Science.gov

Sample records for light meson physics

  1. Light Exotic Mesons

    NASA Astrophysics Data System (ADS)

    Eugenio, Paul

    2016-03-01

    tudies of meson spectra via strong decays provide insight regarding QCD at the confinement scale. These studies have led to phenomenological models for QCD such as the constituent quark model. However, QCD allows for a much richer spectrum of meson states which include extra states such as hybrids, exotics, multi-quarks, and glueballs. Within the past two decades a number of experiments have put forth tantalizing evidence for the existence of light quark exotic hybrid mesons in the mass range below 2 GeV . Recent Lattice QCD calculations of the light-quark meson spectrum indicate a constituent gluon-like excitation contributing an additional JPC =1+- and mass 1 - 1 . 5 GeV resulting in the lightest hybrid nonets with masses near 2 . 0 GeV . High statistical yields from recent experiments along with new advances in analysis techniques have shed a new light towards the understanding the latest experimental exotic candidates. Recent results from hadro-production and photo-production will be presented followed by an overview of ongoing and future efforts to search for light exotic mesons.

  2. The light meson spectroscopy program

    SciTech Connect

    Smith, Elton S.

    2014-06-01

    Recent discoveries of a number of unexpected new charmomium-like meson states at the BaBar and Belle B-factories have demonstrated how little is still known about meson spectroscopy. In this talk we will review recent highlights of the light quark spectroscopy from collider and fixed target experiments.

  3. Light axial vector mesons

    NASA Astrophysics Data System (ADS)

    Chen, Kan; Pang, Cheng-Qun; Liu, Xiang; Matsuki, Takayuki

    2015-04-01

    Inspired by the abundant experimental observation of axial-vector states, we study whether the observed axial-vector states can be categorized into the conventional axial-vector meson family. In this paper we carry out an analysis based on the mass spectra and two-body Okubo-Zweig-Iizuka-allowed decays. Besides testing the possible axial-vector meson assignments, we also predict abundant information for their decays and the properties of some missing axial-vector mesons, which are valuable for further experimental exploration of the observed and predicted axial-vector mesons.

  4. Physics opportunities with meson beams

    SciTech Connect

    Briscoe, William J.; Doring, Michael; Haberzettl, Helmut; Manley, D. Mark; Naruki, Megumi; Strakovsky, Igor I.; Swanson, Eric S.

    2015-10-20

    Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. Furthermore, the present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.

  5. Physics opportunities with meson beams

    NASA Astrophysics Data System (ADS)

    Briscoe, William J.; Döring, Michael; Haberzettl, Helmut; Manley, D. Mark; Naruki, Megumi; Strakovsky, Igor I.; Swanson, Eric S.

    2015-10-01

    Over the past two decades, meson photo- and electroproduction data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even non-existent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state-of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.

  6. Light mesons on the light front

    SciTech Connect

    Naito, K.; Maedan, S.; Itakura, K.

    2004-11-01

    We study the properties of light mesons in the scalar, pseudoscalar, and vector channels within the light-front quantization, by using the (one flavor) Nambu-Jona-Lasinio model with vector interaction. After taking into account the effects of chiral symmetry breaking, we derive the bound-state equation in each channel in the large N limit (N is the number of colors), which means that we consider the lowest qq Fock state with the constituent quark and antiquark. By solving the bound-state equation, we simultaneously obtain a mass and a light cone (LC) wave function of the meson. While we reproduce the previous results for the scalar and pseudoscalar mesons, we find that, for a vector meson, the bound-state equations for the transverse and longitudinal polarizations look different from each other. However, eventually after imposing a cutoff which is invariant under the parity and boost transformations, one finds these two are identical, giving the same mass and the same (spin-independent) LC wave function. When the vector interaction becomes larger than a critical value, the vector state forms a bound state, whose mass decreases as the interaction becomes stronger. While the LC wave function of the pseudoscalar meson is broadly distributed in longitudinal momentum (x) space, that of the vector meson is squeezed around x=1/2.

  7. Light O++ Mesons: Scalargators in Florida

    NASA Astrophysics Data System (ADS)

    Pennington, M. R.

    2010-08-01

    Light scalar mesons abound in hadron processes, like the alligators in the Florida Everglades. Moreover, scalars are intimately tied to the vacuum structure of QCD. They are the product of many decays. Consequently, a rich source of recent information about them has come from experiments producing heavy flavour mesons. Indeed, scalars will continue to dominate many of the processes to be studied at forthcoming facilities like BESIII in Beijing, FAIR at GSI Darmstadt and the GlueX experiment at JLab, making an understanding (or at least an excellent and theoretically consistent description) essential for the physics missions of these facilities.

  8. Heavy-light mesons and chiral symmetry

    SciTech Connect

    Bardeen, William A.; /Fermilab

    2008-04-01

    The chiral structure of heavy-light mesons is explored with a particular focus on the nature of the D{sub sJ} charmed mesons. Theoretical predictions for the hadronic and radiative decays of these mesons are compared to recent experimental data.

  9. Physics opportunities with meson beams

    DOE PAGES

    Briscoe, William J.; Doring, Michael; Haberzettl, Helmut; ...

    2015-10-20

    Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledgemore » in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. Furthermore, the present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.« less

  10. Hadronic physics of q anti q light quark mesons, quark molecules and glueballs

    SciTech Connect

    Lindenbaum, S.J.

    1980-10-01

    A brief introduction reviews the development of QCD and defines quark molecules and glueballs. This review is concerned primarily with u, d, and s quarks, which provide practically all of the cross section connected with hadronic interactions. The following topics form the bulk of the paper: status of quark model classification for conventional u, d, s quark meson states; status of multiquark or quark molecule state predictions and experiments; glueballs and how to find them; and the OZI rule in decay and production and how glueballs might affect it. 17 figures, 1 table. (RWR)

  11. B Decays Involving Light Mesons

    SciTech Connect

    Eschrich, Ivo Gough; /UC, Irvine

    2007-01-09

    Recent BABAR results for decays of B-mesons to combinations of non-charm mesons are presented. This includes B decays to two vector mesons, B {yields} {eta}{prime}({pi}, K, {rho}) modes, and a comprehensive Dalitz Plot analysis of B {yields} KKK decays.

  12. Rare meson decays into very light neutralinos

    SciTech Connect

    O'Leary, Ben

    2010-02-10

    Results are presented for the two-body decays of mesons into light neutralinos and from the first complete calculation of the loop-induced decays of kaons to pions plus light neutralinos and of B mesons to kaons plus light neutralinos. The branching ratios are shown to be strongly suppressed within the MSSM with minimal flavor violation, and no bounds on the neutralino mass can be inferred from experimental data, i.e. a massless neutralino is allowed.

  13. The light scalar mesons as tetraquarks

    NASA Astrophysics Data System (ADS)

    Eichmann, Gernot; Fischer, Christian S.; Heupel, Walter

    2016-02-01

    We present a numerical solution of the four-quark Bethe-Salpeter equation for ground-state scalar tetraquarks with JPC =0++. We find that the four-body equation dynamically generates pseudoscalar-meson poles in the Bethe-Salpeter amplitude. The resulting tetraquarks are genuine four-quark states that are dominated by pseudoscalar meson-meson correlations. Diquark-antidiquark contributions are subleading because of their larger mass scale. In the light quark sector, the sensitivity of the tetraquark wave function to the pion poles leads to an isoscalar tetraquark mass Mσ ∼ 350 MeV which is comparable to that of the σ /f0 (500). The masses of its multiplet partners κ and a0 /f0 follow a similar pattern. This provides support for a tetraquark interpretation of the light scalar meson nonet in terms of 'meson molecules'.

  14. Light Meson Decays from Photon-Induced Reactions with CLAS

    NASA Astrophysics Data System (ADS)

    Kunkel, Michael; CLAS Collaboration; Light Meson Decay (LMD) Team

    2015-04-01

    Photo-production experiments with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Laboratory produce data sets with unprecedented statistics of light mesons. With these data sets, measurements of transition form factors for η, ω, and η ' via conversion decays can be performed using a line shape analysis on the invariant mass of the final state dileptons. Tests of fundamental symmetries and information on the light quark mass difference can be performed using a Dalitz plot analysis of the meson decay. In addition, the data allows for a search for dark matter, such as the heavy photon via conversion decays of light mesons and physics beyond the Standard Model can be searched for via invisible decays of η mesons. An overview of the first results and future prospects will be given.

  15. Light Vector Mesons in the Nuclear Medium

    SciTech Connect

    Wood, Michael; Nasseripour, Rakhsha; Weygand, Dennis; Djalali, Chaden; Tur, Clarisse; Mosel, Ulrich; Muehlich, Pascal; Adams, Gary; Amaryan, Moscov; Amaryan, Moskov; Ambrozewicz, Pawel; Anghinolfi, Marco; Asryan, Gegham; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Baillie, Nathan; Ball, James; Baltzell, Nathan; Barrow, Steve; Battaglieri, Marco; Bedlinskiy, Ivan; Bektasoglu, Mehmet; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Biselli, Angela; Blaszczyk, Lukasz; Bouchigny, Sylvain; Boyarinov, Sergey; Bradford, Robert; Branford, Derek; Briscoe, William; Brooks, William; Burkert, Volker; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Carnahan, Bryan; Casey, Liam; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Crabb, Donald; Crannell, Hall; Crede, Volker; Cummings, John; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Degtiarenko, Pavel; Denizli, Haluk; Dennis, Lawrence; Deur, Alexandre; Dharmawardane, Kahanawita; Dickson, Richard; Dodge, Gail; Doughty, David; Dugger, Michael; Dytman, Steven; Dzyubak, Oleksandr; Egiyan, Hovanes; Egiyan, Kim; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Feldman, Gerald; Feuerbach, Robert; Fradi, Ahmed; Funsten, Herbert; Garcon, Michel; Gavalian, Gagik; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gordon, Christopher; Gothe, Ralf; Griffioen, Keith; Guidal, Michel; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hadjidakis, Cynthia; Hafidi, Kawtar; Hakobyan, Hayk; Hakobyan, Rafael; Hanretty, Charles; Hardie, John; Hassall, Neil; Hersman, F.; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Kellie, James; Khandaker, Mahbubul; Khetarpal, Puneet; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Klimenko, Alexei; Kossov, Mikhail; Krahn, Zebulun; Kramer, Laird; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, David; Li, Ji; Livingston, Kenneth; Lu, Haiyun; MacCormick, Marion; Markov, Nikolai; Mattione, Paul; McAleer, Simeon; McKinnon, Bryan; McNabb, John; Mecking, Bernhard; Mehrabyan, Surik; Melone, Joseph; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Mikhaylov, Konstantin; Minehart, Ralph; Mirazita, Marco; Miskimen, Rory; Mokeev, Viktor; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Mueller, James; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; Osipenko, Mikhail; Ostrovidov, Alexander; Park, Kijun; Pasyuk, Evgueni; Paterson, Craig; Pereira, Sergio; Pierce, Joshua; Pivnyuk, Nikolay; Pocanic, Dinko; Pogorelko, Oleg; Pozdnyakov, Sergey; Preedom, Barry; Price, John; Prok, Yelena; Protopopescu, Dan; Raue, Brian; Riccardi, Gregory; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Ronchetti, Federico; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schumacher, Reinhard; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shvedunov, Nikolay; Smith, Elton; Smith, Lee; Sober, Daniel; Sokhan, Daria; Stavinsky, Aleksey; Stepanyan, Stepan; Stepanyan, Samuel; Stokes, Burnham; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Tedeschi, David; Tkabladze, Avtandil; Tkachenko, Svyatoslav; Todor, Luminita; Ungaro, Maurizio; Vineyard, Michael; Vlassov, Alexander; Watts, Daniel; Weinstein, Lawrence; Williams, Michael; Wolin, Elliott; Yegneswaran, Amrit; Zana, Lorenzo; Zhang, Bin; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen

    2008-07-01

    The light vector mesons ($\\rho$, $\\omega$, and $\\phi$) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the $\\rho$ meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to $e^{+}e^{-}$. The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The $\\rho$ meson mass spectrum was extracted after the $\\omega$ and $\\phi$ signals were removed in a nearly model-independent way. Comparisons were made between the $\\rho$ mass spectra from the heavy targets ($A > 2$) with the mass spectrum extracted from the deuterium target. With respect to the $\\rho$-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body eff

  16. Excited light meson spectroscopy from lattice QCD

    SciTech Connect

    Christopher Thomas, Hadron Spectrum Collaboration

    2012-04-01

    I report on recent progress in calculating excited meson spectra using lattice QCD, emphasizing results and phenomenology. With novel techniques we can now extract extensive spectra of excited mesons with high statistical precision, including spin-four states and those with exotic quantum numbers. As well as isovector meson spectra, I will present new calculations of the spectrum of excited light isoscalar mesons, something that has up to now been a challenge for lattice QCD. I show determinations of the flavor content of these mesons, including the eta-eta' mixing angle, providing a window on annihilation dynamics in QCD. I will also discuss recent work on using lattice QCD to map out the energy-dependent phase shift in pi-pi scattering and future applications of the methodology to the study of resonances and decays.

  17. Charmed and light pseudoscalar meson decay constants from four-flavor lattice QCD with physical light quarks

    SciTech Connect

    Bazavov, A.; Bernard, C.; Komijani, J.; Bouchard, C. M.; DeTar, C.; Foley, J.; Levkova, L.; Du, D.; Laiho, J.; El-Khadra, A. X.; Freeland, E. D.; Gámiz, E.; Gottlieb, Steven; Heller, U. M.; Kim, J.; Toussaint, D.; Kronfeld, A. S.; Mackenzie, P. B.; Simone, J. N.; Van de Water, R. S.; Zhou, R.; Neil, E. T.; Sugar, R.

    2014-10-30

    We compute the leptonic decay constants fD+, fDs, and fK+ and the quark-mass ratios mc/ms and ms/ml in unquenched lattice QCD using the experimentally determined value of fπ+ for normalization. We use the MILC highly improved staggered quark ensembles with four dynamical quark flavors—up, down, strange, and charm—and with both physical and unphysical values of the light sea-quark masses. The use of physical pions removes the need for a chiral extrapolation, thereby eliminating a significant source of uncertainty in previous calculations. Four different lattice spacings ranging from a0.06 to 0.15 fm are included in the analysis to control the extrapolation to the

  18. Rare meson decays into very light neutralinos

    SciTech Connect

    Dreiner, H. K.; Grab, S.; Koschade, Daniel; Kraemer, M.; O'Leary, Ben; Langenfeld, Ulrich

    2009-08-01

    We investigate the bounds on the mass of the lightest neutralino from rare meson decays within the minimal supersymmetric standard model (MSSM) with and without minimal flavor violation. We present explicit formulas for the two-body decays of mesons into light neutralinos and perform the first complete calculation of the loop-induced decays of kaons to pions and light neutralinos and B mesons to kaons and light neutralinos. We find that the supersymmetric branching ratios are strongly suppressed within the MSSM with minimal flavor violation, and that no bounds on the neutralino mass can be inferred from experimental data, i.e., a massless neutralino is allowed. The branching ratios for kaon and B meson decays into light neutralinos may, however, be enhanced when one allows for nonminimal flavor violation. We find new constraints on the MSSM parameter space for such scenarios and discuss prospects for future kaon and B meson experiments. Finally, we comment on the search for light neutralinos in monojet signatures at the Tevatron and at the LHC.

  19. Recent progress on light scalar mesons

    SciTech Connect

    Peláez, J. R.

    2014-07-23

    This is a brief account of the recent developments on the determination of the mass and widths of the much debated scalar mesons, paying particular attention to the causes of major revision of the σ or f{sub 0}(500) meson in the last edition of the Review of Particle Physics, which has finally acknowledged that the situation concerning the mass and width of this controversial state has been settled, although this was already well-known to scalar meson practitioners for about a decade. I will briefly comment on the dispersive approach, followed by several groups, which seems to have been the most decisive in support of the existence and precise determinations of scalar meson properties.

  20. Excited light isoscalar mesons from lattice QCD

    SciTech Connect

    Christopher Thomas

    2011-07-01

    I report a recent lattice QCD calculation of an excited spectrum of light isoscalar mesons, something that has up to now proved challenging for lattice QCD. With novel techniques we extract an extensive spectrum with high statistical precision, including spin-four states and, for the first time, light isoscalars with exotic quantum numbers. In addition, the hidden flavour content of these mesons is determined, providing a window on annihilation dynamics in QCD. I comment on future prospects including applications to the study of resonances.

  1. Meson physics in asymmetric matter

    NASA Astrophysics Data System (ADS)

    Mammarella, Andrea; Mannarelli, Massimo

    2017-06-01

    This paper describes dynamic and thermodynamic (at T = 0) properties of mesons in asymmetric matter in the framework of Chiral Perturbation Theory. We consider the effect of nonzero isospin and strangeness chemical potentials on a mesonic system and report on the corresponding phase diagram. We also study meson masses and mixing in the resulting normal phase, pion condensation phase and kaon condensation phase. We find differences with previous papers regarding meson masses and mixing in the condensed phases; the results presented here are supported by theory group analysis and direct calculations. Pressure, density and equation of state of the system at T = 0 and nonzero μI are calculated, finding remarkable agreement with analogue studies performed by lattice calculations.

  2. Photoproduction and Decay of Light Mesons in CLAS

    SciTech Connect

    Amaryan, Moskov Jamalovich

    2013-08-01

    We present preliminary experimental results on photoproduction and decay of light mesons measured with CLAS setup at JLAB . This include Dalitz decay of pseudoscalar and vector mesons, radiative decay of pseudoscalar mesons as well hadronic decays of pseudoscalar and vector mesons. The collected high statistics in some of decay channels exceeds the world data by an order of magnitude and some other decay modes are observed for the first time. It is shown how the CLAS data will improve the world data on transition form factors of light mesons, Dalitz plot analyses, branching ratios of rare decay modes and other fundamental properties potentially accessible through the light meson decays.

  3. Light O{sup ++} Mesons: Scalargators in Florida

    SciTech Connect

    Pennington, M. R.

    2010-08-05

    Light scalar mesons abound in hadron processes, like the alligators in the Florida Everglades. Moreover, scalars are intimately tied to the vacuum structure of QCD. They are the product of many decays. Consequently, a rich source of recent information about them has come from experiments producing heavy flavour mesons. Indeed, scalars will continue to dominate many of the processes to be studied at forthcoming facilities like BESIII in Beijing, FAIR at GSI Darmstadt and the GlueX experiment at JLab, making an understanding (or at least an excellent and theoretically consistent description) essential for the physics missions of these facilities.

  4. Study of Light Scalar Meson Structure in D1 Decay

    NASA Astrophysics Data System (ADS)

    Hoshino, H.; Harada, M.; Ma, Y. L.

    2013-03-01

    We study the quark structure of the sigma meson through the decay of D1(2430) meson by constructing an effective Lagrangian for charmed mesons interacting with light mesons based on the chiral symmetry and heavy quark symmetry. Within the linear realization of the chiral symmetry, we include the P-wave charmed mesons (D1(2430), D0(2400)) as the chiral partners of (D., D), and the light scalar mesons as the chiral partner of the pseudoscalar mesons. In the light meson sector, both the qbar {q} and qqbar {q}bar {q} states are incorporated respecting their different U(1)A transformation properties. We predict the D1 → Dππ decay width with two pions in the I = 0, l = 0 channel, which can be tested in the future experiment. We find that the width increases with the percentage of the qbar {q} content in the sigma meson.

  5. Status of chiral meson physics

    SciTech Connect

    Bijnens, Johan

    2016-01-22

    This talk includes a short introduction to Chiral Perturbation Theory in the meson sector concentrating on a number of recent developments. I discuss the latest fit of the low-energy constants. Finite volume corrections are discussed for the case with twisted boundary conditions for form-factors and first results at two-loops for three flavours for masses. The last part discusses the extension to other symmetry breaking patterns relevant for technicolour and related theories as well as the calculation of leading logarithms to high loop orders.

  6. The glueball among the light scalar mesons

    NASA Astrophysics Data System (ADS)

    Minkowski, Peter; Ochs, Wolfgang

    2003-06-01

    In our phenomenological analysis of the spectroscopy of light scalar mesons we do not find compelling evidence for the existence of the low mass κ(900) or σ(600) states nor for ƒ 0(1370) as single resonance. If the ƒ 0(980) and and ƒ 0(1500) are taken as members of the q overlineq nonet there remains a broad object formed by ƒ 0(400 - 1200) and ƒ 0(1370) which is a glueball candidate gb(1000).

  7. Light-Meson Spectroscopy at Compass

    NASA Astrophysics Data System (ADS)

    Krinner, Fabian

    2017-03-01

    The goal of the Compass experiment at CERN is to study the structure and spectroscopy of hadrons. The two-stage spectrometer has large acceptance and covers a wide kinematic range for charged as well as neutral particles allowing to access a wide range of reactions. Light mesons are studied with negative (mostly π-) and positive (p, π+) hadron beams with a momentum of 190 GeV/c. The light-meson spectrum is measured in different final states produced in diffractive dissociation reactions with squared four-momentum transfer t to the target between 0.1 and 1.0 (GeV/c)2. The flagship channel is the π-π+π- final state, for which Compass has recorded the currently world's largest data sample. These data not only allow us to measure the properties of known resonances with high precision, but also to search for new states. Among these is a new axial-vector signal, the a1(1420), with unusual properties. The findings are confirmed by the analysis of the π-π0π0 final state.

  8. Lepton decay constants of light mesons

    SciTech Connect

    Simonov, Yu. A.

    2016-05-15

    A theory of lepton decay constants based on the path-integral formalism is given for chiral and vector mesons. Decay constants of the pseudoscalar and vector mesons are calculated and compared to other existing results.

  9. Non-perturbative QCD Modeling and Meson Physics

    SciTech Connect

    Nguyen, T.; Souchlas, N. A.; Tandy, P. C.

    2009-04-20

    Using a ladder-rainbow kernel previously established for light quark hadron physics, we explore the extension to masses and electroweak decay constants of ground state pseudoscalar and vector quarkonia and heavy-light mesons in the c- and b-quark regions. We make a systematic study of the effectiveness of a constituent mass concept as a replacement for a heavy quark dressed propagator for such states. The difference between vector and axial vector current correlators is explored within the same model to provide an estimate of the four quark chiral condensate and the leading distance scale for the onset of non-perturbative phenomena in QCD.

  10. String point of view for heavy-light mesons

    NASA Astrophysics Data System (ADS)

    Dong, Yubing; Lü, Qi-Fang; Matsuki, Takayuki

    2017-03-01

    An approximate rotational symmetry of a heavy-light meson is viewed from a string picture. Using a simple string configuration, we derive a formula, (M-mc)2 = πσL, whose coeffcient of the r.h.s. is just 1/2 of that of a light meson with two light quarks. A numerical plot is obtained for D mesons of experimental data as well as several theoretical models, which shows good agreement with this formula. A talk given by T. Matsuki at XII Quark Confinement and the Hadron Spectrum.

  11. Mass spectrum and decay properties of heavy-light mesons: D, Ds, B and Bs mesons

    NASA Astrophysics Data System (ADS)

    Yazarloo, B. H.; Mehraban, H.

    2017-02-01

    We present a study of mass spectrum and decay properties of heavy-light mesons in the non-relativistic potential model. We consider a new type of potential for the mesonic system, the combination of harmonic and Yukawa-type potentials. To obtain the wave function of the system, we use the perturbation method. We take the harmonic term as parent and the Yukawa term as perturbation for the generation of wave function for the meson. For calculating the parent wave function, the Nikiforov-Uvarov (NU) approach is used and thereby we obtained a series solution for the perturbative wave function and then reported the total wave function. With this wave function, we then study the mass spectrum, the decay constant, the leptonic and semileptonic decay widths of heavy-light mesons.

  12. Light Meson Spectroscopy: First Results from GlueX

    NASA Astrophysics Data System (ADS)

    Shepherd, Matthew

    2016-09-01

    The GlueX experiment is optimized to search for and study light hybrid mesons utilizing a 9 GeV linearly polarized photon beam that is derived from the 12 GeV electron beam of the recently upgraded CEBAF at Jefferson Lab. Construction of the GlueX detector was completed in winter 2015, and it was commissioned and calibrated using data collected in 2015 and 2016. During the spring of 2016 the first substantial data acquisition period was conducted with the detector and beamline in its design configuration. The data from this pilot physics run exceed the statistical capability of existing polarized photoproduction data sets in this energy regime by orders of magnitude. In this talk the broad objectives of the GlueX physics program will be reviewed along with the status and performance of the detector. Ongoing data analysis activities will be summarized, and the plan for both additional data acquisition and analysis to pursue the goal of searching for hybrid mesons will be outlined. Dept. of Energy, Office of Nuclear Physics.

  13. Light meson decays from photon-induced reactions with CLAS

    NASA Astrophysics Data System (ADS)

    Kunkel, Michael C.

    2016-05-01

    Photo-production experiments with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Laboratory produce data sets with unprecedented statistics for light mesons. With these data sets, measurements of transition form factors for η, ω, and η' mesons via conversion decays can be performed using the invariant mass distribution of the final state dileptons. Tests of fundamental symmetries and information on the light quark mass difference can be performed using a Dalitz plot analysis of the meson decay. An overview of the first results, from existing CLAS data, and future prospects within the newly upgraded CLAS12 apparatus are given.

  14. Light meson decays from photon-induced reactions with CLAS

    NASA Astrophysics Data System (ADS)

    Kunkel, Michael C.

    2016-11-01

    Photoproduction experiments with the CEBAF Large Acceptance Spectrometer CLAS at the Thomas Jefferson National Facility produce data sets with competitive statistics of light mesons. With these data sets, measurements of transition form factors for η, ω, and η' mesons via conversion decays can be performed using the invariant mass distribution of the final state dileptons. Tests of fundamental symmetries and information on the light quark mass difference can be performed using a Dalitz plot analysis of the meson decay. An overview of preliminary results, from existing CLAS data, and future prospects within the newly upgraded CLAS12 apparatus are given.

  15. Heavy-light mesons in chiral AdS/QCD

    NASA Astrophysics Data System (ADS)

    Liu, Yizhuang; Zahed, Ismail

    2017-06-01

    We discuss a minimal holographic model for the description of heavy-light and light mesons with chiral symmetry, defined in a slab of AdS space. The model consists of a pair of chiral Yang-Mills and tachyon fields with specific boundary conditions that break spontaneously chiral symmetry in the infrared. The heavy-light spectrum and decay constants are evaluated explicitly. In the heavy mass limit the model exhibits both heavy-quark and chiral symmetry and allows for the explicit derivation of the one-pion axial couplings to the heavy-light mesons.

  16. Radial and orbital excitations of static-light mesons

    SciTech Connect

    Foley, Justin; O Cais, Alan; Peardon, Mike; Ryan, Sinead M.

    2007-05-01

    We present results for the spectrum of static-light mesons from N{sub f}=2 lattice QCD. These results were obtained using all-to-all light-quark propagators on an anisotropic lattice, yielding an improved signal resolution when compared to more conventional lattice techniques. With a light-quark mass close to the strange quark, we have measured the splittings between the ground-state S-wave static-light meson and higher excitations. We attempt to identify the quantum numbers of the excited states in the context of the reduced spatial symmetries of the lattice.

  17. Light scalar mesons in the improved ladder QCD

    SciTech Connect

    Umekawa, Toru; Naito, Kenichi; Oka, Makoto; Takizawa, Makoto

    2004-11-01

    The light scalar meson spectrum is studied using the improved ladder QCD with the U{sub A}(1) breaking Kobayashi-Maskawa-'t Hooft interaction by solving the Schwinger-Dyson and Bethe-Salpeter equations. The dynamically generated momentum-dependent quark mass is large enough in the low momentum region to give rise to the spontaneous breaking of chiral symmetry. Due to the large dynamical quark mass, the scalar mesons become the qq bound states. Since the parameters have been all fixed to reproduce the light pseudoscalar meson masses and the decay constant, there is no free parameter in the calculation of the scalar mesons. We obtain M{sub {sigma}}=667 MeV, M{sub a{sub 0}}=942 MeV, and M{sub f{sub 0}}=1336 MeV. They are in good agreement with the observed masses of {sigma}(600), a{sub 0}(980), and f{sub 0}(1370), respectively. We therefore conclude that these states are the members of the light scalar meson nonet. The mass of K{sub 0}{sup *} is obtained between that of a{sub 0} and f{sub 0} and the corresponding state is not observed experimentally. We also find that the strangeness content in the {sigma} meson is about 5%.

  18. Antiproton-proton annihilation into light neutral meson pairs within an effective meson theory

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Bystritskiy, Yury M.; Ahmadov, Azad I.; Tomasi-Gustafsson, Egle

    2017-08-01

    Antiproton-proton annihilation into light neutral mesons in the few GeV energy domain is investigated in view of a global description of the existing data and predictions for future work at the Antiproton Annihilation at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR). An effective meson model earlier developed, with mesonic and baryonic degrees of freedom in s , t , and u channels, is applied here to π0π0 production. Form factors with logarithmic s and t (u ) dependencies are applied. A fair agreement with the existing angular distributions is obtained. Applying SU(3) symmetry, it is straightforward to recover the angular distributions for π0η and η η production in the same energy range. A good agreement is generally obtained with all existing data.

  19. 37 Years with the light scalar mesons. The learned lessons

    NASA Astrophysics Data System (ADS)

    Achasov, N. N.

    2017-09-01

    Attention is paid to the production mechanisms of light scalars that reveal their nature. We reveal the chiral shielding of the σ(600) meson. We show that the kaon loop mechanism of the ϕ radiative decays, ratified by experiment, is four-quark transition and points to the four-quark nature of light scalars. We show also that the light scalars are produced in the two photon collisions via four-quark transitions in contrast to the classic P wave tensor qq̅ mesons that are produced via two-quark transitions γγ → qq̅. We study the mechanism of production of the light scalar mesons in the D s + → π+π- e +ν decays: D s + → ss̅e +ν → [σ(600) + f 0(980)] e +ν → π+π- e +ν, and compare it with the mechanism of production of the light pseudoscalar mesons in the D s + → (η/η') e +ν decays: D s + → ss̅e +ν → (η/η') e +ν. As a result we find support to four-quark nature of light scalars. In the end, we outline the future research program.

  20. Staggered chiral perturbation theory for heavy-light mesons

    SciTech Connect

    Aubin, C.; Bernard, C.

    2006-01-01

    We incorporate heavy-light mesons into staggered chiral perturbation theory (S{chi}PT), working to leading order in 1/m{sub Q}, where m{sub Q} is the heavy-quark mass. At first nontrivial order in the chiral expansion, staggered taste violations affect the chiral logarithms for heavy-light quantities only through the light-meson propagators in loops. There are also new analytic contributions coming from additional terms in the Lagrangian involving heavy-light and light mesons. Using this heavy-light S{chi}PT, we perform the one-loop calculation of the B (or D) meson leptonic decay constant in the partially quenched and full QCD cases. In our treatment, we assume the validity both of the 'fourth root trick' to reduce four staggered tastes to one, and of the S{chi}PT prescription to represent this trick by insertions of factors of 1/4 for each sea-quark loop.

  1. Heavy-light mesons in a relativistic model

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Bin; Yang, Mao-Zhi

    2016-07-01

    We study the heavy-light mesons in a relativistic model, which is derived from the Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation to the heavy quark. The kernel we choose is based on scalar confinement and vector Coulomb potentials. The transverse interaction of the gluon exchange is also taken into account in this model. The spectra and wave functions of D, Ds, B, Bs meson states are obtained. The spectra are calculated up to the order of 1/m Q, and wave functions are treated to leading order. Supported by National Natural Science Foundation of China (11375088, 10975077, 10735080, 11125525)

  2. Dimesonic states in the heavy-light meson sector

    SciTech Connect

    Rathaud, D. P. Rai, Ajay Kumar

    2016-05-06

    We have calculated the mass spectra and digamma decay width of the dimesonic (meson-antimeson molecule) states in the heavy-light meson sector in the potential model framework. The interaction potential of the systems are assumed to be the Yukawa-like potential with the one pion exchange and sigma exchange potential. The calculated masss spectra of dimesonic states are in good agreement with compared states like D{sub s1}(2536), D{sub sJ}* (2860) and D{sub sJ}(3040).

  3. Probing the Gluon Self-Interaction in Light Mesons

    SciTech Connect

    Fischer, Christian S.; Williams, Richard

    2009-09-18

    We investigate masses and decay constants of light mesons from a coupled system of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly take into account dominant non-Abelian contributions to the dressed quark-gluon vertex stemming from the gluon self-interaction. We construct the corresponding Bethe-Salpeter kernel that satisfies the axial-vector Ward-Takahashi identity. Our numerical treatment fully includes all momentum dependencies with all equations solved completely in the complex plane. This approach goes well beyond the rainbow-ladder approximation and permits us to investigate the influence of the gluon self-interaction on the properties of mesons. As a first result we find indications of a nonperturbative cancellation of the gluon self-interaction contributions and pion cloud effects in the mass of the rho meson.

  4. Probing the gluon self-interaction in light mesons.

    PubMed

    Fischer, Christian S; Williams, Richard

    2009-09-18

    We investigate masses and decay constants of light mesons from a coupled system of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly take into account dominant non-Abelian contributions to the dressed quark-gluon vertex stemming from the gluon self-interaction. We construct the corresponding Bethe-Salpeter kernel that satisfies the axial-vector Ward-Takahashi identity. Our numerical treatment fully includes all momentum dependencies with all equations solved completely in the complex plane. This approach goes well beyond the rainbow-ladder approximation and permits us to investigate the influence of the gluon self-interaction on the properties of mesons. As a first result we find indications of a nonperturbative cancellation of the gluon self-interaction contributions and pion cloud effects in the mass of the rho meson.

  5. Charmless hadronic B decays involving scalar mesons: Implications on the nature of light scalar mesons

    NASA Astrophysics Data System (ADS)

    Cheng, Hai-Yang; Chua, Chun-Khiang; Yang, Kwei-Chou

    2006-01-01

    The hadronic charmless B decays into a scalar meson and a pseudoscalar meson are studied within the framework of QCD factorization. Based on the QCD sum rule method, we have derived the leading-twist light-cone distribution amplitudes of scalar mesons and their decay constants. Although the light scalar mesons f0(980) and a0(980) are widely perceived as primarily the four-quark bound states, in practice it is difficult to make quantitative predictions based on the four-quark picture for light scalars. Hence, predictions are made in the 2-quark model for the scalar mesons. The short-distance approach suffices to explain the observed large rates of f0(980)K- and f0(980) Kmacr 0 that receive major penguin contributions from the b→ss smacr process. When f0(980) is assigned as a four-quark bound state, there exist extra diagrams contributing to B→f0(980)K. Therefore, a priori the f0(980)K rate is not necessarily suppressed for a four-quark state f0(980). The predicted Bmacr 0→a0±(980)π∓ and a0+(980)K- rates exceed the current experimental limits, favoring a four-quark nature for a0(980). The penguin-dominated modes a0(980)K and a0(1450)K receive predominant weak annihilation contributions. There exists a twofold experimental ambiguity in extracting the branching ratio of B-→ Kmacr 0*0(1430)π-, which can be resolved by measuring other K0*(1430)π modes in conjunction with the isospin symmetry consideration. Large weak annihilation contributions are needed to explain the K0*(1430)π data. The decay Bmacr 0→κ+K- provides a nice ground for testing the 4-quark and 2-quark nature of the κ meson. It can proceed through W-exchange and hence is quite suppressed if κ is made of two quarks, while it receives a tree contribution if κ is predominately a four-quark state. Hence, an observation of this channel at the level of ≳10-7 may imply a four-quark assignment for the κ. Mixing-induced CP asymmetries in penguin-dominated modes are studied and their

  6. Light-Front Holography and Gauge/Gravity Duality: The Light Meson and Baryon Spectra

    SciTech Connect

    de Teramond, Guy F.; Brodsky, Stanley J.; /SLAC

    2009-12-09

    Starting from the bound state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability amplitudes of the hadronic constituents at a given scale. An effective classical gravity description in a positive-sign dilaton background exp(+{kappa}{sup 2}z{sup 2}) is given for the phenomenologically successful soft-wall model which naturally encodes the internal structure of hadrons and their orbital angular momentum. Applications to the light meson and baryon spectrum are presented.

  7. Mass spectra of meson molecular states for heavy and light sectors

    NASA Astrophysics Data System (ADS)

    Rahmani, S.; Hassanabadi, H.

    2017-09-01

    We obtain mass spectra of the light and heavy meson-antimeson (molecular states) sectors by using a nonrelativistic potential model with Coulomb and one pion exchange potential terms for meson-meson interaction. The digamma decay widths are also obtained for the light sector. We compare our results with available experimental and theoretical data.

  8. Antiproton-proton annihilation into charged light meson pairs within effective meson theory

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Bystritskiy, Yury M.; Tomasi-Gustafsson, Egle

    2017-04-01

    We revisit antiproton-proton annihilation into light mesons in the energy domain relevant to the antiproton annihilation at Darmstadt (PANDA) experiment at the GSI Facility for Antiproton and Ion Research (FAIR) [2.25 (1.5 ) ≤√{s }(pL) ≤5.47 (15 ) GeV (GeV /c ) where √{s }(pL) is the total energy (the beam momentum in the laboratory frame)]. An effective meson model is developed, with mesonic and baryonic degrees of freedom. Form factors are added to take into account the composite nature of the interacting hadrons. A comparison is made with the existing data for charged pion pair production and predictions for angular distributions and energy dependence in the range 3.362 (5 ) ≤√{s }(pL) ≤4.559 (10.1 ) GeV (GeV /c ). The model is applied to π±p elastic scattering, using crossing symmetry, and to charged kaon pair production, on the basis of SU(3) symmetry. In all cases the results illustrate a nice agreement with the data.

  9. A fresh look at exclusive electroproduction of light vector mesons

    NASA Astrophysics Data System (ADS)

    Meškauskas, M.; Müller, D.

    2014-02-01

    Relying on the collinear factorization approach, we demonstrate that H1 and ZEUS measurements of exclusive light vector meson and photon electroproduction cross sections can be simultaneously described for photon virtualities of . Our findings reveal that quark exchanges are important in this small region and that in leading order approximation the gluonic component is suppressed, e.g., the skewness ratio can be much smaller than one.

  10. Light-front holographic distribution amplitudes of pseudoscalar mesons and their application to B -meson decays

    DOE PAGES

    Chang, Qin; Brodsky, Stanley J.; Li, Xin-Qiang

    2017-05-30

    In this article the dynamical spin effects of the light-front holographic wave functions for light pseudoscalar mesons are studied. These improved wave functions are then confronted with a number of hadronic observables: the decay constants of π and K mesons, their ξ -moments, the pion-to-photon transition form factor, and the pure annihilationmore » $$\\bar{B}_s$$ → π+ π- and $$\\bar{B}_d$$ → K+ K- decays. Taking fπ , fK , and their ratio fK / fπ as constraints, we perform a χ2 analysis for the holographic parameters, including the mass scale parameter $$\\sqrtλ$$ and the effective quark masses, and find that the fitted results are quite consistent with the ones obtained from the light-quark hadronic Regge trajectories. In addition, we also show that the end point divergence appearing in the pure annihilation $$\\bar{B}_s$$ → π+ π- and $$\\bar{B}_d$$ → K+ K- decays can be controlled well by using these improved light-front holographic distribution amplitudes.« less

  11. The role of meson exchanges in light-by-light scattering

    NASA Astrophysics Data System (ADS)

    Lebiedowicz, Piotr; Szczurek, Antoni

    2017-09-01

    We discuss the role of meson exchange mechanisms in γγ → γγ scattering. Several pseudoscalar (π0, η, η‧ (958), ηc (1 S), ηc (2 S)), scalar (f0 (500), f0 (980), a0 (980), f0 (1370), χc0 (1 P)) and tensor (f2 (1270), a2 (1320), f2‧ (1525), f2 (1565), a2 (1700)) mesons are taken into account. We consider not only s-channel but also for the first time t- and u-channel meson exchange amplitudes corrected for off-shell effects including vertex form factors. We find that, depending on not well known vertex form factors, the meson exchange amplitudes interfere among themselves and could interfere with fermion-box amplitudes and modify the resulting cross sections. The meson contributions are shown as a function of collision energy as well as angular distributions are presented. Interesting interference effects separately for light pseudoscalar, scalar and tensor meson groups are discussed. The meson exchange contributions may be potentially important in the context of a measurement performed recently in ultraperipheral collisions of heavy ions by the ATLAS collaboration. The light-by-light interactions could be studied in future in electron-positron collisions by the Belle II at SuperKEKB accelerator.

  12. Meson transition form factors in light-front holographic QCD

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.; Cao, Fu-Guang; de Téramond, Guy F.

    2011-10-01

    We study the photon-to-meson transition form factors (TFFs) FMγ(Q2) for γγ*→M using light-front holographic methods. The Chern-Simons action, which is a natural form in five-dimensional anti-de Sitter (AdS) space, is required to describe the anomalous coupling of mesons to photons using holographic methods and leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the qq¯ component of the pion wave function, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process π0→γγ and the pion TFF at the asymptotic limit, a probability for the qq¯ component of the pion wave function Pqq¯=0.5 is required, thus giving indication that the contributions from higher Fock states in the pion light-front wave function need to be included in the analysis. The probability for the Fock state containing four quarks Pqq¯qq¯˜10%, which follows from analyzing the hadron matrix elements for a dressed current model, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wave function. The results for the TFFs for the η and η' mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q2 is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the η and η' TFFs.

  13. Radiative decays of heavy and light mesons in a quark triangle approach

    NASA Astrophysics Data System (ADS)

    Jones, N. R.; Liu, Dongsheng

    1996-06-01

    The radiative meson decays V-->Pγ and P-->γγ are analyzed using the quark triangle diagram. Experimental data yield well determined estimates of the universal quark-antiquark-meson couplings g'Vqq¯ and g'Pqq¯ for the light meson sector. Also predictions for the ratios of neutral to charged heavy meson decay coupling constants are given and await experimental confirmation.

  14. B meson physics with polarized electron beams at the SLC

    SciTech Connect

    Atwood, W.B.

    1988-09-01

    The expected large cross-section for e/sup +/e/sup -/ ..-->.. Z/sup 0/ and subsequent decay to b/bar b/ quarks makes the Z/sup 0/ an attractive place to pursue B meson physics. In addition, the big Electroweak asymmetries, thought to exist in Z/sup 0/ decays to b/bar b/ quarks with polarized electron beams, provide an outstanding handle for observation of such effects as B/sup 0/-/bar B//sup 0/ mixing. In this paper, the feasibility of such measurements is investigated and, with relatively small samples of Z/sup 0/'s (a few hundred thousand), both B/sub d/ and B/sub s/ meson mixing are shown to be measurable. The subject of CP violation in neutral B mesons is discussed last, but presently such measurements seem to be out of reach. 7 refs., 6 figs., 3 tabs.

  15. Charmless hadronic B decays involving scalar mesons: Implications on the nature of light scalar mesons

    SciTech Connect

    Cheng Haiyang; Chua Chunkhiang; Yang Kweichou

    2006-01-01

    The hadronic charmless B decays into a scalar meson and a pseudoscalar meson are studied within the framework of QCD factorization. Based on the QCD sum rule method, we have derived the leading-twist light-cone distribution amplitudes of scalar mesons and their decay constants. Although the light scalar mesons f{sub 0}(980) and a{sub 0}(980) are widely perceived as primarily the four-quark bound states, in practice it is difficult to make quantitative predictions based on the four-quark picture for light scalars. Hence, predictions are made in the 2-quark model for the scalar mesons. The short-distance approach suffices to explain the observed large rates of f{sub 0}(980)K{sup -} and f{sub 0}(980)K{sup 0} that receive major penguin contributions from the b{yields}sss process. When f{sub 0}(980) is assigned as a four-quark bound state, there exist extra diagrams contributing to B{yields}f{sub 0}(980)K. Therefore, a priori the f{sub 0}(980)K rate is not necessarily suppressed for a four-quark state f{sub 0}(980). The predicted B{sup 0}{yields}a{sub 0}{sup {+-}}(980){pi}{sup {+-}} and a{sub 0}{sup +}(980)K{sup -} rates exceed the current experimental limits, favoring a four-quark nature for a{sub 0}(980). The penguin-dominated modes a{sub 0}(980)K and a{sub 0}(1450)K receive predominant weak annihilation contributions. There exists a twofold experimental ambiguity in extracting the branching ratio of B{sup -}{yields}K{sub 0}*{sup 0}(1430){pi}{sup -}, which can be resolved by measuring other K{sub 0}*(1430){pi} modes in conjunction with the isospin symmetry consideration. Large weak annihilation contributions are needed to explain the K{sub 0}*(1430){pi} data. The decay B{sup 0}{yields}{kappa}{sup +}K{sup -} provides a nice ground for testing the 4-quark and 2-quark nature of the {kappa} meson. It can proceed through W-exchange and hence is quite suppressed if {kappa} is made of two quarks, while it receives a tree contribution if {kappa} is predominately a four

  16. Meson Transition Form Factors in Light-Front Holographic QCD

    SciTech Connect

    Brodsky, Stanley J.; Cao, Fu-Guang; de Teramond, Guy F.; /Costa Rica U.

    2011-06-22

    We study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The Chern-Simons action, which is a natural form in 5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the q{bar q} component of the pion wavefunction, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0} {yields} {gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the q{bar q} component of the pion wavefunction P{sub q{bar q}} = 0.5 is required; thus giving indication that the contributions from higher Fock states in the pion light-front wavefunction need to be included in the analysis. The probability for the Fock state containing four quarks (anti-quarks) which follows from analyzing the hadron matrix elements, P{sub q{bar q}q{bar q}} {approx} 10%, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wavefunction. The results for the TFFs for the {eta} and {eta}{prime} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{prime} TFFs.

  17. Spectra of heavy-light mesons in a relativistic model

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Bin; Lü, Cai-Dian

    2017-05-01

    The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model which is based on a heavy-quark expansion of the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation. The kernel we choose is the standard combination of linear scalar and Coulombic vector. The effective Hamiltonian for heavy-light quark-antiquark system is calculated up to order 1/m_Q^2. Our results are in good agreement with available experimental data except for the anomalous D_{s0}^*(2317) and D_{s1}(2460) states. The newly observed heavy-light meson states can be accommodated successfully in the relativistic quark model with their assignments presented. The D_{sJ}^*(2860) can be interpreted as the |1^{3/2}D_1\\rangle and |1^{5/2}D_3\\rangle states being members of the 1D family with J^P=1^- and 3^-.

  18. Mass of heavy-light mesons in a constituent quark picture with partially restored chiral symmetry

    NASA Astrophysics Data System (ADS)

    Park, Aaron; Gubler, Philipp; Harada, Masayasu; Lee, Su Houng; Nonaka, Chiho; Park, Woosung

    2016-03-01

    We probe effects of the partial chiral symmetry restoration to the mass of heavy-light mesons in a constituent quark model by changing the constituent quark mass of the light quark. Due to the competing effect between the quark mass and the linearly rising potential, whose contribution to the energy increases as the quark mass decreases, the heavy-light meson mass has a minimum value near the constituent quark mass typically used in the vacuum. Hence, the meson mass increases as one decreases the constituent quark mass consistent with recent QCD sum rule analyses, which show an increasing D meson mass as the chiral order parameter decreases.

  19. Meson transition form factors in light-front holographic QCD

    SciTech Connect

    Brodsky, Stanley J.; Cao Fuguang; de Teramond, Guy F.

    2011-10-01

    We study the photon-to-meson transition form factors (TFFs) F{sub M}{gamma}(Q{sup 2}) for {gamma}{gamma}{sup *}{yields}M using light-front holographic methods. The Chern-Simons action, which is a natural form in five-dimensional anti-de Sitter (AdS) space, is required to describe the anomalous coupling of mesons to photons using holographic methods and leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the qq component of the pion wave function, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0}{yields}{gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the qq component of the pion wave function P{sub qq}=0.5 is required, thus giving indication that the contributions from higher Fock states in the pion light-front wave function need to be included in the analysis. The probability for the Fock state containing four quarks P{sub qqqq}{approx}10%, which follows from analyzing the hadron matrix elements for a dressed current model, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wave function. The results for the TFFs for the {eta} and {eta}{sup '} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{sup '} TFFs.

  20. B meson decays in leptons: powerful probes of new physics

    NASA Astrophysics Data System (ADS)

    Rotondo, Marcello

    2014-11-01

    We review some recent measurements of B meson decays that involve leptons in the final states and that are sensitive to physics beyond the Standard Model, such as the electroweak penguin decays B → Xsℓ+ℓ-, the Lepton Number Violating process B → Xℓ±ℓ'± and the tree-level dominated decay with τ leptons: B → τντ and B → D(∗)τντ.

  1. Light-light and heavy-light mesons in the model of QCD string with quarks at the ends

    NASA Astrophysics Data System (ADS)

    Nefediev, A. V.

    2002-06-01

    The variational einbein field method is applied to the model of the QCD string with quarks at the ends for the case of light-light and heavy-light mesons. Special attention is payed to the proper string dynamics. The correct string slope of the Regge trajectories is reproduced for light-light states which comes out from the picture of rotating string. Masses of several low-lying orbitally and radially excited states in the D, Ds, B, and Bs meson spectra are calculated and a good agreement with the experimental data as well as with recent lattice calculations is found. The role of the string correction to the interquark interaction is discussed at the example of the identification of D*' (2637) state recently claimed by DELPHI Collaboration. For the heavy-light mesons the standard constants used in Heavy Quark Effective Theory are extracted and compared to the results of other approaches.

  2. Collinear parton distributions and the structure of the nucleon sea in a light-front meson-cloud model

    NASA Astrophysics Data System (ADS)

    Kofler, Stefan; Pasquini, Barbara

    2017-05-01

    The unpolarized, helicity and transversity parton distribution functions of the nucleon are studied within a convolution model where the bare nucleon is dressed by its virtual meson cloud. Using light-front time-ordered perturbation theory, the Fock states of the physical nucleon are expanded in a series involving a bare nucleon and two-particle (meson-baryon) states. The bare baryons and mesons are described with light-front wave functions (LFWFs) for the corresponding valence-parton components. Using a representation in terms of overlap of LFWFs, the role of the nonperturbative antiquark degrees of freedom and the valence-quark contribution at the input scale of the model is discussed for the leading-twist collinear parton distributions. After introducing perturbative QCD effects through evolution to experimental scales, the results are compared with available data and phenomenological extractions. Predictions for the nucleon tensor charge are also presented, finding a very good agreement with recent phenomenological extractions.

  3. In-Medium \\varvec{ρ }-Meson Properties in a Light-Front Approach

    NASA Astrophysics Data System (ADS)

    de Melo, J. P. B. C.; Tsushima, K.

    2017-03-01

    Properties of ρ -meson in symmetric nuclear matter are investigated within a light-front constituent quark model (LFCQM), using the in-medium input calculated by the quark-meson coupling (QMC) model. The LFCQM used here was previously applied in vacuum to calculate the ρ -meson electromagnetic properties, namely, charge G0, magnetic G1, and quadrupole G2 form factors, as well as the electromagnetic radius and decay constant. We predict the in-medium modifications of the ρ -meson electromagnetic form factors in symmetric nuclear matter.

  4. Issues in light meson spectroscopy: The case for meson spectroscopy at CEBAF

    SciTech Connect

    Godfrey, S.

    1994-04-01

    The author reviews some outstanding issues in meson spectroscopy. The most important qualitative issue is whether hadrons with explicit gluonic degrees of freedom exist. To answer this question requires a much better understanding of conventional q{bar q} mesons. The author therefore begins by examining the status of conventional meson spectroscopy and how the situation can be improved. The expected properties of gluonic excitations are discussed with particular emphasis on hybrids to give guidance to experimental searches. Multiquark systems are commented upon as they are likely to be important in the mass region under study and will have to be understood better. In the final section the author discusses the opportunities that CEBAF can offer for the study of meson spectroscopy.

  5. In-medium properties of light vector mesons

    SciTech Connect

    C. Djalali; R. Nasseripour; D. P. Weygand; M. H. Wood

    2007-08-01

    The photoproduction of vector mesons on various nuclei has been studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory. All three vector mesons ρ, ω and phi are observed via their decay to e+e-. The possible in-medium effects on the properties of the ρ meson are of particular interest. The ρ spectral function is extracted from the data on carbon, iron and titanium, and compared to the spectrum from liquid deuterium, which is relatively free of nuclear effects. We observe no effects on the mass of the ρ meson, some widening in titanium and iron is observed consistent with the collisional broadening.

  6. Architectural Physics: Lighting.

    ERIC Educational Resources Information Center

    Hopkinson, R. G.

    The author coordinates the many diverse branches of knowledge which have dealt with the field of lighting--physiology, psychology, engineering, physics, and architectural design. Part I, "The Elements of Architectural Physics", discusses the physiological aspects of lighting, visual performance, lighting design, calculations and measurements of…

  7. Architectural Physics: Lighting.

    ERIC Educational Resources Information Center

    Hopkinson, R. G.

    The author coordinates the many diverse branches of knowledge which have dealt with the field of lighting--physiology, psychology, engineering, physics, and architectural design. Part I, "The Elements of Architectural Physics", discusses the physiological aspects of lighting, visual performance, lighting design, calculations and measurements of…

  8. Revisiting the production of charmonium plus a light meson at P¯ANDA

    NASA Astrophysics Data System (ADS)

    Lin, Qing-Yong; Xu, Hu-Shan; Liu, Xiang

    2012-08-01

    In this work, we calculate the total cross sections and the center-of-mass frame angular distributions of the charmonium production plus a light meson by the low energy pp¯ interaction. The results of pp¯→π0Ψ with and without form factor (FF) indicate that the FF contribution in the calculation cannot be ignored. The obtained cross section of pp¯→π0J/ψ with FF can fit the E760 data well. We also predict the total cross sections and the center-of-mass frame angular distributions of pp¯→ωΨ, which show that these physical quantities are dependent on Pauli (gω) and Dirac (κω) coupling constants of the ppω interaction. Thus, pp¯→ωΨ can be as the ideal channel to test the different theoretical values of gω and κω. Applying the formulae of pp¯→π0Ψ and pp¯→ωΨ, we predict the total cross sections of the pp¯→ηΨ and pp¯→ρΨ reactions. Our results show a common behavior of the charmonium production with a light meson by the pp¯ interaction, where the total cross section of the ηc production is the largest one among all discussed processes. The above observations can be directly tested at the forthcoming P¯ANDA experiment.

  9. Medium Modification of the Light Vector Mesons in Nuclei

    SciTech Connect

    Nasseripour, R.; Djalali, C.; Wood, M.; Weygand, D.

    2008-10-13

    Theoretical calculations predict the modification of properties of vector mesons, such as a shift in their masses and/or broadening of their widths in dense nuclear matter. These effects can be related to partial restoration of chiral symmetry at high density or temperature. Photoproduction of vector mesons off nuclei were performed at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). The data were taken with a beam of tagged photons with energies up to 4 GeV on various nuclear targets. The properties of the {rho} vector mesons were investigated via their rare leptonic decay to e+e{sup -}. This decay channel is preferred over hadronic modes in order to eliminate final state interactions in the nuclear matter. The combinatorial background in the mass spectrum was removed by a self-normalizing mixed-event technique. The {rho} meson mass distributions were extracted for each of the targets. Statistically significant results regarding medium modification of the rho meson in the nuclear medium rule out large medium effects. Transparency studies of the {omega} and {phi} vector mesons allows a determination of their widths in the medium.

  10. The chiral transitions in heavy-light mesons

    NASA Astrophysics Data System (ADS)

    Trusov, M.

    The mass shifts of the P-wave Ds and Bs mesons are calculated in the coupling channel model using the effective chiral Lagrangian, which is deduced from QCD and does not contain fitting parameters. The strong mass shifts down due to coupling to DK and BK channels for 0+ and 1+ states have been obtained, while 1+ and 2+ states remain almost at rest. The experimental limit on the width Γ(Ds1 (2536)) < 2.3 MeV puts strong restrictions on the admissible mixing angle between the 1+ and 1+ states. The masses of 0+ and 1+ states of Bs mesons have been predicted.

  11. Vector-meson-dominance model for radiative decays involving light scalar mesons.

    PubMed

    Black, Deirdre; Harada, Masayasu; Schechter, Joseph

    2002-05-06

    We study a vector-dominance model which predicts quite a large number of currently interesting decay amplitudes of the types S-->gammagamma, V-->Sgamma, and S-->Vgamma, where S and V denote scalar and vector mesons, in terms of three parameters. As an application, the model makes it easy to study in detail a recent proposal to boost the ratio Gamma(phi-->f(0)gamma)/Gamma(phi-->a(0)(0)gamma) by including the isospin violating a(0)(0)-f(0) mixing. However, we find that this effect is actually small in our model.

  12. New Heavy-Light Mesons Q bar{q}

    NASA Astrophysics Data System (ADS)

    Matsuki, T.; Morii, T.; Sudoh, K.

    2007-06-01

    We succeed in reproducing the ℓ = 1 B mesons B1(5720), B2*(5745), and Bs2*(5839) that were recently reported by D0 and CDF, using our semi-relativistic quark potential model, which also succeeds in predicting the mass spectra of the narrow DsJ, as well as broad D0*(0+) and D1'(1+) particles observed a couple of years ago. par The mass of higher excited states (ell = 1, 2) of B and Bs mesons, which have not yet been observed, is also predicted to first order in p/mb with the internal quark momentum p and the b quark mass mb. We find that the corresponding BsJ are below the BK/B*K threshold and should have narrow decay widths, contrary to most other predictions. Also, already established states (ℓ = 0 and ell = 1) of D, Ds, B, and Bs heavy mesons are simultaneously reproduced in good agreement with experimental data, within one percent accuracy. To calculate these D/Ds and B/Bs heavy mesons, we use different values of the strong coupling, αsc and αsc, respectively.

  13. Approximate degeneracy of heavy-light mesons with the same L

    NASA Astrophysics Data System (ADS)

    Matsuki, Takayuki; Lü, Qi-Fang; Dong, Yubing; Morii, Toshiyuki

    2016-07-01

    Careful observation of the experimental spectra of heavy-light mesons tells us that heavy-light mesons with the same angular momentum L are almost degenerate. The estimate is given how much this degeneracy is broken in our relativistic potential model, and it is analytically shown that expectation values of a commutator between the lowest order Hamiltonian and L→2 are of the order of 1 /mQ with a heavy quark mass mQ. It turns out that nonrelativistic approximation of heavy quark system has a rotational symmetry and hence degeneracy among states with the same L. This feature can be tested by measuring higher orbitally and radially excited heavy-light meson spectra for D /Ds / B /Bs in LHCb and forthcoming BelleII.

  14. Light quark meson spectroscopy: First results from GlueX

    NASA Astrophysics Data System (ADS)

    Stevens, Justin

    2017-01-01

    The GlueX experiment is located in the recently constructed experimental Hall D at Jefferson Lab (JLab), and provides a unique capability to search for hybrid mesons in high-energy photoproduction, utilizing a 9 GeV linearly polarized photon beam. Commissioning of the Hall D beamline and GlueX detector began in 2014 and was recently completed in the spring of 2016 with the collection of the first dataset utilizing 12 GeV electrons from the upgraded CEBAF at JLab. The statistical precision of this dataset surpasses the previous world data on polarized photoproduction in this energy domain by orders of magnitude. First results from this dataset will be presented along with the plan for acquiring higher statistics datasets to begin the search for hybrid mesons at GlueX.

  15. Superconformal Baryon-Meson Symmetry and Light-Front Holographic QCD

    SciTech Connect

    Dosch, Hans Guenter; de Teramond, Guy F.; Brodsky, Stanley J.

    2015-04-10

    We construct an effective QCD light-front Hamiltonian for both mesons and baryons in the chiral limit based on the generalized supercharges of a superconformal graded algebra. The superconformal construction is shown to be equivalent to a semi-classical approximation to light-front QCD and its embedding in AdS space. The specific breaking of conformal invariance inside the graded algebra uniquely determines the effective confinement potential. The generalized supercharges connect the baryon and meson spectra to each other in a remarkable manner. In particular, the π/b1 Regge trajectory is identified as the superpartner of the nucleon trajectory. However, the lowest-lying state on this trajectory, the π-meson is massless in the chiral limit and has no supersymmetric partner.

  16. Application of the Covariant Spectator Theory to the Study of Heavy and Heavy-Light Mesons

    NASA Astrophysics Data System (ADS)

    Leitão, Sofia; Stadler, Alfred; Peña, M. T.; Biernat, Elmar P.

    2017-03-01

    As an application of the Covariant Spectator Theory (CST) we calculate the spectrum of heavy-light and heavy-heavy mesons using covariant versions of a linear confining potential, a one-gluon exchange, and a constant interaction. The CST equations possess the correct one-body limit and are therefore well-suited to describe mesons in which one quark is much heavier than the other. We find a good fit to the mass spectrum of heavy-light and heavy-heavy mesons with just three parameters (apart from the quark masses). Remarkably, the fit parameters are nearly unchanged when we fit to experimental pseudoscalar states only or to the whole spectrum. Because pseudoscalar states are insensitive to spin-orbit interactions and do not determine spin-spin interactions separately from central interactions, this result suggests that it is the covariance of the kernel that correctly predicts the spin-dependent quark-antiquark interactions.

  17. Superconformal Baryon-Meson Symmetry and Light-Front Holographic QCD

    DOE PAGES

    Dosch, Hans Guenter; de Teramond, Guy F.; Brodsky, Stanley J.

    2015-04-10

    We construct an effective QCD light-front Hamiltonian for both mesons and baryons in the chiral limit based on the generalized supercharges of a superconformal graded algebra. The superconformal construction is shown to be equivalent to a semi-classical approximation to light-front QCD and its embedding in AdS space. The specific breaking of conformal invariance inside the graded algebra uniquely determines the effective confinement potential. The generalized supercharges connect the baryon and meson spectra to each other in a remarkable manner. In particular, the π/b1 Regge trajectory is identified as the superpartner of the nucleon trajectory. However, the lowest-lying state on thismore » trajectory, the π-meson is massless in the chiral limit and has no supersymmetric partner.« less

  18. Equivalence of light-front and covariant approaches in meson-baryon interactions

    SciTech Connect

    Chueng-Ryong Ji, Wally Melnitchouk

    2011-10-01

    We demonstrate the equivalence of the light-front, equal-time and covariant formulations in meson-baryon interactions. In particular, we discuss the self-energy Sigma of a nucleon dressed by pion loops with the pseudovector piNN coupling. It is shown that the leading nonanalytic behavior of Sigma is equivalent whichever formulations are used for the derivation.

  19. Chiral Extrapolation of Light Mesons from the Lattice

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Doring, Michael; Mai, Maxim; Molina, Raquel; Alexandru, Andrei

    2017-01-01

    The ρ(770) meson is the most extensively studied resonance in lattice QCD simulations in two (Nf = 2) and three (Nf = 2 + 1) flavors. We analyze all available phase shifts from Nf = 2 simulations using unitarized Chiral Perturbation Theory (UCHPT), and allowing not only for the extrapolation in mass but also in flavor, Nf = 2 ->Nf = 2 + 1 . The flavor extrapolation requires information from a global fit to ππ and πK phase shifts from experiment. In the chiral extrapolations of Nf = 2 simulations, the K K channel has a significant effect and leads to ρ(770) masses surprisingly close to the experimental one. We also discuss recent results on the chiral extrapolations of Nf = 2 + 1 lattice QCD data of the ρ(770) meson and the σ(600) that have become available. Supported by the U.S. Department of Energy Grant DE-SC0014133, contract DE-AC05-06OR23177, and by the National Science Foundation (CAREER Grants Nos. 1452055 and PHY-1151648 , PIF Grant No. 1415459).

  20. Strong coupling constants of heavy baryons with light mesons in QCD

    SciTech Connect

    Aliev, T. M.; Azizi, K.; Savci, M.

    2012-10-23

    The strong coupling constants of the heavy spin-1/2 and spin-3/2 baryons with light pseudoscalar and vector mesons are calculated in the framework of the light cone QCD sum rules. Using the symmetry arguments, some structure independent relations among different correlation functions are obtained. It is shown that all possible transitions are described by only one invariant function, whose explicit expression is structure dependent.

  1. Strong coupling constant of negative parity octet baryons with light pseudoscalar mesons in light cone QCD sum rules

    NASA Astrophysics Data System (ADS)

    Aliev, T. M.; Savcı, M.

    2017-01-01

    The strong coupling constants of the π and K mesons with negative parity octet baryons are estimated within the light cone QCD sum rules. It is observed that all strong coupling constants, similarly to the case for the positive parity baryons, can be described in terms of three invariant functions, where two of them correspond to the well known F and D couplings in the SU(3)f symmetry, and the third function describes the SU(3)f symmetry violating effects. We compare our predictions on the strong coupling constants of pseudoscalar mesons of negative parity baryons with those corresponding to the strong coupling constants for the positive parity baryons.

  2. Predictions for diffractive ɸ meson production using an AdS/QCD light-front wavefunction

    NASA Astrophysics Data System (ADS)

    Ahmady, Mohammad; Sandapen, Ruben; Sharma, Neetika

    2017-03-01

    We compute the rate for diffractive ɸ electro-production using the Color Glass Condensate dipole model. The model parameters are obtained from fits to the most recent combined HERA data on inclusive deep inelastic scattering. As for the ɸ meson, we use an AdS/QCD holographic light front wavefunction. Our predictions are compared to the available data collected at the HERA collider.

  3. Exclusive rare B decays to two light pseudoscalar mesons

    NASA Astrophysics Data System (ADS)

    Gaidarev, Petr Borisovich

    1997-12-01

    Using the data sample of 3.3×106/ B/bar B events taken with the CLEO II detector, we have searched for rare B decays into K/pi and πpi final states. We have made the first observation of the decay B0/to K+/pi/sp- and measured its branching fraction to be (1.5-0.4-0.1+0.5+0.1/pm0.1)×10-5. We set 90% confidence level upper limits of 1.5×10-5 and 0.43×10-5 for B0/toπ+/pi/sp- and B0/to K+K/sp- respectively. We have also observed the decay B+/toπ+K0. The measured branching fraction is (2.3-1.0- 0.3+1.1+0.3/pm0.2)×10-5 and we set a 90% C.L. upper limit of 2.1×10-5 for the B+/to K+K0 decay mode. We have found strong evidence for the decays B+/to h+π0, where h+ stands for a charged kaon or pion. We have measured the combined branching fraction of (1.6-0.5-0.2+0.6+0.3/pm0.1)×10-5 and set 90% C.L. upper limits of 1.6×10-5 and 2.0×10-5 for B+/to K+π0 and B+/toπ+π0 respectively. We have searched for the decays B0/to K0π0 and B0/toπ0π0 and set 90% C.L. upper limits of 4.1×10-5 and 0.93×10-5 respectively. The importance of this class of decays for the studies of CP violation in B mesons is discussed, in particular their use to measure the angle γ of the unitarity triangle.

  4. Two-body charmed B(s ) decays involving a light scalar meson

    NASA Astrophysics Data System (ADS)

    Zou, Zhi-Tian; Li, Ying; Liu, Xin

    2017-01-01

    Based on the assumption of two-quark structure for the light scalar mesons, within the perturbative QCD approach, we investigate the B →D(*)S (q =u ,d ,s ) decays induced by the b →u transition, with S denoting a light scalar meson. Under two different scenarios, the branching ratios of 96 decay modes have been calculated, most of which are in the range 10-5 to 10-8. These results can be tested in the ongoing LHCb experiment and the forthcoming Belle-II experiment. The comparison between our predictions and the experimental data allows us to probe the inner structure of the scalar mesons. In the standard model, since all decays can only occur through tree operators, there are no C P asymmetries. We note that, due to the mass difference between charm quark and light quarks, the contribution from annihilation diagrams will be enhanced sizably, especially for these color-suppressed or pure-annihilation-type decay modes. We also find that the branching ratios of color-favored decays are sensitive to the different scenarios, so their measurement will help us differentiate the different scenarios. It is also found that the ratios between Br (B →D(*)σ ) and Br (B →D(*)f0(980 )) can be used to determine the mixing angle of σ and f0(980 ).

  5. Renormalization-group evolution of new physics contributions to (semi)leptonic meson decays

    NASA Astrophysics Data System (ADS)

    González-Alonso, Martín; Martin Camalich, Jorge; Mimouni, Kin

    2017-09-01

    We study the renormalization group evolution (RGE) of new physics contributions to (semi)leptonic charged-current meson decays, focusing on operators involving a chirality flip at the quark level. We calculate their evolution under electroweak and electromagnetic interactions, including also the three-loop QCD running and provide numerical formulas that allow us to connect the values of the corresponding Wilson coefficients from scales at the TeV to the low-energy scales. The large mixing of the tensor operator into the (pseudo)scalar ones has important phenomenological implications, such as the RGE of new physics bounds obtained from light quark decays or in b → cℓν transitions. For instance, we study scenarios involving tensor effective operators, which have been proposed in the literature to address the B-decay anomalies, most notably those concerning the R D (*) ratios. We conclude that the loop effects are important and should be taken into account in the analysis of these processes, especially if the operators are generated at an energy scale of ∼1 TeV or higher.

  6. B meson physics with polarized electron beams at linear colliders running at the Z

    SciTech Connect

    Atwood, W.B.

    1988-12-01

    The expected large cross section for e e Z and subsequent decay to b/bar b/ quarks makes the Z an attractive placeto pursue B meson physics. The cross section for b-quark production at the Z is compared to resonance production at the UPSILON/sub 4s/ and UPSILON/sub 5s/. In addition the big electroweak asymmetries, thought to exist in Z decays to b/bar b/ quarks with polarized electron beams, provide an outstanding handle for observation of such effects as B - /bar B/ mixing. In this paper, the feasibility of such measurements is investigated and, with relatively small samples of Z's (a few hundred thousand), both B/sub d/ and B/sub s/ meson mixing are shown to be measurable. The subject of CP violation in neutral B mesons is discussed last, but presently such measurements seem to be out of reach. 7 refs., 7 figs., 3 tabs.

  7. Spin-1 diquark contributing to the formation of tetraquarks in light mesons

    NASA Astrophysics Data System (ADS)

    Kim, Hungchong; Cheoun, Myung-Ki; Kim, K. S.

    2017-03-01

    We apply a mixing framework to the light-meson systems and examine tetraquark possibility in the scalar channel. In the diquark-antidiquark model, a scalar diquark is a compact object when its color and flavor structures are in (\\bar{{3}}_c, \\bar{{3}}_f). Assuming that all the quarks are in an S-wave, the spin-0 tetraquark formed out of this scalar diquark has only one spin configuration, |J,J_{12},J_{34}\\rangle =|000\\rangle , where J is the spin of the tetraquark, J_{12} the diquark spin, J_{34} the antidiquark spin. In this construction of the scalar tetraquark, we notice that another compact diquark with spin-1 in ({6}_c, \\bar{{3}}_f) can be used although it is less compact than the scalar diquark. The spin-0 tetraquark constructed from this vector diquark leads to the spin configuration |J,J_{12},J_{34}\\rangle =|011\\rangle . The two configurations, |000\\rangle and |011\\rangle , are found to mix strongly through the color-spin interaction. The physical states can be identified with certain mixtures of the two configurations which diagonalize the hyperfine masses of the color-spin interaction. Matching these states to two scalar resonances a_0(980), a_0(1450) or to K^*_0(800), K^*_0(1430) depending on the isospin channel, we find that their mass splittings are qualitatively consistent with the hyperfine mass splittings, which can support their tetraquark structure. To test our mixing scheme further, we also construct the tetraquarks for J=1,J=2 with the spin configurations |111\\rangle and |211\\rangle , and we discuss possible candidates in the physical spectrum.

  8. Finite nuclei in relativistic models with a light chiral scalar meson

    SciTech Connect

    Furnstahl, R.J. ); Serot, B.D. )

    1993-05-01

    Relativistic chiral models with a light scalar meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. The scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon ([ital NN]) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. These deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario, which features a heavy chiral scalar and dynamical generation of the [ital NN] attraction, is discussed.

  9. Finite nuclei in relativistic models with a light chiral scalar meson

    SciTech Connect

    Serot, B.D.; Furnstahl, R.J.

    1993-10-01

    Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed.

  10. Hyperfine splitting and the Zeeman effect in holographic heavy-light mesons

    SciTech Connect

    Herzog, Christopher P.; Stricker, Stefan A.; Vuorinen, Aleksi

    2010-08-15

    We inspect the mass spectrum of heavy-light mesons in deformed N=2 super Yang-Mills theory using the AdS/CFT correspondence. We demonstrate how some of the degeneracies of the supersymmetric meson spectrum can be removed upon breaking the supersymmetry, thus leading to the emergence of a hyperfine structure. The explicit SUSY breaking scenarios we consider involve on the one hand, tilting one of the two fundamental D7-branes inside the internal R{sup 6} space, and on the other hand, applying an external magnetic field on the (untilted) branes. The latter scenario leads to the well-known Zeeman effect, which we inspect for both weak and strong magnetic fields.

  11. Symmetry-preserving contact interaction model for heavy-light mesons

    SciTech Connect

    Serna, F. E.; Brito, M. A.; Krein, G.

    2016-01-22

    We use a symmetry-preserving regularization method of ultraviolet divergences in a vector-vector contact interaction model for low-energy QCD. The contact interaction is a representation of nonperturbative kernels used Dyson-Schwinger and Bethe-Salpeter equations. The regularization method is based on a subtraction scheme that avoids standard steps in the evaluation of divergent integrals that invariably lead to symmetry violation. Aiming at the study of heavy-light mesons, we have implemented the method to the pseudoscalar π and K mesons. We have solved the Dyson-Schwinger equation for the u, d and s quark propagators, and obtained the bound-state Bethe-Salpeter amplitudes in a way that the Ward-Green-Takahashi identities reflecting global symmetries of the model are satisfied for arbitrary routing of the momenta running in loop integrals.

  12. Observation of chicJ radiative decays to light vector mesons.

    PubMed

    Bennett, J V; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tan, B J Y; Tomaradze, A; Libby, J; Martin, L; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Mendez, H; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Tatishvili, G; Vogel, H; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J

    2008-10-10

    Using a total of 2.74 x 10(7) decays of the psi(2S) collected with the CLEO-c detector, we present a study of chi(cJ)-->gammaV, where V=rho(0), omega, phi. The transitions chi(c1)-->gammarho(0 and chi(c1)-->gammaomega are observed with B(chi(c1)-->gammarho(0))=(2.43+/-0.19+/-0.22) x 10(-4) and B(chi(c1)-->gammaomega)=(8.3+/-1.5+/-1.2) x 10(-5). In the chi(c1)-->gammarho(0) transition, the final state meson is dominantly longitudinally polarized. Upper limits on the branching fractions of other chi(cJ) states to light vector mesons are presented.

  13. A VMD Based, Nonet and SU(3) Symmetry Broken Model for Radiative Decays of Light Mesons

    SciTech Connect

    Benayoun, M.

    2005-04-06

    We present a VMD based model aiming to describe all radiative decays of light mesons. We show that the SU(3) breaking mechanism proposed by Bando, Kugo and Yamawaki (BKY), supplemented by nonet symmetry breaking in the pseudoscalar sector are sufficient to provide a nice description of all data, except the K*{sup {+-}} radiative width. It is also shown that nonet symmetry breaking has effects which cannot be disentangled from those produced by coupling of glue to the {eta}{prime} meson. Coupling of glue to {eta} is not found to be required by the data. Assuming the K*{sup {+-}} radiative width is indeed at its presently accepted value necessitates to supplement the BKY breaking in a way which finally preserves an equivalence statement between the VMD approach to radiative decays and the Wess-Zumino-Witten Lagrangian.

  14. Symmetry Relations for Heavy-to-Light Meson Form Factors at Large Recoil

    SciTech Connect

    Hill, R.

    2004-11-10

    The description of large-recoil heavy-to-light meson form factors is reviewed in the framework of soft-collinear effective theory. At leading power in the heavy-quark expansion, three classes of approximate symmetry relations arise. The relations are compared to experimental data for D {yields} K* and D{sub s} {yields} {phi} form factors, and to light-cone QCD sum rule predictions for B {yields} {pi} and B {yields} {rho} form factors. Implications for the extraction of |V{sub ub}| from semileptonic B {yields} {rho} decays are discussed.

  15. Physics of light

    SciTech Connect

    Doria, R.

    2012-09-24

    Physics of Light is derived. Based on such interpretation relating fields with same Lorentz nature, the electromagnetism is enlarged. The electromagnetic phenomena is not more restricted to Maxwell and electric charge. It englobes Maxwell and produces new types of electromagnetic fields and sectors. It centers the photon at its origin, new aspects as photonic charges and selfinteracting photons are obtained. As a case of this new electromagnetic spectrum one can take the set {l_brace}{gamma}Z{sup 0},W{sup {+-}}{r_brace}. It provides an electromagnetism involving photonic, massive, neutral, electric charged sectors which may antecede the electroweak unification.

  16. Noninterceptive beam energy measurements in line D of the Los Alamos Meson Physics Facility

    SciTech Connect

    Gilpatrick, J.D.; Carter, H.; Plum, M.; Power, J.F.; Rose, C.R.; Shurter, R.B.

    1995-05-05

    Several members of the Accelerator and Operations Technology (AOT) division beam-diagnostics team performed time-of-flight (TOF) beam-energy measurements in line D of the Los Alamos Meson Physics Facility (LAMPF) using developmental beam time. These measurements provided information for a final design of an on-line beam energy measurement. The following paper discusses these measurements and how they apply to the final beam energy measurement design. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  17. Meson/Baryon/Tetraquark Supersymmetry from Superconformal Algebra and Light-Front Holography

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter Lorcé, Cédric

    Superconformal algebra leads to remarkable connections between the masses of mesons and baryons of the same parity - supersymmetric relations between the bosonic and fermionic bound states of QCD. Supercharges connect the mesonic eigenstates to their baryonic superpartners, where the mesons have internal angular momentum one unit higher than the baryons: LM = LB + 1. The dynamics of the superpartner hadrons also match; for example, the power-law fall-off of the form factors are the same for the mesonic and baryonic superpartners, in agreement with twist counting rules. An effective supersymmetric light-front Hamiltonian for hadrons composed of light quarks can be constructed by embedding superconformal quantum mechanics into AdS space. This procedure also generates a spin-spin interaction between the hadronic constituents. A specific breaking of conformal symmetry inside the graded algebra determines a unique quark-confining light-front potential for light hadrons in agreement with the soft-wall AdS/QCD approach and light-front holography. Only one mass parameter ? appears; it sets the confinement mass scale, a universal value for the slope of all Regge trajectories, the nonzero mass of the proton and other hadrons in the chiral limit, as well as the length scale which underlies their structure. The mass for the pion eigenstate vanishes in the chiral limit. When one includes the constituent quark masses using the Feynman-Hellman theorem, the predictions are consistent with the empirical features of the light-quark hadronic spectra. Our analysis can be consistently applied to the excitation spectra of the π, ρ, K, K* and ø meson families as well as to the N, Δ, Λ, Σ, Σ*, Ξ and Ξ* baryons. We also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. The mass-squared of the light hadrons can be expressed in a universal and frame-independent decomposition of contributions from the constituent kinetic

  18. Meson/baryon/tetraquark supersymmetry from superconformal algebra and light-front holography

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; Lorcé, Cédric

    2016-07-01

    Superconformal algebra leads to remarkable connections between the masses of mesons and baryons of the same parity — supersymmetric relations between the bosonic and fermionic bound states of QCD. Supercharges connect the mesonic eigenstates to their baryonic superpartners, where the mesons have internal angular momentum one unit higher than the baryons: LM = LB + 1. The dynamics of the superpartner hadrons also match; for example, the power-law fall-off of the form factors are the same for the mesonic and baryonic superpartners, in agreement with twist counting rules. An effective supersymmetric light-front Hamiltonian for hadrons composed of light quarks can be constructed by embedding superconformal quantum mechanics into AdS space. This procedure also generates a spin-spin interaction between the hadronic constituents. A specific breaking of conformal symmetry inside the graded algebra determines a unique quark-confining light-front potential for light hadrons in agreement with the soft-wall AdS/QCD approach and light-front holography. Only one mass parameter λ appears; it sets the confinement mass scale, a universal value for the slope of all Regge trajectories, the nonzero mass of the proton and other hadrons in the chiral limit, as well as the length scale which underlies their structure. The mass for the pion eigenstate vanishes in the chiral limit. When one includes the constituent quark masses using the Feynman-Hellman theorem, the predictions are consistent with the empirical features of the light-quark hadronic spectra. Our analysis can be consistently applied to the excitation spectra of the π, ρ, K, K∗ and ϕ meson families as well as to the N, Δ, Λ, Σ, Σ∗, Ξ and Ξ∗ baryons. We also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. The mass-squared of the light hadrons can be expressed in a universal and frame-independent decomposition of contributions from the constituent

  19. Decay constants and radiative decays of heavy mesons in light-front quark model

    SciTech Connect

    Choi, Ho-Meoyng

    2007-04-01

    We investigate the magnetic dipole decays V{yields}P{gamma} of various heavy-flavored mesons such as (D,D*,D{sub s},D{sub s}*,{eta}{sub c},J/{psi}) and (B,B*,B{sub s},B{sub s}*,{eta}{sub b},{upsilon}) using the light-front quark model constrained by the variational principle for the QCD-motivated effective Hamiltonian. The momentum dependent form factors F{sub VP}(q{sup 2}) for V{yields}P{gamma}* decays are obtained in the q{sup +}=0 frame and then analytically continued to the timelike region by changing q{sub perpendicular} to iq{sub perpendicular} in the form factors. The coupling constant g{sub VP{gamma}} for real photon case is then obtained in the limit as q{sup 2}{yields}0, i.e. g{sub VP{gamma}}=F{sub VP}(q{sup 2}=0). The weak decay constants of heavy pseudoscalar and vector mesons are also calculated. Our numerical results for the decay constants and radiative decay widths for the heavy-flavored mesons are overall in good agreement with the available experimental data as well as other theoretical model calculations.

  20. Recent results in light-quark meson spectroscopy from Fermilab experiment E-760

    SciTech Connect

    Hasan, M.A.; Bharadwaj, V.; Church, M.; Hahn, A.; Hasan, M.A.; Hsueh, S.; Marsh, W.; Peoples, J. Jr.; Pordes, S.; Rapidis, P.

    1994-09-01

    Fermilab experiment E-760 light-quark meson spectroscopy data for proton-antiproton annihilation to 3{pi}{sup 0}, 2{pi}{sup 0}{eta}, {pi}{sup 0}2{eta}, and 3{eta} in-flight have confirmed the 1500 MeV state at rest seen previously at CERN. Structures above this energy are complex, and preliminary results of amplitude analysis, in progress, for extracting spin quantum numbers show the possibility of nearly degenerate states for some of these structures. 9 refs., 6 figs., 3 tabs.

  1. Renormalization-group evolution of the B-meson light-cone distribution amplitude.

    PubMed

    Lange, Björn O; Neubert, Matthias

    2003-09-05

    An integro-differential equation governing the evolution of the leading-order B-meson light-cone distribution amplitude is derived. The anomalous dimension in this equation contains a logarithm of the renormalization scale, whose coefficient is identified with the cusp anomalous dimension of Wilson loops. The exact solution of the evolution equation is obtained, from which the asymptotic behavior of the distribution amplitude is derived. These results can be used to resum Sudakov logarithms entering the hard-scattering kernels in QCD factorization theorems for exclusive B decays.

  2. Light meson masses and non-perturbative renormalisation in 2+1 flavour domain wall QCD

    NASA Astrophysics Data System (ADS)

    Tweedie, Robert

    2006-12-01

    We present results for the light meson masses, the bare strange quark mass and preliminary non- perturbative renormalisation of BK in 2+1 flavour domain wall QCD. The ensembles used were generated with the Iwasaki gauge action and have a volume of 163 × 32 with a fifth dimension size of 16 and an inverse lattice spacing of 1.6 GeV. These ensembles have u and d masses as low as one quarter of the strange quark mass. All data were generated jointly by the UKQCD and RBC collaborations on QCDOC machines.

  3. Noninterceptive beam energy measurements in line D of the Los Alamos Meson Physics Facility

    SciTech Connect

    Gilpatrick, J.D.; Carter, H.; Plum, M.; Power, J.F.; Rose, C.R.; Shurter, R.B.

    1995-12-31

    Several members of the Accelerator and Operations Technology (AOT) division beam-diagnostics team performed time-of-flight (TOF) beam-energy measurements in line D of the Los Alamos Meson Physics Facility (LAMPF) using developmental beam time. These measurements provided information for a final design of an on-line beam energy measurement. The following paper discusses these measurements and how they apply to the final beam energy measurement design.

  4. Noninterceptive beam energy measurements in line D of the Los Alamos Meson Physics Facility

    NASA Astrophysics Data System (ADS)

    Gilpatrick, J. D.; Carter, H.; Plum, M.; Power, J. F.; Rose, C. R.; Shurter, R. B.

    1995-05-01

    Several members of the Accelerator and Operations Technology (AOT) division beam-diagnostics team performed time-of-flight (TOF) beam-energy measurements in line D of the Los Alamos Meson Physics Facility (LAMPF) using developmental beam time. These measurements provided information for a final design of an on-line beam energy measurement. The following paper discusses these measurements and how they apply to the final beam energy measurement design.

  5. Effects of a dressed quark-gluon vertex in vector heavy-light mesons and theory average of the Bc* meson mass

    NASA Astrophysics Data System (ADS)

    Gómez-Rocha, M.; Hilger, T.; Krassnigg, A.

    2016-04-01

    We extend earlier investigations of heavy-light pseudoscalar mesons to the vector case, using a simple model in the context of the Dyson-Schwinger-Bethe-Salpeter approach. We investigate the effects of a dressed quark-gluon vertex in a systematic fashion and illustrate and attempt to quantify corrections beyond the phenomenologically very useful and successful rainbow-ladder truncation. In particular we investigate the dressed quark-photon vertex in such a setup and make a prediction for the experimentally as yet unknown mass of the Bc* , which we obtain at 6.334 GeV well in line with predictions from other approaches. Furthermore, we combine a comprehensive set of results from the theoretical literature. The theoretical average for the mass of the Bc* meson is 6.336 ±0.002 GeV .

  6. Semileptonic B(s ) decays to excited charmed mesons with e , μ , τ and searching for new physics with R (D ** )

    NASA Astrophysics Data System (ADS)

    Bernlochner, Florian U.; Ligeti, Zoltan

    2017-01-01

    Semileptonic B meson decays into the four lightest excited charmed meson states (D0*, D1*, D1, and D2*) and their counterparts with s quarks are investigated, including the full lepton mass dependence. We derive the standard model predictions for the differential branching fractions, as well as predictions for the ratios of the semitauonic and light-lepton semileptonic branching fractions. These can be systematically improved using future measurements of the total or differential semileptonic rates to e and μ , as well as the two-body hadronic branching fractions with a pion, related by factorization to the semileptonic rate at maximal recoil. To illustrate the different sensitivities to new physics, we explore the dependence of the ratio of semitauonic and light-lepton branching fractions to possible four-fermion scalar interactions.

  7. Excited and exotic charmonium, D s and D meson spectra for two light quark masses from lattice QCD

    NASA Astrophysics Data System (ADS)

    Cheung, Gavin K. C.; O'Hara, Cian; Moir, Graham; Peardon, Michael; Ryan, Sinéad M.; Thomas, Christopher E.; Tims, David

    2016-12-01

    We present highly-excited charmonium, D s and D meson spectra from dynamical lattice QCD calculations with light quarks corresponding to M π ˜ 240 MeV and compare these to previous results with M π ˜ 400 MeV. Utilising the distillation framework, large bases of carefully constructed interpolating operators and a variational procedure, we extract and reliably identify the continuum spin of an extensive set of excited mesons. These include states with exotic quantum numbers which, along with a number with non-exotic quantum numbers, we identify as having excited gluonic degrees of freedom and interpret as hybrid mesons. Comparing the spectra at the two different M π , we find only a mild light-quark mass dependence and no change in the overall pattern of states.

  8. The ρ-meson light-cone distribution amplitudes from lattice QCD

    NASA Astrophysics Data System (ADS)

    Braun, Vladimir M.; Bruns, Peter C.; Collins, Sara; Gracey, John A.; Gruber, Michael; Göckeler, Meinulf; Hutzler, Fabian; Pérez-Rubio, Paula; Schäfer, Andreas; Söldner, Wolfgang; Sternbeck, André; Wein, Philipp

    2017-04-01

    We present the results of a lattice study of the normalization constants and second moments of the light-cone distribution amplitudes of longitudinally and transversely polarized ρ mesons. The calculation is performed using two flavors of dynamical clover fermions at lattice spacings between 0.060 fm and 0.081 fm, different lattice volumes up to m π L = 6.7 and pion masses down to m π = 150 MeV. Bare lattice results are renormalized non-perturbatively using a variant of the RI'-MOM scheme and converted to the \\overline{MS} scheme. The necessary conversion coefficients, which are not available in the literature, are calculated. The chiral extrapolation for the relevant decay constants is worked out in detail. We obtain for the ratio of the tensor and vector coupling constants f ρ T / f ρ = 0.629(8) and the values of the second Gegenbauer moments a 2 ‖ = 0.132(27) and a 2 ⊥ = 0.101(22) at the scale μ = 2 GeV for the longitudinally and transversely polarized ρ mesons, respectively. The errors include the statistical uncertainty and estimates of the systematics arising from renormalization. Discretization errors cannot be estimated reliably and are not included. In this calculation the possibility of ρ → ππ decay at the smaller pion masses is not taken into account.

  9. Illuminating Physics with Light Bulbs.

    ERIC Educational Resources Information Center

    Leff, Harvey S.

    1990-01-01

    Presents ideas on how common household light bulbs can be used to develop interest in learning physics. Focuses on supermarket data taking and analyses, filament temperatures, detective work with three-way bulbs, and lifetime statistics. (YP)

  10. Illuminating Physics with Light Bulbs.

    ERIC Educational Resources Information Center

    Leff, Harvey S.

    1990-01-01

    Presents ideas on how common household light bulbs can be used to develop interest in learning physics. Focuses on supermarket data taking and analyses, filament temperatures, detective work with three-way bulbs, and lifetime statistics. (YP)

  11. Exotic mesons in quenched lattice QCD

    SciTech Connect

    Bernard, C.; Hetrick, J.E.; DeGrand, T.A.; Wingate, M.; DeTar, C.; McNeile, C. |; Gottlieb, S.; Heller, U.M.; Rummukainen, K.; Sugar, B.; Toussaint, D. |

    1997-12-01

    Since gluons in QCD are interacting fundamental constituents just as quarks are, we expect that in addition to mesons made from a quark and an antiquark, there should also be glueballs and hybrids (bound states of quarks, antiquarks, and gluons). In general, these states would mix strongly with the conventional {bar q}q mesons. However, they can also have exotic quantum numbers inaccessible to {bar q}q mesons. Confirmation of such states would give information on the role of {open_quotes}dynamical{close_quotes} color in low energy QCD. In the quenched approximation we present a lattice calculation of the masses of mesons with exotic quantum numbers. These hybrid mesons can mix with four quark ({bar q}{bar q}qq) states. The quenched approximation partially suppresses this mixing. Nonetheless, our hybrid interpolating fields also couple to four quark states. Using a four-quark source operator, we demonstrate this mixing for the 1{sup {minus}+} meson. Using the conventional Wilson quark action, we calculate both at reasonably light quark masses, intending to extrapolate to small quark mass, and near the charmed quark mass, where we calculate the masses of some {bar c}cg hybrid mesons. The hybrid meson masses are large {emdash} over 4 GeV for charmonium and more than twice the vector meson mass at our smallest quark mass, which is near the strange quark mass. {copyright} {ital 1997} {ital The American Physical Society}

  12. Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)

    SciTech Connect

    Sharirli, M.; Rand, J.L.; Sasser, M.K.; Gallegos, F.R.

    1992-12-01

    The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief review of the studies involved in Phases I and II of the program.

  13. Distributed data access in the LAMPF (Los Alamos Meson Physics Facility) control system

    SciTech Connect

    Schaller, S.C.; Bjorklund, E.A.

    1987-01-01

    We have extended the Los Alamos Meson Physics Facility (LAMPF) control system software to allow uniform access to data and controls throughout the control system network. Two aspects of this work are discussed here. Of primary interest is the use of standard interfaces and standard messages to allow uniform and easily expandable inter-node communication. A locally designed remote procedure call protocol will be described. Of further interest is the use of distributed databases to allow maximal hardware independence in the controls software. Application programs use local partial copies of the global device description database to resolve symbolic device names.

  14. Ion-chamber-based loss monitor system for the Los Alamos Meson Physics Facility

    SciTech Connect

    Plum, M.A.; Brown, D.; Browman, A.; Macek, R.J.

    1995-05-01

    A new loss monitor system has been designed and installed at the Los Alamos Meson Physics Facility (LAMPF). The detectors are ion chambers filled with N{sub 2} gas. The electronics modules have a threshold range of 1:100, and they can resolve changes in beam loss of about 2% of the threshold settings. They can generate a trip signal in 2 {mu}s if the beam loss is large enough; if the response time of the Fast Protect System is included the beam will be shut off in about 37 {mu}s.

  15. Covariant Spectator Theory of heavy-light and heavy mesons and the predictive power of covariant interaction kernels

    NASA Astrophysics Data System (ADS)

    Leitão, Sofia; Stadler, Alfred; Peña, M. T.; Biernat, Elmar P.

    2017-01-01

    The Covariant Spectator Theory (CST) is used to calculate the mass spectrum and vertex functions of heavy-light and heavy mesons in Minkowski space. The covariant kernel contains Lorentz scalar, pseudoscalar, and vector contributions. The numerical calculations are performed in momentum space, where special care is taken to treat the strong singularities present in the confining kernel. The observed meson spectrum is very well reproduced after fitting a small number of model parameters. Remarkably, a fit to a few pseudoscalar meson states only, which are insensitive to spin-orbit and tensor forces and do not allow to separate the spin-spin from the central interaction, leads to essentially the same model parameters as a more general fit. This demonstrates that the covariance of the chosen interaction kernel is responsible for the very accurate prediction of the spin-dependent quark-antiquark interactions.

  16. Interactions of Charmed Mesons with Light Pseudoscalar Mesons from Lattice QCD and Implications on the Nature of the D*s0(2317)

    SciTech Connect

    Liuming, Liu; Orginos, Kostas; Guo, Feng-Kun; Hanhart, Christoph; Meissner, Ulf-G

    2014-11-01

    We study the scattering of light pseudoscalar mesons ( p , K ) off charmed mesons ( D , D s ) in full lattice QCD. The S -wave scattering lengths are calculated using Luscher’s finite volume technique. We use a relativistic formulation for the charm quark. For the light quark, we use domain- wall fermions in the valence sector and improved Kogut-Susskind sea quarks. We calculate the scattering lengths of isospin-3/2 Dπ , D sπ , D s K , isospin-0 DK and isospin-1 DK channels on the lattice. For the chiral extrapolation, we use a chiral unitary approach to next-to-leading order, which at the same time allows us to give predictions for other channels. It turns out that our results support the interpretation of the D*s0( 2317 ) as a DK molecule. At the same time, we also update a prediction for the isospin breaking hadronic decay width G ( D*s0( 2317 )→ D sπ ) to ( 133± 22 ) keV.

  17. Applications of AdS/QCD and Light-Front Holography to Baryon Physics

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2011-08-22

    The correspondence between theories in anti-de Sitter space and field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD which has scale invariance at short distances and color confinement at large distances. These equations, for both mesons and baryons, give a very good representation of the observed hadronic spectrum, including a zero mass pion. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. The meson and baryon wavefunctions derived from light-front holography and AdS/QCD also have remarkable phenomenological features, including predictions for the electromagnetic form factors and decay constants. The approach can be systematically improved using light-front Hamiltonian methods. Some novel features of QCD for baryon physics are also discussed.

  18. Applications of AdS/QCD and Light-Front Holography to Baryon Physics

    SciTech Connect

    Brodsky, Stanley J.; Teramond, Guy F. de

    2011-10-21

    The correspondence between theories in anti--de Sitter space and field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD which has scale invariance at short distances and color confinement at large distances. These equations, for both mesons and baryons, give a very good representation of the observed hadronic spectrum, including a zero mass pion. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. The meson and baryon wave-functions derived from light-front holography and AdS/QCD also have remarkable phenomenological features, including predictions for the electromagnetic form factors and decay constants. The approach can be systematically improved using light-front Hamiltonian methods. Some novel features of QCD for baryon physics are also discussed.

  19. Strong decays of heavy-light mesons in a chiral quark model

    NASA Astrophysics Data System (ADS)

    Zhong, Xian-Hui; Zhao, Qiang

    2008-07-01

    We carry out a systematic study of the heavy-light meson strong decays in a chiral quark model. For the S-wave vectors [D*(2007), D*±(2010)], P-wave scalars [D0*(2400), B0*(5730)], and tensors [D2*(2460), Ds2*(2573)], we obtain results in good agreement with the experimental data. For the axial vectors D1(2420) and D1'(2430), a state mixing scheme between 1P11 and 1P13 is favored with a mixing angle ϕ≃-(55±5)°, which is consistent with previous theoretical predictions. The same mixing scheme also applies to Ds1(2460) and Ds1(2536) that accounts for the narrow width of the Ds1(2536) and its dominant decay into D*K. For B1(5725) and B1'(5732), such a mixing explains well the decay width of the former but leads to an even broader B1'(5732). Predictions for the strange-bottom axial vectors are also made. For the undetermined meson D*(2640), we find that they fit well in the radially excited state 2S13 according to its decay mode. The newly observed DsJ*(2860) strongly favors the D-wave excited state 1D33. For DsJ*(2632) and DsJ*(2690), we find they are difficult to fit in any Ds excitations in that mass region, if the experimental data are accurate. Theoretical predictions for decay modes of those unobserved states as multiplets of 2S and 1D waves are also presented, which should be useful for the further experimental search for those states.

  20. Investigating strangeness in the proton by studying the effects of Light Cone parton distributions in the Meson Cloud Model

    NASA Astrophysics Data System (ADS)

    Tuppan, Sam; Budnik, Garrett; Fox, Jordan

    2014-09-01

    The Meson Cloud Model (MCM) has proven to be a natural explanation for strangeness in the proton because of meson-baryon splitting into kaon-hyperon pairs. Total strangeness is predicted by integrated splitting functions, which represent the probability that the proton will fluctuate into a given meson-baryon pair. However, the momentum distributions s (x) and s (x) in the proton are determined from convolution integrals that depend on the parton distribution functions (PDFs) used for the mesons and baryons in the MCM. Theoretical calculations of these momentum distributions use many different forms for these PDFs. In our investigation, we calculate PDFs for K, K*, Λ, and Σ from two-body wave functions in a Light Cone Model (LCM) of the hadrons. We use these PDFs in conjunction with the MCM to create a hybrid model and compare our results to other theoretical calculations, experimental data from NuTeV, HERMES, ATLAS, and global parton distribution analyses. The Meson Cloud Model (MCM) has proven to be a natural explanation for strangeness in the proton because of meson-baryon splitting into kaon-hyperon pairs. Total strangeness is predicted by integrated splitting functions, which represent the probability that the proton will fluctuate into a given meson-baryon pair. However, the momentum distributions s (x) and s (x) in the proton are determined from convolution integrals that depend on the parton distribution functions (PDFs) used for the mesons and baryons in the MCM. Theoretical calculations of these momentum distributions use many different forms for these PDFs. In our investigation, we calculate PDFs for K, K*, Λ, and Σ from two-body wave functions in a Light Cone Model (LCM) of the hadrons. We use these PDFs in conjunction with the MCM to create a hybrid model and compare our results to other theoretical calculations, experimental data from NuTeV, HERMES, ATLAS, and global parton distribution analyses. This research has been supported in part by the

  1. B -meson decay constants from 2+1 -flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    DOE PAGES

    Christ, Norman H.; Flynn, Jonathan M.; Izubuchi, Taku; ...

    2015-03-10

    We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as Mπ ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b quarks we use the anisotropic clover action with themore » relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(αsa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain fB0 = 199.5(12.6) MeV, fB+=195.6(14.9) MeV, fBs=235.4(12.2) MeV, fBs/fB0=1.197(50), and fBs/fB+=1.223(71), where the errors are statistical and total systematic added in quadrature. Finally, these results are in good agreement with other published results and provide an important independent cross-check of other three-flavor determinations of B-meson decay constants using staggered light quarks.« less

  2. B-meson decay constants from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    SciTech Connect

    Christ, Norman H.; Flynn, Jonathan M.; Izubuchi, Taku; Kawanai, Taichi; Lehner, Christoph; Soni, Amarjit; Van de Water, Ruth S.; Witzel, Oliver

    2015-03-10

    We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as Mπ ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(αsa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain fB0 = 196.2(15.7) MeV, fB+ = 195.4(15.8) MeV, fBs = 235.4(12.2) MeV, fBs/fB0 = 1.193(59), and fBs/fB+ = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.

  3. Constraining unparticle physics with C P violation in Cabibbo-favored decays of D mesons

    NASA Astrophysics Data System (ADS)

    Ettefaghi, Mohammadmahdi; Moazzemi, Reza; Rousta, Mohsen

    2017-05-01

    According to the standard model, the Cabibbo-favored (CF) decays are C P conserved at tree level. Observation of any finite C P asymmetry can be received as a signal of new physics. In CF charm meson decays, D0→K-π+ and D+→Ks0π+, the following experimental values for their C P asymmetry are reported, respectively: (0.3 ±0.7 )% and (-0.41 ±0.09 )%. The value of the later can be attributed to the mixing of K0 and K0¯, however, its contribution is about (-0.332 ±0.006 )%. In this paper, we use these experimental results to constrain the unparticle stuff as a new physics which may contribute to these C P asymmetries.

  4. The In-medium Mass and Widths of Light Vector Mesons

    SciTech Connect

    C. Djalali, M. Paolone, D. Weygand, M. H. Wood, R. Nasseripour

    2011-05-01

    Partial restoration of chiral symmetry in ordinary nuclear matter suggests the modification of properties of vector mesons, such as a shift in mass and/or a change of width. Photoproduction of vector mesons off nuclei were performed at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). The properties of the rho, omega and [cursive phi] mesons were investigated via their rare leptonic decay to e+e-. This decay channel has an advantage over hadronic modes as it eliminates final state interactions in the nuclear matter. After subtracting the combinatorial background, the meson mass distributions were extracted for each of the nuclear targets. No significant mass shift is observed, however substantial increase in the widths of the mesons is reported.

  5. Light water reactor health physics.

    PubMed

    Prince, Robert J; Bradley, Scott E

    2004-11-01

    In this article an overview of the historical development of light water reactor health physics programs is presented. Operational health physics programs have developed and matured as experience in operating and maintaining light water reactors has been gained. Initial programs grew quickly in both size and complexity with the number and size of nuclear units under construction and in operation. Operational health physics programs evolved to face various challenges confronted by the nuclear industry, increasing the effectiveness of radiological safety measures. Industry improvements in radiological safety performance have resulted in significant decreases in annual collective exposures from a high value of 790 person-rem in 1980 to 117 person-rem per reactor in 2002. Though significant gains have been made, the continued viability of the nuclear power industry is confronted with an aging workforce, as well as the challenges posed by deregulation and the need to maintain operational excellence.

  6. Light water reactor health physics.

    PubMed

    Prince, Robert J; Bradley, Scott E

    2005-06-01

    In this article an overview of the historical development of light water reactor health physics programs is presented. Operational health physics programs have developed and matured as experience in operating and maintaining light water reactors has been gained. Initial programs grew quickly in both size and complexity with the number and size of nuclear units under construction and in operation. Operational health physics programs evolved to face various challenges confronted by the nuclear industry, increasing the effectiveness of radiological safety measures. Industry improvements in radiological safety performance have resulted in significant decreases in annual collective exposures from a high value of 790 person-rem in 1980 to 117 person-rem per reactor in 2002. Though significant gains have been made, the continued viability of the nuclear power industry is confronted with an aging workforce, as well as the challenges posed by deregulation and the need to maintain operational excellence.

  7. Photoproduction opportunities at CEBAF: Meson spectroscopy and the physics of flying {phi}`s

    SciTech Connect

    Dzierba, A.R.

    1994-04-01

    The availability of high-intensity photon beams with an efficient duty-factor and with energies in the range 10 to 12 GeV makes possible studies in meson spectroscopy, rare decays and possibly symmetry tests such as CP and CPT. Indeed, with a 6 GeV tagged photon beam, realizable in the near future at CEBAF, measurements of rare radiative decays of the {phi}`s will be made. At higher energies, a photon beam could be used to answer a number of questions in meson spectroscopy. An even more exciting possibility is the use of photon beams to produce an intense source of {phi}`s. The physics contemplated at e{sup +}e{sup {minus}} {phi} factories, such as CP and CPT tests, might be also studied at CEBAF with completely different and complementary systematics; e.g. having the {phi}`s decay in flight may offer distinct advantages over {phi}`s produced at rest.

  8. Quark-antiquark states and their radiative transitions in terms of the spectral integral equation: Light mesons

    NASA Astrophysics Data System (ADS)

    Anisovich, V. V.; Dakhno, L. G.; Matveev, M. A.; Nikonov, V. A.; Sarantsev, A. V.

    2007-03-01

    We continue the investigation of mesons in terms of the spectral integral equation initiated before for the bbar b and cbar c systems; we consider the light-quark (u, d, s) mesons with masses M ≤ 3 GeV. The calculations have been performed for the mesons lying on linear trajectories in the (n, M 2) planes, where n is the radial quantum number. Our consideration relates to the qbar q states with one component in the flavor space, with the quark and antiquark masses equal to each other, such as π(0-+), ρ(1--), ω(1--), ϕ(1--), a 0(0++), a 1(1++), a 2(2++), b 1(1+-), f 2(2++), π 2(2-+), ρ 3(3--), ω 3(3--), ϕ 3(3--), π 4(4-+) at n ≤ 6. We obtained the wave functions and mass values of mesons lying on these trajectories. The corresponding trajectories are linear, in agreement with data. We have calculated the two-photon decays π, a 0(980), a 2(1320), f 2(1285), f 2(1525) and radiative transitions ρ, ω → γπ, which agree qualitatively with the experiment. On this basis, we extract the singular part of the interaction amplitude, which corresponds to the so-called “confinement interaction.” The description of the data requires the presence of the strong t-channel singularities for both scalar and vector exchanges.

  9. Many body physics with light

    NASA Astrophysics Data System (ADS)

    Tureci, Hakan E.

    2013-03-01

    Systems of strongly interacting atoms and photons, which can be realized wiring up individual Cavity QED (CQED) systems into lattices, are perceived as a new platform for quantum simulation. While sharing important properties with other systems of interacting quantum particles, the nature of light-matter interaction gives rise to unique features with no analogs in condensed matter or atomic physics setups. Such Lattice CQED systems operate on polaritonic quasi-particles that are hybrids of light and matter in a controllable proportion, combining long-range coherence of photons and strong interactions typically displayed by massive particles. In this talk, I will discuss our recent efforts on the possibility of observing quantum many body physics and quantum phase transitions in Lattice CQED systems. Unavoidable photon loss coupled with the ease of feeding in additional photons through continuous external driving renders such lattices open quantum systems. Another key aspect of many body physics with light that I will focus on is the particle number non-conserving nature of the fundamental light-matter interaction and the question of what quantity, if not the chemical potential, can stabilize finite density quantum phases of correlated photons. Work supported by the NSF and the Swiss NSF. Work reported is a collaboration with M. Biondi, G. Blatter, M. Bordyuh, D. Gerace, A. Houck, J. Keeling, F. Nissen, B. Oztop, M. Schiro, S. Schmidt.

  10. The Spectrum of Light Isovector Mesons with C = +1 from the COMPASS Experiment

    NASA Astrophysics Data System (ADS)

    Paul, Stephan

    Based on the largest event sample of diffractively produced π-π-π+, obtained by a pion beam of 190 GeV/c momentum, the COMPASS collaboration has performed the so far most advanced partial-wave analysis on multi-body final states, using the isobar model. The large number of 88waves included in the analysis reduces truncation effects. We have used fourteen waves, to extract resonance parameters for eleven light-meson candidates, most of them observed previously. The coherence of the analysis and the large variety of systematic studies has allowed us to determine mass and width of most aJ and πJ states with a total of six different values of JPC below a mass of 2:1 GeV/c2, with high confidence. We exploit that the production rates of resonant and non-resonant contributions in these fourteen waves vary differently with the four-momentum transfer squared in the reaction. In addition, we have performed the first isobar-freed analysis in diffraction, from which we have determined the shape of the ππ S-wave isobar for different JPC of the 3π system.

  11. High-energy neutron dosimetry at the Clinton P. Anderson Meson Physics Facility

    SciTech Connect

    Mallett, M.W.; Vasilik, D.G.; Littlejohn, G.J.; Cortez, J.R.

    1990-01-01

    Neutron energy spectrum measurements performed at the Clinton P. Anderson Meson Physics Facility indicated potential areas for high energy neutron exposure to personnel. The low sensitivity of the Los Alamos thermoluminescent dosimeter (TLD) to high energy neutrons warranted issuing a NTA dosimeter in addition to the TLD badge to employees entering these areas. The dosimeter consists of a plastic holder surrounding NTA film that has been desiccated and sealed in a dry nitrogen environment. A study of the fading of latent images in NTA film demonstrated the success of this packaging method to control the phenomenon. The Los Alamos NTA dosimeter is characterized and the fading study discussed. 10 refs., 4 figs., 2 tabs.

  12. Measurement of the branching fraction and CP asymmetries in B meson decays into light pseudo-scalar mesons

    NASA Astrophysics Data System (ADS)

    Allen, Mark T.

    In the Standard Model (SM) of particle physics, the charged-current couplings of the quark sector are described by the Cabibho-Kobayashi-Maskawa (CKM) matrix elements Vqq' . The consistency of multiple measurements of the sides and angles of the CKM Unitarity Triangle provides a stringent test of the SM, and also provides constraints on non-SM physics. The CKM angle alpha can be measured from the interference between B0 → pi + pi- decays with and without B 0 ↔ B¯0 mixing, in combination with the isospin related decays B+ → pi + pi- and B0 → pi 0 pi0. The B → Kpi system also exhibits interesting CP-violating features, including direct CP violation in B0 → K+pi- decays. Sum rules derived from U-spin symmetry and parameters from the B → pipi system relate the branching fraction and charge asymmetry of B +/- → K+/-pi 0 decays to other decays in the Kpi system. Based on a sample of 383 x 106 U (4S) → BB¯ decays, we report updated measurements of the branching fraction for B 0 → pi0pi0 and the time-integrated CP asymmetry, Cp0p0 . We also measure the branching fractions for B +/- → h+/-pi 0 (h+/- = pi+/- , K+/-) and the corresponding charge asymmetries Ah+/-p 0 . We find the branching ratios and asymmetries: B (B0 → pi0pi 0) = (1.47 +/- 0.25 +/- 0.12) x 10-6, B (B+/- → pi+/- pi0 = (5.02 +/- 0.46 +/- 0.29) x 10 -6, B (B+/- K +/-pi0) = (13.56 +/- 0.56 +/- 0.68) x 10-6, Cp0p0 = -0.49 +/- 0.35 +/- 0.04, Ap+/-p 0 = 0.03 +/- 0.08 +/- 0.01, and AK+/-p 0 = 0.030 +/- 0.039 +/- 0.010. Finally, we present bounds on the CKM angle alpha using isospin relations.

  13. Thermal behaviors of light unflavored tensor mesons in the framework of QCD sum rule

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Türkan, A.; Sundu, H.; Veli Veliev, E.; Yazıcı, E.

    2014-12-01

    In this paper, we investigated the sensitivity of the masses and decay constants of f2(1270) and a2(1320) tensor mesons to the temperature using OCD sum rule approach. In our calculations, we take into account new additional operators appearing in operator product expansion (OPE). At the end of numerical analyses we show that at deconfinement temperature the decay constants and masses decreased by 6% and 96% of their vacuum values, respectively. Our results on the masses and decay constants at zero temperature of the tensor mesons are consistent with the experimental data as well as the vacuum sum rules predictions.

  14. Extreme Light Infrastructure: nuclear physics

    NASA Astrophysics Data System (ADS)

    Zamfir, N. V.; Habs, D.; Negoita, F.; Ursescu, D.

    2011-06-01

    The spectacular progress of electron and heavy-ions acceleration driven by ultra-short high-power laser has opened the way for new methods of investigations in nuclear physics and related fields. On the other hand, upshifting the photon energies of a high repetition TW-class laser through inverse Compton scattering on electron bunches classically accelerated, a high-flux narrow bandwidth gamma beam can be produced. With such a gamma beam in the 1-20 MeV energy range and a two-arms 10-PW class laser system, the pillar of "Extreme Light Infrastructure" to be built in Bucharest will focus on nuclear phenomena and their practical applications. Nuclear structure, nuclear astrophysics, fundamental QED aspects as well as applications in material and life sciences, radioactive waste management and homeland security will be studied using the high-power laser, the gamma beam or combining the two. The article includes a general description of ELI-Nuclear Physics (ELI-NP) facility, an overview of the Physics Case and some details on the few, most representative proposed experiments.

  15. Light Vector Meson Photoproduction off of H at Jefferson Lab and rho-omega Interference in the Leptonic Decay Channel

    SciTech Connect

    Chaden Djalali

    2011-12-01

    Recent studies of light vector meson production in heavy nuclear targets has generated interest in {rho}-{omega} interference in the leptonic e{sup +}e{sup -} decay channel. An experimental study of the elementary process provides valuable input for theoretical models and calculations. In experiment E04-005 (g12), high statistics photoproduction data has been taken in Jefferson Lab's Hall B with the Cebaf Large Acceptance Spectrometer (CLAS). The invariant mass spectrum is fitted with two interfering relativistic Breit-Wigner functions to determine the interference phase. Preliminary analysis indicate a measurable {rho}-{omega} interference.

  16. Analysis of three-body B decays to heavy vector and light pseudoscalar mesons

    NASA Astrophysics Data System (ADS)

    Mohammadi, Behnam; Mehraban, Hossein

    2014-09-01

    In this research, we analysis the three-body decays of the B0 meson to J/\\psi {{K}^{+}}{{\\pi }^{-}} and \\psi (2S){{K}^{+}}{{\\pi }^{-}} final-state mesons. By taking the factorization approach, for these decay modes, color-suppressed internal W-emission and penguin Feynman diagrams can be plotted. The transition matrix elements of {{B}^{0}}\\to J/\\psi (\\psi (2S)){{K}^{+}}{{\\pi }^{-}} are factorized into a {{B}^{0}}\\to {{K}^{+}}{{\\pi }^{-}} form factor multiplied by the J/\\psi (\\psi (2S)) decay constant. We investigate these decays by using the Dalitz plot analysis with an important assumption. We assume that, in the {{B}^{0}}\\to J/\\psi (\\psi (2S)){{K}^{+}}{{\\pi }^{-}} decays, because the mass of the J/\\psi (\\psi (2S)) is too heavy against the K and π mesons, therefore it carries a small momentum. In particular, the backlash of the J/\\psi (\\psi (2S)) can be neglected. With this assumption we get that the J/\\psi (\\psi (2S)) meson remains stationary, and the K and π mesons move back to back. We calculate the nonresonant contribution of {{B}^{0}}\\to J/\\psi {{K}^{+}}{{\\pi }^{-}} and {{B}^{0}}\\to \\psi (2S){{K}^{+}}{{\\pi }^{-}} decays and the branching ratios become 1.15_{-0.64}^{+0.89}\\times {{10}^{-3}} and 0.69_{-0.04}^{+0.05}\\times {{10}^{-3}}, respectively, and the experimental results for them are (1.20+/- 0.60)\\times {{10}^{-3}} and (0.57+/- 0.04)\\times {{10}^{-3}}, respectively. Note that the resonant contributions are very small, so we ignore them in our calculations.

  17. Measurement and modeling of external radiation during 1985 from LAMPF (Los Alamos Meson Physics Facility) emissions

    SciTech Connect

    Bowen, B.M.; Olsen, W.A.; Chen, Ili; Van Etten, D.M.

    1987-11-01

    An array of three portable, pressurized ionization chambers (PICs) continued to measure external radiation levels during 1985 caused by radionuclides emitted from the Los Alamos Meson Physics Facility (LAMPF). A Gaussian-type atmospheric dispersion model, using onsite meteorological and stack release data, was tested during this study. A more complex finite model, which takes into account the contribution of radiation at a receptor from different locations of the passing plume, was also tested. Monitoring results indicate that, as in 1984, a persistent wind up the Rio Grande Valley during the evening and early morning hours is largely responsible for causing the highest external radiation levels to occur to the northeast and north-northeast of LAMPF. However, because of increased turbulent mixing during the day, external radiation levels are generally much less during the day than at night. External radiation levels during 1985 show approximately a 75% reduction over 1984 levels. This resulted from a similar percentage reduction in LAMPF emissions caused by newly implemented emission controls. Comparison of predicted and measured daily external radiation levels indicates a high degree of correlation. The model also gives accurate estimates of measured concentrations over longer time periods. Comparison of predicted and measured hourly values indicates that the model generally tends to overpredict during the day and underpredict at night. 9 refs., 14 figs., 13 tabs.

  18. Thermal D mesons from anisotropic lattice QCD

    NASA Astrophysics Data System (ADS)

    Kelly, Aoife; Skullerud, Jon-Ivar

    2017-03-01

    We present results for correlators and spectral functions of open charm mesons using 2+1 flavours of clover fermions on anisotropic lattices. The D mesons are found to dissociate close to the deconfinement crossover temperature Tc. Our preliminary results suggest a shift in the thermal D meson mass below Tc. Mesons containing strange quarks exhibit smaller thermal modifications than those containing light quarks.

  19. Skyrmions with vector mesons in the hidden local symmetry approach

    NASA Astrophysics Data System (ADS)

    Ma, Yong-Liang; Yang, Ghil-Seok; Oh, Yongseok; Harada, Masayasu

    2013-02-01

    The roles of light ρ and ω vector mesons in the Skyrmion are investigated in a chiral Lagrangian derived from the hidden local symmetry (HLS) up to O(p4) including the homogeneous Wess-Zumino terms. We write a general “master formula” that allows us to determine the parameters of the HLS Lagrangian from a class of holographic QCD models valid at the large-Nc and -λ (’t Hooft constant) limit by integrating out the infinite towers of vector and axial-vector mesons other than the lowest ρ and ω mesons. Within this approach we find that the physical properties of the Skyrmion as the solitonic description of baryons are independent of the HLS parameter a. Therefore the only parameters of the model are the pion decay constant and the vector-meson mass. Once determined in the meson sector, we have a totally parameter-free theory that allows us to study unequivocally the role of light vector mesons in the Skyrmion structure. We find, as suggested by Sutcliffe, that the inclusion of the ρ meson reduces the soliton mass, which makes the Skyrmion come closer to the Bogomol’nyi-Prasad-Sommerfield soliton, but the role of the ω meson is found to increase the soliton mass. In stark contrast, the Δ-N mass difference, which is determined by the moment of inertia in the adiabatic collective quantization of the Skyrmion, is increased by the ρ vector meson, while it is reduced by the inclusion of the ω meson. All these observations show the importance of the ω meson in the properties of the nucleon and nuclear matter in the Skyrme model.

  20. Unitary coupled-channels model for three-mesons decays of heavy mesons

    SciTech Connect

    Hiroyuki Kamano; Nakamura, Satoshi X.; Lee, Tsung-Shung H.; Sato, Toru

    2011-12-16

    In this study, a unitary coupled-channels model is presented for investigating the decays of heavy mesons and excited meson states into three light pseudoscalar mesons. The model accounts for the three-mesons final state interactions in the decay processes, as required by both the three-body and two-body unitarity conditions. In the absence of the Z-diagram mechanisms that are necessary consequences of the three-body unitarity, our decay amplitudes are reduced to a form similar to those used in the so-called isobar-model analysis. We apply our coupled-channels model to the three-pions decays of α1(1260), π2(1670), π2(2100), and D0 mesons, and show that the Z-diagram mechanisms can contribute to the calculated Dalitz plot distributions by as much as 30% in magnitudes in the regions where f0(600), ρ(770), and f2(1270) dominate the distributions. Also, by fitting to the same Dalitz plot distributions, we demonstrate that the decay amplitudes obtained with the unitary model and the isobar model can be rather different, particularly in the phase that plays a crucial role in extracting the CKM CP-violating phase from the data of B meson decays. Our results indicate that the commonly used isobar model analysis must be extended to account for the final state interactions required by the three-body unitarity to reanalyze the three-mesons decays of heavy mesons, thereby exploring hybrid or exotic mesons, and signatures of physics beyond the standard model.

  1. Unitary coupled-channels model for three-mesons decays of heavy mesons

    DOE PAGES

    Hiroyuki Kamano; Nakamura, Satoshi X.; Lee, Tsung-Shung H.; ...

    2011-12-16

    In this study, a unitary coupled-channels model is presented for investigating the decays of heavy mesons and excited meson states into three light pseudoscalar mesons. The model accounts for the three-mesons final state interactions in the decay processes, as required by both the three-body and two-body unitarity conditions. In the absence of the Z-diagram mechanisms that are necessary consequences of the three-body unitarity, our decay amplitudes are reduced to a form similar to those used in the so-called isobar-model analysis. We apply our coupled-channels model to the three-pions decays of α1(1260), π2(1670), π2(2100), and D0 mesons, and show that themore » Z-diagram mechanisms can contribute to the calculated Dalitz plot distributions by as much as 30% in magnitudes in the regions where f0(600), ρ(770), and f2(1270) dominate the distributions. Also, by fitting to the same Dalitz plot distributions, we demonstrate that the decay amplitudes obtained with the unitary model and the isobar model can be rather different, particularly in the phase that plays a crucial role in extracting the CKM CP-violating phase from the data of B meson decays. Our results indicate that the commonly used isobar model analysis must be extended to account for the final state interactions required by the three-body unitarity to reanalyze the three-mesons decays of heavy mesons, thereby exploring hybrid or exotic mesons, and signatures of physics beyond the standard model.« less

  2. Project Physics Reader 4, Light and Electromagnetism.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    As a supplement to Project Physics Unit 4, a collection of articles is presented in this reader for student browsing. The 21 articles are included under the following headings: Letter from Thomas Jefferson; On the Method of Theoretical Physics; Systems, Feedback, Cybernetics; Velocity of Light; Popular Applications of Polarized Light; Eye and…

  3. Shape of mesons in holographic QCD

    SciTech Connect

    Torabian, Mahdi; Yee, Ho-Ung

    2009-10-15

    Based on the expectation that the constituent quark model may capture the right physics in the large N limit, we point out that the orbital angular momentum of the quark-antiquark pair inside light mesons of low spins in the constituent quark model may provide a clue for the holographic dual string model of large N QCD. Our discussion, relying on a few suggestive assumptions, leads to a necessity of world-sheet fermions in the bulk of dual strings that can incorporate intrinsic spins of fundamental QCD degrees of freedom. We also comment on the interesting issue of the size of mesons in holographic QCD.

  4. Confirmation of the sigma meson

    SciTech Connect

    Toernqvist, N.A.; Roos, M.

    1996-03-01

    A very general model and an analysis of data on the lightest 0{sup ++} meson nonet shows that the {ital f}{sub 0}(980) and {ital f}{sub 0}(1300) resonance poles are two manifestations of the same {bar {ital ss}} state. On the other hand, the {bar {ital uu}}+{bar {ital dd}} state, when unitarized and strongly distorted by hadronic mass shifts, becomes an extremely broad (880 MeV) and light (860 MeV) resonance, with its pole at {ital s}=0.158{minus}{ital i}0.235 GeV{sup 2}. This is the {sigma} meson required by models for spontaneous breaking of chiral symmetry. It has been named the Higgs meson of QCD, because it generates most of the light hadron masses. It dominates {pi}{pi} scattering below 900 MeV and it is also the resonance required by nuclear physics. {copyright} {ital 1996 The American Physical Society.}

  5. Search for bound states of the eta-meson in light nuclei

    NASA Technical Reports Server (NTRS)

    Chrien, R. E.; Bart, S.; Pile, P.; Sutter, R.; Tsoupas, N.; Funsten, H. O.; Finn, J. M.; Lyndon, C.; Punjabi, V.; Perdrisat, C. F.

    1988-01-01

    A search for nuclear-bound states of the eta meson was carried out. Targets of lithium, carbon, oxygen, and aluminum were placed in a pion(+) beam at 800 MeV/c. A predicted eta bound state in O-15* (E sub x approx. = 540 MeV) with a width of approx. 9 MeV was not observed. A bound state of a size 1/3 of the predicted cross section would have been seen in this experiment at a confidence level of 3sigma (P is greater than 0.9987).

  6. Poincaré-invariant constituent quark model for light mesons: capabilities and constraints

    NASA Astrophysics Data System (ADS)

    Krutov, A. F.; Polezhaev, R. G.; Troitsky, V. E.

    2016-10-01

    We present a brief survey of some results on electroweak properties of com- posite systems that are obtained in the frameworks of our version of the instant form of relativistic quantum mechanics (RQM). Our approach describes well the π- and the ρ- mesons in wide range of momentum transfers Q2. At large Q2 the obtained pion form factor asymptotics coincides with that of QCD predictions. The method permits to per- form analytic continuation of pion form factor to complex plane of momentum transfers that is in accordance with predictions of quantum field theory.

  7. QCD description of charmonium plus light meson production in pbar- N annihilation

    NASA Astrophysics Data System (ADS)

    Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.

    2013-07-01

    The associated production of a J / ψ and a π meson in antiproton-nucleon annihilation is studied in the framework of QCD collinear factorization. In this approach, a hard subprocess responsible for the production of the heavy quark-antiquark pair factorizes from soft hadronic matrix elements, such as the antiproton (nucleon) distribution amplitude and the nucleon-to-pion (antiproton-to-pion) transition distribution amplitude. This reaction mechanism should dominate the forward and backward kinematical regions, where the cross sections are expected to be measurable in the set-up of the P¯ANDA experiment at the GSI-FAIR facility.

  8. The leading twist light-cone distribution amplitudes for the S-wave and P-wave Bc mesons

    NASA Astrophysics Data System (ADS)

    Xu, Ji; Yang, Deshan

    2016-07-01

    The light-cone distribution amplitudes (LCDAs) serve as important nonperturbative inputs for the study of hard exclusive processes. In this paper, we calculate ten LCDAs at twist-2 for the S-wave and P-wave B c mesons up to the next-to-leading order (NLO) of the strong coupling α s and leading order of the velocity expansion. Each one of these ten LCDAs is expressed as a product of a perturbatively calculable distribution and a universal NRQCD matrix-element. By use of the spin symmetry, only two NRQCD matrix-elements will be involved. The reduction of the number of non-perturbative inputs will improve the predictive power of collinear factorization.

  9. RPA treatment of a motivated QCD Hamiltonian in the SO(4) (2 + 1)-flavor limit: Light and strange mesons

    NASA Astrophysics Data System (ADS)

    Yepez-Martinez, Tochtli; Civitarese, Osvaldo; Hess, Peter O.

    The SO(4) symmetry of a sector of the quantum chromodynamics (QCD) Hamiltonian was analyzed in a previous work. The numerical calculations were then restricted to a particle-hole (ph) space and the comparison with experimental data was reasonable in spite of the complexity of the QCD spectrum at low energy. Here on, we continue along this line of research and show our new results of the treatment of the QCD Hamiltonian in the SO(4) representation, including ground state correlations by means of the Random Phase Approximation (RPA). We are able to identify, within this model, states which may be associated to physical pseudo-scalar and vector mesons, like η,η‧,K,ρ,ω,ϕ, as well as the pion (π).

  10. Application of the light-front holographic wavefunction for heavy-light pseudoscalar meson in Bd,s → Dd,sP decays

    NASA Astrophysics Data System (ADS)

    Chang, Qin; Xu, Shuai; Chen, Lingxin

    2017-08-01

    In this paper we extend our analyses of the decay constant and distribution amplitude with an improved holographic wavefunction to the heavy-light pseudoscalar mesons. In the evaluations, the helicity-dependence of the holographic wavefunction is considered; and an independent mass scale parameter is employed to moderate the strong suppression induced by the heavy quark. Under the constraints from decay constants and masses of pseudoscalar mesons, the χ2-analyses for the holographic parameters exhibit a rough consistence with the results obtained by fitting the Regge trajectory. With the fitted parameters, the results for the decay constants and distribution amplitudes are presented. We then show their application in evaluating the Bd,s →Dd,s P decays, in which the power-suppressed spectator scattering and weak annihilation corrections are first estimated. Numerically, the spectator scattering and weak annihilation corrections present a negative shift of about 0.7% on the branching fractions; while, the predictions are still larger than the experimental data. Such small negative shift confirms the estimation based on the power counting rules.

  11. Project Physics Tests 4, Light and Electromagnetism.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 4 are presented in this booklet. Included are 70 multiple-choice and 22 problem-and-essay questions. Concepts of light and electromagnetism are examined on charges, reflection, electrostatic forces, electric potential, speed of light, electromagnetic waves and radiations, Oersted's and Faraday's work,…

  12. Light vector meson production in pp collisions at √{ s} = 7 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Abrahantes Quintana, A.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Aviña, E.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergmann, C.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bortolin, C.; Bose, S.; Bossú, F.; Botje, M.; Böttger, S.; Boyer, B.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, W.; Carena, F.; Carlin Filho, N.; Carminati, F.; Carrillo Montoya, C. A.; Casanova Díaz, A.; Caselle, M.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Coffin, J.-P.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, K.; Das, D.; Das, I.; Dash, S.; Dash, A.; de, S.; de Azevedo Moregula, A.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; Delagrange, H.; Del Castillo Sanchez, E.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; de Pasquale, S.; Deppman, A.; D Erasmo, G.; de Rooij, R.; di Bari, D.; Dietel, T.; di Giglio, C.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Ferretti, R.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Fini, R.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, M.; Gheata, A.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Gutbrod, H.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Han, B. H.; Hanratty, L. D.; Hansen, A.; Harmanova, Z.; Harris, J. W.; Hartig, M.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hetland, K. F.; Hicks, B.; Hille, P. T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hřivnáčová, I.; Huang, M.; Huber, S.; Humanic, T. J.; Hwang, D. S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Innocenti, P. G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, M.; Ivanov, A.; Ivanov, V.; Ivanytskyi, O.; Jachołkowski, A.; Jacobs, P. M.; Jancurová, L.; Jang, H. J.; Jangal, S.; Janik, R.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, S.; Jimenez Bustamante, R. T.; Jirden, L.; Jones, P. G.; Jung, W.; Jung, H.; Jusko, A.; Kaidalov, A. B.; Kakoyan, V.; Kalcher, S.; Kaliňák, P.; Kalisky, M.; Kalliokoski, T.; Kalweit, A.; Kanaki, K.; Kang, J. H.; Kaplin, V.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, M.; Kim, J. H.; Kim, S. H.; Kim, S.; Kim, B.; Kim, T.; Kim, D. J.; Kim, J. S.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kliemant, M.; Kluge, A.; Knichel, M. L.; Koch, K.; Köhler, M. K.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Korneev, A.; Kottachchi Kankanamge Don, C.; Kour, R.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kraus, I.; Krawutschke, T.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P. G.; Kurashvili, P.; Kurepin, A. B.; Kurepin, A.; Kuryakin, A.; Kushpil, V.; Kushpil, S.; Kvaerno, H.; Kweon, M. J.; Kwon, Y.; Ladrón de Guevara, P.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; La Rocca, P.; Lazzeroni, C.; Lea, R.; Le Bornec, Y.; Lee, K. S.; Lee, S. C.; Lefèvre, F.; Lehnert, J.; Leistam, L.; Lenhardt, M.; Lenti, V.; León, H.; León Monzón, I.; León Vargas, H.; Lévai, P.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Liu, L.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohn, S.; Lohner, D.; Loizides, C.; Loo, K. K.; Lopez, X.; López Torres, E.; Løvhøiden, G.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luquin, L.; Luzzi, C.; Ma, R.; Ma, K.; Madagodahettige-Don, D. M.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Martashvili, I.; Martinengo, P.; Martínez, M. I.; Martínez Davalos, A.; Martínez García, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z. L.; Matyja, A.; Mayani, D.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Michalon, A.; Midori, J.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C.; Mlynarz, J.; Mohanty, A. K.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira de Godoy, D. A.; Moretto, S.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Müller, H.; Munhoz, M. G.; Musa, L.; Musso, A.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Naumov, N. P.; Navin, S.; Nayak, T. K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nicassio, M.; Nielsen, B. S.; Niida, T.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Nilsson, M. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Obayashi, H.; Ochirov, A.; Oeschler, H.; Oh, S. K.; Oh, S.; Oleniacz, J.; Oppedisano, C.; Ortiz Velasquez, A.; Ortona, G.; Oskarsson, A.; Ostrowski, P.; Otterlund, I.; Otwinowski, J.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S. K.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Pastirčák, B.; Patalakha, D. I.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Perales, M.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piuz, F.; Piyarathna, D. B.; Płoskoń, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polák, K.; Polichtchouk, B.; Pop, A.; Porteboeuf-Houssais, S.; Pospíšil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puchagin, S.; Puddu, G.; Pulvirenti, A.; Punin, V.; Putiš, M.; Putschke, J.; Quercigh, E.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Radomski, S.; Räihä, T. S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramírez Reyes, A.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reichelt, P.; Reicher, M.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riccati, L.; Ricci, R. A.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rodríguez Cahuantzi, M.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahu, P. K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C. A.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.; Søgaard, C.; Soltz, R.; Son, H.; Song, M.; Song, J.; Soos, C.; Soramel, F.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stan, I.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stocco, D.; Stolpovskiy, M.; Strabykin, K.; Strmen, P.; Suaide, A. A. P.; Subieta Vásquez, M. A.; Sugitate, T.; Suire, C.; Sukhorukov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Szanto de Toledo, A.; Szarka, I.; Szostak, A.; Tagridis, C.; Takahashi, J.; Tapia Takaki, J. D.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Thomas, J. H.; Tieulent, R.; Timmins, A. R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Tosello, F.; Traczyk, T.; Truesdale, D.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Kolk, N.; Vande Vyvre, P.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernekohl, D. C.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, L.; Vinogradov, A.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Voloshin, S.; Voloshin, K.; Volpe, G.; von Haller, B.; Vranic, D.; Øvrebekk, G.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, V.; Wagner, B.; Wan, R.; Wang, Y.; Wang, M.; Wang, Y.; Wang, D.; Watanabe, K.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, A.; Wilk, G.; Williams, M. C. S.; Windelband, B.; Xaplanteris Karampatsos, L.; Yang, S.; Yang, H.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J.; Yu, W.; Yuan, X.; Yushmanov, I.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I.; Zhalov, M.; Zhang, X.; Zhou, D.; Zhou, Y.; Zhou, F.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Alice Collaboration

    2012-04-01

    The ALICE experiment has measured low-mass dimuon production in pp collisions at √{ s} = 7 TeV in the dimuon rapidity region 2.5 < y < 4. The observed dimuon mass spectrum is described as a superposition of resonance decays (η , ρ , ω ,η‧ , ϕ) into muons and semi-leptonic decays of charmed mesons. The measured production cross sections for ω and ϕ are σω (1

  13. Sensitivity limits on heavy-light mixing |Uμ N|2 from lepton number violating B meson decays

    NASA Astrophysics Data System (ADS)

    Cvetič, Gorazd; Kim, C. S.

    2017-08-01

    We consider the lepton number violating decays B →μ±μ±π∓ and B →D(*)μ±μ±π∓ which may be detected at the LHCb and Belle-II experiments and B →μ±μ±e∓ν and B →D(*)μ±μ±e∓ν decays which may be detected at the Belle-II experiment. The projected total number of produced B mesons is 4.8 ×1 012 at the LHCb upgrade and 5 ×1 010 at Belle-II. For the case in which the above decays are not detected, we deduce the new upper bounds (sensitivity limits) for the mixing parameter |Uμ N|2 of heavy sterile neutrino with sub-eV light neutrino, as a function of the sterile neutrino mass in the interval 1.75 GeV mesons in the LHCb upgrade is expected to be about 2 orders of magnitude larger than at Belle-II. We conclude that the LHCb upgrade and Belle-II experiments have the potential to either find a new heavy Majorana neutrino N or to improve significantly the sensitivity limits (upper bounds) on the heavy-light mixing parameter |Uμ N|2, particularly in the mass range 1.75 GeV

  14. Probabilistic risk assessment for the Los Alamos Meson Physics Facility worst-case design-basis accident

    SciTech Connect

    Sharirli, M.; Butner, J.M.; Rand, J.L.; Macek, R.J. ); McKinney, S.J. ); Roush, M.L. . Center for Reliability Engineering)

    1992-01-01

    This paper presents results from a Los Alamos National Laboratory Engineering and Safety Analysis Group assessment of the worse-case design-basis accident associated with the Clinton P. Anderson Meson Physics Facility (LAMPF)/Weapons Neutron Research (WNR) Facility. The primary goal of the analysis was to quantify the accident sequences that result in personnel radiation exposure in the WNR Experimental Hall following the worst-case design-basis accident, a complete spill of the LAMPF accelerator 1L beam. This study also provides information regarding the roles of hardware systems and operators in these sequences, and insights regarding the areas where improvements can increase facility-operation safety. Results also include confidence ranges to incorporate combined effects of uncertainties in probability estimates and importance measures to determine how variations in individual events affect the frequencies in accident sequences.

  15. Probabilistic risk assessment for the Los Alamos Meson Physics Facility worst-case design-basis accident

    SciTech Connect

    Sharirli, M.; Butner, J.M.; Rand, J.L.; Macek, R.J.; McKinney, S.J.; Roush, M.L.

    1992-12-01

    This paper presents results from a Los Alamos National Laboratory Engineering and Safety Analysis Group assessment of the worse-case design-basis accident associated with the Clinton P. Anderson Meson Physics Facility (LAMPF)/Weapons Neutron Research (WNR) Facility. The primary goal of the analysis was to quantify the accident sequences that result in personnel radiation exposure in the WNR Experimental Hall following the worst-case design-basis accident, a complete spill of the LAMPF accelerator 1L beam. This study also provides information regarding the roles of hardware systems and operators in these sequences, and insights regarding the areas where improvements can increase facility-operation safety. Results also include confidence ranges to incorporate combined effects of uncertainties in probability estimates and importance measures to determine how variations in individual events affect the frequencies in accident sequences.

  16. Light-Emitting Diodes: Learning New Physics

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…

  17. Light-Emitting Diodes: Learning New Physics

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…

  18. New light in nuclear physics: The extreme light infrastructure

    NASA Astrophysics Data System (ADS)

    Balabanski, D. L.; Popescu, R.; Stutman, D.; Tanaka, K. A.; Tesileanu, O.; Ur, C. A.; Ursescu, D.; Zamfir, N. V.

    2017-01-01

    Extreme Light Infrastructure-Nuclear Physics (ELI-NP), to become operational in 2019, is a new Research Center built in Romania that will use extreme electromagnetic fields for nuclear physics research. The ELI-NP facility will combine two large equipments with state-of-the-art parameters, namely a 2 × 10 PW high-power laser system and a very brilliant gamma-beam system delivering beams with energies up to 19.5 MeV. The laser and gamma-beam systems under construction and typical proposed first-phase experiments are described.

  19. Review of meson spectroscopy: quark states and glueballs

    SciTech Connect

    Chanowitz, M.S.

    1981-11-01

    A group of three lectures on hadron spectroscopy are presented. Topics covered include: light L = 0 mesons, light L = 1 mesons, antiquark antiquark quark quark exotics, a catalogue of higher quark antiquark excitations, heavy quarkonium, and glueballs. (GHT)

  20. Parton distribution in pseudoscalar mesons with a light-front constituent quark model

    NASA Astrophysics Data System (ADS)

    de Melo, J. P. B. C.; Ahmed, Isthiaq; Tsushima, Kazuo

    2016-05-01

    We compute the distribution amplitudes of the pion and kaon in the light-front constituent quark model with the symmetric quark-bound state vertex function [1, 2, 3]. In the calculation we explicitly include the flavor-SU(3) symmetry breaking effect in terms of the constituent quark masses of the up (down) and strange quarks. To calculate the kaon parton distribution functions (PDFs), we use both the conditions in the light-cone wave function, i.e., when s ¯ quark is on-shell, and when u quark is on-shell, and make a comparison between them. The kaon PDFs calculated in the two different conditions clearly show asymmetric behaviour due to the flavor SU(3)-symmetry breaking implemented by the quark masses [4, 5].

  1. Inverse meson mass ordering in the color-flavor-locking phase of high-density QCD

    SciTech Connect

    Son, D. T.; Stephanov, M. A. [Department of Physics, University of Illinois, Chicago, Illinois 60607-7059

    2000-04-01

    We derive the effective Lagrangian for the low-energy massive meson excitations of the color-flavor-locking (CFL) phase of QCD with three flavors of light quarks. We compute the decay constants, the maximum velocities, and the masses of the mesons at large baryon chemical potential {mu}. The decay constants are linear in {mu}. The meson maximum velocities are close to that of sound. The meson masses in the CFL phase are significantly smaller than in the normal QCD vacuum and depend only on bare quark masses. The order of the meson masses is, to some extent, reversed compared to that in the QCD vacuum. In particular, the lightest particle is {eta}'. (c) 2000 The American Physical Society.

  2. Evidence for light scalar resonances in charm meson decays from Fermilab E791

    SciTech Connect

    Alan J. Schwartz

    2003-01-24

    From Dalitz-plot analyses of D{sup +} {yields} {pi}{sup -}{pi}{sup +}{pi}{sup +} and D{sup +} {yields} K{sup -}{pi}{sup +}{pi}{sup +} decays, we find evidence for light and broad scalar resonances {sigma}(500) and {kappa}(800). From a Dalitz-plot analysis of D{sub s}{sup +} {yields} {pi}{sup -}{pi}{sup +}{pi}{sup +} decays, they measure the masses and decay widths of the scalar resonances f{sub 0}(980) and f{sub 0}(1370).

  3. Progress at LAMPF (Los Alamos Meson Physics Facility), January--December 1989

    SciTech Connect

    Poelakker, K.

    1990-12-01

    This report contains brief papers on research conducted at the lampf facility in the following areas: nuclear and particle physics; astrophysics; atomic and molecular physics; materials science; nuclear chemistry; radiation effects and radioisotope production.

  4. Vector meson dominance and the {rho} meson

    SciTech Connect

    Benayoun, M.; OConnell, H.B.; Williams, A.G.

    1999-04-01

    We discuss the properties of vector mesons, in particular the {rho}{sup 0}, in the context of the hidden local symmetry (HLS) model. This provides a unified framework to study several aspects of the low energy QCD sector. First, we show that in the HLS model the physical photon is massless, without requiring off field diagonalization. We then demonstrate the equivalence of HLS and the two existing representations of vector meson dominance, VMD1 and VMD2, at both the tree level and one loop order. Finally the S matrix pole position is shown to provide a model and process independent means of specifying the {rho} mass and width, in contrast with the real axis prescription currently used in the Particle Data Group tables. {copyright} {ital 1999} {ital The American Physical Society}

  5. Molecular components in P -wave charmed-strange mesons

    NASA Astrophysics Data System (ADS)

    Ortega, Pablo G.; Segovia, Jorge; Entem, David R.; Fernández, Francisco

    2016-10-01

    Results obtained by various experiments show that the Ds0 *(2317 ) and Ds 1(2460 ) mesons are very narrow states located below the D K and D*K thresholds, respectively. This is markedly in contrast with the expectations of naive quark models and heavy quark symmetry. Motivated by a recent lattice study which addresses the mass shifts of the c s ¯ ground states with quantum numbers JP=0+ [Ds0 *(2317 )] and JP=1+ [Ds 1(2460 )] due to their coupling with S -wave D(*)K thresholds, we perform a similar analysis within a nonrelativistic constituent quark model in which quark-antiquark and meson-meson degrees of freedom are incorporated. The quark model has been applied to a wide range of hadronic observables, and thus the model parameters are completely constrained. The coupling between quark-antiquark and meson-meson Fock components is done using a 3P0 model in which its only free parameter γ has been elucidated, performing a global fit to the decay widths of mesons that belong to different quark sectors, from light to heavy. We observe that the coupling of the 0+ (1+) meson sector to the D K (D*K ) threshold is the key feature to simultaneously lower the masses of the corresponding Ds0 *(2317 ) and Ds 1(2460 ) states predicted by the naive quark model and describe the Ds 1(2536 ) meson as the 1+ state of the jqP=3 /2+ doublet predicted by heavy quark symmetry, reproducing its strong decay properties. Our calculation allows us to introduce the coupling with the D -wave D*K channel and the computation of the probabilities associated with the different Fock components of the physical state.

  6. Meson Structure in a Relativistic Many-Body Approach

    SciTech Connect

    Llanes-Estrada, Felipe J.; Cotanch, Stephen R.

    2000-02-07

    Results from an extensive relativistic many-body analysis utilizing a realistic effective QCD Hamiltonian are presented for the meson spectrum. A comparative numerical study of the BCS, Tamm-Dancoff (TDA), and RPA treatments provides new, significant insight into the condensate structure of the vacuum, the chiral symmetry governance of the pion, and the meson spin, orbital, and flavor mass splitting contributions. In contrast to a previous glueball application, substantial quantitative differences are computed between TDA and RPA for the light quark sector with the pion emerging as a Goldstone boson only in the RPA. (c) 2000 The American Physical Society.

  7. Progress at LAMPF (Los Alamos Meson Physics Facility): Progress report, January-December 1986

    SciTech Connect

    Allred, J.C.; Talley, B.

    1987-05-01

    Activities at LAMPF during the year of 1986 are summarized, including brief summaries of experiments in nuclear and particle physics, atomic and molecular physics, materials science, radiation-effects studies, biomedical research and instrumentation, nuclear chemistry, radioisotope production, and theory. The status of an advanced hadron facility currently under study is reported, as well as facility development and accelerator operations. (LEW)

  8. Chiral bag with vector mesons

    NASA Astrophysics Data System (ADS)

    Hosaka, A.; Toki, H.; Weise, W.

    1990-01-01

    We investigate nucleon structure in a (non-linear) chiral bag model with vector mesons. The model incorporates two different degrees of freedom: mesons outside the bag at long and intermediate ranges, and quarks inside the bag at short distances. The ρ, a 1 and ω mesons outside the bag are included in a chiral effective lagrangian based on the non-linear sigma model. The classical solution is obtained using the hedgehog ansatz, and the cranking method is applied to construct the physical nucleon states. Static properties of the nucleon such as its mass, axial vector coupling constant, magnetic moments and charge radii are studied in detail as functions of the bag radius. Quark and meson contributions to these quantities are calculated separately. In particular, we discuss the extent to which the vector-meson dominance picture holds in the chiral bag.

  9. Influence of meson-exchange currents of the second kind on the characteristics of the. beta. /sup +- / decay of light nuclei

    SciTech Connect

    Samsonenko, N.V.; Samgin, A.L.; Katkhat, C.L.

    1988-02-01

    We study the influence of meson-exchange currents of the second kind on the e-..nu.. angular correlation, on the coefficients of charge asymmetry, and on the degree of longitudinal polarization of electrons (positrons) in the ..beta../sup +- / decay of mirror light nuclei. The expressions for these characteristics obtained within the framework of the Kubodera-Delorme-Rho model are compared with the results of the impulse approximation. The mutual influence of the currents of the second kind and the neutrino mass is considered. The expected effects due to the influence of the Kubodera-Delorme-Rho parameters zeta and lambda are estimated.

  10. [Meta-analyses of quarks, baryons and mesons--a "Cochrane Collaboration" in particle physics].

    PubMed

    Sauerland, Stefan; Sauerland, Thankmar; Antes, Gerd; Barnett, R Michael

    2002-02-01

    Within the last 20 years meta-analysis has become an important research technique in medicine for integrating the results of independent studies. Meta-analytical techniques, however, are much older. In particle physics for 50 years now the properties of huge numbers of particles have been assessed in meta-analyses. The Cochrane Collaboration's counterpart in physics is the Particle Data Group. This article compares methodological and organisational aspects of meta-analyses in medicine and physics. Several interesting parallels exist, especially with regard to methodology.

  11. Nature of the a{sub 0}(980) meson in the light of photon-photon collisions

    SciTech Connect

    Achasov, N. N.; Shestakov, G. N.

    2010-05-01

    New high-statistics Belle data on the reaction {gamma}{gamma}{yields}{pi}{sup 0{eta}} are analyzed to clarify the two-photon production mechanisms and the nature of the a{sub 0}(980) meson. The obtained solution for the amplitude {gamma}{gamma}{yields}{pi}{sup 0{eta}} is consistent with the chiral theory expectation for the {pi}{eta} scattering length, with the strong coupling of the a{sub 0}(980) to the {pi}{eta}, KK, and {pi}{eta}{sup '} channels, and with a key role of the rescattering mechanisms a{sub 0}(980){yields}(KK+{pi}{sup 0{eta}}+{pi}{sup 0{eta}'}){yields}{gamma}{gamma} in the a{sub 0}(980){yields}{gamma}{gamma} decay. Such a picture argues in favor of the q{sup 2}q{sup 2} nature of the a{sub 0}(980) meson and is in agreement with the properties of its partners, the {sigma}{sub 0}(600) and f{sub 0}(980) mesons, in particular, with those that manifest themselves in {gamma}{gamma}{yields}{pi}{pi}. An important role of the vector meson exchanges in the formation of the nonresonant background in {gamma}{gamma}{yields}{pi}{sup 0{eta}} is also revealed. The preliminary information on the reaction {pi}{sup 0{eta}{yields}{pi}0{eta}} is obtained.

  12. Looking for new physics in leptonic and semileptonic decays of B-meson

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Körner, J. G.; Tran, C. T.

    2017-09-01

    We probe possible new physics (NP) effects beyond the standard model (SM) in the decays {\\overline B ^0} \\to π τ \\overline υ ,{\\overline B ^0} \\to ρ τ \\overline υ ,and{\\overline B ^0} \\to τ \\overline υ , based on an effective Hamiltonian including non-SM operators. Experimental constraints on different NP scenarios are provided by recent measurements of the ratios {{R( {{D^{( * )}}} ) ≡ B( {{{\\overline B }^0} \\to {D^{( * )}}τ \\overline υ } )} {R( D^( * ) ) ≡ B( {{{\\overline B }^0} \\to {D^{( * )}}τ \\overline υ } )} {B( {{{\\overline B }^0} \\to {D^{( * )}}μ \\overline υ } )}}} . {B( {{{\\overline B }^0} \\to {D^{( * )}}μ \\overline υ } )}}, as well as the branching B( {{B^ - } \\to τ \\overline υ } ). The corresponding hadronic form factors and leptonic decay constants are calculated in the covariant confined quark model developed by us.

  13. Some recent results on meson spectroscopy

    SciTech Connect

    Chung, S.U.

    1987-06-01

    A comparative survey of established meson states with the predictions of a q anti q (quarkonium) model by Godfrey and Isgur shows that most meson states are well described, from pion to UPSILON(6S). However, a number of states in the light- quark isoscalar sector are not predicted at all in their model, pointing to a need for glueballs, hybrids and multi-quark states to fully account for recently reported meson states. 48 refs.

  14. The yields of light meson resonances in neutrino-nucleus interactions at Left-Pointing-Angle-Bracket E{sub {nu}} Right-Pointing-Angle-Bracket Almost-Equal-To 10 GeV

    SciTech Connect

    Agababyan, N. M.; Ammosov, V. V.; Grigoryan, N.; Gulkanyan, H.; Ivanilov, A. A.; Karamyan, Zh.; Korotkov, V. A.

    2011-02-15

    The total yields of the all well established light meson resonances (up to the {phi}(1020) meson) are estimated in neutrino-nucleus charged current interactions at Left-Pointing-Angle-Bracket E{sub {nu}} Right-Pointing-Angle-Bracket Almost-Equal-To 10 GeV, using the data obtained with SKAT bubble chamber. The yield of {phi} meson in neutrino production is obtained for the first time. For some resonances, the yields in the forward and backward hemispheres in the hadronic c.m.s. are also extracted. From the comparison of the obtained and available higher-energy data, an indication is obtained that the resonance yields rise almost linearly as a function of the mass W of the neutrino produced hadronic system. The fractions of pions originating from the light resonance decays are inferred.

  15. Optical physics: Ultrashort light pulses shake atoms

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Taec

    2016-02-01

    The response of electrons in atoms to ultrashort optical light pulses has been probed by measuring the ultraviolet light emitted by the atoms. This reveals that a finite time delay occurs before the response. See Letter p.66

  16. QCD on the Light-Front. A Systematic Approach to Hadron Physics

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter

    2014-06-01

    Light-front Hamiltonian theory, derived from the quantization of the QCD Lagrangian at fixed light-front time x + = x 0 + x 3, provides a rigorous frame-independent framework for solving nonperturbative QCD. The eigenvalues of the light-front QCD Hamiltonian H LF predict the hadronic mass spectrum, and the corresponding eigensolutions provide the light-front wavefunctions which describe hadron structure, providing a direct connection to the QCD Lagrangian. In the semiclassical approximation the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrödinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. Remarkably, the potential U has a unique form of a harmonic oscillator potential if one requires that the chiral QCD action remains conformally invariant. A mass gap and the color confinement scale also arises when one extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory. In the case of mesons, the valence Fock-state wavefunctions of H LF for zero quark mass satisfy a single-variable relativistic equation of motion in the invariant variable , which is conjugate to the invariant mass squared . The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter appears. The corresponding light-front Dirac equation provides a dynamical and spectroscopic model of nucleons. The same light-front equations arise from the holographic mapping of the soft-wall model modification of AdS5 space with a unique dilaton profile to QCD

  17. Identified Light and Strange Hadron Spectra at √{sNN} = 14.5 GeV and Systematic Study of Baryon/Meson Effect at Intermediate Transverse Momentum with STAR at RHIC BES I

    NASA Astrophysics Data System (ADS)

    Brandenburg, James D.

    2016-12-01

    With the recently measured Au+Au collisions at √{sNN} = 14.5 GeV, STAR completed its first phase of the Beam Energy Scan (BES) program at RHIC. The main motivation of the BES program is the study of the QCD phase diagram and the search for a conjectured critical point. Amongst the various collision energies of 7.7, 11.5, 19.6, 27, and 39 GeV, that have been previously presented by STAR, collisions at 14.5 GeV will provide data set in the relatively large chemical potential gap between the 11.5 and 19.6 GeV center-of-mass energies. In this contribution, we report new STAR measurements of Au+Au at √{sNN} = 14.5 GeV that include identified light particle RCP and spectra, as well as measurements of the strange hadrons (Ks0, Λ , Ξ , Ω, and ϕ). The spectra from both light and strange particles cover a significant range of the intermediate transverse momentum (2 meson ratio at intermediate pT from BES Phase I. We will discuss its physics implications and whether hadronic interactions at late stage dominate the collision dynamics.

  18. B-meson decay constants from improved lattice nonrelativistic QCD with physical u, d, s, and c quarks.

    PubMed

    Dowdall, R J; Davies, C T H; Horgan, R R; Monahan, C J; Shigemitsu, J

    2013-05-31

    We present the first lattice QCD calculation of the decay constants f(B) and f(B(s)) with physical light quark masses. We use configurations generated by the MILC Collaboration including the effect of u, d, s, and c highly improved staggered quarks in the sea at three lattice spacings and with three u/d quark mass values going down to the physical value. We use improved nonrelativistic QCD (NRQCD) for the valence b quarks. Our results are f(B)=0.186(4) GeV, f(B(s))=0.224(4) GeV, f(B(s))/f(B)=1.205(7), and M(B(s))-M(B)=85(2) MeV, superseding earlier results with NRQCD b quarks. We discuss the implications of our results for the standard model rates for B((s))→μ(+)μ(-) and B→τν.

  19. Search for Light New Physics at B Factories

    DOE PAGES

    Echenard, Bertrand

    2012-01-01

    Many extensions of the Standard Model include the possibility of light new particles, such as light Higgs bosons or dark matter candidates. These scenarios can be probed using the large datasets collected by B factories, complementing measurements performed at the LHC. This paper summarizes recent searches for light new physics conducted by the BABAR and Belle experiments.

  20. Chiral Extrapolation of Lattice Data for Heavy Meson Hyperfine Splittings

    SciTech Connect

    X.-H. Guo; P.C. Tandy; A.W. Thomas

    2006-03-01

    We investigate the chiral extrapolation of the lattice data for the light-heavy meson hyperfine splittings D*-D and B*-B to the physical region for the light quark mass. The chiral loop corrections providing non-analytic behavior in m{sub {pi}} are consistent with chiral perturbation theory for heavy mesons. Since chiral loop corrections tend to decrease the already too low splittings obtained from linear extrapolation, we investigate two models to guide the form of the analytic background behavior: the constituent quark potential model, and the covariant model of QCD based on the ladder-rainbow truncation of the Dyson-Schwinger equations. The extrapolated hyperfine splittings remain clearly below the experimental values even allowing for the model dependence in the description of the analytic background.

  1. New Look at Scalar Mesons

    NASA Astrophysics Data System (ADS)

    Maiani, L.; Piccinini, F.; Polosa, A. D.; Riquer, V.

    2004-11-01

    Light scalar mesons are found to fit rather well a diquark-antidiquark description. The resulting nonet obeys mass formulas which respect, to a good extent, the Okubo-Zweig-Iizuka (OZI) rule. OZI allowed strong decays are reasonably reproduced by a single amplitude describing the switch of a qq¯ pair, which transforms the state into two colorless pseudoscalar mesons. Predicted heavy states with one or more quarks replaced by charm or beauty are briefly described; they should give rise to narrow states with exotic quantum numbers.

  2. New look at scalar mesons.

    PubMed

    Maiani, L; Piccinini, F; Polosa, A D; Riquer, V

    2004-11-19

    Light scalar mesons are found to fit rather well a diquark-antidiquark description. The resulting nonet obeys mass formulas which respect, to a good extent, the Okubo-Zweig-Iizuka (OZI) rule. OZI allowed strong decays are reasonably reproduced by a single amplitude describing the switch of a qq pair, which transforms the state into two colorless pseudoscalar mesons. Predicted heavy states with one or more quarks replaced by charm or beauty are briefly described; they should give rise to narrow states with exotic quantum numbers.

  3. Spectral functions of scalar mesons

    NASA Astrophysics Data System (ADS)

    Giacosa, Francesco; Pagliara, Giuseppe

    2007-12-01

    In this work we study the spectral functions of scalar mesons in one- and two-channel cases by using nonlocal interaction Lagrangian(s). When the propagators satisfy the Källen-Lehman representation, a normalized spectral function is obtained, allowing one to take into account finite-width effects in the evaluation of decay rates. In the one-channel case, suitable to the light σ and k mesons, the spectral function can deviate consistently from a Breit-Wigner shape. In the two-channel case with one subthreshold channel, the evaluated spectral function is well approximated by a Flatté distribution; when applying the study to the a0(980) and f0(980) mesons, the tree-level forbidden KK decay is analyzed.

  4. Quantum physics of photosynthetic light-harvesting

    NASA Astrophysics Data System (ADS)

    Damjanovic, Ana

    2001-12-01

    Absorption of light by light harvesting complexes and transfer of electronic excitation to the photosynthetic reaction center (RC) constitutes the primary step of photosynthesis, i.e., the light harvesting process. A model for an atomic level structure of a so-called photosynthetic unit of the photosynthetic bacterium Rhodobacter sphaeroides has been established recently. The photosynthetic unit (PSU) of purple bacterium combines a nanometric assembly of three protein complexes: (i)the photosynthetic reaction center, (ii)a ring-shaped light harvesting complex LH-I, and (iii)multiple copies of a similar complex, LH-II. The model describes in detail the organization of pigments involved in primary light absorption and excitation transfer: a hierarchy of ring- shaped chlorophyll-carotenoid aggregates which surround four centrally located chlorophylls of the photosynthetic reaction center. This thesis presents a quantum- mechanical description of the light harvesting process in the PSU, based on the atomic level model. Excitation transfer rates for various excitation transfer steps have been determined through Fermi's golden rule. To describe electronic excitations of the strongly coupled chlorophyll aggregate in LH-II, an effective Hamiltonian has been established. This Hamiltonian has further been extended to describe also the LH-II --> LH-II --> LH-I --> RC cascade of excitation transfer. The results suggest that, in the absence of disorder, the electronic excitations in LH-II are coherently delocalizaed over the ring, and that such excitonic states speed up the light-harvesting process. Influence of thermal disorder on exciton coherence has been studied by means of a combined molecular dynamics/quantum chemistry approach. The results indicate a significant loss of coherence due to thermal effects. Excitation transfer between carotenoids and chlorophylls has been investigated in two light-harvesting complexes; LH-II of the purple bacterium Rhodospirillum

  5. Charmed meson physics accessible to an L = 10/sup 33/ cm/sup /minus/2/ sec/sup /minus/1/ e/sup +/e/sup /minus// collider operating near charm threshold

    SciTech Connect

    Schindler, R.H.

    1989-06-01

    In this report, the potential for dedicated charmed D/sup 0/, D/sup +/ and D/sub s/ meson physics in a high-luminosity e/sup +/e/sup /minus// collider operated near charm threshold is explored. The construction of such a high-luminosity collider or Tau-Charm Factory in conjunction with a new detector whose design draws heavily on the extensive operational experience of previous detectors at SPEAR, could achieve three orders-of-magnitude improvement in sensitivity in most areas of charmed meson studies. 27 refs., 10 figs., 9 tabs.

  6. Project Physics Handbook 4, Light and Electromagnetism.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Seven experiments and 40 activities are presented in this handbook. The experiments are related to Young's experiment, electric forces, forces on currents, electron-beam tubes, and wave modulation and communication. The activities are primarily concerned with aspects of scattered and polarized light, colors, image formation, lenses, cameras,…

  7. Project Physics Handbook 4, Light and Electromagnetism.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Seven experiments and 40 activities are presented in this handbook. The experiments are related to Young's experiment, electric forces, forces on currents, electron-beam tubes, and wave modulation and communication. The activities are primarily concerned with aspects of scattered and polarized light, colors, image formation, lenses, cameras,…

  8. Theoretical overview: The New mesons

    SciTech Connect

    Quigg, Chris; /Fermilab

    2004-11-01

    After commenting on the state of contemporary hadronic physics and spectroscopy, I highlight four areas where the action is: searching for the relevant degrees of freedom, mesons with beauty and charm, chiral symmetry and the D{sub sJ} levels, and X(3872) and the lost tribes of charmonium.

  9. Comparison of predicted ground-level airborne radionuclide concentrations to measured values resulting from operation of the Los Alamos Meson Physics Facility. Master's thesis

    SciTech Connect

    Hoak, W.V.

    1993-05-01

    A comparison study of measured and predicted downwind radionuclide concentrations from the Los Alamos Meson Physics Facility (LAMPF) was performed. The radionuclide emissions consist primarily of the radioisotopes 11C, 13N, and 150. The gases, vented to the outside environment by a stack located at the facility, potentially increase the radiation exposure at the facility boundary. Emission rate, meteorological, and radiation monitoring station data were collected between September 26, 1992 and October 3, 1992. The meteorological and emission data were input to the Clean Air Act Assessment Package-1988 (CAP88-PC) computer code. The downwind radionuclide air concentrations predicted by the code were compared to the air concentrations measured by the monitoring stations. The code was found to slightly over-predict downwind concentrations during unstable atmospheric conditions. For stable atmospheric conditions, the code was not useful for predicting downwind air concentrations. This is thought to be due to an underestimation of horizontal dispersion.

  10. Theoretical studies of multistep processes, isospin effects in nuclear scattering, and meson and baryon interactions in nuclear physics: Annual progess report, 1 May 1988--30 April 1989

    SciTech Connect

    Landau, R.H.; Madsen, V.A.

    1988-10-25

    A progress report is presented for DOE grant FG06-86ER40283 supporting theoretical studies in nuclear and particle physics at Oregon State University. The research was led by Professors Landau and Madsen, and carried out in collaboration with graduate students in Corvallis, and scientists at LLNL-Livermore, TRIUMF, KFA-Juelich, Purdue University, and Florida State University. The studies include meson-exchange-current effects, quark effects, and relativistic (Dirac) effects deduced from spin observables in p-/sup 3/He scattering, atomic and nuclear Gamow states in momentum space of kaons and antiprotons, and charge-symmetry violation in pion scattering. Additional studies include microscopic optical potential calculations, multiple step processes, and differences in neutron and proton multipole matrix elements and transition densities in low lying collective states and in giant resonances. 13 refs.

  11. Theoretical studies of multistep processes, isospin effects in nuclear scattering, and meson and baryon interactions in nuclear physics: Three year summary, 1 May 1986--30 April 1989

    SciTech Connect

    Landau, R.H.; Madsen, V.A.

    1988-10-25

    A three-year summary is presented for DOE grant FG06-86ER40283 supporting theoretical studies in nuclear and particle physics at Oregon State University. The research was led by Professors Landau and Madsen, and carried out in collaboration with graduate students in Corvallis, and scientists at LLNL-Livermore, LLNL, Los Alamos, TRIUMF, KFA-Juelich, Purdue University, and Florida State University. The studies include meson-exchange-current effects, quark effects, and relativistic (Dirac) effects deduced from spin observable in p-/sup 3/He scattering, atomic and nuclear Gamow states in momentum space of kaons and antiprotons, and charge-symmetry violation in pion scattering. Additional studies include microscopic optical potential calculations, multiple step processes, and differences in neutron and proton multipole matrix elements and transition densities in low lying collective states and in giant resonances.

  12. Meson spectroscopy at COMPASS

    NASA Astrophysics Data System (ADS)

    Grube, Boris

    2016-11-01

    The goal of the COMPASS experiment at CERN is to study the structure and dynamics of hadrons. The two-stage spectrometer used by the experiment has large acceptance and covers a wide kinematic range for charged as well as neutral particles and can therefore measure a wide range of reactions. The spectroscopy of light mesons is performed with negative (mostly π-) and positive (p, π+) hadron beams with a momentum of 190 GeV/c. The light-meson spectrum is measured in different final states produced in diffractive dissociation reactions with squared four-momentum transfer t to the target between 0.1 and 1.0 (GeV=c)2. The flagship channel is the π-π-π+ final state, for which COMPASS has recorded the currently world's largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to observe new states. Among these is a new axial-vector signal, the a1(1420), with unusual properties. Novel analysis techniques have been developed to extract also the amplitude of the π-π+ subsystem as a function of 3π mass from the data. The findings are confirmed by the analysis of the π-π0π0 final state.

  13. eta and eta' Mesons from Lattice QCD

    SciTech Connect

    Christ, N.H.; Izubuchi, T.; Dawson, C.; Jung, C.; Liu, Q.; Mawhinney, R.D.; Sachrajda, C.T.; Soni, A.; Zhou, R.

    2010-12-08

    The large mass of the ninth pseudoscalar meson, the {eta}{prime}, is believed to arise from the combined effects of the axial anomaly and the gauge field topology present in QCD. We report a realistic, 2+1-flavor, lattice QCD calculation of the {eta} and {eta}{prime} masses and mixing which confirms this picture. The physical eigenstates show small octet-singlet mixing with a mixing angle of {theta} = -14.1(2.8){sup o}. Extrapolation to the physical light quark mass gives, with statistical errors only, m{sub {eta}} = 573(6) MeV and m{sub {eta}} = 947(142) MeV, consistent with the experimental values of 548 and 958 MeV.

  14. η and η' mesons from lattice QCD.

    PubMed

    Christ, N H; Dawson, C; Izubuchi, T; Jung, C; Liu, Q; Mawhinney, R D; Sachrajda, C T; Soni, A; Zhou, R

    2010-12-10

    The large mass of the ninth pseudoscalar meson, the η', is believed to arise from the combined effects of the axial anomaly and the gauge field topology present in QCD. We report a realistic, 2+1-flavor, lattice QCD calculation of the η and η' masses and mixing which confirms this picture. The physical eigenstates show small octet-singlet mixing with a mixing angle of θ=-14.1(2.8)°. Extrapolation to the physical light quark mass gives, with statistical errors only, mη=573(6) MeV and mη'=947(142) MeV, consistent with the experimental values of 548 and 958 MeV.

  15. Project Physics Text 4, Light and Electromagnetism.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Optical and electromagnetic fundamentals are presented in this fourth unit of the Project Physics text for use by senior high students. Development of the wave theory in the first half of the 19th Century is described to deal with optical problems at the early stage. Following explanations of electric charges and forces, field concepts are…

  16. Effects of School Lighting on Physical Development and School Performance.

    ERIC Educational Resources Information Center

    Hathaway, Warren E.

    1995-01-01

    This study collected data on the physical development, attendance, and school performance effects of four types of school lighting on elementary students over a two-year period. Results indicated that regular exposure to the lights had important nonvisual effects on students. Full-spectrum fluorescent lamps with ultraviolet supplements were found…

  17. Light Hadron Physics at the B Factories

    SciTech Connect

    Li, Selina Z.; /SLAC

    2008-10-20

    We report measurements of hadronic final states produced in e{sup +}e{sup -} annihilations from the BABAR and Belle experiments. In particular, we present cross sections measured in several different processes, including two-photon physics, Initial-State Radiation, and exclusive hadron productions at center-of-mass energies near 10.58 GeV. Results are compared with theoretical predictions.

  18. Light-Intensity Physical Activity and All-Cause Mortality.

    PubMed

    Loprinzi, Paul D

    2017-07-01

    Research demonstrates that moderate-to-vigorous physical activity (MVPA) is associated with a reduced risk of all-cause mortality. Few studies have examined the effects of light-intensity physical activity on mortality. Therefore, the purpose of this study was to examine the association between objectively measured light-intensity physical activity and all-cause mortality risk. Longitudinal. National Health and Nutrition Examination Survey 2003-2006 with follow-up through December 31, 2011. Five thousand five hundred seventy-five U.S. adults. Participants wore an accelerometer for at least 4 days and completed questionnaires to assess sociodemographics and chronic disease information, with blood samples taken to assess biological markers. Follow-up mortality status was assessed via death certificate data from the National Death Index. Cox proportional hazard model. After adjusting for accelerometer-determined MVPA, age, gender, race-ethnicity, cotinine, weight status, poverty level, C-reactive protein, and comorbid illness, for every 60-minute increase in accelerometer-determined light-intensity physical activity, participants had a 16% reduced hazard of all-cause mortality (hazard ratio = .84; 95% confidence interval: .78-.91; p < .001). In this national sample of U.S. adults, light-intensity physical activity was inversely associated with all-cause mortality risk, independent of age, MVPA, and other potential confounders. In addition to MVPA, promotion of light-intensity physical activity is warranted.

  19. Meson Spectroscopy at JLab@12 GeV

    SciTech Connect

    Celentano, Andrea

    2013-03-01

    Meson, being the simplest hadronic bound system, is the ideal "laboratory" to study the interaction between quarks, to understand the role of the gluons inside hadrons and to investigate the origin of color confinement. To perform such studies it is important to measure the meson spectrum, with precise determination of resonance masses and properties, looking for rare qbar q states and for unconventional mesons with exotic quantum numbers (i.e. mesons with quantum numbers that are not compatible with a qbar q structure). With the imminent advent of the 12 GeV upgrade of Jefferson Lab a new generation of meson spectroscopy experiments will start: "Meson-Ex" in Hall B and "GLUEX" in Hall D. Both will use photo-production to explore the spectrum of mesons in the light-quark sector, in the energy range of few GeVs.

  20. Experimental Status of Exotic Mesons and the GlueX Experiment

    SciTech Connect

    Daniel Carman

    2006-10-22

    One of the unanswered and most fundamental questions in physics regards the nature of the confinement mechanism of quarks and gluons in QCD. Exotic hybrid mesons manifest gluonic degrees of freedom and their spectroscopy will provide the data necessary to test assumptions in lattice QCD and the specific phenomenology leading to confinement. Within the past two decades a number of experiments have put forth tantalizing evidence for the existence of exotic hybrid mesons in the mass range below 2 GeV. This talk represents an overview of the available data and what has been learned. In looking toward the future, the GlueX experiment at Jefferson Laboratory represents a new initiative that will perform detailed spectroscopy of the light-quark meson spectrum. This experiment and its capabilities will be reviewed.

  1. B physics: measurement of partial widths and search for direct cp violation in d0 meson decays

    SciTech Connect

    Acosta, D.; The CDF Collaboration

    2005-04-04

    We present a measurement of relative partial widths and decay rate CP asymmetries in K{sup -}K{sup +} and {pi}{sup -}{pi}{sup +} decays of D{sup 0} mesons produced in p{bar p} collisions at {radical}s = 1.96TeV. We use a sample of 2 x 10{sup 5} D*{sup +} {yields} D{sup 0}{pi}{sup +} (and charge conjugate) decays with the D{sup 0} decaying to K{sup -}{pi}{sup +}, K{sup -}K{sup +}, and {pi}{sup -}{pi}{sup +}, corresponding to 123 pb{sup -1} of data collected by the Collider Detector at Fermilab II experiment at the Fermilab Tevatron collider. No significant direct CP violation is observed. We measure {Lambda}(D{sup 0} {yields} K{sup -}K{sup +})/{Lambda}(D{sup 0} {yields} K{sup -}{pi}{sup +}) = 0.0992 {+-} 0.0011 {+-} 0.0012, {Lambda}(D{sup 0} {yields} {pi}{sup -}{pi}{sup +})/{Lambda}(D{sup 0} {yields} K{sup -}{pi}{sup +}) = 0.03594 {+-} 0.00054 {+-} 0.00040, A{sub CP} (K{sup -}K{sup +}) = (2.0 {+-} 1.2 {+-} 0.6)%, and A{sub CP} ({pi}{sup -}{pi}{sup +}) = (1.0 {+-} 1.3 {+-} 0.6) %, where, in all cases, the first uncertainty is statistical and the second is systematic.

  2. The physics of light distribution in hollow structures

    SciTech Connect

    Whitehead, L.A.

    1994-12-31

    The purpose of this paper is to serve as an introduction, for non-physicists, to the subject of light distribution in hollow structures. The motivation for light distribution is the importance of getting the maximum value from available light. We all recognize that photons cost money (one photon costs about $10{sup -25} to make) so we obviously want to try to make the maximum number of photons for a given cost. What is often overlooked, however, is that these photons have the highest value only if they are delivered to the right place in the correct quantity. This means that there is often substantial economic value in the high quality distribution of light. This problem is discussed from a very general perspective, in order to show the role of general optical films for manipulating light. The underlying physics at work in such films is described, and examples of common optical light deistribution films are provided.

  3. The physics of light distribution in hollow structures

    NASA Technical Reports Server (NTRS)

    Whitehead, Lorne A.

    1994-01-01

    The purpose of this paper is to serve as an introduction, for non-physicists, to the subject of light distribution in hollow structures. The motivation for light distribution is the importance of getting the maximum value from available light. We all recognize that photons cost money (one photon costs about $10(exp -25) to make) so we obviously want to try to make the maximum number of photons for a given cost. What is often overlooked, however, is that these photons have the highest value only if they are delivered to the right place in the correct quantity. This means that there is often substantial economic value in the high quality distribution of light. This problem is discussed from a very general perspective, in order to show the role of general optical films for manipulating light. The underlying physics at work in such films is described, and examples of common optical light distribution films are provided.

  4. [Medium energy meson research

    SciTech Connect

    Crowe, K.M.

    1992-12-01

    The activities of this group are primarily concerned with experiments using the Crystal Barrel Detector. This detector is installed and operating at the Low Energy Antiproton Ring (LEAR) at CERN. QCD, the modem theory of the strong interaction, is reasonably well understood at high energies, but unfortunately, low-energy QCD is still not well understood, and is far from being adequately tested. The Crystal Barrel experiments are designed to provide some of the tests. The basic line of research involves meson spectroscopy, analyses bearing on the quark and/or gluon content of nuclear states, and the exploration of mechanisms and rules which govern p{bar p} annihilation dynamics. The Crystal Barrel Detector detects and identifies charged and neutral particles with a geometric acceptance close to 100%. The principal component of the detector is an array of 1,380 CsI(TI) crystals. These crystals surround a Jet Drift Chamber (JDC), located in a 1.5 Tesla magnetic field, which measures the momentum and dE/dx of charged particles. One of the very interesting physics goals of the detector is a search for exotic mesonic states -- glueballs and hybrids. Annihilation at rest will be studied with both liquid and gaseous hydrogen targets. The gaseous target offers the possibility of triggering on atomic L-shell X rays so that specific initial angular momentum states can be studied.These topics as well as other related topics are discussed in this report.

  5. [Medium energy meson research

    SciTech Connect

    Crowe, K.M.

    1992-01-01

    The activities of this group are primarily concerned with experiments using the Crystal Barrel Detector. This detector is installed and operating at the Low Energy Antiproton Ring (LEAR) at CERN. QCD, the modem theory of the strong interaction, is reasonably well understood at high energies, but unfortunately, low-energy QCD is still not well understood, and is far from being adequately tested. The Crystal Barrel experiments are designed to provide some of the tests. The basic line of research involves meson spectroscopy, analyses bearing on the quark and/or gluon content of nuclear states, and the exploration of mechanisms and rules which govern p[bar p] annihilation dynamics. The Crystal Barrel Detector detects and identifies charged and neutral particles with a geometric acceptance close to 100%. The principal component of the detector is an array of 1,380 CsI(TI) crystals. These crystals surround a Jet Drift Chamber (JDC), located in a 1.5 Tesla magnetic field, which measures the momentum and dE/dx of charged particles. One of the very interesting physics goals of the detector is a search for exotic mesonic states -- glueballs and hybrids. Annihilation at rest will be studied with both liquid and gaseous hydrogen targets. The gaseous target offers the possibility of triggering on atomic L-shell X rays so that specific initial angular momentum states can be studied.These topics as well as other related topics are discussed in this report.

  6. Light leptonic new physics at the precision frontier

    SciTech Connect

    Le Dall, Matthias

    2016-06-21

    Precision probes of new physics are often interpreted through their indirect sensitivity to short-distance scales. In this proceedings contribution, we focus on the question of which precision observables, at current sensitivity levels, allow for an interpretation via either short-distance new physics or consistent models of long-distance new physics, weakly coupled to the Standard Model. The electroweak scale is chosen to set the dividing line between these scenarios. In particular, we find that inverse see-saw models of neutrino mass allow for light new physics interpretations of most precision leptonic observables, such as lepton universality, lepton flavor violation, but not for the electron EDM.

  7. Physical behaviour of anthropogenic light propagation into the nocturnal environment

    PubMed Central

    Aubé, Martin

    2015-01-01

    Propagation of artificial light at night (ALAN) in the environment is now known to have non negligible consequences on fauna, flora and human health. These consequences depend on light levels and their spectral power distributions, which in turn rely on the efficiency of various physical processes involved in the radiative transfer of this light into the atmosphere and its interactions with the built and natural environment. ALAN can affect the living organisms by direct lighting and indirect lighting (scattered by the sky and clouds and/or reflected by local surfaces). This paper mainly focuses on the behaviour of the indirect light scattered under clear sky conditions. Various interaction processes between anthropogenic light sources and the natural environment are discussed. This work mostly relies on a sensitivity analysis conducted with the light pollution radiative transfer model, Illumina (Aubé et al. 2005 Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retrieval method. In Proc. SPIE 2005, vol. 5890, San Diego, California, USA). More specifically, the impact of (i) the molecular and aerosol scattering and absorption, (ii) the second order of scattering, (iii) the topography and obstacle blocking, (iv) the ground reflectance and (v) the spectrum of light devices and their angular emission functions are examined. This analysis considers different behaviour as a function of the distance from the city centre, along with different zenith viewing angles in the principal plane. PMID:25780231

  8. Physical behaviour of anthropogenic light propagation into the nocturnal environment.

    PubMed

    Aubé, Martin

    2015-05-05

    Propagation of artificial light at night (ALAN) in the environment is now known to have non negligible consequences on fauna, flora and human health. These consequences depend on light levels and their spectral power distributions, which in turn rely on the efficiency of various physical processes involved in the radiative transfer of this light into the atmosphere and its interactions with the built and natural environment. ALAN can affect the living organisms by direct lighting and indirect lighting (scattered by the sky and clouds and/or reflected by local surfaces). This paper mainly focuses on the behaviour of the indirect light scattered under clear sky conditions. Various interaction processes between anthropogenic light sources and the natural environment are discussed. This work mostly relies on a sensitivity analysis conducted with the light pollution radiative transfer model, Illumina (Aubé et al. 2005 Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retrieval method. In Proc. SPIE 2005, vol. 5890, San Diego, California, USA). More specifically, the impact of (i) the molecular and aerosol scattering and absorption, (ii) the second order of scattering, (iii) the topography and obstacle blocking, (iv) the ground reflectance and (v) the spectrum of light devices and their angular emission functions are examined. This analysis considers different behaviour as a function of the distance from the city centre, along with different zenith viewing angles in the principal plane.

  9. GlueX: Meson Spectroscopy in Photoproduction

    SciTech Connect

    Salgado, Carlos; Smith, Elton S.

    2014-03-01

    The goal of the GlueX experiment \\cite{gluex} is to provide crucial data to help understand the soft gluonic fields responsible for binding quarks in hadrons. Hybrid mesons, and in particular exotic hybrid mesons, provide the ideal laboratory for testing QCD in the confinement regime since these mesons explicitly manifest the gluonic degrees of freedom. Photoproduction is expected to be effective in producing exotic hybrids but there is little data on the photoproduction of light mesons. GlueX will use the new 12-GeV electron beam at Jefferson Lab to produce a 9-GeV beam of linearly polarized photons using the technique of coherent bremsstrahlung. A solenoid-based hermetic detector is under construction, which will be used to collect data on meson production and decays. These data will also be used to study the spectrum of conventional mesons, including the poorly understood excited vector mesons. This talk will give an update on the experiment as well as describe theoretical developments \\cite{Dudek:2011bn} to help understand how these data can provide insights into the fundamental theory of strong interactions.

  10. Single Meson Photoproduction at JLab Energies

    NASA Astrophysics Data System (ADS)

    Mathieu, Vincent; Joint Physics Analysis Center Team

    2016-09-01

    In this talk, I present the results from the Joint Physics Analysis Center about the photoproduction of a single meson (pseudoscalar or vector meson). We have developed the theoretical formalism to analysis forthcoming data at the, recently upgraded, JLab facility. We also present prediction for observables in the energy range of Eg = 5-11 GeV. Material (codes, notes, sim- ulations, etc) can be found online at the JPAC interactive website: http://www.indiana.edu/ jpac/index.html

  11. Exclusive hadronic decays of B mesons

    NASA Astrophysics Data System (ADS)

    Hölscher, Andreas

    1991-06-01

    The recent experimental results on exclusive hadronic decays of B mesons obtained by the ARGUS collaboration are presented in the talk. The results include exclusive hadronic decays involving a b → c transition, namely B decays with a D, D ∗ plus several pions and B decays to J/ψ or ψ' mesons plus Kaons have been studied. The measurements of branching ratios for two-body B decays involving a J/ψ or ψ' meson are of wide interest in the light of proposals for the study of CP violation in future experiments. The branching ratios are compared with the predictions of the model of Bauer, Stech and Wirbel and with a model of A.V. Dobrovolskaya. Using the cleanest decay channels, the masses and mass difference of the charged and neutral B meson are obtained. This mass difference is then compared with the mass splitting in other isospinmultipletts and with theoretical models.

  12. Rare B Meson Decays With Omega Mesons

    SciTech Connect

    Zhang, Lei; /Colorado U.

    2006-04-24

    Rare charmless hadronic B decays are particularly interesting because of their importance in understanding the CP violation, which is essential to explain the matter-antimatter asymmetry in our universe, and of their roles in testing the ''effective'' theory of B physics. The study has been done with the BABAR experiment, which is mainly designed for the study of CP violation in the decays of neutral B mesons, and secondarily for rare processes that become accessible with the high luminosity of the PEP-II B Factory. In a sample of 89 million produced B{bar B} pairs on the BABAR experiment, we observed the decays B{sup 0} {yields} {omega}K{sup 0} and B{sup +} {yields} {omega}{rho}{sup +} for the first time, made more precise measurements for B{sup +} {yields} {omega}h{sup +} and reported tighter upper limits for B {yields} {omega}K* and B{sup 0} {yields} {omega}{rho}{sup 0}.

  13. σ and κ mesons as broad dynamical resonances in one-meson-exchange model

    NASA Astrophysics Data System (ADS)

    Hong Xiem, Ngo Thi; Shinmura, Shoji

    2014-09-01

    The existences of broad scalar σ (600) and κ (700) mesons have been discussed intensively in the experimental and theoretical studies on ππ and πK scatterings. By using chiral perturbation model, J. Oller, A. Gómez and J. R. Peláez confirmed the existence of these mesons as dynamical resonances. In meson-exchange models, their existence has not been established yet. In this talk, using the quasi-potential of meson-exchange model and Lippmann-Schwinger equation, we determine the T and S-matrices, from which we could find the positions of poles in physical amplitudes in the complex E-plane. With the full treatment of meson-meson interactions (ππ - πK - πη - ηη and πK - ηK) , for the first time, the existence of the scalar σ (600) and κ (700) mesons are confirmed in one-meson-exchange model. There are two kinds of form factors in our model: the monopole and the Gaussian. Our recent results show that the poles σ and κ appear at around 410 - i 540 MeV and 650 - i 20 MeV for monopole form factors, respectively. For Gaussian form factors, the poles σ and κ, respectively, are at 360 - i 510 MeV and 649 - i 190 MeV.

  14. The comparative uptake and interaction of several radionuclides in the trophic levels surrounding the Los Alamos Meson Physics Facility (LAMPF) waste water ponds

    SciTech Connect

    Brooks, G.H. Jr.

    1989-08-01

    A study was undertaken to examine the uptake, distribution, and interaction of five activation products (Co-57, Be-7, Cs-134, Rb-83, and Mn-54) within the biotic and abiotic components surrounding the waste treatment lagoons of the Los Alamos Meson Physics Facility (LAMPF). The study attempted to ascertain where, and what specific interactions were taking place among the isotopes and the biotic/abiotic components. A statistical approach, utilizing Multivariate Analysis of Variance (MANOVA), was conducted testing the radioisotopic concentrations by (1) the trophic levels (TROPLVL) in each position sampled on the grid, (2) where sampled on the grid (TRAN), (3) where sampled with-in each grid line (PLOT), and (4) the side with which sampled (SIDE). This provided both the dependent and independent variables that would be tested. The Null Hypothesis (Ho) tested the difference in the mean values of the isotopes within/between each of the four independent variables. The Rb-83 statistic indicated an accumulation within the TRAN and PLOT variables within the sampled area. The Co-57 test statistic provided a value which indicated that accumulation of this isotope within TROPLVL was taking place. Mn-54 test values indicated that accumulation was also taking place at the higher trophic levels within the PLOT, TRAN, and SIDE positions. Cs-134 was found to accumulate to third level in this trophic level structure (TROPLVL-(vegetation)), and then decrease from there. The Be-7 component provided no variance from known compartmental transfers. 210 refs., 17 figs., 4 tabs.

  15. Near-Threshold Meson Production in pp Collisions

    NASA Astrophysics Data System (ADS)

    Bedfer, Yann

    1998-11-01

    A program of near threshold investigations of meson production channels in vec p + p collisions has been carried out by the DISTO collaboration. Preliminary results are given. The ability of the experimental apparatus to eventually determine total and differential cross-sections is demonstrated. A number a spin observables will also be evaluated. The potentialities of these measurements for the understanding of two leading problems in meson physics: OZI rule violation in φ production and status of the η ' meson, are discussed.

  16. EPOSHQ-a new approach to describe charmed mesons in pp, pA and AA collisions

    NASA Astrophysics Data System (ADS)

    Aichelin, J.; Guiot, B.; Ozvenschuck, V.; Nahrgang, M.; Gossiaux, P. B.; Werner, K.

    2016-12-01

    We present first results of a new approach, EPOSHQ, which combines the EPOS3 event generator with the heavy quarks physics. In this approach light and heavy quarks are simultaneously created in the elementary collisions. The heavy quarks interact by elastic and radiative collisions with the plasma constituents, given by the EPOS3 approach, employing the full Boltzmann collision integral. This approach will allow for the description of correlations between light and heavy mesons.

  17. B- and D-meson decay constants from three-flavor lattice QCD

    SciTech Connect

    Bazavov, A.; et al.

    2012-06-01

    We calculate the leptonic decay constants of B_{(s)} and D_{(s)} mesons in lattice QCD using staggered light quarks and Fermilab bottom and charm quarks. We compute the heavy-light meson correlation functions on the MILC asqtad-improved staggered gauge configurations which include the effects of three light dynamical sea quarks. We simulate with several values of the light valence- and sea-quark masses (down to ~m_s/10) and at three lattice spacings (a ~ 0.15, 0.12, and 0.09 fm) and extrapolate to the physical up and down quark masses and the continuum using expressions derived in heavy-light meson staggered chiral perturbation theory. We renormalize the heavy-light axial current using a mostly nonperturbative method such that only a small correction to unity must be computed in lattice perturbation theory and higher-order terms are expected to be small. We obtain f_{B^+} = 196.9(8.9) MeV, f_{B_s} = 242.0(9.5) MeV, f_{D^+} = 218.9(11.3) MeV, f_{D_s} = 260.1(10.8) MeV, and the SU(3) flavor-breaking ratios f_{B_s}/f_{B} = 1.229(26) and f_{D_s}/f_{D} = 1.188(25), where the numbers in parentheses are the total statistical and systematic uncertainties added in quadrature.

  18. Meson Photoproduction Experiments with CLAS

    SciTech Connect

    Eugene Pasyuk

    2012-12-01

    A large part of the experimental program in Hall B of the Jefferson Lab is dedicated to light baryon spectroscopy. Meson photoprodcution experiments are essential part of this program. CEBAF Large Acceptance Spectrometer (CLAS) and availability of circularly and linearly polarized tagged photon beams and frozen spin polarized targets provide unique conditions for this type of experiments. This combination of experimental tools gives a remarkable opportunity to measure double polarization observables for different pseudo-scalar meson photoproduction processes. For the first time, a complete or nearly complete measurement became possible and will facilitate model independent extraction of the reaction amplitude. An overview of the experimental program and its current status together with recent results on double polarization measurements in π{sup +} photoproduction are presented.

  19. Strange Baryon to Meson Ratio

    NASA Astrophysics Data System (ADS)

    Cuautle, Eleazar; Ayala, Alejandro

    2014-05-01

    We present a model to compute baryon and meson transverse momentum distributions, and their ratios, in relativistic heavy-ion collisions. The model allows to compute the probability to form colorless bound states of either two or three quarks as functions of the evolving density during the collision. The qualitative differences of the baryon to meson ratio for different collision energies and for different particle species can be associated to the different density dependent probabilities and to the combinatorial factors which in turn depend on whether the quarks forming the bound states are heavy or light. We compare to experimental data and show that we obtain a good description up to intermediate values of pt.

  20. Cherenkov light imaging in astro-particle physics

    NASA Astrophysics Data System (ADS)

    Mirzoyan, Razmik

    2014-12-01

    Cherenkov light emission plays a key role in contemporary science; it is widely used in high energy, nuclear, and numerous astro-particle physics experiments. Most astro-particle physics experiments are based on the detection of light, and a vast majority of them on the measurement of Cherenkov light. Cherenkov light emission is measured in gases (used in air-Cherenkov technique), in water (for example, neutrino experiments BAIKAL, Super-Kamiokande, NESTOR, ANTARES, future KM3NeT; cosmic and γ-ray experiments Milagro, HAWC, AUGER) and in ice (IceCube). In this report our goal is not limited to simply listing the multitude of experiments that are based on using Cherenkov emission, but we will clarify the reasons making this emission so important and so frequently used. For completeness we will first give a short historical overview on the discovery and evolution of Cherenkov emission and then we will dwell on its main features and numerous applications in astro-particle physics experiments.

  1. Beauty vector meson decay constants from QCD sum rules

    SciTech Connect

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2016-01-22

    We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.

  2. Is the spectrum of highly excited mesons purely coulombian?

    PubMed

    Mezoir, El Houssine; González, P

    2008-12-05

    We show that a static central potential may provide a precise description of highly excited light unflavored mesons. Because of string breaking, this potential becomes of chromoelectric type at sufficiently large quark-antiquark distances giving rise to a Coulombian spectrum. The same conclusion can be inferred for any other meson sector through a straightforward extension of our analysis.

  3. Beauty vector meson decay constants from QCD sum rules

    NASA Astrophysics Data System (ADS)

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2016-01-01

    We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.

  4. Scalar mesons in a linear sigma model with (axial-)vector mesons

    SciTech Connect

    Parganlija, D.; Kovacs, P.; Wolf, Gy.; Giacosa, F.; Rischke, D. H.

    2013-03-25

    The structure of the scalar mesons has been a subject of debate for many decades. In this work we look for qq states among the physical resonances using an extended Linear Sigma Model that contains scalar, pseudoscalar, vector, and axial-vector mesons both in the non-strange and strange sectors. We perform global fits of meson masses, decay widths and amplitudes in order to ascertain whether the scalar qq states are below or above 1 GeV. We find the scalar states above 1 GeV to be preferred as qq states.

  5. Scalar mesons in a linear sigma model with (axial-)vector mesons

    NASA Astrophysics Data System (ADS)

    Parganlija, D.; Kovács, P.; Wolf, Gy.; Giacosa, F.; Rischke, D. H.

    2013-03-01

    The structure of the scalar mesons has been a subject of debate for many decades. In this work we look for qq states among the physical resonances using an extended Linear Sigma Model that contains scalar, pseudoscalar, vector, and axial-vector mesons both in the non-strange and strange sectors. We perform global fits of meson masses, decay widths and amplitudes in order to ascertain whether the scalar qq states are below or above 1 GeV. We find the scalar states above 1 GeV to be preferred as qq states.

  6. New light field camera based on physical based rendering tracing

    NASA Astrophysics Data System (ADS)

    Chung, Ming-Han; Chang, Shan-Ching; Lee, Chih-Kung

    2014-03-01

    Even though light field technology was first invented more than 50 years ago, it did not gain popularity due to the limitation imposed by the computation technology. With the rapid advancement of computer technology over the last decade, the limitation has been uplifted and the light field technology quickly returns to the spotlight of the research stage. In this paper, PBRT (Physical Based Rendering Tracing) was introduced to overcome the limitation of using traditional optical simulation approach to study the light field camera technology. More specifically, traditional optical simulation approach can only present light energy distribution but typically lack the capability to present the pictures in realistic scenes. By using PBRT, which was developed to create virtual scenes, 4D light field information was obtained to conduct initial data analysis and calculation. This PBRT approach was also used to explore the light field data calculation potential in creating realistic photos. Furthermore, we integrated the optical experimental measurement results with PBRT in order to place the real measurement results into the virtually created scenes. In other words, our approach provided us with a way to establish a link of virtual scene with the real measurement results. Several images developed based on the above-mentioned approaches were analyzed and discussed to verify the pros and cons of the newly developed PBRT based light field camera technology. It will be shown that this newly developed light field camera approach can circumvent the loss of spatial resolution associated with adopting a micro-lens array in front of the image sensors. Detailed operational constraint, performance metrics, computation resources needed, etc. associated with this newly developed light field camera technique were presented in detail.

  7. Advances in Light-Front QCD: Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.

    2017-05-01

    A remarkable feature of QCD is that the mass scale κ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ ^4 ζ ^2 for mesons, where ζ ^2 is the LF radial variable conjugate to the q \\bar{q} invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS_5, the space of isometries of the conformal group—if one modifies the action of AdS_5 by the dilaton e^{κ ^2 z^2} in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ _{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α _s(Q^2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q_0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q_0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the

  8. Advances in Light-Front QCD: Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra

    DOE PAGES

    Brodsky, Stanley J.

    2017-04-19

    A remarkable feature of QCD is that the mass scalemore » $k$ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ4ζ2 for mesons, where ζ2 is the LF radial variable conjugate to the $$q\\bar{q}$$ invariant mass. The same result, including spin terms, is obtained using light-front holography$-$the duality between the front form and AdS5, the space of isometries of the conformal group$-$if one modifies the action of AdS5 by the dilaton e$κ^2z^2$ in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κκ underlying confinement and hadron masses can be connected to the parameter Λ$$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling αs (Q2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the

  9. Physical Layer Characteristics and Techniques for Visible Light Communications

    NASA Astrophysics Data System (ADS)

    Cui, Kaiyun

    With the rapid development of semiconductor lighting technologies, the light emitting diodes (LEDs) are promising to eventually replace traditional incandescent and fluorescent lamps for their high energy efficiency, environmental friendliness, and long lifetime. Visible light communication (VLC) utilizing lighting LEDs as transmitters has been an emerging research area since its first proposal. Ubiquitous communication coverage will become possible with wide deployment of lighting LEDs. This thesis studies physical layer characteristics of VLC systems based on either indoor LED lighting or outdoor LED traffic signaling infrastructure. Advanced communication techniques are proposed to cope with LED bandwidth limitations and grant multiple accesses. Their performance is comprehensively analyzed in typical lighting and signaling environments. Firstly, communication link issues are studied. A conversion method from photometric parameters for illumination to radiometric parameters for communication is developed. Two typical VLC links, the line-of-sight (LOS) link and non-line-of-sight (NLOS) diffuse link, are characterized both experimentally and numerically. Some optional reverse link provisions are evaluated for a full duplex system. Different noise sources and background interferences are analyzed, and dominant noises are identified under typical application scenarios. With identified signal propagation and noise characteristics, link performance is then evaluated. Secondly, transceiver design techniques to increase the data rate are proposed, including digital pre-equalization techniques and the optical orthogonal frequency division multiplexing (O-OFDM) whose peak to average power ratio (PAPR) issue is investigated. Thirdly, the capacity of the multiple-input multiple-output (MIMO) VLC system exploring inherent multiple LED transmitters and multiple photodetectors is evaluated. The effects of some system parameters involved in non-imaging and imaging transceivers

  10. Theory of {tau} mesonic decays

    SciTech Connect

    Li, B.A.

    1997-02-01

    Studies of {tau} mesonic decays are presented. A mechanism for the axial-vector current at low energies is proposed. The VMD is used to treat the vector current. All the meson vertices of both normal parity and abnormal parity (Wess-Zumino-Witten anomaly) are obtained from an effective chiral theory of mesons. a{sub 1} dominance is found in the decay modes of the {tau} lepton: 3{pi}, f(1285){pi}. Both the {rho} and the a{sub 1} meson contribute to the decay {tau}{r_arrow}K{sup {asterisk}}K{nu}; it is found that the vector current is dominant. CVC is tested by studying e{sup +}e{sup {minus}}{r_arrow}{pi}{sup +}{pi}{sup {minus}}. The branching ratios of {tau}{r_arrow}{omega}{pi}{nu} and K{bar K}{nu} are calculated. In terms of a similar mechanism the {Delta}s=1 decay modes of the {tau} lepton are studied and K{sub a} dominance is found in {tau}{r_arrow}K{sup {asterisk}}{pi}{nu} and K{sup {asterisk}}{eta}{nu}. The suppression of {tau}{r_arrow}K{rho}{nu} is revealed. The branching ratio of {tau}{r_arrow}{eta}K{nu} is computed. As a test of this theory, the form factors of {pi}{r_arrow}e{gamma}{nu} and K{r_arrow}e{gamma}{nu} are determined. The theoretical results agree with data reasonably well. {copyright} {ital 1997} {ital The American Physical Society}

  11. Baryon-to-Meson Transition Distribution Amplitudes: Formalism and Models

    NASA Astrophysics Data System (ADS)

    Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.

    2017-03-01

    In specific kinematics, hard exclusive amplitudes may be factorized into a short distance dominated part computable in a perturbative way on the one hand, and universal, confinement related hadronic matrix elements on the other hand. The extension of this description to processes such as backward meson electroproduction and forward meson production in antiproton-nucleon scattering leads to define new hadronic matrix elements of three quark operators on the light cone, the nucleon-to-meson transition distribution amplitudes, which shed a new light on the nucleon structure.

  12. Tensor mesons produced in tau lepton decays

    SciTech Connect

    Lopez Castro, G.; Munoz, J. H.

    2011-05-01

    Light tensor mesons (T=a{sub 2}, f{sub 2} and K{sub 2}*) can be produced in decays of {tau} leptons. In this paper we compute the branching ratios of {tau}{yields}T{pi}{nu} decays by assuming the dominance of intermediate virtual states to model the form factors involved in the relevant hadronic matrix elements. The exclusive f{sub 2}(1270){pi}{sup -} decay mode turns out to have the largest branching ratio, of O(10{sup -4}). Our results indicate that the contribution of tensor meson intermediate states to the three-pseudoscalar channels of {tau} decays are rather small.

  13. Excited charmed mesons

    SciTech Connect

    Butler, J.N.; Shukla, S.

    1995-05-01

    The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one.

  14. Strange and heavy mesons in hadronic matter

    NASA Astrophysics Data System (ADS)

    Cabrera, Daniel; Abreu, Luciano M.; Bratkovskaya, Elena; Ilner, Andrej; Llanes-Estrada, Felipe J.; Ramos, Angels; Tolos, Laura; Torres-Rincon, Juan M.

    2014-04-01

    We present selected results on the properties of strange and heavy-flavoured mesons in a hot and dense nuclear medium, with emphasis in selfconsistent coupled-channel approaches based on the chiral Lagrangian. In the strangeness sector, we discuss how the enhanced reactivity of light strange vectors at FAIR conditions can be tied to in-medium effects on their predominant decay modes (e.g. bar K* → bar Kπ) and to the excitation of strange baryons in vector-meson nucleon interactions. In the heavy-flavour sector, we focus on recent determinations of the transport coefficients of charmed and bottomed mesons in a hadron gas at vanishing baryonic chemical potential. We comment on the role of microscopic transport simulations to establish a connection between theoretical models and experimental observables from heavy-ion collisions (HICs).

  15. Scalar meson spectroscopy with lattice staggered fermions

    SciTech Connect

    Bernard, Claude; DeTar, Carleton; Fu Ziwen; Prelovsek, Sasa

    2007-11-01

    With sufficiently light up and down quarks the isovector (a{sub 0}) and isosinglet (f{sub 0}) scalar meson propagators are dominated at large distance by two-meson states. In the staggered-fermion formulation of lattice quantum chromodynamics, taste-symmetry breaking causes a proliferation of two-meson states that further complicates the analysis of these channels. Many of them are unphysical artifacts of the lattice approximation. They are expected to disappear in the continuum limit. The staggered-fermion fourth-root procedure has its purported counterpart in rooted staggered chiral perturbation theory (rS{chi}PT). Fortunately, the rooted theory provides a strict framework that permits the analysis of scalar meson correlators in terms of only a small number of low-energy couplings. Thus the analysis of the point-to-point scalar meson correlators in this context gives a useful consistency check of the fourth-root procedure and its proposed chiral realization. Through numerical simulation we have measured correlators for both the a{sub 0} and f{sub 0} channels in the 'Asqtad' improved staggered-fermion formulation in a lattice ensemble with lattice spacing a=0.12 fm. We analyze those correlators in the context of rS{chi}PT and obtain values of the low-energy chiral couplings that are reasonably consistent with previous determinations.

  16. Couplings between the ρ and D and D* mesons

    NASA Astrophysics Data System (ADS)

    El-Bennich, Bruno; Paracha, M. Ali; Roberts, Craig D.; Rojas, Eduardo

    2017-02-01

    We compute couplings between the ρ -meson and D and D* mesons—D(*)ρ D(*)—that are relevant to phenomenological meson-exchange models used to analyze nucleon-D -meson scattering and explore the possibility of exotic charmed nuclei. Our framework is built from elements constrained by Dyson-Schwinger equation studies in QCD, and therefore expresses a simultaneous description of light- and heavy-quarks and the states they constitute. We find that all interactions, including the three independent D*ρ D* couplings, differ markedly amongst themselves in strength and also in range, as measured by their evolution with ρ -meson virtuality. As a consequence, it appears that one should be cautious in using a single coupling strength or parametrization for the study of interactions between D(*) mesons and matter.

  17. Charmed-strange mesons revisited: Mass spectra and strong decays

    NASA Astrophysics Data System (ADS)

    Song, Qin-Tao; Chen, Dian-Yong; Liu, Xiang; Matsuki, Takayuki

    2015-03-01

    Inspired by the present experimental status of charmed-strange mesons, we perform a systematic study of the charmed-strange meson family in which we calculate the mass spectra of the charmed-strange meson family by taking a screening effect into account in the Godfrey-Isgur model and investigate the corresponding strong decays via the quark pair creation model. These phenomenological analyses of charmed-strange mesons not only shed light on the features of the observed charmed-strange states, but also provide important information on future experimental search for the missing higher radial and orbital excitations in the charmed-strange meson family, which will be a valuable task in LHCb, the forthcoming Belle II, and PANDA.

  18. Couplings between the ρ and D and D* mesons

    DOE PAGES

    El-Bennich, Bruno; Paracha, M. Ali; Roberts, Craig D.; ...

    2017-02-27

    In this paper, we compute couplings between the ρ-meson and D and D* mesons—D(*)ρD(*)—that are relevant to phenomenological meson-exchange models used to analyze nucleon–D-meson scattering and explore the possibility of exotic charmed nuclei. Our framework is built from elements constrained by Dyson-Schwinger equation studies in QCD, and therefore expresses a simultaneous description of light- and heavy-quarks and the states they constitute. We find that all interactions, including the three independent D*ρD* couplings, differ markedly amongst themselves in strength and also in range, as measured by their evolution with ρ-meson virtuality. As a consequence, it appears that one should be cautiousmore » in using a single coupling strength or parametrization for the study of interactions between D(*) mesons and matter.« less

  19. Extracting excited mesons from the finite volume

    SciTech Connect

    Doring, Michael

    2014-12-01

    As quark masses come closer to their physical values in lattice simulations, finite volume effects dominate the level spectrum. Methods to extract excited mesons from the finite volume are discussed, like moving frames in the presence of coupled channels. Effective field theory can be used to stabilize the determination of the resonance spectrum.

  20. Constraining secret gauge interactions of neutrinos by meson decays

    NASA Astrophysics Data System (ADS)

    Bakhti, P.; Farzan, Y.

    2017-05-01

    Secret coupling of neutrinos to a new light vector boson, Z', with a mass smaller than 100 MeV is motivated within a myriad of scenarios which are designed to explain various anomalies in particle physics and cosmology. Due to the longitudinal component of the massive vector boson, the rates of three-body decay of charged mesons (M ) such as the pion and the kaon to the light lepton plus neutrino and Z' (M →l ν Z') are enhanced by a factor of (mM/mZ')2. On the other hand, the standard two body decay M →l ν is suppressed by a factor of (ml/mM)2 due to chirality. We show that in the case of (M →e ν Z'), the enhancement of mM4/me2mZ'2˜1 0 8-1 010 relative to two-body decay (M →e ν ) enables us to probe very small values of gauge coupling for νe. The strongest bound comes from the RK≡Br (K →e +ν )/Br (K →μ +ν ) measurement in the NA62 experiment. The bound can be significantly improved by customized searches for signals of three-body charged meson decay into the positron plus missing energy in the NA62 and/or PIENU data.

  1. {eta} and {eta}{sup '} Mesons from Lattice QCD

    SciTech Connect

    Christ, N. H.; Liu, Q.; Mawhinney, R. D.; Dawson, C.; Izubuchi, T.; Jung, C.; Soni, A.; Sachrajda, C. T.; Zhou, R.

    2010-12-10

    The large mass of the ninth pseudoscalar meson, the {eta}{sup '}, is believed to arise from the combined effects of the axial anomaly and the gauge field topology present in QCD. We report a realistic, 2+1-flavor, lattice QCD calculation of the {eta} and {eta}{sup '} masses and mixing which confirms this picture. The physical eigenstates show small octet-singlet mixing with a mixing angle of {theta}=-14.1(2.8) deg. Extrapolation to the physical light quark mass gives, with statistical errors only, m{sub {eta}}=573(6) MeV and m{sub {eta}{sup '}}=947(142) MeV, consistent with the experimental values of 548 and 958 MeV.

  2. Meson Production and Space Radiation

    NASA Astrophysics Data System (ADS)

    Norbury, John; Blattnig, Steve; Norman, Ryan; Aghara, Sukesh

    -nucleus reactions will be presented. The NCRP has also recom-mended that more attention should be paid to neutron and light ion transport. The coupling of neutrons, light ions, mesons and other hadrons will be discussed.

  3. Research opportunities in atomic physics at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Schlachter, A. S.; Robinson, A. L.

    1989-09-01

    The Advanced Light Source (ALS) now under construction at the Lawrence Berkeley Laboratory is being planned as a national user facility for the production of high-brightness and partially coherent X-ray and ultraviolet synchrotron radiation. The ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in 11 long straight sections and up to 48 bending-magnet ports. High-brightness photon beams from less than 10 eV to more than 1 keV will be produced by undulators, thereby providing many research opportunities in atomic and molecular physics and chemistry. Wigglers and bending magnets will provide high-flux broad-band radiation at energies to 10 keV.

  4. Some implications of meson dominance in weak interactions

    SciTech Connect

    Lichard, P. ||

    1997-05-01

    The hypothesis is scrutinized that the weak interaction of hadronic systems at low energies is dominated by the coupling of the pseudoscalar, vector, and axial-vector mesons to the weak gauge bosons. The strength of the weak coupling of the {rho}(770) meson is uniquely determined by vector-meson dominance in electromagnetic interactions; flavor and chiral symmetry-breaking effects modify the coupling of other vector mesons and axial-vector mesons. Many decay rates are calculated and compared to experimental data and partly to predictions of other models. A parameter-free description of the decay K{sup +}{r_arrow}{pi}{sup +}scr(l){sup +}scr(l){sup {minus}} is obtained. Predictions for several not yet observed decay rates and reaction cross sections are presented. The relation between the conserved vector current hypothesis and meson dominance is clarified. Phenomenological success of the meson dominance suggests that in some calculations based on the standard model the weak quark-antiquark annihilation and creation diagrams may be more important than anticipated so far. The processes are identified where the meson dominance fails, implying that they are governed, on the quark level, by some other standard model diagrams. {copyright} {ital 1997} {ital The American Physical Society}

  5. Quantum simulations and many-body physics with light.

    PubMed

    Noh, Changsuk; Angelakis, Dimitris G

    2017-01-01

    In this review we discuss the works in the area of quantum simulation and many-body physics with light, from the early proposals on equilibrium models to the more recent works in driven dissipative platforms. We start by describing the founding works on Jaynes-Cummings-Hubbard model and the corresponding photon-blockade induced Mott transitions and continue by discussing the proposals to simulate effective spin models and fractional quantum Hall states in coupled resonator arrays (CRAs). We also analyse the recent efforts to study out-of-equilibrium many-body effects using driven CRAs, including the predictions for photon fermionisation and crystallisation in driven rings of CRAs as well as other dynamical and transient phenomena. We try to summarise some of the relatively recent results predicting exotic phases such as super-solidity and Majorana like modes and then shift our attention to developments involving 1D nonlinear slow light setups. There the simulation of strongly correlated phases characterising Tonks-Girardeau gases, Luttinger liquids, and interacting relativistic fermionic models is described. We review the major theory results and also briefly outline recent developments in ongoing experimental efforts involving different platforms in circuit QED, photonic crystals and nanophotonic fibres interfaced with cold atoms.

  6. Quantum simulations and many-body physics with light

    NASA Astrophysics Data System (ADS)

    Noh, Changsuk; Angelakis, Dimitris G.

    2017-01-01

    In this review we discuss the works in the area of quantum simulation and many-body physics with light, from the early proposals on equilibrium models to the more recent works in driven dissipative platforms. We start by describing the founding works on Jaynes-Cummings-Hubbard model and the corresponding photon-blockade induced Mott transitions and continue by discussing the proposals to simulate effective spin models and fractional quantum Hall states in coupled resonator arrays (CRAs). We also analyse the recent efforts to study out-of-equilibrium many-body effects using driven CRAs, including the predictions for photon fermionisation and crystallisation in driven rings of CRAs as well as other dynamical and transient phenomena. We try to summarise some of the relatively recent results predicting exotic phases such as super-solidity and Majorana like modes and then shift our attention to developments involving 1D nonlinear slow light setups. There the simulation of strongly correlated phases characterising Tonks-Girardeau gases, Luttinger liquids, and interacting relativistic fermionic models is described. We review the major theory results and also briefly outline recent developments in ongoing experimental efforts involving different platforms in circuit QED, photonic crystals and nanophotonic fibres interfaced with cold atoms.

  7. Regarding the scalar mesons

    SciTech Connect

    Liu Yunhu; Shao Jianxin; Wang Xiaogang; Zhang Ziying; Li Demin

    2008-02-01

    Based on the main assumption that the D{sub sJ}(2860) belongs to the 2{sup 3}P{sub 0} qq multiplet, the masses of the scalar meson nonet are estimated in the framework of the relativistic independent quark model, Regge phenomenology, and meson-meson mixing. We suggest that the a{sub 0}(1005), K{sub 0}*(1062), f{sub 0}(1103), and f{sub 0}(564) constitute the ground scalar meson nonet; it is supposed that these states would likely correspond to the observed states a{sub 0}(980), {kappa}(900), f{sub 0}(980), and f{sub 0}(600)/{sigma}, respectively. Also a{sub 0}(1516), K{sub 0}*(1669), f{sub 0}(1788), and f{sub 0}(1284) constitute the first radial scalar meson nonet, it is supposed that these states would likely correspond to the observed states a{sub 0}(1450), K{sub 0}*(1430), f{sub 0}(1710), and f{sub 0}(1370), respectively. The scalar state f{sub 0}(1500) may be a good candidate for the ground scalar glueball. The agreement between the present findings and those given by other different approaches is satisfactory.

  8. Isgur-Wise functions and unitary representations of the Lorentz group: The meson case with j =1/2 light cloud

    NASA Astrophysics Data System (ADS)

    Le Yaouanc, A.; Oliver, L.; Raynal, J.-C.

    2014-12-01

    We pursue the group-theoretical method to study Isgur-Wise (IW) functions. We extend the general formalism, formerly applied to the baryon case jP=0+ (for Λb→Λcℓν¯ ℓ ), to mesons with jP=1/2- , i.e. B ¯ →D (D(*))ℓν . In this case, which is more involved from the angular momentum point of view, only the principal series of unitary representations of the Lorentz group contribute. We obtain an integral representation for the IW function ξ (w ) with a positive measure, recover the bounds for the slope and the curvature of ξ (w ) obtained from the Bjorken-Uraltsev sum-rule method, and get new bounds for higher derivatives. We demonstrate also that if the lower bound for the slope is saturated, the measure is a δ function, and ξ (w ) is given by an explicit elementary function. Inverting the integral formula, we obtain the measure in terms of the IW function, allowing us to formulate criteria to decide if a given Ansatz for the Isgur-Wise function is compatible or not with the sum-rule constraints. Moreover, we obtain an upper bound on the IW function valid for any value of w . We compare these theoretical constraints to a number of forms for ξ (w ) proposed in the literature. The "dipole" function ξ (w )=(2/w+1 ) 2 c satisfies all constraints for c ≥3/4 , while the QCD sum rule result including condensates does not satisfy them. Special care is devoted to the Bakamjian-Thomas relativistic quark model in the heavy-quark limit and to the description of the Lorentz group representation that underlies this model. Consistently, the IW function satisfies all Lorentz group criteria for any explicit form of the meson Hamiltonian at rest.

  9. Short-distance matrix elements for $D$-meson mixing for 2+1 lattice QCD

    SciTech Connect

    Chang, Chia Cheng

    2015-01-01

    We study the short-distance hadronic matrix elements for D-meson mixing with partially quenched Nf = 2+1 lattice QCD. We use a large set of the MIMD Lattice Computation Collaboration's gauge configurations with a2 tadpole-improved staggered sea quarks and tadpole-improved Lüscher-Weisz gluons. We use the a2 tadpole-improved action for valence light quarks and the Sheikoleslami-Wohlert action with the Fermilab interpretation for the valence charm quark. Our calculation covers the complete set of five operators needed to constrain new physics models for D-meson mixing. We match our matrix elements to the MS-NDR scheme evaluated at 3 GeV. We report values for the Beneke-Buchalla-Greub-Lenz-Nierste choice of evanescent operators.

  10. Selection rules for hadronic transitions of XYZ mesons.

    PubMed

    Braaten, Eric; Langmack, Christian; Smith, D Hudson

    2014-06-06

    Many of the XYZ mesons discovered in the last decade can be identified as bound states of a heavy quark and antiquark in Born-Oppenheimer (BO) potentials defined by the energy of gluon and light-quark fields in the presence of static color sources. The mesons include quarkonium hybrids, which are bound states in excited flavor-singlet BO potentials, and quarkonium tetraquarks, which are bound states in BO potentials with light-quark+antiquark flavor. The deepest hybrid potentials are known from lattice QCD calculations. The deepest tetraquark potentials can be inferred from lattice QCD calculations of static adjoint mesons. Selection rules for hadronic transitions are derived and used to identify XYZ mesons that are candidates for ground-state energy levels in the BO potentials for charmonium hybrids and tetraquarks.

  11. Toward the excited isoscalar meson spectrum from lattice QCD

    SciTech Connect

    Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; Thomas, Christopher E.

    2013-11-18

    We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to about ~400 MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between light and strange in most JPC channels; one notable exception is the pseudoscalar sector where the approximate SU(3)F octet, singlet structure of the η, η' is reproduced. We extract exotic JPC states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet qqbar pair, along with non-exotic hybrid mesons embedded in a qq¯-like spectrum.

  12. Toward the excited isoscalar meson spectrum from lattice QCD

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; ...

    2013-11-18

    We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to about ~400 MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between light and strange in most JPC channels; one notable exception is the pseudoscalar sector where the approximate SU(3)F octet, singlet structure of the η, η' is reproduced. We extract exotic JPC states, identifiedmore » as hybrid mesons in which an excited gluonic field is coupled to a color-octet qqbar pair, along with non-exotic hybrid mesons embedded in a qq¯-like spectrum.« less

  13. CP Violation in B Mesons

    NASA Astrophysics Data System (ADS)

    Roe, Natalie A.

    2001-04-01

    Our world manifestly violates CP, the symmetry between matter and antimatter; there is no observational evidence for any significant amount of antimatter in the Universe. Andrei Sakharov was the first to point out that, in the context of Big Bang theory, a matter-dominated universe requires CP violation at the quantum level. Indeed, CP violation was subsequently observed as a tiny effect in K-meson decays, and it can be naturally accommodated in the Standard Model of fundamental particles with 3 generations of quarks. However, to produce the observed baryon asymmetry, baryogenesis calculations require more CP violation than the Standard Model affords. This is an intriguing puzzle whose solution will require input from both particle physics and cosmology, and it has inspired particle physicists to study CP violation with greater precision in a new generation of experiments. We are now entering this exciting new era in CP violation studies. Several new or upgraded experiments plan a program of detailed measurements of CP violating effects in B mesons. The predicted asymmetries are large, observable in a variety of decay channels, and the theoretical uncertainties are small for the best modes. Some interesting experimental results have recently been announced, and more precise measurements will soon follow. Future experiments are already planned to make even more definitive measurements. In this talk I will review the theoretical predictions and the connection to cosmology, survey the experimental scene, and describe how the study of CP violation in B mesons will allow us to make stringent tests of the Standard Model.

  14. Highly excited and exotic meson spectroscopy from lattice QCD

    SciTech Connect

    Christopher Thomas

    2011-05-01

    I will discuss recent progress in extracting highly excited and exotic meson spectra using lattice QCD. New results in the light meson sector will be presented, where a combination of techniques have enabled us to confidently identify the spin of extracted states. Highlights include many states with exotic quantum numbers and, for the first time in a lattice QCD calculation, spin-four states. I will conclude with comments on future prospects.

  15. Physics Prospects with GlueX

    SciTech Connect

    Alexander Somov

    2011-10-01

    The new experiment GlueX is being currently constructed at Jefferson Lab. The experiment was designed to search for hybrid mesons with exotic-quantum-numbers using a beam of linearly polarized photons incident on a liquid hydrogen target. We will discuss the discovery potential of the GlueX experiment and briefly overview its physics program. GlueX is a new experiment at Jefferson Lab. whose physics program is intended to improve our knowledge of strong interactions. The main goal of the experiment is to search for gluonic excitations in photoproduction. The experiment is expected to collect a data sample a few order of magnitudes larger than all existing photoproduction data. The physics topics of the experiment spans from light meson spectroscopy to Primakoff production of pseudoscalar mesons. The construction of the experiment has started in 2009 and the commissioning stage is expected to be finished in 2015.

  16. Meson-induced correlations of nucleons in nuclear Compton scattering

    SciTech Connect

    Huett, M.; Milstein, A.I.

    1998-01-01

    The nonresonant (seagull) contribution to the nuclear Compton amplitude at low energies is strongly influenced by nucleon correlations arising from meson exchange. We study this problem in a modified Fermi gas model, where nuclear correlation functions are obtained with the help of perturbation theory. The dependence of the mesonic seagull amplitude on the nuclear radius is investigated and the influence of a realistic nuclear density on this amplitude is discussed. We found that different form factors appear for the static part (proportional to the enhancement constant {kappa}) of the mesonic seagull amplitude and for the parts, which contain the contribution from electromagnetic polarizabilities. {copyright} {ital 1998} {ital The American Physical Society}

  17. Neutral B-Meson Mixing Parameters in and beyond the SM with 2+1 Flavor Lattice QCD

    SciTech Connect

    Bouchard, Chris M.; Freeland, Elizabeth; Bernard, C. W.; Chang, Chia Cheng; El-Khadra, Aida X; Gámiz, M. Elvira; Kronfeld, A. S.; Laiho, Jack; Van de Water, Ruth S.

    2014-12-03

    We report on the status of our calculation of the hadronic matrix elements for neutral $B$-meson mixing with asqtad sea and valence light quarks and using the Wilson clover action with the Fermilab interpretation for the $b$ quark. We calculate the matrix elements of all five local operators that contribute to neutral $B$-meson mixing both in and beyond the Standard Model. We use MILC ensembles with $N_f=2+1$ dynamical flavors at four different lattice spacings in the range $a \\approx 0.045$--$0.12$~fm, and with light sea-quark masses as low as 0.05 times the physical strange quark mass. We perform a combined chiral-continuum extrapolation including the so-called wrong-spin contributions in simultaneous fits to the matrix elements of the five operators. We present a complete systematic error budget and conclude with an outlook for obtaining final results from this analysis.

  18. Heavy meson spectroscopy under strong magnetic field

    NASA Astrophysics Data System (ADS)

    Yoshida, Tetsuya; Suzuki, Kei

    2016-10-01

    Spectra of the neutral heavy mesons, ηc(1 S ,2 S ), J /ψ , ψ (2 S ), ηb(1 S ,2 S ,3 S ), ϒ (1 S ,2 S ,3 S ) , D , D*, B , B*, Bs and Bs*, in a homogeneous magnetic field are analyzed by using a potential model with constituent quarks. To obtain anisotropic wave functions and the corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the wave functions for transverse and longitudinal directions in the cylindrical coordinate are expanded by the Gaussian bases separately. Energy level structures in the wide range of magnetic fields are obtained and the deformation of the wave functions is shown, which reflects effects of the spin mixing, the Zeeman splitting and quark Landau levels. The contribution from the magnetic catalysis in heavy-light mesons is discussed as a change of the light constituent quark mass.

  19. Extreme Light Infrastructure - Nuclear Physics Eli-Np Project

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-06-01

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam , a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  20. Casting light on BSM physics with SM standard candles

    NASA Astrophysics Data System (ADS)

    Curtin, David; Jaiswal, Prerit; Meade, Patrick; Tien, Pin-Ju

    2013-08-01

    The Standard Model (SM) has had resounding success in describing almost every measurement performed by the ATLAS and CMS experiments. In particular, these experiments have put many beyond the SM models of natural Electroweak Symmetry Breaking into tension with the data. It is therefore remarkable that it is still the LEP experiment, and not the LHC, which often sets the gold standard for understanding the possibility of new color-neutral states at the electroweak (EW) scale. Recently, ATLAS and CMS have started to push beyond LEP in bounding heavy new EW states, but a gap between the exclusions of LEP and the LHC typically remains. In this paper we show that measurements of SM Standard Candles can be repurposed to set entirely complementary constraints on new physics. To demonstrate this, we use W + W -cross section measurements to set bounds on a set of slepton-based simplified models which fill in the gaps left by LEP and dedicated LHC searches. Having demonstrated the sensitivity of the W + W -measurement to light sleptons, we also find regions where sleptons can improve the fit of the data compared to the NLO SM W + W -prediction alone. Remarkably, in those regions the sleptons also provide for the right relic-density of Bino-like Dark Matter and provide an explanation for the longstanding 3 σ discrepancy in the measurement of ( g - 2) μ.

  1. Toward the excited isoscalar meson spectrum from lattice QCD

    NASA Astrophysics Data System (ADS)

    Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; Thomas, Christopher E.

    2013-11-01

    We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to ˜400MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between (1)/(2)(uu¯+dd¯) and ss¯ in most JPC channels; one notable exception is the pseudoscalar sector where the approximate SU(3)F octet, singlet structure of the η, η' is reproduced. We extract exotic JPC states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet qq¯ pair, along with nonexotic hybrid mesons embedded in a qq¯-like spectrum.

  2. Physics reach of DUNE with a light sterile neutrino

    NASA Astrophysics Data System (ADS)

    Agarwalla, Sanjib Kumar; Chatterjee, Sabya Sachi; Palazzo, Antonio

    2016-09-01

    We investigate the implications of one light eV scale sterile neutrino on the physics potential of the proposed long-baseline experiment DUNE. If the future short-baseline experiments confirm the existence of sterile neutrinos, then it can affect the mass hierarchy (MH) and CP-violation (CPV) searches at DUNE. The MH sensitivity still remains above 5 σ if the three new mixing angles ( θ 14, θ 24, θ 34) are all close to θ 13. In contrast, it can decrease to 4 σ if the least constrained mixing angle θ 34 is close to its upper limit ˜ 300. We also assess the sensitivity to the CPV induced both by the standard CP-phase δ 13 ≡ δ, and the new CP-phases δ 14 and δ 34. In the 3+1 scheme, the discovery potential of CPV induced by δ 13 gets deteriorated compared to the 3 ν case. In particular, the maximal sensitivity (reached around δ 13 ˜ ± 900) decreases from 5 σ to 4 σ if all the three new mixing angles are close to θ 13. It can further diminish to almost 3 σ if θ 34 is large (˜ 300). The sensitivity to the CPV due to δ 14 can reach 3 σ for an appreciable fraction of its true values. Interestingly, θ 34 and its associated phase δ 34 can influence both the ν e appearance and ν μ disappearance channels via matter effects, which in DUNE are pronounced. Hence, DUNE can also probe CPV induced by δ 34 provided θ 34 is large. We also reconstruct the two phases δ 13 and δ 14. The typical 1 σ uncertainty on δ 13 ( δ 14) is ˜ 200 (300) if θ 34 = 0. The reconstruction of δ 14 (but not that of δ 13) degrades if θ 34 is large.

  3. USSR Report, Physics and Mathematics.

    DTIC Science & Technology

    2007-11-02

    well as the D- meson and the F- meson but especially also three weakly decaying other charmed baryons consisting of one heavy quark and two light (up...current quarks into heavy constituent quarks. It has also been applied to s-quarks, to vector and axial- vector mesons , to electromagnetic...multiquark cluster in heavy nuclei is determined, no data being available on light nuclei, whereupon the cross-section for generation of K - mesons

  4. B meson decays into charmless pseudoscalar scalar mesons

    SciTech Connect

    Delepine, D.; Lucio M, J. L.; Ramirez, Carlos A.; Mendoza S, J. A.

    2007-06-19

    The nonleptonic weak decays of meson B into a scalar and pseudoscalar meson are studied. The scalar mesons under consideration are {sigma} (or f0(600)), f0(980), a0(980) and K{sub 0}{sup *}(1430). We calculate the Branching ratios in the Naive Factorization approximation. Scalars are assumed to be qq-bar bounded sates, but an estimation can be obtained in the case they are four bounded states.

  5. B physics: evidence for the exclusive decay b^+/-_c -> j/psi pi^+ and measurement of the mass of the b^+/-_c meson

    SciTech Connect

    Acosta, D.; The CDF Collaboration

    2005-05-25

    We report the first evidence of a fully reconstructed decay mode of the B{sub c}{sup {+-}} meson in the channel B{sub c}{sup {+-}} {yields} J/{psi}{sup {+-}}, with J/{psi} {yields} {mu}{sup +}{mu}{sup -}. The analysis is based on an integrated luminosity of 360 pb{sup -1} in p{bar p} collisions collected by the Collider Detector at Fermilab. We observe 18.9 {+-} 5.7 signal events on a background of 10.0 {+-} 1.4 events and the fit to the J/{psi}{pi}{sup {+-}} mass spectrum yields a B{sub c}{sup {+-}} mass of 6287.0 {+-} 4.8(stat) {+-} 1.1(syst) MeV/c{sup 2}.

  6. Pentaquarks and doubly heavy exotic mesons

    NASA Astrophysics Data System (ADS)

    Karliner, Marek

    2016-11-01

    I discuss the experimental evidence for and theoretical interpretation of the new mesons and baryons with two heavy quarks. These include doubly-heavy baryons, exotic hadronic quarkonia and most recently a manifestly exotic pentaquark-like doubly heavy baryon with a minimal quark content uudc¯ discovered by LHCb, whose mass, decay mode and width are in agreement with a prediction based on a physical picture of a deuteron-like Σc D¯* "hadronic molecule".

  7. Rare B Meson Decays at the Tevatron

    SciTech Connect

    Hopkins, Walter

    2012-01-01

    Rare B meson decays are an excellent probe for beyond the Standard Model physics. Two very sensitive processes are the b {yields} s{mu}{sup +}{mu}{sup -} and B{sub s,d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays. We report recent results at a center of mass energy of {radical}s = 1.96 TeV from CDF II using 7 fb{sup -1} at the Fermilab Tevatron Collider.

  8. Angular momentum content of the rho meson in lattice QCD.

    PubMed

    Glozman, Leonid Ya; Lang, C B; Limmer, Markus

    2009-09-18

    The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined physical state. It is then possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark component of a meson in the infrared, where mass is generated. Using a unitary transformation from the chiral basis to the ;{2S+1}L_{J} basis one may extract a partial wave content of a meson. We present results for the ground state of the rho meson using quenched simulations as well as simulations with n_{f} = 2 dynamical quarks, all for lattice spacings close to 0.15 fm. We point out that these results indicate a simple ;{3}S_{1}-wave composition of the rho meson in the infrared, like in the SU(6) flavor-spin quark model.

  9. Analysis tools for MesonEx at CLAS12

    NASA Astrophysics Data System (ADS)

    Glazier, D. I.

    2016-05-01

    The JLAB upgrade will soon be completed and the new CLAS12 detector system will collect large volumes of data allowing detailed investigations of many aspects of hadron physics. The focus of the MesonEx experiment is on the production of mesonic states by low Q2 virtual photons, or quasi-real photons. Studying such mesonic states is a particularly challenging data analysis problem, requiring well understood detector systems, clean signal and background separation, handling of large volumes of data and crucially a close collaboration between experimentalists and theorists to ensure the most sophisticated theoretical methods are used to interrogate the data. Here we briefly outline some of the analysis and methods that are being used to prepare for the MesonEx experiment.

  10. Spectroscopy of D Mesons

    SciTech Connect

    Bianco, Stefano

    2006-02-11

    The scenario of heavy quark meson spectroscopy underwent recently a major revolution, after the observation of BABAR and CLEO, confirmed by BELLE, of DsJ L=1 excited states, and by further evidences by SELEX. These experimental results have cast doubts on the incarnations of the ideas of Heavy Quark Effective Theory in heavy quark spectroscopy. I shall review the status of experimental data, discuss implications and sketch an outlook.

  11. Gluonic Meson Production

    NASA Astrophysics Data System (ADS)

    Minkowski, Peter; Ochs, Wolfgang

    2004-06-01

    The existence of glueballs is predicted in QCD, the lightest one with quantum numbers JPC = 0++, but different calculations do not well agree on its mass in the range below 1800 MeV. Several theoretical schemes have been proposed to cope with the experimental data which often have considerable uncertainties. Further experimental studies of the scalar meson sector are therefore important and we discuss recent proposals to study leading clusters in gluon jets and charmless B-decays to serve this purpose.

  12. Deflection of Light by Gravity: A Physical Approach.

    ERIC Educational Resources Information Center

    Diamond, Joshua B.

    1982-01-01

    Einstein's equivalence principle relates effects seen by an accelerating observer to those experienced by an observer in a gravitational field, providing an explanation of bending of a light beam by gravity. Because the calculations lead to results one-half the value found experimentally, obtaining the correct light deflection is discussed.…

  13. Deflection of Light by Gravity: A Physical Approach.

    ERIC Educational Resources Information Center

    Diamond, Joshua B.

    1982-01-01

    Einstein's equivalence principle relates effects seen by an accelerating observer to those experienced by an observer in a gravitational field, providing an explanation of bending of a light beam by gravity. Because the calculations lead to results one-half the value found experimentally, obtaining the correct light deflection is discussed.…

  14. Reconstruction of B mesons

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Binder, U.; Böckmann, P.; Gläser, R.; Harder, G.; Lembke-Koppitz, I.; Schmidt-Parzefall, W.; Schröder, H.; Schulz, H. D.; Wurth, R.; Yagil, A.; Donker, J. P.; Drescher, A.; Kamp, D.; Matthiesen, U.; Scheck, H.; Spaan, B.; Spengler, J.; Wegener, D.; Gabriel, J. C.; Schubert, K. R.; Stiewe, J.; Strahl, K.; Waldi, R.; Weseler, S.; Edwards, K. W.; Frisken, W. R.; Gilkinson, D. J.; Gingrich, D. M.; Kapitza, H.; Kim, P. C. H.; Kutschke, R.; Macfarlane, D. B.; McKenna, J. A.; McLean, K. W.; Nilsson, A. W.; Orr, R. S.; Padley, P.; Parsons, J. A.; Patel, P. M.; Prentice, J. D.; Seywerd, H. C. J.; Swain, J. D.; Tsipolitis, G.; Yoon, T.-S.; Yun, J. C.; Ammar, R.; Coppage, D.; Davis, R.; Kanekal, S.; Kwak, N.; Boštjančič, B.; Kernel, G.; Pleško, M.; Jönsson, L.; Babaev, A.; Danilov, M.; Golutvin, A.; Gorelov, I.; Lubimov, V.; Matveev, V.; Nagovitsin, V.; Ryltsov, V.; Semenov, A.; Shevchenko, V.; Soloshenko, V.; Tchistilin, V.; Tichomirov, I.; Zaitzev, Yu.; Childers, R.; Darden, C. W.; Oku, Y.; Gennow, H.; Argus Collaboration

    1987-02-01

    B mesons have been reconstructed in five decay channels of the type B→D ∗±nπ(n=1,2,3) using data accumulated by the ARGUS experiment at the e +e - storage ring DORIS II at DESY. In total, we find 40 neutral B mesons above a background of 15±6 events with a mass of (5278.2±1.0±3.0) MeV/ c2 and 32 charged B mesons above a background of 17±6 events with a mass of (5275.8±1.3±3.0) MeV/ c2. The decays overlineB0D∗+π -π 0, overlineB0D∗+π -π -π +, and B-→ D∗+π -π -π 0 have been observed for the first time. We find substantially smaller branching ratios for the decay modes overlineB0→ D∗+π - and B-→ D∗+π -π - than previously published by the CLEO collaboration.

  15. Measurement of D-meson azimuthal anisotropy in Au + Au 200 GeV collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Lomnitz, Michael

    2016-12-01

    Heavy quarks are produced through initial hard scatterings and they are affected by the hot and dense medium created in heavy-ion collisions throughout its whole evolution. Due to their heavy mass, charm quarks are expected to thermalize much more slowly than light flavor quarks. The charm quark flow is a unique tool to study the extent of thermalization of the bulk medium dominated by light quarks and gluons. At high pT, D-meson azimuthal anisotropy is sensitive to the path length dependence of charm quark energy loss in the medium, which offers new insights into heavy quark energy loss mechanisms - gluon radiation vs. collisional processes. We present the STAR measurement of elliptic flow (v2) of D0 and D± mesons in Au+Au collisions at √{sNN} = 200 GeV, for a wide transverse momentum range. These results are obtained from the data taken in the first year of physics running of the new STAR Heavy Flavor Tracker detector, which greatly improves open heavy flavor hadron measurements by the topological reconstruction of secondary decay vertices. The D-meson v2 is finite for pT > 2 GeV/c and systematically below the measurement of light particle species at the same energy. Comparison to a series of model calculations favors scenarios where charm flows with the medium and is used to infer a range for the charm diffusion coefficient 2 πTDs.

  16. Scalar meson spectroscopy with a fine lattice

    NASA Astrophysics Data System (ADS)

    Fu, Zi-Wen; Carleton, DeTar

    2011-10-01

    With sufficiently light u and d quarks the isovector (a0) and isosinglet (f0) scalar meson propagators are dominated at large distances by two-meson states. In the staggered fermion formulation of lattice QCD, taste-symmetry breaking causes a proliferation of multihadron states that complicates the analysis of these channels. Of special interest is the bubble contribution, which makes a considerable contribution to these channels. Using numerical simulation we have measured the correlators for both a0 and f0 channels in the “Asqtad" improved staggered fermion formulation in a MILC fine (a = 0.09 fm) lattice ensemble. We analyze those correlators using rooted staggered chiral perturbation theory (rSχPT) and achieve chiral couplings that are well consistent with previous determinations.

  17. Exploring X(5568) as a meson molecule

    NASA Astrophysics Data System (ADS)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2016-10-01

    The parameters, i.e. the mass and current coupling of the exotic X(5568) state observed by the D0 Collaboration as well as the decay width of the process X → B_s0π+, are explored using the Boverline{K} molecule assumption on its structure. Employed computational methods include QCD two-point and light-cone sum rules, the latter being considered in the soft-meson approximation. The obtained results are compared with the data of the D0 Collaboration as well as with the predictions of the diquark-antidiquark model. This comparison strengthens a diquark-antidiquark picture for the X(5568) state rather than a meson molecule structure.

  18. Scaling of the P30 strength in heavy meson strong decays

    NASA Astrophysics Data System (ADS)

    Segovia, J.; Entem, D. R.; Fernández, F.

    2012-09-01

    The phenomenological P30 decay model has been extensively applied to calculate meson strong decays. The strength γ of the decay interaction is regarded as a free flavor independent constant and is fitted to the data. We calculate through the P30 model the total strong decay widths of the mesons which belong to charmed, charmed-strange, hidden charm and hidden bottom sectors. The wave function of the mesons involved in the strong decays are given by a constituent quark model that describes well the meson phenomenology from the light to the heavy quark sector. A global fit of the experimental data shows that, contrarily to the usual wisdom, the γ depends on the reduced mass of the quark-antiquark pair in the decaying meson. With this scale-dependent strength γ, we are able to predict the decay width of orbitally excited B mesons not included in the fit.

  19. The charge form factor of pseudoscalar mesons in a relativistic constituent quark model

    SciTech Connect

    Cardarelli, F.; Pace, E.; Grach, I.L.

    1994-04-01

    The charge form factor of pseudoscalar mesons has been investigated in the light-cone formalism, up to Q{sup 2} relevant to CEBAF energies. The consequences of adopting the meson wave functions generated through the Godfrey-Isgur q{bar q} potential, which reproduces the mass spectra, are discussed.

  20. Optogenetics, the intersection between physics and neuroscience: light stimulation of neurons in physiological conditions.

    PubMed

    Deng, Wei; Goldys, Ewa M; Farnham, Melissa M J; Pilowsky, Paul M

    2014-12-01

    Neuronal stimulation by light is a novel approach in the emerging field of optogenetics, where genetic engineering is used to introduce light-activated channels. However, light is also capable of stimulating neurons even in the absence of genetic modifications through a range of physical and biological mechanisms. As a result, rigorous design of optogenetic experiments needs to take note of alternative and parallel effects of light illumination of neuronal tissues. Thus all matters relating to light penetration are critical to the development of studies using light-activated proteins. This paper discusses ways to quantify light, light penetration in tissue, as well as light stimulation of neurons in physiological conditions. We also describe the direct effect of light on neurons investigated at different sites. Copyright © 2014 the American Physiological Society.

  1. Open bottom mesons in a hot asymmetric hadronic medium

    NASA Astrophysics Data System (ADS)

    Pathak, Divakar; Mishra, Amruta

    2015-04-01

    The in-medium masses and optical potentials of B and B ¯ mesons are studied in an isospin asymmetric, strange, hot, and dense hadronic environment using a chiral effective model. The chiral SU(3 ) model originally designed for the light-quark sector, is generalized to include the heavy-quark sector (c and b ) to derive the interactions of the B and B ¯ mesons with the light hadrons. Owing to the large mass of bottom quark, we use only the empirical form of these interactions for the desired purpose, while treating the bottom degrees of freedom to be frozen in the medium. Hence, all medium effects are attributable to the in-medium interaction of the light-quark content of these open bottom mesons. Both B and B ¯ mesons are found to experience net attractive interactions in the medium, leading to lowering of their masses in the medium. The mass degeneracy of particles and antiparticles, (B+, B-) as well as (B0, B¯ 0), is observed to be broken in the medium, owing to equal and opposite contributions from a vectorial Weinberg-Tomozawa interaction term. Addition of hyperons to the medium lowers further the in-medium mass for each of these four mesons, while a nonzero isospin asymmetry is observed to break the approximate mass degeneracy of each pair of isospin doublets. These medium effects are found to be strongly density dependent and bear a considerably weaker temperature dependence. The results obtained in the present investigation are compared to predictions from the quark-meson coupling model, heavy meson effective theory, and the QCD sum rule approach.

  2. Full lattice QCD study of the κ scalar meson

    NASA Astrophysics Data System (ADS)

    Fu, Zi-Wen; Carleton, DeTar

    2011-12-01

    We studied the κ light scalar meson in 2+1 flavor full QCD with sufficiently light u and d quarks. Via lattice simulation we measured the correlators for the κ channel in the “Asqtad" improved staggered fermion formulation. After chiral extrapolation we obtained the mass of the κ meson with 826 ± 119 MeV, which is within recent experimental values of 800-900 MeV. The simulations were carried out with the MILC 2+1 flavor gauge configurations at lattice spacing a≈0.15 fm.

  3. Chemical physics: Quantum control of light-induced reactions

    NASA Astrophysics Data System (ADS)

    Chandler, David W.

    2016-07-01

    An investigation of how ultracold molecules are broken apart by light reveals surprising, previously unobserved quantum effects. The work opens up avenues of research in quantum optics. See Letter p.122

  4. Hyperfine meson splittings: chiral symmetry versus transverse gluon exchange

    SciTech Connect

    Felipe J. Llanes-Estrada; Stephen R. Cotanch; Adam P. Szczepaniak; Eric S. Swanson

    2004-02-01

    Meson spin splittings are examined within an effective Coulomb gauge QCD Hamiltonian incorporating chiral symmetry and a transverse hyperfine interaction necessary for heavy quarks. For light and heavy quarkonium systems the pseudoscalar-vector meson spectrum is generated by approximate BCS-RPA diagonalizations. This relativistic formulation includes both S and D waves for the vector mesons which generates a set of coupled integral equations. A smooth transition from the heavy to the light quark regime is found with chiral symmetry dominating the /pi-/rho mass difference. A good, consistent description of the observed meson spin splittings and chiral quantities, such as the quark condensate and the /pi mass, is obtained. Similar comparisons with TDA diagonalizations, which violate chiral symmetry, are deficient for light pseudoscalar mesons indicating the need to simultaneously include both chiral symmetry and a hyperfine interaction. The /eta{sub b} mass is predicted to be around 9400 MeV consistent with other theoretical expectations and above the unconfirmed 9300 MeV candidate. Finally, for comparison with lattice results, the J reliability parameter is also evaluated.

  5. Λ and Σ resonances coupled to vector and pseudoscalar mesons

    NASA Astrophysics Data System (ADS)

    Khemchandani, K. P.; Martínez Torres, A.; Nagahiro, H.; Hosaka, A.

    2013-09-01

    The vector and pseudoscalar meson-baryon systems have been studied in a coupled channel formalism recently, which has lead to findings of some important results. The formalism consists of obtaining a detailed vector meson-baryon interaction originating from the s-, t-, u-channel diagrams and a contact interaction, all derived from the Lagrangian invariant under the gauge of the hidden local symmetry (HLS). We find the contributions from all the diagrams (except s-channel) to be important, contrary to the systems involving light Goldstone bosons where Weinberg-Tomozawa interaction gives the dominant contribution. Further, the transitions between the pseudoscalar meson-baryon (PB) and vector meson-baryon (VB) channels is obtained consistently by extending the Kroll-Ruderman theorem by replacing the photon by a vector meson, assuming the vector meson dominance. We find that the low-lying resonances couple strongly to VB channels. This information can be very useful in studying processes like photoproduction of low-lying resonances. Further, we find dynamical generation of new states in PB-VB coupled systems which can be related to the known resonances: Λ(2000), Σ(1750), Σ(1940) and Σ(2000).

  6. The Light Meter: A Powerful Tool in Physical Science.

    ERIC Educational Resources Information Center

    Espinoza, Fernando

    2000-01-01

    Discusses physics, earth science, and physical science concepts that are challenging for students and teachers because they are difficult to understand and demonstrate. Identifies ratio and inverse-square as a unifying-concept approach according to the National Education Standards. Supports teaching based on student-centered activities, long-term…

  7. The hybrid mesons quest: the MesonEx experiment at Jefferson Laboratory

    SciTech Connect

    Rizzo, Alessandro

    2016-03-01

    The meson spectroscopy plays nowadays a central role in the investigation of hadron structure thanks to the possible existence of exotic hybrid mesons, quark-antiquark-gluon bound states. Their explicit gluonic degrees of freedom which should clearly emerge from a Partial Wave Analysis (PWA) of the corresponding Dalitz plot of the exotic particle decay, may result in final JPC configurations not allowed in the constituent quark model. Besides this clear signature, hybrid mesons are also expected to have a large particle multiplicity decays, requiring for their search an experimental apparatus with high performances in terms of rate capability, resolution and almost a full acceptance to apply PWA methods. New-generation experiments are planned at Thomas Jefferson National Laboratory (VA, USA) for which an unprecedented statistics of large multiplicity decay events with fully reconstructed kinematics will be available. In particular for the MesonEx (CLAS12) experiment in Hall B, a wide scientific program that will start in 2016 has been deployed to study the meson spectrum at energies up to 11 GeV. A key role in such program is played by the Forward Tagger apparatus of the experiment, which will allow to extend the study of meson electro-production to very low Q2 values, in a quasi-real photo production kinematical region, where the production of hybrid mesons is expected to be favorite. Currently a new analysis framework for the search of the hybrid mesons is being set up by the HASPECT network, an international structure which gather people involved into theoretical and experimental hadronic physics all over the world. The goals of the network is to develop new analysis models and statistical techniques to unfold the signal and background distributions in high-statistics datasets. In this work are briefly presented the first preliminary results from the application of a statistical technique, namely the sPlot, to the data already acquired by the CLAS experiment for

  8. The hybrid mesons quest: the MesonEx experiment at Jefferson Laboratory

    NASA Astrophysics Data System (ADS)

    Rizzo, A.; CLAS Collaboration

    2016-02-01

    The meson spectroscopy plays nowadays a central role in the investigation of hadron structure thanks to the possible existence of exotic hybrid mesons, quark-antiquark-gluon bound states. Their explicit gluonic degrees of freedom which should clearly emerge from a Partial Wave Analysis (PWA) of the corresponding Dalitz plot of the exotic particle decay, may result in final JPC configurations not allowed in the constituent quark model. Besides this clear signature, hybrid mesons are also expected to have a large particle multiplicity decays, requiring for their search an experimental apparatus with high performances in terms of rate capability, resolution and almost a full acceptance to apply PWA methods. New-generation experiments are planned at Thomas Jefferson National Laboratory (VA, USA) for which an unprecedented statistics of large multiplicity decay events with fully reconstructed kinematics will be available. In particular for the MesonEx (CLAS12) experiment in Hall B, a wide scientific program that will start in 2016 has been deployed to study the meson spectrum at energies up to 11 GeV. A key role in such program is played by the Forward Tagger apparatus of the experiment, which will allow to extend the study of meson electro-production to very low Q2 values, in a quasi-real photo production kinematical region, where the production of hybrid mesons is expected to be favorite. Currently a new analysis framework for the search of the hybrid mesons is being set up by the HASPECT network, an international structure which gather people involved into theoretical and experimental hadronic physics all over the world. The goals of the network is to develop new analysis models and statistical techniques to unfold the signal and background distributions in high-statistics datasets. In this work are briefly presented the first preliminary results from the application of a statistical technique, namely the sPlot, to the data already acquired by the CLAS experiment for

  9. Glueballs and vector mesons at NICA

    NASA Astrophysics Data System (ADS)

    Parganlija, Denis

    2016-08-01

    Two interconnected fields of interest are suggested for NICA. Firstly, existence of glueballs is predicted by the theory of strong interaction but --even after decades of research-- glueball identification in the physical spectrum is still unclear. NICA can help to ascertain experimental glueball candidates via J/Ψ decays whose yield is expected to be large. Importance of glueballs is not limited to vacuum: since they couple to other meson states, glueballs can also be expected to influence signatures of chiral-symmetry restoration in the high-energy phase of strong dynamics. Mass shifting or in-medium broadening of vector and axial-vector mesons may occur there but the extent of such phenomena is still uncertain. Additionally, glueball properties could also be modified in medium. Exploration of these issues is the second suggested field of interest that can be pursued at NICA.

  10. Meson Resonances from Lattice QCD

    SciTech Connect

    Edwards, Robert G.

    2016-06-01

    There has been recent, significant, advances in the determination of the meson spectrum of QCD. Current efforts have focused on the development and application of finite-volume formalisms that allow for the determination of scattering amplitudes as well as resonance behavior in coupled channel systems. I will review some of these recent developments, and demonstrate the viability of the method in meson systems.

  11. Meson resonances on the lattice

    SciTech Connect

    Edwards, Robert G.

    2016-06-01

    There has been recent, significant, advances in the determination of the meson spectrum of QCD. Current efforts have focused on the development and application of finite-volume formalisms that allow for the determination of scattering amplitudes as well as resonance behavior in coupled channel systems. I will review some of these recent developments, and demonstrate the viability of the method in meson systems

  12. Exotic meson spectroscopy with CLAS

    SciTech Connect

    Adams, G.; Napolitano, J.

    1994-04-01

    The identification and study of mesons with explicit gluonic degrees of freedom will provide major constraints on nonperturbative QCD and models thereof. CLAS will provide a unique opportunity for studying these resonances by measuring photoproduction of multi-meson final states.

  13. Compton scattering, meson exchange, and the polarizabilities of bound nucleons

    SciTech Connect

    Feldman, G.; Mellendorf, K.E.; Eisenstein, R.A.; Federspiel, F.J.; Garino, G.; Igarashi, R.; Kolb, N.R.; Lucas, M.A.; MacGibbon, B.E.; Mize, W.K.; Nathan, A.M.; Pywell, R.E.; Wells, D.P. |

    1996-11-01

    Elastic photon scattering cross sections on {sup 16}O have been measured in the energy range 27{endash}108 MeV. These data are inconsistent with a conventional interpretation in which the electric and magnetic polarizabilities of the bound nucleon are unchanged from the free values and the meson-exchange seagull amplitude is taken in the zero-energy limit. Agreement with the data can be achieved by invoking either strongly modified polarizabilities or a substantial energy dependence to the meson-exchange seagull amplitude. It is argued that these seemingly different explanations are experimentally indistinguishable and probably physically equivalent. {copyright} {ital 1996 The American Physical Society.}

  14. Supersymmetry across the light and heavy-light hadronic spectrum

    SciTech Connect

    Dosch, Hans Gunter; de Teramond, Guy F.; Brodsky, Stanley J.

    2015-10-07

    Relativistic light-front bound-state equations for mesons and baryons can be constructed in the chiral limit from the supercharges of a superconformal algebra which connect baryon and meson spectra. Quark masses break the conformal invariance, but the basic underlying supersymmetric mechanism, which transforms meson and baryon wave functions into each other, still holds and gives remarkable connections across the entire spectrum of light and heavy-light hadrons. As a result, we also briefly examine the consequences of extending the supersymmetric relations to double-heavy mesons and baryons.

  15. Physics and simulation of photonic crystal Purcell light emitters

    NASA Astrophysics Data System (ADS)

    Witzigmann, Bernd; Römer, Friedhard

    2008-02-01

    Photonic crystal membrane microcavities (PCMC) exhibit modes with highest quality factors and ultrasmall volume at the same time. This makes them the ideal solid state implementation for studying cavity quantum electrodynamics, as a quantum emitter such as a quantum dot can be placed at an electric field maximum with only moderate technological effort. Ultimately, this shall lead to novel classes of light emitters, such as highe efficiency LEDs or devices for quantum information processing. This paper discusses PCMC's operating in the weak coupling regime, shows an efficient and realistic simulation method based on the finite element method, and the design trade-offs for cavities used as light emitters. Finally, a comparison to measured spectra illustrates technological aspects.

  16. Photoproduction of Mesons

    NASA Astrophysics Data System (ADS)

    Schmieden, Hartmut; Klein, Friedrich

    2017-01-01

    B.1 is one of the experimental projects within the CRC16. It aims at the systematic investigation of the photoproduction of mesons off nucleons in order to understand reaction mechanisms and the relevant degrees of freedom in resonance formation. Of particular interest is the photoproduction of mesons heavier than the pion and resonances involving hidden or open strangeness. Essential hardware contributions have been made to the experimental programme of the CRC16 through tagging systems, and photon-beam polarisation and polarimetry. A new experiment has been set up within the framework of the BGO-OD collaboration. This combines a forward magnetic spectrometer with a central BGO calorimeter with charged particle recognition and identification. The BGO-OD experiment enables reconstruction of complex final states composed of both charged and neutral particles, complementary to the existing CBELSA/TAPS calorimeter which is optimised for multi-photon final states. Selected results of the 12-year CRC period are presented from both experiments.

  17. The Z Charmoniumlike Mesons

    SciTech Connect

    Gabareen Mokhtar, Arafat; Olsen, Stephen Lars; /Seoul Natl. U.

    2011-08-12

    A brief review of the experimental situation concerning the electrically charged charmoniumlike meson candidates, Z{sup -}, is presented. The Belle Collaboration reported peaks in the {psi}{prime}{pi}{sup -} and {chi}{sub c1}{pi}{sup -} invariant mass distributions in B {yields} {psi}{prime}{pi}{sup -}K and B {yields} {chi}{sub c1}{pi}{sup -}K, respectively. If these peaks are meson resonances, they would have a minimal quark substructure of c{bar c}d{bar u} and be unmistakeably exotic. However, even though the Belle signals have more than 5{sigma} statistical significance, the experimental situation remains uncertain in that none of these peaks have yet been confirmed by other experiments. An analysis by the BABAR Collaboration of B {yields} {psi}{prime}{pi}{sup -}K neither confirms nor contradicts the Belle claim for the Z(4430){sup -} {yields} {psi}{prime}{pi}{sup -}. In the BABAR analysis, B {yields} J/{psi}{pi}{sup -}K decays were also studied, and no evidence for Z(4430){sup -} {yields} J/{psi}{pi}{sup -} was found. In this paper, we review and compare Belle and BABAR results on searches for charged charmonium-like states.

  18. Risk for losing physical independence in older adults: the role of sedentary time, light, and moderate to vigorous physical activity.

    PubMed

    Marques, Elisa A; Baptista, Fátima; Santos, Diana A; Silva, Analiza M; Mota, Jorge; Sardinha, Luís B

    2014-09-01

    This study examined the association of a range of physical activity intensities and sedentary behavior with the risk of losing physical independence later in life in community-dwelling older adults. A total of 131 males and 240 females, aged 65-103 years, were enrolled. Physical activity (PA) and sedentary time were assessed with accelerometers and the risk for losing physical independence in later years was assessed with the self-reported composite physical function (CPF) scale adjusted for age. Participants were divided in two groups - high risk group (HRG) and low risk group (LRG), according current CPF. According to the multiple logistic regression analyses, sedentary time was not a significant predictor. The odds of a male participant being in the LRG were 12.19 times higher than those of a female (95% CI 5.06-29.39). Both, light PA (OR=1.01; 95% CI 1.01-1.02) and MVPA (OR=1.432; 95% CI 1.21-1.69) had a significant main effect on the risk of losing physical independence. Age and gender interacted with moderate to vigorous PA (MVPA) to predict the risk of losing physical independence. Thus, as age increases, participants that are more physically active became less likely (OR=0.997; 95% CI 0.995-0.999) to be in the HRG than younger participants. Similarly, the odds of a physically active women being physical independent in later life are higher (OR=0.94; 95% CI 0.91-0.96) than those of a physically active men. These new findings suggest that light PA, and MVPA are significantly associated with the risk of losing physical independence later in life, and age and gender combined with MVPA have an interaction effect on physical independence of older adults. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Boosting the Light: X-ray Physics in Confinement

    ScienceCinema

    Rhisberger, Ralf [HASYLAB/ DESY

    2016-07-12

    Remarkable effects are observed if light is confined to dimensions comparable to the wavelength of the light. The lifetime of atomic resonances excited by the radiation is strongly reduced in photonic traps, such as cavities or waveguides. Moreover, one observes an anomalous boost of the intensity scattered from the resonant atoms. These phenomena results from the strong enhancement of the photonic density of states in such geometries. Many of these effects are currently being explored in the regime of vsible light due to their relevance for optical information processing. It is thus appealing to study these phenomena also for much shorter wavelengths. This talk illuminates recent experiments where synchrotron x-rays were trapped in planar waveguides to resonantly excite atomos ([57]Fe nuclei_ embedded in them. In fact, one observes that the radiative decay of these excited atoms is strongly accelerated. The temporal acceleration of the decay goes along with a strong boost of the radiation coherently scattered from the confined atmos. This can be exploited to obtain a high signal-to-noise ratio from tiny quantities of material, leading to manifold applications in the investigation of nanostructured materials. One application is the use of ultrathin probe layers to image the internal structure of magnetic layer systems.

  20. Cosmological neutrino counting, light WIMPs, and nuclear physics

    NASA Astrophysics Data System (ADS)

    Nollett, Kenneth; Steigman, Gary

    2014-09-01

    Constraints from big-bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) limit the allowed number of neutrinolike particle species (of which only three can participate in the standard-model weak interaction) through their influence on the expansion rate of the universe. However, thermally-populated ``light WIMPs'' with mass <20 MeV that couple to neutrinos or to the electromagnetic plasma would alter these limits. We have examined the observational consequences of light WIMPs for BBN and the CMB, assuming alternately that the WIMPs couple strongly either to the electromagnetic plasma or to the neutrinos. Light WIMPs that couple to neutrinos are disfavored compared with the standard model, while WIMPs that couple to the plasma are slightly favored over the standard model and could make a fourth thermally-populated neutrino species consistent with current data. In either case, current data imply a lower limit on the WIMP mass of 0.5 MeV to about 5 MeV, depending on the WIMP properties. We present the derived constraints and comment on their coupling to the underlying nuclear rates, particularly that of d(p , γ) 3 He .

  1. Boosting the Light: X-ray Physics in Confinement

    SciTech Connect

    Rhisberger, Ralf

    2009-03-01

    Remarkable effects are observed if light is confined to dimensions comparable to the wavelength of the light. The lifetime of atomic resonances excited by the radiation is strongly reduced in photonic traps, such as cavities or waveguides. Moreover, one observes an anomalous boost of the intensity scattered from the resonant atoms. These phenomena results from the strong enhancement of the photonic density of states in such geometries. Many of these effects are currently being explored in the regime of vsible light due to their relevance for optical information processing. It is thus appealing to study these phenomena also for much shorter wavelengths. This talk illuminates recent experiments where synchrotron x-rays were trapped in planar waveguides to resonantly excite atomos ([57]Fe nuclei_ embedded in them. In fact, one observes that the radiative decay of these excited atoms is strongly accelerated. The temporal acceleration of the decay goes along with a strong boost of the radiation coherently scattered from the confined atmos. This can be exploited to obtain a high signal-to-noise ratio from tiny quantities of material, leading to manifold applications in the investigation of nanostructured materials. One application is the use of ultrathin probe layers to image the internal structure of magnetic layer systems.

  2. Boosting the Light: X-ray Physics in Confinement

    SciTech Connect

    Rhisberger, Ralf

    2006-03-01

    Remarkable effects are observed if light is confined to dimensions comparable to the wavelength of the light. The lifetime of atomic resonances excited by the radiation is strongly reduced in photonic traps, such as cavities or waveguides. Moreover, one observes an anomalous boost of the intensity scattered from the resonant atoms. These phenomena results from the strong enhancement of the photonic density of states in such geometries. Many of these effects are currently being explored in the regime of vsible light due to their relevance for optical information processing. It is thus appealing to study these phenomena also for much shorter wavelengths. This talk illuminates recent experiments where synchrotron x-rays were trapped in planar waveguides to resonantly excite atomos ([57]Fe nuclei_ embedded in them. In fact, one observes that the radiative decay of these excited atoms is strongly accelerated. The temporal acceleration of the decay goes along with a strong boost of the radiation coherently scattered from the confined atmos. This can be exploited to obtain a high signal-to-noise ratio from tiny quantities of material, leading to manifold applications in the investigation of nanostructured materials. One application is the use of ultrathin probe layers to image the internal structure of magnetic layer systems.

  3. Light-Emitting Diodes: Exploration of Underlying Physics

    ERIC Educational Resources Information Center

    Etkina, Eugenia; Planinšic, Gorazd

    2014-01-01

    This paper is the second in the series of LED-dedicated papers that have a goal to systematically investigate the use of LEDs in a general physics course. The first paper, published in the February 2014 issue, provided an overview of the course units where LEDs can be used and suggested three different ways of utilizing LEDs in an introductory…

  4. Project Physics Teacher Guide 4, Light and Electromagnetism.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Teaching procedures of Project Physics Unit 4 are presented to help teachers make effective use of learning materials. Unit contents are discussed in connection with teaching aid lists, multi-media schedules, schedule blocks, and resources charts. Brief summaries are made for transparencies, 16mm films, and reader articles. Included is information…

  5. Light-Emitting Diodes: Exploration of Underlying Physics

    ERIC Educational Resources Information Center

    Etkina, Eugenia; Planinšic, Gorazd

    2014-01-01

    This paper is the second in the series of LED-dedicated papers that have a goal to systematically investigate the use of LEDs in a general physics course. The first paper, published in the February 2014 issue, provided an overview of the course units where LEDs can be used and suggested three different ways of utilizing LEDs in an introductory…

  6. Physical response of light-time gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Koop, Michael J.; Finn, Lee Samuel

    2014-09-01

    Gravitational wave detectors are typically described as responding to gravitational wave metric perturbations, which are gauge-dependent and—correspondingly—unphysical quantities. This is particularly true for ground-based interferometric detectors, like LIGO, space-based detectors, like LISA and its derivatives, spacecraft Doppler tracking detectors, and pulsar timing array detectors. The description of gravitational waves, and a gravitational wave detector's response, to the unphysical metric perturbation has lead to a proliferation of false analogies and descriptions regarding how these detectors function, and true misunderstandings of the physical character of gravitational waves. Here we provide a fully physical and gauge-invariant description of the response of a wide class of gravitational wave detectors in terms of the Riemann curvature, the physical quantity that describes gravitational phenomena in general relativity. In the limit of high frequency gravitational waves, the Riemann curvature separates into two independent gauge-invariant quantities: a "background" curvature contribution and a "wave" curvature contribution. In this limit the gravitational wave contribution to the detector response reduces to an integral of the gravitational wave contribution of the curvature along the unperturbed photon path between components of the detector. The description presented here provides an unambiguous physical description of what a gravitational wave detector measures and how it operates, a simple means of computing corrections to a detectors response owing to general detector motion, a straightforward way of connecting the results of numerical relativity simulations to gravitational wave detection, and a basis for a general and fully relativistic pulsar timing formula.

  7. Many body theory in hadronic physics

    NASA Astrophysics Data System (ADS)

    Llanes-Estrada, Felipe Jose

    2000-11-01

    This dissertation presents the development of several many body techniques of widespread use in Atomic, Nuclear and Solid State to Hadronic, the low energy Particle Physics that studies strong interactions. For the high energy, asymptotically free, quarks and gluons described by Quantum Chromodynamics, a canonical (BCS) transformation is performed to generate effective low energy degrees of freedom. Then a model Hamiltonian is approximately diagonalized in Fock space using the TDA and RPA formulations. The relativistic wave equations resulting in each sector are numerically solved, yielding mass eigenvalues for the hadronic spectrum. The TDA provides a reasonable approximation for the glueball and meson spectra, with the exception of the light pseudoscalar mesons, where only the RPA correctly incorporates chiral symmetry and the Goldstone boson nature of the pion. Particular attention is devoted to charmed and hybrid mesons, especially exotic states, given the existing data from BNL and prospects of detection at both TJNAF (Hall D) and CERN (Compass).

  8. Shadows Constructing a Relationship between Light and Color Pigments by Physical and Mathematical Perspectives

    ERIC Educational Resources Information Center

    Yurumezoglu, Kemal; Karabey, Burak; Koyunkaya, Melike Yigit

    2017-01-01

    Full shadows, partial shadows and multilayer shadows are explained based on the phenomenon of the linear dispersion of light. This paper focuses on progressing the understanding of shadows from physical and mathematical perspectives. A significant relationship between light and color pigments is demonstrated with the help of the concept of sets.…

  9. Physical exercise programs in CKD: lights, shades and perspectives [corrected].

    PubMed

    Aucella, Filippo; Battaglia, Yuri; Bellizzi, Vincenzo; Bolignano, Davide; Capitanini, Alessandro; Cupisti, Adamasco

    2015-04-01

    In the general population, moderate exercise is associated with several health benefits including a decreased risk of obesity, coronary heart disease, stroke, certain types of cancer and all-cause mortality. In chronic kidney disease (CKD), physical inability is an independent risk of death. Health benefits of regular exercise in CKD patients include improvements in functional and psychological measures such as aerobic and walking capacity and health-related quality of life. Nonetheless, in CKD patients exercise rehabilitation is not routinely prescribed. Renal patients are heterogeneous across the different stages of CKD so that the assessment of physical capability is mandatory for a correct exercise program prescription. To plan appropriate exercise programs in the CKD setting, targeted professional figures should be actively involved as many psychological or logistic barriers may hamper exercise implementation in these subjects. Different approaches, such as home exercise rehabilitation programs, supervised exercise training or in-hospital gym may theoretically be proposed. However, physical exercise should always be tailored to the individual capacity and comorbidities and each patient should ideally be involved in the decision-making process.

  10. Potential Functional Benefit From Light Intensity Physical Activity in Knee Osteoarthritis.

    PubMed

    White, Daniel K; Lee, Jungwha; Song, Jing; Chang, Rowland W; Dunlop, Dorothy

    2017-08-28

    Knee pain may preclude participation in higher intensity physical activity in people with knee osteoarthritis and benefits of light activity are unclear. The effect of replacing sedentary time with light intensity activity on incident functional limitation 2 years later was investigated. Included were people with or at high risk of knee osteoarthritis without baseline functional limitation using data from the Osteoarthritis Initiative collected between August 2008 and July 2010. Data were analyzed between May 2016 and August 2016 for time in sedentary, light, and moderate to vigorous physical activity from accelerometer monitoring. Incident functional limitation was defined as (1) slow gait speed <1.0 meters/second during a 20-meter walk, (2) Western Ontario and McMasters University Osteoarthritis Index physical function ≥28, or (3) Short Form 12 Physical Component scale <40. Inclusion criteria were met by 1,873 people (mean age=65.0 [SD=9.0] years, mean BMI=28.4 [SD=4.7] kg/m(2)). Replacing 60 minutes/day of sedentary time with 60 minutes/day of light activity was associated with a 17% reduced risk for incident slow gait speed 2 years later (Hazard Ratio=0.83, 95% CI=0.70, 0.99) after adjustment. Approximately 5 minutes/day of moderate to vigorous physical activity would be necessary to receive the equivalent benefit of 60 minutes/day of light activity. Effects in secondary patient-reported outcomes did not reach statistical significance. Replacing sedentary time with light activity may reduce the risk of performance-based functional limitation. As expected, moderate to vigorous physical activity rather than light provided stronger risk reduction. When moderate to vigorous physical activity is not an option, pursuing light activity may be a beneficial alternative to being sedentary. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Isoscalar meson spectroscopy from lattice QCD

    SciTech Connect

    Jozef Dudek, Robert Edwards, David Richards, Christopher Thomas, Balint Joo, Michael Peardon

    2011-06-01

    We extract to high statistical precision an excited spectrum of single-particle isoscalar mesons using lattice QCD, including states of high spin and, for the first time, light exotic JPC isoscalars. The use of a novel quark field construction has enabled us to overcome the long-standing challenge of efficiently including quark-annihilation contributions. Hidden-flavor mixing angles are extracted and while most states are found to be close to ideally flavor mixed, there are examples of large mixing in the pseudoscalar and axial sectors in line with experiment. The exotic JPC isoscalar states appear at a mass scale comparable to the exotic isovector states.

  12. The Role of Age in Moderating the Association Between Disability and Light-Intensity Physical Activity.

    PubMed

    Prizer, Lindsay P; Gay, Jennifer L; Gerst-Emerson, Kerstin; Froehlich-Grobe, Katherine

    2016-01-01

    There's a lack of evidence on the association between light-intensity physical activity and disability. This study examines the relationships in activity by self-reported physical function in five domains (i.e., activities of daily living [ADL], instrumental ADL, leisure activities, lower extremity, and general activities), and whether this association varies by age. Cross-sectional. Data from National Health and Nutrition Examination Survey 2003-2004 and 2005-2006 waves. Participants included 5700 men and women ages 20 to 85 years. Difficulty with various activities was measured with the Physical Functioning Questionnaire, accelerometer-measured physical activity, demographics, and self-rated health. Ordinary least squares regression models were run to examine the relationship between physical function in each domain, light-intensity activity, and the moderating effect of age. Analyses controlled for body mass index, moderate-to-vigorous-intensity activity, self-reported health, accelerometer wear time, and gender. Little variation was seen in light-intensity physical activity among younger adults regardless of disability status. Older adults reporting difficulty with activities engaged in significantly less light-intensity physical activity compared to those with no disability (271.8 vs. 316.5 minutes). Age significantly moderated the association between light-intensity physical activity and leisure activities (p = .048), and lower extremity mobility (p = .039). Age did not moderate other domains of disability. Younger age may be protective regarding the influence of disability on light-intensity activity. In addition, disability may be more debilitating for some older individuals. Interventions to increase light-intensity activity should aim to address disability at all ages, with increased attention for older adults.

  13. The Hall D Physics Program at JLab

    SciTech Connect

    Leckey, John P.

    2012-09-01

    GlueX is one of the flagship experiments of the 12 GeV era at the Thomas Jefferson National Accelerator Facility (JLab). The energy of the electron accelerator at JLab is presently undergoing an upgrade from 6 GeV to 12 GeV and a 4th experimental hall (Hall D) is being added. The GlueX experimental apparatus consists of a tagged coherent bremsstrahlung photon beam incident on a liquid hydrogen target. The photoproduced mesons, which are created inside of a 2.2 T solenoid, will then pass through a pair of drift chambers and eventually deposit their energy into either of two calorimeters, depending on their respective angles. GlueX will attempt to map out the light meson spectrum and search for meson-gluon hybrids to better understand the confinement of quarks and gluons in quantum chromodynamics (QCD). There is little data on the photoproduction of light mesons and the GlueX experiment will exceed the current photoproduction data by several orders of magnitude in the first year alone. Photoproduction is specifically well suited to search for meson-gluon hybrids because in the flux tube model the production cross-sections are higher for meson-gluon hybrids from photons, with the spins of the virtual quark-antiquark pair aligned, than from other sources such as pions, with the spins of the quark-antiquark pair anti-aligned. There are also other Hall D experiments proposed to look for physics beyond the Standard Model by studying Eta rare or forbidden decay channels such as eta to two neutral pions. The 12 GeV upgrade of the JLab accelerator and the complete physics program of Hall D will be presented.

  14. PSEUDOVECTOR MESONS, HYBRIDS AND GLUEBALLS

    SciTech Connect

    L. BURAKOVSKY; P. PAGE

    2000-06-01

    The authors consider glueball-(hybrid) meson mixing for the low-lying four pseudovector states. The h{sub 1}{prime}(1380) decays dominantly to K*K with some presence in {rho}{pi} and {omega}{eta}. The newly observed h{sub 1}(1600) has a D- to S-wave width ratio to {omega}{eta} which makes its interpretation as a conventional meson unlikely. They predict the decay pattern of the isopartner conventional or hybrid meson b{sub 1}(1650). A notably narrow s{bar s} partner h{sub 1}{prime}(1810) is predicted.

  15. Shadows constructing a relationship between light and color pigments by physical and mathematical perspectives

    NASA Astrophysics Data System (ADS)

    Yurumezoglu, Kemal; Karabey, Burak; Yigit Koyunkaya, Melike

    2017-03-01

    Full shadows, partial shadows and multilayer shadows are explained based on the phenomenon of the linear dispersion of light. This paper focuses on progressing the understanding of shadows from physical and mathematical perspectives. A significant relationship between light and color pigments is demonstrated with the help of the concept of sets. This integration of physical and mathematical reasoning not only manages an operational approach to the concept of shadows, it also outputs a model that can be used in science, technology, engineering and mathematics (STEM) curricula by providing a concrete and physical example for abstract concept of the empty set.

  16. Accelerometer-assessed light-intensity physical activity and mortality among those with mobility limitations.

    PubMed

    Frith, Emily; Loprinzi, Paul D

    2017-08-31

    Emerging research demonstrates that light-intensity physical activity is favorably associated with numerous health outcomes among the general population, even independent of high-intensity physical activity. To examine the association between accelerometer-assessed light-intensity physical activity and mortality in a national sample of American adults with mobility limitations. Data from the 2003-2006 National Health and Nutrition Examination Survey were utilized. Participants were followed through 2011. Based on self-report, analyzed participants included those with mobility limitations (N = 1369). Light-intensity physical activity was assessed via waist-mounted accelerometry. For the sample, 108,010 person-months occurred with an all-cause mortality rate of 2.07 per 1000 person-months. After adjustments, for every 60 min/day increase in light-intensity physical activity, participants with mobility limitations had a 14% reduced risk of all-cause mortality (HR = 0.86; 95% CI: 0.75-0.98; P = 0.03). These findings underscore the importance of promoting light-intensity physical activity to those with mobility limitations. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Photoproduction of η' mesons with the GlueX experiment

    NASA Astrophysics Data System (ADS)

    Kamel, Mahmoud; GlueX Collaboration Collaboration

    2017-01-01

    The GlueX experiment at Jefferson Lab studies the light meson spectrum and searches for hybrid and exotic mesons. In this experiment, a 9 GeV tagged, linearly polarized photon beam interacts with a liquid hydrogen target at the center of the GlueX detector. First results of the photo-production of η' mesons at beam energies ranging from 3.5 to 11 GeV will be presented. The η' have been identified through the decay channel η' ->π+π- γ , which has a large branching ratio of 29%. No data exist for beam energies above 6 GeV for this reaction. Supported by Jefferson Science Associates , LLC under U.S. DOE Contract NO. DE-AC05-06OR23177 and DESC0013620.

  18. Yukawa Meson, Sakata Model and Baryon-Lepton Symmetry Revisited

    NASA Astrophysics Data System (ADS)

    Marshak, R. E.

    It is difficult for me to grasp that this symposium is celebrating the jubilee of meson theory since I was a junior at Columbia College in 1935. I recall hearing a colloquium by Paul Dirac that year telling an enraptured audience about the infinite sea of negative energy states but I do not recall any special note being taken of the birth of an equally revolutionary concept, the Yukawa meson. Perhaps the reason was the publication of Hideki Yukawa's paper in an inaccessible Japanese journal, perhaps Dirac's electron theory was dealing with the well-known electromagnetic force whereas Yukawa' meson theory was put forth to understand the nature of two new forces - the nuclear and the weak. Whatever the reason, the situation changed drastically when I migrated to Cornell (to do my thesis under Hans Bethe during the years 1937sim39) and found a deep interest in meson theory. Thus, my own scientific career has almost spanned the period since the birth of meson theory but, what is more to the point, it has been strongly influenced by the work of Yukawa and his collaborators. It therefore gives me great pleasure to be able to talk at this MESON 50 symposium. As one of the oldest speakers, I shall respond in a loose way to Professor Maki's invitation to cover ``topics concerning the historical developments of hadron physics''. I shall select several major themes from the Japanese work that have had special interest for me. My remarks will fall under the four headings: (A) Yukawa Meson; (B) Sakata Model; (C) Baryon-Lepton Symmetry; and (D) Extensions of Baryon-Lepton Symmetry.

  19. Gamma ray astrophysics, the extragalactic background light, and new physics

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2008-09-01

    Very high energy gamma-rays are expected to be absorbed by the extragalactic background light over cosmological distances via the process of electron-positron pair production. However, recent observations of cosmologically distant emitters by ground based gamma-ray telescopes might be indicative of a higher-than-expected degree of transparency of the universe. One mechanism to explain this observation is the oscillation between photons and axion-like-particles (ALPs). Here we explore this possibility, focusing on photon-ALP conversion in the magnetic fields in and round gamma-ray sources and in the magnetic field of the Milky Way, where some fraction of the ALP flux is converted back into photons. We show that this mechanism can be efficient in allowed regions of the ALP parameter space, as well as in typical configurations of the Galactic Magnetic Field. As case example, we consider the spectrum observed from a HESS source. We also discuss features of this scenario which could be used to distinguish it from standard or other exotic models.

  20. The physics of Cerenkov light production during proton therapy.

    PubMed

    Helo, Y; Kacperek, A; Rosenberg, I; Royle, G; Gibson, A P

    2014-12-07

    There is increasing interest in using Cerenkov emissions for quality assurance and in vivo dosimetry in photon and electron therapy. Here, we investigate the production of Cerenkov light during proton therapy and its potential applications in proton therapy. A primary proton beam does not have sufficient energy to generate Cerenkov emissions directly, but we have demonstrated two mechanisms by which such emissions may occur indirectly: (1) a fast component from fast electrons liberated by prompt gamma (99.13%) and neutron (0.87%) emission; and (2) a slow component from the decay of radioactive positron emitters. The fast component is linear with dose and doserate but carries little spatial information; the slow component is non-linear but may be localised. The properties of the two types of emission are explored using Monte Carlo modelling in GEANT4 with some experimental verification. We propose that Cerenkov emissions could contribute to the visual sensation reported by some patients undergoing proton therapy of the eye and we discuss the feasibility of some potential applications of Cerenkov imaging in proton therapy.

  1. Rare B meson decays at the Tevatron

    SciTech Connect

    Hopkins, Walter; /Cornell U., Phys. Dept.

    2011-08-01

    Rare B meson decays are an excellent probe for beyond the Standard Model physics. Two very sensitive processes are the B{sub s,d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and b {yields} s{mu}{sup +}{mu}{sup -} decays. We report recent results at a center of mass energy of {radical}s = 1.96 TeV from the CDF II and D0 collaborations using between 3.7 fb{sup -1} and 6.9 fb{sup -1} taken during Run II of the Fermilab Tevatron Collider.

  2. Quantum electrodynamics for vector mesons.

    PubMed

    Djukanovic, Dalibor; Schindler, Matthias R; Gegelia, Jambul; Scherer, Stefan

    2005-07-01

    Quantum electrodynamics for rho mesons is considered. It is shown that, at the tree level, the value of the gyromagnetic ratio of the rho+ is fixed to 2 in a self-consistent effective quantum field theory. Further, the mixing parameter of the photon and the neutral vector meson is equal to the ratio of electromagnetic and strong couplings, leading to the mass difference M(rho0)-M(rho+/-) approximately 1 MeV at tree order.

  3. B-Meson Decay Constant from Unquenched Lattice QCD

    SciTech Connect

    Gray, Alan; Gulez, Emel; Shigemitsu, Junko; Wingate, Matthew; Davies, Christine T.H.; Lepage, G. Peter; Nobes, Matthew; Mason, Quentin

    2005-11-18

    We present determinations of the B-meson decay constant f{sub B} and of the ratio f{sub B{sub s}}/f{sub B} using the MILC Collaboration unquenched gauge configurations, which include three flavors of light sea quarks. The mass of one of the sea quarks is kept around the strange quark mass, and we explore a range in masses for the two lighter sea quarks down to m{sub s}/8. The heavy b quark is simulated using nonrelativistic QCD, and both the valence and sea light quarks are represented by the highly improved (AsqTad) staggered quark action. The good chiral properties of the latter action allow for a more accurate chiral extrapolation to physical up and down quarks than has been possible in the past. We find f{sub B}=216(9)(19)(4)(6) MeV and f{sub B{sub s}}/f{sub B}=1.20(3)(1)

  4. B -meson decay constants from 2+1 -flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    SciTech Connect

    Christ, N. H.; Flynn, J. M.; Izubuchi, T.; Kawanai, T.; Lehner, C.; Soni, A.; Van de Water, R. S.; Witzel, O.

    2015-03-01

    We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a0.11, 0.086 fm with unitary pion masses as light as Mπ290MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the

  5. D meson hadronic decays at CLEO-c

    SciTech Connect

    Yang, Fan; /Fermilab

    2011-01-01

    The recent CLEO-c results on hadronic decays of D and D{sub s} mesons are presented. First the absolute branching fractions for D and D{sub s} mesons using a double tag technique are discussed, then are the Cabibbo suppressed decays and doubly Cabibbo suppressed decays. Finally, I present the inclusive and rare decay modes and other measurements from CLEO-c. These decays illuminate a wide range of physics. A brief theoretical introduction is given before the corresponding discussion on measurement.

  6. Compton scattering, meson exchange, and the polarizabilities of bound nucleons

    NASA Astrophysics Data System (ADS)

    Feldman, G.; Mellendorf, K. E.; Eisenstein, R. A.; Federspiel, F. J.; Garino, G.; Igarashi, R.; Kolb, N. R.; Lucas, M. A.; MacGibbon, B. E.; Mize, W. K.; Nathan, A. M.; Pywell, R. E.; Wells, D. P.

    1996-11-01

    Elastic photon scattering cross sections on 16O have been measured in the energy range 27-108 MeV. These data are inconsistent with a conventional interpretation in which the electric and magnetic polarizabilities of the bound nucleon are unchanged from the free values and the meson-exchange seagull amplitude is taken in the zero-energy limit. Agreement with the data can be achieved by invoking either strongly modified polarizabilities or a substantial energy dependence to the meson-exchange seagull amplitude. It is argued that these seemingly different explanations are experimentally indistinguishable and probably physically equivalent.

  7. Leptonic Decays of Charged Pseudoscalar Mesons - 2015

    SciTech Connect

    Rosner, Jonathan L.; Stone, Sheldon; Van de Water, Ruth S.

    2015-09-07

    We review the physics of purely leptonic decays of $\\pi^\\pm$, $K^\\pm$, $D^{\\pm}$, $D_s^\\pm$, and $B^\\pm$ pseudoscalar mesons. The measured decay rates are related to the product of the relevant weak-interaction-based CKM matrix element of the constituent quarks and a strong interaction parameter related to the overlap of the quark and antiquark wave-functions in the meson, called the decay constant $f_P$. The leptonic decay constants for $\\pi^\\pm$, $K^\\pm$, $D^{\\pm}$, $D_s^\\pm$, and $B^\\pm$ mesons can be obtained with controlled theoretical uncertainties and high precision from {\\it ab initio} lattice-QCD simulations. The combination of experimental leptonic decay-rate measurements and theoretical decay-constant calculations enables the determination of several elements of the CKM matrix within the standard model. These determinations are competitive with those obtained from semileptonic decays, and also complementary because they are sensitive to different quark flavor-changing currents. They can also be used to test the unitarity of the first and second rows of the CKM matrix. Conversely, taking the CKM elements predicted by unitarity, one can infer "experimental" values for $f_P$ that can be compared with theory. These provide tests of lattice-QCD methods, provided new-physics contributions to leptonic decays are negligible at the current level of precision. This review is the basis of the article in the Particle Data Group's 2016 edition, updating the versions in Refs. [1-3].

  8. Impact of Dynamical Chiral Symmetry Breaking on Meson Structure and Interactions

    NASA Astrophysics Data System (ADS)

    Roberts, H. L. L.; Chang, L.; Roberts, C. D.

    We provide a glimpse of recent progress in meson physics made via QCD's Dyson-Schwinger equations with: a perspective on confinement and dynamical chiral symmetry breaking (DCSB); a précis on the physics of in-hadron condensates; results for the masses of the π, σ, ρ, a1 mesons and their first-radial excitations; and an illustration of the impact of DCSB on the pion form factor.

  9. Let there be light--with gallium nitride: the 2014 Nobel Prize in Physics.

    PubMed

    Von Dollen, Paul; Pimputkar, Siddha; Speck, James S

    2014-12-15

    Significant gains in energy savings now underway can be traced to a single invention--the blue light-emitting diode. GaN-based blue LED technology not only resulted in efficient white light sources, but continues to enable a host of applications and scientific inquiries. The researchers primarily responsible for the development of the blue LED were awarded the 2014 Nobel Prize in Physics.

  10. Experimental Research in Optical Physics: Geometric Phase and the Orbital Angular Momentum of the Light

    NASA Astrophysics Data System (ADS)

    Galvez, Enrique

    2004-03-01

    Optical Physics is an excellent field for doing experimental research that involves undergraduates. I will describe our experience at Colgate University in studying the manifestations of geometric phase in optics. This is a topic that has been a rich source of interesting projects and publications. We have done fundamental studies on a new geometric phase associated to the orbital angular momentum of the light, and applied studies designing new optical devices that rotate the polarization of the light.

  11. Association of Light-Intensity Physical Activity With Lower Cardiovascular Disease Risk Burden in Rheumatoid Arthritis.

    PubMed

    Khoja, Samannaaz S; Almeida, Gustavo J; Chester Wasko, Mary; Terhorst, Lauren; Piva, Sara R

    2016-04-01

    To characterize physical activity (PA) in individuals with rheumatoid arthritis (RA) and to determine the associations between PA participation at light to moderate intensities and cardiovascular disease risk factors, disability, and disease activity. The cross-sectional study used data from 2 RA cohorts. PA was measured using an accelerometry-based activity monitor, recording minutes/day spent in sedentary (≤1 metabolic equivalent [MET]), very light (1.1-1.9 METs), light (2-2.9 METs), and moderate activities (≥3 METs). Cardiovascular markers included body mass index, blood pressure, insulin resistance, and lipid profile. Disability and disease activity were measured using the Health Assessment Questionnaire (HAQ) and the Disease Activity Score in 28 joints (DAS28), respectively. Associations between PA at each intensity level and health markers were assessed by multiple linear regression models, adjusted for age, sex, and cohort. Ninety-eight subjects (mean ± SD age 58 ± 9 years, 85% female) were included. Subjects spent 9.8 hours/day being sedentary, 3.5 hours/day engaged in very light PA, 2.1 hours/day engaged in light PA, and 35 minutes/day engaged in moderate PA. Only 17% were physically active (≥150 minutes/week of moderate PA in 10-minute bouts). Regression models showed that very light, light, and moderate PA were inversely associated with most cardiovascular disease risk factors and HAQ and DAS28 scores (R(2) Δ range 0.04-0.52, P < 0.05). The associations between PA and cardiovascular disease markers were either equivalent or stronger at very light and light intensities, as compared to moderate intensity. Individuals with RA are mostly active at very light and light intensities. PA at these intensity levels associates favorably with cardiovascular markers and lower disability and disease activity in RA. © 2016, American College of Rheumatology.

  12. A New Ingredient for Simulating B Mesons

    NASA Astrophysics Data System (ADS)

    Wingate, Matthew; Shigemitsu, Junko; Lepage, Peter; Davies, Christine

    2002-08-01

    The fundamental states of QCD, quarks and gluons, are experimentally inaccessible due to confinement. Furthermore, the properties of bound states (e.g. hadrons) cannot be computed perturbatively due to the strength of the color force, so instead we employ Monte Carlo simulation of QCD on a spacetime lattice. Some quantities of particular interest to particle physicists are those necessary to connect flavor-changing decays of hadrons created in experiments to the flavor-changing interactions of the Standard Model quarks. Recently we have been investigating a new technique for simulating heavy-light bound states which should both decrease the computational burden and increase the numerical accuracy compared to present calculations. The new ingredient is the use of so-called staggered fermions as the light quark. Details and results for B meson energies and decay constants will be shown.

  13. Search for rare B meson decays into D {/s +} mesons

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Appuhn, R. D.; Hast, C.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Walther, A.; Wegener, D.; Bittner, M.; Eckstein, P.; Paulini, M. G.; Reim, K.; Wegener, H.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Funk, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Khan, S.; Knöpfle, K. T.; Spengler, J.; Britton, D. I.; Charlesworth, C. E. K.; Edwards, K. W.; Hyatt, E. R. F.; Kapitza, H.; Krieger, P.; Macfarlane, D. B.; Patel, P. M.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Reßing, D.; Schmidtler, M.; Schneider, M.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Belyaev, I.; Chechelnitsky, S.; Danilov, M.; Droutskoy, A.; Gershtein, Yu.; Golutvin, A.; Gorelov, I.; Kostina, G.; Lubimov, V.; Pakhlov, P.; Ratnikov, F.; Semenov, S.; Shibaev, V.; Soloshenko, V.; Tichomirov, I.; Zaitsev, Yu.

    1993-03-01

    A search has been performed for rare B meson decays into D {/s -} mesons arising from b→ u transitions, W exchange modes, B + annihilation processes, and decays where the D {/s +} is not produced via a W→ c bar s quark pair coupling, using the ARGUS detector operating on the Ψ(4 S) resonance at the e + e - storage ring DORIS II. Upper limits for individual decay modes are obtained. In addition, from a study of D {/s +}ℓ- correlations an upper limit of BR ( B→ D {/s +}ℓ- X) (90% CL) is determined.

  14. The Spectrophotometer II: A Module on the Spectral Properties of Light. Tech Physics Series.

    ERIC Educational Resources Information Center

    Frank, Nathaniel; And Others

    This module is designed to give the learner an understanding of the nature of light and how its properties are used in the design of spectrophotometers. Problems promote the use of spectrophotometers in qualitative analysis, the optical elements used in a monochromator, and the physical properties of the prism and the diffraction grating. Other…

  15. The Spectrophotometer II: A Module on the Spectral Properties of Light. Tech Physics Series.

    ERIC Educational Resources Information Center

    Frank, Nathaniel; And Others

    This module is designed to give the learner an understanding of the nature of light and how its properties are used in the design of spectrophotometers. Problems promote the use of spectrophotometers in qualitative analysis, the optical elements used in a monochromator, and the physical properties of the prism and the diffraction grating. Other…

  16. Student Understanding of Light as an Electromagnetic Wave: Relating the Formalism to Physical Phenomena.

    ERIC Educational Resources Information Center

    Ambrose, Bradley S.; Heron, Paula R. L.; Vokos, Stamatis; McDermott, Lillian C.

    1999-01-01

    Some serious difficulties that students have in understanding physical optics may be due in part to a lack of understanding of light as an electromagnetic wave. Describes the development and use of tutorials designed to address students' conceptual difficulties. (Contains over 15 references.) (Author/WRM)

  17. Physical characterization and profiling of airway epithelial derived exosomes using light scattering.

    PubMed

    Kesimer, Mehmet; Gupta, Richa

    2015-10-01

    Exosomes and other extracellular vesicles have been gaining interest during the last decade due to their emerging role in biology and, disease pathogenesis and their biomarker potential. Almost all published research related to exosomes and other extracellular vesicles include some form of physical characterization. Therefore, these vesicles should be precisely profiled and characterized physically before studying their biological role as intercellular messengers, biomarkers or therapeutic tools. Using a combination of light scattering techniques, including dynamic light scattering (DLS) and multi-angle laser light scattering combined with size exclusion separation (SEC-MALLS), we physically characterized and compared distinct extracellular vesicles derived from the apical secretions of two different cultured airway epithelial cells. The results indicated that epithelial cells release vesicles with distinct physical properties and sizes. Human primary tracheobronchial cell culture (HTBE) derived vesicles have a hydrodynamic radius (Rh) of approximately 340 nm while their radius of gyration (Rg) is approximately 200 nm. Electron microscopy analysis, however, revealed that their spherical component is 40-100 nm in size, and they carry filamentous, entangled membrane mucins on their surface that increases their overall radius. The mucin decoration on the surface defines their size and charge as measured using light scattering techniques. Their surface properties mirror the properties of the cells from which they are derived. This may provide a unique tool for researchers to elucidate the unanswered questions in normal airway biology and innate and adaptive defense, including the remodeling of airways during inflammation, tumorigenesis and metastasis.

  18. Using the Overhead Projector as a Light Source for Physics Demonstrations

    ERIC Educational Resources Information Center

    Mak, Se-Yuen

    2006-01-01

    This article illustrates how the overhead projector can be used as a light source in some peculiar ways for physics demonstrations. Five examples are included: (1) Study of chromatic aberration; (2) Making giant Newton's rings; (3) Comparison of the rate of heat absorption by different surfaces; (4) Demonstration of greenhouse effect; and (5)…

  19. Using the Overhead Projector as a Light Source for Physics Demonstrations

    ERIC Educational Resources Information Center

    Mak, Se-Yuen

    2006-01-01

    This article illustrates how the overhead projector can be used as a light source in some peculiar ways for physics demonstrations. Five examples are included: (1) Study of chromatic aberration; (2) Making giant Newton's rings; (3) Comparison of the rate of heat absorption by different surfaces; (4) Demonstration of greenhouse effect; and (5)…

  20. Medium Modification of Vector Mesons

    SciTech Connect

    Chaden Djalali, Michael Paolone, Dennis Weygand, Michael H. Wood, Rakhsha Nasseripour

    2011-03-01

    The theory of the strong interaction, Quantum Chromodynamics (QCD), has been remarkably successful in describing high-energy and short-distance-scale experiments involving quarks and gluons. However, applying QCD to low energy and large-distance scale experiments has been a major challenge. Various QCD-inspired models predict a partial restoration of chiral symmetry in nuclear matter with modifications of the properties of hadrons from their free-space values. Measurable changes such as a shift in mass and/or a change of width are predicted at normal nuclear density. Photoproduction of vector mesons off nuclei have been performed at different laboratories. The properties of the ρ, ω and φ mesons are investigated either directly by measuring their mass spectra or indirectly through transparency ratios. The latest results regarding medium modifications of the vector mesons in the nuclear medium will be discussed.

  1. A framework for validating light fields created using physically based rendering techniques

    NASA Astrophysics Data System (ADS)

    Whittinghill, David M.

    This research study presents a framework for applying physically based global illumination techniques to the creation of software models of light fields that are then validated against actual light fields measured in physical experiments. A prior experiment was performed by horticulture scientists in which the light field of an empty plant growth chamber was measured using quantum sensors at fixed spatial intervals. The result was a light map consisting of a 9 x 45, fixed-width, two-dimensional graph of sensor readings that described the intensity of radiant energy present in the chamber at the chosen locations. A single observation of the growth chamber was made resulting in a single data set consisting of 45 different, location-sensitive irradiance observations. To test this framework a series of simulations were performed in which the physical attributes of the growth chamber were duplicated as closely as possible in a virtual growth chamber software model. Modeled attributes included physical dimensions, wall and light reflectivity, and full-spectrum light characterization. Light transport was modeled using a physically based, global illumination rendering technique called photon mapping. Virtual sensors that recorded the intensity of the light that transmitted through their surface were placed in the virtual chamber at the same position and interval as the ones that were used in the physical experiment. The output of the virtual chamber experiments were represented as a graph in the same configuration as the one in the physical experiment. The experiment was conducted using a modified version of pbrt, a physically based, extensible renderer developed by Matt Pharr and Greg Humphreys [1]. As photon mapping uses a stochastic algorithm, many repetitions of the virtual chamber experiment were performed and the mean and standard deviation were recorded as a global measure for each chamber as well as for each individual sensor location. The global means of the

  2. Physical and biogeochemical controls on light attenuation in a eutrophic, back-barrier estuary

    USGS Publications Warehouse

    Ganju, Neil K.; Miselis, Jennifer L.; Aretxabaleta, Alfredo L.

    2014-01-01

    Light attenuation is a critical parameter governing the ecological function of shallow estuaries. In these systems primary production is often dominated by benthic macroalgae and seagrass; thus light penetration to the bed is of primary importance. We quantified light attenuation in three seagrass meadows in Barnegat Bay, New Jersey, a shallow eutrophic back-barrier estuary; two of the sites were located within designated Ecologically Sensitive Areas (ESAs). We sequentially deployed instrumentation measuring photosynthetically active radiation, chlorophyll-a (chl-a) fluorescence, dissolved organic matter fluorescence (fDOM; a proxy for colored DOM absorbance), turbidity, pressure, and water velocity at 10 min intervals over three week periods at each site. At the southernmost site, where sediment availability was highest, light attenuation was highest and dominated by turbidity and to a lesser extent chl-a and CDOM. At the central site, chl-a dominated followed by turbidity and CDOM, and at the northernmost site turbidity and CDOM contributed equally to light attenuation. At a given site, the temporal variability of light attenuation exceeded the difference in median light attenuation at the three sites, indicating the need for continuous high-temporal resolution measurements. Vessel wakes, anecdotally implicated in increasing sediment resuspension, did not contribute to local resuspension within the seagrass beds, though frequent vessel wakes were observed in the channels. With regards to light attenuation and water clarity, physical and biogeochemical variables appear to outweigh any regulation of boat traffic within the ESAs.

  3. Measurement of [ital b] quark fragmentation fractions in the production of strange and light [ital B] mesons in p[bar p] collisions at [radical] (s) =1. 8 TeV

    SciTech Connect

    Blair, R.E.; Byrum, K.L.; Kovacs, E.; Kuhlmann, S.E.; LeCompte, T.; Nodulman, L. ); Breccia, L.; Brunetti, R.; Deninno, M.; Fiori, I.; Mazzanti, P. ); Behrends, S.; Bensinger, J.; Blocker, C.; Kirk, M.; Kirsch, L.; Lamoureux, J.I.; Niu, H. ); Bonushkin, Y.; Hauser, J.; Lindgren, M. ); Ashmanskas, W.; Berryhill, J.; Contreras, M.; Culbertson, R.; Grosso-Pilcher, C.; Nakaya, T. ); Benjamin, D.; Cronin-Hennessy, D.; Dittmann, J.R.; Goshaw, A.T.; Khazins, D.; Kowald, W.; Oh, S.H. ); Albrow, M.G.; Atac, M.; Beretvas, A.; Berge, J.P.; Biery, K.; Binkley, M.; Bu

    1999-11-01

    A new technique to measure the ratio of [ital b] quark fragmentation fractions in p[bar p] collisions is described. Using a 70-pb[sup [minus]1] sample of low-mass dimuon trigger data recorded with the Collider Detector at Fermilab, we identify [ital B] mesons by observing the double semileptonic decays b[r arrow]c[mu]X with c[r arrow]s[mu]X. By counting the numbers of K[sup [asterisk

  4. Meson spectroscopy with unitary coupled-channels model for heavy-meson decay into three mesons

    SciTech Connect

    Satoshi Nakamura

    2012-04-01

    We develop a model for describing excited mesons decay into three mesons. The properties of the excited mesons can be extracted with this model. The model maintains the three-body unitarity that has been missed in previous data analyses based on the conventional isobar models. We study an importance of the three-body unitarity in extracting hadron properties from data. For this purpose, we use the unitary and isobar models to analyze the same pseudo data of {gamma}p {yields} {pi}{sup +}{pi}{sup +}{pi}{sup -}n, and extract the properties of excited mesons. We find a significant difference between the unitary and isobar models in the extracted properties of excited mesons, such as the mass, width and coupling strength to decay channels. Hadron properties such as quantum numbers (spin, parity, etc.), mass and (partial) width have been long studied as a subject called hadron spectroscopy. The hadron properties provide important information for understanding internal structure of the hadron and dynamics which governs it. The dynamics here is of course QCD in its nonperturbative regime. The hadron properties can be extracted from data through a careful analysis, in many cases, partial wave analysis (PWA). Thus it is essential for hadron spectroscopy to have a reliable theoretical analysis tool.

  5. Threshold effects in P -wave bottom-strange mesons

    NASA Astrophysics Data System (ADS)

    Ortega, Pablo G.; Segovia, Jorge; Entem, David R.; Fernández, Francisco

    2017-02-01

    Using a nonrelativistic constituent quark model in which the degrees of freedom are quark-antiquark and meson-meson components, we have recently shown that the D(*)K thresholds play an important role in lowering the mass of the c s ¯ states associated with the physical Ds0 *(2317 ) and Ds 1(2460 ) mesons. This observation is also supported by other theoretical approaches such as lattice-regularized QCD or chiral unitary theory in coupled channels. Herein, we extend our computation to the lowest P -wave Bs mesons, taking into account the corresponding JP=0+, 1+ and 2+ bottom-strange states predicted by the naive quark model and the B K and B*K thresholds. We assume that mixing with Bs(*)η and isospin-violating decays to Bs(*)π are negligible. This computation is important because there is no experimental data in the b s ¯ sector for the equivalent jqP=1 /2+ (Ds0 *(2317 ), Ds 1(2460 )) heavy-quark multiplet and, as it has been seen in the c s ¯ sector, the naive theoretical result can be wrong by more than 100 MeV. Our calculation allows us to introduce the coupling with the D -wave B*K channel and to compute the probabilities associated with the different Fock components of the physical state.

  6. Strong Decays of Charm Mesons D*1(2680), D*3(2760), D*2(3000)

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang

    2016-12-01

    In this article, we assign the higher charm mesons D*1(2680), D*3(2760) and D*2(3000) to be the 2S 1-, 1D 3- and 1F 2+ states, respectively, and study the two-body strong decays to the ground state charm mesons and light pseudoscalar mesons with the heavy meson effective theory. We obtain the ratios among the strong decays, which can be confronted to the experimental data in the future and shed light on the nature of those higher charm mesons. Supported by National Natural Science Foundation of China under Grant No. 11375063, and Natural Science Foundation of Hebei Province under Grant No. A2014502017

  7. D-meson observables in heavy-ion collisions at LHC with EPOSHQ model

    NASA Astrophysics Data System (ADS)

    Ozvenchuk, Vitalii; Aichelin, Joerg; Gossiaux, Pol-Bernard; Guiot, Benjamin; Nahrgang, Marlene; Werner, Klaus

    2016-11-01

    We study the propagation of charm quarks in the quark-gluon plasma (QGP) created in ultrarelativistic heavy-ion collisions at LHC within EPOSHQ model. The interactions of heavy quarks with the light partons in ultrarelativistic heavy-ion collisions through the collisional and radiative processes lead to a large suppression of final D-meson spectra at high transverse momentum and a finite D-meson elliptic flow. Our results are in a good agreement with the available experimental data.

  8. Pentaquark implications for exotic mesons

    SciTech Connect

    T. Burns; F.E. Close; J.J. Dudek

    2004-11-01

    If the exotic baryon {Theta}{sup +}(1540) is a correlated udud{bar s} with J{sup P} = 1/2{sup +}, then there should exist an exotic meson, J{sup P} = 1{sup -} {var_theta}{sup +} (S = +2) {yields} K{sup +}K{sup 0} {approx} 1.6 GeV with width {Omicron}(10-100)MeV. The {pi}{sub 1} (1400;1600) may be broad members of 10 {+-} {ovr 10} in such a picture. Vector mesons in the 1.4 - 1.7 GeV mass range are also compared with this picture.

  9. B and Bs meson spectroscopy

    NASA Astrophysics Data System (ADS)

    Godfrey, Stephen; Moats, Kenneth; Swanson, Eric S.

    2016-09-01

    Properties of bottom and bottom-strange mesons are computed in two relativized quark models. Model masses and wave functions are used to predict radiative transition rates, and the 3P0 quark pair creation model is used to compute strong decay widths. A comparison to recently observed bottom and bottom-strange states is made. We find that there are numerous excited B and Bs mesons that have relatively narrow widths and significant branching ratios to simple final states such as B π , B*π , B K , and B*K that could be observed in the near future.

  10. Tau decays into K* mesons

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Mankel, R.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kapitza, H.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Eckstein, P.; Schubert, K. R.; Schwierz, R.; Waldi, R.; Reim, K.; Wegener, H.; Eckmann, R.; Kuipers, H.; Mai, O.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Knöpfle, K. T.; Spengler, J.; Krieger, P.; Macfarlane, D. B.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Frankl, C.; Reßing, D.; Schmidtler, M.; Schneider, M.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Belyaev, I.; Schechelnitsky, S.; Danilov, M.; Doutskoy, A.; Gershtein, Yu.; Golutvin, A.; Korolko, I.; Kostina, G.; Litvintsev, D.; Lubimov, V.; Pakhlov, P.; Semenov, S.; Snizhko, A.; Tichomirov, I.; Zaitsev, Yu.

    1995-06-01

    Using the ARGUS detector at the storage ring DORIS II we have measured τ decays into three charged mesons containing K * mesons. Exploiting the good particle identification capabilities of the detector we have determined the following branching ratios:Brleft( {tau ^ - to overline {K^{*0} } π ^ - v_tau } right) = left( {0.25 ± 0.10 ± 0.05} right)% , B r (τ-→ K *0 K - v τ)= (0.20±0.05±0.04)%, and B r (τ-→ K *- X 0 v τ) =(1.15±0.15-0.18 +0.13)%.

  11. The meson spectroscopy program with CLAS12 at Jefferson Laboratory

    SciTech Connect

    Rizzo, Alessandro

    2016-06-01

    experimental hadronic physics all over the world, to investigate and propose new analysis models and new statistical techniques to unfold signal and background. The new analysis framework is being developed and tested using the existing CLAS data and results are projected to the CLAS12 performances, showing that the quest for hybrid exotic mesons is at reach.

  12. Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light

    NASA Astrophysics Data System (ADS)

    Le Hur, Karyn; Henriet, Loïc; Petrescu, Alexandru; Plekhanov, Kirill; Roux, Guillaume; Schiró, Marco

    2016-10-01

    We review recent developments regarding the quantum dynamics and many-body physics with light, in superconducting circuits and Josephson analogues, by analogy with atomic physics. We start with quantum impurity models addressing dissipative and driven systems. Both theorists and experimentalists are making efforts towards the characterization of these non-equilibrium quantum systems. We show how Josephson junction systems can implement the equivalent of the Kondo effect with microwave photons. The Kondo effect can be characterized by a renormalized light frequency and a peak in the Rayleigh elastic transmission of a photon. We also address the physics of hybrid systems comprising mesoscopic quantum dot devices coupled with an electromagnetic resonator. Then, we discuss extensions to Quantum Electrodynamics (QED) Networks allowing one to engineer the Jaynes-Cummings lattice and Rabi lattice models through the presence of superconducting qubits in the cavities. This opens the door to novel many-body physics with light out of equilibrium, in relation with the Mott-superfluid transition observed with ultra-cold atoms in optical lattices. Then, we summarize recent theoretical predictions for realizing topological phases with light. Synthetic gauge fields and spin-orbit couplings have been successfully implemented in quantum materials and with ultra-cold atoms in optical lattices - using time-dependent Floquet perturbations periodic in time, for example - as well as in photonic lattice systems. Finally, we discuss the Josephson effect related to Bose-Hubbard models in ladder and two-dimensional geometries, producing phase coherence and Meissner currents. The Bose-Hubbard model is related to the Jaynes-Cummings lattice model in the large detuning limit between light and matter (the superconducting qubits). In the presence of synthetic gauge fields, we show that Meissner currents subsist in an insulating Mott phase.

  13. Scalar mesons in three-flavor linear sigma models

    SciTech Connect

    Deirdre Black; Amir H. Fariborz; Sherif Moussa; Salah Nasri; Joseph Schrechter

    2001-09-01

    The three flavor linear sigma model is studied in order to understand the role of possible light scalar mesons in the pi-pi, pi-K and pi-eta elastic scattering channels. The K-matrix prescription is used to unitarize tree-level amplitudes and, with a sufficiently general model, we obtain reasonable ts to the experimental data. The effect of unitarization is very important and leads to the emergence of a nonet of light scalars, with masses below 1 GeV. We compare with a scattering treatment using a more general non-linear sigma model approach and also comment upon how our results t in with the scalar meson puzzle. The latter involves a preliminary investigation of possible mixing between scalar nonets.

  14. Exotic few-body systems with a heavy meson

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yasuhiro

    2014-09-01

    Hadron as an impurity bound in nuclei causes interesting phenomena which do not emerge in normal nuclei. These effects would give us the information not only on the internal structure of the nuclei, but also on the changing properties of the impurity in the nuclear medium. The hadron-nucleus systems have been studied in the light flavor sector, especially. However, a strong attraction between a heavy meson (Dbar and B) and a nucleon, provided by the one pion exchange potential (OPEP), was suggested recently. The OPEP is enhanced by the heavy quark spin symmetry which induces the mass degeneracy between the heavy pseudoscalar and vector mesons. The attraction motivates us to investigate the Dbar (B) nuclei having the exotic flavor structure. Hence, these bound states are stable against the strong decay. We discuss the possible existence of exotic few-body states realized as DbarNN and BNN. The OPEP between the Dbar (B) meson and the nucleon N is considered. By solving coupled channel equations for PNN and P* NN channels (P (P*) is the heavy pseudoscalar (vector) meson), we obtain new three-body bound states and resonances. In these states, the tensor force of the OPEP plays an important role to yield the attraction.

  15. Chiral Lagrangian parameters for scalar and pseudoscalar mesons

    NASA Astrophysics Data System (ADS)

    Bardeen, W.; Eichten, E.; Thacker, H.

    2004-03-01

    The results of a high-statistics study of scalar and pseudoscalar meson propagators in quenched lattice QCD are presented. For two values of lattice spacing, β=5.7 (a≈.18 fm) and 5.9 (a≈.12 fm), we probe the light quark mass region using clover improved Wilson fermions with the modified quenched approximation pole-shifting ansatz to treat the exceptional configuration problem. The quenched chiral loop parameters m0 and αΦ are determined from a study of the pseudoscalar hairpin correlator. From a global fit to the meson correlators, estimates are obtained for the relevant chiral Lagrangian parameters, including the Leutwyler parameters L5 and L8. Using the parameters obtained from the singlet and nonsinglet pseudoscalar correlators, the quenched chiral loop (QCL) effect in the nonsinglet scalar meson correlator is studied. By removing this QCL effect from the lattice correlator, we obtain the mass and decay constant of the ground state scalar, isovector meson a0.

  16. Strong decays of 2+ charm and charm-strange mesons

    NASA Astrophysics Data System (ADS)

    Zhang, Si-Cheng; Wang, Tianhong; Jiang, Yue; Li, Qiang; Wang, Guo-Li

    2017-02-01

    In this paper, we calculate the strong decays of 2+ heavy-light states, namely, the charmed D2∗(2460)0 meson and the charm-strange Ds2∗(2573)+ meson. The method we adopt is the reduction formula, PCAC relation and low energy theorem, following which, the transition amplitudes are calculated. The wave functions of the heavy mesons involved are achieved by solving the instantaneous Bethe-Salpeter equation. As the OZI-allowed two-body strong decays give the dominant contribution, they can be used to estimate the total widths of mesons. Our results are: Γ[D2∗(2460)0] = 51.3MeV and Γ[Ds2∗(2573)+] = 19.6MeV. The ratios of branching ratios of two main channels are Br[D2∗(2460)0 → D+π‑]/Br[D 2∗(2460)0 → D∗+π‑] = 2.13 and Br[Ds2∗(2573)+ → D∗0K+]/Br[D s2∗(2573)+ → D0K+] = 0.08, respectively.

  17. New near-threshold mesons

    NASA Astrophysics Data System (ADS)

    Cohen, Thomas D.; Gelman, Boris A.; Nussinov, Shmuel

    2004-01-01

    We show that under a number of rather plausible assumptions QCD spectrum may contain a number of mesons which have not been predicted or observed. Such states will have the quantum numbers of two existing mesons and masses very close to the dissociation threshold into the two mesons. Moreover, at least one of the two mesonic constituents itself must be very close to its dissociation threshold. In particular, one might expect the existence of loosely bound systems of D and D∗sJ(2317); similarly, K and f0(980), K¯ and f0(980), K and a0(980) and K¯ and a0(980) can be bound. The mechanism for binding in these cases is the S-wave kaon exchange. The nearness of one of the constituents to its decay threshold into a kaon plus a remainder, implies that the range of the kaon exchange force becomes abnormally long—significantly longer than 1/mK which greatly aids the binding.

  18. Exclusive meson production at HERMES

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, A.

    2005-10-01

    Generalized Parton Distributions (GPDs) provide a new level of insight into the quark structure of the nucleon. Experimentally they can be probed by hard exclusive electroproduction of both scalar and vector mesons. Results for the cross section for the reaction ep → enπ+, and a first result for the asymmetry AUT for exclusive ρ0 production are presented.

  19. Association of Light Exposure on Physical Activity and Sedentary Time in Young People

    PubMed Central

    Aggio, Daniel; Smith, Lee; Fisher, Abigail; Hamer, Mark

    2015-01-01

    Background: To investigate whether light exposure was associated with objectively measured physical activity (PA) and sedentary behaviour in young people. Methods: Participants (n = 229, 46.7% female) were young people (mean 8.8 years [SD ± 2.2]) from the borough of Camden, UK. Daily sedentary time, moderate and vigorous PA (MVPA) and light exposure were measured using a tri-axial accelerometer with an ambient light sensor during the summer. Multiple linear regression models examined associations between average daily light exposure, sedentary time and time in MVPA. Models were repeated investigating weekdays and weekend days separately. Analyses were adjusted for pre-specified covariables, including age, sex, device wear time, ethnic group, school and body fat. Results: There were significant associations between average daily light exposure and time sedentary (β coefficient = −11.2, 95% CI, −19.0 to −3.4) and in MVPA (β coefficient = 3.5, 95% CI, 1.2 to 5.9). Light exposure was significantly associated with weekend sedentary time (β coefficient = −10.0, 95% CI, −17.6, −2.4), weekend MVPA (β coefficient = 3.7, 95% CI, 1.7, 5.7), weekday sedentary time (β coefficient = −15.0, 95% CI, −22.7 to −7.2), but not weekday MVPA (β coefficient = 2.0, 95% CI, −0.5 to 4.5). Conclusion: Average daily light exposure is positively associated with time in MVPA and negatively associated with sedentary time. Increasing daylight exposure may be a useful intervention strategy for promoting physical activity. PMID:25764057

  20. Semileptonic decays of D mesons in unquenched lattice QCD

    SciTech Connect

    Masataka Okamoto et al.

    2004-03-17

    We present our preliminary results for semileptonic form factors of D mesons in unquenched lattice QCD. Simulations are carried out with n{sub f} = 2 + 1 dynamical quarks using gauge configurations generated by the MILC collaboration. For the valence quarks, we adopt an improved staggered light quark action and the clover heavy quark action. Our results for D {yields} K and D {yields} {pi} form factors at q{sup 2} = 0 are in agreement with the experimental values.

  1. Bethe-Salpeter dynamics and the constituent mass concept for heavy quark mesons

    SciTech Connect

    Souchlas, N.; Stratakis, D.

    2010-06-01

    The definition of a quark as heavy requires a comparison of its mass with the nonperturbative chiral symmetry breaking scale which is about 1 GeV ({Lambda}{sub {chi}{approx}1} GeV) or with the scale {Lambda}{sub QCD{approx}}0.2 GeV that characterizes the distinction between perturbative and nonperturbative QCD. For quark masses significantly larger than these scales, nonperturbative dressing effects, or equivalently nonperturbative self-energy contributions, and relativistic effects are believed to be less important for physical observables. We explore the concept of a constituent mass for heavy quarks in the Dyson-Schwinger equations formalism, for light-heavy and heavy-heavy quark mesons by studying their masses and electroweak decay constants.

  2. Meson photoproduction from the nucleon at CLAS

    SciTech Connect

    Daniel P. Watts

    2012-01-01

    The excitation spectrum of the nucleon provides a stringent constraint on the dynamics and interactions of its internal constituents and therefore probes the mechanism of confinement in the light quark sector. Our detailed knowlege of this excitation spectrum is poor, with many predicted states not yet observed in experiment and many 'established' states having poorly known properties. To address these shortcomings a worldwide effort is currently underway exploiting the latest generation of electron and photon beams in detailed studies of meson photoproduction from nucleon targets. A major contribution to this effort will come from the experimental programme at Jefferson Lab exploiting the frozen spin target (FROST) with the CLAS spectrometer. The status of this project will be presented along with preliminary results and analyses.

  3. Leptonic and semileptonic decays of B mesons

    NASA Astrophysics Data System (ADS)

    Dingfelder, Jochen; Mannel, Thomas

    2016-07-01

    Semileptonic decays are ideally suited to study the weak interaction as well as strong interaction effects in B -meson decays. In the last decade, precision studies of semileptonic B decays have been made possible by the large samples of B mesons collected at the B factories KEKB in Japan and PEP-II in the USA. Measurements of the charged-current semileptonic transitions b →q ℓν (q =u , c ) allow for a determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix elements Vc b and Vu b and the masses of the b and c quarks, which are fundamental parameters of the standard model of particle physics. The values of |Vc b| and |Vu b| are determined from measurements of inclusive B decays in combination with calculations of partial decay rates or from exclusive decays combined with theoretical predictions of hadronic form factors. Purely leptonic B decays B →ℓν (ℓ=e , μ , τ ) also provide access to |Vu b|. They are theoretically simpler, but the available signal samples are still small. Decays involving a τ lepton, B →τ ν and B →D(*)τ ν , are sensitive to new physics, in particular, to charged Higgs bosons in models with an extended Higgs sector, and provide a window to the physics of the third generation. In this article, the measurements and theoretical descriptions of charged-current leptonic and semileptonic B decays and the status of |Vc b| and |Vu b| determinations are reviewed. An overview of the theoretical approaches and the experimental techniques used in the study of these decays is also provided.

  4. Vector meson electroproduction in QCD

    NASA Astrophysics Data System (ADS)

    Lu, Juan; Cai, Xian-Hao; Zhou, Li-Juan

    2012-08-01

    Based on the generalized QCD vector meson dominance model, we study the electroproduction of a vector meson off a proton in the QCD inspired eikonalized model. Numerical calculations for the total cross section σtot and differential cross section dσ/dt are performed for ρ, ω and varphi meson electroproduction in this paper. Since gluons interact among themselves (self-interaction), two gluons can form a glueball with quantum numbers IG, JPC = 0+,2++, decay width Γt ≈ 100 MeV, and mass of mG = 2.23 GeV. The three gluons can form a three-gluon colorless bound state with charge conjugation quantum number C = -1, called the Odderon. The mediators of interactions between projectiles (the quark and antiquark pair fluctuated from the virtual photon) and the proton target (a three-quark system) are the tensor glueball and the Odderon. Our calculated results in the tensor glueball and Odderon exchange model fit to the existing data successfully, which evidently shows that our present QCD mechanism is a good description of meson electroproduction off a proton. It should be emphasized that our mechanism is different from the theoretical framework of Block et al. We also believe that the present study and its success are important for the investigation of other vector meson electro- and photoproduction at high energies, as well as for searching for new particles such as tensor glueballs and Odderons, which have been predicted by QCD and the color glass condensate model (CGC). Therefore, in return, it can test the validity of QCD and the CGC model.

  5. Nuclear Physics with 10 PW laser beams at Extreme Light Infrastructure - Nuclear Physics (ELI-NP)

    NASA Astrophysics Data System (ADS)

    Zamfir, N. V.

    2014-05-01

    The field of the uncharted territory of high-intensity laser interaction with matter is confronted with new exotic phenomena and, consequently, opens new research perspectives. The intense laser beams interacting with a gas or solid target generate beams of electrons, protons and ions. These beams can induce nuclear reactions. Electrons also generate ions high-energy photons via bremsstrahlung processes which can also induce nuclear reactions. In this context a new research domain began to form in the last decade or so, namely nuclear physics with high power lasers. The observation of high brilliance proton beams of tens of MeV energy from solid targets has stimulated an intense research activity. The laser-driven particle beams have to compete with conventional nuclear accelerator-generated beams. The ultimate goal is aiming at applications of the laser produced beams in research, technology and medicine. The mechanism responsible for ion acceleration are currently subject of intensive research in many laboratories in the world. The existing results, experimental and theoretical, and their perspectives are reviewed in this article in the context of IZEST and the scientific program of ELI-NP.

  6. Extreme Light Infrastructure Nuclear Physics (ELI-NP): Present status and perspectives

    NASA Astrophysics Data System (ADS)

    Zamfir, N. V.

    2016-05-01

    Extreme Light Infrastructure - Nuclear Physics (ELI-NP), a new Research Center under construction, will use extreme electromagnetic fields for nuclear physics research and will be operational in 2018. The status of the Project implementation will be presented. At ELI-NP, a high power laser system together with a very brilliant gamma beam are the two main research tools. Their targeted operational parameters will be described. The related experimental set-ups will be presented, together with the main directions of the research envisioned.

  7. D¯ D meson pair production in antiproton-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Shyam, R.; Tsushima, K.

    2016-10-01

    We study the D ¯D (D¯0D0 and D-D+) charm meson pair production in antiproton (p ¯) induced reactions on nuclei at beam energies ranging from threshold to several GeV. Our model is based on an effective Lagrangian approach that has only the baryon-meson degrees of freedom and involves the physical hadron masses. The reaction proceeds via the t -channel exchanges of Λc+, Σc+, and Σc++ baryons in the initial collision of the antiproton with one of the protons of the target nucleus. The medium effects on the exchanged baryons are included by incorporating in the corresponding propagators, the effective charm baryon masses calculated within a quark-meson coupling (QMC) model. The wave functions of the bound proton have been determined within the QMC model as well as in a phenomenological model where they are obtained by solving the Dirac equation with appropriate scalar and vector potentials. The initial- and final-state distortion effects have been approximated by using an eikonal approximation-based procedure. Detailed numerical results are presented for total and double differential cross sections for the D¯0D0 and D-D+ production reactions on 16O and 90Zr targets. It is noted that at p ¯ beam momenta of interest to the P ¯ ANDA experiment, medium effects lead to noticeable enhancements in the charm meson production cross sections.

  8. LATE-TIME LIGHT CURVES OF TYPE II SUPERNOVAE: PHYSICAL PROPERTIES OF SUPERNOVAE AND THEIR ENVIRONMENT

    SciTech Connect

    Otsuka, Masaaki; Meixner, Margaret; Panagia, Nino; Fabbri, Joanna; Barlow, Michael J.; Wesson, Roger; Clayton, Geoffrey C.; Andrews, Jennifer E.; Gallagher, Joseph S.; Sugerman, Ben E. K.; Ercolano, Barbara; Welch, Douglas E-mail: otsuka@asiaa.sinica.edu.tw

    2012-01-01

    We present BVRIJHK-band photometry of six core-collapse supernovae, SNe 1999bw, 2002hh, 2003gd, 2004et, 2005cs, and 2006bc, measured at late epochs (>2 yr) based on the Hubble Space Telescope (HST), and the Gemini North, and WIYN telescopes. We also show the JHK light curves of supernova impostor SN 2008S up to day 575 because it was serendipitously in our SN 2002hh field of view. Of our 43 HST observations in total, 36 observations are successful in detecting the light from the SNe alone and measuring magnitudes of all the targets. HST observations show a resolved scattered light echo around SN 2003gd at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations detected SNe 2002hh and 2004et as well. Combining our data with previously published data, we show VRIJHK-band light curves and estimate decline magnitude rates at each band in four different phases. Our prior work on these light curves and other data indicate that dust is forming in our targets from days {approx}300 to 400, supporting SN dust formation theory. In this paper we focus on other physical properties derived from late-time light curves. We estimate {sup 56}Ni masses for our targets (0.5-14 Multiplication-Sign 10{sup -2} M{sub Sun }) from the bolometric light curve of each of days {approx}150-300 using SN 1987A as a standard (7.5 Multiplication-Sign 10{sup -2} M{sub Sun }). The flattening or sometimes increasing fluxes in the late-time light curves of SNe 2002hh, 2003gd, 2004et, and 2006bc indicate the presence of light echoes. We estimate the circumstellar hydrogen density of the material causing the light echo and find that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm{sup -3}) and SNe 2003gd and 2004et have densities more typical of the interstellar medium ({approx}1 cm{sup -3}). We analyze the sample as a whole in the context of physical properties derived in prior work. The {sup 56}Ni mass appears well correlated with progenitor mass with a slope of 0

  9. Late-time Light Curves of Type II Supernovae: Physical Properties of Supernovae and Their Environment

    NASA Astrophysics Data System (ADS)

    Otsuka, Masaaki; Meixner, Margaret; Panagia, Nino; Fabbri, Joanna; Barlow, Michael J.; Clayton, Geoffrey C.; Gallagher, Joseph S.; Sugerman, Ben E. K.; Wesson, Roger; Andrews, Jennifer E.; Ercolano, Barbara; Welch, Douglas

    2012-01-01

    We present BVRIJHK-band photometry of six core-collapse supernovae, SNe 1999bw, 2002hh, 2003gd, 2004et, 2005cs, and 2006bc, measured at late epochs (>2 yr) based on the Hubble Space Telescope (HST), and the Gemini North, and WIYN telescopes. We also show the JHK light curves of supernova impostor SN 2008S up to day 575 because it was serendipitously in our SN 2002hh field of view. Of our 43 HST observations in total, 36 observations are successful in detecting the light from the SNe alone and measuring magnitudes of all the targets. HST observations show a resolved scattered light echo around SN 2003gd at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations detected SNe 2002hh and 2004et as well. Combining our data with previously published data, we show VRIJHK-band light curves and estimate decline magnitude rates at each band in four different phases. Our prior work on these light curves and other data indicate that dust is forming in our targets from days ~300 to 400, supporting SN dust formation theory. In this paper we focus on other physical properties derived from late-time light curves. We estimate 56Ni masses for our targets (0.5-14 × 10-2 M ⊙) from the bolometric light curve of each of days ~150-300 using SN 1987A as a standard (7.5 × 10-2 M ⊙). The flattening or sometimes increasing fluxes in the late-time light curves of SNe 2002hh, 2003gd, 2004et, and 2006bc indicate the presence of light echoes. We estimate the circumstellar hydrogen density of the material causing the light echo and find that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm-3) and SNe 2003gd and 2004et have densities more typical of the interstellar medium (~1 cm-3). We analyze the sample as a whole in the context of physical properties derived in prior work. The 56Ni mass appears well correlated with progenitor mass with a slope of 0.31 × 10-2, supporting the previous work by Maeda et al., who focus on more massive Type II SNe. The

  10. Lighting.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  11. Quantitative Measurements of Multilayer Physical Adsorption on Heterogeneous Surfaces from Nonlinear Light Scattering

    NASA Astrophysics Data System (ADS)

    Henson, B. F.; Wilson, K. R.; Robinson, J. M.

    1997-08-01

    We present measurements of equilibrium multilayer physical adsorption on porous, heterogeneous ice films using nonlinear light scattering. The dependence of scattering intensity on surface coverage is modeled using the adsorption theory of Brunauer, Emmett, and Teller, and an extension based on the Bragg-Williams formalism. We show that a complete equation of state for an adsorbed species can be experimentally determined within this simple framework.

  12. Discretization effects and the scalar meson correlator in mixed-action lattice simulations

    SciTech Connect

    Aubin, C.; Laiho, Jack; Van de Water, Ruth S.

    2008-06-01

    We study discretization effects in a mixed-action lattice theory with domain-wall valence quarks and Asqtad-improved staggered sea quarks. At the level of the chiral effective Lagrangian, discretization effects in the mixed-action theory give rise to two new parameters as compared to the lowest order Lagrangian for rooted-staggered fermions - the residual quark mass m{sub res} and the mixed valence-sea meson mass splitting {delta}{sub mix}. We find that m{sub res}, which parametrizes explicit chiral symmetry breaking in the mixed-action theory, is approximately one-quarter the size of our lightest valence quark mass on our coarser lattice spacing and of comparable size to that of simulations by the RBC and UKQCD Collaborations. We also find that the size of {delta}{sub mix} is comparable to the size of the smallest of the staggered meson taste splittings measured by the MILC Collaboration. Because lattice artifacts are different in the valence and sea sectors of the mixed-action theory, they give rise to unitarity-violating effects that disappear in the continuum limit, some of which should be described by mixed-action chiral perturbation theory (MA{chi}PT). Such effects are expected to be mild for many quantities of interest but are expected to be significant in the case of the isovector scalar (a{sub 0}) correlator. Specifically, once the parameters m{sub res}, {delta}{sub mix}, and two others that can be determined from the light pseudoscalar meson spectrum are known, the two-particle intermediate state 'bubble' contribution to the scalar correlator is completely predicted within MA{chi}PT. We find that the behavior of the scalar meson correlator is quantitatively consistent with the MA{chi}PT prediction; this supports the claim that MA{chi}PT describes the dominant unitarity-violating effects in the mixed-action theory and can therefore be used to remove lattice artifacts and recover physical quantities.

  13. Exotic Hybrid Meson Spectroscopy with the GlueX detector at Jlab

    SciTech Connect

    Lawrence, David W.

    2014-03-01

    The GlueX experiment is scheduled to begin taking data in 2015. The goal is to discover evidence for the existence of exotic hybrid mesons and to map out their spectrum in the light quark sector. Recent theoretical developments using Lattice QCD predict exotic hybrid states in a mass range accessible using the newly upgraded 12GeV electron accelerator at Jefferson Lab. Hybrid mesons, and in particular exotic hybrid mesons, provide the ideal laboratory for testing QCD in the confinement regime since these mesons explicitly manifest the gluonic degrees of freedom. The experiment will use 9 GeV linearly polarized photons produced via coherent bremsstrahlung to produce the exotic hybrids. The decay products will be detected in the solenoid-based GlueX detector currently under construction at Jefferson Lab. The status of the GlueX experiment including detector parameters will be presented along with theoretical motivation for the experiment.

  14. Review of Particle Physics

    NASA Astrophysics Data System (ADS)

    Olive, K. A.; Particle Data Group; et al.

    2016-10-01

    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,062 new measurements from 721 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 117 reviews are many that are new or heavily revised, including those on Pentaquarks and Inflation. The complete Review is published online in a journal and on the website of the Particle Data Group (http://pdg.lbl.gov). The printed PDG Book contains the Summary Tables and all review articles but no longer includes the detailed tables from the Particle Listings. A Booklet with the Summary Tables and abbreviated versions of some of the review articles is also available. Contents Abstract, Contributors, Highlights and Table of ContentsAcrobat PDF (150 KB) IntroductionAcrobat PDF (456 KB) Particle Physics Summary Tables Gauge and Higgs bosonsAcrobat PDF (155 KB) LeptonsAcrobat PDF (134 KB) QuarksAcrobat PDF (84 KB) MesonsAcrobat PDF (871 KB) BaryonsAcrobat PDF (300 KB) Searches (Supersymmetry, Compositeness, etc.)Acrobat PDF (91 KB) Tests of conservation lawsAcrobat PDF (330 KB) Reviews, Tables, and Plots Detailed contents for this sectionAcrobat PDF (37 KB) Constants, Units, Atomic and Nuclear PropertiesAcrobat PDF (278 KB) Standard Model and Related TopicsAcrobat PDF (7.3 MB) Astrophysics and CosmologyAcrobat PDF (2.7 MB) Experimental Methods and CollidersAcrobat PDF (3.8 MB) Mathematical Tools or Statistics, Monte Carlo, Group

  15. Review of Particle Physics

    NASA Astrophysics Data System (ADS)

    Patrignani, C.; Particle Data Group

    2016-10-01

    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,062 new measurements from 721 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 117 reviews are many that are new or heavily revised, including those on Pentaquarks and Inflation. The complete Review is published online in a journal and on the website of the Particle Data Group (http://pdg.lbl.gov). The printed PDG Book contains the Summary Tables and all review articles but no longer includes the detailed tables from the Particle Listings. A Booklet with the Summary Tables and abbreviated versions of some of the review articles is also available. Contents Abstract, Contributors, Highlights and Table of ContentsAcrobat PDF (150 KB) IntroductionAcrobat PDF (456 KB) Particle Physics Summary Tables Gauge and Higgs bosonsAcrobat PDF (155 KB) LeptonsAcrobat PDF (134 KB) QuarksAcrobat PDF (84 KB) MesonsAcrobat PDF (871 KB) BaryonsAcrobat PDF (300 KB) Searches (Supersymmetry, Compositeness, etc.)Acrobat PDF (91 KB) Tests of conservation lawsAcrobat PDF (330 KB) Reviews, Tables, and Plots Detailed contents for this sectionAcrobat PDF (37 KB) Constants, Units, Atomic and Nuclear PropertiesAcrobat PDF (278 KB) Standard Model and Related TopicsAcrobat PDF (7.3 MB) Astrophysics and CosmologyAcrobat PDF (2.7 MB) Experimental Methods and CollidersAcrobat PDF (3.8 MB) Mathematical Tools or Statistics, Monte Carlo, Group

  16. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, Daniel-Esteban; Ángel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  17. Model discrimination in pseudoscalar-meson photoproduction

    NASA Astrophysics Data System (ADS)

    Nys, J.; Ryckebusch, J.; Ireland, D. G.; Glazier, D. I.

    2016-08-01

    To learn about a physical system of interest, experimental results must be able to discriminate among models. We introduce a geometrical measure to quantify the distance between models for pseudoscalar-meson photoproduction in amplitude space. Experimental observables, with finite precision, map to probability distributions in amplitude space, and the characteristic width scale of such distributions needs to be smaller than the distance between models if the observable data are going to be useful. We therefore also introduce a method for evaluating probability distributions in amplitude space that arise as a result of one or more measurements, and show how one can use this to determine what further measurements are going to be necessary to be able to discriminate among models.

  18. Meson Spectroscopy At Jlab At 12 Gev

    SciTech Connect

    Fegan, Stuart

    2014-12-01

    The 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab will enable a new generation of experiments in hadronic nuclear physics, seeking to address fundamental questions in our understanding of QCD. The existence of exotic states, suggested by both quark models and lattice calculations, would allow gluonic degrees of freedom to be explored, and may help explain the role played by gluons in the QCD interaction. This article will review the meson spectroscopy program being planned at the lab following the 12 GeV upgrade, utilising real and quasi-real photon beams in two of the lab's four experimental halls, whose distinct capabilities will enable an extensive set of spectroscopy experiments to be performed at the same facility.

  19. Delta, iota and other meson spectroscopies

    SciTech Connect

    Lipkin, H.J.

    1986-05-01

    This talk is given from the point of view of an experimentalist. Meson spectroscopy in the 1 to 3 GeV region is interesting because experiments exploring this region, in particular radiative psi decay, have found a rich structure of resonances too complicated to unravel with any one experiment, and not easily interpreted with any one theoretical model. None of the theoretical calculations predicting all kinds of interesting and exotic objects in this region is very convincing or reliable. Additional input from anti pp annihilation can be very useful in helping to find the answers to the following open questions: what exactly is this spectrum, what are the masses and quantum numbers of the resonances, as determined from analysis of data without theoretical prejudices; how is this spectrum described by QCD, is there evidence for new kinds of states like glue-balls, hybrids, axions, Higgses or multiquark exotics, and is there any evidence for new physics beyond QCD. 20 refs.

  20. Light intensity exposure, sleep duration, physical activity, and biomarkers of melatonin among rotating shift nurses.

    PubMed

    Grundy, Anne; Sanchez, Maria; Richardson, Harriet; Tranmer, Joan; Borugian, Marilyn; Graham, Charles H; Aronson, Kristan J

    2009-10-01

    Long-term, night shiftwork has been identified as a potential carcinogenic risk factor. It is hypothesized that increased light at night exposure during shiftwork reduces melatonin production, which is associated with increased cancer risk. Sleep duration has been hypothesized to influence both melatonin levels and cancer risk, and it has been suggested that sleep duration could be used as a proxy for melatonin production. Finally, physical activity has been shown to reduce cancer risk, and laboratory studies indicate it may influence melatonin levels. A cross-sectional study of light exposure, sleep duration, physical activity, and melatonin levels was conducted among 61 female rotating shift nurses (work schedule: two 12 h days, two 12 h nights, five days off). Light intensity was measured using a light-intensity data logger, and sleep duration and physical activity were self-reported in a study diary and questionnaire. Melatonin concentrations were measured from urine and saliva samples. The characteristics of nurses working day and night shifts were similar. Light intensity was significantly higher during sleep for those working at night (p< 0.0001), while urinary melatonin levels following sleep were significantly higher among those working days (p = 0.0003). Mean sleep duration for nurses working during the day (8.27 h) was significantly longer than for those working at night (4.78 h, p< 0.0001). An inverse association (p = 0.002) between light exposure and urinary melatonin levels was observed; however, this was not significant when stratified by shift group. There was no significant correlation between sleep duration and melatonin, and no consistent relationship between physical activity and melatonin. Analysis of salivary melatonin levels indicated that the circadian rhythms of night workers were not altered, meaning peak melatonin production occurred at night. This study indicates that two nights of rotating shift work may not change the timing of

  1. An effective approach to VMD at one loop order and the departure from ideal mixing vector mesons

    SciTech Connect

    O'Connell, H.B.

    2000-03-28

    The authors examine the mechanisms producing departures from ideal mixing for vector mesons within the context of the Hidden Local Symmetry (HLS) model. The authors show that kaon loop transitions between the ideal combinations of the {omega} and {phi} mesons necessitate a field transformation in order to get the mass eigenstates. It is shown that this transformation is close to a rotation for processes involving, like meson decays, on-shell {omega} and {phi} mesons. The HLS model predicts a momentum dependent, slowly varying mixing angle between the ideal states. The authors examine numerically the consequences of this for radiative and leptonic decays of light mesons. The mean {omega}--{phi} mixing angle is found smaller than its ideal value; this is exhibited separately in radiative and in leptonic decays. Effects of nonet symmetry breaking in the vector sector are compared to those produced by the field rotation implied by the HLS model.

  2. Analysis of strong decays of the charmed mesons DJ(2580), DJ*(2650), DJ(2740), DJ*(2760), DJ(3000), DJ*(3000)

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang

    2013-12-01

    In this article, we tentatively identify the charmed mesons DJ(2580), DJ*(2650), DJ(2740), DJ*(2760), DJ(3000), and DJ*(3000) observed by the LHCb Collaboration according to their spin, parity, and masses. Then we study their strong decays to the ground state charmed mesons plus light pseudoscalar mesons with the heavy meson effective theory in the leading order approximation, and we obtain explicit expressions of the decay widths. The ratios among the decay widths can be used to confirm or reject the assignments of the newly observed charmed mesons. The strong coupling constants in the decay widths can be fitted to the experimental data in the future at the LHCb, BESIII, KEK-B, and P¯ANDA.

  3. CP Violation in B Meson Decays: Experimental Results

    SciTech Connect

    Lanceri, Livio; /Trieste U. /INFN, Trieste

    2005-08-30

    CP violation is intimately connected with the puzzle of matter-antimatter asymmetry and baryogenesis. In the Standard Model of particle physics, the observed CP violation phenomena are accounted for by the Cabibbo-Kobayashi-Maskawa mechanism involving a phase in the quark mixing matrix. This paper is devoted to a review of the experimental status of CP violation in the decays of B mesons.

  4. Association Between Light-Intensity Physical Activity and Adiposity in Childhood

    PubMed Central

    Kwon, Soyang; Janz, Kathleen F.; Burns, Trudy L.; Levy, Steven M.

    2011-01-01

    The purpose of this study was to examine whether the association between daily light-intensity physical activity (LPA) and total body fat mass changes during childhood. The study sample was 577 children participating in the longitudinal Iowa Bone Development Study. Body fat mass and physical activity (PA) were measured using dual energy X-ray absorptiometry (DXA) and accelerometers, respectively, at approximately 5, 8, and 11 years of age. Age- and gender-specific multivariable linear regression models were fit to predict fat mass by LPA, adjusted for actual age, birth weight, fat-free mass, height, moderate- to vigorous-intensity PA, and physical maturity (only for girls). Among boys, LPA was negatively associated with fat mass at age 11, but not age 5 or 8. Among girls, LPA was negatively associated with fat mass at ages 8 and 11, but not at age 5. LPA may have a beneficial effect against excess adiposity among older children. PMID:21633134

  5. Light-cone distribution amplitudes for heavy-quark hadrons

    NASA Astrophysics Data System (ADS)

    Bell, Guido; Feldmann, Thorsten; Wang, Yu-Ming; Yip, Matthew W. Y.

    2013-11-01

    We construct parametrizations of light-cone distribution amplitudes (LCDAs) for B-mesons and Λ b -baryons that obey various theoretical constraints, and which are simple to use in factorization theorems relevant for phenomenological applications in heavy-flavour physics. In particular, we find the eigenfunctions of the Lange-Neubert renormalization kernel, which allow for a systematic implementation of renormalization-group evolution effects for both B-meson and Λ b -baryon decays. We also present a new strategy to construct LCDA models from momentum-space projectors, which can be used to implement Wandzura-Wilczek-like relations, and which allow for a comparison with theoretical approaches that go beyond the collinear limit for the light-quark momenta in energetic heavy-hadron decays.

  6. A case-control study of lifetime light intensity physical activity and breast cancer risk.

    PubMed

    Kobayashi, Lindsay C; Janssen, Ian; Richardson, Harriet; Lai, Agnes S; Spinelli, John J; Aronson, Kristan J

    2014-01-01

    Physical activity reduces breast cancer risk, although most evidence is for activity in the moderate-to-vigorous intensity range. The effect of light intensity physical activity (LIPA) is unknown. We aimed to determine the association between self-reported lifetime LIPA and pre- and post-menopausal breast cancer risk. Our secondary objective was to analyze risk stratified by estrogen and progesterone tumor receptor status. Data were from a case-control study of 1,110 incident breast cancer cases (388 pre-menopausal; 722 post-menopausal) and 1,172 controls (442 pre-menopausal; 730 post-menopausal) recruited at two Canadian sites. Lifetime leisure-time, household, and occupational physical activity and covariates were assessed by questionnaire. Mean minutes per day of LIPA for each of the age periods 12-17, 18-34, 35-49, ≥50, and the total lifetime were calculated. Odds ratios were calculated using unconditional logistic regression for overall breast cancer risk and using polytomous logistic regression for estrogen receptor (ER)/progesterone receptor (PR)-defined tumor subtypes and were adjusted for moderate-to-vigorous physical activity and other confounders. LIPA was not associated with breast cancer risk at any age period across the life course: odds ratio (OR) = 0.81; 95 % CI 0.53-1.24 for pre-menopausal women and OR = 0.87; 95 % CI 0.64-1.19 for post-menopausal women in the highest vs. lowest categories of total lifetime LIPA. No heterogeneity in risk by ER/PR tumor status was observed. Our results suggest that light intensity physical activity is not associated with breast cancer risk reduction. This finding is important for physical activity recommendations for breast cancer prevention.

  7. Search for Popcorn Mesons in Events with Two Charmed Baryons

    SciTech Connect

    Hartfiel, Brandon; /SLAC

    2006-07-07

    The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -} in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.

  8. Search for popcorn mesons in events with two charmed baryons

    NASA Astrophysics Data System (ADS)

    Hartfiel, Brandon

    The physics of this dissertation is divided into two parts. The first part measures the Λc → pi kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c, which is just below the Υ(4s) resonance. The data sample consists of 15,400 Λc baryons from 9.46 fb-1 of integrated luminosity collected with the BaBar detector at the PEP-II asymmetric B factory at the Stanford Linear Accelerator Center. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the Λc → K0p mode, and look for events with a Λc+ and a Λ c- in order to look for "popcorn" mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb-1. We find 619 events after background subtraction. After a subtraction of 1.06+/-.09 charged pions coming from decays of known resonances to Λc + npi, we are left with 2.63+/-.21 additional charged pious in each of these events. This is significantly higher than the .5 popcorn mesons per bayon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.

  9. Φ -meson-nucleus bound states

    NASA Astrophysics Data System (ADS)

    Cobos-Martínez, J. J.; Tsushima, K.; Krein, G.; Thomas, A. W.

    2017-09-01

    ϕ -meson-nucleus bound state energies and absorption widths are calculated for seven selected nuclei by solving the Klein-Gordon equation with complex optical potentials. Essential input for the calculations, namely the medium-modified K and K ¯ meson masses, as well as the density distributions in nuclei, are obtained from the quark-meson coupling model. The attractive potential for the ϕ meson in the nuclear medium originates from the in-medium enhanced K K ¯ loop in the ϕ -meson self-energy. The results suggest that the ϕ meson should form bound states with all the nuclei considered. However, the identification of the signal for these predicted bound states will need careful investigation because of their sizable absorption widths.

  10. Pentaquarks and strange tetraquark mesons

    NASA Astrophysics Data System (ADS)

    Anisovich, V. V.; Matveev, M. A.; Sarantsev, A. V.; Semenova, A. N.

    2015-11-01

    We consider the interplay of the pentaquark states and strange tetraquark states in the decay Λb0 → K-J/ψp. Possible existence of (csc¯ū)-states is taken up and their manifestation in the K-J/ψ-channel is discussed. It is emphasized that these exotic mesons can imitate broad bumps in the pJ/ψ-channel.

  11. In-medium properties of mesons

    NASA Astrophysics Data System (ADS)

    Metag, Volker; Nanova, Mariana; Brinkmann, Kai-Thomas

    2017-01-01

    In the project B.4, the modification of meson properties (mass, width) in a nuclear medium has been studied in photoproduction of mesons off nuclear targets. This work has been motivated by theoretical expectations of in-medium modifications of hadrons based on the conjecture of a partial restoration of chiral symmetry in a strongly interacting medium. It has been shown that these in-medium changes can be discussed in a compact form in terms of an optical potential describing the meson-nucleus interaction. Experimental approaches to determine the real and imaginary part of the meson-nucleus potential have been developed. The experiments have been performed with the Crystal Barrel/TAPS detector at the electron accelerator ELSA (Bonn) and the Crystal Ball/TAPS detector at MAMI (Mainz). Measuring the excitation function and momentum distribution for photo production of ω and η' mesons, the real parts of the ω and η'-nucleus potential, given by the in-medium mass shift, have been determined. For the η' meson a lowering of the mass at normal nuclear matter density by -(39±7(stat)±15(syst)) MeV is observed, while for the ω meson a slightly smaller mass shift is found, however, with much larger uncertainties, not excluding a zero mass shift. The imaginary part of the potentials has been extracted from the measurement of the transparency ratio which compares the meson production cross section per nucleon within a nucleus to the production cross section off the free proton. For the η' meson the imaginary part of the potential is found to be smaller than the real part. In case of the ω meson the opposite is observed. This makes the η' meson a good candidate for the search for meson-nucleus bound states while no resolved ω mesic states can be expected. The results are compared with theoretical predictions. An outlook on future experiments is given.

  12. Meson Spectroscopy at CLAS and CLAS12

    SciTech Connect

    Carlos Salgado

    2011-10-01

    We report on meson spectroscopy using the CLAS at Jefferson Lab. We study photo-production of exotic mesons and strangeonia on the largest data sample ever to be produced at photon energies of about 5 GeV. We also describe an experiment to continue meson spectroscopy at CLAS12 (CLAS energy upgrade) using electroproduction at very low Q2 ('quasireal photons') up to photon energies of 10 GeV.

  13. Leading isospin-breaking corrections to pion, kaon, and charmed-meson masses with twisted-mass fermions

    NASA Astrophysics Data System (ADS)

    Giusti, D.; Lubicz, V.; Tarantino, C.; Martinelli, G.; Sanfilippo, F.; Simula, S.; Tantalo, N.; RM123 Collaboration

    2017-06-01

    We present a lattice computation of the isospin-breaking corrections to pseudoscalar meson masses using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical quarks at three values of the lattice spacing (a ≃0.062 , 0.082, and 0.089 fm) with pion masses in the range Mπ≃210 - 450 MeV . The strange and charm quark masses are tuned at their physical values. We adopt the RM123 method based on the combined expansion of the path integral in powers of the d - and u -quark mass difference (m^d-m^u) and of the electromagnetic coupling αe m. Within the quenched QED approximation, which neglects the effects of the sea-quark charges, and after the extrapolations to the physical pion mass and to the continuum and infinite volume limits, we provide results for the pion, kaon, and (for the first time) charmed-meson mass splittings, for the prescription-dependent parameters ɛπ0, ɛγ(M S ¯ ,2 GeV ) , ɛK0(M S ¯ ,2 GeV ) , related to the violations of the Dashen's theorem, and for the light quark mass difference (m^ d-m^ u)(M S ¯ ,2 GeV ) .

  14. Biological and physical dosimeters for monitoring solar UV-B light.

    PubMed

    Furusawa, Y; Suzuki, K; Sasaki, M

    1990-06-01

    A biological dosimetry system for measuring solar UV-B light was established using bacteriophage T1 with E. coli Bs-1 as the host cell. Also a new physical UV-B dosimeter was developed which can specifically detect the UV spectral region related to inactivation of phage T1. Phage T1 is very stable in liquid suspension and it has adequate sensitivity to measure the intensity of solar UV-B. In addition, the survival of phage T1 responded linearly to UV fluences when plotted semi-logarithmic ally. Thus T1 seemed to have characteristic features making it suitable material as a biological dosimeter for sunlight. Outdoor experiments throughout one year showed that the mean amount of solar UV light in summer was about 6 fold larger than that in winter at Isehara (139.5 degrees E, 35.5 degrees N), Japan. A novel physical dosimeter which responds faithfully to UV-B light under atmospheric conditions on the ground was developed as well. The spectral response was very close to that of biological materials. Readings of this UV-B dosimeter could be converted into the efficiency of sunlight upon biological materials. This instrument is compact; it can also be used as an erythemal dosimeter.

  15. Linear radial Regge trajectories for mesons with any quark flavor

    NASA Astrophysics Data System (ADS)

    Afonin, Sergey; Pusenkov, Ilya

    2016-10-01

    In the Regge phenomenology, the radial spectrum of light mesons is given by a linear relation M2n = a(n + b), where a is a universal slope, the dimensionless intercept b depends on quantum numbers, and n enumerates the excited states in radial recurrences. The usual extensions of this relation to heavy quarkonia in the framework of hadron string models typically lead to strong nonlinearities which seem to be at variance with the available experimental data. Introducing a radially static string picture of mesons, we put forward a linear generalization (Mn - m1 - m2)2 = a(n + b), where m1,2 are quark masses. The vector channel contains enough experimental states to check this new relation and a good agreement is observed. It is shown that this generalization leads to a simple estimate of current quark masses from the radial spectra.

  16. Total cross sections of beauty and charmed mesons on protons

    SciTech Connect

    Fridman, A.; Meshkov, S.

    1991-06-01

    Using a simple scaling law we predict the values of the total cross sections {sigma}(B{plus_minus}p), {sigma}B{sub d,s}{sup 0}, {sigma}({bar B}{sub d,s}{sup 0}P), {sigma}(D{sub d,s}{sup {plus_minus}}P), {sigma}(D{sup 0}p), {sigma}({bar D}{sup 0}p) from known total K{sub p} cross sections. We assume that mesons with the same light valence quark, q, and differing only by their heavy valence quark content, Q, have total cross sections on protons which scale as the inverse of the nth power of the reduced mass of the meson. We predict that {sigma}(Q{bar q})p > {sigma}({bar Q}q)p.

  17. Charmed mesons with a symmetry-preserving contact interaction

    NASA Astrophysics Data System (ADS)

    Serna, Fernando E.; El-Bennich, Bruno; Krein, Gastão

    2017-07-01

    A symmetry-preserving treatment of a vector-vector contact interaction is used to study charmed heavy-light mesons. The contact interaction is a representation of nonperturbative kernels used in Dyson-Schwinger and Bethe-Salpeter equations of QCD. The Dyson-Schwinger equation is solved for the u , d , s and c quark propagators and the bound-state Bethe-Salpeter amplitudes respecting spacetime-translation invariance and the Ward-Green-Takahashi identities associated with global symmetries of QCD are obtained to calculate masses and electroweak decay constants of the pseudoscalar π , K , D and Ds and vector ρ , K*, D*, and Ds* mesons. The predictions of the model are in good agreement with available experimental and lattice QCD data.

  18. Scalar meson f0(980) in heavy-meson decays

    NASA Astrophysics Data System (ADS)

    El-Bennich, B.; Leitner, O.; Dedonder, J.-P.; Loiseau, B.

    2009-04-01

    A phenomenological analysis of the scalar meson f0(980) is performed that relies on the quasi-two-body decays D and Ds→f0(980)P, with P=π, K. The two-body branching ratios are deduced from experimental data on D or Ds→πππ, Kmacr Kπ and from the f0(980)→π+π- and f0(980)→K+K- branching fractions. Within a covariant quark model, the scalar form factors for the transitions D and Ds→f0(980) are computed. The weak D decay amplitudes, in which these form factors enter, are obtained in the naive factorization approach assuming a q qmacr state for the scalar and pseudoscalar mesons. They allow to extract information on the f0(980) wave function in terms of u umacr , d dmacr , and s smacr pairs as well as on the mixing angle between the strange and nonstrange components. The weak transition form factors are modeled by the one-loop triangular diagram using two different relativistic approaches: covariant light-front dynamics and dispersion relations. We use the information found on the f0(980) structure to evaluate the scalar and vector form factors in the transitions D and Ds→f0(980), as well as to make predictions for B and Bs→f0(980), for the entire kinematically allowed momentum range of q2.

  19. Effects of exposure to physical factors on homeopathic preparations as determined by ultraviolet light spectroscopy.

    PubMed

    Marschollek, Barbara; Nelle, Mathias; Wolf, Martin; Baumgartner, Stephan; Heusser, Peter; Wolf, Ursula

    2010-01-08

    Clinical trials have reported statistically significant and clinically relevant effects of homeopathic preparations. We applied ultraviolet (UV) spectroscopy to investigate the physical properties of homeopathic preparations and to contribute to an understanding of the not-yet-identified mode of action. In previous investigations, homeopathic preparations had significantly lower UV light transmissions than controls. The aim of this study was to explore the possible effects of external factors (UV light and temperature) on the homeopathic preparations. Homeopathic centesimal (c) dilutions, 1c to 30c, of copper sulfate (CuSO(4)), decimal dilutions of sulfur (S(8)), 1x to 30x, and controls (succussed potentization medium) were prepared, randomized, and blinded. UV transmission was measured at six different time points after preparation (from 4 to 256 days). In addition, one series of samples was exposed to UV light of a sterilization lamp for 12 h, one was incubated at 37 degrees Celsius for 24 h, and one was heated to 90 degrees Celsius for 15 min. UV light transmission values from 190 or 220 nm to 340 nm were measured several times and averaged. After each exposure, UV transmission of the homeopathic preparations of CuSO(4) was significantly reduced compared to the controls, particularly after heating to 37 degrees Celsius. Overall, the nonexposed CuSO(4) preparations did not show significantly lower UV transmission compared to controls; however, the pooled subgroup of measurements at days 26, 33, and 110 yielded significant differences. UV light transmission for S(8) preparations did not show any differences compared to controls. Our conclusion is that exposure to external factors, incubation at 37 degrees Celsius in particular, increases the difference in light transmission of homeopathic CuSO(4) preparations compared to controls.

  20. Liquid crystal physical gel formed by cholesteryl stearate for light scattering display material.

    PubMed

    Leaw, W L; Mamat, C R; Triwahyono, S; Jalil, A A; Bidin, N

    2016-12-01

    A liquid crystal physical gel was prepared by the self-assembly of cholesteryl stearate in a nematic liquid crystal, 4-cyano-4'-pentylbiphenyl. The electro-optical properties were tuned by varying the gelator concentration and the gelation conditions. Polarized optical microscopy revealed that cholesteric cholesteryl stearate induced chiral nematic phase in 4-cyano-4'-pentylbiphenyl during the gelation process. As a result, a plate-like gel structure consisting of spherical micropores was formed, as observed by scanning electron microscopy. Electron spin resonance spectroscopy showed that the liquid crystal director orientations in these macrophase-separated structures were massively randomised. For these reasons, the liquid crystal physical gel generated a strong light scattering effect. For 48.0wt% cholesteryl stearate gelled 4-cyano-4'-pentylbiphenyl, the turbid appearance could be switched to a transparent state using a 5.0V alternating current. The response time was about 3.7μs. This liquid crystal physical gel has potential for use in light scattering electro-optical displays.

  1. Light-Front Holography and Non-Perturbative QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2009-12-09

    The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n + L + S = 2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.

  2. Physics of the Charm Quark

    SciTech Connect

    Carrillo Moreno, Salvador; Vazquez Valencia, Elsa Fabiola

    2006-09-25

    This is a brief summary about the development of the charm quark physics in the area of experimental physics. The summary is centered in what is done by mexican physicists, particularly in the E791 and the FOCUS Experiment at FERMILAB. FOCUS (or E831) was designed to detect states of matter combining one or more charm quarks with light quarks (strange, up, down). The experiment created 10 times as many such particles as in previous experiments and investigated several topics on charm physics including high precision studies of charm semileptonic decays, studies of hadronic charm decays (branching ratios and Daltiz analyses), lifetime measurements of all charm particles, searches for mixing, CP/CPT violation, rare and forbidden decays, spectroscopy of excited charm mesons and baryons, charm production asymmetry measurements, light quark diffractive studies, QCD studies using charm pair events and searches for and upper limits on: charm pentaquarks, double charm baryons, DSJ(2632)

  3. Physically Realizable Space for the Purity-Depolarization Plane for Polarized Light Scattering Media

    NASA Astrophysics Data System (ADS)

    Tariq, Aziz; Li, Pengcheng; Chen, Dongsheng; Lv, Donghong; Ma, Hui

    2017-07-01

    We propose a physically realizable space for the polarized light scattering measurement using the Stokes-Mueller formalism by a purity-index-depolarization-index (PI -PΔ ) plane. The parameter PI is defined from indices of polarimetric purity (IPP), which exhibits the overall magnitude of the polarimetric randomness of a medium, while the depolarization index (PΔ ) delineates a proper global degree of polarimetric purity and may also refer to the average measure of depolarization power of the scattering medium. Subregions and curves connecting the edge points in the plane are obtained by imposing certain constraints on the IPP; consequently any point on the subregion indicates the information related to a decomposition of the Mueller matrix into its components as a convex sum. From the same set of constraints, complete information about the depolarization index versus the entropy [S (M ) -PΔ ] diagram is recovered. This work provides a simple geometric representation and a deeper perceptivity of the light scattering media comprising depolarization.

  4. Physically-based in silico light sheet microscopy for visualizing fluorescent brain models

    PubMed Central

    2015-01-01

    Background We present a physically-based computational model of the light sheet fluorescence microscope (LSFM). Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image formation process of the LSFM. This simulated, in silico LSFM creates synthetic images of digital fluorescent specimens that can resemble those generated by a real LSFM, as opposed to established visualization methods producing visually-plausible images. We also propose an accurate fluorescence rendering model which takes into account the intrinsic characteristics of fluorescent dyes to simulate the light interaction with fluorescent biological specimen. Results We demonstrate first results of our visualization pipeline to a simplified brain tissue model reconstructed from the somatosensory cortex of a young rat. The modeling aspects of the LSFM units are qualitatively analysed, and the results of the fluorescence model were quantitatively validated against the fluorescence brightness equation and characteristic emission spectra of different fluorescent dyes. AMS subject classification Modelling and simulation PMID:26329404

  5. Physically-based in silico light sheet microscopy for visualizing fluorescent brain models.

    PubMed

    Abdellah, Marwan; Bilgili, Ahmet; Eilemann, Stefan; Markram, Henry; Schürmann, Felix

    2015-01-01

    We present a physically-based computational model of the light sheet fluorescence microscope (LSFM). Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image formation process of the LSFM. This simulated, in silico LSFM creates synthetic images of digital fluorescent specimens that can resemble those generated by a real LSFM, as opposed to established visualization methods producing visually-plausible images. We also propose an accurate fluorescence rendering model which takes into account the intrinsic characteristics of fluorescent dyes to simulate the light interaction with fluorescent biological specimen. We demonstrate first results of our visualization pipeline to a simplified brain tissue model reconstructed from the somatosensory cortex of a young rat. The modeling aspects of the LSFM units are qualitatively analysed, and the results of the fluorescence model were quantitatively validated against the fluorescence brightness equation and characteristic emission spectra of different fluorescent dyes. Modelling and simulation.

  6. The Effect of Light Rail Transit on Body Mass Index and Physical Activity

    PubMed Central

    MacDonald, John M.; Stokes, Robert J.; Cohen, Deborah A.; Kofner, Aaron; Ridgeway, Greg K.

    2010-01-01

    Background The built environment can constrain or facilitate physical activity. Most studies of the health consequences of the built environment suffer from problems of selection bias associated with confounding effects of residential choice and transportation decisions. Purpose To examine the cross-sectional associations between objective and perceived measures of the built environment, BMI, obesity (BMI>30 kg/m2), and meeting weekly recommended physical activity (RPA) levels through walking and vigorous exercise. To assess effect of using light rail transit system (LRT) on changes in BMI, obesity, and meeting weekly RPA levels. Methods Data were collected on individuals before (July 2006–February of 2007) and after (March 2008–July 2008) completion of a light rail system in Charlotte, NC. BMI, obesity, and physical activity levels were calculated for a comparison of these factors pre- and post-LRT construction. A propensity score weighting approach adjusted for differences in baseline characteristics among LRT and non-LRT users. Data were analyzed in 2009. Results More positive perceptions of one’s neighborhood at baseline were associated with a −0.36 (p<.05) lower BMI, 15% lower odds (95% CI=0.77, 0.94) of obesity, 9% higher odds (95% CI = 0.99, 1.20) of meeting weekly RPA through walking, and 11% higher odds (95% CI= 1.01, 1.22) of meeting RPA levels of vigorous exercise. The use of light rail transit to commute to work was associated with an average −1.18 reduction in BMI (p<0.05) and an 81% reduced odds (95% CI= 0.04, 0.92) of becoming obese over time. Conclusions The results of this study suggest that improving neighborhood environments and increasing the public’s use of LRT systems could provide improvements in health outcomes for millions of individuals. PMID:20621257

  7. Investigating surface and subsurface physical properties of small bodies from light scattering observations and simulations

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A. C.; Hadamcik, E.; Lasue, J.; Renard, J. B.

    Investigating surface and subsurface physical properties of small bodies from light scattering observations and simulations A.C. Levasseur-Regourd (1), E. Hadamcik (1), J. Lasue (1), J.B. Renard (2) (1) Université Pierre et Marie Curie-Paris6, UMR 7620, Aéronomie, BP-3, Verrières, 91371 France, (2) LPCE-CNRS, 3A av. Recherche Scientifique, Orléans, F-45071 France Investigating surface and subsurface physical properties of asteroids and comet nuclei is of major interest to i) assess future space missions and ii) constrain formation and evolution models. Our purpose is to infer such properties from the properties of solar light scattered by such media. We will first summarize recent remote polarimetric observations of small bodies, which confirm the main characteristics of the variation of the linear polarization of solar scattered light in the visible domain with the scattering geometry and the wavelength (1). To interpret such characteristics in terms of physical properties of the regoliths (e.g. albedo, size distribution, complex refractive index, porosity), experimental and numerical simulations on various types of particles and aggregates are mandatory, together with some comparisons between experimental and numerical simulations (2,3). We will thus present recent results of such simulations (for dust around bright comets, for core-mantle particles, for loose deposited transparent and dark materials), and point out the trends already suggested by this approach. Finally, we will mention future key observations and elaborate simulations, which could solve open questions about surface and subsurface properties of small bodies. References 1. Levasseur-Regourd et al., ASR 37, 161, 2006. 2. Hadamcik et al., JQSRT 100, 143, 2006. 3. Lasue et al., JQSRT 100, 220, 2006.

  8. Dusty tails of evaporating exoplanets. II. Physical modelling of the KIC 12557548b light curve

    NASA Astrophysics Data System (ADS)

    van Lieshout, R.; Min, M.; Dominik, C.; Brogi, M.; de Graaff, T.; Hekker, S.; Kama, M.; Keller, C. U.; Ridden-Harper, A.; van Werkhoven, T. I. M.

    2016-11-01

    Context. Evaporating rocky exoplanets, such as KIC 12557548b, eject large amounts of dust, which can trail the planet in a comet-like tail. When such objects occult their host star, the resulting transit signal contains information about the dust in the tail. Aims: We aim to use the detailed shape of the Kepler light curve of KIC 12557548b to constrain the size and composition of the dust grains that make up the tail, as well as the mass loss rate of the planet. Methods: Using a self-consistent numerical model of the dust dynamics and sublimation, we calculated the shape of the tail by following dust grains from their ejection from the planet to their destruction due to sublimation. From this dust cloud shape, we generated synthetic light curves (incorporating the effects of extinction and angle-dependent scattering), which were then compared with the phase-folded Kepler light curve. We explored the free-parameter space thoroughly using a Markov chain Monte Carlo method. Results: Our physics-based model is capable of reproducing the observed light curve in detail. Good fits are found for initial grain sizes between 0.2 and 5.6 μm and dust mass loss rates of 0.6 to 15.6 M⊕ Gyr-1 (2σ ranges). We find that only certain combinations of material parameters yield the correct tail length. These constraints are consistent with dust made of corundum (Al2O3), but do not agree with a range of carbonaceous, silicate, or iron compositions. Conclusions: Using a detailed, physically motivated model, it is possible to constrain the composition of the dust in the tails of evaporating rocky exoplanets. This provides a unique opportunity to probe to interior composition of the smallest known exoplanets.

  9. An effective theory of baryons and mesons

    NASA Astrophysics Data System (ADS)

    Jaczko, Gregory Bela

    I develop an effective theory to describe the low energy behavior of baryons. The theory is motivated by several issues facing nonperturbative quantum chromodynamic (QCD) calculations: the use of the quenched approximation for exact QCD calculations, the apparent success of nonrelativistic quark flavor models and the difficulties of standard, chiral perturbation theories. These problems are addressed by considering the baryon as a composite object, preserving the spin and flavor identity of the constituent quarks. This approach differs from standard chiral perturbation theory techniques that treat baryons as elementary particles. The method also allows us to construct effective quark-meson interactions that approximate the loop effects omitted in exact QCD calculations using the quenched approximation. These quark-meson interactions enable reparametrizations of the tree level interactions for many of the calculated loop results, reducing the size and improving the convergence of the loop diagrams. Furthermore, we relate tree-level couplings in the effective theory to equivalent matrix elements of nonrelativistic and semirelativistic quark models. This effective theory introduces several new elements. We construct a new octet baryon operator and octet baryon propagator. We also develop new effective mass and magnetic moment couplings that significantly reduce the number of free parameters in the theory, providing physical interpretation for the parameters appearing in standard chiral perturbation theory and improving its predictability. The theory is successfully used to determine baryon masses and magnetic moments using a small number of free parameters. We duplicate previous numerical results from chiral perturbation theory and provide improved results in many cases. In all cases, we determine excellent fits to the masses and moments using a small number of free parameters.

  10. The Advanced Light Source: A new tool for research in atomic and molecular physics

    NASA Astrophysics Data System (ADS)

    Schlachter, F.; Robinson, A.

    1991-04-01

    The Advanced Light Source at the Lawrence Berkeley Laboratory will be the world's brightest synchrotron radiation source in the extreme ultraviolet and soft x-ray regions of the spectrum when it begins operation in 1993. It will be available as a national user facility to researchers in a broad range of disciplines, including materials science, atomic and molecular physics, chemistry, biology, imaging, and technology. The high brightness of the ALS will be particularly well suited to high-resolution studies of tenuous targets, such as excited atoms, ions, and clusters.

  11. Scattering of light by large bubbles: Coupling of geometrical and physical optics approximations

    NASA Astrophysics Data System (ADS)

    Sentis, Matthias P. L.; Onofri, Fabrice R. A.; Méès, Loic; Radev, Stefan

    2016-02-01

    This paper analyzes various phenomena in modeling the light-scattering properties of large spherical bubbles in the context of geometrical and physical optics approximations. Among these phenomena are interference occurring between higher-order rays, the Goos-Hänchen shift, the tunneling phase and the weak caustic associated with the critical angle. When the phenomena are appropriately taken into account, they allow retrieval of most features of the scattering diagrams predicted by the Lorenz-Mie theory, offering new possibilities for the optical characterization of bubbly flows.

  12. Perspectives for photonuclear research at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility

    NASA Astrophysics Data System (ADS)

    Filipescu, D.; Anzalone, A.; Balabanski, D. L.; Belyshev, S. S.; Camera, F.; La Cognata, M.; Constantin, P.; Csige, L.; Cuong, P. V.; Cwiok, M.; Derya, V.; Dominik, W.; Gai, M.; Gales, S.; Gheorghe, I.; Ishkhanov, B. S.; Krasznahorkay, A.; Kuznetsov, A. A.; Mazzocchi, C.; Orlin, V. N.; Pietralla, N.; Sin, M.; Spitaleri, C.; Stopani, K. A.; Tesileanu, O.; Ur, C. A.; Ursu, I.; Utsunomiya, H.; Varlamov, V. V.; Weller, H. R.; Zamfir, N. V.; Zilges, A.

    2015-12-01

    The perspectives for photonuclear experiments at the new Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility are discussed in view of the need to accumulate novel and more precise nuclear data. The parameters of the ELI-NP gamma beam system are presented. The emerging experimental program, which will be realized at ELI-NP, is presented. Examples of day-one experiments with the nuclear resonance fluorescence technique, photonuclear reaction measurements, photofission experiments and studies of nuclear collective excitation modes and competition between various decay channels are discussed. The advantages which ELI-NP provides for all these experiments compared to the existing facilities are discussed.

  13. Dark sector and Light New Physics searches in BaBar

    NASA Astrophysics Data System (ADS)

    Lusiani, Alberto

    2017-06-01

    We use the sample of e+e- collisions recorded by the BaBar detector at PEP-II at the SLAC National Laboratory to search for a light Higgs boson decaying to charm, for a long-lived particle that decays into an oppositely charged fermion pair, and for a dark-sector vector boson coupling only to the second and third generations of leptons. We find no evidence for any of these signals, and we report appropriate upper limits to provide constraints for several New Physics models.

  14. Linear halogen bulb as a powerful light source for physics experiments

    NASA Astrophysics Data System (ADS)

    Bochníček, Zdeněk

    2015-11-01

    The paper describes the usage of a conventional lamp equipped with a linear halogen bulb for physics experiments. The irradiance gain and limitation of spectral resolution are treated in detail theoretically and verified experimentally. The analysis shows that, in comparison with a standard bulb and slit arrangement, the linear bulb can increase irradiance of the spectrum image by an order of magnitude without a significant loss of spectral resolution in comparable experimental arrangements. Some concrete examples of experiments with a white light spectrum and diffraction are presented.

  15. Physical nature of longevity of light actinides in dynamic failure phenomenon

    SciTech Connect

    Uchaev, A. Ya. Punin, V. T.; Selchenkova, N. I.; Kosheleva, E. V.; Kosachev, V. V.

    2015-12-15

    It is shown in this work that the physical nature of the longevity of light actinides under extreme conditions in a range of nonequilibrium states of t ∼ 10{sup –6}–10{sup –10} s is determined by the time needed for the formation of a critical concentration of a cascade of failure centers, which changes connectivity of the body. These centers form a percolation cluster. The longevity is composed of waiting time t{sub w} for the appearance of failure centers and clusterization time t{sub c} of cascade of failure centers, when connectivity in the system of failure centers and the percolation cluster arise. A unique mechanism of the dynamic failure process, a unique order parameter, and an equal dimensionality of the space in which the process occurs determine the physical nature of the longevity of metals, including fissionable materials.

  16. Chaotic behavior of light-assisted physical aging in arsenoselenide glasses

    SciTech Connect

    Shpotyuk, O.; Kozdras, A.; Hacinliyan, A. S.; Skarlatos, Y.; Kusbeyzi Aybar, I.; Aybar, O. O.

    2014-12-15

    The theory of strange attractors is shown to be adequately applicable for analyzing the kinetics of light-assisted physical aging revealed in structural relaxation of Se-rich As-Se glasses below glass transition. Kinetics of enthalpy losses is used to determine the phase space reconstruction parameters. Observed chaotic behaviour (involving chaos and fractal consideration such as detrended fluctuation analysis, attractor identification using phase space representation, delay coordinates, mutual information, false nearest neighbours, etc.) reconstructed via the TISEAN program package is treated within a microstructure model describing multistage aging behaviour in arsenoselenide glasses. This simulation testifies that photoexposure acts as an initiating factor only at the beginning stage of physical aging, thus facilitating further atomic shrinkage of a glassy backbone.

  17. D-meson observables in Pb-Pb and p-Pb collisions at LHC with EPOSHQ model

    NASA Astrophysics Data System (ADS)

    Ozvenchuk, V.; Aichelin, J.; Gossiaux, P. B.; Guiot, B.; Nahrgang, M.; Werner, K.

    2017-01-01

    We study the propagation of charm quarks in the quark-gluon plasma (QGP) created in ultrarelativistic heavy-ion and proton-nucleus collisions at LHC within EPOSHQ model. The interactions of heavy quarks with the light partons in ultrarelativistic heavy-ion collisions through the collisional and radiative processes lead to a large suppression of nal D-meson spectra at high transverse momentum and a nite D-meson elliptic ow, v 2, whereas in proton-nucleus collisions the D-meson nuclear modi cation factor, RpA , at high transverse momentum is compatible with unity. Our results are in good agreement with the available experimental data.

  18. Physical Characteristics of Faint Meteors by Light Curve and High-resolution Observations

    NASA Astrophysics Data System (ADS)

    Subasinghe, Dilini; Campbell-Brown, Margaret D.; Stokan, Edward

    2014-11-01

    The physical structure of a meteoroid may be inferred from optical observations, particularly the light curve, of a meteor. For example: a classically shaped (late peaked) light curve is seen as evidence of a solid single body, whereas a symmetric light curve may indicate a dustball structure. High-resolution optical observations show how the meteoroid fragments: continuously, leaving a long wake, or discretely, leaving several distinct pieces. Calculating the orbit of the meteoroid using two station data then allows the object to be associated with asteroidal or cometary parent bodies. Optical observations thus provide simultaneous information on meteoroid structure, fragmentation mode, and origin.CAMO (the Canadian Automated Meteor Observatory) has been continuously collecting faint (masses < 10-4 kg) two station optical meteors with image-intensified narrow field (with a resolution of up to 3 meters per pixel) and wide field (26 by 19 degrees) cameras since 2010. The narrow field, telescopic cameras allow the meteor fragmentation to be studied using a pair of mirrors to track the meteor. The wide-field cameras provide the light curve and trajectory solution.We present preliminary results from classifying light curves and high-resolution optical observations for 3000 faint meteors recorded since 2010. We find that most meteors (both asteroidal and cometary) show long trails, while meteors with short trails are the second most common morphology. It is expected that meteoroids that experience negligible fragmentation have the shortest trails, so our results imply that the majority of small meteoroids fragment during ablation. A surprising observation is that almost equal fractions of asteroidal and cometary meteors fragment (showing long trails), implying a similar structure for both types of meteoroids.

  19. Meson-photon transition form factors

    SciTech Connect

    Balakireva, Irina; Lucha, Wolfgang; Melikhov, Dmitri

    2012-10-23

    We present the results of our recent analysis of the meson-photon transition form factors F{sub P{gamma}}(Q{sup 2}) for the pseudoscalar mesons P {pi}{sup 0},{eta},{eta} Prime ,{eta}{sub c}, using the local-duality version of QCD sum rules.

  20. Non prompt D-meson measurements with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Mazzilli, Marianna

    2016-11-01

    The production of hadrons with open heavy flavour (charm and beauty) in high-energy nucleus-nucleus collisions is a powerful tool to study the properties of the deconfined phase of strongly interacting matter known as the Quark-Gluon Plasma (QGP). The production of charm and beauty quarks occurs in hard partonic scattering processes in the early stage of the collisions. ALICE is the LHC experiment devoted to the study of heavy-ion physics. It is able to reconstruct charmed mesons in exclusive decays (e.g. D0→K-π+) and beauty hadrons in semi-inclusive decays (e.g. B→eX, B→J/ψ X) . At LHC energies a significant component of the inclusive D-meson yield originates from the decay of beauty-flavoured hadrons, whose knowledge is essential to determine the production of prompt D mesons coming from charm quarks. A precise determination of the non-prompt fraction combined with the determination of the inclusive D-meson yield would allow a measurement of beauty production. A data-driven method that exploits the different shapes of the distributions of the transverse-plane impact parameter to the primary vertex of prompt and feed-down D mesons in p-Pb collisions is used in ALICE. An alternative approach based on the D-meson decay length for Pb-Pb collisions is under study.

  1. Light Weight UAVs for Unravelling the Nexus Between Chemistry, Physics and Dynamics

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.

    2015-12-01

    New discoveries in atmospheric sciences involve unravelling the interactions and feedback processes between chemitsry, physics and dynamics. One of the most complex of such problems is the role of aerosol-clouds-climate interactions in climate change. During the last 7 years we have designed field experiments with light weight UAVs that are flown in stacked as well as formation flying patterns to map out the three dimensional structure of the atmosphere. Such formation and stacked formation flights have enabled us to measure simulatneously aerosol chemistry, cloud micro physics, cloud albedo, divergence of radiative heating of the atmosphere and more recently the vertical structure of turbulent fluxes of water avpor and momentum. These first-such measurments have provided new insights into the role of aerosols in cloud albedo; vertical distribution of black and brown carbon heating; role of absorbing aerosols in the melting of Himalayan glaciers; role of mixing state of aerosols in aerosol forcing and recently the link between absorbing aerosols and turbulent fluxes. All of the instruments had to be miniaturized to fit into the UAVs with maximum of 6 kg of payload. The most impprtant aspects of our studies are that the instruments and their intergration with the UAvs were all developed by post doctoral candidates and students. Thus the light weight UAVs are ideal platforms for making pioneerign studies by students and young scientists.

  2. A challenge to lepton universality in B-meson decays

    DOE PAGES

    Ciezarek, Gregory; Franco Sevilla, Manuel; Hamilton, Brian; ...

    2017-06-07

    One of the key assumptions of the standard model of particle physics is that the interactions of the charged leptons, namely electrons, muons and taus, differ only because of their different masses. Whereas precision tests comparing processes involving electrons and muons have not revealed any definite violation of this assumption, recent studies of B-meson decays involving the higher-mass tau lepton have resulted in observations that challenge lepton universality at the level of four standard deviations. Here, a confirmation of these results would point to new particles or interactions, and could have profound implications for our understanding of particle physics.

  3. Vector meson condensation in a pion superfluid

    NASA Astrophysics Data System (ADS)

    Brauner, Tomáš; Huang, Xu-Guang

    2016-11-01

    We revisit the suggestion that charged ρ -mesons undergo Bose-Einstein condensation in isospin-rich nuclear matter. Using a simple version of the Nambu-Jona-Lasinio (NJL) model, we conclude that ρ -meson condensation is either avoided or postponed to isospin chemical potentials much higher than the ρ -meson mass as a consequence of the repulsive interaction with the preformed pion condensate. In order to support our numerical results, we work out a linear sigma model for pions and ρ -mesons, showing that the two models lead to similar patterns of medium dependence of meson masses. As a byproduct, we analyze in detail the mapping between the NJL model and the linear sigma model, focusing on conditions that must be satisfied for a quantitative agreement between the models.

  4. Method and apparatus for determining the physical properties of materials using dynamic light scattering techniques

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S. (Inventor)

    1992-01-01

    A system for determining the physical properties of materials through the use of dynamic light scattering is disclosed. The system includes a probe, a laser source for directing a laser beam into the probe, and a photodetector for converting scattered light detected by the probe into electrical signals. The probe includes at least one optical fiber connected to the laser source and a second optical fiber connected to the photodetector. Each of the fibers may adjoin a gradient index microlens which is capable of providing a collimated laser beam into a scattering medium. The position of the second optical fiber with respect to the optical axis of the probe determines whether homodyne or self-beating detection is provided. Self-beating detection may be provided without a gradient index microlens. This allows a very small probe to be constructed which is insertable through a hypodermic needle or the like into a droplet extending from such a needle. A method of detecting scattered light through the use of a collimated, Gaussian laser beam is also provided. A method for controlling the waist and divergence of the optical field emanating from the free end of an optical fiber is also provided.

  5. Light-Curve Study and Physical Properties of the Contact Binary EQ Tauri

    NASA Astrophysics Data System (ADS)

    Hrivnak, Bruce J.; Lu, Wenxian; Eaton, Jeffery; Kenning, Daniel

    2006-08-01

    New V, RC, and IC light curves of EQ Tau have been obtained in 2002 and 2003. These show the secondary minimum to be a total eclipse. These new light curves have been analyzed, together with the published radial velocity observations, using the Wilson-Devinney code. The binary has an overcontact configuration, with an orbital inclination of 85°, a difference in component temperature of 80 K, and an overcontact fill-out factor of 16%. Absolute parameters of the component stars have been determined: M1=1.28 Msolar, R1=1.17 Rsolar, L1=1.39 Lsolar, and M2=0.47 Msolar, R2=0.81 Rsolar, L2=0.63 Lsolar. The calculated distance is 180+/-20 pc. A critical review of our new timings of minimum light together with previously published ones suggests a change from one constant period to another one around 1974 rather than a cyclical variation. When corrected for energy transfer in the common envelope, the physical parameters of the two components are in good agreement with those of unevolved single stars of similar masses.

  6. Scattered and Reflected Light Polarimetry as a Diagnostic of Multibeam Hohlraum Physics

    NASA Astrophysics Data System (ADS)

    Turnbull, David

    2015-11-01

    Scattered light provides a window into the complex laser-plasma interactions and hydrodynamics occurring within indirect-drive inertial confinement fusion (ICF) hohlraums. Understanding hohlraum physics is an important part of developing improved targets and increasing the likelihood of ignition. Measurements of the scattered light power and spectrum are routinely made on each cone of beams at the National Ignition Facility (NIF) in order to correct for coupling losses due to laser-plasma instabilities. The additional ability to probe scattered light polarization on a 30° incidence beam was recently added, which has produced a number of discoveries regarding multibeam hohlraum physics. One particularly important insight is that the polarizations of an incident beam and its backscatter are affected by amplitude and phase modulations induced by crossing laser beams. The revised theory describing this optical wave mixing has recently been validated by conducting a two beam pump-probe experiment under carefully controlled conditions. This effect could be utilized more generally to produce ultrafast, damage-resistant, and tunable laser-plasma wave plates, polarizers, or other photonic devices. It also enables remote polarimetry-based probing of plasma conditions such as electron temperature. To extract more quantitative feedback about crossed-beam energy transfer (CBET) from the polarimetry data in ICF experiments at the NIF, the diagnostic has been upgraded to measure the complete Stokes vector with temporal resolution. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. The Stimulating Effect of Bright Light on Physical Performance Depends on Internal Time

    PubMed Central

    Halle, Martin; Schlangen, Luc; Roenneberg, Till; Schmidt-Trucksäss, Arno

    2012-01-01

    The human circadian clock regulates the daily timing of sleep, alertness and performance and is synchronized to the 24-h day by the environmental light-dark cycle. Bright light exposure has been shown to positively affect sleepiness and alertness, yet little is known about its effects on physical performance, especially in relation to chronotype. We, therefore, exposed 43 male participants (mean age 24.5 yrs ± SD 2.3 yrs) in a randomized crossover study to 160 minutes of bright (BL: ≈ 4.420 lx) and dim light (DL: ≈ 230 lx). During the last 40 minutes of these exposures, participants performed a bicycle ergometer test. Time-of-day of the exercise sessions did not differ between the BL and DL condition. Chronotype (MSFsc, mid-sleep time on free days corrected for oversleep due to sleep debt on workdays) was assessed by the Munich ChronoType Questionnaire (MCTQ). Total work was significantly higher in BL (median 548.4 kJ, min 411.82 kJ, max 875.20 kJ) than in DL (median 521.5 kJ, min 384.33 kJ, max 861.23 kJ) (p = 0.004) going along with increased exhaustion levels in BL (blood lactate (+12.7%, p = 0.009), heart rate (+1.8%, p = 0.031), and Borg scale ratings (+2.6%, p = 0.005)) in all participants. The differences between total work levels in BL and DL were significantly higher (p = 0.004) if participants were tested at a respectively later time point after their individual mid-sleep (chronotype). These novel results demonstrate, that timed BL exposure enhances physical performance with concomitant increase in individual strain, and is related not only to local (external) time, but also to an individual’s internal time. PMID:22808224

  8. In Light of the 2012 NASPE Symposium, to What Extent Should Physical Educators Incorporate Pop Culture in Their Classes?

    ERIC Educational Resources Information Center

    Journal of Physical Education, Recreation & Dance, 2013

    2013-01-01

    In this "Issues" column, "The Journal of Physical Education, Recreation & Dance" provides responses to the question: "In Light of the 2012 NASPE Symposium, to What Extent Should Physical Educators Incorporate Pop Culture in Their Classes?" Responses this month come from an assistant professor who says that:…

  9. In Light of the 2012 NASPE Symposium, to What Extent Should Physical Educators Incorporate Pop Culture in Their Classes?

    ERIC Educational Resources Information Center

    Journal of Physical Education, Recreation & Dance, 2013

    2013-01-01

    In this "Issues" column, "The Journal of Physical Education, Recreation & Dance" provides responses to the question: "In Light of the 2012 NASPE Symposium, to What Extent Should Physical Educators Incorporate Pop Culture in Their Classes?" Responses this month come from an assistant professor who says that:…

  10. Light-by-light scattering sum rules in light of new data

    NASA Astrophysics Data System (ADS)

    Danilkin, Igor; Vanderhaeghen, Marc

    2017-01-01

    We evaluate the light-quark meson contributions to three exact light-by-light scattering sum rules in light of new data by the Belle Collaboration, which recently has extracted the transition form factors of the tensor meson f2(1270 ) as well as of the scalar meson f0(980 ). We confirm a previous finding that the η ,η' and helicity-2 f2(1270 ) contributions saturate one of these sum rules up to photon virtualities around 1 Ge V2 . At larger virtualities, our sum rule analysis shows an important contribution of the f2(1565 ) meson and provides a first empirical extraction of its helicity-2 transition form factor. Two further sum rules allow us to predict the helicity-0 and helicity-1 transition form factors of the f2(1270 ) meson. Furthermore, our analysis also provides an update for the scalar and tensor meson hadronic light-by-light contributions to the muon's anomalous magnetic moment.

  11. Heavy-meson decay constants from QCD sum rules

    SciTech Connect

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2010-12-22

    We sketch a recent sum-rule extraction of the decay constants of the heavy pseudoscalar mesons D, D{sub s}, B, and B{sub s} from the two-point correlator of heavy-light pseudoscalar currents. Our main emphasis lies on the control over all the uncertainties in the decay constants, related both to the input QCD parameters and to the limited accuracy of the method of sum rules. Gaining this control has become possible by application of our new procedure of extracting hadron observables based on a dual threshold depending on the Borel parameter. For the charmed-meson decay constants, we find fD = (206.2{+-}7.3{sub (OPE)}{+-}5.1{sub (syst)}) MeV, fD{sub s} = (245.3{+-}15.7{sub (OPE)}{+-}4.5{sub (syst)}) MeV. For the beauty mesons, the decay constants turn out to be extremely sensitive to the precise value of the {ovr MS} mass of the b-quark, {bar m}{sub b}({bar m}{sub b}). By requiring our sum-rule estimate to match the average of the lattice determinations of f{sub B}, we extract the rather accurate value {bar m}{sub b}({bar m}{sub b}) = (4.245{+-}0.025) GeV. Feeding this parameter value into our sum-rule formalism leads to the beauty-meson decay constants fB = (193.4{+-}12.3{sub (OPE)}{+-}4.3{sub (syst)}) MeV, fB{sub s} = (232.5{+-}18.6{sub (OPE)}{+-}2.4{sub (syst)}) MeV.

  12. PREFACE: The Physics at Electron Beam Ion Traps and Advanced Research Light Sources 2005 (PEARL2005)

    NASA Astrophysics Data System (ADS)

    Hutton, Roger; Zou, Yaming

    2007-06-01

    During the period 10-12 March 2005 an international workshop with the title `Physics at EBIT and Advanced Research Light Sources, PEARL2005', was held in the city of Sanya, Hainan Island, People's Republic of China. The workshop was attended by around 70 scientists of whom about 50 percent were from China and the rest from Europe, Japan, Russia and USA. The scientific sessions covered EBIT related physics, highly charged ion physics using lasers and storage rings and theoretical methods applied to the study of highly charged ions. There were 27 invited and contributed talks and most of these are presented as papers in these proceedings. The organizers would like to take this opportunity to thank all the participants for making this such a memorable event and hope to see you all again for PEARL2007 in Shanghai. We would also like to express our thanks to all the Fudan staff and students who were involved in the organization of this workshop. Roger Hutton Yaming Zou Proceeding Editors Conference photograph

  13. Light

    NASA Astrophysics Data System (ADS)

    Vernon, C. G.

    2016-09-01

    Preface; 1. Historical; 2. Waves and wave-motion; 3. The behaviour of ripples; 4. The behaviour of light; 5. Refraction through glass blocks and prisms; 6. The imprinting of curvatures; 7. Simple mathematical treatment; 8. More advanced mathematical treatment; 9. The velocity of light; 10. The spectrum and colour; 11. Geometrical optics; 12. The eye and optical instruments; 13. Sources of light; 14. Interference, diffraction and polarisation; 15. Suggestions for class experiments; Index.

  14. Strong Couplings of Three Mesons with Charm(ing) Involvement

    NASA Astrophysics Data System (ADS)

    Lucha, Wolfgang; Melikhov, Dmitri; Sazdjian, Hagop; Simula, Silvano

    2017-03-01

    We determine the strong couplings of three mesons that involve, at least, one ηc or J/ψ meson, within the framework of a constituent-quark model by means of relativistic dispersion formulations. For strong couplings of J/ψ mesons to two charmed mesons, our approach leads to predictions roughly twice as large as those arising from QCD sum rules.

  15. Short-distance matrix elements for D-meson mixing for 2+1 flavor lattice QCD

    NASA Astrophysics Data System (ADS)

    Chang, Chia Cheng

    We study the short-distance hadronic matrix elements for D-meson mixing with partially quenched Nf = 2+1 lattice QCD. We use a large set of the MIMD Lattice Computation Collaboration's gauge configurations with a2 tadpole-improved staggered sea quarks and tadpole-improved Luscher-Weisz gluons. We use the a2 tadpole-improved action for valence light quarks and the Sheikoleslami-Wohlert action with the Fermilab interpretation for the valence charm quark. Our calculation covers the complete set of five operators needed to constrain new physics models for D-meson mixing. We match our matrix elements to the MS-NDR scheme evaluated at 3GeV. We report values for the Beneke-Buchalla-Greub-Lenz-Nierste choice of evanescent operators and obtain / mD = 0.042(4)GeV3, /mD = -0.078(4)GeV3, < O3>/mD = 0.033(2)GeV 3, /mD = 0.155(10)GeV3, /mD = 0.058(6)GeV3.

  16. Photoproduction of the rho meson and its magnetic moments

    SciTech Connect

    Kaneko, Hiromi; Hosaka, Atsushi; Scholten, Olaf

    2011-10-21

    We study photoproduction of {rho} meson in a model of hidden local symmetry. We introduce the {rho} meson on a hidden gauge boson and phenomenological {rho} meson-nucleon Lagrangian is constructed respecting chiral symmetry. It turns out that the {sigma}-exchange interaction plays an important role in neutral {rho} meson photoproduction to reproduce the experimental cross sections. In charged {rho} meson photoproduction, the model takes into account the {rho} meson magnetic moments from the three-point vertex in the kinetic terms. We show that the magnetic moment of the charged {rho} meson has a significant effect on the total cross sections in proportion to the photon energies.

  17. $B_s$ Physics

    SciTech Connect

    Kuhr, Thomas; /Karlsruhe U., EKP

    2011-03-01

    While B{sup 0} and B{sup +} mesons are well studied, mainly by the B factories, less is known about B{sub s} mesons. Specifically large new physics effects may still be present in the B{sub s} system. This unexplored region is studied by the CDF, D0, and Belle experiments. In this article their recent measurements on the B{sub s} physics sector are presented.

  18. Hadron physics at the COMPASS experiment

    NASA Astrophysics Data System (ADS)

    Krinner, Fabian

    2015-05-01

    Quantum Chromodynamics (QCD), the theory of strong interactions, in principle describes the interaction of quark and gluon fields. However, due to the self-coupling of the gluons, quarks and gluons are confined into hadrons and cannot exist as free particles. The quantitative understanding of this confinement phenomenon, which is responsible for about 98% of the mass of the visible universe, is one of the major open questions in particle physics. The measurement of the excitation spectrum of hadrons and of their properties gives valuable input to theory and phenomenology. In the Constituent Quark Model (CQM) two types of hadrons exist: mesons, made out of a quark and an antiquark, and baryons, which consist of three quarks. But more advanced QCD-inspired models and Lattice QCD calculations predict the existence of hadrons with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). The Compass experiment at the CERN Super Proton Synchrotron has acquired large data sets, which allow to study light-quark meson and baryon spectra in unprecedented detail. The presented overview of the first results from this data set focuses in particular on the light meson sector and presents a detailed analysis of three-pion final states. A new JPC = 1++ state, the a1(1420), is observed with a mass and width in the ranges m = 1412 - 1422MeV/c2 and Γ = 130 - 150MeV/c2.

  19. Bottom-strange mesons in hyperonic matter

    NASA Astrophysics Data System (ADS)

    Pathak, Divakar; Mishra, Amruta

    2014-11-01

    The in-medium behavior of bottom-strange pseudoscalar mesons in hot, isospin asymmetric and dense hadronic environment is studied using a chiral effective model. The same was recently generalized to the heavy quark sector and employed to study the behavior of open-charm and open-bottom mesons. The heavy quark (anti-quark) is treated as frozen and all medium modifications of these bottom-strange mesons are due to their strange anti-quark (quark) content. We observe a pronounced dependence of their medium mass on baryonic density and strangeness content of the medium. Certain aspects of these in-medium interactions are similar to those observed for the strange-charmed mesons in a preceding investigation, such as the lifting of mass-degeneracy of BS0 and {\\bar B}S0 mesons in hyperonic matter, while the same is respected in vacuum as well as in nuclear matter. In general, however, there is a remarkable distinction between the two species, even though the formalism predicts a completely analogous in-medium interaction Lagrangian density. We discuss in detail the reason for different in-medium behavior of these bottom-strange mesons as compared to charmed-strange mesons, despite the dynamics of the heavy quark being treated as frozen in both cases.

  20. Meson Form Factors and Deep Exclusive Meson Production Experiments

    NASA Astrophysics Data System (ADS)

    Horn, Tanja

    2017-03-01

    Pion and kaon electroproduction data play a unique role in Nature and our understanding of them is essential for explaining hadron structure. Precision longitudinaltransverse separated pion and kaon cross sections are of particular interest. They allow for the extraction of meson form factors and validation of understanding of hard exclusive and semi-inclusive reactions (π+, K+, π0, γ) towards 3D hadron imaging and potential future flavor decomposition. We review recent data and present prospects for deep exclusive pion and kaon electroproduction at the 12 GeV Jefferson Lab including the prospects to use projected charged- and neutral pion data to further determine the spin, charge-parity and flavor of GPDs, including the helicity-flip GPDs.

  1. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    NASA Astrophysics Data System (ADS)

    Gales, S.; Zamfir, N. V.

    2015-02-01

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  2. Estimates for production of radioisotopes of medical interest at Extreme Light Infrastructure - Nuclear Physics facility

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Bobeica, Mariana; Gheorghe, Ioana; Filipescu, Dan M.; Niculae, Dana; Balabanski, Dimiter L.

    2016-01-01

    We report Monte Carlo simulations of the production of radioisotopes of medical interest through photoneutron reactions using the high-brilliance γ-beam of the Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility. The specific activity for three benchmark radioisotopes, 99Mo/99Tc, 225Ra/225Ac and 186Re, was obtained as a function of target geometry, irradiation time and γ-beam energy. Optimized conditions for the generation of these radioisotopes of medical interest with the ELI-NP γ-beams were discussed. We estimated that a saturation specific activity of the order of 1-2 mCi/g can be achieved for thin targets with about one gram of mass considering a γ-beam flux of 10^{11} photons/s. Based on these results, we suggest that the ELI-NP facility can provide a unique possibility for the production of radioisotopes in sufficient quantities for nuclear medicine research.

  3. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    SciTech Connect

    Gales, S. Zamfir, N. V.

    2015-02-24

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  4. A high-speed, eight-wavelength visible light-infrared pyrometer for shock physics experiments

    NASA Astrophysics Data System (ADS)

    Wang, Rongbo; Li, Shengfu; Zhou, Weijun; Luo, Zhen-Xiong; Meng, Jianhua; Tian, Jianhua; He, Lihua; Cheng, Xianchao

    2017-09-01

    An eight-channel, high speed pyrometer for precise temperature measurement is designed and realized in this work. The addition of longer-wavelength channels sensitive at lower temperatures highly expands the measured temperature range, which covers the temperature of interest in shock physics from 1500K-10000K. The working wavelength range is 400-1700nm from visible light to near-infrared (NIR). Semiconductor detectors of Si and InGaAs are used as photoelectric devices, whose bandwidths are 50MHz and 150MHz respectively. Benefitting from the high responsivity and high speed of detectors, the time resolution of the pyrometer can be smaller than 10ns. By combining the high-transmittance beam-splitters and narrow-bandwidth filters, the peak spectrum transmissivity of each channel can be higher than 60%. The gray-body temperatures of NaI crystal under shock-loading are successfully measured by this pyrometer.

  5. Evaporated particles in the annihilation of K{sup −} mesons in a nuclear photoemulsion

    SciTech Connect

    Dubinina, V. V.; Egorenkova, N. P.; Pozharova, E. A.; Smirnitsky, V. A.

    2015-01-15

    The emission of light nuclei (p, d, t) in the annihilation of K{sup −} mesons stopped in a nuclear photoemulsion is measured. The deuteron-to-proton yield ratio is found to be d/p = 0.32 ± 0.05. The observed excess of evaporated protons is due to intranuclear-nucleon correlations.

  6. Photoproduction of ω mesons off nuclei and impact of polarization on the meson-nucleon interaction

    DOE PAGES

    Chudakov, Eugene A.; Gevorkyan, Sergey; Somov, Alexander

    2016-01-25

    We consider photoproduction of ω mesons off complex nuclei to study interactions of transversely and longitudinally polarized vector mesons with nucleons. Whereas the total cross section for interactions of the transversely polarized vector mesons with nucleons σT = σ(VTN) can be obtained from coherent photoproduction, measurements of vector meson photoproduction in the incoherent region provide a unique opportunity to extract the not-yet-measured total cross section for longitudinally polarized mesons σL = σ(VLN). The predictions for the latter strongly depend on the theoretical approaches. Furthermore, this work is stimulated by the construction of the new experiment GlueX at Jefferson Lab, designedmore » to study the photoproduction of mesons in a large beam energy range up to 12 GeV.« less

  7. The Scalar Meson Sector and the σ, κ Problem

    NASA Astrophysics Data System (ADS)

    Ochs, Wolfgang

    2004-08-01

    In the light scalar meson sector (M ≲ 1.8 GeV) one expects at least one qq¯ nonet and a glueball, possibly also multi-quark states. We discuss the present phenomenological evidence for σ and κ particles; if real, they could be members of the lightest (quark or multi-quark) nonet together possibly with a0(980) and f0(980). Alternatively, the lightest nonet could include f0(980) but not σ and κ. Future decisive experimental studies, concerning tests of symmetry relations, especially in B-decays, are outlined.

  8. B physics at the Tevatron

    NASA Astrophysics Data System (ADS)

    de Troconiz, Jorge F.

    1998-10-01

    Precision B-physics results from the CDF and D0 Collaborations based on data collected during the Tevatron 1992-96 run are presented. In particular we discuss the measurement of the Bs meson lifetime, Bc meson observation, and B0-B0 mixing results obtained using time-evolution analyses. Prospects for the next Tevatron run, starting in 1999, are also reported.

  9. Differences between heavy and light quarks.

    SciTech Connect

    Maris, P.; Roberts, C. D.

    1997-11-10

    The quark Dyson-Schwinger equation shows that there are distinct differences between light and heavy quarks. The dynamical mass function of the light quarks is characterized by a sharp increase below 1 GeV, whereas the mass function of the heavy quarks is approximately constant in this infrared region. As a consequence, the heavy meson masses increase linearly with the current quark masses, whereas the light pseudoscalar meson masses are proportional to the square root of the current quark masses.

  10. Determination and prediction of physical properties of cellulose nanocrystals from dynamic light scattering measurements

    NASA Astrophysics Data System (ADS)

    Khouri, Salim; Shams, Mouhamed; Tam, Kam C.

    2014-07-01

    Cellulose nanocrystal (CNC) has attracted increasing interest due to their biocompatibility, rigidity, and potential applications in biomedicine and cosmetics. A parameter estimation technique was used to calculate the average dimension of CNC with different aspect ratios, and their dynamic physical parameters denoted by the translational ( D t) and rotational diffusion (Θ) coefficients. For CNC with L/ d ratio of 17, the experimental D t and Θ values produced calculated length ( L) and diameter ( d) values that deviated from the experimental results by 0.22 and 0.27 % after 1,000 iterations, respectively. The calculated translational and rotational coefficients converged to an asymptotic value of 5.048 × 10-12 m2 s-1 and 551.9 s-1, with the latter requiring a larger number of iterations to achieve convergence. Close agreement between experimentally obtained and calculated dimensions and dynamics ( L, d, D t, and Θ) for various types of CNCs was observed using this technique. By combining the theoretical model formulated by Broersma and the computational method utilizing a Nelder-Mead simplex direct search algorithm, reliable predictions of the average sizes determined from dynamic light scattering of a CNC sample was achieved; yielding an average L = 253.5 nm and d = 15.7 nm. The proposed approach provides a convenient, simple, and robust technique to determine the length and diameter of rod-like nanoparticles, such as CNC from light scattering measurements.

  11. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation.

    PubMed

    Berglund, Ken; Clissold, Kara; Li, Haofang E; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E; Lu, Dongye; Barter, Joseph W; Rossi, Mark A; Augustine, George J; Yin, Henry H; Hochgeschwender, Ute

    2016-01-19

    Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales.

  12. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation

    PubMed Central

    Berglund, Ken; Clissold, Kara; Li, Haofang E.; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E.; Lu, Dongye; Barter, Joseph W.; Rossi, Mark A.; Augustine, George J.; Yin, Henry H.; Hochgeschwender, Ute

    2016-01-01

    Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales. PMID:26733686

  13. String splitting and strong coupling meson decay.

    PubMed

    Cotrone, A L; Martucci, L; Troost, W

    2006-04-14

    We study the decay of high spin mesons using the gauge-string theory correspondence. The rate of the process is calculated by studying the splitting of a macroscopic string intersecting a D-brane. The result is applied to the decay of mesons in N=4 super Yang-Mills theory with a small number of flavors and in a gravity dual of large N QCD. In QCD the decay of high spin mesons is found to be heavily suppressed in the regime of validity of the supergravity description.

  14. From the {psi} to charmed mesons

    SciTech Connect

    Goldhaber, G. |

    1994-11-01

    This talk deals with the author`s recollections about the discoveries of the J/{psi} the {psi}{prime} as well as psion spectroscopy and charmed mesons. He gives a chronology for the {psi} and {psi}{prime} discoveries. He also discusses the events which led to the charmed meson discovery as well as detailed discussions on the proof that the resonance observed in the K{sup {minus}} {pi}{sup +} system, at 1,865 MeV, was indeed the predicted charmed meson.

  15. A mesonic analog of the deuteron

    NASA Astrophysics Data System (ADS)

    Silbar, Richard R.; Goldman, T.

    2014-12-01

    Using the LAMP model for nuclear quark structure, we calculate the binding energy and quark structure of a B meson merging with a D meson. Our variational calculation shows that a molecular, deuteron-like state structure changes rather abruptly, as the separation between the two mesons decreases, and at a separation of about 0.14 fm, the hadronic system transforms into a four-quark bound state, although one maintaining an internal structure rather than that of a four-quark "bag." Unlike the deuteron, pion exchange does not provide any contribution to the ≈ 150 MeV binding.

  16. Hard Exclusive Vector Meson Leptoproduction At HERMES

    SciTech Connect

    Golembiovskaya, M.

    2011-07-15

    The HERMES experiment at DESY, Hamburg collected a set of data on hard exclusive vector meson ({rho}{sup 0}{phi},{omega}) leptoproduction using the 27.6 GeV longitudinally polarized lepton beam of HERA accelerator and longitudinally or transversely polarized or unpolarized gas targets. Measurements of exclusive vector meson production provide access to the structure of the nucleon since the process can be described in terms of Generalized Parton Distributions (GPDs). An overview of the HERMES results on exclusive vector mesons production is presented.

  17. All about Light. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    Most people certainly take light for granted. But understanding the basic nature of light can open up a whole new world! All about Light takes kids on a fun journey to answer questions like: "Why does light shine through some things and not others?" and "Why can we see our reflections in water, but not in a rock?" Students learn how light travels…

  18. Charm Meson Production in Au-Au Collisions at √ SNN = 200 Gev at Rhic

    NASA Astrophysics Data System (ADS)

    Vanfossen, Joseph A., Jr.

    dense surrounding medium, as the quarks traverse it. Such suppression is an indicator that the medium generated in relativistic heavy-ion collisions is strongly interacting. Theoretical models were successful in describing the suppression of light quarks but under-predicted the observed heavy-flavor suppression. The data triggered a new effort in modeling where theorists started taking into account the energy loss due to elastic collisions between the traversing parton and the surrounding medium. To fully understand the interplay between elastic and inelastic collision mechanisms of light and heavy partons and the hot medium, we needed precise data on heavy flavor production. Also, in order to be able to access the parent's kinematic information, one needs to perform a full topological reconstruction of the parent's decay. This will also allow for the separation of charm and bottom mesons. The study of D0 mesons, the lightest mesons with a charm quark, can be used to study the properties of the medium created in collisions, such as the density, flow, and thermalization of the medium. This dissertation presents an attempt to measure D0/D0bar ratios and D0 meson production in Au+Au collisions at sqrt(s_NN) = 200 GeV from fully reconstructed decays. For this purpose, we used a silicon tracker in STAR consisting of the Silicon Vertex Tracker (SVT) and the Silicon Strip Detector (SSD), along with the Time Projection Chamber (TPC) in a special run in the year 2007. We have developed new calibration and microvertexing techniques in the data analysis. We performed full secondary vertex reconstruction, to topologically reconstruct the secondary vertex of the D0 meson in the decay channel D0 -> K- + pi+ (B.R. = 3.89% and ct = 123 µm) and then performed a standard invariant mass analysis. At the same time we used a new tool (TMVA) in high energy physics for optimizing the signal to background ratio. However, precise measurements of open heavy flavor are difficult to obtain with

  19. What did we learn about GPDs from hard exclusive electroproduction of mesons

    SciTech Connect

    Kroll, Peter

    2011-10-24

    It is reported on an analysis of electroproduction of light mesons at small Bjorken-x (x{sup Bj}) within the handbag approach. The partonic subprocesses, meson electroproduction off quarks or gluons, are calculated within the modified per-turbative approach (m.p.a.) in which quark transverse momenta are retained. The soft hadronic matrix elements, generalized parton distributions (GPDs), are constructed by means of double distributions. The constraints from parton distributions and sum rules are taken into account. Various moments of these GPDs are compared to recent results from lattice gauge theories.

  20. Leptonic B- and D-Meson Decay Constants with 2+1 Flavors of Asqtad Fermions

    SciTech Connect

    Neil, Ethan T.; Simone, James N.; Van de Water, Ruth S.; Kronfeld, Andreas S.

    2015-01-08

    We present the status of our updated D- and B-meson decay-constant analysis, based on the MILC Nf =2+1 asqtad gauge ensembles. Heavy quarks are incorporated using the Wilson clover action with the Fermilab interpretation. This analysis includes ensembles at five lattice spacings from α ≈ 0.045 to 0.15 fm, and light sea-quark masses down to 1/20th of the strange-quark mass. Projected error budgets for ratios of decay constants, in particular between bottom- and charm-meson decay constants, are presented.

  1. Scalar meson f{sub 0}(980) in heavy-meson decays.

    SciTech Connect

    El-Bennich, B.; Leitner, O.; Dedonder, J.-P.; Loiseau, B.; Physics; Lab. de Physique Nucleaire et de Hautes Energies; Lab. Nazionali di Frascati

    2009-04-01

    A phenomenological analysis of the scalar meson f{sub 0}(980) is performed that relies on the quasi-two-body decays D and D{sub s} {yields} f{sub 0}(980)P, with P = {pi}, K. The two-body branching ratios are deduced from experimental data on D or D{sub s} {yields} {pi}{pi}{pi}, K{sup -} K{pi} and from the f{sub 0}(980) {yields} {pi}{sup +}{pi}{sup -} and f{sub 0}(980) {yields} K{sup +}K{sup -} branching fractions. Within a covariant quark model, the scalar form factors for the transitions D and D{sub s} {yields} f{sub 0}(980) are computed. The weak D decay amplitudes, in which these form factors enter, are obtained in the naive factorization approach assuming a q{bar q} state for the scalar and pseudoscalar mesons. They allow to extract information on the f{sub 0}(980) wave function in terms of u{bar u}, d{bar d}, and s{bar s} pairs as well as on the mixing angle between the strange and nonstrange components. The weak transition form factors are modeled by the one-loop triangular diagram using two different relativistic approaches: covariant light-front dynamics and dispersion relations. We use the information found on the f{sub 0}(980) structure to evaluate the scalar and vector form factors in the transitions D and D{sub s} {yields} f{sub 0}(980), as well as to make predictions for B and B{sub s} {yields} f{sub 0}(980), for the entire kinematically allowed momentum range of q{sup 2}.

  2. Scalar meson f{sub 0}(980) in heavy-meson decays

    SciTech Connect

    El-Bennich, B.; Leitner, O.; Dedonder, J.-P.; Loiseau, B.

    2009-04-01

    A phenomenological analysis of the scalar meson f{sub 0}(980) is performed that relies on the quasi-two-body decays D and D{sub s}{yields}f{sub 0}(980)P, with P={pi}, K. The two-body branching ratios are deduced from experimental data on D or D{sub s}{yields}{pi}{pi}{pi}, KK{pi} and from the f{sub 0}(980){yields}{pi}{sup +}{pi}{sup -} and f{sub 0}(980){yields}K{sup +}K{sup -} branching fractions. Within a covariant quark model, the scalar form factors for the transitions D and D{sub s}{yields}f{sub 0}(980) are computed. The weak D decay amplitudes, in which these form factors enter, are obtained in the naive factorization approach assuming a qq state for the scalar and pseudoscalar mesons. They allow to extract information on the f{sub 0}(980) wave function in terms of uu, dd, and ss pairs as well as on the mixing angle between the strange and nonstrange components. The weak transition form factors are modeled by the one-loop triangular diagram using two different relativistic approaches: covariant light-front dynamics and dispersion relations. We use the information found on the f{sub 0}(980) structure to evaluate the scalar and vector form factors in the transitions D and D{sub s}{yields}f{sub 0}(980), as well as to make predictions for B and B{sub s}{yields}f{sub 0}(980), for the entire kinematically allowed momentum range of q{sup 2}.

  3. Effects of light physical exercise on sleep in middle-aged rats.

    PubMed

    Gambelunghe, C; Mariucci, G; Rossi, R; Sommavilla, M; Tantucci, M; Ambrosini, M V

    2005-06-01

    The effects of physical activity on sleep were evaluated in 12-month-old rats. The animals (n = 18) were induced to walk or run for 45 min in a rota-rod treadmill while control mates remained in their home cages. Immediately after the trial, they were left free to sleep for four hours, during which their electroencephalographic activity was recorded. Baseline electroencephalogram showed no differences among groups in sleep parameters and spike wave discharges during wakefulness in all rats. Sleep variables and spike wave discharges remained constant in the controls over times. On the contrary, Student's t-test for paired data indicated a decrease in spike wave discharges in both walking and running rats while paradoxical sleep rose parallel with slow wave sleep in walking animals but declined in running rats, in spite of an increment in slow wave sleep. The results seem to indicate that: i) light exercise improves sleep quality in middle aged rats, provided it is not stressful and ii) physical activity supplies important benefits to waking brain by reducing spike wave discharges.

  4. Quark diagram analysis of B-meson emitting vector ( V) and vector ( V) mesons

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder

    2017-07-01

    This paper presents the two body weak nonleptonic decays of B-mesons emitting vector ( V) and vector ( V) mesons within the framework of the diagrammatic approaches at flavor SU(3) symmetry. We have investigated exclusive two body decays of B-meson using model independent quark diagram scheme. We have shown that the recent measurement of the two body exclusive decays of B-mesons can allow us to determine the magnitude and even sign of the QD amplitude for B → VV decays. Therefore, we become able to make few predictions for their branching fractions.

  5. The effect of light rail transit on body mass index and physical activity.

    PubMed

    MacDonald, John M; Stokes, Robert J; Cohen, Deborah A; Kofner, Aaron; Ridgeway, Greg K

    2010-08-01

    The built environment can constrain or facilitate physical activity. Most studies of the health consequences of the built environment face problems of selection bias associated with confounding effects of residential choice and transportation decisions. To examine the cross-sectional associations between objective and perceived measures of the built environment; BMI; obesity (BMI>30 kg/m(2)); and meeting weekly recommended physical activity (RPA) levels through walking and vigorous exercise. To assess the effect of using light rail transit (LRT) system on BMI, obesity, and weekly RPA levels. Data were collected on individuals before (July 2006-February 2007) and after (March 2008-July 2008) completion of an LRT system in Charlotte NC. BMI, obesity, and physical activity levels were calculated for a comparison of these factors pre- and post-LRT construction. A propensity score weighting approach adjusted for differences in baseline characteristics among LRT and non-LRT users. Data were analyzed in 2009. More-positive perceptions of one's neighborhood at baseline were associated with a -0.36 (p<0.05) lower BMI; 15% lower odds (95% CI=0.77, 0.94) of obesity; 9% higher odds (95% CI=0.99, 1.20) of meeting weekly RPA through walking; and 11% higher odds (95% CI=1.01, 1.22) of meeting RPA levels of vigorous exercise. The use of LRT to commute to work was associated with an average -1.18 reduction in BMI (p<0.05) and an 81% reduced odds (95% CI=0.04, 0.92) of becoming obese over time. The results of this study suggest that improving neighborhood environments and increasing the public's use of LRT systems could provide improvements in health outcomes for millions of individuals. 2010 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Nobel Prizes in Physics and Chemistry 2014: Celebrating the International Year of Light 2015, commemorating the Old Quantum Theory

    NASA Astrophysics Data System (ADS)

    Shi, Yu

    2015-01-01

    2015 is the International Year of Light and Light-based Technologies (IYL), while the physics and chemistry Nobel Prizes 2014 are both about light. The work leading to the two prizes share the same basic theoretical foundation: when an electron jumps from a higher energy level to a lower energy level, the energy difference is transformed into a photon. This basic way of light generation is a key part of the Old Quantum Theory. Interestingly, the date of announcing the 2014 Nobel Prize for physics coincided with the birthdays of Niels Bohr and, especially, of Planck's blackbody radiation formula. In connection with the two 2014 Nobel Prizes, we recall the development of the Old Quantum Theory by Planck, Einstein and Bohr.

  7. D mesons in a magnetic field

    DOE PAGES

    Gubler, Philipp; Hattori, Koichi; Lee, Su Houng; ...

    2016-03-15

    In this paper, we investigate the mass spectra of open heavy flavor mesons in an external constant magnetic field within QCD sum rules. Spectral Ansatze on the phenomenological side are proposed in order to properly take into account mixing effects between the pseudoscalar and vector channels, and the Landau levels of charged mesons. The operator product expansion is implemented up to dimension-5 operators. As a result, we find for neutral D mesons a significant positive mass shift that goes beyond simple mixing effects. In contrast, charged D mesons are further subject to Landau level effects, which together with the mixingmore » effects almost completely saturate the mass shifts obtained in our sum rule analysis.« less

  8. D mesons in a magnetic field

    SciTech Connect

    Gubler, Philipp; Hattori, Koichi; Lee, Su Houng; Oka, Makoto; Ozaki, Sho; Suzuki, Kei

    2016-03-15

    In this paper, we investigate the mass spectra of open heavy flavor mesons in an external constant magnetic field within QCD sum rules. Spectral Ansatze on the phenomenological side are proposed in order to properly take into account mixing effects between the pseudoscalar and vector channels, and the Landau levels of charged mesons. The operator product expansion is implemented up to dimension-5 operators. As a result, we find for neutral D mesons a significant positive mass shift that goes beyond simple mixing effects. In contrast, charged D mesons are further subject to Landau level effects, which together with the mixing effects almost completely saturate the mass shifts obtained in our sum rule analysis.

  9. A search for ϕ meson nucleus bound state using antiproton annihilation on nucleus

    NASA Astrophysics Data System (ADS)

    Ohnishi, H.; Bühler, P.; Cargnelli, M.; Curceanu, C.; Guaraldo, C.; Hartmann, O.; Hicks, K.; Iwasaki, M.; Ishiwatari, T.; Kienle, P.; Marton, J.; Muto, R.; Naruki, M.; Niiyama, M.; Noumi, H.; Okada, S.; Vidal, A. Romero; Sakaguchi, A.; Sakuma, F.; Sawada, S.; Sirghi, D.; Sirghi, F.; Suzuki, K.; Tsukada, K.; Doce, O. Vazquez; Widmann, E.; Yokkaichi, S.; Zmeskal, J.

    The mass shift of the vector mesons in nuclei is known to be a powerful tool for investigating the mechanism of generating hadron mass from the QCD vacuum. The mechanism is known to be the spontaneous breaking of chiral symmetry. In 2007, KEK-PS E325 experiment reported about 3.4 % mass reduction of the ϕ meson in medium-heavy nuclei (Cu). This result is possibly one of the indications of the partial restoration of chiral symmetry in nuclei, however, unfortunately it is hard to make strong conclusions from the data. One of the ways to conclude the strength of the ϕ meson mass shift in nuclei will be by trying to produce only slowly moving ϕ mesons where the maximum nuclear matter effect can be probed. The observed mass reduction of the ϕ meson in the nucleus can be translated as the existence of an attractive force between ϕ meson and nucleus. Thus, one of the extreme conditions that can be achieved in the laboratory is indeed the formation of a ϕ-nucleus bound state, where the ϕ meson is "trapped" in the nucleus. The purpose of the experiment is to search for a ϕ-nucleus bound state and measure the binding energy of the system. We will demonstrate that a completely background-free missing-mass spectrum can be obtained efficiently by (bar{p}, φ) spectroscopy together with K + Λ tagging, using the primary reaction channel bar{p} p rightarrow φ φ. This paper gives an overview of the physics motivation and the detector concept, and explains the direction of the initial research and development effort.

  10. A search for ϕ meson nucleus bound state using antiproton annihilation on nucleus

    NASA Astrophysics Data System (ADS)

    Ohnishi, H.; Bühler, P.; Cargnelli, M.; Curceanu, C.; Guaraldo, C.; Hartmann, O.; Hicks, K.; Iwasaki, M.; Ishiwatari, T.; Kienle, P.; Marton, J.; Muto, R.; Naruki, M.; Niiyama, M.; Noumi, H.; Okada, S.; Vidal, A. Romero; Sakaguchi, A.; Sakuma, F.; Sawada, S.; Sirghi, D.; Sirghi, F.; Suzuki, K.; Tsukada, K.; Doce, O. Vazquez; Widmann, E.; Yokkaichi, S.; Zmeskal, J.

    2012-12-01

    The mass shift of the vector mesons in nuclei is known to be a powerful tool for investigating the mechanism of generating hadron mass from the QCD vacuum. The mechanism is known to be the spontaneous breaking of chiral symmetry. In 2007, KEK-PS E325 experiment reported about 3.4 % mass reduction of the ϕ meson in medium-heavy nuclei (Cu). This result is possibly one of the indications of the partial restoration of chiral symmetry in nuclei, however, unfortunately it is hard to make strong conclusions from the data. One of the ways to conclude the strength of the ϕ meson mass shift in nuclei will be by trying to produce only slowly moving ϕ mesons where the maximum nuclear matter effect can be probed. The observed mass reduction of the ϕ meson in the nucleus can be translated as the existence of an attractive force between ϕ meson and nucleus. Thus, one of the extreme conditions that can be achieved in the laboratory is indeed the formation of a ϕ-nucleus bound state, where the ϕ meson is "trapped" in the nucleus. The purpose of the experiment is to search for a ϕ-nucleus bound state and measure the binding energy of the system. We will demonstrate that a completely background-free missing-mass spectrum can be obtained efficiently by (bar{p}, φ) spectroscopy together with K + Λ tagging, using the primary reaction channel bar{p} p rightarrow φ φ. This paper gives an overview of the physics motivation and the detector concept, and explains the direction of the initial research and development effort.

  11. Meson and baryon spectroscopy on the lattice

    SciTech Connect

    David Richards

    2010-12-01

    Recent progress at understanding the excited state spectrum of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum, and the program of anisotropic clover lattice generation designed for hadron spectroscopy. I present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.

  12. Vector Meson Property in Covariant Classification Scheme

    NASA Astrophysics Data System (ADS)

    Oda, Masuho

    2004-08-01

    Recently our collaboration group has proposed the covariant classification shceme of hadrons, leading to possible existence of two ground state vector mesons. One is corresponding to ordinary ρ nonet and the other is extra ρ nonet. We investigate the decay property of ω(1250) and ρ(1250) in the covariant classification scheme. And it is shown that ω(1250) is promising candidate of our extra ω meson.

  13. The sigma meson from QCD sum rules for large-N_c Regge spectra

    NASA Astrophysics Data System (ADS)

    Afonin, S. S.; Solomko, T. D.

    2016-12-01

    The QCD sum rules in the large-N_c limit for the light non-strange vector, axial and scalar mesons are considered assuming a string-like linear spectrum for the radially excited states. We propose an improved method for combined analysis of these channels that gives a reasonable description of the observed spectrum. In the vector-axial case, fixing the pion decay constant and the gluon condensate we obtain more or less physical values for the masses of ground states and the quark condensate. Thus a typical need for this method to fix the mass of some ground state is overcome. Using in the scalar channel the values of presumably universal slope of radial trajectories and the quark condensate obtained in the vector-axial channel, we find that, in contrast to some strong claims in the literature, a prediction of light scalar state with a mass close to the mass of f_0(500) seems to be natural in the considered approach and may follow in a natural way from the Regge phenomenology.

  14. Light Physical Activity Is Associated with Quality of Life after Colorectal Cancer.

    PubMed

    Van Roekel, Eline H; Bours, Martijn J L; Breedveld-Peters, José J L; Meijer, Kenneth; Kant, Ijmert; Van Den Brandt, Piet A; Sanduleanu, Silvia; Beets, Geerard L; Weijenberg, Matty P

    2015-12-01

    Emerging evidence suggests that light physical activity (LPA), besides moderate-to-vigorous physical activity (MVPA), may beneficially influence physical functioning of colorectal cancer survivors, but its relation with other health-related outcomes is unknown. We applied a biopsychosocial approach to investigate independent associations between self-reported LPA, MVPA, and multiple health-related quality of life (HRQoL) outcomes in 2- to 10-yr postdiagnosis colorectal cancer survivors. Stage I-III colorectal cancer survivors diagnosed between 2002 and 2010 at Maastricht University Medical Center+, the Netherlands, were included in a cross-sectional study (n = 151). Time spent in LPA and MVPA (h·wk⁻¹), and HRQoL outcome scores (0-100 points) were assessed by validated questionnaires. Median time spent in LPA and MVPA was 10.0 (interquartile range, 2.0-22.0) and 8.7 h·wk⁻¹ (4.5-15.0), respectively. In multivariable linear regression models, both LPA and MVPA were significantly and independently associated with higher physical functioning (mean difference [MD] between highest and lowest quartile, 10.2; 95% confidence interval [CI], 0.2-20.3; and 14.5; 5.1-23.9, respectively; both P-trend < 0.05). In addition, LPA was significantly associated with higher role functioning (MD, 19.5; 95% CI, 6.9-32.1; P-trend < 0.01) and lower disability (MD, -9.9; 95% CI, -17.8 to -1.9; P-trend = 0.02), independent from MVPA. Subgroup analyses showed that beneficial associations between LPA and HRQoL were mainly observed in women and participants with multiple comorbidities. Self-reported LPA, besides MVPA, was beneficially associated with multiple HRQoL outcomes in colorectal cancer survivors, especially in women and survivors with multiple comorbidities. Prospective studies are warranted to establish whether LPA is a suitable target for personalized lifestyle interventions to improve the HRQoL of colorectal cancer survivors.

  15. Exotic Meson Results from BNL E852

    NASA Astrophysics Data System (ADS)

    Manak, Joseph J.

    1998-10-01

    Results from BNL experiment 852 on exotic (non-q\\overlineq) meson production are presented. Production of final states with J^PC = 1^-+ is observed in π^-p interactions at 18 GeV/c in the ηπ^-, ρπ^- and η^'π^- channels. Since such states are manifestly exotic if they are resonant, we describe amplitude analyses which use the interference between these states and other well known states to measure the phase behavior of the J^PC = 1^-+ amplitudes. The analyses show that, in addition to the previously reported(D.R. Thompson et al.), Phys. Rev. Lett. 79, 1630 (1997) evidence for an exotic meson in the ηπ^- channel, there is strong evidence for a second exotic meson decaying to ρπ^- with a mass of M=1593 ±8^+29_-47 MeV/c^2 and a width of Γ=168 ±20^+150_-12 MeV/c^2. We also show that the η^'π^- system is dominated by J^PC = 1^-+ production and we use those data to determine decay branching ratios for the exotic mesons. Such measurements are expected to be crucial in determining the constituent nature of the exotic mesons - that is, whether they are consistent with being hybrid mesons or four-quark states.

  16. Vector meson production in ultra-peripheral collisions

    NASA Astrophysics Data System (ADS)

    Thomas, James O.

    Charged ions moving at relativistic speeds generate strong electromagnetic fields (E/M) that, at regions outside the source (important when the E/M sources are nuclei), behave like the fields from a beam of real photons. These equivalent, or virtual photons, can induce an excitation in another nucleus as the source flies by. Existing theories attempt to explain such processes and predict their outcome. One way to study such Ultra-Peripheral Collisions (UPCs) is to simulate them using a Monte-Carlo Multi-Collisional (MCMC) model based on nucleon degrees of freedom. The CRISP (acronym for Collaboration Rio-Illheus-Sao Paulo) model is one such theory. It is basically at the stage of a well-documented software package that implements the MCMC. This model has successfully predicted observables, such as neutron multiplicity, from central collisions and also in UPCs with relativistic heavy ions. However, the photoproduction of vector mesons has only recently been added to the CRISP model. A completely different approach to study UPCs focuses on the role of Parton Distribution Functions (PDFs) in the excitation process. Here, instead of nucleons, the degrees of freedom are quarks and gluons (generically known as partons). Several distinct PDFs exist in the literature and are continually being updated. This work used experimental results released from the ALICE collaboration at the Large Hadron Collider (LHC) facility located at the international particle physics laboratory CERN in Switzerland. Our outputs from the CRISP model, and from the sub-nucleon degrees of freedom model, were photonuclear cross sections for vector meson production. A comparison of our results with the experimental data allowed us to constrain different PDFs, as well as the effect of multiple collisions on the production of mesons with nucleons in the final channel. Upon completion of the calculations, it was seen that the hadronic models could accurately predict the production of the J/psi meson, but

  17. Connected and leading disconnected hadronic light-by-light contribution to the muon anomalous magnetic moment with a physical pion mass

    DOE PAGES

    Blum, Thomas; Christ, Norman; Hayakawa, Masashi; ...

    2017-01-11

    We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the 483 × 96 ensemble generated with a physical pion mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall fermion formulation. We find aHLbLμ = 5.35(1.35) × 10–10, where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite largemore » and are the subject of ongoing research. Finally, the omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.« less

  18. Connected and Leading Disconnected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment with a Physical Pion Mass

    NASA Astrophysics Data System (ADS)

    Blum, Thomas; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph

    2017-01-01

    We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the 4 83×96 ensemble generated with a physical pion mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall fermion formulation. We find aμHLbL=5.35 (1.35 )×10-10 , where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of ongoing research. The omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.

  19. Connected and Leading Disconnected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment with a Physical Pion Mass.

    PubMed

    Blum, Thomas; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph

    2017-01-13

    We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the 48^{3}×96 ensemble generated with a physical pion mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall fermion formulation. We find a_{μ}^{HLbL}=5.35(1.35)×10^{-10}, where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of ongoing research. The omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.

  20. Physical Aspects of Light--"Seeing Parameters". Lighting Techniques in Architecture (Madison, December 9-10, 1969).

    ERIC Educational Resources Information Center

    Turek, Robert W.

    In order to judge or design the lighting of an interior a person must be able to understand and take into account many aspects of seeing and illumination. Important areas of consideration are--(1) factors that contribute to the visibility of an object: size, brightness, contrast, and time, (2) radiant energy with regard to the visible spectrums of…

  1. Separate T, CP, CPT Asymmetries in Neutral Meson Transitions

    NASA Astrophysics Data System (ADS)

    Bernabéu, José

    2017-07-01

    Symmetries, and Symmetry Breakings, in the Laws of Physics play a crucial role in Fundamental Science. Parity and Charge Conjugation Violations prompted the consideration of Chiral Fields in the construction of the Standard Model, whereas CP-Violation needed at least three families of Quarks leading to Flavour Physics. In this Lecture I will discuss the Conceptual Basis and the present experimental results for a Direct Evidence of Separate Reversal-in-Time T, CP and CPT Genuine Asymmetries in Decaying Particles like Neutral Meson Transitions, using Quantum Entanglement and the Decay as a Filtering Measurement. The eight transitions associated to the Flavour-CP eigenstate decay products of entangled neutral mesons have demonstrated with impressive significance a separate evidence of TRV and CPV in Bd-physics, whereas a CPTV asymmetry shows a 2-σ effect interpreted as an upper limit. Novel CPTV observables are discussed for K and Bd transitions. Their observation would lead to a change of paradigm beyond Quantum Field Theory, however there is nothing in Quantum Mechanics forbidding CPTV. A clean methodology to disentangle CPTV effects in the Hamiltonian dynamics and the ω-effect weakening Entanglement in a given experiment is discussed.

  2. Generalized Chou-Yang Model and Meson-Proton Elastic Scattering at High Energies

    NASA Astrophysics Data System (ADS)

    Saleem, Mohammad; Aleem, Fazal-E.; Rashid, Haris

    The various characteristics of meson-proton elastic scattering at high energies are explained by using the generalized Chou-Yang model which takes into consideration the anisotropic scattering of objects constituting pions(kaons) and protons. A new parametrization of the proton form factor consistent with the recent experimental data is proposed. It is then shown that all the data for meson-proton elastic scattering at 200 and 250 GeV/c are in agreement with theoretical computations. The physical picture of generalized Chou-Yang model which is based on multiple scattering theory is given in detail.

  3. Lifetime of B_{c}^{-} Mesons Constrains Explanations for Anomalies in B→D^{(*)}τν.

    PubMed

    Alonso, Rodrigo; Grinstein, Benjamín; Martin Camalich, Jorge

    2017-02-24

    We investigate a new constraint on new-physics interpretations of the anomalies observed in B→D^{(*)}τν decays making use of the lifetime of the B_{c}^{-} meson. A constraint is obtained by demanding that the rate for B_{c}^{-}→τ^{-}ν[over ¯] does not exceed the fraction of the total width that is allowed by the calculation of the lifetime in the standard model. This leads to a very strong bound on new-physics scenarios involving scalar operators since they lift the slight, but not negligible, chiral suppression of the B_{c}^{-}→τ^{-}ν[over ¯] amplitude in the standard model. The new constraint renders a scalar interpretation of the enhancement measured in R_{D^{*}} implausible, including explanations implementing extra Higgs doublets or certain classes of leptoquarks. We also discuss the complementarity of R_{D^{(*)}} and a measurement of the longitudinal polarization of the τ in the B→D^{*}τν decay in light of our findings.

  4. The effect of disposable infection control barriers and physical damage on the power output of light curing units and light curing tips.

    PubMed

    McAndrew, R; Lynch, C D; Pavli, M; Bannon, A; Milward, P

    2011-04-23

    This study investigated the effects that disposable infection control barriers and physical damage through use had on the power output from dental light curing units (LCUs) and light curing tips (LCTs). Five disposable infection control barriers were tested on a number of LCUs and LCTs. Testing involved the repeated measurement of power output of LCUs and LCTs on a radiometer. Two of the barriers tested caused statistically significant reductions in the mean light output intensity when compared to the no barrier control groups. One barrier type reduced the power output by 30 to 40%. It was also noted that physical damage to the LCTs affected power output by between 20 and 30%, which was then further reduced by the disposable barrier. This study showed that three of the five disposable infection control barriers had little effect on the overall efficiency of the power output of the LCUs. It also showed that physical damage to LCUs and LCTs can affect power output significantly. Infection control measures should be carefully considered before use to avoid undue effects on power output delivered from the LCUs/LCTs to ensure that the degree of polymerisation within the resin-based composite and curing efficiency are not affected unduly.

  5. Excited meson radiative transitions from lattice QCD using variationally optimized operators

    NASA Astrophysics Data System (ADS)

    Shultz, Christian J.; Dudek, Jozef J.; Edwards, Robert G.; Hadron Spectrum Collaboration

    2015-06-01

    We explore the use of "optimized" operators, designed to interpolate only a single meson eigenstate, in three-point correlation functions with a vector-current insertion. These operators are constructed as linear combinations in a large basis of meson interpolating fields using a variational analysis of matrices of two-point correlation functions. After performing such a determination at both zero and nonzero momentum, we compute three-point functions and are able to study radiative transition matrix elements featuring excited-state mesons. The required two- and three-point correlation functions are efficiently computed using the distillation framework in which there is a factorization between quark propagation and operator construction, allowing for a large number of meson operators of definite momentum to be considered. We illustrate the method with a calculation using anisotopic lattices having three flavors of dynamical quark all tuned to the physical strange quark mass, considering form factors and transitions of pseudoscalar and vector meson excitations. The dependence on photon virtuality for a number of form factors and transitions is extracted, and some discussion of excited-state phenomenology is presented.

  6. Excited meson radiative transitions from lattice QCD using variationally optimized operators

    SciTech Connect

    Shultz, Christian J.; Dudek, Jozef J.; Edwards, Robert G.

    2015-06-02

    We explore the use of 'optimized' operators, designed to interpolate only a single meson eigenstate, in three-point correlation functions with a vector-current insertion. These operators are constructed as linear combinations in a large basis of meson interpolating fields using a variational analysis of matrices of two-point correlation functions. After performing such a determination at both zero and non-zero momentum, we compute three-point functions and are able to study radiative transition matrix elements featuring excited state mesons. The required two- and three-point correlation functions are efficiently computed using the distillation framework in which there is a factorization between quark propagation and operator construction, allowing for a large number of meson operators of definite momentum to be considered. We illustrate the method with a calculation using anisotopic lattices having three flavors of dynamical quark all tuned to the physical strange quark mass, considering form-factors and transitions of pseudoscalar and vector meson excitations. In conclusion, the dependence on photon virtuality for a number of form-factors and transitions is extracted and some discussion of excited-state phenomenology is presented.

  7. Spontaneous collapse: A solution to the measurement problem and a source of the decay in mesonic systems

    NASA Astrophysics Data System (ADS)

    Simonov, Kyrylo; Hiesmayr, Beatrix C.

    2016-11-01

    Dynamical reduction models propose a solution to the measurement problem in quantum mechanics: the collapse of the wave function becomes a physical process. We compute the predictions to decaying and flavor-oscillating neutral mesons for the two most promising collapse models, the QMUPL (quantum mechanics with universal position localization) model and the mass-proportional CSL (continuous spontaneous localization) model. Our results are showing (i) a strong sensitivity to the very assumptions of the noise field underlying those two collapse models and (ii) under particular assumptions the CSL case allows one even to recover the decay dynamics. This in turn allows one to predict the effective collapse rates solely based on the measured values for the oscillation (mass differences) and the measured values of the decay constants. The four types of neutral mesons (K meson, D meson, Bd meson, and Bs meson) lead surprisingly to ranges comparable to those put forward by Adler [J. Phys. A: Math. Theor. 40, 2935 (2007), 10.1088/1751-8113/40/12/S03] and Ghirardi, Rimini, and Weber [Phys. Rev. D 34, 470 (1986), 10.1103/PhysRevD.34.470]. Our results show that these systems at high energies are very sensitive to possible modifications of the standard quantum theory, making them a very powerful laboratory to rule out certain collapse scenarios and study the detailed physical processes solving the measurement problem.

  8. Branching ratios of B{sub c} meson decays into tensor meson in the final state

    SciTech Connect

    Sharma, Neelesh

    2010-01-01

    Two-body hadronic weak decays of B{sub c} meson involving tensor meson in the final state are studied by using the Isgur-Scora-Grinstein-Wise II model. Decay amplitudes are obtained using the factorization scheme in the spectator quark model. Branching ratios for the charm changing and bottom changing decay modes are predicted.

  9. Glueball enhancements in p(gamma,VV)p through vector meson dominance

    SciTech Connect

    Stephen R. Cotanch; Robert A. Williams

    2004-03-01

    Double vector meson photoproduction, p(gamma, G {yields} VV)p, mediated by a scalar glueball G is investigated. Using vector meson dominance (VMD) and Regge/pomeron phenomenology, a measureable glueball enhancement is predicted in the invariant VV = rho rho and omega omega mass spectra. The scalar glueball is assumed to be the lightest physical state on the daughter pomeron trajectory governing diffractive vector meson photoproduction. In addition to cross sections, calculations for hadronic and electromagnetic glueball decays, G -> V V' (V,V'= rho, omega, phi, gamma), and gamma{sub v} V {yields} G transition form factors are presented based upon flavor universality, VMD and phenomenological couplings from phi photoproduction analyses. The predicted glueball decay widths are similar to an independent theoretical study. A novel signature for glueball detection is also discussed.

  10. On-shell parameter fixing in the quark-meson model

    NASA Astrophysics Data System (ADS)

    Adhikari, Prabal; Andersen, Jens O.; Kneschke, Patrick

    2017-02-01

    The quark-meson model is often used as an effective low-energy model for QCD to study the chiral transition at finite temperature T and baryon chemical potential μB. The parameters in the quark-meson model can be found by expressing them in terms of the sigma mass mσ, the pion mass mπ, the constituent quark mass mq and the pion decay constant fπ. In practice, this matching is done at tree level, which is inconsistent once loop effects of the effective potential are taken into account. We show how to properly perform the matching in the quark-meson model by using the on-shell and the minimal subtraction renormalization schemes relating the physical masses and the pion decay constant to the running mass parameter and couplings. We map out the phase diagram in the μB- T plane and compare our results with other approximations.

  11. Topics in Lattice Gauge Theory and Theoretical Physics

    NASA Astrophysics Data System (ADS)

    Komijani, Javad

    This dissertation contains two completely independent parts. In Part 1, I investigate effective field theories and their applications in lattice gauge theory. Quantum chromodynamics (QCD) as a part of the standard model (SM) describes the physics of quarks and gluons. There are several numerical and analytical methods to tackle the QCD problems. Lattice QCD is the dominant numerical method. Effective field theories, on the other hand, provide analytic methods to describe the low-energy dynamics of QCD. To use the effective theories in lattice QCD, I develop chiral perturbation theory for heavy-light mesons with staggered quarks---an implementation of fermions on lattice. I use this effective chiral theory to study the pattern of taste splitting in masses of the mesons with staggered quarks. I also calculate the leptonic decay constant of the heavy-light mesons with staggered quarks to one-loop order in the chiral expansion. The resulting chiral formula provides a suitable fit form to combine and analyze a large number of decay constants of heavy-light mesons computed from different lattice ensembles with various choices of input parameters. I perform a comprehensive chiral fit to the lattice data for D mesons computed by the MILC collaboration. Consequently, I determine the physical values of the decay constants of D mesons. These precise results place narrow restrictions on the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In Part 2, I introduce the concept of a nonlinear eigenvalue problem by investigating three nonlinear differential equations. First, equation y'(x) = cos[pixy(x)] is investigated. A discrete set of initial conditions y(0) = an, leading to unstable separatrix behavior, are identified as the eigenvalues of the problem. I calculate the asymptotic behavior of the initial conditions an and their corresponding solutions for large n by reducing the equation to a linear one-dimensional random-walk problem. Second, I investigate equation y''(x)=6[y( x

  12. AdS/QCD and Light Front Holography: A New Approximation to QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy

    2010-02-15

    The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n+L+S/2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.

  13. First Light: Physics of Early Star Formation from the Local Universe

    NASA Astrophysics Data System (ADS)

    Pellegrini, Eric W.; Porter, R.; Stancil, P.

    2012-01-01

    We present detailed theoretical spectra of the earliest star forming regions. Improving on the spherically symmetric shell with a single ionization potential and density, we form a nebular template using the recently derived 3-D structure and density of 30 Doradus. Using CLOUDY, we illuminate our complex cloud with an SED of metal free stars, and vary the elemental and dust abundances from Z=-1 to -6. We solve for the physical condition of the gas as radiation is absorbed and reprocessed across the many different H+/H0/H2 interfaces forming the entire nebula. We solve for abundance and ionization states of all elements, as well as the abundance of 100's of molecular species which form after the ionizing radiation has been absorbed. We produce globally average, rest-frame synthetic spectra from 10-3 to 106µm allowing us to create empirically motivated diagnostics of early enrichment and stellar feedback for JWST and ALMA. This includes broad continuum features AND the atomic and molecular emission from the entire complex. With the structural and feedback details revealed in these models, there exists an unprecedented opportunity to illustrate the most promising observational strategies for new observatories peering back to first light. Future efforts to observe and create more templates using nearby HII regions will expand the modeled parameter space. These templates will also serve as an alternative to the current sub-grid structure of HII regions in cosmological simulations.

  14. The advanced light source at Lawrence Berkeley laboratory: a new tool for research in atomic physics

    NASA Astrophysics Data System (ADS)

    Schlachter, Alfred S.; Robinson, Arthur L.

    1991-04-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30-50 ps) will be ideal for time-resolved measurements. Undulators will generate high-brightness partially coherent soft X-ray and ultraviolet (XUV) radiation from below 10 eV to above 2 keV; this radiation is plane polarized. Wigglers and bend magnets will extend the spectrum by generating high fluxes of X-rays to photon energies above 10 keV. The ALS will have an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy), and in biology, such as X-ray microscopy with element-specific sensitivity; the high flux will allow measurements in atomic physics and chemistry to be made with tenuous gas-phase targets. Technological applications could include lithography and nano-fabrication.

  15. Pseudoscalar meson electromagnetic form factor at high Q2 from full lattice QCD

    NASA Astrophysics Data System (ADS)

    Koponen, J.; Zimermmane-Santos, A. C.; Davies, C. T. H.; Lepage, G. P.; Lytle, A. T.; Hpqcd Collaboration

    2017-09-01

    We give an accurate determination of the vector (electromagnetic) form factor, F (Q2) , for a light pseudoscalar meson up to squared momentum transfer Q2 values of 6 GeV2 for the first time from full lattice QCD, including u , d , s and c quarks in the sea at multiple values of the lattice spacing. Our results show good control of lattice discretization and sea quark mass effects. We study a pseudoscalar meson made of valence s quarks but the qualitative picture obtained applies also to the π meson, relevant to upcoming experiments at Jefferson Lab. We find that Q2F (Q2) becomes flat in the region between Q2 of 2 GeV2 and 6 GeV2, with a value well above that of the asymptotic perturbative QCD expectation, but well below that of the vector-meson dominance pole form appropriate to low Q2 values. Our calculations show that we can reach higher Q2 values in future to shed further light on where the perturbative QCD result emerges.

  16. Theoretical high energy physics research at the University of Chicago. Progress report, October 1, 1992--April 30, 1993

    SciTech Connect

    Rosner, J.L.; Martinec, E.J.; Sachs, R.G.

    1993-04-01

    Brief narrative descriptions of work performed are given on numerous topics including the following: CP violation, Cabibbo--Kobayashi--Maskawa matrix, and B physics; radiative corrections and electroweak observables; heavy quark symmetry; heavy meson spectroscopy; composite models of quarks and leptons; supersymmetric quantum mechanics, inverse scattering, and the vertex operator; cosmological constraints on lepton-number violation in SO(10) models; black hole evaporation; the light cone in string theory; surfaces in the 3D Ising model; and conformal field theories.

  17. Leading-Twist Distribution Amplitudes of Scalar- and Vector-Mesons

    SciTech Connect

    Li, B.-L.; Chang, L.; Ding, M.; Roberts, C. D.; Zong, H.-S.

    2016-11-15

    A symmetry-preserving truncation of the two-body light-quark bound-state problem in relativistic quantum field theory is used to calculate the leading-twist parton distribution amplitudes (PDAs) of scalar systems, both ground-state and radial excitations, and the radial excitations of vector mesons. Owing to the fact that the scale-independent leptonic decay constant of a scalar meson constituted from equal-mass valence-constituents vanishes, it is found that the PDA of a given scalar system possesses one more zero than that of an analogous vector meson. Consequently, whereas the mean light-front relative momentum of the valence-constituents within a vector meson is zero, that within a scalar meson is large, an outcome which hints at a greater role for light-front angular momentum in systems classified as P-wave in quantum mechanical models. Values for the scale-dependent decay constants of ground-state scalar and vector systems are a by-product of this analysis, and they turn out to be roughly equal, viz. ≃ 0.2 GeV at an hadronic scale. In addition, it is confirmed that the dilation characterising ground-state PDAs is manifest in the PDAs of radial excitations too. The impact of SU(3)-flavour symmetry breaking is also considered. When compared with pseudoscalar states, it is a little stronger in scalar systems, but the size is nevertheless determined by the flavour-dependence of dynamical chiral symmetry breaking and the PDAs are still skewed toward the heavier valence-quark in asymmetric systems.

  18. Constraining the Physical Properties of Meteor Stream Particles by Light Curve Shapes Using the Virtual Meteor Observatory

    NASA Technical Reports Server (NTRS)

    Koschny, D.; Gritsevich, M.; Barentsen, G.

    2011-01-01

    Different authors have produced models for the physical properties of meteoroids based on the shape of a meteor's light curve, typically from short observing campaigns. We here analyze the height profiles and light curves of approx.200 double-station meteors from the Leonids and Perseids using data from the Virtual Meteor Observatory, to demonstrate that with this web-based meteor database it is possible to analyze very large datasets from different authors in a consistent way. We compute the average heights for begin point, maximum luminosity, and end heights for Perseids and Leonids. We also compute the skew of the light curve, usually called the F-parameter. The results compare well with other author's data. We display the average light curve in a novel way to assess the light curve shape in addition to using the F-parameter. While the Perseids show a peaked light curve, the average Leonid light curve has a more flat peak. This indicates that the particle distribution of Leonid meteors can be described by a Gaussian distribution; the Perseids can be described with a power law. The skew for Leonids is smaller than for Perseids, indicating that the Leonids are more fragile than the Perseids.

  19. B physics: measurement of the j/psi meson and b-hadron production cross sections in p anti-p collisions at s**(1/2) = 1960 gev

    SciTech Connect

    Acosta, D.; The CDF Collaboration

    2004-12-23

    The authors present a new measurement of the inclusive and differential production cross sections of J/{psi} mesons and b-hadrons in proton-antiproton collisions at {radical}s = 1960 GeV. The data correspond to an integrated luminosity of 39.7 pb{sup -1} collected by the CDF Run II detector. They find the integrated cross section for inclusive J/{psi} production for all transverse momenta from 0 to 20 GeV/c in the rapidity range |y| < 0.6 to be 4.08 {+-} 0.02(stat){sub -0.33}{sup +0.36}(syst) {mu}b. They separate the fraction of J/{psi} events from the decay of the long-lived b-hadrons using the lifetime distribution in all events with p{sub T}(J/{psi}) > 1.25 GeV/c. They find the total cross section for b-hadrons, including both hadrons and anti-hadrons, decaying to J/{psi} with transverse momenta greater than 1.25 GeV/c in the rapidity range |y(J/{psi})| < 0.6, is 0.330 {+-} 0.005(stat){sub -0.033}{sup +0.036}(syst) {mu}b. Using a Monte Carlo simulation of the decay kinematics of b-hadrons to all final states containing a J/{psi}, they extract the first measurement of the total single b-hadron cross section down to zero transverse momentum at {radical}s = 1960 GeV. They find the total single b-hadron cross section integrated over all transverse momenta for b-hadrons in the rapidity range |y| < 0.6 to be 17.6 {+-} 0.4(stat){sub -2.3}{sup +2.5}(syst) {mu}b.

  20. Vector meson modification in nuclear matter at CLAS

    SciTech Connect

    Djalali, Chaden; Wood, Michael; Nasseripour, Rakhsha; Weygand, Dennis

    2008-09-01

    Photoproduction of vector mesons off nuclei were performed at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). The properties of the A vector mesons were investigated via their rare leptonic decay to e+e . After subtracting the combinatorial background, the A meson mass distributions were extracted for each of the targets. We observe no effects on the mass of the A meson, some widening in titanium and iron is observed consistent with the collisional broadening.