, and interaction length. Interferometry analysis of the plasma channel was performed to obtain a density map and to constrain temperature measured from Thomson scattering. Various analysis techniques, including Fast Fourier transform (FFT) and two variationsmore » of fringe-counting, were tried because interferograms captured in this experiment contained unusual features such as fringe discontinuity at channel edges, saddle points, and islands. The chosen method is flexible, semi-automated, and uses a fringe tracking algorithm on a reduced image of pre-traced synthetic fringes. Ultimately, a maximum dephasing angle of 49.6° was achieved using a 1200 μm interaction length, and the experimental results appear to agree with predictions.« less
Temporal intensity interferometry: photon bunching in three bright stars
NASA Astrophysics Data System (ADS)
Guerin, W.; Dussaux, A.; Fouché, M.; Labeyrie, G.; Rivet, J.-P.; Vernet, D.; Vakili, F.; Kaiser, R.
2017-12-01
We report the first intensity correlation measured with starlight since the historical experiments of Hanbury Brown and Twiss. The photon bunching g(2)(τ, r = 0), obtained in the photon-counting regime, was measured for three bright stars: α Boo, α CMi and β Gem. The light was collected at the focal plane of a 1-m optical telescope, transported by a multi-mode optical fibre, split into two avalanche photodiodes and correlated digitally in real time. For total exposure times of a few hours, we obtained contrast values around 2 × 10-3, in agreement with the expectation for chaotic sources, given the optical and electronic bandwidths of our set-up. Comparing our results with the measurement of Hanbury Brown et al. for α CMi, we argue for the timely opportunity to extend our experiments to measuring the spatial correlation function over existing and/or foreseen arrays of optical telescopes diluted over several kilometres. This would enable microarcsec long-baseline interferometry in the optical, especially in the visible wavelengths, with a limiting magnitude of 10.
Goldsmith, Harry-Dean Kenchington; Cvetojevic, Nick; Ireland, Michael; Madden, Stephen
2017-02-20
Understanding exoplanet formation and finding potentially habitable exoplanets is vital to an enhanced understanding of the universe. The use of nulling interferometry to strongly attenuate the central star's light provides the opportunity to see objects closer to the star than ever before. Given that exoplanets are usually warm, the 4 µm Mid-Infrared region is advantageous for such observations. The key performance parameters for a nulling interferometer are the extinction ratio it can attain and how well that is maintained across the operational bandwidth. Both parameters depend on the design and fabrication accuracy of the subcomponents and their wavelength dependence. Via detailed simulation it is shown in this paper that a planar chalcogenide photonic chip, consisting of three highly fabrication tolerant multimode interference couplers, can exceed an extinction ratio of 60 dB in double nulling operation and up to 40 dB for a single nulling operation across a wavelength window of 3.9 to 4.2 µm. This provides a beam combiner with sufficient performance, in theory, to image exoplanets.
Zhao, Dehua; Liu, Xiaomeng; Zhang, Bo; Xie, Jianbo; Hong, Yuanyuan; Li, Pengfei; Chen, Sanfeng; Dixon, Ray; Li, Jilun
2013-01-01
Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ70 (σA)-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes. PMID:24146630
2016-10-01
ARL-TR-7846 ● OCT 2016 US Army Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center...Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center Antenna Method for Moving Human Target Detection...TYPE Technical Report 3. DATES COVERED (From - To) 2015–2016 4. TITLE AND SUBTITLE Application of Hybrid Along-Track Interferometry/ Displaced
Effects of rf power on chemical composition and surface roughness of glow discharge polymer films
NASA Astrophysics Data System (ADS)
Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing
2016-03-01
The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T2B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no ;void; defect was observed.
Soma, Nei
2016-10-01
Evaluating the prevalence and severity of gastritis by endoscopy is useful for estimating the risk of gastric cancer (GC). Moreover, understanding the endoscopic appearances of gastritis is important for diagnosing GC due to the fact that superficial mucosal lesions mimicing gastritis (gastritis-like lesions) are quite difficult to be detected even with optimum preparation and the best technique, and in such cases tissue biopsy is often not very accurate for the diagnosis of gastric epithelial neoplasia. Magnifying endoscopy is a highly accurate technique for the detection of early gastric cancer (EGC). Recent reports have described that various novel endoscopic markers which, visualized by magnifying endoscopy with image-enhanced system (ME-IEE), can predict specific histopathological findings. Using ME-IEE with vessels and surface classification system (VSCS) may represent an excellent diagnostic performance with high confidence and good reproducibility to the endoscopists if performed under consistent conditions, including observation under maximal magnification. The aim of this review was to discuss how to identify high-risk groups for GC by endoscopy, and how to detect effectively signs of suspicious lesions by conventional white light imaging (C-WLI) or chromoendoscopy (CE). Furthermore, to characterize suspicious lesions using ME-IEE using the criteria and classification of EGC based upon VSCS. © 2016 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
Optical readout of displacements of nanowires along two mutually perpendicular directions
NASA Astrophysics Data System (ADS)
Fu, Chenghua
2017-05-01
Nanowires are good force transducers due to their low mass. The singleness of the direction of the motion detection in a certain system is an existing limitation, and to overcome the limitation is the key point in this article. Optical methods, such as polarized light interferometry and light scattering, are generally used for detecting the displacement of nanowires. Typically, either light interference or light scattering is considered when relating the displacement of a nanowire with the photodetector's measurements. In this work, we consider both the light interference along the optical axis and light scattering perpendicular to the optical axis of a micro-lens fiber optic interferometer. Identifying the displacement along the two directions and the corresponding vibration conversion efficiency coefficients for the nanowire is a significant part of our study. Our analysis shows that the optimal working point of the micro-lens fiber optic interferometer can realize the detection of displacement along the optical axis without the disturbance coming from the motion perpendicular to the optical axis, and vice versa. We use Mie scattering theory to calculate the scattering light for the reason that the size of the nanowire is comparable to the wavelength of light. Our results could provide a guide for optical readout experiments of the displacement of nanowires.
Feasibility of satellite interferometry for surveillance, navigation, and traffic control
NASA Technical Reports Server (NTRS)
Gopalapillai, S.; Ruck, G. T.; Mourad, A. G.
1976-01-01
The feasibility of using a satellite borne interferometry system for surveillance, navigation, and traffic control applications was investigated. The evaluation was comprised of: (1) a two part systems analysis (software and hardware); (2) a survey of competitive navigation systems (both experimental and planned); (3) a comparison of their characteristics and capabilities with those of an interferometry system; and (4) a limited survey of potential users to determine the variety of possible applications for the interferometry system and the requirements which it would have to meet. Five candidate or "strawman" interferometry systems for various applications with various capabilities were configured (on a preliminary basis) and were evaluated. It is concluded that interferometry in conjunction with a geostationary satellite has an inherent ability to provide both a means for navigation/position location and communication. It offers a very high potential for meeting a large number of user applications and requirements for navigation and related functions.
Multi Temporal Interferometry as Tool for Urban Landslide Hazard Assessment
NASA Astrophysics Data System (ADS)
Vicari, A.; Colangelo, G.; Famiglietti, N.; Cecere, G.; Stramondo, S.; Viggiano, D.
2017-12-01
Advanced Synthetic Aperture Radar Differential Interferometry (A-DInSAR) are Multi Temporal Interferometry(MTI) techniques suitable for the monitoring of deformation phenomena in slow kinematics. A-DInSAR methodologies include both Coherence-based type, as well as Small Baseline Subset (SBAS) (Berardino et al., 2002, Lanari et al., 2004) and Persistent/Permanent Scatterers (PS), (Ferretti et al., 2001). Such techniques are capable to provide wide-area coverage (thousands of km2) and precise (mm-cm resolution), spatially dense information (from hundreds to thousands of measurementpoints/km2) on groundsurfacedeformations. SBAS and PShavebeenapplied to the town of Stigliano (MT) in Basilicata Region (Southern Italy), where the social center has been destroyed after the reactivation of a known landslide. The comparison of results has shown that these techniques are equivalent in terms of obtained coherent areas and displacement patterns, although lightly different velocity values for individual points (-5/-25 mm/y for PS vs. -5/-15 mm/y for SBAS) have been pointed out. Differences are probably due to scattering properties of the ground surface (e.g. Lauknes et al., 2010). Furthermore, on the crown of the landslide body, a Robotics Explorer Total Monitoring Station (Leica Nova TM50) that measures distance values with 0.6 mm of resolution has been installed. In particular, 20 different points corresponding to that identified through satellite techniques have been chosen, and a sampling time of 15 minutes has been fixed. The displacement values obtained are in agreement with the results of the MTI analysis, showing as these techniques could be a useful tool in the case of early - warning situations.
Speckle techniques for determining stresses in moving objects
NASA Technical Reports Server (NTRS)
Murphree, E. A.; Wilson, T. F.; Ranson, W. F.; Swinson, W. F.
1978-01-01
Laser speckle interferometry is a relatively new experimental technique which shows promise of alleviating many difficult problems in experimental mechanics. The method utilizes simple high-resolution photographs of the surface which is illuminated by coherent light. The result is a real-time or permanently stored whole-field record of interference fringes which yields a map of displacements in the object. In this thesis, the time-average theory using the Fourier transform is developed to present the application of this technique to measurement of in-plane displacement induced by the vibration of an object.
Digital holographic tomography based on spectral interferometry.
Yu, Lingfeng; Chen, Zhongping
2007-10-15
A digital holographic tomography system has been developed with the use of an inexpensive broadband light source and a fiber-based spectral interferometer. Multiple synthesized holograms (or object wave fields) of different wavelengths are obtained by transversely scanning a probe beam. The acquisition speed is improved compared with conventional wavelength-scanning digital holographic systems. The optical field of a volume around the object location is calculated by numerical diffraction from each synthesized hologram, and all such field volumes are numerically superposed to create the three-dimensional tomographic image. Experiments were performed to demonstrate the idea.
Optical design and testing: introduction.
Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin
2014-10-10
Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry.
NASA Astrophysics Data System (ADS)
Fromm, C. M.
2015-06-01
We analysed the single-dish radio light curves of the blazar CTA 102 during its major flare around April 2006. The modelling of these data revealed a possible travelling shock-recollimation shock interaction during the flare. To verify this hypothesis, we used multi-epoch and multi-frequency very-long baseline interferometry (VLBI) observations and performed a detailed kinematic and spectral analysis. The results confirmed the hypothesis of a shock-shock interaction causing the 2006 radio flare and provided indications for additional recollimation shocks farther downstream.
Metrology system for the Terrestrial Planet Finder Coronagraph
NASA Technical Reports Server (NTRS)
Shaklin, Stuart; Marchen, Luis; Zhao, Feng; Peters, Robert D.; Ho, Tim; Holmes, Buck
2004-01-01
The Terrestrial Planet Finder (TPF) employs an aggressive coronagraph designed to obtain better than 1e-10 contrast inside the third Airy ring. Minute changes in low-order aberration content scatter significant light at this position. One implication is the requirement to control low-order aberrations induced by motion of the secondary mirror relative to the primary mirror; sub-nanometer relative positional stability is required. We propose a 6-beam laser truss to monitor the relative positions of the two mirrors. The truss is based on laser metrology developed for the Space Interferometry Mission.
Antimatter interferometry for gravity measurements.
Hamilton, Paul; Zhmoginov, Andrey; Robicheaux, Francis; Fajans, Joel; Wurtele, Jonathan S; Müller, Holger
2014-03-28
We describe a light-pulse atom interferometer that is suitable for any species of atom and even for electrons and protons as well as their antiparticles, in particular, for testing the Einstein equivalence principle with antihydrogen. The design obviates the need for resonant lasers through far-off resonant Bragg beam splitters and makes efficient use of scarce atoms by magnetic confinement and atom recycling. We expect to reach an initial accuracy of better than 1% for the acceleration of the free fall of antihydrogen, which can be improved to the part-per million level.
Quantum-optical coherence tomography with classical light.
Lavoie, J; Kaltenbaek, R; Resch, K J
2009-03-02
Quantum-optical coherence tomography (Q-OCT) is an interferometric technique for axial imaging offering several advantages over conventional methods. Chirped-pulse interferometry (CPI) was recently demonstrated to exhibit all of the benefits of the quantum interferometer upon which Q-OCT is based. Here we use CPI to measure axial interferograms to profile a sample accruing the important benefits of Q-OCT, including automatic dispersion cancellation, but with 10 million times higher signal. Our technique solves the artifact problem in Q-OCT and highlights the power of classical correlation in optical imaging.
Solar Temporal Photon Bunching
NASA Astrophysics Data System (ADS)
Tan, Peng Kian
2018-04-01
Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. Light from thermal blackbody radiators such as stars exhibits photon bunching behaviour at sufficiently short time-scales which should be independent from atmospherically induced phase fluctuations. However, this photon bunching signal is difficult to observe directly with available detector bandwidths. By performing narrowband spectral filtering on Sunlight and conducting temporal intensity interferometry using actively quenched avalanche photon detectors (APDs), the Solar g(2)(tau) signature was directly measured, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle.
NASA Technical Reports Server (NTRS)
Baker, John; Thorpe, Ira
2012-01-01
Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.
Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.
2014-01-01
A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367
Spatially resolved scatter measurement of diffractive micromirror arrays.
Sicker, Cornelius; Heber, Jörg; Berndt, Dirk
2016-06-01
Spatial light modulators (SLMs) support flexible system concepts in modern optics and especially phase-only SLMs such as micromirror arrays (MMAs) appear attractive for many applications. In order to achieve a precise phase modulation, which is crucial for optical performance, careful characterization and calibration of SLM devices is required. We examine an intensity-based measurement concept, which promises distinct advantages by means of a spatially resolved scatter measurement that is combined with the MMA's diffractive principle. Measurements yield quantitative results, which are consistent with measurements of micromirror roughness components, by white-light interferometry. They reveal relative scatter as low as 10-4, which corresponds to contrast ratios up to 10,000. The potential of the technique to resolve phase changes in the subnanometer range is experimentally demonstrated.
Low energy X-ray grating interferometry at the Brazilian Synchrotron
NASA Astrophysics Data System (ADS)
Koch, F. J.; O'Dowd, F. P.; Cardoso, M. B.; Da Silva, R. R.; Cavicchioli, M.; Ribeiro, S. J. L.; Schröter, T. J.; Faisal, A.; Meyer, P.; Kunka, D.; Mohr, J.
2017-06-01
Grating based X-ray differential phase contrast imaging has found a large variety of applications in the last decade. Different types of samples call for different imaging energies, and efforts have been made to establish the technique all over the spectrum used for conventional X-ray imaging. Here we present a two-grating interferometer working at 8.3 keV, implemented at the bending magnet source of the IMX beamline of the Brazilian Synchrotron Light Laboratory. The low design energy is made possible by gratings fabricated on polymer substrates, and makes the interferometer mainly suited to the investigation of light and thin samples. We investigate polymer microspheres filled with Fe2O3 nanoparticles, and find that these particles give rise to a significant visibility reduction due to small angle scattering.
1990-03-01
rare in Missouri. The record is from 1987. Red berried elder ( Sambucus pubens) occurs within 1.0 miles of the project area. This plant is endangered...hIALLARD IYPIACTS AAHU’x r U rr PLAN Figure 1- Plan Comparisons A-19 Note that Plan C (sediment deflection) would provide essentially no benefits to...S TA.T$ OIL UTAILS jfy 9.LE.CTtICA.l. 0 BasMW6 WORN Mfaiss wo1nu SYSTEM ,mW30mmoRALummAnuGiWEN PinOain =1~ POOL sIKIrval wLI $11 t PLATE I 44 D ~SAY8
Holographic analysis as an inspection method for welded thin-wall tubing
NASA Technical Reports Server (NTRS)
Brooks, Lawrence; Mulholland, John; Genin, Joseph; Matthews, Larryl
1990-01-01
The feasibility of using holographic interferometry for locating flaws in welded tubing is explored. Two holographic techniques are considered: traditional holographic interferometry and electronic speckle pattern interferometry. Several flaws including cold laps, discontinuities, and tube misalignments are detected.
Phase-Shift Interferometry with a Digital Photocamera
ERIC Educational Resources Information Center
Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe
2007-01-01
A phase-shift interferometry experiment is proposed, working on a Twyman-Green optical configuration with additional polarization components. A guideline is provided to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses. (Contains 5 figures.)
NASA Astrophysics Data System (ADS)
Labadie, L.; Martín, G.; Anheier, N. C.; Arezki, B.; Qiao, H. A.; Bernacki, B.; Kern, P.
2011-07-01
Context. Observations of milliarcsecond-resolution scales and high dynamic range hold a central place in the exploration of distant planetary systems in order to achieve, for instance, the spectroscopic characterization of exo-Earths or the detailed mapping of their protoplanetary disc birthplace. Multi-aperture infrared interferometry, either from the ground or from space, is a very powerful technique to tackle these goals. However, significant technical efforts still need to be undertaken to achieve a simplification of these instruments if we wish to recombine the light from a large number of telescopes. Integrated-optics concepts appear to be a suitable alternative to the current conventional designs, especially if their use can be extended to a higher number of astronomical bands. Aims: This article reports, for the first time to our knowledge, the experimental demonstration of the feasibility of an integrated-optics approach to mid-infrared beam combination for single-mode stellar interferometry. Methods: We fabricated a two-telescope beam combiner prototype integrated on a substrate of chalcogenide glass, a material transparent from ~1 μm to ~14 μm. We developed laboratory tools to characterize in the mid-infrared the modal properties and the interferometric capabilities of our device. Results: We obtain interferometric fringes at 10 μm and measure a mean contrast V = 0.981 ± 0.001 with high repeatability over one week and high stability over a time-period of ~5 h. We show experimentally - as well as on the basis of modeling considerations - that the component has a single-mode behavior at this wavelength, which is essential to achieve high-accuracy interferometry. From previous studies, the propagation losses are estimated to be 0.5 dB/cm for this type of component. We also discuss possible issues that may impact the interferometric contrast. Conclusions: The IO beam combiner performs well at the tested wavelength. We also anticipate the requirement of a closer matching between the numerical apertures of the component and the (de)coupling optics to optimize the total throughput. The next step foreseen is the achievement of wide-band interferograms.
Developing a clinically viable angle-resolved low coherence interferometry optical biopsy system
NASA Astrophysics Data System (ADS)
Pyhtila, John W.
2007-12-01
Non-invasive optical biopsy techniques, which interrogate tissue in situ, offer a potential method to improve the detection of dysplasia, a pre-cancerous tissue state. Specifically, monitoring of Barrett's esophagus (BE) patients for dysplasia, currently done through systematic biopsy, can be improved by increasing the proportion of at-risk tissue examined. Angle-resolved low coherence interferometry (a/LCI) is an optical spectroscopic technique which measures the depth resolved nuclear morphology of tissue, a key biomarker for identifying dysplasia. Using an animal carcinogenesis model, it was shown that a/LCI can detect dysplasia with great sensitivity and specificity. However, for the clinical application of a/LCI, numerous hurdles must be overcome. This dissertation presents the development of three new a/LCI systems which incrementally address the three main obstacles preventing the clinical application of a/LCI. First, data acquisition time is reduced by implementing a frequency-domain detection scheme using an imaging spectrograph that collects the complete depth resolved angular scattering distribution in parallel. This advance reduces data collection time to a clinically acceptable 40 ms. Second, a fiber probe is developed to enable the endoscopic application of a/LCI. The probe incorporates a single fiber for delivering light and a coherent fiber bundle for collecting the angular distribution of scattered light. Third, a portable device is created through miniaturization of the optical design, and a flexible fiber probe is created using polarization maintaining fiber to deliver the light. These advances allow for the clinical application of the system to ex vivo human tissue samples. The performance of each described system is evaluated through a number of validation studies, including the sizing of polystyrene microspheres, a typical model used in light scattering studies, and the measurement of in vitro cell nuclear diameters, accomplished with sub-wavelength precision and accuracy. The culmination of this work is the first human study using a/LCI in which it is demonstrated that a/LCI depth resolved nuclear morphology measurements provide an excellent means to identify dysplasia in BE patients. The described results demonstrate the great potential for the in vivo application of a/LCI as a targeting mechanism for the detection of dysplasia in Barrett's esophagus patients.
Resolving the depth of fluorescent light by structured illumination and shearing interferometry
NASA Astrophysics Data System (ADS)
Schindler, Johannes; Elmaklizi, Ahmed; Voit, Florian; Hohmann, Ansgar; Schau, Philipp; Brodhag, Nicole; Krauter, Philipp; Frenner, Karsten; Kienle, Alwin; Osten, Wolfgang
2016-03-01
A method for the depth-sensitive detection of fluorescent light is presented. It relies on a structured illumination restricting the excitation volume and on an interferometric detection of the wave front curvature. The illumination with two intersecting beams of a white-light laser separated in a Sagnac interferometer coupled to the microscope provides a coarse confinement in lateral and axial direction. The depth reconstruction is carried out by evaluating shearing interferograms produced with a Michelson interferometer. This setup can also be used with spatially and temporally incoherent light as emitted by fluorophores. A simulation workflow of the method was developed using a combination of a solution of Maxwell's equations with the Monte Carlo method. These simulations showed the principal feasibility of the method. The method is validated by measurements at reference samples with characterized material properties, locations and sizes of fluorescent regions. It is demonstrated that sufficient signal quality can be obtained for materials with scattering properties comparable to dental enamel while maintaining moderate illumination powers in the milliwatt range. The depth reconstruction is demonstrated for a range of distances and penetration depths of several hundred micrometers.
Measuring Gravitation Using Polarization Spectroscopy
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Yu, Nan; Maleki, Lute
2004-01-01
A proposed method of measuring gravitational acceleration would involve the application of polarization spectroscopy to an ultracold, vertically moving cloud of atoms (an atomic fountain). A related proposed method involving measurements of absorption of light pulses like those used in conventional atomic interferometry would yield an estimate of the number of atoms participating in the interferometric interaction. The basis of the first-mentioned proposed method is that the rotation of polarization of light is affected by the acceleration of atoms along the path of propagation of the light. The rotation of polarization is associated with a phase shift: When an atom moving in a laboratory reference interacts with an electromagnetic wave, the energy levels of the atom are Doppler-shifted, relative to where they would be if the atom were stationary. The Doppler shift gives rise to changes in the detuning of the light from the corresponding atomic transitions. This detuning, in turn, causes the electromagnetic wave to undergo a phase shift that can be measured by conventional means. One would infer the gravitational acceleration and/or the gradient of the gravitational acceleration from the phase measurements.
NASA Technical Reports Server (NTRS)
Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Fixsen, Dale; Sampler, Henry; Mentzell, Eric; Veach, Todd; Silverberg, Robert F.; Furst, Stephen;
2016-01-01
We present the optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) as it gets ready for launch. BETTII is an 8-meter baseline far-infrared (30-90 microns) interferometer mission with capabilities of spatially resolved spectroscopy aimed at studying star formation and galaxy evolution. The instrument collects light from its two arms, makes them interfere, divides them into two science channels (30-50 microns and 60-90 microns), and focuses them onto the detectors. It also separates out the NIR light (1-2.5 microns) and uses it for tip-tilt corrections of the telescope pointing. Currently, all the optical elements have been fabricated, heat treated, coated appropriately and are mounted on their respective assemblies. We are presenting the optical design challenges for such a balloon borne spatio-spectral interferometer, and discuss how they have been mitigated. The warm and cold delay lines are an important part of this optics train. The warm delay line corrects for path length differences between the left and the right arm due to balloon pendulation, while the cold delay line is aimed at introducing a systematic path length difference, thereby generating our interferograms from where we can derive information about the spectra. The details of their design and the results of the testing of these opto-mechanical parts are also discussed. The sensitivities of different optical elements on the interferograms produced have been determined with the help of simulations using FRED software package. Accordingly, an alignment plan is drawn up which makes use of a laser tracker, a CMM, theodolites and a LUPI interferometer.
NASA Astrophysics Data System (ADS)
Drake, Tyler K.; Robles, Francisco E.; DeSoto, Michael; Henderson, Marcus H.; Katz, David F.; Wax, Adam P.
2009-02-01
Microbicide gels are topical products that have recently been developed to combat sexually transmitted diseases including HIV/AIDS. The extent of gel coverage, thickness, and structure are crucial factors in gel effectiveness. It is necessary to be able to monitor gel distribution and behavior under various circumstances, such as coatis, and over an extended time scale in vivo. We have developed a multiplexed, Fourier-domain low coherence interferometry (LCI) system as a practical method of measuring microbicide gel distribution, with precision and accuracy comparable to currently used fluorometric techniques techniques. The multiplexed system achieved a broad scanning area without the need for a mechanical scanning device, typical of OCT systems, by utilizing six parallel channels with simultaneous data collection. We now propose an imaging module which will allow the integration of the multiplexed LCI system into the current fluorescence system in conjunction with an endoscope. The LCI imaging module will meet several key criteria in order to be compatible with the current system. The fluorescent system features a 4-mm diameter rigid endsoscope enclosed in a 27-mm diameter polycarbonate tube, with a water immersion tip. Therefore, the LCI module must be low-profile as well as water-resistant to fit inside the current design. It also must fulfill its primary function of delivering light from each of the six channels to the gel and collecting backscattered light. The performance of the imaging module will be characterized by scanning a calibration socket which contains grooves of known depths, and comparing these measurements to the fluorometric results.
Digital Holographic Interferometry for Airborne Particle Characterization
2015-03-19
Interferometry and polarimetry for aerosol particle characterization, Bioaerosols: Characterization and Environmental Impact, Austin, TX (2014) [organizer...and conference chair]. 6. Invited talk: Holographic Interferometry and polarimetry for aerosol particle characterization, Optical...Stokes parameters, NATO Advanced Science Institute on Special Detection Technique ( Polarimetry ) and Remote Sensing, Kyiv, Ukraine (2010). (c
Accessing High Spatial Resolution in Astronomy Using Interference Methods
ERIC Educational Resources Information Center
Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean
2018-01-01
In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of…
Intellectual property in holographic interferometry
NASA Astrophysics Data System (ADS)
Reingand, Nadya; Hunt, David
2006-08-01
This paper presents an overview of patents and patent applications on holographic interferometry, and highlights the possibilities offered by patent searching and analysis. Thousands of patent documents relevant to holographic interferometry were uncovered by the study. The search was performed in the following databases: U.S. Patent Office, European Patent Office, Japanese Patent Office and Korean Patent Office for the time frame from 1971 through May 2006. The patent analysis unveils trends in patent temporal distribution, patent families formation, significant technological coverage within the market of system that employ holographic interferometry and other interesting insights.
NASA Astrophysics Data System (ADS)
Mehta, Dalip Singh; Sharma, Anuradha; Dubey, Vishesh; Singh, Veena; Ahmad, Azeem
2016-03-01
We present a single-shot white light interference microscopy for the quantitative phase imaging (QPI) of biological cells and tissues. A common path white light interference microscope is developed and colorful white light interferogram is recorded by three-chip color CCD camera. The recorded white light interferogram is decomposed into the red, green and blue color wavelength component interferograms and processed it to find out the RI for different color wavelengths. The decomposed interferograms are analyzed using local model fitting (LMF)" algorithm developed for reconstructing the phase map from single interferogram. LMF is slightly off-axis interferometric QPI method which is a single-shot method that employs only a single image, so it is fast and accurate. The present method is very useful for dynamic process where path-length changes at millisecond level. From the single interferogram a wavelength-dependent quantitative phase imaging of human red blood cells (RBCs) are reconstructed and refractive index is determined. The LMF algorithm is simple to implement and is efficient in computation. The results are compared with the conventional phase shifting interferometry and Hilbert transform techniques.
Determination of thin hydrodynamic lubricating film thickness using dichromatic interferometry.
Guo, L; Wong, P L; Guo, F; Liu, H C
2014-09-10
This paper introduces the application of dichromatic interferometry for the study of hydrodynamic lubrication. In conventional methods, two beams with different colors are projected consecutively on a static object. By contrast, the current method deals with hydrodynamic lubricated contacts under running conditions and two lasers with different colors are projected simultaneously to form interference images. Dichromatic interferometry incorporates the advantages of monochromatic and chromatic interferometry, which are widely used in lubrication research. This new approach was evaluated statically and dynamically by measuring the inclination of static wedge films and the thickness of the hydrodynamic lubricating film under running conditions, respectively. Results show that dichromatic interferometry can facilitate real-time determination of lubricating film thickness and is well suited for the study of transient or dynamic lubricating problems.
The Path to Interferometry in Space
NASA Technical Reports Server (NTRS)
Rinehart, S. A.; Savini, G.; Holland, W.; Absil, O.; Defrere, D.; Spencer, L.; Leisawitz, D.; Rizzo, M.; Juanola-Parramon, R.; Mozurkewich, D.
2016-01-01
For over two decades, astronomers have considered the possibilities for interferometry in space. The first of these missions was the Space Interferometry Mission (SIM), but that was followed by missions for studying exoplanets (e.g Terrestrial Planet Finder, Darwin), and then far-infrared interferometers (e.g. the Space Infrared Interferometric Telescope, the Far-Infrared Interferometer). Unfortunately, following the cancellation of SIM, the future for space-based interferometry has been in doubt, and the interferometric community needs to reevaluate the path forward. While interferometers have strong potential for scientific discovery, there are technological developments still needed, and continued maturation of techniques is important for advocacy to the broader astronomical community. We review the status of several concepts for space-based interferometry, and look for possible synergies between missions oriented towards different science goals.
Sentinel-1 TOPS interferometry for along-track displacement measurement
NASA Astrophysics Data System (ADS)
Jiang, H. J.; Pei, Y. Y.; Li, J.
2017-02-01
The European Space Agency’s Sentinel-1 mission, a constellation of two C-band synthetic aperture radar (SAR) satellites, utilizes terrain observation by progressive scan (TOPS) antenna beam steering as its default operation mode to achieve wide-swath coverage and short revisit time. The beam steering during the TOPS acquisition provides a means to measure azimuth motion by using the phase difference between forward and backward looking interferograms within regions of burst overlap. Hence, there are two spectral diversity techniques for along-track displacement measurement, including multi-aperture interferometry (MAI) and “burst overlap interferometry”. This paper analyses the measurement accuracies of MAI and burst overlap interferometry. Due to large spectral separation in the overlap region, burst overlap interferometry is a more sensitive measurement. We present a TOPS interferometry approach for along-track displacement measurement. The phase bias caused by azimuth miscoregistration is first estimated by burst overlap interferometry over stationary regions. After correcting the coregistration error, the MAI phase and the interferometric phase difference between burst overlaps are recalculated to obtain along-track displacements. We test the approach with Sentinel-1 TOPS interferometric data over the 2015 Mw 7.8 Nepal earthquake fault. The results prove the feasibility of our approach and show the potential of joint estimation of along-track displacement with burst overlap interferometry and MAI.
Double light-cone dynamics establish thermal states in integrable 1D Bose gases
NASA Astrophysics Data System (ADS)
Langen, T.; Schweigler, T.; Demler, E.; Schmiedmayer, J.
2018-02-01
We theoretically investigate the non-equilibrium dynamics in a quenched pair of one-dimensional Bose gases with density imbalance. We describe the system using its low-energy effective theory, the Luttinger liquid model. In this framework the system shows strictly integrable relaxation dynamics via dephasing of its approximate many-body eigenstates. In the balanced case, this leads to the well-known light-cone-like establishment of a prethermalized state, which can be described by a generalized Gibbs ensemble. In the imbalanced case the integrable dephasing leads to a state that, counter-intuitively, closely resembles a thermal equilibrium state. The approach to this state is characterized by two separate light-cone dynamics with distinct characteristic velocities. This behavior is a result of the fact that in the imbalanced case observables are not aligned with the conserved quantities of the integrable system. We discuss a concrete experimental realization to study this effect using matterwave interferometry and many-body revivals on an atom chip.
The Least-Squares Calibration on the Micro-Arcsecond Metrology Test Bed
NASA Technical Reports Server (NTRS)
Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.
2006-01-01
The Space Interferometry Mission (S1M) will measure optical path differences (OPDs) with an accuracy of tens of picometers, requiring precise calibration of the instrument. In this article, we present a calibration approach based on fitting star light interference fringes in the interferometer using a least-squares algorithm. The algorithm is first analyzed for the case of a monochromatic light source with a monochromatic fringe model. Using fringe data measured on the Micro-Arcsecond Metrology (MAM) testbed with a laser source, the error in the determination of the wavelength is shown to be less than 10pm. By using a quasi-monochromatic fringe model, the algorithm can be extended to the case of a white light source with a narrow detection bandwidth. In SIM, because of the finite bandwidth of each CCD pixel, the effect of the fringe envelope can not be neglected, especially for the larger optical path difference range favored for the wavelength calibration.
Shirai, Tomohiro; Barnes, Thomas H
2002-02-01
A liquid-crystal adaptive optics system using all-optical feedback interferometry is applied to partially coherent imaging through a phase disturbance. A theoretical analysis based on the propagation of the cross-spectral density shows that the blurred image due to the phase disturbance can be restored, in principle, irrespective of the state of coherence of the light illuminating the object. Experimental verification of the theory has been performed for two cases when the object to be imaged is illuminated by spatially coherent light originating from a He-Ne laser and by spatially incoherent white light from a halogen lamp. We observed in both cases that images blurred by the phase disturbance were successfully restored, in agreement with the theory, immediately after the adaptive optics system was activated. The origin of the deviation of the experimental results from the theory, together with the effect of the feedback misalignment inherent in our optical arrangement, is also discussed.
Kournetas, N; Spintzyk, S; Schweizer, E; Sawada, T; Said, F; Schmid, P; Geis-Gerstorfer, J; Eliades, G; Rupp, F
2017-08-01
Comparability of topographical data of implant surfaces in literature is low and their clinical relevance often equivocal. The aim of this study was to investigate the ability of scanning electron microscopy and optical interferometry to assess statistically similar 3-dimensional roughness parameter results and to evaluate these data based on predefined criteria regarded relevant for a favorable biological response. Four different commercial dental screw-type implants (NanoTite Certain Prevail, TiUnite Brånemark Mk III, XiVE S Plus and SLA Standard Plus) were analyzed by stereo scanning electron microscopy and white light interferometry. Surface height, spatial and hybrid roughness parameters (Sa, Sz, Ssk, Sku, Sal, Str, Sdr) were assessed from raw and filtered data (Gaussian 50μm and 5μm cut-off-filters), respectively. Data were statistically compared by one-way ANOVA and Tukey-Kramer post-hoc test. For a clinically relevant interpretation, a categorizing evaluation approach was used based on predefined threshold criteria for each roughness parameter. The two methods exhibited predominantly statistical differences. Dependent on roughness parameters and filter settings, both methods showed variations in rankings of the implant surfaces and differed in their ability to discriminate the different topographies. Overall, the analyses revealed scale-dependent roughness data. Compared to the pure statistical approach, the categorizing evaluation resulted in much more similarities between the two methods. This study suggests to reconsider current approaches for the topographical evaluation of implant surfaces and to further seek after proper experimental settings. Furthermore, the specific role of different roughness parameters for the bioresponse has to be studied in detail in order to better define clinically relevant, scale-dependent and parameter-specific thresholds and ranges. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Norris, Barnaby; Schworer, Guillaume; Tuthill, Peter; Jovanovic, Nemanja; Guyon, Olivier; Stewart, Paul; Martinache, Frantz
2015-03-01
Direct imaging of protoplanetary discs promises to provide key insight into the complex sequence of processes by which planets are formed. However, imaging the innermost region of such discs (a zone critical to planet formation) is challenging for traditional observational techniques (such as near-IR imaging and coronagraphy) due to the relatively long wavelengths involved and the area occulted by the coronagraphic mask. Here, we introduce a new instrument - Visible Aperture-Masking Polarimetric Interferometer for Resolving Exoplanetary Signatures (VAMPIRES) - which combines non-redundant aperture-masking interferometry with differential polarimetry to directly image this previously inaccessible innermost region. By using the polarization of light scattered by dust in the disc to provide precise differential calibration of interferometric visibilities and closure phases, VAMPIRES allows direct imaging at and beyond the telescope diffraction limit. Integrated into the SCExAO (Subaru Coronagraphic Extreme Adaptive Optics) system at the Subaru telescope, VAMPIRES operates at visible wavelengths (where polarization is high) while allowing simultaneous infrared observations conducted by HICIAO. Here, we describe the instrumental design and unique observing technique and present the results of the first on-sky commissioning observations, validating the excellent visibility and closure-phase precision which are then used to project expected science performance metrics.
NASA Astrophysics Data System (ADS)
Calvetti, Francesco; Cardani, Giuliana; Meda, Alberto
1999-09-01
The cultural heritage of many nations consist of a great variety of structures of high intrinsic value, which are often composed of natural building stones (NBS), as granite, limestone, marble and sandstone. The use of accurate inspection devices, such as laser interferometry, allows us to acquire information regarding the mechanical properties and damage (tensile cracks) of NBS, which represents the first step in the restoration process. In this paper, the potential application of an electronic speckle pattern interferometry (ESPI) is shown, with particular attention to the observed displacement field and the crack penetration during laboratory testing. In ESPI, by superimposing a reflected light to a reference digitized image, an interference phenomenon is produced. By comparing two recorded interference patterns (before and after loading), the corresponding deformation can be evaluated. The application of ESPI in several laboratory tests on NBS is presented in this paper. In particular, during bending tests performed on geometrically similar NBS specimens, it was observed that the size and shape of the localized damage zone do not depend on the specimen size. These results allow for an interpretation of the 'size- effect,' which consists of a reduction of nominal strength as the specimen size increases.
Refractive index measurement of imidazolium based ionic liquids in the Vis-NIR
NASA Astrophysics Data System (ADS)
Arosa, Yago; Rodríguez Fernández, Carlos Damián; López Lago, Elena; Amigo, Alfredo; Varela, Luis Miguel; Cabeza, Oscar; de la Fuente, Raúl
2017-11-01
In this paper spectrally resolved white light interferometry is applied for measuring the refractive index of different ionic liquids over a wide spectral band from 400 to 1000 nm. The measuring device is compound by a Michelson interferometer whose output is analyzed by means of two spectrometers. The first one is a homemade prism spectrometer which provides the interferogram produced by the sample over a wide continuum spectrum. The second one is a commercial diffraction grating spectrometer used to make high precision measurements of the displacement between the Michelson mirrors by interferometry. Both instruments combined allow the retrieval of the refractive index of the sample over a wide visible-near infrared continuum spectrum with deviations on the fourth decimal. A group of 14 different ionic liquids based on the 1-alkyl-3-methylimidazolium cation have been studied through this technique. The measured refractive index of the ionic liquids is used to calculate their electronic polarizability. This makes possible to gain insight into the microscopic behavior of the compounds. To give a better picture, the liquids have been classified in four groups and their refractive indices and polarizabilities are compared in order to find correlations between these magnitudes and the structure of the liquids.
Dynamic stability analysis for a self-mixing interferometry system.
Fan, Yuanlong; Yu, Yanguang; Xi, Jiangtao; Guo, Qinghua
2014-11-17
A self-mixing interferometry (SMI) system is a laser diode (LD) with an external cavity formed by a moving external target. The behavior of an SMI system is governed by the injection current J to the LD and the parameters associated with the external cavity mainly including optical feedback factor C, the initial external cavity length (L₀) and the light phase (ϕ₀) which is mapped to the movement of the target. In this paper, we investigate the dynamic behavior of an SMI system by using the Lang-Kobayashi model. The stability boundary of such system is presented in the plane of (C, ϕ₀), from which a critical C (denoted as C(critical)) is derived. Both simulations and experiments show that the stability can be enhanced by increasing either L₀ or J. Furthermore, three regions on the plane of (C, ϕ₀) are proposed to characterize the behavior of an SMI system, including stable, semi-stable and unstable regions. We found that the existing SMI model is only valid for the stable region, and the semi-stable region has potential applications on sensing and measurement but needs re-modeling the system by considering the bandwidth of the detection components.
Detecting Topological Defect Dark Matter Using Coherent Laser Ranging System
Yang, Wanpeng; Leng, Jianxiao; Zhang, Shuangyou; Zhao, Jianye
2016-01-01
In the last few decades, optical frequency combs with high intensity, broad optical bandwidth, and directly traceable discrete wavelengths have triggered rapid developments in distance metrology. However, optical frequency combs to date have been limited to determine the absolute distance to an object (such as satellite missions). We propose a scheme for the detection of topological defect dark matter using a coherent laser ranging system composed of dual-combs and an optical clock via nongravitational signatures. The dark matter field, which comprises a defect, may interact with standard model particles, including quarks and photons, resulting in the alteration of their masses. Thus, a topological defect may function as a dielectric material with a distinctive frequency-depend index of refraction, which would cause the time delay of a periodic extraterrestrial or terrestrial light. When a topological defect passes through the Earth, the optical path of long-distance vacuum path is altered, this change in optical path can be detected through the coherent laser ranging system. Compared to continuous wavelength(cw) laser interferometry methods, dual-comb interferometry in our scheme excludes systematic misjudgement by measuring the absolute optical path length. PMID:27389642
New method for path-length equalization of long single-mode fibers for interferometry
NASA Astrophysics Data System (ADS)
Anderson, M.; Monnier, J. D.; Ozdowy, K.; Woillez, J.; Perrin, G.
2014-07-01
The ability to use single mode (SM) fibers for beam transport in optical interferometry offers practical advantages over conventional long vacuum pipes. One challenge facing fiber transport is maintaining constant differential path length in an environment where environmental thermal variations can lead to cm-level variations from day to night. We have fabricated three composite cables of length 470 m, each containing 4 copper wires and 3 SM fibers that operate at the astronomical H band (1500-1800 nm). Multiple fibers allow us to test performance of a circular core fiber (SMF28), a panda-style polarization-maintaining (PM) fiber, and a lastly a specialty dispersion-compensated PM fiber. We will present experimental results using precision electrical resistance measurements of the of a composite cable beam transport system. We find that the application of 1200 W over a 470 m cable causes the optical path difference in air to change by 75 mm (+/- 2 mm) and the resistance to change from 5.36 to 5.50Ω. Additionally, we show control of the dispersion of 470 m of fiber in a single polarization using white light interference fringes (λc=1575 nm, Δλ=75 nm) using our method.
A study of a space-station-associated multiple spacecraft Michelson spatial interferometer
NASA Technical Reports Server (NTRS)
Stachnik, R. V.
1983-01-01
One approach to Michelson spatial interferometry at optical wavelengths involves use of an array of spacecraft in which two widely-separated telescopes collect light from a star and direct it to a third, centrally-located, device which combines the beams in order to detect and measure interference fringes. The original version of a spacecraft array for Michelson spatial interferometry (SAMSI) was modified so that the system uses the fuel resupply capability of a space station. The combination of this fuel resupply capability with a method of obtaining image Fourier transform phase information, necessary for full image reconstruction, permits SAMSI to be used to synthesize images equivalent to those produced by huge apertures in space. Synthesis of apertures in the 100 to 500 meter range is discussed. Reconstruction can be performed to a visual magnitude of at least 8 for a 100 A passband in 9 hours. Data are simultaneously collected for image generation from 0.1 micron to 18 microns. In the one-dimensional mode, measurements can be made every 90 minutes (including acquisition and repointing time) for objects as faint as 19th magnitude in the visible.
Light and/or atomic beams to detect ultraweak gravitational effects
NASA Astrophysics Data System (ADS)
Tartaglia, Angelo; Belfi, Jacopo; Beverini, Nicolò; Di Virgilio, Angela; Ortolan, Antonello; Porzio, Alberto; Ruggiero, Matteo Luca
2014-06-01
We shall review the opportunities lent by ring lasers and atomic beams interferometry in order to reveal gravitomagnetic effects on Earth. Both techniques are based on the asymmetric propagation of waves in the gravitational field of a rotating mass; actually the times of flight for co- or counter-rotating closed paths turn out to be different. After discussing properties and limitations of the two approaches we shall describe the proposed GINGER experiment which is being developed for the Gran Sasso National Laboratories in Italy. The experimental apparatus will consist of a three-dimensional array of square rings, 6m × 6m, that is planned to reach a sensitivity in the order of 1prad/√Hertz or better. This sensitivity would be one order of magnitude better than the best existing ring, which is the G-ring in Wettzell, Bavaria, and would allow for the terrestrial detection of the Lense-Thirring effect and possibly of deviations from General Relativity. The possibility of using either the ring laser approach or atomic interferometry in a space mission will also be considered. The technology problems are under experimental study using both the German G-ring and the smaller G-Pisa ring, located at the Gran Sasso.
ERIC Educational Resources Information Center
Ladera, Celso L.; Donoso, Guillermo; Contreras, Johnny H.
2012-01-01
Double-exposure holographic interferometry is applied to measure the "linear" or "longitudinal" magnetostriction constant of a soft-ferrite rod. This high-accuracy measurement is done indirectly, by measuring the small rotations of a lever in contact with the rod using double-exposure holographic interferometry implemented with a robust…
NASA Technical Reports Server (NTRS)
Lauer, James L.; Abel, Phillip B.
1988-01-01
The characteristics of the scanning tunneling microscope and atomic force microscope (AFM) are briefly reviewed, and optical methods, mainly interferometry, of sufficient resolution to measure AFM deflections are discussed. The methods include optical resonators, laser interferometry, multiple-beam interferometry, and evanescent wave detection. Experimental results using AFM are reviewed.
Spatial interferometry in optical astronomy
NASA Technical Reports Server (NTRS)
Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude
1990-01-01
A bibliographic guide is presented to publications of spatial interferometry techniques applied to optical astronomy. Listings appear in alphabetical order, by first author, as well as in specific subject categories listed in chronological order, including imaging theory and speckle interferometry, experimental techniques, and observational results of astronomical studies of stars, the Sun, and the solar system.
Signal processing of white-light interferometric low-finesse fiber-optic Fabry-Perot sensors.
Ma, Cheng; Wang, Anbo
2013-01-10
Signal processing for low-finesse fiber-optic Fabry-Perot sensors based on white-light interferometry is investigated. The problem is demonstrated as analogous to the parameter estimation of a noisy, real, discrete harmonic of finite length. The Cramer-Rao bounds for the estimators are given, and three algorithms are evaluated and proven to approach the bounds. A long-standing problem with these types of sensors is the unpredictable jumps in the phase estimation. Emphasis is made on the property and mechanism of the "total phase" estimator in reducing the estimation error, and a varying phase term in the total phase is identified to be responsible for the unwanted demodulation jumps. The theories are verified by simulation and experiment. A solution to reducing the probability of jump is demonstrated. © 2013 Optical Society of America
NASA Technical Reports Server (NTRS)
Lucero, John M.
2003-01-01
A new optically based measuring capability that characterizes surface topography, geometry, and wear has been employed by NASA Glenn Research Center s Tribology and Surface Science Branch. To characterize complex parts in more detail, we are using a three-dimensional, surface structure analyzer-the NewView5000 manufactured by Zygo Corporation (Middlefield, CT). This system provides graphical images and high-resolution numerical analyses to accurately characterize surfaces. Because of the inherent complexity of the various analyzed assemblies, the machine has been pushed to its limits. For example, special hardware fixtures and measuring techniques were developed to characterize Oil- Free thrust bearings specifically. We performed a more detailed wear analysis using scanning white light interferometry to image and measure the bearing structure and topography, enabling a further understanding of bearing failure causes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L.; Ding, W. X.; Brower, D. L.
2010-10-15
Differential interferometry employs two parallel laser beams with a small spatial offset (less than beam width) and frequency difference (1-2 MHz) using common optics and a single mixer for a heterodyne detection. The differential approach allows measurement of the electron density gradient, its fluctuations, as well as the equilibrium density distribution. This novel interferometry technique is immune to fringe skip errors and is particularly useful in harsh plasma environments. Accurate calibration of the beam spatial offset, accomplished by use of a rotating dielectric wedge, is required to enable broad application of this approach. Differential interferometry has been successfully used onmore » the Madison Symmetric Torus reversed-field pinch plasma to directly measure fluctuation-induced transport along with equilibrium density profile evolution during pellet injection. In addition, by combining differential and conventional interferometry, both linear and nonlinear terms of the electron density fluctuation energy equation can be determined, thereby allowing quantitative investigation of the origin of the density fluctuations. The concept, calibration, and application of differential interferometry are presented.« less
The Wide-Field Imaging Interferometry Testbed: Recent Progress
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2010-01-01
The Wide-Field Imaging Interferometry Testbed (WIIT) at NASA's Goddard Space Flight Center was designed to demonstrate the practicality and application of techniques for wide-field spatial-spectral ("double Fourier") interferometry. WIIT is an automated system, and it is now producing substantial amounts of high-quality data from its state-of-the-art operating environment, Goddard's Advanced Interferometry and Metrology Lab. In this paper, we discuss the characterization and operation of the testbed and present the most recent results. We also outline future research directions. A companion paper within this conference discusses the development of new wide-field double Fourier data analysis algorithms.
Etchepareborda, Pablo; Vadnjal, Ana Laura; Federico, Alejandro; Kaufmann, Guillermo H
2012-09-15
We evaluate the extension of the exact nonlinear reconstruction technique developed for digital holography to the phase-recovery problems presented by other optical interferometric methods, which use carrier modulation. It is shown that the introduction of an analytic wavelet analysis in the ridge of the cepstrum transformation corresponding to the analyzed interferogram can be closely related to the well-known wavelet analysis of the interferometric intensity. Subsequently, the phase-recovery process is improved. The advantages and limitations of this framework are analyzed and discussed using numerical simulations in singular scalar light fields and in temporal speckle pattern interferometry.
Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light
NASA Astrophysics Data System (ADS)
Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.
2018-04-01
We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.
Optical metrology for Starlight Separated Spacecraft Stellar Interferometry Mission
NASA Technical Reports Server (NTRS)
Dubovitsky, S.; Lay, O. P.; Peters, R. D.; Abramovici, A.; Asbury, C. G.; Kuhnert, A. C.; Mulder, J. L.
2002-01-01
We describe a high-precision inter-spacecraft metrology system designed for NASA 's StarLight mission, a space-based separated-spacecraft stellar interferometer. It consists of dual-target linear metrology, based on a heterodyne interferometer with carrier phase modulation, and angular metrology designed to sense the pointing of the laser beam and provides bearing information. The dual-target operation enables one metrology beam to sense displacement of two targets independently. We present the current design, breadboard implementation of the Metrology Subsystem in a stellar interferometer testbed and the present state of development of flight qualifiable subsystem components.
Quantitative polarized light microscopy using spectral multiplexing interferometry.
Li, Chengshuai; Zhu, Yizheng
2015-06-01
We propose an interferometric spectral multiplexing method for measuring birefringent specimens with simple configuration and high sensitivity. The retardation and orientation of sample birefringence are simultaneously encoded onto two spectral carrier waves, generated interferometrically by a birefringent crystal through polarization mixing. A single interference spectrum hence contains sufficient information for birefringence determination, eliminating the need for mechanical rotation or electrical modulation. The technique is analyzed theoretically and validated experimentally on cellulose film. System simplicity permits the possibility of mitigating system birefringence background. Further analysis demonstrates the technique's exquisite sensitivity as high as ∼20 pm for retardation measurement.
NASA Astrophysics Data System (ADS)
Larsson, David; Greve, Anders; Hvam, Jørn M.; Boisen, Anja; Yvind, Kresten
2009-03-01
We have experimentally investigated self-mixing interference produced by the feedback of light from a polymer micrometer-sized cantilever into a vertical-cavity surface-emitting laser for sensing applications. In particular we have investigated how the visibility of the optical output power and the junction voltage depends on the laser injection current and the distance to the cantilever. The highest power visibility obtained from cantilevers without reflective coatings was ˜60%, resulting in a very high sensitivity of 45 mV/nm with a noise floor below 1.2 mV. Different detection schemes are discussed.
Shot noise limits to sensitivity of optical interferometry
NASA Technical Reports Server (NTRS)
Prasad, Sudhakar
1992-01-01
By arguing that the limiting noise is the photoelectron shot noise, we show that the sensitivity of image synthesis by an ideal optical interferometer is independent of the details of beam-splitting and recombination. The signal-to-noise ratio of the synthesized image is proportional to the square root of the total number of photoelectrons detected by the entire array. For non-ideal interferometers, which are forced to employ a closure-phase method of indirect inference of the visibility data, essentially the same result holds for strong sources, but at weak light levels beam-splitting degrades sensitivity.
The state of the art of conventional flow visualization techniques for wind tunnel testing
NASA Technical Reports Server (NTRS)
Settles, G. S.
1982-01-01
Conventional wind tunnel flow visualization techniques which consist of surface flow methods, tracers, and optical methods are presented. Different surface flow methods are outlined: (1) liquid films (oil and fluorescent dye and UV lighting, renewable film via porous dispenser in model, volatile carrier fluid, cryogenic colored oil dots, oil film interferometry); (2) reactive surface treatment (reactive gas injection, reversible dye); (3) transition and heat transfer detectors (evaporation, sublimation, liquid crystals, phase change paints, IR thermography); and (4) tufts (fluorescent mini tufts, cryogenic suitability). Other methods are smoke wire techniques, vapor screens, and optical methods.
Surface-mount sapphire interferometric temperature sensor.
Zhu, Yizheng; Wang, Anbo
2006-08-20
A fiber-optic high-temperature sensor is demonstrated by bonding a 45 degrees -polished single-crystal sapphire fiber on the surface of a sapphire wafer, whose optical thickness is temperature dependent and measured by white-light interferometry. A novel adhesive-free coupling between the silica and sapphire fibers is achieved by fusion splicing, and its performance is characterized. The sensor's interference signal is investigated for its dependence on angular alignment between the fiber and the wafer. A prototype sensor is tested to 1,170 degrees C with a resolution of 0.4 degrees C, demonstrating excellent potential for high-temperature measurement.
NASA Technical Reports Server (NTRS)
Henriksen, R. N.; Nelson, L. A.
1985-01-01
Clock synchronization in an arbitrarily accelerated observer congruence is considered. A general solution is obtained that maintains the isotropy and coordinate independence of the one-way speed of light. Attention is also given to various particular cases including, rotating disk congruence or ring congruence. An explicit, congruence-based spacetime metric is constructed according to Einstein's clock synchronization procedure and the equation for the geodesics of the space-time was derived using Hamilton-Jacobi method. The application of interferometric techniques (absolute phase radio interferometry, VLBI) to the detection of the 'global Sagnac effect' is also discussed.
Fast sub-electron detectors review for interferometry
NASA Astrophysics Data System (ADS)
Feautrier, Philippe; Gach, Jean-Luc; Bério, Philippe
2016-08-01
New disruptive technologies are now emerging for detectors dedicated to interferometry. The detectors needed for this kind of applications need antonymic characteristics: the detector noise must be very low, especially when the signal is dispersed but at the same time must also sample the fast temporal characteristics of the signal. This paper describes the new fast low noise technologies that have been recently developed for interferometry and adaptive optics. The first technology is the Avalanche PhotoDiode (APD) infrared arrays made of HgCdTe. In this paper are presented the two programs that have been developed in that field: the Selex Saphira 320x256 [1] and the 320x255 RAPID detectors developed by Sofradir/CEA LETI in France [2], [3], [4]. Status of these two programs and future developments are presented. Sub-electron noise can now be achieved in the infrared using this technology. The exceptional characteristics of HgCdTe APDs are due to a nearly exclusive impaction ionization of the electrons, and this is why these devices have been called "electrons avalanche photodiodes" or e-APDs. These characteristics have inspired a large effort in developing focal plan arrays using HgCdTe APDs for low photon number applications such as active imaging in gated mode (2D) and/or with direct time of flight detection (3D imaging) and, more recently, passive imaging for infrared wave front correction and fringe tracking in astronomical observations. In addition, a commercial camera solution called C-RED, based on Selex Saphira and commercialized by First Light Imaging [5], is presented here. Some groups are also working with instruments in the visible. In that case, another disruptive technology is showing outstanding performances: the Electron Multiplying CCDs (EMCCD) developed mainly by e2v technologies in UK. The OCAM2 camera, commercialized by First Light Imaging [5], uses the 240x240 EMMCD from e2v and is successfully implemented on the VEGA instrument on the CHARA interferometer (US) by the Lagrange laboratory from Observatoire de la Cote d'Azur. By operating the detector at gain 1000, the readout noise is as low as 0.1 e and data can be analyzed with a better contrast in photon counting mode.
NASA Astrophysics Data System (ADS)
Vajedian, Sanaz; Motagh, Mahdi
2018-04-01
Interferometric wide-swath mode of Sentinel-1, which is implemented by Terrain Observation by Progressive Scan (TOPS) technique, is the main mode of SAR data acquisition in this mission. It aims at global monitoring of large areas with enhanced revisit frequency of 6 days at the expense of reduced azimuth resolution, compared to classical ScanSAR mode. TOPS technique is equipped by steering the beam from backward to forward along the heading direction for each burst, in addition to the steering along the range direction, which is the only sweeping direction in standard ScanSAR mode. This leads to difficulty in measuring along-track displacement by applying the conventional method of multi-aperture interferometry (MAI), which exploits a double difference interferometry to estimate azimuth offset. There is a possibility to solve this issue by a technique called "Burst Overlap Interferometry" which focuses on the region of burst overlap. Taking advantage of large squint angle diversity of 1° in burst overlapped area leads to improve the accuracy of ground motion measurement especially in along-track direction. We investigate the advantage of SAR Interferometry (InSAR), burst overlap interferometry and offset tracking to investigate coseismic deformation and coseismic-induced landslide related to 12 November 2017 Mw 7.3 Sarpol-e Zahab earthquake in Iran.
Atom Interferometry for Fundamental Physics and Gravity Measurements in Space
NASA Technical Reports Server (NTRS)
Kohel, James M.
2012-01-01
Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.
A Data Exchange Standard for Optical (Visible/IR) Interferometry
NASA Astrophysics Data System (ADS)
Pauls, T. A.; Young, J. S.; Cotton, W. D.; Monnier, J. D.
2005-11-01
This paper describes the OI (Optical Interferometry) Exchange Format, a standard for exchanging calibrated data from optical (visible/infrared) stellar interferometers. The standard is based on the Flexible Image Transport System (FITS) and supports the storage of optical interferometric observables, including squared visibility and closure phase-data products not included in radio interferometry standards such as UV-FITS. The format has already gained the support of most currently operating optical interferometer projects, including COAST, NPOI, IOTA, CHARA, VLTI, PTI, and the Keck Interferometer, and is endorsed by the IAU Working Group on Optical Interferometry. Software is available for reading, writing, and the merging of OI Exchange Format files.
Application of deconvolution interferometry with both Hi-net and KiK-net data
NASA Astrophysics Data System (ADS)
Nakata, N.
2013-12-01
Application of deconvolution interferometry to wavefields observed by KiK-net, a strong-motion recording network in Japan, is useful for estimating wave velocities and S-wave splitting in the near surface. Using this technique, for example, Nakata and Snieder (2011, 2012) found changed in velocities caused by Tohoku-Oki earthquake in Japan. At the location of the borehole accelerometer of each KiK-net station, a velocity sensor is also installed as a part of a high-sensitivity seismograph network (Hi-net). I present a technique that uses both Hi-net and KiK-net records for computing deconvolution interferometry. The deconvolved waveform obtained from the combination of Hi-net and KiK-net data is similar to the waveform computed from KiK-net data only, which indicates that one can use Hi-net wavefields for deconvolution interferometry. Because Hi-net records have a high signal-to-noise ratio (S/N) and high dynamic resolution, the S/N and the quality of amplitude and phase of deconvolved waveforms can be improved with Hi-net data. These advantages are especially important for short-time moving-window seismic interferometry and deconvolution interferometry using later coda waves.
Machado, Rachel R P; Dutra, Rafael C; Raposo, Nádia R B; Lesche, Bernhard; Gomes, Marlei S; Duarte, Rafael S; Soares, Geraldo Luiz G; Kaplan, Maria Auxiliadora C
2015-12-01
Interferometry was used together with the conventional microplate resazurin assay to evaluate the antimycobacterial properties of essential oil (EO) from fruits of Pterodon emarginatus and also of rifampicin against Mycobacterium bovis. The aim of this work is not only to investigate the potential antimycobacterial activity of this EO, but also to test the interferometric method in comparison with the conventional one. The Minimum Inhibitory Concentration (MIC) values of EO (625 μg/mL) and rifampicin (4 ng/mL) were firstly identified with the microplate method. These values were used as parameters in Drug Susceptibility Tests (DST) with interferometry. The interferometry confirmed the MIC value of EO identified with microplate and revealed a bacteriostatic behavior for this concentration. At 2500 μg/mL interferometry revealed bactericidal activity of the EO. Mycobacterial growth was detected with interferometry at 4 ng/mL of rifampicin and even at higher concentrations. One important difference is that the interferometric method preserves the sample, so that after weeks of quantitative observation, the sample can be used to evaluate the bactericidal activity of the tested drug. Copyright © 2015 Elsevier Ltd. All rights reserved.
Behavior of chemicals in the seawater column by shadowscopy
NASA Astrophysics Data System (ADS)
Fuhrer, Mélanie; Aprin, Laurent; Le Floch, Stéphane; Slangen, Pierre; Dusserre, Gilles
2012-10-01
Ninety percent of the Global Movement of Goods transit by ship. The transportation of HNS (Hazardous and Noxious Substances) in bulk highly increases with the tanker traffic. The huge volume capacities induce a major risk of accident involving chemicals. Among the latest accidents, many have led to vessels sinking (Ievoli Sun, 2000 - ECE, 2006). In case of floating substances, liquid release in depth entails an ascending two phase flow. The visualization of that flow is complex. Indeed, liquid chemicals have mostly a refractive index close to water, causing difficulties for the assessment of the two phase medium behavior. Several physics aspects are points of interest: droplets characterization (shape evolution and velocity), dissolution kinetics and hydrodynamic vortices. Previous works, presented in the 2010 Speckle conference in Brazil, employed Dynamic Speckle Interferometry to study Methyl Ethyl Ketone (MEK) dissolution in a 15 cm high and 1 cm thick water column. This paper deals with experiments achieved with the Cedre Experimental Column (CEC - 5 m high and 0.8 m in diameter). As the water thickness has been increased, Dynamic Speckle Interferometry results are improved by shadowscopic measurements. A laser diode is used to generate parallel light while high speed imaging records the products rising. Two measurements systems are placed at the bottom and the top of the CEC. The chemical class of pollutant like floaters, dissolvers (plume, trails or droplets) has been then identified. Physics of the two phase flow is presented and shows up the dependence on chemicals properties such as interfacial tension, viscosity and density. Furthermore, parallel light propagation through this disturbed medium has revealed trailing edges vortices for some substances (e.g. butanol) presenting low refractive index changes.
Integrated Optics Achromatic Nuller for Stellar Interferometry
NASA Technical Reports Server (NTRS)
Ksendzov, Alexander
2012-01-01
This innovation will replace a beam combiner, a phase shifter, and a mode conditioner, thus simplifying the system design and alignment, and saving weight and space in future missions. This nuller is a dielectric-waveguide-based, four-port asymmetric coupler. Its nulling performance is based on the mode-sorting property of adiabatic asymmetric couplers that are intrinsically achromatic. This nuller has been designed, and its performance modeled, in the 6.5-micrometer to 9.25-micrometer spectral interval (36% bandwidth). The calculated suppression of starlight for this 15-cm-long device is 10(exp -5) or better through the whole bandwidth. This is enough to satisfy requirements of a flagship exoplanet-characterization mission. Nulling interferometry is an approach to starlight suppression that will allow the detection and spectral characterization of Earth-like exoplanets. Nulling interferometers separate the light originating from a dim planet from the bright starlight by placing the star at the bottom of a deep, destructive interference fringe, where the starlight is effectively cancelled, or nulled, thus allowing the faint off-axis light to be much more easily seen. This process is referred to as nulling of the starlight. Achromatic nulling technology is a critical component that provides the starlight suppression in interferometer-based observatories. Previously considered space-based interferometers are aimed at approximately 6-to-20-micrometer spectral range. While containing the spectral features of many gases that are considered to be signatures of life, it also offers better planet-to-star brightness ratio than shorter wavelengths. In the Integrated Optics Achromatic Nuller (IOAN) device, the two beams from the interferometer's collecting telescopes pass through the same focusing optic and are incident on the input of the nuller.
NASA Astrophysics Data System (ADS)
Schödel, R.
2015-08-01
Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion.
Analysis and testing of a new method for drop size measurement using laser scatter interferometry
NASA Technical Reports Server (NTRS)
Bachalo, W. D.; Houser, M. J.
1984-01-01
Research was conducted on a laser light scatter detection method for measuring the size and velocity of spherical particles. The method is based upon the measurement of the interference fringe pattern produced by spheres passing through the intersection of two laser beams. A theoretical analysis of the method was carried out using the geometrical optics theory. Experimental verification of the theory was obtained by using monodisperse droplet streams. Several optical configurations were tested to identify all of the parametric effects upon the size measurements. Both off-axis forward and backscatter light detection were utilized. Simulated spray environments and fuel spray nozzles were used in the evaluation of the method. The measurements of the monodisperse drops showed complete agreement with the theoretical predictions. The method was demonstrated to be independent of the beam intensity and extinction resulting from the surrounding drops. Signal processing concepts were considered and a method was selected for development.
Briard, Paul; Saengkaew, Sawitree; Wu, Xuecheng; Meunier-Guttin-Cluzel, Siegfried; Chen, Linghong; Cen, Kefa; Gréhan, Gérard
2013-01-01
This paper presents the possibility of measuring the three-dimensional (3D) relative locations and diameters of a set of spherical particles and discusses the behavior of the light recorded around the rainbow angle, an essential step toward refractive index measurements. When a set of particles is illuminated by a pulsed incident wave, the particles act as spherical light wave sources. When the pulse duration is short enough to fix the particle location (typically about 10 ns), interference fringes between these different spherical waves can be recorded. The Fourier transform of the fringes divides the complex fringe systems into a series of spots, with each spot characterizing the interference between a pair of particles. The analyses of these spots (in position and shape) potentially allow the measurement of particle characteristics (3D relative position, particle diameter, and particle refractive index value).
NASA Astrophysics Data System (ADS)
Di, Jianglei; Song, Yu; Xi, Teli; Zhang, Jiwei; Li, Ying; Ma, Chaojie; Wang, Kaiqiang; Zhao, Jianlin
2017-11-01
Biological cells are usually transparent with a small refractive index gradient. Digital holographic interferometry can be used in the measurement of biological cells. We propose a dual-wavelength common-path digital holographic microscopy for the quantitative phase imaging of biological cells. In the proposed configuration, a parallel glass plate is inserted in the light path to create the lateral shearing, and two lasers with different wavelengths are used as the light source to form the dual-wavelength composite digital hologram. The information of biological cells for different wavelengths is separated and extracted in the Fourier domain of the hologram, and then combined to a shorter wavelength in the measurement process. This method could improve the system's temporal stability and reduce speckle noises simultaneously. Mouse osteoblastic cells and peony pollens are measured to show the feasibility of this method.
Holographic studies of shock waves within transonic fan rotors
NASA Technical Reports Server (NTRS)
Benser, W. A.; Bailey, E. E.; Gelder, T. F.
1974-01-01
NASA has funded two separate contracts to apply pulsed laser holographic interferometry to the detection of shock patterns in the outer span regions of high tip speed transonic rotors. The first holographic approach used ruby laser light reflected from a portion of the centerbody just ahead of the rotor. These holograms showed the bow wave patterns upstream of the rotor and the shock patterns just inside the blade row near the tip. The second holographic approach, on a different rotor, used light transmitted diagonally across the inlet annulus past the centerbody. This approach gave a more extensive view of the region bounded by the blade leading and trailing edges, by the part span shroud and by the blade tip. These holograms showed the passage shock emanating from the blade leading edge and a moderately strong conical shock originating at the intersection of the part span shroud leading edge and the blade suction surface.
Attosecond-resolved photoionization of chiral molecules.
Beaulieu, S; Comby, A; Clergerie, A; Caillat, J; Descamps, D; Dudovich, N; Fabre, B; Géneaux, R; Légaré, F; Petit, S; Pons, B; Porat, G; Ruchon, T; Taïeb, R; Blanchet, V; Mairesse, Y
2017-12-08
Chiral light-matter interactions have been investigated for two centuries, leading to the discovery of many chiroptical processes used for discrimination of enantiomers. Whereas most chiroptical effects result from a response of bound electrons, photoionization can produce much stronger chiral signals that manifest as asymmetries in the angular distribution of the photoelectrons along the light-propagation axis. We implemented self-referenced attosecond photoelectron interferometry to measure the temporal profile of the forward and backward electron wave packets emitted upon photoionization of camphor by circularly polarized laser pulses. We measured a delay between electrons ejected forward and backward, which depends on the ejection angle and reaches 24 attoseconds. The asymmetric temporal shape of electron wave packets emitted through an autoionizing state further reveals the chiral character of strongly correlated electronic dynamics. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Interior ballistics of a two-stage light gas gun using velocity interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munson, D.E.; May, R.P.
1976-02-01
An extensive interior ballistics study of a two-stage light gas gun was performed which resulted in a detailed measurement of the projectile velocity as a continuous function of time. The two-stage gun consisted of a 88.9-mm i.d. pump stage and a 28.6-mm i.d. launch stage. Five main parameters of gun operation, propellant mass, piston mass, pump gas, pump gas pressure, and projectile mass were varied in this study. Projectile velocities were measured using a very precise velocity interferometer for any reflecting surface (VISAR) technique. The measurements showed that the initial acceleration of the projectile is discontinuous due to the shockmore » nature of the applied pressure on the projectile upon rupture of the burst diaphragm. These shock accelerations are understood easily via simple shock-tube theory. 9 figures, 3 tables.« less
Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Aguiar, O. D.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Ast, S.; Aston, S. M.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S.; Bao, Y.; Barayoga, J. C.; Barker, D.; Barr, B.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J.; Bauchrowitz, J.; Behnke, B.; Bell, A. S.; Bell, C.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bork, R.; Born, M.; Bose, S.; Bowers, J.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Buckland, K.; Brückner, F.; Buchler, B. C.; Buonanno, A.; Burguet-Castell, J.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Campsie, P.; Cannon, K.; Cao, J.; Capano, C. D.; Carbone, L.; Caride, S.; Castiglia, A. D.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chen, X.; Chen, Y.; Cho, H.-S.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, C. T. Y.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Constancio Junior, M.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cumming, A.; Cunningham, L.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Daveloza, H.; Davies, G. S.; Daw, E. J.; Dayanga, T.; Deleeuw, E.; Denker, T.; Dent, T.; Dergachev, V.; Derosa, R.; Desalvo, R.; Dhurandhar, S.; di Palma, I.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drasco, S.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eikenberry, S. S.; Engel, R.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fang, Q.; Farr, B. F.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Finn, L. S.; Fisher, R. P.; Foley, S.; Forsi, E.; Fotopoulos, N.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Garcia, J.; Gehrels, N.; Gelencser, G.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Graef, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guido, C.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heintze, M. C.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Huang, V.; Huerta, E. A.; Hughey, B.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jesse, E.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kozak, D.; Kozameh, C.; Kremin, A.; Kringel, V.; Krishnan, B.; Kucharczyk, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuper, B. J.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leong, J. R.; Levine, B.; Lhuillier, V.; Lin, A. C.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; MacArthur, J.; MacDonald, E.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval, F.; Mageswaran, M.; Mailand, K.; Manca, G.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martin, R. M.; Martinov, D.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazzolo, G.; McAuley, K.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Miller, J.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mokler, F.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nanda Kumar, D.; Nash, T.; Nayak, R.; Necula, V.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pan, Y.; Pankow, C.; Papa, M. A.; Paris, H.; Parkinson, W.; Pedraza, M.; Penn, S.; Peralta, C.; Perreca, A.; Phelps, M.; Pickenpack, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Pöld, J.; Postiglione, F.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Ramet, C.; Raymond, V.; Reed, C. M.; Reed, T.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinson, E. L.; Roddy, S.; Rodriguez, C.; Rodriguez, L.; Rodruck, M.; Rollins, J. G.; Romie, J. H.; Röver, C.; Rowan, S.; Rüdiger, A.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vallisneri, M.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, P. J.; Veitch, J.; Venkateswara, K.; Verma, S.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, J.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Wiseman, A. G.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Zanolin, M.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2013-08-01
Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity.
Psarouli, A; Salapatas, A; Botsialas, A; Petrou, P S; Raptis, I; Makarona, E; Jobst, G; Tukkiniemi, K; Sopanen, M; Stoffer, R; Kakabakos, S E; Misiakos, K
2015-12-02
Protein detection and characterization based on Broad-band Mach-Zehnder Interferometry is analytically outlined and demonstrated through a monolithic silicon microphotonic transducer. Arrays of silicon light emitting diodes and monomodal silicon nitride waveguides forming Mach-Zehnder interferometers were integrated on a silicon chip. Broad-band light enters the interferometers and exits sinusoidally modulated with two distinct spectral frequencies characteristic of the two polarizations. Deconvolution in the Fourier transform domain makes possible the separation of the two polarizations and the simultaneous monitoring of the TE and the TM signals. The dual polarization analysis over a broad spectral band makes possible the refractive index calculation of the binding adlayers as well as the distinction of effective medium changes into cover medium or adlayer ones. At the same time, multi-analyte detection at concentrations in the pM range is demonstrated.
Fast image processing with a microcomputer applied to speckle photography
NASA Astrophysics Data System (ADS)
Erbeck, R.
1985-11-01
An automated image recognition system is described for speckle photography investigations in fluid dynamics. The system is employed for characterizing the pattern of interference fringes obtained using speckle interferometry. A rotating ground glass serves as a screen on which laser light passing through a specklegraph plate, the flow and a compensation plate (CP) is shone to produce a compensated Young's pattern. The image produced on the ground glass is photographed by a video camera whose signal is digitized and processed through a microcomputer using a 6502 CPU chip. The normalized correlation function of the intensity is calculated in two directions of the recorded pattern to obtain the wavelength and the light deflection angle. The system has a capability of one picture every two seconds. Sample data are provided for a free jet of CO2 issuing into air in both laminar and turbulent form.
Rayleigh Scattering Measurements Using a Tunable Liquid Crystal Fabry-Perot Interferometer
NASA Technical Reports Server (NTRS)
Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.
2010-01-01
Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, velocity, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of a tunable liquid crystal (LC) Fabry-Perot etalon in Rayleigh scattering experiments at NASA Glenn Research Center. The LC etalon provides a robust interferometry system that can be tuned rapidly by adjusting the voltage applied to the liquid crystal interface. Tuning the interferometer is often necessary to control the physical locations of the concentric interference fringes when Rayleigh light is imaged through the LC etalon. The LC etalon diagnostic system was tested in a 1-cm diameter nozzle flow in two different scattering configurations to evaluate its usefulness for Rayleigh measurements compared to a traditional non-tunable fused silica Fabry-Perot etalon.
NASA Technical Reports Server (NTRS)
Ma, C.
1978-01-01
The causes and effects of diurnal polar motion are described. An algorithm is developed for modeling the effects on very long baseline interferometry observables. Five years of radio-frequency very long baseline interferometry data from stations in Massachusetts, California, and Sweden are analyzed for diurnal polar motion. It is found that the effect is larger than predicted by McClure. Corrections to the standard nutation series caused by the deformability of the earth have a significant effect on the estimated diurnal polar motion scaling factor and the post-fit residual scatter. Simulations of high precision very long baseline interferometry experiments taking into account both measurement uncertainty and modeled errors are described.
Beam shuttering interferometer and method
Deason, V.A.; Lassahn, G.D.
1993-07-27
A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.
Beam shuttering interferometer and method
Deason, Vance A.; Lassahn, Gordon D.
1993-01-01
A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.
Status of holographic interferometry at Wright Patterson Air Force Base
NASA Technical Reports Server (NTRS)
Seibert, George
1987-01-01
At Wright Patterson AFB, holographic interferometry has been used for nearly 15 years in a variety of supersonic and hypersonic wind tunnels. Specifically, holographic interferometry was used to study boundary layers, shock boundary layer interaction, and general flow diagnostics. Although a considerable amount of quantitative work was done, the difficulty of reducing data severely restricted this. In the future, it is of interest to use holographic interferometry in conjunction with laser Doppler velocimetry to do more complete diagnostics. Also, there is an interest to do particle field diagnostics in the combustion research facility. Finally, there are efforts in nondestructive testing where automated fringe readout and analysis would be extremely helpful.
Theoretical Properties of Acoustical Speckle Interferometry.
1980-09-01
an obvious one , since it was first performed in the acoustical holography. An acoustical speckle interferometry study has been demonstrated to be a...experiments in which pulses were used to study the propagation of the circumferential waves on aluminum cylinders immersed in water. In 1969, Bunney...destructive Testing SB. ABTRACT aCdo as revers. NW ass a" Id by block numb") Acoustical speckle interferometry is based locally on the elastodynamic response
Algorithms and Array Design Criteria for Robust Imaging in Interferometry
2016-04-01
Interferometry 1.1 Chapter Overview In this Section, we introduce the physics -based principles of optical interferometry, thereby providing a foundation for...particular physical structure (i.e. the existence of a certain type of loop in the interferometric graph), and provide a simple algorithm for identifying...mathematical conditions for wrap invariance to a physical condition on aperture placement is more intuitive when considering the raw phase measurements as
Ocean Remote Sensing Using Ambient Noise
2015-09-30
and other adaptive array processing methods. OBJECTIVES Work on this project has focused on noise interferometry – the process by which an...measured at xA and xB. In that context, our objective is to investigate and identify the limitations of noise interferometry for remote sensing...and 6 is ongoing. 1. Demonstration of noise interferometry at 10 km range in a shallow water environment Recently conducted experiments in the
A Possible Future for Space-Based Interferometry
NASA Technical Reports Server (NTRS)
Labadie, L.; Leger, A.; Malbet, F.; Danchi, William C.; Lopez, B.
2013-01-01
We address the question of space interferometry following the recent outcome of the science themes selection by ESA for the L2/L3 missions slots. We review the current context of exoplanetary sciences and its impact for an interferometric mission. We argue that space interferometry will make a major step forward when the scientific communities interested in this technique will merge their efforts into a coherent technology development plan.
Very long baseline interferometry applied to polar motion, relativity, and geodesy. Ph. D. thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C.
1978-01-01
The causes and effects of diurnal polar motion are described. An algorithm was developed for modeling the effects on very long baseline interferometry observables. A selection was made between two three-station networks for monitoring polar motion. The effects of scheduling and the number of sources observed on estimated baseline errors are discussed. New hardware and software techniques in very long baseline interferometry are described.
NASA Astrophysics Data System (ADS)
Mitryk, Shawn; Mueller, Guido
The Laser Interferometer Space Antenna (LISA) is a space-based modified Michelson interfer-ometer designed to measure gravitational radiation in the frequency range from 30 uHz to 1 Hz. The interferometer measurement system (IMS) utilizes one-way laser phase measurements to cancel the laser phase noise, reconstruct the proof-mass motion, and extract the gravitational wave (GW) induced laser phase modulations in post-processing using a technique called time-delay interferometry (TDI). Unfortunately, there exist few hard-ware verification experiments of the IMS. The University of Florida LISA Interferometry Simulator (UFLIS) is designed to perform hardware-in-the-loop simulations of the LISA interferometry system, modeling the characteris-tics of the LISA mission as accurately as possible. This depends, first, on replicating the laser pre-stabilization by locking the laser phase to an ultra-stable Zerodur cavity length reference using the PDH locking method. Phase measurements of LISA-like photodetector beat-notes are taken using the UF-phasemeter (PM) which can measure the laser BN frequency to within an accuracy of 0.22 uHz. The inter-space craft (SC) laser links including the time-delay due to the 5 Gm light travel time along the LISA arms, the laser Doppler shifts due to differential SC motion, and the GW induced laser phase modulations are simulated electronically using the electronic phase delay (EPD) unit. The EPD unit replicates the laser field propagation between SC by measuring a photodetector beat-note frequency with the UF-phasemeter and storing the information in memory. After the requested delay time, the frequency information is added to a Doppler offset and a GW-like frequency modulation. The signal is then regenerated with the inter-SC laser phase affects applied. Utilizing these components, I will present the first complete TDI simulations performed using the UFLIS. The LISA model is presented along-side the simulation, comparing the generation and measurement of LISA-like signals. Phasemeter measurements are used in post-processing and combined in the linear combinations defined by TDI, thus, canceling the laser phase and phase-lock loop noise to extract the applied GW modulation buried under the noise. Nine order of magnitude common mode laser noise cancellation is achieved at a frequency of 1 mHz and the GW signal is clearly visible after the laser and PLL noise cancellation.
Wavelength independent interferometer
NASA Technical Reports Server (NTRS)
Hochberg, Eric B. (Inventor); Page, Norman A. (Inventor)
1991-01-01
A polychromatic interferometer utilizing a plurality of parabolic reflective surfaces to properly preserve the fidelity of light wavefronts irrespective of their wavelengths as they pass through the instrument is disclosed. A preferred embodiment of the invention utilizes an optical train which comprises three off-axis parabolas arranged in conjunction with a beam-splitter and a reference mirror to form a Twyman-Green interferometer. An illumination subsystem is provided and comprises a pair of lasers at different preselected wavelengths in the visible spectrum. The output light of the two lasers is coaxially combined by means of a plurality of reflectors and a grating beam combiner to form a single light source at the focal point of the first parabolic reflection surface which acts as a beam collimator for the rest of the optical train. By using visible light having two distinct wavelengths, the present invention provides a long equivalent wavelength interferogram which operates at visible light wherein the effective wavelength is equal to the product of the wavelengths of the two laser sources divided by their difference in wavelength. As a result, the invention provides the advantages of what amounts to long wavelength interferometry but without incurring the disadvantage of the negligible reflection coefficient of the human eye to long wavelength frequencies which would otherwise defeat any attempt to form an interferogram at that low frequency using only one light source.
1987-01-01
I 0) (N 4 ) mc4 (N (N -C140 t 4 u ( N -4 C -4 in * L4 I V) 0’ 10-LI V) In V / ) V )U 0: L LJ u jw ’ ’ WI w wLi LL ~ ’ OIL )u )UC Uu L C- 0- C WI...AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION 0 UNCLASSIFIED/UNLIMITED El SAME AS RPT. E -DTIC USERS I 22a. NAME OF RESPONSIBLE INDIVIDUAL...c 4 nI I , w- 0 0 -4 N’ m F,- m~ m0 m0 m v t-- (0 v m0 m0 w0 - i4l m w -a I I LI (( I C14 ( i F- ( i -4 -.4 (N4
Mapping spiral structure on the far side of the Milky Way
NASA Astrophysics Data System (ADS)
Sanna, Alberto; Reid, Mark J.; Dame, Thomas M.; Menten, Karl M.; Brunthaler, Andreas
2017-10-01
Direct measurements of distances to astronomical sources rely on parallax, which can usually only be measured for relatively nearby objects. The far side of the Milky Way has been impossible to measure accurately, because the parallax is very small and interstellar dust blocks optical light from those regions. Sanna et al. used radio interferometry to directly determine the parallax distance to a star-forming region on the far side of the Galaxy. They also used a method of inferring distances from transverse motions, which produced the same answer. This allowed them to trace one of the Milky Way's spiral arms through almost an entire rotation.
NASA Astrophysics Data System (ADS)
Chen, Xiao-jun; Dong, Li-zhi; Wang, Shuai; Yang, Ping; Xu, Bing
2017-11-01
In quadri-wave lateral shearing interferometry (QWLSI), when the intensity distribution of the incident light wave is non-uniform, part of the information of the intensity distribution will couple with the wavefront derivatives to cause wavefront reconstruction errors. In this paper, we propose two algorithms to reduce the influence of a non-uniform intensity distribution on wavefront reconstruction. Our simulation results demonstrate that the reconstructed amplitude distribution (RAD) algorithm can effectively reduce the influence of the intensity distribution on the wavefront reconstruction and that the collected amplitude distribution (CAD) algorithm can almost eliminate it.
Multipoint sensing with a low-coherence source using single-arm frequency-shifted interferometry
Zhang, Yiwei; Ye, Fei; Qi, Bing; ...
2016-07-12
We demonstrate that multiple-site sensing along an optical fiber can be done with incoherent continuous-wave light. Here, using a broadband low-coherence noise source, a slow detector, and an optical modulator, we construct a single-arm frequency-shifted interferometer (SA-FSI) capable of simultaneously sensing multiple weak-reflection sites distributed either in parallel or in series along fiber links. By scanning the driving frequency of an electro-optic amplitude modulator in the range of 2.7–3.2 GHz at steps of 41.7 KHz, we demonstrate a spatial resolution of 0.3 m and a measurement range of over 1 km.
NASA Technical Reports Server (NTRS)
Dennison, B. K.
1976-01-01
The gravitational field is probed in a search for polarization dependence in the light bending. This involves searching for a splitting of a source image into orthogonal polarizations as the radiation passes through the solar gravitational field. This search was carried out using the techniques of very long and intermediate baseline interferometry, and by seeking a relative phase delay in orthogonal polarizations of microwaves passing through the solar gravitational field. In this last technique a change in the total polarization of the Helios 1 carrier wave was sought as the spacecraft passed behind the sun. No polarization splitting was detected.
NASA Astrophysics Data System (ADS)
Reolon, David; Jacquot, Maxime; Verrier, Isabelle; Brun, Gérald; Veillas, Colette
2006-12-01
In this paper we propose group refractive index measurement with a spectral interferometric set-up using a broadband supercontinuum generated in an air-silica Microstructured Optical Fibre (MOF) pumped with a picosecond pulsed microchip laser. This source authorizes high fringes visibility for dispersion measurements by Spectroscopic Analysis of White Light Interferograms (SAWLI). Phase calculation is assumed by a wavelet transform procedure combined with a curve fit of the recorded channelled spectrum intensity. This approach provides high resolution and absolute group refractive index measurements along one line of the sample by recording a single 2D spectral interferogram without mechanical scanning.
NASA Astrophysics Data System (ADS)
Goldberg, Kenneth A.; Naulleau, Patrick P.; Bokor, Jeffrey; Chapman, Henry N.
2002-07-01
As the quality of optical systems for extreme ultraviolet lithography improves, high-accuracy wavefront metrology for alignment and qualification becomes ever more important. To enable the development of diffraction-limited EUV projection optics, visible-light and EUV interferometries must work in close collaboration. We present a detailed comparison of EUV and visible-light wavefront measurements performed across the field of view of a lithographic-quality EUV projection optical system designed for use in the Engineering Test Stand developed by the Virtual National Laboratory and the EUV Limited Liability Company. The comparisons reveal that the present level of RMS agreement lies in the 0.3-0.4-nm range. Astigmatism is the most significant aberration component for the alignment of this optical system; it is also the dominant term in the discrepancy, and the aberration with the highest measurement uncertainty. With EUV optical systems requiring total wavefront quality in the (lambda) EUV/50 range, and even higher surface-figure quality for the individual mirror elements, improved accuracy through future comparisons, and additional studies, are required.
NASA Astrophysics Data System (ADS)
Hamilton, Andrew; Caplinger, James; Sotnikov, Vladimir; Sarkisov, Gennady; Leland, John
2017-10-01
In the Plasma Physics and Sensors Laboratory, located at Wright Patterson Air Force Base, we utilize a pulsed power source to create plasma through a wire ablation process of metallic wires. With a parallel arrangement of wires the azimuthal magnetic fields generated around each wire, along with the Ohmic current dissipation and heating occurring upon wire evaporation, launch strong radial outflows of magnetized plasmas towards the centralized stagnation region. It is in this region that we investigate two phases of the wire ablation process. Observations in the first phase are collsionless and mostly comprised of light ions ejected from the initial corona. The second phase is observed when the wire core is ablated and heavy ions dominate collisions in the stagnation region. In this presentation we will show how dual-wavelength interferometric techniques can provide information about electron and atomic densities from experiments. Additionally, we expect white-light emission to provide a qualitative confirmation of the instabilities observed from our experiments. The material is based upon work supported by the Air Force Office of Scientific Research under Award Number 16RYCOR289.
Interferometer for measuring the dynamic surface topography of a human tear film
NASA Astrophysics Data System (ADS)
Primeau, Brian C.; Greivenkamp, John E.
2012-03-01
The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. Following a blink, the tear film quickly smoothes and starts to become irregular after 10 seconds. This irregularity can affect comfort and vision quality. An in vivo method of characterizing dynamic tear films has been designed based upon a near-infrared phase-shifting interferometer. This interferometer continuously measures light reflected from the tear film, allowing sub-micron analysis of the dynamic surface topography. Movies showing the tear film behavior can be generated along with quantitative metrics describing changes in the tear film surface. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or corneal topography and provides better sensitivity and resolution than shearing interferometry methods. The interferometer design is capable of identifying features in the tear film much less than a micron in height with a spatial resolution of about ten microns over a 6 mm diameter. This paper presents the design of the tear film interferometer along with the considerations that must be taken when designing an interferometer for on-eye diagnostics. Discussions include eye movement, design of null optics for a range of ocular geometries, and laser emission limits for on-eye interferometry.
Optical versus tactile geometry measurement: alternatives or counterparts
NASA Astrophysics Data System (ADS)
Lehmann, Peter
2003-05-01
This contribution deals with measuring strategies and methods for the determination of several geometrical features, covering the surface micro-topography and the form of mechanical objects. The measuring principles used in optical surface metrology include optical focusing profilers, confocal point measuring and areal measuring sensors as well as interferometrical principles such as white light interferometry and speckle techniques. In comparison with stylus instruments optical techniques provide certain advantages such as a fast data acquisition, in-process applicability or contactless measurement. However, the frequency response characteristics of optical and tactile measurement differ significantly. In addition, optical sensors are commonly more influenced by critical geometrical conditions and optical properties of an object. For precise form measurement mechanical instruments dominate till now. One reason for this may be, that commonly the complete 360 degrees geometry of the measuring object has to be analyzed. Another point is that optical principles such as form measuring interferometry fail in cases of complex object geometry or rougher object surfaces. Other methods, e.g. fringe projection or digital holography, till now do not meet the accuracy demands of precision engineered workpieces. Hence, a combination of mechanical concepts and optical sensors represents an interesting potential for current and future measuring tasks, which require high accuracy and maximum flexibility.
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka
2011-11-01
We demonstrate tomographic imaging of intracellular activity of living cells by a low-coherent quantitative phase microscope. The intracellular organelles, such as the nucleus, nucleolus, and mitochondria, are moving around inside living cells, driven by the cellular physiological activity. In order to visualize the intracellular motility in a label-free manner we have developed a reflection-type quantitative phase microscope which employs the phase shifting interferometric technique with a low-coherent light source. The phase shifting interferometry enables us to quantitatively measure the intensity and phase of the optical field, and the low-coherence interferometry makes it possible to selectively probe a specific sectioning plane in the cell volume. The results quantitatively revealed the depth-resolved fluctuations of intracellular surfaces so that the plasma membrane and the membranes of intracellular organelles were independently measured. The transversal and the vertical spatial resolutions were 0.56 μm and 0.93 μm, respectively, and the mechanical sensitivity of the phase measurement was 1.2 nanometers. The mean-squared displacement was applied as a statistical tool to analyze the temporal fluctuation of the intracellular organelles. To the best of our knowledge, our system visualized depth-resolved intracellular organelles motion for the first time in sub-micrometer resolution without contrast agents.
1979-11-23
Entered) ACKNOWLEDGMENTS The author hereby expresses his appreciation to Mr. J. A. Schaeffel Jr. for his guidance on interferometry and the computer...were collected by an automated laser speckle interferometry displacement contour analyzer developed by John A. Schaeffel , Jr. [3]. The new method of 10...Fringe Patterns, US Army Missile Command, Redstone Arsenal, Alabama, Technical Report RL-76-18, 20 April 1976. 3. Schaeffel , J. A., Automated Laser
Beam-modulation methods in quantitative and flow visualization holographic interferometry
NASA Technical Reports Server (NTRS)
Decker, A.
1986-01-01
This report discusses heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam. Both methods will be used for the measurement and visualization of internal transonic flows, where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.
Beam-modulation methods in quantitative and flow-visualization holographic interferometry
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
1986-01-01
Heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam are discussed. Both methods will be used for the measurement and visualization of internal transonic flows where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.
Fringe formation in dual-hologram interferometry
NASA Technical Reports Server (NTRS)
Burner, A. W.
1990-01-01
Reference-fringe formation in nondiffuse dual-hologram interferometry is described by combining a first-order geometrical hologram treatment with interference fringes generated by two point sources. The first-order imaging relationships can be used to describe reference-fringe patterns for the geometry of the dual-hologram interferometry. The process can be completed without adjusting the two holograms when the reconstructing wavelength is less than the exposing wavelength, and the process is found to facilitate basic intereferometer adjustments.
NASA Technical Reports Server (NTRS)
Vest, C. M.
1982-01-01
The use of holographic interferometry to measure two and threedimensional flows and the interpretation of multiple-view interferograms with computer tomography are discussed. Computational techniques developed for tomography are reviewed. Current research topics are outlined including the development of an automated fringe readout system, optimum reconstruction procedures for when an opaque test model is present in the field, and interferometry and tomography with strongly refracting fields and shocks.
Simultaneous immersion Mirau interferometry.
Lyulko, Oleksandra V; Randers-Pehrson, Gerhard; Brenner, David J
2013-05-01
A novel technique for label-free imaging of live biological cells in aqueous medium that is insensitive to ambient vibrations is presented. This technique is a spin-off from previously developed immersion Mirau interferometry. Both approaches utilize a modified Mirau interferometric attachment for a microscope objective that can be used both in air and in immersion mode, when the device is submerged in cell medium and has its internal space filled with liquid. While immersion Mirau interferometry involves first capturing a series of images, the resulting images are potentially distorted by ambient vibrations. Overcoming these serial-acquisition challenges, simultaneous immersion Mirau interferometry incorporates polarizing elements into the optics to allow simultaneous acquisition of two interferograms. The system design and production are described and images produced with the developed techniques are presented.
NASA Astrophysics Data System (ADS)
Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst
2016-04-01
Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] P. Berg et al., Composite-Light-Pulse Technique for High-Precision Atom Interferometry, Phys. Rev. Lett., 114, 063002, 2015. [2] A. Peters et al., Measurement of gravitational acceleration by dropping atoms, Nature 400, 849, 1999. [3] D. Schlippert et al., Quantum Test of the Universality of Free Fall, Phys. Rev. Lett., 112, 203002, 2014. [4] A. Louchet-Chauvet et al., The influence of transverse motion within an atomic gravimeter, New J. Phys. 13, 065026, 2011. [5] Q. Bodart et al., A cold atom pyramidal gravimeter with a single laser beam, Appl. Phys. Lett. 96, 134101, 2010. [6] H. Müntinga et al., Interferometry with Bose-Einstein Condensates in Microgravity, Phys. Rev. Lett., 110, 093602, 2013. [7] T. Kovachy et al., Matter Wave Lensing to Picokelvin Temperatures, Phys. Rev. Lett. 114, 143004, 2015. [8] J. Rudolph et al., A high-flux BEC source for mobile atom interferometers, New J. Phys. 17, 065001, 2015.
2015-10-05
photometry covering the interval between optical and radio wavelengths, optical polarimetry , and optical and near-IR (spectro)interferometry. Results. A...covering the interval between optical and radio wavelengths, optical polarimetry , and optical and near-IR (spectro)interferometry. Results. A... polarimetry , and near-infrared (IR) interferometry of ζ Tau, providing firm evi- dence that the V/R oscillations are an effect of one-armed den- sity
2014-07-17
frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experimentsa) Ultra-intense laser -matter...interaction experiments (>1018 W/cm2) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the...interferometry technique for probing pre- plasma expansion in ultra-intense laser experimentsa) Report Title Ultra-intense laser -matter interaction
Potential of the McMath-Pierce 1.6-Meter Solar Telescope for Speckle Interferometry
NASA Astrophysics Data System (ADS)
Harshaw, Richard; Jones, Gregory; Wiley, Edward; Boyce, Patrick; Branston, Detrick; Rowe, David; Genet, Russell
2015-09-01
We explored the aiming and tracking accuracy of the McMath-Pierce 1.6 m solar telescope at Kitt Peak National Observatory as part of an investigation of using this telescope for speckle interferometry of close visual double stars. Several slews of various lengths looked for hysteresis in the positioning system (we found none of significance) and concluded that the 1.6 m telescope would make a useful telescope for speckle interferometry.
NASA Technical Reports Server (NTRS)
Sargent, A. I.
2002-01-01
The Interferometry Science Center (ISC) is operated jointly by Caltech and JPL and is part of NASA's Navigator Program. The ISC has been created to facilitate the timely and successful execution of scientific investigations within the Navigator program, particularly those that rely on observations from NASA's interferometer projects. Currently, ISC is expected to provide full life cycle support for the Keck Interferometer, the Starlight mission, the Space Interferometry Mission, and the Terrestrial Planet Finder Mission. The nature and goals of ISc will be described.
Extracting DEM from airborne X-band data based on PolInSAR
NASA Astrophysics Data System (ADS)
Hou, X. X.; Huang, G. M.; Zhao, Z.
2015-06-01
Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.
Montés-Micó, Robert; Carones, Francesco; Buttacchio, Antonietta; Ferrer-Blasco, Teresa; Madrid-Costa, David
2011-09-01
To compare ocular biometry parameters measured with immersion ultrasound, partial coherence interferometry, and low coherence reflectometry in cataract patients. Measurements of axial length and anterior chamber depth were analyzed and compared using immersion ultrasound, partial coherence interferometry, and low coherence reflectometry. Keratometry (K), flattest axis, and white-to-white measurements were compared between partial coherence interferometry and low coherence reflectometry. Seventy-eight cataract (LOCS II range: 1 to 3) eyes of 45 patients aged between 42 and 90 years were evaluated. A subanalysis as a function of cataract degree was done for axial length and anterior chamber depth between techniques. No statistically significant differences were noted for the study cohort or within each cataract degree among the three techniques for axial length and anterior chamber depth (P>.05, ANOVA test). Measurements between techniques were highly correlated for axial length (R=0.99) and anterior chamber depth (R=0.90 to 0.96) for all methods. Keratometry, flattest axis, and white-to-white measurements were comparable (paired t test, P>.1) and correlated well between partial coherence interferometry and low coherence reflectometry (K1 [R=0.95), K2 [R=0.97], flattest axis [R=0.95], and white-to-white [R=0.92]). Immersion ultrasound, partial coherence interferometry, and low coherence reflectometry provided comparable ocular biometry measurements in cataractous eyes. Copyright 2011, SLACK Incorporated.
The Beauty and Limitations of 10 Micron Heterodyne Interferometry (ISI)
NASA Technical Reports Server (NTRS)
Danchi, William C.
2003-01-01
Until recently, heterodyne interferometry at 10 microns has been the only successful technique for stellar interferometry in the very difficult atmospheric window from 9-12 microns. For most of its operational lifetime the U.C. Berkeley Infrared Spatial Interferometer was a single-baseline two telescope (1.65 m aperture) system using CO2 lasers as local oscillators. This instrument was designed and constructed from 1983-1988, and first fringes were obtained at Mt. Wilson in June 1988. During the past few years, a third telescope was constructed and just recently the first closure phases were obtained at 11.15 microns. We discuss the history, physics and technology of heterodyne interferometry in the mid-infrared, and some key astronomical results that have come from this unique instrument.
Infrasonic interferometry of stratospherically refracted microbaroms--a numerical study.
Fricke, Julius T; El Allouche, Nihed; Simons, Dick G; Ruigrok, Elmer N; Wapenaar, Kees; Evers, Läslo G
2013-10-01
The atmospheric wind and temperature can be estimated through the traveltimes of infrasound between pairs of receivers. The traveltimes can be obtained by infrasonic interferometry. In this study, the theory of infrasonic interferometry is verified and applied to modeled stratospherically refracted waves. Synthetic barograms are generated using a raytracing model and taking into account atmospheric attenuation, geometrical spreading, and phase shifts due to caustics. Two types of source wavelets are implemented for the experiments: blast waves and microbaroms. In both numerical experiments, the traveltimes between the receivers are accurately retrieved by applying interferometry to the synthetic barograms. It is shown that microbaroms can be used in practice to obtain the traveltimes of infrasound through the stratosphere, which forms the basis for retrieving the wind and temperature profiles.
NASA Technical Reports Server (NTRS)
Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.;
2007-01-01
The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.
Simultaneous immersion Mirau interferometry
Lyulko, Oleksandra V.; Randers-Pehrson, Gerhard; Brenner, David J.
2013-01-01
A novel technique for label-free imaging of live biological cells in aqueous medium that is insensitive to ambient vibrations is presented. This technique is a spin-off from previously developed immersion Mirau interferometry. Both approaches utilize a modified Mirau interferometric attachment for a microscope objective that can be used both in air and in immersion mode, when the device is submerged in cell medium and has its internal space filled with liquid. While immersion Mirau interferometry involves first capturing a series of images, the resulting images are potentially distorted by ambient vibrations. Overcoming these serial-acquisition challenges, simultaneous immersion Mirau interferometry incorporates polarizing elements into the optics to allow simultaneous acquisition of two interferograms. The system design and production are described and images produced with the developed techniques are presented. PMID:23742552
NASA Astrophysics Data System (ADS)
Richter, Nicole; Salzer, Jacqueline Tema; de Zeeuw-van Dalfsen, Elske; Perissin, Daniele; Walter, Thomas R.
2018-03-01
Small-scale geomorphological changes that are associated with the formation, development, and activity of volcanic craters and eruptive vents are often challenging to characterize, as they may occur slowly over time, can be spatially localized, and difficult, or dangerous, to access. Using high-spatial and high-temporal resolution synthetic aperture radar (SAR) imagery collected by the German TerraSAR-X (TSX) satellite in SpotLight mode in combination with precise topographic data as derived from Pléiades-1A satellite data, we investigate the surface deformation within the nested summit crater system of Láscar volcano, Chile, the most active volcano of the central Andes. Our aim is to better understand the structural evolution of the three craters that comprise this system, to assess their physical state and dynamic behavior, and to link this to eruptive activity and associated hazards. Using multi-temporal SAR interferometry (MT-InSAR) from ascending and descending orbital geometries, we retrieve the vertical and east-west components of the displacement field. This time series indicates constant rates of subsidence and asymmetric horizontal displacements of all summit craters between June 2012 and July 2014, as well as between January 2015 and March 2017. The vertical and horizontal movements that we observe in the central crater are particularly complex and cannot be explained by any single crater formation mechanism; rather, we suggest that short-term activities superimposed on a combination of ongoing crater evolution processes, including gravitational slumping, cooling and compaction of eruption products, as well as possible piston-like subsidence, are responsible for the small-scale geomorphological changes apparent in our data. Our results demonstrate how high-temporal resolution synthetic aperture radar interferometry (InSAR) time series can add constraints on the geomorphological evolution and structural dynamics of active crater and vent systems at volcanoes worldwide.
Applications of atom interferometry - from ground to space
NASA Astrophysics Data System (ADS)
Schubert, Christian; Rasel, Ernst Maria; Gaaloul, Naceur; Ertmer, Wolfgang
2016-07-01
Atom interferometry is utilized for the measurement of rotations [1], accelerations [2] and for tests of fundamental physics [3]. In these devices, three laser light pulses separated by a free evolution time coherently manipulate the matter waves which resembles the Mach-Zehnder geometry in optics. Atom gravimeters demonstrated an accuracy of few microgal [2,4], and atom gradiometers showed a noise floor of 30 E Hz^{-1/2} [5]. Further enhancements of atom interferometers are anticipated by the integration of novel source concepts providing ultracold atoms, extending the free fall time of the atoms, and enhanced techniques for coherent manipulation. Sources providing Bose-Einstein condensates recently demontrated a flux compatible with precision experiments [6]. All of these aspects are studied in the transportable quantum gravimeter QG-1 and the very long baseline atom interferometry teststand in Hannover [7] with the goal of surpassing the microgal regime. Going beyond ground based setups, the QUANTUS collaboration exploits the unique features of a microgravity environment in drop tower experiments [8] and in a sounding rocket mission. The payloads are compact and robust atom optics experiments based on atom chips [6], enabling technology for transportable sensors on ground as a byproduct. More prominently, they are pathfinders for proposed satellite missions as tests of the universality of free fall [9] and gradiometry based on atom interferometers [10]. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] PRL 114 063002 2015 [2] Nature 400 849 1999 [3] PRL 112 203002 2014 [4] NJP 13 065026 2011 [5] PRA 65 033608 2002 [6] NJP 17 065001 2015 [7] NJP 17 035011 2015 [8] PRL 110 093602 2013 [9] CQG 31 115010 2014 [10] MST 26 139 2014.
Infrared Speckle Interferometry with 2-D Arrays
NASA Technical Reports Server (NTRS)
Harvey, P. M.; Balkum, S. L.; Monin, J. L.
1994-01-01
We describe results from a program of speckle interferometry with two-dimensional infrared array detectors. Analysis of observations of eta Carinae made with 58 x 62 InSb detector are discussed. The data have been analyzed with both the Labeyrie autocorrelation, a deconvolution of shift-and-add data, and a phase restoration process. Development of a new camera based on a much lower noise HgCdTe detector will lead to a significant improvement i limiting magnitude for IR speckle interferometry.
NASA Astrophysics Data System (ADS)
Feodorova, Valentina A.; Saltykov, Yury V.; Zaytsev, Sergey S.; Ulyanov, Sergey S.; Ulianova, Onega V.
2018-04-01
Method of phase-shifting speckle-interferometry has been used as a new tool with high potency for modern bioinformatics. Virtual phase-shifting speckle-interferometry has been applied for detection of polymorphism in the of Chlamydia trachomatis omp1 gene. It has been shown, that suggested method is very sensitive to natural genetic mutations as single nucleotide polymorphism (SNP). Effectiveness of proposed method has been compared with effectiveness of the newest bioinformatic tools, based on nucleotide sequence alignment.
Vicini, C; Montevecchi, F; D'Agostino, G; DE Vito, A; Meccariello, G
2015-06-01
The primary goal of surgical oncology is to obtain a tumour resection with disease-free margins. Transoral robotic surgery (TORS) for surgical treatment of head-neck cancer is commensurate with standard treatments. However, the likelihood of positive margins after TORS is up to 20.2% in a recent US survey. The aim of this study is to evaluate the efficacy and the feasibility of narrow-band imaging (NBI) during TORS in order to improve the ability to achieve disease-free margins during tumour excision. The present study was conducted at the ENT, Head- Neck Surgery and Oral Surgery Unit, Department of Special Surgery, Morgagni Pierantoni Hospital, Azienda USL Romagna. From March 2008 to January 2015, 333 TORS were carried out for malignant and benign diseases. For the present study, we retrospectively evaluated 58 biopsy-proven squamous cell carcinoma patients who underwent TORS procedures. Patients were divided into 2 groups: (1) 32 who underwent TORS and intra-operative NBI evaluation (NBI-TORS); (2) 21 who underwent TORS with standard intra-operative white-light imaging (WLITORS). Frozen section analysis of margins on surgical specimens showed a higher rate of negative superficial lateral margins in the NBI-TORS group compared with the WLI-TORS group (87.9% vs. 57.9%, respectively, p = 0.02). The sensitivity and specificity of intra-operative use of NBI, respectively, were 72.5% and 66.7% with a negative predictive value of 87.9%. Tumour margin enhancement provided by NBI associated with magnification and 3-dimensional view of the surgical field might increase the capability to achieve an oncologically-safe resection in challenging anatomical areas where minimal curative resection is strongly recommended for function preservation.
VICINI, C.; MONTEVECCHI, F.; D'AGOSTINO, G.; DE VITO, A.
2015-01-01
SUMMARY The primary goal of surgical oncology is to obtain a tumour resection with disease-free margins. Transoral robotic surgery (TORS) for surgical treatment of head-neck cancer is commensurate with standard treatments. However, the likelihood of positive margins after TORS is up to 20.2% in a recent US survey. The aim of this study is to evaluate the efficacy and the feasibility of narrow-band imaging (NBI) during TORS in order to improve the ability to achieve disease-free margins during tumour excision. The present study was conducted at the ENT, Head- Neck Surgery and Oral Surgery Unit, Department of Special Surgery, Morgagni Pierantoni Hospital, Azienda USL Romagna. From March 2008 to January 2015, 333 TORS were carried out for malignant and benign diseases. For the present study, we retrospectively evaluated 58 biopsy-proven squamous cell carcinoma patients who underwent TORS procedures. Patients were divided into 2 groups: (1) 32 who underwent TORS and intra-operative NBI evaluation (NBI-TORS); (2) 21 who underwent TORS with standard intra-operative white-light imaging (WLITORS). Frozen section analysis of margins on surgical specimens showed a higher rate of negative superficial lateral margins in the NBI-TORS group compared with the WLI-TORS group (87.9% vs. 57.9%, respectively, p = 0.02). The sensitivity and specificity of intra-operative use of NBI, respectively, were 72.5% and 66.7% with a negative predictive value of 87.9%. Tumour margin enhancement provided by NBI associated with magnification and 3-dimensional view of the surgical field might increase the capability to achieve an oncologically-safe resection in challenging anatomical areas where minimal curative resection is strongly recommended for function preservation. PMID:26246659
ERIC Educational Resources Information Center
Altman, Thomas C.
1992-01-01
Describes a method to create holograms for use in different interferometry techniques. Students utilize these techniques in experiments to study the structural integrity of a clarinet reed and the effects of temperature on objects. (MDH)
Fringe Formation in Dual-Hologram Interferometry
NASA Technical Reports Server (NTRS)
Burner, A. W.
1989-01-01
A first order geometrical optics treatment of holograms combined with the generation of interference fringes by two point sources is used to describe reference fringe formation in non-diffuse dual-hologram interferometry.
Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications
NASA Technical Reports Server (NTRS)
Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.
2012-01-01
Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.
Satellite radar interferometry measures deformation at Okmok Volcano
Lu, Zhong; Mann, Dorte; Freymueller, Jeff
1998-01-01
The center of the Okmok caldera in Alaska subsided 140 cm as a result of its February– April 1997 eruption, according to satellite data from ERS-1 and ERS-2 synthetic aperture radar (SAR) interferometry. The inferred deflationary source was located 2.7 km beneath the approximate center of the caldera using a point source deflation model. Researchers believe this source is a magma chamber about 5 km from the eruptive source vent. During the 3 years before the eruption, the center of the caldera uplifted by about 23 cm, which researchers believe was a pre-emptive inflation of the magma chamber. Scientists say such measurements demonstrate that radar interferometry is a promising spaceborne technique for monitoring remote volcanoes. Frequent, routine acquisition of images with SAR interferometry could make near realtime monitoring at such volcanoes the rule, aiding in eruption forecasting.
NASA Astrophysics Data System (ADS)
Seppä, Jeremias; Kassamakov, Ivan; Heikkinen, Ville; Nolvi, Anton; Paulin, Tor; Lassila, Antti; Hæggström, Edward
2013-12-01
A stroboscopic scanning white light interferometer (SSWLI) can characterize both static features and motion in micro(nano)electromechanical system devices. SSWLI measurement results should be linked to the meter definition to be comparable and unambiguous. This traceability is achieved by careful error characterization and calibration of the interferometer. The main challenge in vertical scale calibration is to have a reference device with reproducible out-of-plane movement. A piezo-scanned flexure guided stage with capacitive sensor feedback was attached to a mirror and an Invar steel holder with a reference plane-forming a transfer standard that was calibrated by laser interferometry with 2.3 nm uncertainty. The moving mirror vertical position was then measured with the SSWLI, relative to the reference plane, between successive mirror position steppings. A light-emitting diode pulsed at 100 Hz with 0.5% duty cycle synchronized to the CCD camera and a halogen light source were used. Inside the scanned 14 μm range, the measured SSWLI scale amplification coefficient error was 0.12% with 4.5 nm repeatability of the steps. For SWLI measurements using a halogen lamp, the corresponding results were 0.05% and 6.7 nm. The presented methodology should permit accurate traceable calibration of the vertical scale of any SWLI.
Spatial phase-shift dual-beam speckle interferometry.
Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin
2018-01-20
The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.
Kitt Peak Speckle Interferometry of Close Visual Binary Stars (Abstract)
NASA Astrophysics Data System (ADS)
Gener, R.; Rowe, D.; Smith, T. C.; Teiche, A.; Harshaw, R.; Wallace, D.; Weise, E.; Wiley, E.; Boyce, G.; Boyce, P.; Branston, D.; Chaney, K.; Clark, R. K.; Estrada, C.; Estrada, R.; Frey, T.; Green, W. L.; Haurberg, N.; Jones, G.; Kenney, J.; Loftin, S.; McGieson, I.; Patel, R.; Plummer, J.; Ridgely, J.; Trueblood, M.; Westergren, D.; Wren, P.
2014-12-01
(Abstract only) Speckle interferometry can be used to overcome normal seeing limitations by taking many very short exposures at high magnification and analyzing the resulting speckles to obtain the position angles and separations of close binary stars. A typical speckle observation of a close binary consists of 1,000 images, each 20 milliseconds in duration. The images are stored as a multi-plane FITS cube. A portable speckle interferometry system that features an electron-multiplying CCD camera was used by the authors during two week-long observing runs on the 2.1-meter telescope at Kitt Peak National Observatory to obtain some 1,000 data cubes of close binaries selected from a dozen different research programs. Many hundreds of single reference stars were also observed and used in deconvolution to remove undesirable atmospheric and telescope optical effects. The database of well over one million images was reduced with the Speckle Interferometry Tool of platesolve3. A few sample results are provided. During the second Kitt Peak run, the McMath-Pierce 1.6- and 0.8-meter solar telescopes were evaluated for nighttime speckle interferometry, while the 0.8-meter Coude feed was used to obtain differential radial velocities of short arc binaries.
Kitt Peak Speckle Interferometry of Close Visual Binary Stars
NASA Astrophysics Data System (ADS)
Genet, Russell M.; Rowe, David; Smith, Thomas C.; Teiche, Alex; Harshaw, Richard; Wallace, Daniel; Weise, Eric; Wiley, Edward; Boyce, Grady; Boyce, Patrick; Branston, Detrick; Chaney, Kayla; Clark, R. Kent; Estrada, Chris; Frey, Thomas; Estrada, Reed; Green, Wayne; Haurberg, Nathalie; Kenney, John; Jones, Greg; Loftin, Sheri; McGieson, Izak; Patel, Rikita; Plummer, Josh; Ridgely, John; Trueblood, Mark; Westergren, Donald; Wren, Paul
2015-09-01
Speckle interferometry can be used to overcome normal seeing limitations by taking many very short exposures at high magnification and analyzing the resulting speckles to obtain the position angles and separations of close binary stars. A typical speckle observation of a close binary consists of 1000 images, each 20 milliseconds in duration. The images are stored as a multi-plane FITS cube. A portable speckle interferometry system that features an electronmultiplying CCD camera was used by the authors during two week-long observing runs on the 2.1-meter telescope at Kitt Peak National Observatory to obtain some 1000 data cubes of close binaries selected from a dozen different research programs. Many hundreds of single reference stars were also observed and used in deconvolution to remove undesirable atmospheric and telescope optical effects. The data base of well over one million images was reduced with the Speckle Interferometry Tool of PlateSolve 3. A few sample results are provided. During the second Kitt Peak run, the McMath-Pierce 1.6- and 0.8-meter solar telescopes were evaluated for nighttime speckle interferometry, while the 0.8-meter Coude feed was used to obtain differential radial velocities of short arc binaries.
Analyzing refractive index profiles of confined fluids by interferometry.
Kienle, Daniel F; Kuhl, Tonya L
2014-12-02
This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid's refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.
Simple and versatile heterodyne whole-field interferometer for phase optics characterization.
Silva, D M; Barbosa, E A; Wetter, N U
2012-10-01
A wavefront sensor for thermally induced lens and passive lens characterization based on low-coherence digital speckle interferometry was developed and studied. By illuminating the optical setup with two slightly detuned red diode lasers, whole-field contour interference fringes were generated according to the resulting synthetic wavelength. For fringe pattern visualization the optical setup used the light transmitted through a ground glass plate as object beam. The performance of the sensor was investigated and its versatility was demonstrated by measuring the thermal lens induced in an Er-doped glass sample pumped by a 1.76-W diode laser emitting at 976 nm and by evaluating the wavefront distortion introduced by an ophthalmic progressive lens.
Physical mechanism of coherent acoustic phonons generation and detection in GaAs semiconductor
NASA Astrophysics Data System (ADS)
Babilotte, P.; Morozov, E.; Ruello, P.; Mounier, D.; Edely, M.; Breteau, J.-M.; Bulou, A.; Gusev, V.
2007-12-01
We first describe the picosecond acoustic interferometry study of GaAs with two-colors pump-probe laser pulses. The dependence of the generation process on the pump wavelength and the detection process on the probe wavelength both can cause the shift in the phase of the Brillouin signal. Secondly, in order to distinguish the short high frequency wideband acoustic pulse from low frequency Brillouin contribution, we accomplished experiments with (100)GaAs semiconductor coated by a transparent and photoelastically inactive thin film, serving a delay line for the acoustic pulse. Even with highly penetrating pump light (approx 680nm), short acoustic disturbances of approx 7ps of duration have been registered.
Development of a Transportable Gravity Gradiometer Based on Atom Interferometry
NASA Astrophysics Data System (ADS)
Yu, N.; Kohel, J. M.; Aveline, D. C.; Kellogg, J. R.; Thompson, R. J.; Maleki, L.
2007-12-01
JPL is developing a transportable gravity gradiometer based on light-pulse atom interferometers for NASA's Earth Science Technology Office's Instrument Incubator Program. The inertial sensors in this instrument employ a quantum interference measurement technique, analogous to the precise phase measurements in atomic clocks, which offers increased sensitivity and improved long-term stability over traditional mechanical devices. We report on the implementation of this technique in JPL's gravity gradiometer, and on the current performance of the mobile instrument. We also discuss the prospects for satellite-based gravity field mapping, including high-resolution monitoring of time-varying fields from a single satellite platform and multi-component measurements of the gravitational gradient tensor, using atom interferometer-based instruments.
Statistics of biospeckles with application to diagnostics of periodontitis
NASA Astrophysics Data System (ADS)
Starukhin, Pavel Y.; Kharish, Natalia A.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Tuchin, Valery V.
1999-04-01
Results of Monte-Carlo simulations Doppler shift are presented for the model of random medium that contain moving particles. The single-layered and two-layered configurations of the medium are considered. Doppler shift of the frequency of laser light is investigated as a function of such parameters as absorption coefficient, scattering coefficient, and thickness of the medium. Possibility of application of speckle interferometry for diagnostics in dentistry has been analyzed. Problem of standardization of the measuring procedure has been studied. Deviation of output characteristics of Doppler system for blood microcirculation measurements has been investigated. Dependence of form of Doppler spectrum on the number of speckles, integration by aperture, has been studied in experiments in vivo.
Laser Doppler velocimetry using a modified computer mouse
NASA Astrophysics Data System (ADS)
Zaron, Edward D.
2016-10-01
A computer mouse has been modified for use as a low-cost laser Doppler interferometer and used to measure the two-component fluid velocity of a flowing soap film. The mouse sensor contains two vertical cavity surface emitting lasers, photodiodes, and signal processing hardware integrated into a single package, approximately 1 cm2 in size, and interfaces to a host computer via a standard USB port. Using the principle of self-mixing interferometry, whereby laser light re-enters the laser cavity after being scattered from a moving target, the Doppler shift and velocity of scatterers dispersed in the flow are measured. Observations of the boundary layer in a turbulent soap film channel flow demonstrate the capabilities of the sensor.
2013-01-01
Absolute flatness of three silicon plane mirrors have been measured by a three-intersection method based on the three-flat method using a near-infrared interferometer. The interferometer was constructed using a near-infrared laser diode with a 1,310-nm wavelength light where the silicon plane mirror is transparent. The height differences at the coordinate values between the absolute line profiles by the three-intersection method have been evaluated. The height differences of the three flats were 4.5 nm or less. The three-intersection method using the near-infrared interferometer was useful for measuring the absolute flatness of the silicon plane mirrors. PMID:23758916
Nanoparticle detection using dual-phase interferometry
Deutsch, Bradley; Beams, Ryan; Novotny, Lukas
2013-01-01
Detection and identification of nanoparticles is of growing interest in atmospheric monitoring, medicine and semiconductor manufacturing. While elastic light scattering with interferometric detection provides good sensitivity to single particles, active optical components prevent scalability realistic sizes for deployment in the field or clinic. Here we report on a simple phase-sensitive nanoparticle detection scheme with no active optical elements. Two measurements are taken simultaneously, allowing amplitude and phase to be decoupled. We demonstrate detection of 25 nm Au particles in liquid in Δt ~ 1 ms with a signal-to-noise ratio of 37. Such performance makes it possible to detect nanoscale contaminants or larger proteins in real time without the need of artificial labeling. PMID:20830181
Sub-10-ms X-ray tomography using a grating interferometer
NASA Astrophysics Data System (ADS)
Yashiro, Wataru; Noda, Daiji; Kajiwara, Kentaro
2017-05-01
An X-ray phase tomogram was successfully obtained with an exposure time of less than 10 ms by X-ray grating interferometry, an X-ray phase imaging technique that enables high-sensitivity X-ray imaging even of materials consisting of light elements. This high-speed X-ray imaging experiment was performed at BL28B2, SPring-8, where a white X-ray beam is available, and the tomogram was reconstructed from projection images recorded at a frame rate of 100,000 fps. The setup of the experiment will make it possible to realize three-dimensional observation of unrepeatable high-speed phenomena with a time resolution of less than 10 ms.
Scanning Mode Sensor for Detection of Flow Inhomogeneities
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor)
1998-01-01
A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry. Schlieren, and shadowgraph techniques. These techniques. however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.
Scanning Mode Sensor for Detection of Flow Inhomogeneities
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor)
1996-01-01
A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry, Schlieren, and shadowgraph techniques. These techniques, however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.
Multipoint vibrometry with dynamic and static holograms.
Haist, T; Lingel, C; Osten, W; Winter, M; Giesen, M; Ritter, F; Sandfort, K; Rembe, C; Bendel, K
2013-12-01
We report on two multipoint vibrometers with user-adjustable position of the measurement spots. Both systems are using holograms for beam deflection. The measurement is based on heterodyne interferometry with a frequency difference of 5 MHz between reference and object beam. One of the systems uses programmable positioning of the spots in the object volume but is limited concerning the light efficiency. The other system is based on static holograms in combination with mechanical adjustment of the measurement spots and does not have such a general efficiency restriction. Design considerations are given and we show measurement results for both systems. In addition, we analyze the sensitivity of the systems which is a major limitation compared to single point scanning systems.
An optical solution for the traveling salesman problem.
Haist, Tobias; Osten, Wolfgang
2007-08-06
We introduce an optical method based on white light interferometry in order to solve the well-known NP-complete traveling salesman problem. To our knowledge it is the first time that a method for the reduction of non-polynomial time to quadratic time has been proposed. We will show that this achievement is limited by the number of available photons for solving the problem. It will turn out that this number of photons is proportional to N(N) for a traveling salesman problem with N cities and that for large numbers of cities the method in practice therefore is limited by the signal-to-noise ratio. The proposed method is meant purely as a gedankenexperiment.
Generalized parametric down conversion, many particle interferometry, and Bell's theorem
NASA Technical Reports Server (NTRS)
Choi, Hyung Sup
1992-01-01
A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.
A far-infrared spatial/spectral Fourier interferometry laboratory-based testbed instrument
NASA Astrophysics Data System (ADS)
Spencer, Locke D.; Naylor, David A.; Scott, Jeremy P.; Weiler, Vince F.; MacCrimmon, Roderick K.; Sitwell, Geoffrey R. H.; Ade, Peter A. R.
2016-07-01
We describe the current status, including preliminary design, characterization efforts, and recent progress, in the development of a spatial/spectral double Fourier laboratory-based interferometer testbed instrument within the Astronomical Instrumentation Group (AIG) laboratories at the University of Lethbridge, Canada (UL). Supported by CRC, CFI, and NSERC grants, this instrument development will provide laboratory demonstration of spatial-spectral interferometry with a concentration of furthering progress in areas including the development of spatial/spectral interferometry observation, data processing, characterization, and analysis techniques in the Far-Infrared (FIR) region of the electromagnetic spectrum.
Optical long baseline intensity interferometry: prospects for stellar physics
NASA Astrophysics Data System (ADS)
Rivet, Jean-Pierre; Vakili, Farrokh; Lai, Olivier; Vernet, David; Fouché, Mathilde; Guerin, William; Labeyrie, Guillaume; Kaiser, Robin
2018-06-01
More than sixty years after the first intensity correlation experiments by Hanbury Brown and Twiss, there is renewed interest for intensity interferometry techniques for high angular resolution studies of celestial sources. We report on a successful attempt to measure the bunching peak in the intensity correlation function for bright stellar sources with 1 meter telescopes (I2C project). We propose further improvements of our preliminary experiments of spatial interferometry between two 1 m telescopes, and discuss the possibility to export our method to existing large arrays of telescopes.
Optics in engineering measurement; Proceedings of the Meeting, Cannes, France, December 3-6, 1985
NASA Technical Reports Server (NTRS)
Fagan, William F. (Editor)
1986-01-01
The present conference on optical measurement systems considers topics in the fields of holographic interferometry, speckle techniques, moire fringe and grating methods, optical surface gaging, laser- and fiber-optics-based measurement systems, and optics for engineering data evaluation. Specific attention is given to holographic NDE for aerospace composites, holographic interferometry of rotating components, new developments in computer-aided holography, electronic speckle pattern interferometry, mass transfer measurements using projected fringes, nuclear reactor photogrammetric inspection, a laser Doppler vibrometer, and optoelectronic measurements of the yaw angle of projectiles.
SPIPS: Spectro-Photo-Interferometry of Pulsating Stars
NASA Astrophysics Data System (ADS)
Mérand, Antoine
2017-10-01
SPIPS (Spectro-Photo-Interferometry of Pulsating Stars) combines radial velocimetry, interferometry, and photometry to estimate physical parameters of pulsating stars, including presence of infrared excess, color excess, Teff, and ratio distance/p-factor. The global model-based parallax-of-pulsation method is implemented in Python. Derived parameters have a high level of confidence; statistical precision is improved (compared to other methods) due to the large number of data taken into account, accuracy is improved by using consistent physical modeling and reliability of the derived parameters is strengthened by redundancy in the data.
Laser Interferometry Method as a Novel Tool in Endotoxins Research.
Arabski, Michał; Wąsik, Sławomir
2017-01-01
Optical properties of chemical substances are widely used at present for assays thereof in a variety of scientific disciplines. One of the measurement techniques applied in physical sciences, with a potential for novel applications in biology, is laser interferometry. This method enables to record the diffusion properties of chemical substances. Here we describe the novel application of laser interferometry in chitosan interactions with lipopolysaccharide by detection of colistin diffusion. The proposed model could be used in simple measurements of polymer interactions with endotoxins and/or biological active compounds, like antibiotics.
Heterodyne Interferometry in InfraRed at OCA-Calern Observatory in the seventies
NASA Astrophysics Data System (ADS)
Gay, J.; Rabbia, Y.
2014-04-01
We report on various works carried four decades ago, so as to develop Heterodyne Interferometry in InfraRed (10 μm) at Calern Observatory (OCA, France), by building an experiment, whose the acronym "SOIRDETE" means "Synthese d'Ouverture en InfraRouge par Detection hETErodyne". Scientific and technical contexts by this time are recalled, as well as basic principles of heterodyne interferometry. The preliminary works and the SOIRDETE experiment are briefly described. Short comments are given in conclusion regarding the difficulties which have prevented the full success of the SOIRDETE experiment.
Local earthquake interferometry of the IRIS Community Wavefield Experiment, Grant County, Oklahoma
NASA Astrophysics Data System (ADS)
Eddy, A. C.; Harder, S. H.
2017-12-01
The IRIS Community Wavefield Experiment was deployed in Grant County, located in north central Oklahoma, from June 21 to July 27, 2016. Data from all nodes were recorded at 250 samples per second between June 21 and July 20 along three lines. The main line was 12.5 km long oriented east-west and consisted of 129 nodes. The other two lines were 5.5 km long north-south oriented with 49 nodes each. During this time, approximately 150 earthquakes of magnitude 1.0 to 4.4 were recorded in the surrounding counties of Oklahoma and Kansas. Ideally, sources for local earthquake interferometry should be near surface events that produce high frequency body waves. Unlike ambient noise seismic interferometry (ANSI), which uses days, weeks, or even months of continuously recorded seismic data, local earthquake interferometry uses only short segments ( 2 min.) of data. Interferometry in this case is based on the cross-correlation of body wave surface multiples where the event source is translated to a reference station in the array, which acts as a virtual source. Multiples recorded between the reference station and all other stations can be cross-correlated to produce a clear seismic trace. This process will be repeated with every node acting as the reference station for all events. The resulting shot gather will then be processed and analyzed for quality and accuracy. Successful application of local earthquake interferometry will produce a crustal image with identifiable sedimentary and basement reflectors and possibly a Moho reflection. Economically, local earthquake interferometry could lower the time and resource cost of active and passive seismic surveys while improving subsurface image quality in urban settings or areas of limited access. The applications of this method can potentially be expanded with the inclusion of seismic events with a magnitude of 1.0 or lower.
Mach-Zehnder atom interferometer inside an optical fiber
NASA Astrophysics Data System (ADS)
Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu
2017-04-01
Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.
Single shot imaging through turbid medium and around corner using coherent light
NASA Astrophysics Data System (ADS)
Li, Guowei; Li, Dayan; Situ, Guohai
2018-01-01
Optical imaging through turbid media and around corner is a difficult challenge. Even a very thin layer of a turbid media, which randomly scatters the probe light, can appear opaque and hide any objects behind it. Despite many recent advances, no current method can image the object behind turbid media with single record using coherent laser illumination. Here we report a method that allows non-invasive single-shot optical imaging through turbid media and around corner via speckle correlation. Instead of being as an obstacle in forming diffractionlimited images, speckle actually can be a carrier that encodes sufficient information to imaging through visually opaque layers. Optical imaging through turbid media and around corner is experimentally demonstrated using traditional imaging system with the aid of iterative phase retrieval algorithm. Our method require neither scan of illumination nor two-arm interferometry or long-time exposure in acquisition, which has new implications in optical sensing through common obscurants such as fog, smoke and haze.
NASA Astrophysics Data System (ADS)
Garg, M.; Kim, H. Y.; Goulielmakis, E.
2018-05-01
Optical waveforms of light reproducible with subcycle precision underlie applications of lasers in ultrafast spectroscopies, quantum control of matter and light-based signal processing. Nonlinear upconversion of optical pulses via high-harmonic generation in gas media extends these capabilities to the extreme ultraviolet (EUV). However, the waveform reproducibility of the generated EUV pulses in gases is inherently sensitive to intensity and phase fluctuations of the driving field. We used photoelectron interferometry to study the effects of intensity and carrier-envelope phase of an intense single-cycle optical pulse on the field waveform of EUV pulses generated in quartz nanofilms, and contrasted the results with those obtained in gas argon. The EUV waveforms generated in quartz were found to be virtually immune to the intensity and phase of the driving field, implying a non-recollisional character of the underlying emission mechanism. Waveform-sensitive photonic applications and precision measurements of fundamental processes in optics will benefit from these findings.
Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films
NASA Astrophysics Data System (ADS)
Sharma, Vivek; Zhang, Yiran; Yilixiati, Subinuer
Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freely standing thin films. We distinguish nanoscopic rims, mesas and craters, and follow their emergence and growth. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), these topological features involve discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm. These non-flat features result from oscillatory, periodic, supramolecular structural forces that arise in confined fluids, and arise due to complex coupling of hydrodynamic and thermodynamic effects at the nanoscale.
Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films
NASA Astrophysics Data System (ADS)
Yilixiati, Subinuer; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek
Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freestanding thin films. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm are visualized and analyzed using IDIOM protocols. We distinguish nanoscopic rims, mesas and craters and show that the non-flat features are sculpted by oscillatory, periodic, supramolecular structural forces that arise in confined fluids
NASA Technical Reports Server (NTRS)
Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.; Best, Paul K.
2007-01-01
In the companion paper, [Appl. Opt. 46, 5853 (2007)] a highly accurate white light interference model was developed from just a few key parameters characterized in terms of various moments of the source and instrument transmission function. We develop and implement the end-to-end process of calibrating these moment parameters together with the differential dispersion of the instrument and applying them to the algorithms developed in the companion paper. The calibration procedure developed herein is based on first obtaining the standard monochromatic parameters at the pixel level: wavenumber, phase, intensity, and visibility parameters via a nonlinear least-squares procedure that exploits the structure of the model. The pixel level parameters are then combined to obtain the required 'global' moment and dispersion parameters. The process is applied to both simulated scenarios of astrometric observations and to data from the microarcsecond metrology testbed (MAM), an interferometer testbed that has played a prominent role in the development of this technology.
Wuest, C.R.; Lowry, M.E.
1994-03-29
An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.
Wuest, Craig R.; Lowry, Mark E.
1994-01-01
An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.
Improving interferometers by quantum light: toward testing quantum gravity on an optical bench
NASA Astrophysics Data System (ADS)
Ruo-Berchera, Ivano; Degiovanni, Ivo P.; Olivares, Stefano; Traina, Paolo; Samantaray, Nigam; Genovese, M.
2016-09-01
We analyze in detail a system of two interferometers aimed at the detection of extremely faint phase fluctuations. The idea behind is that a correlated phase-signal like the one predicted by some phenomenological theory of Quantum Gravity (QG) could emerge by correlating the output ports of the interferometers, even when in the single interferometer it confounds with the background. We demonstrated that injecting quantum light in the free ports of the interferometers can reduce the photon noise of the system beyond the shot-noise, enhancing the resolution in the phase-correlation estimation. Our results confirm the benefit of using squeezed beams together with strong coherent beams in interferometry, even in this correlated case. On the other hand, our results concerning the possible use of photon number entanglement in twin beam state pave the way to interesting and probably unexplored areas of application of bipartite entanglement and, in particular, the possibility of reaching surprising uncertainty reduction exploiting new interferometric configurations, as in the case of the system described here.
NASA Astrophysics Data System (ADS)
Georges, Marc; Lemaire, Philippe; Pauliat, Gilles; Launay, Jean-Claude; Roosen, Gérald
2018-04-01
This paper, "State-of-the-art of photorefractive holographic interferometry and potentialities for space applications," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
Theoretical investigations on dual-beam illumination electronic speckle pattern interferometry
NASA Astrophysics Data System (ADS)
Goudemand, Nicolas
2006-07-01
Contrary to what is found in most of the existing scientific literature, where a specific frame is developed, the theory of speckle interferometry is (conveniently) presented here as a particular case of the more general theory of holographic interferometry. In addition to the intellectual benefit of dealing with a single unified theory, this brings about many advantages when it comes to discuss fundamental topics such as the three-dimensional evolution of the complex amplitude of the diffuse optical wavefronts, the degree of approximation of the leading formulas, the loss of fringe contrast, the decorrelation effects, the real influence of the terms generally neglected in out-of-focus regions. In the same way, the statistical properties of the speckle fields, usually treated as a separate subject matter, are also integrated in the theory, thus providing a comprehensive knowledge of the qualitative features of speckle interferometry methods, otherwise difficult to understand.
The mid-IR and near-IR interferometry of AGNs: key results and their implications
NASA Astrophysics Data System (ADS)
Kishimoto, M.
2015-09-01
Infrared interferometry has been very productive in directly probing the structure of AGNs at sub-pc scales. With tens of objects already probed in the mid-IR and near-IR, I will summarize the key results and im- plications from this direct exploration. The Keck interferometry in the near-IR and VLTI in the mid-IR shaped the luminosity dependence of the torus size and structure, while the latter also revealed an equatorial structure at several Rsub (dust sublimation radius), and a polar-elongated region at a few tens of Rsub. Notably, this polar component seems to dominate the compact mid-IR flux. This component can persuasively be attributed to a polar outflow. However, interferometry, through emissivity estimations, also indicates that it is not a UV-optically-thin cloud but participating in the obscuration of the nucleus. I will discuss how to accommodate all these facts to build a consistent picture.
NASA Astrophysics Data System (ADS)
Pisarev, Vladimir S.; Odintsev, I.; Balalov, V.; Apalkov, A.
2003-05-01
Sophisticated technique for reliable quantitative deriving residual stress values from initial experimental data, which are inherent in combined implementing the hole drilling method with both holographic and speckle interferometry, is described in detail. The approach developed includes both possible ways of obtaining initial experimental information. The first of them consists of recording a set of required interference fringe patterns, which are resulted from residual stress energy release after through hole drilling, in two orthogonal directions that coincide with principal strain directions. The second way is obtaining a series of interrelated fringe patterns when a direction of either observation in reflection hologram interferometry or dual-beam illumination in speckle interferometry lies arbitrary with respect to definite principal strain direction. A set of the most typical both actual and analogous reference fringe patterns, which are related to both reflection hologram and dual-beam speckle interferometry, are presented.
Absolute marine gravimetry with matter-wave interferometry.
Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F
2018-02-12
Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5 m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.
Threshold secret sharing scheme based on phase-shifting interferometry.
Deng, Xiaopeng; Shi, Zhengang; Wen, Wei
2016-11-01
We propose a new method for secret image sharing with the (3,N) threshold scheme based on phase-shifting interferometry. The secret image, which is multiplied with an encryption key in advance, is first encrypted by using Fourier transformation. Then, the encoded image is shared into N shadow images based on the recording principle of phase-shifting interferometry. Based on the reconstruction principle of phase-shifting interferometry, any three or more shadow images can retrieve the secret image, while any two or fewer shadow images cannot obtain any information of the secret image. Thus, a (3,N) threshold secret sharing scheme can be implemented. Compared with our previously reported method, the algorithm of this paper is suited for not only a binary image but also a gray-scale image. Moreover, the proposed algorithm can obtain a larger threshold value t. Simulation results are presented to demonstrate the feasibility of the proposed method.
A publication database for optical long baseline interferometry
NASA Astrophysics Data System (ADS)
Malbet, Fabien; Mella, Guillaume; Lawson, Peter; Taillifet, Esther; Lafrasse, Sylvain
2010-07-01
Optical long baseline interferometry is a technique that has generated almost 850 refereed papers to date. The targets span a large variety of objects from planetary systems to extragalactic studies and all branches of stellar physics. We have created a database hosted by the JMMC and connected to the Optical Long Baseline Interferometry Newsletter (OLBIN) web site using MySQL and a collection of XML or PHP scripts in order to store and classify these publications. Each entry is defined by its ADS bibcode, includes basic ADS informations and metadata. The metadata are specified by tags sorted in categories: interferometric facilities, instrumentation, wavelength of operation, spectral resolution, type of measurement, target type, and paper category, for example. The whole OLBIN publication list has been processed and we present how the database is organized and can be accessed. We use this tool to generate statistical plots of interest for the community in optical long baseline interferometry.
Wang, Guochao; Tan, Lilong; Yan, Shuhua
2018-02-07
We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He-Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10 -8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.
A real-time interferometer technique for compressible flow research
NASA Technical Reports Server (NTRS)
Bachalo, W. D.; Houser, M. J.
1984-01-01
Strengths and shortcomings in the application of interferometric techniques to transonic flow fields are examined and an improved method is elaborated. Such applications have demonstrated the value of interferometry in obtaining data for compressible flow research. With holographic techniques, interferometry may be applied in large scale facilities without the use of expensive optics or elaborate vibration isolation equipment. Results obtained using holographic interferometry and other methods demonstrate that reliable qualitative and quantitative data can be acquired. Nevertheless, the conventional method can be difficult to set up and apply, and it cannot produce real-time data. A new interferometry technique is investigated that promises to be easier to apply and can provide real-time information. This single-beam technique has the necessary insensitivity to vibration for large scale wind tunnel operations. Capabilities of the method and preliminary tests on some laboratory scale flow fluids are described.
Tan, Lilong; Yan, Shuhua
2018-01-01
We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He–Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10−8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions. PMID:29414897
NASA Astrophysics Data System (ADS)
Qin, Le; Xie, HuiMin; Zhu, RongHua; Wu, Dan; Che, ZhiGang; Zou, ShiKun
2014-04-01
This paper investigates the effect of the location of testing area in residual stress measurement by Moiré interferometry combined with hole-drilling method. The selection of the location of the testing area is analyzed from theory and experiment. In the theoretical study, the factors which affect the surface released radial strain ɛ r were analyzed on the basis of the formulae of the hole-drilling method, and the relations between those factors and ɛ r were established. By combining Moiré interferometry with the hole-drilling method, the residual stress of interference-fit specimen was measured to verify the theoretical analysis. According to the analysis results, the testing area for minimizing the error of strain measurement is determined. Moreover, if the orientation of the maximum principal stress is known, the value of strain will be measured with higher precision by the Moiré interferometry method.
Biosensor-based small molecule fragment screening with biolayer interferometry
NASA Astrophysics Data System (ADS)
Wartchow, Charles A.; Podlaski, Frank; Li, Shirley; Rowan, Karen; Zhang, Xiaolei; Mark, David; Huang, Kuo-Sen
2011-07-01
Biosensor-based fragment screening is a valuable tool in the drug discovery process. This method is advantageous over many biochemical methods because primary hits can be distinguished from non-specific or non-ideal interactions by examining binding profiles and responses, resulting in reduced false-positive rates. Biolayer interferometry (BLI), a technique that measures changes in an interference pattern generated from visible light reflected from an optical layer and a biolayer containing proteins of interest, is a relatively new method for monitoring small molecule interactions. The BLI format is based on a disposable sensor that is immersed in 96-well or 384-well plates. BLI has been validated for small molecule detection and fragment screening with model systems and well-characterized targets where affinity constants and binding profiles are generally similar to those obtained with surface plasmon resonsance (SPR). Screens with challenging targets involved in protein-protein interactions including BCL-2, JNK1, and eIF4E were performed with a fragment library of 6,500 compounds, and hit rates were compared for these targets. For eIF4E, a protein containing a PPI site and a nucleotide binding site, results from a BLI fragment screen were compared to results obtained in biochemical HTS screens. Overlapping hits were observed for the PPI site, and hits unique to the BLI screen were identified. Hit assessments with SPR and BLI are described.
NASA Astrophysics Data System (ADS)
Martin, Guillermo; Heidmann, Samuel; Rauch, Jean-Yves; Jocou, Laurent; Courjal, Nadège
2014-03-01
We present an optimization process to improve the rejection ratio in integrated beam combiners by locking the dark fringe and then monitoring its intensity. The method proposed here uses the electro-optic effect of lithium niobate in order to lock the dark fringe and to real-time balance the photometric flux by means of a two-stage Mach-Zehnder interferometer waveguide. By applying a control voltage on the output Y-junction, we are able to lock the phase and stay in the dark fringe, while an independent second voltage is applied on the first-stage intensity modulator, to finely balance the photometries. We have obtained a rejection ratio of 4600 (36.6 dB) at 3.39 μm in transverse electric polarization, corresponding to 99.98% fringe contrast, and shown that the system can compensate external phase perturbations (a piston variation of 100 nm) up to around 1 kHz. We also show the preliminary results of this process on wide-band modulation, where a contrast of 38% in 3.25- to 3.65-μm spectral range is obtained. These preliminary results on wide-band need to be optimized, in particular, for reducing scattered light of the device at the Y-junction. We expect this active method to be useful in high-contrast interferometry, in particular, for astronomical spatial projects actually under study.
NASA Astrophysics Data System (ADS)
Van der Auweraer, H.; Steinbichler, H.; Vanlanduit, S.; Haberstok, C.; Freymann, R.; Storer, D.; Linet, V.
2002-04-01
Accurate structural models are key to the optimization of the vibro-acoustic behaviour of panel-like structures. However, at the frequencies of relevance to the acoustic problem, the structural modes are very complex, requiring high-spatial-resolution measurements. The present paper discusses a vibration testing system based on pulsed-laser holographic electronic speckle pattern interferometry (ESPI) measurements. It is a characteristic of the method that time-triggered (and not time-averaged) vibration images are obtained. Its integration into a practicable modal testing and analysis procedure is reviewed. The accumulation of results at multiple excitation frequencies allows one to build up frequency response functions. A novel parameter extraction approach using spline-based data reduction and maximum-likelihood parameter estimation was developed. Specific extensions have been added in view of the industrial application of the approach. These include the integration of geometry and response information, the integration of multiple views into one single model, the integration with finite-element model data and the prior identification of the critical panels and critical modes. A global procedure was hence established. The approach has been applied to several industrial case studies, including car panels, the firewall of a monovolume car, a full vehicle, panels of a light truck and a household product. The research was conducted in the context of the EUREKA project HOLOMODAL and the Brite-Euram project SALOME.
NASA Astrophysics Data System (ADS)
Huang, Kuo-Ting; Chen, Hsi-Chao; Lin, Ssu-Fan; Lin, Ke-Ming; Syue, Hong-Ye
2012-09-01
While tin-doped indium oxide (ITO) has been extensively applied in flexible electronics, the problem of the residual stress has many obstacles to overcome. This study investigated the residual stress of flexible electronics by the double beam shadow moiré interferometer, and focused on the precision improvement with phase shifting interferometry (PSI). According to the out-of-plane displacement equation, the theoretical error depends on the grating pitch and the angle between incident light and CCD. The angle error could be reduced to 0.03% by the angle shift of 10° as a result of the double beam interferometer was a symmetrical system. But the experimental error of the double beam moiré interferometer still reached to 2.2% by the noise of the vibration and interferograms. In order to improve the measurement precision, PSI was introduced to the double shadow moiré interferometer. Wavefront phase was reconstructed by the five interferograms with the Hariharan algorithm. The measurement results of standard cylinder indicating the error could be reduced from 2.2% to less than 1% with PSI. The deformation of flexible electronic could be reconstructed fast and calculated the residual stress with the Stoney correction formula. This shadow moiré interferometer with PSI could improve the precision of residual stress for flexible electronics.
Zhang, Nan; Li, Kaiwei; Cui, Ying; Wu, Zhifang; Shum, Perry Ping; Auguste, Jean-Louis; Dinh, Xuan Quyen; Humbert, Georges; Wei, Lei
2018-02-13
All-in-fiber optofluidics is an analytical tool that provides enhanced sensing performance with simplified analyzing system design. Currently, its advance is limited either by complicated liquid manipulation and light injection configuration or by low sensitivity resulting from inadequate light-matter interaction. In this work, we design and fabricate a side-channel photonic crystal fiber (SC-PCF) and exploit its versatile sensing capabilities in in-line optofluidic configurations. The built-in microfluidic channel of the SC-PCF enables strong light-matter interaction and easy lateral access of liquid samples in these analytical systems. In addition, the sensing performance of the SC-PCF is demonstrated with methylene blue for absorptive molecular detection and with human cardiac troponin T protein by utilizing a Sagnac interferometry configuration for ultra-sensitive and specific biomolecular specimen detection. Owing to the features of great flexibility and compactness, high-sensitivity to the analyte variation, and efficient liquid manipulation/replacement, the demonstrated SC-PCF offers a generic solution to be adapted to various fiber-waveguide sensors to detect a wide range of analytes in real time, especially for applications from environmental monitoring to biological diagnosis.
The Fluids Integrated Rack and Light Microscopy Module Integrated Capabilities
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Gati, Frank; Snead, John H.; Hill, Myron E.; Griffin, DeVon W.
2003-01-01
The Fluids Integrated Rack (FIR), a facility class payload, and the Light Microscopy Module (LMM), a subrack payload, are scheduled to be launched in 2005. The LMM integrated into the FIR will provide a unique platform for conducting fluids and biological experiments on ISS. The FIR is a modular, multi-user scientific research facility that will fly in the U.S. laboratory module, Destiny, of the International Space Station (ISS). The first payload in the FIR will be the Light Microscopy Module (LMM). The LMM is planned as a remotely controllable, automated, on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within the FIR. Key diagnostic capabilities for meeting science requirements include video microscopy to observe microscopic phenomena and dynamic interactions, interferometry to make thin film measurements with nanometer resolution, laser tweezers for particle manipulation, confocal microscopy to provide enhanced three-dimensional visualization of structures, and spectrophotometry to measure photonic properties of materials. The LMM also provides experiment sample containment for frangibles and fluids. This paper will provide a description of the current FIR and LMM designs, planned capabilities and key features. In addition a brief description of the initial five experiments planned for LMM/FIR will be provided.
Experimental determination of release fields in cut railroad car wheels
DOT National Transportation Integrated Search
1999-02-01
A new approach to the measurement of residual stresses in railroad wheels is investigated using a saw cut method of releasing stresses in the structure. High-sensitivity moire interferometry combined with Michelson interferometry provides full-field ...
Experimental Study of Residual Stresses in Rail by Moire Interferometry
DOT National Transportation Integrated Search
1993-09-01
The residual stresses in rails produced by rolling cycles are studied experimentally by moire interferometry. The dissection technique is adopted for this investigation. The basic principle of the dissection technique is that the residual stress is r...
Barão, Valentim A R; Mathew, Mathew T; Assunção, Wirley Gonçalves; Yuan, Judy Chia-Chun; Wimmer, Markus A; Sukotjo, Cortino
2012-09-01
To investigate the role of different levels of pH of artificial saliva under simulated oral environment on the corrosion behavior of commercially pure titanium (cp-Ti) and Ti-6Al-4V alloy. Special attention is given to understand the changes in corrosion kinetics and surface characterization of Ti by using electrochemical impedance spectroscopy (EIS). Fifty-four Ti disks (15-mm diameter, 2-mm thickness) were divided into six groups (n = 9) as a function of saliva pH (3, 6.5, and 9) and Ti type. Samples were mechanically polished using standard metallographic procedures. Standard electrochemical tests, such as open circuit potential, EIS, and potentiodynamic tests were conducted in a controlled environment. Data were evaluated by two-way ANOVA, Tukey multiple comparison test, and independent t-test (α = 0.05). Ti surfaces were examined using white-light-interferometry microscopy and scanning electron microscopy (SEM). Saliva pH level significantly affected the corrosion behavior of both Ti types. At low pH, acceleration of ions exchange between Ti and saliva, and reduction of resistance of Ti surface against corrosion were observed (P < 0.05). Corrosion rate was also significantly increased in acidic medium (P < 0.05). Similar corrosion behavior was observed for both Ti types. The white-light-interferometry images of Ti surfaces show higher surface changes at low pH level. SEM images do not show detectable changes. No pitting corrosion was observed for any group. The pH level of artificial saliva influences the corrosion behavior of cp-Ti and Ti-6Al-4V alloy in that lower pH accelerates the corrosion rate and kinetics. The corrosion products may mitigate the survival rate of dental implants. © 2011 John Wiley & Sons A/S.
NASA Technical Reports Server (NTRS)
Rignot, Eric
1998-01-01
The synthetic-aperture radar interferometry technique is used to detect the migration of the limit of tidal flexing, or hinge line, of the floating ice tongue of Petermann Gletscher, a major outlet glacier of north Greenland.
NASA Astrophysics Data System (ADS)
Nabias, Laurent; Schanen, Isabelle; Berger, Jean-Philippe; Kern, Pierre; Malbet, Fabien; Benech, Pierre
2018-04-01
This paper, "Integrated optics applied to astronomical aperture synthesis III: simulation of components optimized for astronomical interferometry," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
Interferometry correlations in central p+Pb collisions
NASA Astrophysics Data System (ADS)
Bożek, Piotr; Bysiak, Sebastian
2018-01-01
We present results on interferometry correlations for pions emitted in central p+Pb collisions at √{s_{NN}}=5.02 TeV in a 3+1-dimensional viscous hydrodynamic model with initial conditions from the Glauber Monte Carlo model. The correlation function is calculated as a function of the pion pair rapidity. The extracted interferometry radii show a weak rapidity dependence, reflecting the lack of boost invariance of the pion distribution. A cross term between the out and long directions is found to be nonzero. The results obtained in the hydrodynamic model are in fair agreement with recent data of the ATLAS Collaboration.
Altimetry Using GPS-Reflection/Occultation Interferometry
NASA Technical Reports Server (NTRS)
Cardellach, Estel; DeLaTorre, Manuel; Hajj, George A.; Ao, Chi
2008-01-01
A Global Positioning System (GPS)- reflection/occultation interferometry was examined as a means of altimetry of water and ice surfaces in polar regions. In GPS-reflection/occultation interferometry, a GPS receiver aboard a satellite in a low orbit around the Earth is used to determine the temporally varying carrier- phase delay between (1) one component of a signal from a GPS transmitter propagating directly through the atmosphere just as the GPS transmitter falls below the horizon and (2) another component of the same signal, propagating along a slightly different path, reflected at glancing incidence upon the water or ice surface.