Sample records for light microscopic analysis

  1. Application of automatic image analysis for morphometric studies of peroxisomes stained cytochemically for catalase. II. Light-microscopic application.

    PubMed

    Beier, K; Fahimi, H D

    1987-01-01

    The feasibility of the application of a television-based image analyzer, the Texture Analysis System (TAS, Leitz Wetzlar, FRG) in conjunction with a light microscope for morphometric studies of hepatic peroxisomes has been investigated. Rat liver peroxisomes were stained with the alkaline-DAB method for localization of catalase and semithin (0.25 and 1 micron) sections of plastic-embedded material were examined under an oil immersion objective. The TAS detected the peroxisomal profiles selectively and determined their morphometric parameters automatically. The same parameters were obtained also by morphometric analysis of electron micrographs from the same material. The volume density of peroxisomes determined by TAS in semithin sections of normal liver, after correction for section thickness, is quite close to the corresponding value obtained by morphometry of electron micrographs. The difference is approximately 20%. In animals treated with the hypolipidemic drug bezafibrate, which causes proliferation of peroxisomes, TAS detected readily the increase in volume density of peroxisomes in semithin sections. In comparison with electron microscopy, however, the light-microscopic approach seems to underestimate the proliferation. The lower resolution of the light microscope and overlapping of neighbouring particles in relatively thick sections used for light-microscopic analysis may account for the differences. The present study has demonstrated the usefulness of automatic image analysis in conjunction with selective cytochemical staining of peroxisomes for morphometry of this organelle in rat liver. The light-microscopic approach is not only faster but is also extremely economical by obviating the use of an electron microscope.

  2. Integration of a high-NA light microscope in a scanning electron microscope.

    PubMed

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  3. Microscopic vision modeling method by direct mapping analysis for micro-gripping system with stereo light microscope.

    PubMed

    Wang, Yuezong; Zhao, Zhizhong; Wang, Junshuai

    2016-04-01

    We present a novel and high-precision microscopic vision modeling method, which can be used for 3D data reconstruction in micro-gripping system with stereo light microscope. This method consists of four parts: image distortion correction, disparity distortion correction, initial vision model and residual compensation model. First, the method of image distortion correction is proposed. Image data required by image distortion correction comes from stereo images of calibration sample. The geometric features of image distortions can be predicted though the shape deformation of lines constructed by grid points in stereo images. Linear and polynomial fitting methods are applied to correct image distortions. Second, shape deformation features of disparity distribution are discussed. The method of disparity distortion correction is proposed. Polynomial fitting method is applied to correct disparity distortion. Third, a microscopic vision model is derived, which consists of two models, i.e., initial vision model and residual compensation model. We derive initial vision model by the analysis of direct mapping relationship between object and image points. Residual compensation model is derived based on the residual analysis of initial vision model. The results show that with maximum reconstruction distance of 4.1mm in X direction, 2.9mm in Y direction and 2.25mm in Z direction, our model achieves a precision of 0.01mm in X and Y directions and 0.015mm in Z direction. Comparison of our model with traditional pinhole camera model shows that two kinds of models have a similar reconstruction precision of X coordinates. However, traditional pinhole camera model has a lower precision of Y and Z coordinates than our model. The method proposed in this paper is very helpful for the micro-gripping system based on SLM microscopic vision. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of operating microscope light on brain temperature during craniotomy.

    PubMed

    Gayatri, Parthasarathi; Menon, Girish G; Suneel, Puthuvassery R

    2013-07-01

    Operating microscopes used during neurosurgery are fitted with xenon light. Burn injuries have been reported because of xenon microscope lighting as the intensity of xenon light is 300 W. We designed this study to find out if the light of operating microscope causes an increase in temperature of the brain tissue, which is exposed underneath. Twenty-one adult patients scheduled for elective craniotomies were enrolled. Distal esophageal temperature (T Eso), brain temperature under the microscope light (T Brain), and brain temperature under dura mater (T Dura) were measured continuously at 15-minute intervals during microscope use. The irrigation fluid temperature, room temperature, intensity of the microscope light, and the distance of the microscope from the brain surface were kept constant. The average age of the patients was 44±15 years (18 males and 3 females). The mean duration of microscope use was 140±39 minutes. There were no significant changes in T Brain and T Dura and T Eso over time. T Dura was significantly lower than T Brain both at time 0 and 60 minutes but not at 90 minutes. T Brain was significantly lower than T Eso both at time 0 and 60 minutes but not at 90 minutes. The T Dura remained significantly lower than T Eso at 0, 60, and 90 minutes. Our study shows that there is no significant rise in brain temperature under xenon microscope light up to 120 minutes duration, at intensity of 60% to 70%, from a distance of 20 to 25 cm from the brain surface.

  5. Utility and safety of a novel surgical microscope laser light source

    PubMed Central

    Bakhit, Mudathir S.; Suzuki, Kyouichi; Sakuma, Jun; Fujii, Masazumi; Murakami, Yuta; Ito, Yuhei; Sugano, Tetsuo; Saito, Kiyoshi

    2018-01-01

    Objective Tissue injuries caused by the thermal effects of xenon light microscopes have previously been reported. Due to this, the development of a safe microscope light source became a necessity. A newly developed laser light source is evaluated regarding its effectiveness and safety as an alternative to conventional xenon light source. Methods We developed and tested a new laser light source for surgical microscopes. Four experiments were conducted to compare xenon and laser lights: 1) visual luminance comparison, 2) luminous and light chromaticity measurements, 3) examination and analysis of visual fatigue, and 4) comparison of focal temperature elevation due to light source illumination using porcine muscle samples. Results Results revealed that the laser light could be used at a lower illumination value than the xenon light (p < 0.01). There was no significant difference in visual fatigue status between the laser light and the xenon light. The laser light was superior to the xenon light regarding luminous intensity and color chromaticity. The focal temperature elevation of the muscle samples was significantly higher when irradiated with xenon light in vitro than with laser light (p < 0.01). Conclusion The newly developed laser light source is more efficient and safer than a conventional xenon light source. It lacks harmful ultraviolet waves, has a longer lifespan, a lower focal temperature than that of other light sources, a wide range of brightness and color production, and improved safety for the user’s vision. Further clinical trials are necessary to validate the impact of this new light source on the patient’s outcome and prognosis. PMID:29390016

  6. Light Microscopy Microscope Experiment

    NASA Image and Video Library

    2016-02-04

    Ground testing for the first confocal Light Microscopy Microscope (LMM) Experiment. Procter and Gamble is working with NASA Glenn scientists to prepare for a study that examines product stabilizers in a microgravity environment. The particles in the tube glow orange because they have been fluorescently tagged with a dye that reacts to green laser lights to allow construction of a 3D image point by point. The experiment, which will be sent to the ISS later this year, will help P&G develop improved product stabilizers to extend shelf life and develop more environmentally friendly packaging.

  7. Light microscopic image analysis system to quantify immunoreactive terminal area apposed to nerve cells.

    PubMed

    Wu, L C; D'Amelio, F; Fox, R A; Polyakov, I; Daunton, N G

    1997-06-06

    The present report describes a desktop computer-based method for the quantitative assessment of the area occupied by immunoreactive terminals in close apposition to nerve cells in relation to the perimeter of the cell soma. This method is based on Fast Fourier Transform (FFT) routines incorporated in NIH-Image public domain software. Pyramidal cells of layer V of the somatosensory cortex outlined by GABA immunolabeled terminals were chosen for our analysis. A Leitz Diaplan light microscope was employed for the visualization of the sections. A Sierra Scientific Model 4030 CCD camera was used to capture the images into a Macintosh Centris 650 computer. After preprocessing, filtering was performed on the power spectrum in the frequency domain produced by the FFT operation. An inverse FFT with filter procedure was employed to restore the images to the spatial domain. Pasting of the original image to the transformed one using a Boolean logic operation called 'AND'ing produced an image with the terminals enhanced. This procedure allowed the creation of a binary image using a well-defined threshold of 128. Thus, the terminal area appears in black against a white background. This methodology provides an objective means of measurement of area by counting the total number of pixels occupied by immunoreactive terminals in light microscopic sections in which the difficulties of labeling intensity, size, shape and numerical density of terminals are avoided.

  8. Light microscopic image analysis system to quantify immunoreactive terminal area apposed to nerve cells

    NASA Technical Reports Server (NTRS)

    Wu, L. C.; D'Amelio, F.; Fox, R. A.; Polyakov, I.; Daunton, N. G.

    1997-01-01

    The present report describes a desktop computer-based method for the quantitative assessment of the area occupied by immunoreactive terminals in close apposition to nerve cells in relation to the perimeter of the cell soma. This method is based on Fast Fourier Transform (FFT) routines incorporated in NIH-Image public domain software. Pyramidal cells of layer V of the somatosensory cortex outlined by GABA immunolabeled terminals were chosen for our analysis. A Leitz Diaplan light microscope was employed for the visualization of the sections. A Sierra Scientific Model 4030 CCD camera was used to capture the images into a Macintosh Centris 650 computer. After preprocessing, filtering was performed on the power spectrum in the frequency domain produced by the FFT operation. An inverse FFT with filter procedure was employed to restore the images to the spatial domain. Pasting of the original image to the transformed one using a Boolean logic operation called 'AND'ing produced an image with the terminals enhanced. This procedure allowed the creation of a binary image using a well-defined threshold of 128. Thus, the terminal area appears in black against a white background. This methodology provides an objective means of measurement of area by counting the total number of pixels occupied by immunoreactive terminals in light microscopic sections in which the difficulties of labeling intensity, size, shape and numerical density of terminals are avoided.

  9. Enhancing the performance of the light field microscope using wavefront coding.

    PubMed

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-10-06

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.

  10. Volumetric Light-field Encryption at the Microscopic Scale

    PubMed Central

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu

    2017-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale. PMID:28059149

  11. Volumetric Light-field Encryption at the Microscopic Scale

    NASA Astrophysics Data System (ADS)

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu

    2017-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.

  12. Enhancing the performance of the light field microscope using wavefront coding

    PubMed Central

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-01-01

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective’s back focal plane and at the microscope’s native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain. PMID:25322056

  13. Thin laser light sheet microscope for microbial oceanography

    NASA Astrophysics Data System (ADS)

    Fuchs, Eran; Jaffe, Jules S.; Long, Richard A.; Azam, Farooq

    2002-01-01

    Despite a growing need, oceanographers are limited by existing technological constrains and are unable to observe aquatic microbes in their natural setting. In order to provide a simple and easy to implement solution for such studies, a new Thin Light Sheet Microscope (TLSM) has been developed. The TLSM utilizes a well-defined sheet of laser light, which has a narrow (23 micron) axial dimension over a 1 mm x 1 mm field of view. This light sheet is positioned precisely within the depth of field of the microscope’s objective lens. The technique thus utilizes conventional microscope optics but replaces the illumination system. The advantages of the TLSM are two-fold: First, it concentrates light only where excitation is needed, thus maximizing the efficiency of the illumination source. Secondly, the TLSM maximizes image sharpness while at the same time minimizing the level of background noise. Particles that are not located within the objective's depth of field are not illuminated and therefore do not contribute to an out-of-focus image. Images from a prototype system that used SYBR Green I fluorescence stain in order to localize single bacteria are reported. The bacteria were in a relatively large and undisturbed volume of 4ml, which contained natural seawater. The TLSM can be used for fresh water studies of bacteria with no modification. The microscope permits the observation of interactions at the microscale and has potential to yield insights into how microbes structure pelagic ecosystems.

  14. An integrated single- and two-photon non-diffracting light-sheet microscope

    NASA Astrophysics Data System (ADS)

    Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang

    2018-04-01

    We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.

  15. A light field microscope imaging spectrometer based on the microlens array

    NASA Astrophysics Data System (ADS)

    Yao, Yu-jia; Xu, Feng; Xia, Yin-xiang

    2017-10-01

    A new light field spectrometry microscope imaging system, which was composed by microscope objective, microlens array and spectrometry system was designed in this paper. 5-D information (4-D light field and 1-D spectrometer) of the sample could be captured by the snapshot system in only one exposure, avoiding the motion blur and aberration caused by the scanning imaging process of the traditional imaging spectrometry. Microscope objective had been used as the former group while microlens array used as the posterior group. The optical design of the system was simulated by Zemax, the parameter matching condition between microscope objective and microlens array was discussed significantly during the simulation process. The result simulated in the image plane was analyzed and discussed.

  16. Microscopic fluorescence spectral analysis of basal cell carcinomas

    NASA Astrophysics Data System (ADS)

    He, Qingli; Lui, Harvey; Zloty, David; Cowan, Bryce; Warshawski, Larry; McLean, David I.; Zeng, Haishan

    2007-05-01

    Background and Objectives. Laser-induced autofluorescence (LIAF) is a promising tool for cancer diagnosis. This method is based on the differences in autofluorescence spectra between normal and cancerous tissues, but the underlined mechanisms are not well understood. The objective of this research is to study the microscopic origins and intrinsic fluorescence properties of basal cell carcinoma (BCC) for better understanding of the mechanism of in vivo fluorescence detection and margin delineation of BCCs on skin patients. A home-made micro- spectrophotometer (MSP) system was used to image the fluorophore distribution and to measure the fluorescence spectra of various microscopic structures and regions on frozen tissue sections. Materials and Methods. BCC tissue samples were obtained from 14 patients undergoing surgical resections. After surgical removal, each tissue sample was immediately embedded in OCT medium and snap-frozen in liquid nitrogen. The frozen tissue block was then cut into 16-μm thickness sections using a cryostat microtome and placed on microscopic glass slides. The sections for fluorescence study were kept unstained and unfixed, and then analyzed by the MSP system. The adjacent tissue sections were H&E stained for histopathological examination and also served to help identify various microstructures on the adjacent unstained sections. The MSP system has all the functions of a conventional microscope, plus the ability of performing spectral analysis on selected micro-areas of a microscopic sample. For tissue fluorescence analysis, 442nm He-Cd laser light is used to illuminate and excite the unstained tissue sections. A 473-nm long pass filter was inserted behind the microscope objective to block the transmitted laser light while passing longer wavelength fluorescence signal. The fluorescence image of the sample can be viewed through the eyepieces and also recorded by a CCD camera. An optical fiber is mounted onto the image plane of the photograph

  17. Fiber optic light collection system for scanning-tunneling-microscope-induced light emission.

    PubMed

    Watkins, Neil J; Long, James P; Kafafi, Zakya H; Mäkinen, Antti J

    2007-05-01

    We report a compact light collection scheme suitable for retrofitting a scanning tunneling microscope (STM) for STM-induced light emission experiments. The approach uses a pair of optical fibers with large core diameters and high numerical apertures to maximize light collection efficiency and to moderate the mechanical precision required for alignment. Bench tests indicate that efficiency reduction is almost entirely due to reflective losses at the fiber ends, while losses due to fiber misalignment have virtually been eliminated. Photon-map imaging with nanometer features is demonstrated on a stepped Au(111) surface with signal rates exceeding 10(4) counts/s.

  18. Studying aerosol light scattering based on aspect ratio distribution observed by fluorescence microscope.

    PubMed

    Li, Li; Zheng, Xu; Li, Zhengqiang; Li, Zhanhua; Dubovik, Oleg; Chen, Xingfeng; Wendisch, Manfred

    2017-08-07

    Particle shape is crucial to the properties of light scattered by atmospheric aerosol particles. A method of fluorescence microscopy direct observation was introduced to determine the aspect ratio distribution of aerosol particles. The result is comparable with that of the electron microscopic analysis. The measured aspect ratio distribution has been successfully applied in modeling light scattering and further in simulation of polarization measurements of the sun/sky radiometer. These efforts are expected to improve shape retrieval from skylight polarization by using directly measured aspect ratio distribution.

  19. 3D widefield light microscope image reconstruction without dyes

    NASA Astrophysics Data System (ADS)

    Larkin, S.; Larson, J.; Holmes, C.; Vaicik, M.; Turturro, M.; Jurkevich, A.; Sinha, S.; Ezashi, T.; Papavasiliou, G.; Brey, E.; Holmes, T.

    2015-03-01

    3D image reconstruction using light microscope modalities without exogenous contrast agents is proposed and investigated as an approach to produce 3D images of biological samples for live imaging applications. Multimodality and multispectral imaging, used in concert with this 3D optical sectioning approach is also proposed as a way to further produce contrast that could be specific to components in the sample. The methods avoid usage of contrast agents. Contrast agents, such as fluorescent or absorbing dyes, can be toxic to cells or alter cell behavior. Current modes of producing 3D image sets from a light microscope, such as 3D deconvolution algorithms and confocal microscopy generally require contrast agents. Zernike phase contrast (ZPC), transmitted light brightfield (TLB), darkfield microscopy and others can produce contrast without dyes. Some of these modalities have not previously benefitted from 3D image reconstruction algorithms, however. The 3D image reconstruction algorithm is based on an underlying physical model of scattering potential, expressed as the sample's 3D absorption and phase quantities. The algorithm is based upon optimizing an objective function - the I-divergence - while solving for the 3D absorption and phase quantities. Unlike typical deconvolution algorithms, each microscope modality, such as ZPC or TLB, produces two output image sets instead of one. Contrast in the displayed image and 3D renderings is further enabled by treating the multispectral/multimodal data as a feature set in a mathematical formulation that uses the principal component method of statistics.

  20. Mechanism of Prism-Coupled Scanning Tunneling Microscope Light Emission

    NASA Astrophysics Data System (ADS)

    Iida, Wataru; Ahamed, Jamal U.; Katano, Satoshi; Uehara, Yoichi

    2011-09-01

    We have investigated the mechanism of scanning tunneling microscope light emission (STM-LE) in a prism-coupled configuration using finite difference time domain analysis. In this configuration, the sample is a metallic thin film evaporated on the bottom surface of a hemispherical glass prism. STM light emitted into the prism (prism-side emission) through the metallic film is measured. Since both localized surface plasmons (LSP) and surface plasmon polaritons (SPP) contribute to prism-side emission, this emission is stronger than that in conventional STM-LE measured from the sample surface side, which is radiated by LSP alone. We show that the spatial resolution of prism-side emission is determined not by the propagation length of SPP, but by the lateral size of LSP, similarly to conventional (i.e., tip side) STM-LE. Thus, we conclude that, by using the prism-coupled configuration, the signal level of STM-LE improves without the loss of spatial resolution attained in tip side emission.

  1. Microscopic theory of linear light scattering from mesoscopic media and in near-field optics.

    PubMed

    Keller, Ole

    2005-08-01

    On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scattering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-field calculation which appears from this approach is valid down to the microscopic region. Previous theories based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a microscopic potential description of the scattering process is established. In combination with the use of microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic conductivity response tensor enables one to establish a clear physical picture of the origin of local-field phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its generality in microscopic physics pointed out.

  2. Laser speckle contrast imaging using light field microscope approach

    NASA Astrophysics Data System (ADS)

    Ma, Xiaohui; Wang, Anting; Ma, Fenghua; Wang, Zi; Ming, Hai

    2018-01-01

    In this paper, a laser speckle contrast imaging (LSCI) system using light field (LF) microscope approach is proposed. As far as we known, it is first time to combine LSCI with LF. To verify this idea, a prototype consists of a modified LF microscope imaging system and an experimental device was built. A commercially used Lytro camera was modified for microscope imaging. Hollow glass tubes with different depth fixed in glass dish were used to simulate the vessels in brain and test the performance of the system. Compared with conventional LSCI, three new functions can be realized by using our system, which include refocusing, extending the depth of field (DOF) and gathering 3D information. Experiments show that the principle is feasible and the proposed system works well.

  3. AccessScope project: Accessible light microscope for users with upper limb mobility or visual impairments.

    PubMed

    Mansoor, Awais; Ahmed, Wamiq M; Samarapungavan, Ala; Cirillo, John; Schwarte, David; Robinson, J Paul; Duerstock, Bradley S

    2010-01-01

    A web-based application was developed to remotely view slide specimens and control all functions of a research-level light microscopy workstation, called AccessScope. Students and scientists with upper limb mobility and visual impairments are often unable to use a light microscope by themselves and must depend on others in its operation. Users with upper limb mobility impairments and low vision were recruited to assist in the design process of the AccessScope personal computer (PC) user interface. Participants with these disabilities were evaluated in their ability to use AccessScope to perform microscopical tasks. AccessScope usage was compared with inspecting prescanned slide images by grading participants' identification and understanding of histological features and knowledge of microscope operation. With AccessScope subjects were able to independently perform common light microscopy functions through an Internet browser by employing different PC pointing devices or accessibility software according to individual abilities. Subjects answered more histology and microscope usage questions correctly after first participating in an AccessScope test session. AccessScope allowed users with upper limb or visual impairments to successfully perform light microscopy without assistance. This unprecedented capability is crucial for students and scientists with disabilities to perform laboratory coursework or microscope-based research and pursue science, technology, engineering, and mathematics fields.

  4. Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers.

    PubMed

    Toshchevikov, V; Saphiannikova, M; Heinrich, G

    2009-04-16

    We propose a microscopic theory of light-induced deformation of side-chain azobenzene polymers taking into account the internal structure of polymer chains. Our theory is based on the fact that interaction of chromophores with the polarized light leads to the orientation anisotropy of azobenzene macromolecules which is accompanied by the appearance of mechanical stress. It is the first microscopic theory which provides the value of the light-induced stress larger than the yield stress. This result explains a possibility for the inscription of surface relief gratings in glassy side-chain azobenzene polymers. For some chemical architectures, elongation of a sample demonstrates a nonmonotonic behavior with the light intensity and can change its sign (a stretched sample starts to be uniaxially compressed), in agreement with experiments. Using a viscoplastic approach, we show that the irreversible strain of a sample, which remains after the light is switched off, decreases with increasing temperature and can disappear at certain temperature below the glass transition temperature. This theoretical prediction is also confirmed by recent experiments.

  5. Hyperspectral microscopic analysis of normal, benign and carcinoma microarray tissue sections

    NASA Astrophysics Data System (ADS)

    Maggioni, Mauro; Davis, Gustave L.; Warner, Frederick J.; Geshwind, Frank B.; Coppi, Andreas C.; DeVerse, Richard A.; Coifman, Ronald R.

    2006-02-01

    We apply a unique micro-optoelectromechanical tuned light source and new algorithms to the hyper-spectral microscopic analysis of human colon biopsies. The tuned light prototype (Plain Sight Systems Inc.) transmits any combination of light frequencies, range 440nm 700nm, trans-illuminating H and E stained tissue sections of normal (N), benign adenoma (B) and malignant carcinoma (M) colon biopsies, through a Nikon Biophot microscope. Hyper-spectral photomicrographs, randomly collected 400X magnication, are obtained with a CCD camera (Sensovation) from 59 different patient biopsies (20 N, 19 B, 20 M) mounted as a microarray on a single glass slide. The spectra of each pixel are normalized and analyzed to discriminate among tissue features: gland nuclei, gland cytoplasm and lamina propria/lumens. Spectral features permit the automatic extraction of 3298 nuclei with classification as N, B or M. When nuclei are extracted from each of the 59 biopsies the average classification among N, B and M nuclei is 97.1%; classification of the biopsies, based on the average nuclei classification, is 100%. However, when the nuclei are extracted from a subset of biopsies, and the prediction is made on nuclei in the remaining biopsies, there is a marked decrement in performance to 60% across the 3 classes. Similarly the biopsy classification drops to 54%. In spite of these classification differences, which we believe are due to instrument and biopsy normalization issues, hyper-spectral analysis has the potential to achieve diagnostic efficiency needed for objective microscopic diagnosis.

  6. Setting Up a Simple Light Sheet Microscope for In Toto Imaging of C. elegans Development

    PubMed Central

    Bertrand, Vincent; Lenne, Pierre-François

    2014-01-01

    Fast and low phototoxic imaging techniques are pre-requisite to study the development of organisms in toto. Light sheet based microscopy reduces photo-bleaching and phototoxic effects compared to confocal microscopy, while providing 3D images with subcellular resolution. Here we present the setup of a light sheet based microscope, which is composed of an upright microscope and a small set of opto-mechanical elements for the generation of the light sheet. The protocol describes how to build, align the microscope and characterize the light sheet. In addition, it details how to implement the method for in toto imaging of C. elegans embryos using a simple observation chamber. The method allows the capture of 3D two-colors time-lapse movies over few hours of development. This should ease the tracking of cell shape, cell divisions and tagged proteins over long periods of time. PMID:24836407

  7. An improved light microscopical histoquantitative method for the stereological analysis of the rat ventral prostate lobe.

    PubMed

    Romppanen, T; Huttunen, E; Helminen, H J

    1980-07-01

    An improved light microscopical histoquantitative method for the analysis of the stereologic structure of the ventral lobe of the rat prostate is introduced. From paraffin-embedded tissue sections, volumetric fractions of the acinar parenchyma, the glandular epithelium, the glandular lumen, and the interacinar tissue were determined. The surface density of the glandular epithelium and the length density of the glandular tubules per cubic millimeter of tissue were also calculated. The corresponding total amount/quantity of each tissue compartment was computed for the whole ventral lobe based on the weight of the lobe. Using established stereologic laws, the height of the epithelium, the diameter of the glandular tubules, the free distance between the glandular tubules, and the distance between the glandular centers (means) were determined. The fitness of the method was tested by analyzing, in addition to normal prostates, ventral prostates of rats castrated 30 days before sacrifice.

  8. Epifluorescence light collection for multiphoton microscopic endoscopy

    NASA Astrophysics Data System (ADS)

    Brown, Christopher M.; Rivera, David R.; Xu, Chris; Webb, Watt W.

    2011-03-01

    Multiphoton microscopic endoscopy (MPM-E) is a promising medical in vivo diagnostic imaging technique because it captures intrinsic fluorescence and second harmonic generation signals to reveal anatomical and histological information about disease states in tissue. However, maximizing light collection from multiphoton endoscopes remains a challenge: weak nonlinear emissions from endogenous structures, miniature optics, large imaging depths, and light scattering in tissue all hamper light collection. The quantity of light that may be collected using a dual-clad fiber system from scattering phantoms that mimic the properties of the in vivo environment is measured. In this experiment, 800nm excitation light from a Ti:Sapphire laser is dispersion compensated and focused through a SM800 optical fiber and lens system into the tissue phantom. Emission light from the phantom passes through the lens system, reflects off the dichroic and is then collected by a second optical fiber actuated by a micromanipulator. The lateral position of the collection fiber varies, measuring the distribution of emitted light 2000μm on either side of the focal point reimaged to the object plane. This spatial collection measurement is performed at depths up to 200μm from the phantom surface. The tissue phantoms are composed of a 15.8 μM fluorescein solution mixed with microspheres, approximating the scattering properties of human bladder and dermis tissue. Results show that commercially available dual-clad optical fibers collect more than 47% of the total emission returning to the object plane from both phantoms. Based on these results, initial MPM-E devices will image the surface of epithelial tissues.

  9. From Animaculum to single molecules: 300 years of the light microscope.

    PubMed

    Wollman, Adam J M; Nudd, Richard; Hedlund, Erik G; Leake, Mark C

    2015-04-01

    Although not laying claim to being the inventor of the light microscope, Antonj van Leeuwenhoek (1632-1723) was arguably the first person to bring this new technological wonder of the age properly to the attention of natural scientists interested in the study of living things (people we might now term 'biologists'). He was a Dutch draper with no formal scientific training. From using magnifying glasses to observe threads in cloth, he went on to develop over 500 simple single lens microscopes (Baker & Leeuwenhoek 1739 Phil. Trans. 41, 503-519. (doi:10.1098/rstl.1739.0085)) which he used to observe many different biological samples. He communicated his finding to the Royal Society in a series of letters (Leeuwenhoek 1800 The select works of Antony Van Leeuwenhoek, containing his microscopical discoveries in many of the works of nature, vol. 1) including the one republished in this edition of Open Biology. Our review here begins with the work of van Leeuwenhoek before summarizing the key developments over the last ca 300 years, which has seen the light microscope evolve from a simple single lens device of van Leeuwenhoek's day into an instrument capable of observing the dynamics of single biological molecules inside living cells, and to tracking every cell nucleus in the development of whole embryos and plants.

  10. From Animaculum to single molecules: 300 years of the light microscope

    PubMed Central

    Wollman, Adam J. M.; Nudd, Richard; Hedlund, Erik G.; Leake, Mark C.

    2015-01-01

    Although not laying claim to being the inventor of the light microscope, Antonj van Leeuwenhoek (1632–1723) was arguably the first person to bring this new technological wonder of the age properly to the attention of natural scientists interested in the study of living things (people we might now term ‘biologists’). He was a Dutch draper with no formal scientific training. From using magnifying glasses to observe threads in cloth, he went on to develop over 500 simple single lens microscopes (Baker & Leeuwenhoek 1739 Phil. Trans. 41, 503–519. (doi:10.1098/rstl.1739.0085)) which he used to observe many different biological samples. He communicated his finding to the Royal Society in a series of letters (Leeuwenhoek 1800 The select works of Antony Van Leeuwenhoek, containing his microscopical discoveries in many of the works of nature, vol. 1) including the one republished in this edition of Open Biology. Our review here begins with the work of van Leeuwenhoek before summarizing the key developments over the last ca 300 years, which has seen the light microscope evolve from a simple single lens device of van Leeuwenhoek's day into an instrument capable of observing the dynamics of single biological molecules inside living cells, and to tracking every cell nucleus in the development of whole embryos and plants. PMID:25924631

  11. Film thickness measurement based on nonlinear phase analysis using a Linnik microscopic white-light spectral interferometer.

    PubMed

    Guo, Tong; Chen, Zhuo; Li, Minghui; Wu, Juhong; Fu, Xing; Hu, Xiaotang

    2018-04-20

    Based on white-light spectral interferometry and the Linnik microscopic interference configuration, the nonlinear phase components of the spectral interferometric signal were analyzed for film thickness measurement. The spectral interferometric signal was obtained using a Linnik microscopic white-light spectral interferometer, which includes the nonlinear phase components associated with the effective thickness, the nonlinear phase error caused by the double-objective lens, and the nonlinear phase of the thin film itself. To determine the influence of the effective thickness, a wavelength-correction method was proposed that converts the effective thickness into a constant value; the nonlinear phase caused by the effective thickness can then be determined and subtracted from the total nonlinear phase. A method for the extraction of the nonlinear phase error caused by the double-objective lens was also proposed. Accurate thickness measurement of a thin film can be achieved by fitting the nonlinear phase of the thin film after removal of the nonlinear phase caused by the effective thickness and by the nonlinear phase error caused by the double-objective lens. The experimental results demonstrated that both the wavelength-correction method and the extraction method for the nonlinear phase error caused by the double-objective lens improve the accuracy of film thickness measurements.

  12. Real-time restoration of white-light confocal microscope optical sections

    PubMed Central

    Balasubramanian, Madhusudhanan; Iyengar, S. Sitharama; Beuerman, Roger W.; Reynaud, Juan; Wolenski, Peter

    2009-01-01

    Confocal microscopes (CM) are routinely used for building 3-D images of microscopic structures. Nonideal imaging conditions in a white-light CM introduce additive noise and blur. The optical section images need to be restored prior to quantitative analysis. We present an adaptive noise filtering technique using Karhunen–Loéve expansion (KLE) by the method of snapshots and a ringing metric to quantify the ringing artifacts introduced in the images restored at various iterations of iterative Lucy–Richardson deconvolution algorithm. The KLE provides a set of basis functions that comprise the optimal linear basis for an ensemble of empirical observations. We show that most of the noise in the scene can be removed by reconstructing the images using the KLE basis vector with the largest eigenvalue. The prefiltering scheme presented is faster and does not require prior knowledge about image noise. Optical sections processed using the KLE prefilter can be restored using a simple inverse restoration algorithm; thus, the methodology is suitable for real-time image restoration applications. The KLE image prefilter outperforms the temporal-average prefilter in restoring CM optical sections. The ringing metric developed uses simple binary morphological operations to quantify the ringing artifacts and confirms with the visual observation of ringing artifacts in the restored images. PMID:20186290

  13. A multi-modal stereo microscope based on a spatial light modulator.

    PubMed

    Lee, M P; Gibson, G M; Bowman, R; Bernet, S; Ritsch-Marte, M; Phillips, D B; Padgett, M J

    2013-07-15

    Spatial Light Modulators (SLMs) can emulate the classic microscopy techniques, including differential interference (DIC) contrast and (spiral) phase contrast. Their programmability entails the benefit of flexibility or the option to multiplex images, for single-shot quantitative imaging or for simultaneous multi-plane imaging (depth-of-field multiplexing). We report the development of a microscope sharing many of the previously demonstrated capabilities, within a holographic implementation of a stereo microscope. Furthermore, we use the SLM to combine stereo microscopy with a refocusing filter and with a darkfield filter. The instrument is built around a custom inverted microscope and equipped with an SLM which gives various imaging modes laterally displaced on the same camera chip. In addition, there is a wide angle camera for visualisation of a larger region of the sample.

  14. Automated Diatom Analysis Applied to Traditional Light Microscopy: A Proof-of-Concept Study

    NASA Astrophysics Data System (ADS)

    Little, Z. H. L.; Bishop, I.; Spaulding, S. A.; Nelson, H.; Mahoney, C.

    2017-12-01

    Diatom identification and enumeration by high resolution light microscopy is required for many areas of research and water quality assessment. Such analyses, however, are both expertise and labor-intensive. These challenges motivate the need for an automated process to efficiently and accurately identify and enumerate diatoms. Improvements in particle analysis software have increased the likelihood that diatom enumeration can be automated. VisualSpreadsheet software provides a possible solution for automated particle analysis of high-resolution light microscope diatom images. We applied the software, independent of its complementary FlowCam hardware, to automated analysis of light microscope images containing diatoms. Through numerous trials, we arrived at threshold settings to correctly segment 67% of the total possible diatom valves and fragments from broad fields of view. (183 light microscope images were examined containing 255 diatom particles. Of the 255 diatom particles present, 216 diatoms valves and fragments of valves were processed, with 170 properly analyzed and focused upon by the software). Manual analysis of the images yielded 255 particles in 400 seconds, whereas the software yielded a total of 216 particles in 68 seconds, thus highlighting that the software has an approximate five-fold efficiency advantage in particle analysis time. As in past efforts, incomplete or incorrect recognition was found for images with multiple valves in contact or valves with little contrast. The software has potential to be an effective tool in assisting taxonomists with diatom enumeration by completing a large portion of analyses. Benefits and limitations of the approach are presented to allow for development of future work in image analysis and automated enumeration of traditional light microscope images containing diatoms.

  15. Microcircuit failure analysis using the SEM. [Scanning Electron Microscopes

    NASA Technical Reports Server (NTRS)

    Nicolas, D. P.

    1974-01-01

    The scanning electron microscope adds a new dimension to the knowledge that can be obtained from a failed microcircuit. When used with conventional techniques, SEM assists and clarifies the analysis, but it does not replace light microscopy. The most advantageous features for microcircuit analysis are long working distances and great depth of field. Manufacturer related failure modes of microcircuits are metallization defects, poor bonding, surface and particle contamination, and design and fabrication faults. User related failure modes are caused by abuse, such as overstress. The Physics of Failure Procedure followed by the Astrionics Laboratory in failure analysis is described, which is designed to obtain maximum information available from each step.

  16. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications.

    PubMed

    Mudanyali, Onur; Tseng, Derek; Oh, Chulwoo; Isikman, Serhan O; Sencan, Ikbal; Bishara, Waheb; Oztoprak, Cetin; Seo, Sungkyu; Khademhosseini, Bahar; Ozcan, Aydogan

    2010-06-07

    Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing approximately 46 grams with dimensions smaller than 4.2 cm x 4.2 cm x 5.8 cm that achieves sub-cellular resolution over a large field of view of approximately 24 mm(2). This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings.

  17. Modular low-light microscope for imaging cellular bioluminescence and radioluminescence

    PubMed Central

    Kim, Tae Jin; Türkcan, Silvan; Pratx, Guillem

    2017-01-01

    Low-light microscopy methods are receiving increased attention as new applications have emerged. One such application is to allow longitudinal imaging of light-sensitive cells with no phototoxicity and no photobleaching of fluorescent biomarkers. Another application is for imaging signals that are inherently dim and undetectable using standard microscopy, such as bioluminescence, chemiluminescence, or radioluminescence. In this protocol, we provide instructions on how to build a modular low-light microscope (1-4 d) by coupling two microscope objective lenses, back-to-back from each other, using standard optomechanical components. We also provide directions on how to image dim signals such as radioluminescence (1-1.5 h), bioluminescence (∼30 min) and low-excitation fluorescence (∼15 min). In particular, radioluminescence microscopy is explained in detail as it is a newly developed technique, which enables the study of small molecule transport (eg. radiolabeled drugs, metabolic precursors, and nuclear medicine contrast agents) by single cells without perturbing endogenous biochemical processes. In this imaging technique, a scintillator crystal (eg. CdWO4) is placed in close proximity to the radiolabeled cells, where it converts the radioactive decays into optical flashes detectable using a sensitive camera. Using the image reconstruction toolkit provided in this protocol, the flashes can be reconstructed to yield high-resolution image of the radiotracer distribution. With appropriate timing, the three aforementioned imaging modalities may be performed altogether on a population of live cells, allowing the user to perform parallel functional studies of cell heterogeneity at the single-cell level. PMID:28426025

  18. The HVAC Challenges of Upgrading an Old Lab for High-end Light Microscopes

    PubMed Central

    Richard, R.; Martone, P.; Callahan, L.M.

    2014-01-01

    The University of Rochester Medical Center forms the centerpiece of the University of Rochester's health research, teaching, patient care, and community outreach missions. Within this large facility of over 5 million square feet, demolition and remodeling of existing spaces is a constant activity. With more than $145 million in federal research funding, lab space is frequently repurposed and renovated to support this work. The URMC Medical Center Facilities Organization supporting small to medium space renovations is constantly challenged and constrained by the existing mechanical infrastructure and budgets to deliver a renovated space that functions within the equipment environmental parameters. One recent project, sponsored by the URMC Shared Resources Laboratory, demonstrates these points. The URMC Light Microscopy Shared Resource Laboratory requested renovation of a 121 sq. ft. room in a 40 year old building which would enable placement of a laser capture microdissection microscope and a Pascal 5 laser scanning confocal microscope with the instruments separated by a blackout curtain. This poster discusses the engineering approach implemented to bring an older lab into the environmental specifications needed for the proper operation of the high-end light microscopes.

  19. Inverted light-sheet microscope for imaging mouse pre-implantation development.

    PubMed

    Strnad, Petr; Gunther, Stefan; Reichmann, Judith; Krzic, Uros; Balazs, Balint; de Medeiros, Gustavo; Norlin, Nils; Hiiragi, Takashi; Hufnagel, Lars; Ellenberg, Jan

    2016-02-01

    Despite its importance for understanding human infertility and congenital diseases, early mammalian development has remained inaccessible to in toto imaging. We developed an inverted light-sheet microscope that enabled us to image mouse embryos from zygote to blastocyst, computationally track all cells and reconstruct a complete lineage tree of mouse pre-implantation development. We used this unique data set to show that the first cell fate specification occurs at the 16-cell stage.

  20. Microscopic Analysis of Activated Sludge. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on the use of a compound microscope to analyze microscope communities, present in wastewater treatment processes, for operational control. Course topics include: sampling techniques, sample handling, laboratory analysis, identification of organisms, data interpretation, and use of the compound microscope.…

  1. Low efficiency upconversion nanoparticles for high-resolution coalignment of near-infrared and visible light paths on a light microscope

    PubMed Central

    Sundaramoorthy, Sriramkumar; Badaracco, Adrian Garcia; Hirsch, Sophia M.; Park, Jun Hong; Davies, Tim; Dumont, Julien; Shirasu-Hiza, Mimi; Kummel, Andrew C.; Canman, Julie C.

    2017-01-01

    The combination of near infrared (NIR) and visible wavelengths in light microscopy for biological studies is increasingly common. For example, many fields of biology are developing the use of NIR for optogenetics, in which an NIR laser induces a change in gene expression and/or protein function. One major technical barrier in working with both NIR and visible light on an optical microscope is obtaining their precise coalignment at the imaging plane position. Photon upconverting particles (UCPs) can bridge this gap as they are excited by NIR light but emit in the visible range via an anti-Stokes luminescence mechanism. Here, two different UCPs have been identified, high-efficiency micro540-UCPs and lower efficiency nano545-UCPs, that respond to NIR light and emit visible light with high photostability even at very high NIR power densities (>25,000 Suns). Both of these UCPs can be rapidly and reversibly excited by visible and NIR light and emit light at visible wavelengths detectable with standard emission settings used for Green Fluorescent Protein (GFP), a commonly used genetically-encoded fluorophore. However, the high efficiency micro540-UCPs were suboptimal for NIR and visible light coalignment, due to their larger size and spatial broadening from particle-to-particle energy transfer consistent with a long lived excited state and saturated power dependence. In contrast, the lower efficiency nano-UCPs were superior for precise coalignment of the NIR beam with the visible light path (~2 µm versus ~8 µm beam broadening respectively) consistent with limited particle-to-particle energy transfer, superlinear power dependence for emission, and much smaller particle size. Furthermore, the nano-UCPs were superior to a traditional two-camera method for NIR and visible light path alignment in an in vivo Infrared-Laser-Evoked Gene Operator (IR-LEGO) optogenetics assay in the budding yeast S. cerevisiae. In summary, nano-UCPs are powerful new tools for coaligning NIR and

  2. Microscopic video observation of capillary vessel systems using diffuse back lighting

    NASA Astrophysics Data System (ADS)

    Sakai, Minako; Arai, Hiroki; Iwai, Toshiaki

    2017-04-01

    We have been developing a simple and practical video microscopy system based on absorption spectra of biological substance to perform spectroscopic observation of living tissues. The diffuse backlighting effect is actively used in the developed system, which is generated by multiple light scattering in the tissue. It is demonstrated that the light specularly reflected from the skin surface can be completely suppressed in the microscopic observation and the biological activity of the capillary vessel systems distributed under the skin can be successfully observed. As a result, we can confirm the effectiveness of the video microscopy system using diffuse backlighting and the applicability of our developed system.

  3. Confocal laser scanning microscopic photoconversion: a new method to stabilize fluorescently labeled cellular elements for electron microscopic analysis.

    PubMed

    Colello, Raymond J; Tozer, Jordan; Henderson, Scott C

    2012-01-01

    Photoconversion, the method by which a fluorescent dye is transformed into a stable, osmiophilic product that can be visualized by electron microscopy, is the most widely used method to enable the ultrastructural analysis of fluorescently labeled cellular structures. Nevertheless, the conventional method of photoconversion using widefield fluorescence microscopy requires long reaction times and results in low-resolution cell targeting. Accordingly, we have developed a photoconversion method that ameliorates these limitations by adapting confocal laser scanning microscopy to the procedure. We have found that this method greatly reduces photoconversion times, as compared to conventional wide field microscopy. Moreover, region-of-interest scanning capabilities of a confocal microscope facilitate the targeting of the photoconversion process to individual cellular or subcellular elements within a fluorescent field. This reduces the area of the cell exposed to light energy, thereby reducing the ultrastructural damage common to this process when widefield microscopes are employed. © 2012 by John Wiley & Sons, Inc.

  4. Polarized light and scanning electron microscopic investigation of enamel hypoplasia in primary teeth.

    PubMed

    Sabel, Nina; Klingberg, Gunilla; Dietz, Wolfram; Nietzsche, Sandor; Norén, Jörgen G

    2010-01-01

    Enamel hypoplasia is a developmental disturbance during enamel formation, defined as a macroscopic defect in the enamel, with a reduction of the enamel thickness with rounded, smooth borders. Information on the microstructural level is still limited, therefore further studies are of importance to better understand the mechanisms behind enamel hypoplasia. To study enamel hypoplasia in primary teeth by means of polarized light microscopy and scanning electron microscopy. Nineteen primary teeth with enamel hypoplasia were examined in a polarized light microscope and in a scanning electron microscope. The cervical and incisal borders of the enamel hypoplasia had a rounded appearance, as the prisms in the rounded cervical area of the hypoplasia were bent. The rounded borders had a normal surface structure whereas the base of the defects appeared rough and porous. Morphological findings in this study indicate that the aetiological factor has a short duration and affects only certain ameloblasts. The bottom of the enamel hypoplasia is porous and constitutes possible pathways for bacteria into the dentin.

  5. 3D geometric phase analysis and its application in 3D microscopic morphology measurement

    NASA Astrophysics Data System (ADS)

    Zhu, Ronghua; Shi, Wenxiong; Cao, Quankun; Liu, Zhanwei; Guo, Baoqiao; Xie, Huimin

    2018-04-01

    Although three-dimensional (3D) morphology measurement has been widely applied on the macro-scale, there is still a lack of 3D measurement technology on the microscopic scale. In this paper, a microscopic 3D measurement technique based on the 3D-geometric phase analysis (GPA) method is proposed. In this method, with machine vision and phase matching, the traditional GPA method is extended to three dimensions. Using this method, 3D deformation measurement on the micro-scale can be realized using a light microscope. Simulation experiments were conducted in this study, and the results demonstrate that the proposed method has a good anti-noise ability. In addition, the 3D morphology of the necking zone in a tensile specimen was measured, and the results demonstrate that this method is feasible.

  6. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes.

    PubMed

    Ishmukhametov, Robert R; Russell, Aidan N; Wheeler, Richard J; Nord, Ashley L; Berry, Richard M

    2016-02-08

    Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.

  7. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes

    NASA Astrophysics Data System (ADS)

    Ishmukhametov, Robert R.; Russell, Aidan N.; Wheeler, Richard J.; Nord, Ashley L.; Berry, Richard M.

    2016-02-01

    Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.

  8. The Light Microscopy Module: An On-Orbit Multi-User Microscope Facility

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Snead, John H.

    2002-01-01

    The Light Microscopy Module (LMM) is planned as a remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and operation of fluids and biology experiments within the Fluids and Combustion Facility (FCF) Fluids Integrated Rack (FIR) on the International Space Station (ISS). The LMM will be the first integrated payload with the FIR to conduct four fluid physics experiments. A description of the LMM diagnostic capabilities, including video microscopy, interferometry, laser tweezers, confocal, and spectrophotometry, will be provided.

  9. A line scanned light-sheet microscope with phase shaped self-reconstructing beams.

    PubMed

    Fahrbach, Florian O; Rohrbach, Alexander

    2010-11-08

    We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.

  10. Development of a Hybrid Atomic Force Microscopic Measurement System Combined with White Light Scanning Interferometry

    PubMed Central

    Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J.; Chen, Jinping; Fu, Xing; Hu, Xiaotang

    2012-01-01

    A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system’s dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system’s good measurement performance and feasibility of the hybrid measurement method. PMID:22368463

  11. Development of a hybrid atomic force microscopic measurement system combined with white light scanning interferometry.

    PubMed

    Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J; Chen, Jinping; Fu, Xing; Hu, Xiaotang

    2012-01-01

    A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system's dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system's good measurement performance and feasibility of the hybrid measurement method.

  12. Microwave-accelerated cytochemical stains for the image analysis and the electron microscopic examination of light microscopy diagnostic slides.

    PubMed

    Hanker, J; Giammara, B

    1993-01-01

    Recent studies in our laboratories have shown how microwave (MW) irradiation can accelerate a number of tissue-processing techniques, especially staining, to aid in the preparation of single specimens on glass microscope slides or coverslips for examination by light microscopy (and electron microscopy, if required) for diagnostic purposes. Techniques have been developed, which give permanently stained preparations, that can be studied initially by light microscopy, their areas of interest mapped, and computer-automated image analysis performed to obtain quantitative information. This is readily performed after MW-accelerated staining with silver methenamine by the Giammara-Hanker PATS or PATS-TS reaction. This variation of the PAS reaction gives excellent markers for specific infectious agents such as lipopolysaccharides for gram-negative bacteria or mannans for fungi. It is also an excellent stain for glycogen and basement membranes and an excellent marker for type III collagen or reticulin in the endoneurium or perineurium of peripheral nerve or in the capillary walls. Our improved MW-accelerated Feulgen reaction with silver methenamine for nuclear DNA is useful to show the nuclei of bacteria and fungi as well as of cells they are infecting. Improved coating and penetration of tissue surfaces by thiocarbohydrazide bridging of ruthenium red, applied under MW-acceleration, render biologic specimens sufficiently conductive for SEM so that sputter coating with gold is unnecessary. The specimens treated with these highly visible electron-opaque stains can be screened with the light microscope after mounting in polyethylene glycol (PEG) and the structures or areas selected for EM study are mapped with a Micro-Locator slide. After removal of the water soluble PEG the specimens are remounted in the usual EM media for scanning electron microscopy (SEM) or transmission electron microscopy (TEM) study of the mapped areas. By comparing duplicate smears from areas of

  13. Operating microscope light-induced phototoxic maculopathy after transscleral sutured posterior chamber intraocular lens implantation.

    PubMed

    Kweon, Eui Yong; Ahn, Min; Lee, Dong Wook; You, In Cheon; Kim, Min Jung; Cho, Nam Chun

    2009-01-01

    The purpose of this study is to report the features of operating microscope light-induced retinal phototoxic maculopathy after transscleral sutured posterior chamber intraocular lens (TSS PC-IOL) implantation. The charts of 118 patients who underwent TSS PC-IOL implantation surgery at Chonbuk National University Hospital (Jeonju, Korea) between March 1999 and February 2008 were retrospectively reviewed. Fourteen patients underwent combined 3-port pars plana vitrectomy and TSS PC-IOL implantation (vitrectomy group), and 104 patients underwent TSS PC-IOL implantation only (nonvitrectomy group). All surgeries were performed under the same coaxial illuminated microscope. All diagnoses were confirmed through careful fundus examination and fluorescein angiography (FA). Diagnoses of retinal phototoxic maculopathy were established in 10 (8.47%) of 118 TSS PC-IOL implantation cases. Phototoxic maculopathy occurred more frequently in the vitrectomy group than in the nonvitrectomy group (6/14 versus 4/104, respectively; P < 0.001, chi-square = 24.21). Affected patients reported decreased vision and were found to have coarse alterations of the retinal pigment epithelium (RPE). In 5 of the phototoxic maculopathy cases (50%), the visual acuity was 20/200 or worse. Operating microscope light-induced retinal phototoxic maculopathy can occur more frequently after TSS PC-IOL implantation than after casual cataract surgery, especially when TSS PC-IOL is combined with vitrectomy surgery. Surgeons should take precautions to prevent retinal phototoxicity after TSS PC-IOL implantation and vitrectomy.

  14. Site of potential operating microscope light-induced phototoxicity on the human retina during temporal approach eye surgery.

    PubMed

    Pavilack, M A; Brod, R D

    2001-02-01

    To determine the site of focal illumination on the retina of phakic human cadaver eyes from an operating microscope positioned for temporal approach eye surgery. Experimental study. A Zeiss OPMI-6SFR operating microscope (Zeiss Humphrey Systems, Dublin, CA) was positioned over two phakic human cadaver eyes to measure the site of the focal illumination on the retina by directly observing the illumination on the posterior scleral surface of the globe. External localization of the foveola was made by direct observation using scleral indentation and indirect ophthalmoscopy. Various combinations of microscope angulation and field of view were analyzed. Distance of focal illumination from the operating room microscope relative to the foveola was measured. The diameter of the "hot spot" of focal illumination on the retina was 4.0 mm. With the eye positioned straight ahead and the level operating room microscope positioned for temporal approach eye surgery, the center of retinal illumination was 0.9 and 1.4 mm nasal relative to the foveola when the microscope field of view was centered over the cornea and temporal limbus, respectively. With the microscope angled 5, 10, 15, and 20 degrees temporally (oculars tilted toward surgeon), the center of the illumination was displaced nasal to the foveola by 1.1, 1.5, 3.8, and 5.1 mm, respectively, when the field of view was centered over the cornea and 1.5, 2.6, 4.7, and 6.0 mm, respectively, nasal to the foveola when centered over the temporal limbus. Retinal illumination from an operating microscope positioned for temporal approach eye surgery has the potential for light-induced injury to the fovea. Angulation of the operating microscope by up to 10 degrees temporally when the microscope field of view was centered over the cornea and up to 5 degrees temporally when centered over the temporal limbus was not adequate to displace the focal illumination off the foveola when the eye was in the straight-ahead position. Tilting the

  15. [Phenotype-based primary screening for drugs promoting neuronal subtype differentiation in embryonic stem cells with light microscope].

    PubMed

    Gao, Yi-ning; Wang, Dan-ying; Pan, Zong-fu; Mei, Yu-qin; Wang, Zhi-qiang; Zhu, Dan-yan; Lou, Yi-jia

    2012-07-01

    To set up a platform for phenotype-based primary screening of drug candidates promoting neuronal subtype differentiation in embryonic stem cells (ES) with light microscope. Hanging drop culture 4-/4+ method was employed to harvest the cells around embryoid body (EB) at differentiation endpoint. Morphological evaluation for neuron-like cells was performed with light microscope. Axons for more than three times of the length of the cell body were considered as neuron-like cells. The compound(s) that promote neuron-like cells was further evaluated. Icariin (ICA, 10(-6)mol/L) and Isobavachin (IBA, 10(-7)mol/L) were selected to screen the differentiation-promoting activity on ES cells. Immunofluorescence staining with specific antibodies (ChAT, GABA) was used to evaluate the neuron subtypes. The cells treated with IBA showed neuron-like phenotype, but the cells treated with ICA did not exhibit the morphological changes. ES cells treated with IBA was further confirmed to be cholinergic and GABAergic neurons. Phenotypic screening with light microscope for molecules promoting neuronal differentiation is an effective method with advantages of less labor and material consuming and time saving, and false-positive results derived from immunofluorescence can be avoided. The method confirms that IBA is able to facilitate ES cells differentiating into neuronal cells, including cholinergic neurons and GABAergic neurons.

  16. A comparative analysis of microscopic alterations in modern and ancient undecalcified and decalcified dry bones.

    PubMed

    Caruso, Valentina; Cummaudo, Marco; Maderna, Emanuela; Cappella, Annalisa; Caudullo, Giorgio; Scarpulla, Valentina; Cattaneo, Cristina

    2018-02-01

    The present study aims to evaluate the preservation of the microstructure of skeletal remains collected from four different known burial sites (archaeological and contemporary). Histological analysis on undecalcified and decalcified thin sections was performed in order to assess which of the two techniques is more affected by taphonomic insults. A histological analysis was performed on both undecalcified and decalcified thin sections of 40 long bones and the degree of diagenetic change was evaluated using transmitted and polarized light microscopy according to the Oxford Histological Index (OHI). In order to test the optical behavior of bone tissue, thin sections were observed by polarized light microscopy and the intensity of birefringence was evaluated. The more ancient samples are generally characterized by a low OHI (0-1) with extensive microscopic focal destruction; recent samples exhibited a better preservation of bone micromorphology. When comparing undecalcified to decalcified thin sections, the latter showed an amelioration in the conservation of microscopic structure. As regards the birefringence, it was very low in all the undecalcified thin sections, whereas decalcification process seems to improve its visibility. The preservation of the bone microscopic structure appears to be influenced not only by age, but also by the burial context. Undecalcified bones appear to be more affected by taphonomical alterations, probably because of the thickness of the thin sections; on the contrary, decalcified thin sections proved to be able to tackle this issue allowing a better reading of the bone tissue. © 2017 Wiley Periodicals, Inc.

  17. X ray microscope assembly and alignment support and advanced x ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1991-01-01

    Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations.

  18. Microscopic saw mark analysis: an empirical approach.

    PubMed

    Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles

    2015-01-01

    Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%. © 2014 American Academy of Forensic Sciences.

  19. A hybrid scanning force and light microscope for surface imaging and three-dimensional optical sectioning in differential interference contrast.

    PubMed

    Stemmer, A

    1995-04-01

    The design of a scanned-cantilever-type force microscope is presented which is fully integrated into an inverted high-resolution video-enhanced light microscope. This set-up allows us to acquire thin optical sections in differential interference contrast (DIC) or polarization while the force microscope is in place. Such a hybrid microscope provides a unique platform to study how cell surface properties determine, or are affected by, the three-dimensional dynamic organization inside the living cell. The hybrid microscope presented in this paper has proven reliable and versatile for biological applications. It is the only instrument that can image a specimen by force microscopy and high-power DIC without having either to translate the specimen or to remove the force microscope. Adaptation of the design features could greatly enhance the suitability of other force microscopes for biological work.

  20. A compact light-sheet microscope for the study of the mammalian central nervous system

    PubMed Central

    Yang, Zhengyi; Haslehurst, Peter; Scott, Suzanne; Emptage, Nigel; Dholakia, Kishan

    2016-01-01

    Investigation of the transient processes integral to neuronal function demands rapid and high-resolution imaging techniques over a large field of view, which cannot be achieved with conventional scanning microscopes. Here we describe a compact light sheet fluorescence microscope, featuring a 45° inverted geometry and an integrated photolysis laser, that is optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We demonstrate the utility of this design for three-dimensional morphological reconstruction, activation of a single synapse with localized photolysis, and fast imaging of neuronal Ca2+ signalling across a large field of view. The developed system opens up a host of novel applications for the neuroscience community. PMID:27215692

  1. Scanning Miniature Microscopes without Lenses

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the

  2. Adding an extra dimension to what students see through the light microscope: a lab exercise demonstrating critical analysis for microscopy students.

    PubMed

    Garrill, Ashley

    2011-01-01

    This article describes an undergraduate lab exercise that demonstrates the importance of students thinking critically about what they see through a microscope. The students are given growth data from tip-growing organisms that suggest the cells grow in a pulsatile manner. The students then critique this data in several exercises that incorporate aspects of a problem-based learning approach, envisaging growth not just in two dimensions, but in three dimensions. For some cells, what appears to be pulsatile growth could also be explained by growth at a constant rate up and down in the z-axis. Depending on the diffraction pattern generated by the tip of the cell, this movement in the z-axis could go undetected. This raises the possibility that pulsatile growth seen in some species may be an artifact generated by the limitations of the light microscope. Students were subsequently asked to rate their awareness of the need to think critically about what they see through a microscope, using a scale of 1 (unaware) to 5 (very much aware). Prior to doing the lab exercise, the mean rating was 2.7; this increased to 4.4 after the lab. The students also indicated a likelihood of being more critical in their thinking in other aspects of their biology curriculum.

  3. Infrared microscope inspection apparatus

    DOEpatents

    Forman, S.E.; Caunt, J.W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

  4. Infrared microscope inspection apparatus

    DOEpatents

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  5. Neuronal nitric oxide synthase immunopositive neurons in cat claustrum--a light and electron microscopic study.

    PubMed

    Hinova-Palova, Dimka; Edelstein, Lawrence; Paloff, Adrian; Hristov, Stanislav; Papantchev, Vassil; Ovtscharoff, Wladimir

    2008-08-01

    Nitric oxide is a unique neurotransmitter, which participates in many physiological and pathological processes in the organism. Nevertheless there are little data about the neuronal Nitric Oxide Synthase immunoreactive (nNOS-ir) neurons and fibers in the dorsal claustrum (DC) of a cat. In this respect the aims of this study were: (1) to demonstrate nNOS-ir in the neurons and fibers of the DC; (2) to describe their light microscopic morphology and distribution; (3) to investigate and analyze the ultrastructure of the nNOS-ir neurons, fibers and synaptic terminals; (4) to verify whether the nNOS-ir neurons consist a specific subpopulation of claustral neurons; (5) to verify whether the nNOS-ir neurons have a specific pattern of organization throughout the DC. For demonstration of the nNOS-ir the Avidin-Biotin-Peroxidase Complex method was applied. Immunopositive for nNOS neurons and fibers were present in all parts of DC. On the light microscope level nNOS-ir neurons were different in shape and size. According to the latter they were divided into three groups-small (with diameter under 15 microm), medium-sized (with diameter from 16 to 20 microm) and large (with diameter over 21 microm). Some of nNOS-ir neurons were lightly-stained while others were darkly-stained. On the electron microscope level the immunoproduct was observed in neurons, dendrites and terminal boutons. Different types of nNOS-ir neurons differ according to their ultrastructural features. Three types of nNOS-ir synaptic boutons were found. As a conclusion we hope that the present study will contribute to a better understanding of the functioning of the DC in cat and that some of the data presented could be extrapolated to other mammals, including human.

  6. Digital photography for the light microscope: results with a gated, video-rate CCD camera and NIH-image software.

    PubMed

    Shaw, S L; Salmon, E D; Quatrano, R S

    1995-12-01

    In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.

  7. Design and analysis of multilayer x ray/XUV microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1990-01-01

    The design and analysis of a large number of normal incidence multilayer x ray microscopes based on the spherical mirror Schwarzschild configuration is examined. Design equations for the spherical mirror Schwarzschild microscopes are summarized and used to evaluate mirror parameters for microscopes with magnifications ranging from 2 to 50x. Ray tracing and diffraction analyses are carried out for many microscope configurations to determine image resolution as a function of system parameters. The results are summarized in three publication included herein. A preliminary study of advanced reflecting microscope configurations, where aspherics are used in place of the spherical microscope mirror elements, has indicated that the aspherical elements will improve off-axis image resolution and increase the effective field of view.

  8. Learning a cost function for microscope image segmentation.

    PubMed

    Nilufar, Sharmin; Perkins, Theodore J

    2014-01-01

    Quantitative analysis of microscopy images is increasingly important in clinical researchers' efforts to unravel the cellular and molecular determinants of disease, and for pathological analysis of tissue samples. Yet, manual segmentation and measurement of cells or other features in images remains the norm in many fields. We report on a new system that aims for robust and accurate semi-automated analysis of microscope images. A user interactively outlines one or more examples of a target object in a training image. We then learn a cost function for detecting more objects of the same type, either in the same or different images. The cost function is incorporated into an active contour model, which can efficiently determine optimal boundaries by dynamic programming. We validate our approach and compare it to some standard alternatives on three different types of microscopic images: light microscopy of blood cells, light microscopy of muscle tissue sections, and electron microscopy cross-sections of axons and their myelin sheaths.

  9. Light Microscopy Module: International Space Station Premier Automated Microscope

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Foster, William M.; Motil, Brian J.; Meyer, William V.; Chiaramonte, Francis P.; Abbott-Hearn, Amber; Atherton, Arthur; Beltram, Alexander; Bodzioney, Christopher; Brinkman, John; hide

    2016-01-01

    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began hardware operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2016, if all goes as planned, three experiments will be completed: [1] Advanced Colloids Experiments with Heated base-2 (ACE-H2) and [2] Advanced Colloids Experiments with Temperature control (ACE-T1). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al. and [2] from Chungnam National University, Daejeon, S. Korea: Chang-Soo Lee, et al.

  10. On-axis programmable microscope using liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    García-Martínez, Pascuala; Martínez, José Luís.; Moreno, Ignacio

    2017-06-01

    Spatial light modulators (SLM) are currently used in many applications in optical microscopy and imaging. One of the most promising methods is the use of liquid crystal displays (LCD) as programmable phase diffractive optical elements (DOE) placed in the Fourier plane giving access to the spatial frequencies which can be phased shifted individually, allowing to emulate a wealth of contrast enhancing methods for both amplitude and phase samples. We use phase and polarization modulation of LCD to implement an on-axis microscope optical system. The LCD used are Hamamatsu liquid crystal on silicon (LCOS) SLM free of flicker, thus showing a full profit of the SLM space bandwidth, as opposed to optical systems in the literature forced to work off-axis due to the strong zero-order component. Taking benefits of the phase modulation of the LCOS we have implemented different microscopic imaging operations, such as high-pass and low-pass filtering in parallel using programmable blazed gratings. Moreover, we are able to control polarization modulation to display two orthogonal linear state of polarization images than can be subtracted or added by changing the period of the blazed grating. In that sense, Differential Interference Contrast (DIC) microscopy can be easily done by generating two images exploiting the polarization splitting properties when a blazed grating is displayed in the SLM. Biological microscopy samples are also used.

  11. Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: III. Correlative Light and Electron Microscopic Study

    PubMed Central

    Onouchi, Takanori; Shiogama, Kazuya; Mizutani, Yasuyoshi; Takaki, Takashi; Tsutsumi, Yutaka

    2016-01-01

    Neutrophil extracellular traps (NETs) released from dead neutrophils at the site of inflammation represent webs of neutrophilic DNA stretches dotted with granule-derived antimicrobial proteins, including lactoferrin, and play important roles in innate immunity against microbial infection. We have shown the coexistence of NETs and fibrin meshwork in varied fibrinopurulent inflammatory lesions at both light and electron microscopic levels. In the present study, correlative light and electron microscopy (CLEM) employing confocal laser scanning microscopy and scanning electron microscopy was performed to bridge light and electron microscopic images of NETs and fibrin fibrils in formalin-fixed, paraffin-embedded, autopsied lung sections of legionnaire’s pneumonia. Lactoferrin immunoreactivity and 4'-6-diamidino-2-phenylindole (DAPI) reactivity were used as markers of NETs, and fibrin was probed by fibrinogen gamma chain. Of note is that NETs light microscopically represented as lactoferrin and DAPI-colocalized dots, 2.5 μm in diameter. CLEM gave super-resolution images of NETs and fibrin fibrils: “Dotted” NETs were ultrastructurally composed of fine filaments and masses of 58 nm-sized globular materials. A fibrin fibril consisted of clusters of smooth-surfaced filaments. NETs filaments (26 nm in diameter) were significantly thinner than fibrin filaments (295 nm in diameter). Of note is that CLEM was applicable to formalin-fixed, paraffin-embedded sections of autopsy material. PMID:27917008

  12. Proper alignment of the microscope.

    PubMed

    Rottenfusser, Rudi

    2013-01-01

    The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. Copyright © 2013 Elsevier Inc. All rights

  13. Control and acquisition systems for new scanning transmission x-ray microscopes at Advanced Light Source (abstract)

    NASA Astrophysics Data System (ADS)

    Tyliszczak, T.; Hitchcock, P.; Kilcoyne, A. L. D.; Ade, H.; Hitchcock, A. P.; Fakra, S.; Steele, W. F.; Warwick, T.

    2002-03-01

    Two new scanning x-ray transmission microscopes are being built at beamline 5.3.2 and beamline 7.0 of the Advanced Light Source that have novel aspects in their control and acquisition systems. Both microscopes use multiaxis laser interferometry to improve the precision of pixel location during imaging and energy scans as well as to remove image distortions. Beam line 5.3.2 is a new beam line where the new microscope will be dedicated to studies of polymers in the 250-600 eV energy range. Since this is a bending magnet beam line with lower x-ray brightness than undulator beam lines, special attention is given to the design not only to minimize distortions and vibrations but also to optimize the controls and acquisition to improve data collection efficiency. 5.3.2 microscope control and acquisition is based on a PC computer running WINDOWS 2000. All mechanical stages are moved by stepper motors with rack mounted controllers. A dedicated counter board is used for counting and timing and a multi-input/output board is used for analog acquisition and control of the focusing mirror. A three axis differential laser interferometer is being used to improve stability and precision by careful tracking of the relative positions of the sample and zone plate. Each axis measures the relative distance between a mirror placed on the sample stage and a mirror attached to the zone plate holder. Agilent Technologies HP 10889A servo-axis interferometer boards are used. While they were designed to control servo motors, our tests show that they can be used to directly control the piezo stage. The use of the interferometer servo-axis boards provides excellent point stability for spectral measurements. The interferometric feedback also provides active vibration isolation which reduces deleterious impact of mechanical vibrations up to 20-30 Hz. It also can improve the speed and precision of image scans. Custom C++ software has been written to provide user friendly control of the microscope

  14. Virtual microscopes in podiatric medical education.

    PubMed

    Becker, John H

    2006-01-01

    In many medical schools, microscopes are being replaced as teaching tools by computers with software that emulates the use of a light microscope. This article chronicles the adoption of "virtual microscopes" by a podiatric medical school and presents the results of educational research on the effectiveness of this adoption in a histology course. If the trend toward virtual microscopy in education continues, many 21st-century physicians will not be trained to operate a light microscope. The replacement of old technologies by new is discussed. The fundamental question is whether all podiatric physicians should be trained in the use of a particular tool or only those who are likely to use it in their own practice.

  15. Acquisition of a High Resolution Field Emission Scanning Electron Microscope for the Analysis of Returned Samples

    NASA Technical Reports Server (NTRS)

    Nittler, Larry R.

    2003-01-01

    This grant furnished funds to purchase a state-of-the-art scanning electron microscope (SEM) to support our analytical facilities for extraterrestrial samples. After evaluating several instruments, we purchased a JEOL 6500F thermal field emission SEM with the following analytical accessories: EDAX energy-dispersive x-ray analysis system with fully automated control of instrument and sample stage; EDAX LEXS wavelength-dispersive x-ray spectrometer for high sensitivity light-element analysis; EDAX/TSL electron backscatter diffraction (EBSD) system with software for phase identification and crystal orientation mapping; Robinson backscatter electron detector; and an in situ micro-manipulator (Kleindiek). The total price was $550,000 (with $150,000 of the purchase supported by Carnegie institution matching funds). The microscope was delivered in October 2002, and most of the analytical accessories were installed by January 2003. With the exception of the wavelength spectrometer (which has been undergoing design changes) everything is working well and the SEM is in routine use in our laboratory.

  16. CUSUM analysis of learning curves for the head-mounted microscope in phonomicrosurgery.

    PubMed

    Chen, Ting; Vamos, Andrew C; Dailey, Seth H; Jiang, Jack J

    2016-10-01

    To observe the learning curve of the head-mounted microscope in a phonomicrosurgery simulator using cumulative summation (CUSUM) analysis, which incorporates a magnetic phonomicrosurgery instrument tracking system (MPTS). Retrospective case series. Eight subjects (6 medical students and 2 surgeons inexperienced in phonomicrosurgery) operated on phonomicrosurgical simulation cutting tasks while using the head-mounted microscope for 400 minutes total. Two 20-minute sessions occurred each day for 10 total days, with operation quality (Qs ) and completion time (T) being recorded after each session. Cumulative summation analysis of Qs and T was performed by using subjects' performance data from trials completed using a traditional standing microscope as success criteria. The motion parameters from the head-mounted microscope were significantly better than the standing microscope (P < 0.01), but T was longer than that from the standing microscope (P < 0.01). No subject successfully adapted to the head-mounted microscope, as assessed by CUSUM analysis. Cumulative summation analysis can objectively monitor the learning process associated with a phonomicrosurgical simulator system, ultimately providing a tool to assess learning status. Also, motion parameters determined by our MPTS showed that, although the head-mounted microscope provides better motion control, worse Qs and longer T resulted. This decrease in Qs is likely a result of the relatively unstable visual environment that it provides. Overall, the inexperienced surgeons participating in this study failed to adapt to the head-mounted microscope in our simulated phonomicrosurgery environment. 4 Laryngoscope, 126:2295-2300, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Sensing of Streptococcus mutans by microscopic imaging ellipsometry

    NASA Astrophysics Data System (ADS)

    Khaleel, Mai Ibrahim; Chen, Yu-Da; Chien, Ching-Hang; Chang, Yia-Chung

    2017-05-01

    Microscopic imaging ellipsometry is an optical technique that uses an objective and sensing procedure to measure the ellipsometric parameters Ψ and Δ in the form of microscopic maps. This technique is well known for being noninvasive and label-free. Therefore, it can be used to detect and characterize biological species without any impact. Microscopic imaging ellipsometry was used to measure the optical response of dried Streptococcus mutans cells on a glass substrate. The ellipsometric Ψ and Δ maps were obtained with the Optrel Multiskop system for specular reflection in the visible range (λ=450 to 750 nm). The Ψ and Δ images at 500, 600, and 700 nm were analyzed using three different theoretical models with single-bounce, two-bounce, and multibounce light paths to obtain the optical constants and height distribution. The obtained images of the optical constants show different aspects when comparing the single-bounce analysis with the two-bounce or multibounce analysis in detecting S. mutans samples. Furthermore, the height distributions estimated by two-bounce and multibounce analyses of S. mutans samples were in agreement with the thickness values measured by AFM, which implies that the two-bounce and multibounce analyses can provide information complementary to that obtained by a single-bounce light path.

  18. Microscopic colitis syndrome.

    PubMed Central

    Veress, B; Löfberg, R; Bergman, L

    1995-01-01

    The colorectal biopsy specimens from 30 patients with chronic watery diarrhoea but normal endoscopic and radiographic findings were studied by light microscopy, morphometry, immunohistochemistry, and two patients with electron microscopy. The histological changes in the colorectum were originally diagnosed in six patients as lymphocytic colitis and in 24 patients as collagenous colitis. The analysis of the specimens for this study could delineate three distinct groups of microscopic colitis: lymphocytic colitis (six patients), collagenous colitis without lymphocytic attack on the surface epithelium (seven patients), and a mixed form presenting with both thickening of the collagen plate and increased number of intraepithelial lymphocytes (17 patients). No transformation was seen from one type to another during follow up of six patients for four to seven years. Increased numbers of active pericryptal myofibroblasts were found with the electron microscope in one patient with mixed microscopic colitis showing also myofibroblasts entrapped within the collagen layer. Hitherto undescribed flat mucosa of the ileum was found in one patient with lymphocytic colitis and both flat mucosa and thickening of the collagen plate in the ileum were seen in one patient with the mixed form of the disease. In another patient with mixed microscopic colitis, normalisation of the colorectal morphology occurred after temporary loop ileostomy, followed by the reappearance of both diarrhoea, inflammation, and thickening of the collagen plate after the ileostomy was reversed. No association was found between non-steroid anti-inflammatory drug (NSAID) consumption and collagenous or mixed microscopic colitis. The primary cause of microscopic colitis is probably an immunological reaction to luminal antigen/s, perhaps of ileal origin. The engagement of the pericryptal myofibroblasts in the disease process might result in the development of the various forms of microscopic colitis. An inverse

  19. Comparative study of Sperm Motility Analysis System and conventional microscopic semen analysis

    PubMed Central

    KOMORI, KAZUHIKO; ISHIJIMA, SUMIO; TANJAPATKUL, PHANU; FUJITA, KAZUTOSHI; MATSUOKA, YASUHIRO; TAKAO, TETSUYA; MIYAGAWA, YASUSHI; TAKADA, SHINGO; OKUYAMA, AKIHIKO

    2006-01-01

    Background and Aim:  Conventional manual sperm analysis still shows variations in structure, process and outcome although World Health Organization (WHO) guidelines present an appropriate method for sperm analysis. In the present study a new system for sperm analysis, Sperm Motility Analysis System (SMAS), was compared with manual semen analysis based on WHO guidelines. Materials and methods:  Samples from 30 infertility patients and 21 healthy volunteers were subjected to manual microscopic analysis and SMAS analysis, simultaneously. We compared these two methods with respect to sperm concentration and percent motility. Results:  Sperm concentrations obtained by SMAS (Csmas) and manual microscopic analyses on WHO guidelines (Cwho) were strongly correlated (Cwho = 1.325 × Csmas; r = 0.95, P < 0.001). If we excluded subjects with Csmas values >30 × 106 sperm/mL, the results were more similar (Cwho = 1.022 × Csmas; r = 0.81, P < 0.001). Percent motility obtained by SMAS (Msmas) and manual analysis on WHO guidelines (Mwho) were strongly correlated (Mwho = 1.214 × Msmas; r = 0.89, P < 0.001). Conclusions:  The data indicate that the results of SMAS and those of manual microscopic sperm analyses based on WHO guidelines are strongly correlated. SMAS is therefore a promising system for sperm analysis. (Reprod Med Biol 2006; 5: 195–200) PMID:29662398

  20. Microscopic image analysis for reticulocyte based on watershed algorithm

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Liu, G. F.; Liu, J. G.; Wang, G.

    2007-12-01

    We present a watershed-based algorithm in the analysis of light microscopic image for reticulocyte (RET), which will be used in an automated recognition system for RET in peripheral blood. The original images, obtained by micrography, are segmented by modified watershed algorithm and are recognized in term of gray entropy and area of connective area. In the process of watershed algorithm, judgment conditions are controlled according to character of the image, besides, the segmentation is performed by morphological subtraction. The algorithm was simulated with MATLAB software. It is similar for automated and manual scoring and there is good correlation(r=0.956) between the methods, which is resulted from 50 pieces of RET images. The result indicates that the algorithm for peripheral blood RETs is comparable to conventional manual scoring, and it is superior in objectivity. This algorithm avoids time-consuming calculation such as ultra-erosion and region-growth, which will speed up the computation consequentially.

  1. Determining the phonon energy of highly oriented pyrolytic graphite by scanning tunneling microscope light emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Uehara, Yoichi; Michimata, Junichi; Watanabe, Shota; Katano, Satoshi; Inaoka, Takeshi

    2018-03-01

    We have investigated the scanning tunneling microscope (STM) light emission spectra of isolated single Ag nanoparticles lying on highly oriented pyrolytic graphite (HOPG). The STM light emission spectra exhibited two types of spectral structures (step-like and periodic). Comparisons of the observed structures and theoretical predictions indicate that the phonon energy of the ZO mode of HOPG [M. Mohr et al., Phys. Rev. B 76, 035439 (2007)] can be determined from the energy difference between the cutoff of STM light emission and the step in the former structure, and from the period of the latter structure. Since the role of the Ag nanoparticles does not depend on the substrate materials, this method will enable the phonon energies of various materials to be measured by STM light emission spectroscopy. The spatial resolution is comparable to the lateral size of the individual Ag nanoparticles (that is, a few nm).

  2. A high-resolution multimode digital microscope system.

    PubMed

    Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry

    2013-01-01

    This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.

  3. Miniaturized integration of a fluorescence microscope.

    PubMed

    Ghosh, Kunal K; Burns, Laurie D; Cocker, Eric D; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J

    2011-09-11

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals for relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including a semiconductor light source and sensor. This device enables high-speed cellular imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens.

  4. Miniaturized integration of a fluorescence microscope

    PubMed Central

    Ghosh, Kunal K.; Burns, Laurie D.; Cocker, Eric D.; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J.

    2013-01-01

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals towards relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including semiconductor light source and sensor. This device enables high-speed cellular-level imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens. PMID:21909102

  5. Microscopic evaluation and physiochemical analysis of Dillenia indica leaf

    PubMed Central

    Kumar, S; Kumar, V; Prakash, Om

    2011-01-01

    Objective To study detail microscopic evaluation and physiochemical analysis of Dillenia indica (D. indica) leaf. Methods Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically. Preliminary phytochemical investigation of plant material was done. Other WHO recommended parameters for standardizations were also performed. Results The detail microscopy revealed the presence of anomocytic stomata, unicellular trichome, xylem fibres, calcium oxalate crystals, vascular bundles, etc. Leaf constants such as stomatal number, stomatal index, vein-islet number and veinlet termination numbers were also measured. Physiochemical parameters such as ash values, loss on drying, extractive values, percentage of foreign matters, swelling index, etc. were also determined. Preliminary phytochemical screening showed the presence of steroids, terpenoids, glycosides, fatty acids, flavonoids, phenolic compounds and carbohydrates. Conclusions The microscopic and physiochemical analysis of the D. indica leaf is useful in standardization for quality, purity and sample identification. PMID:23569789

  6. 21 CFR 864.3600 - Microscopes and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... enlarge images of specimens, preparations, and cultures for medical purposes. Variations of microscopes... light. (3) Inverted stage microscopes, which permit examination of tissue cultures or other biological...

  7. Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.

    PubMed

    Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A

    2007-09-03

    We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.

  8. Multimodal Spectral Imaging of Cells Using a Transmission Diffraction Grating on a Light Microscope

    PubMed Central

    Isailovic, Dragan; Xu, Yang; Copus, Tyler; Saraswat, Suraj; Nauli, Surya M.

    2011-01-01

    A multimodal methodology for spectral imaging of cells is presented. The spectral imaging setup uses a transmission diffraction grating on a light microscope to concurrently record spectral images of cells and cellular organelles by fluorescence, darkfield, brightfield, and differential interference contrast (DIC) spectral microscopy. Initially, the setup was applied for fluorescence spectral imaging of yeast and mammalian cells labeled with multiple fluorophores. Fluorescence signals originating from fluorescently labeled biomolecules in cells were collected through triple or single filter cubes, separated by the grating, and imaged using a charge-coupled device (CCD) camera. Cellular components such as nuclei, cytoskeleton, and mitochondria were spatially separated by the fluorescence spectra of the fluorophores present in them, providing detailed multi-colored spectral images of cells. Additionally, the grating-based spectral microscope enabled measurement of scattering and absorption spectra of unlabeled cells and stained tissue sections using darkfield and brightfield or DIC spectral microscopy, respectively. The presented spectral imaging methodology provides a readily affordable approach for multimodal spectral characterization of biological cells and other specimens. PMID:21639978

  9. Light field imaging and application analysis in THz

    NASA Astrophysics Data System (ADS)

    Zhang, Hongfei; Su, Bo; He, Jingsuo; Zhang, Cong; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    The light field includes the direction information and location information. Light field imaging can capture the whole light field by single exposure. The four-dimensional light field function model represented by two-plane parameter, which is proposed by Levoy, is adopted in the light field. Acquisition of light field is based on the microlens array, camera array and the mask. We calculate the dates of light-field to synthetize light field image. The processing techniques of light field data include technology of refocusing rendering, technology of synthetic aperture and technology of microscopic imaging. Introducing the technology of light field imaging into THz, the efficiency of 3D imaging is higher than that of conventional THz 3D imaging technology. The advantages compared with visible light field imaging include large depth of field, wide dynamic range and true three-dimensional. It has broad application prospects.

  10. The optics of microscope image formation.

    PubMed

    Wolf, David E

    2013-01-01

    Although geometric optics gives a good understanding of how the microscope works, it fails in one critical area, which is explaining the origin of microscope resolution. To accomplish this, one must consider the microscope from the viewpoint of physical optics. This chapter describes the theory of the microscope-relating resolution to the highest spatial frequency that a microscope can collect. The chapter illustrates how Huygens' principle or construction can be used to explain the propagation of a plane wave. It is shown that this limit increases with increasing numerical aperture (NA). As a corollary to this, resolution increases with decreasing wavelength because of how NA depends on wavelength. The resolution is higher for blue light than red light. Resolution is dependent on contrast, and the higher the contrast, the higher the resolution. This last point relates to issues of signal-to-noise and dynamic range. The use of video and new digital cameras has necessitated redefining classical limits such as those of Rayleigh's criterion. Copyright © 2007 Elsevier Inc. All rights reserved.

  11. Effects of Er:YAG laser irradiation on human dentin: polarizing microscopic, light microscopic and microradiographic observations, and FT-IR analysis.

    PubMed

    Ishizaka, Yaeko; Eguro, Toru; Maeda, Toru; Tanaka, Hisayoshi

    2002-01-01

    The effects of Er:YAG laser irradiation on dentin have not been sufficiently investigated. The purpose of this study was to investigate the effects of Er:YAG laser irradiation on dentin. After cavities were prepared using Er:YAG laser irradiation or rotary cutting instruments, histological observations of cavity-floor dentin utilizing polarizing microscopy, microradiography and light microscopy, and analysis of composition of cavity-floor dentin using Fourier-transformed (FT-IR) spectrometry were conducted. In the laser-treated side, a deeply stained basophilic layer was observed. The number of odontoblastic processes present was obviously less in the laser-treated side than in the bur-treated side. FT-IR analysis revealed that compared to the bur-treated side, a broad background peak at around 1,600 cm(-1) was present. Er:YAG laser irradiation might have denatured the organic materials of dentin. Copyright 2002 Wiley-Liss, Inc.

  12. Automatic analysis for neuron by confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Satou, Kouhei; Aoki, Yoshimitsu; Mataga, Nobuko; Hensh, Takao K.; Taki, Katuhiko

    2005-12-01

    The aim of this study is to develop a system that recognizes both the macro- and microscopic configurations of nerve cells and automatically performs the necessary 3-D measurements and functional classification of spines. The acquisition of 3-D images of cranial nerves has been enabled by the use of a confocal laser scanning microscope, although the highly accurate 3-D measurements of the microscopic structures of cranial nerves and their classification based on their configurations have not yet been accomplished. In this study, in order to obtain highly accurate measurements of the microscopic structures of cranial nerves, existing positions of spines were predicted by the 2-D image processing of tomographic images. Next, based on the positions that were predicted on the 2-D images, the positions and configurations of the spines were determined more accurately by 3-D image processing of the volume data. We report the successful construction of an automatic analysis system that uses a coarse-to-fine technique to analyze the microscopic structures of cranial nerves with high speed and accuracy by combining 2-D and 3-D image analyses.

  13. Miniature self-contained vacuum compatible electronic imaging microscope

    DOEpatents

    Naulleau, Patrick P.; Batson, Phillip J.; Denham, Paul E.; Jones, Michael S.

    2001-01-01

    A vacuum compatible CCD-based microscopic camera with an integrated illuminator. The camera can provide video or still feed from the microscope contained within a vacuum chamber. Activation of an optional integral illuminator can provide light to illuminate the microscope subject. The microscope camera comprises a housing with a objective port, modified objective, beam-splitter, CCD camera, and LED illuminator.

  14. Laser based imaging of time depending microscopic scenes with strong light emission

    NASA Astrophysics Data System (ADS)

    Hahlweg, Cornelius; Wilhelm, Eugen; Rothe, Hendrik

    2011-10-01

    Investigating volume scatterometry methods based on short range LIDAR devices for non-static objects we achieved interesting results aside the intended micro-LIDAR: the high speed camera recording of the illuminated scene of an exploding wire -intended for Doppler LIDAR tests - delivered a very effective method of observing details of objects with extremely strong light emission. As a side effect a schlieren movie is gathered without any special effort. The fact that microscopic features of short time processes with high emission and material flow might be imaged without endangering valuable equipment makes this technique at least as interesting as the intended one. So we decided to present our results - including latest video and photo material - instead of a more theoretical paper on our progress concerning the primary goal.

  15. Determination of morphological parameters of biological cells by analysis of scattered-light distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, D.E.

    1979-11-01

    The extraction of morphological parameters from biological cells by analysis of light-scatter patterns is described. A light-scattering measurement system has been designed and constructed that allows one to visually examine and photographically record biological cells or cell models and measure the light-scatter pattern of an individual cell or cell model. Using a laser or conventional illumination, the imaging system consists of a modified microscope with a 35 mm camera attached to record the cell image or light-scatter pattern. Models of biological cells were fabricated. The dynamic range and angular distributions of light scattered from these models was compared to calculatedmore » distributions. Spectrum analysis techniques applied on the light-scatter data give the sought after morphological cell parameters. These results compared favorably to shape parameters of the fabricated cell models confirming the mathematical model procedure. For nucleated biological material, correct nuclear and cell eccentricity as well as the nuclear and cytoplasmic diameters were determined. A method for comparing the flow equivalent of nuclear and cytoplasmic size to the actual dimensions is shown. This light-scattering experiment provides baseline information for automated cytology. In its present application, it involves correlating average size as measured in flow cytology to the actual dimensions determined from this technique. (ERB)« less

  16. A light sheet confocal microscope for image cytometry with a variable linear slit detector

    NASA Astrophysics Data System (ADS)

    Hutcheson, Joshua A.; Khan, Foysal Z.; Powless, Amy J.; Benson, Devin; Hunter, Courtney; Fritsch, Ingrid; Muldoon, Timothy J.

    2016-03-01

    We present a light sheet confocal microscope (LSCM) capable of high-resolution imaging of cell suspensions in a microfluidic environment. In lieu of conventional pressure-driven flow or mechanical translation of the samples, we have employed a novel method of fluid transport, redox-magnetohydrodynamics (redox-MHD). This method achieves fluid motion by inducing a small current into the suspension in the presence of a magnetic field via electrodes patterned onto a silicon chip. This on-chip transportation requires no moving parts, and is coupled to the remainder of the imaging system. The microscopy system comprises a 450 nm diode 20 mW laser coupled to a single mode fiber and a cylindrical lens that converges the light sheet into the back aperture of a 10x, 0.3 NA objective lens in an epi-illumination configuration. The emission pathway contains a 150 mm tube lens that focuses the light onto the linear sensor at the conjugate image plane. The linear sensor (ELiiXA+ 8k/4k) has three lateral binning modes which enables variable detection aperture widths between 5, 10, or 20 μm, which can be used to vary axial resolution. We have demonstrated redox-MHD-enabled light sheet microscopy in suspension of fluorescent polystyrene beads. This approach has potential as a high-throughput image cytometer with myriad cellular diagnostic applications.

  17. Machine learning approach for automated screening of malaria parasite using light microscopic images.

    PubMed

    Das, Dev Kumar; Ghosh, Madhumala; Pal, Mallika; Maiti, Asok K; Chakraborty, Chandan

    2013-02-01

    The aim of this paper is to address the development of computer assisted malaria parasite characterization and classification using machine learning approach based on light microscopic images of peripheral blood smears. In doing this, microscopic image acquisition from stained slides, illumination correction and noise reduction, erythrocyte segmentation, feature extraction, feature selection and finally classification of different stages of malaria (Plasmodium vivax and Plasmodium falciparum) have been investigated. The erythrocytes are segmented using marker controlled watershed transformation and subsequently total ninety six features describing shape-size and texture of erythrocytes are extracted in respect to the parasitemia infected versus non-infected cells. Ninety four features are found to be statistically significant in discriminating six classes. Here a feature selection-cum-classification scheme has been devised by combining F-statistic, statistical learning techniques i.e., Bayesian learning and support vector machine (SVM) in order to provide the higher classification accuracy using best set of discriminating features. Results show that Bayesian approach provides the highest accuracy i.e., 84% for malaria classification by selecting 19 most significant features while SVM provides highest accuracy i.e., 83.5% with 9 most significant features. Finally, the performance of these two classifiers under feature selection framework has been compared toward malaria parasite classification. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Light Microsopy Module, International Space Station Premier Automated Microscope

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Brown, Daniel F.; O'Toole, Martin A.; Foster, William M.; Motil, Brian J.; Abbot-Hearn, Amber Ashley; Atherton, Arthur Johnson; Beltram, Alexander; hide

    2015-01-01

    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2015, if all goes as planned, five experiments will be completed: [1] Advanced Colloids Experiments with a manual sample base -3 (ACE-M-3), [2] the Advanced Colloids Experiment with a Heated Base -1 (ACE-H-1), [3] (ACE-H-2), [4] the Advanced Plant Experiment -03 (APEX-03), and [5] the Microchannel Diffusion Experiment (MDE). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] New York University: Paul Chaikin, Andrew Hollingsworth, and Stefano Sacanna, [2] University of Pennsylvania: Arjun Yodh and Matthew Gratale, [3] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al., [4] from the University of Florida and CASIS: Anna-Lisa Paul and Rob Ferl, and [5] from the Methodist Hospital Research Institute from CASIS: Alessandro Grattoni and Giancarlo Canavese.

  19. Integrating Microscopic Analysis into Existing Quality Assurance Processes

    NASA Astrophysics Data System (ADS)

    Frühberger, Peter; Stephan, Thomas; Beyerer, Jürgen

    When technical goods, like mainboards and other electronic components, are produced, quality assurance (QA) is very important. To achieve this goal, different optical microscopes can be used to analyze a variety of specimen to gain comprehensive information by combining the acquired sensor data. In many industrial processes, cameras are used to examine these technical goods. Those cameras can analyze complete boards at once and offer a high level of accuracy when used for completeness checks. When small defects, e.g. soldered points, need to be examined in detail, those wide area cameras are limited. Microscopes with large magnification need to be used to analyze those critical areas. But microscopes alone cannot fulfill this task within a limited time schedule, because microscopic analysis of complete motherboards of a certain size is time demanding. Microscopes are limited concerning their depth of field and depth of focus, which is why additional components like XY moving tables need to be used to examine the complete surface. Yet today's industrial production quality standards require a 100 % control of the soldered components within a given time schedule. This level of quality, while keeping inspection time low, can only be achieved when combining multiple inspection devices in an optimized manner. This paper presents results and methods of combining industrial cameras with microscopy instrumenting a classificatory based approach intending to keep already deployed QA processes in place but extending them with the purpose of increasing the quality level of the produced technical goods while maintaining high throughput.

  20. Selective scanning tunneling microscope light emission from rutile phase of VO2.

    PubMed

    Sakai, Joe; Kuwahara, Masashi; Hotsuki, Masaki; Katano, Satoshi; Uehara, Yoichi

    2016-09-28

    We observed scanning tunneling microscope light emission (STM-LE) induced by a tunneling current at the gap between an Ag tip and a VO2 thin film, in parallel to scanning tunneling spectroscopy (STS) profiles. The 34 nm thick VO2 film grown on a rutile TiO2 (0 0 1) substrate consisted of both rutile (R)- and monoclinic (M)-structure phases of a few 10 nm-sized domains at room temperature. We found that STM-LE with a certain photon energy of 2.0 eV occurs selectively from R-phase domains of VO2, while no STM-LE was observed from M-phase. The mechanism of STM-LE from R-phase VO2 was determined to be an interband transition process rather than inverse photoemission or inelastic tunneling processes.

  1. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    PubMed

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Compact Video Microscope Imaging System Implemented in Colloid Studies

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2002-01-01

    Long description Photographs showing fiber-optic light source, microscope and charge-coupled discharge (CCD) camera head connected to camera body, CCD camera body feeding data to image acquisition board in PC, and Cartesian robot controlled via PC board. The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. CMIS can be used in situ with a minimum amount of user intervention. This system can scan, find areas of interest in, focus on, and acquire images automatically. Many multiple-cell experiments require microscopy for in situ observations; this is feasible only with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control. The software also has a user-friendly interface, which can be used independently of the hardware for further post-experiment analysis. CMIS has been successfully developed in the SML Laboratory at the NASA Glenn Research Center and adapted for use for colloid studies and is available for telescience experiments. The main innovations this year are an improved interface, optimized algorithms, and the ability to control conventional full-sized microscopes in addition to compact microscopes. The CMIS software-hardware interface is being integrated into our SML Analysis package, which will be a robust general-purpose image-processing package that can handle over 100 space and industrial applications.

  3. Towards native-state imaging in biological context in the electron microscope

    PubMed Central

    Weston, Anne E.; Armer, Hannah E. J.

    2009-01-01

    Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039

  4. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  5. Analysis of spectral light guidance in specialty fibers

    NASA Astrophysics Data System (ADS)

    Zimmer, Arne W.; Raithel, Philipp; Belz, Mathias; Klein, Karl-Friedrich

    2016-04-01

    A novel experimental set-up for measuring the spectral dependency of light-guidance of specialty non-active multimodefibers will be introduced. Light coupling into the test fiber is realized and controlled with a micro-structured single mode (SM) fiber and an image-system based on a microscope objective The far- and near-field profiles of the SM-fiber will be shown. The inverse far field method is modified and improved by using three wavelengths simultaneously under the same input conditions; the coupling conditions into the test-fiber and the far- and near-field at fiber output are observed with cameras. The numerical aperture (NA) and mode-conversion or focal-ratio-degradation (FRD) are measured in respect to wavelength at three wavelengths in the VIS region. For the analysis, the patterns are captured at varying exposure times to increase the dynamic range and finally analyzed using image processing methods. Characteristic parameters, such as skew mode propagation and ray-conversion, of circular and non-circular MM-fibers will be discussed, taking the surface roughness into account.

  6. Design and analysis of a fast, two-mirror soft-x-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.; Wang, C.; Jiang, W.; Jin, L.; Hoover, R. B.

    1992-01-01

    During the past several years, a number of investigators have addressed the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft-x-ray applications using multilayer coatings. Some of these systems have demonstrated diffraction limited resolution for small numerical apertures. Rigorously aplanatic, two-aspherical mirror Head microscopes can provide near diffraction limited resolution for very large numerical apertures. The relationships between the numerical aperture, mirror radii and diameters, magnifications, and total system length for Schwarzschild microscope configurations are summarized. Also, an analysis of the characteristics of the Head-Schwarzschild surfaces will be reported. The numerical surface data predicted by the Head equations were fit by a variety of functions and analyzed by conventional optical design codes. Efforts have been made to determine whether current optical substrate and multilayer coating technologies will permit construction of a very fast Head microscope which can provide resolution approaching that of the wavelength of the incident radiation.

  7. Diabetic choroidopathy. Light and electron microscopic observations of seven cases.

    PubMed

    Hidayat, A A; Fine, B S

    1985-04-01

    The choroid of seven young patients (ages 20-29 years), who had had diabetes mellitus for many years (14-23 years) was studied by light and electron microscopy. The eight enucleated eyes were blind and painful as a complication of diabetes mellitus. Histopathologically, the choriocapillaris and other small choroidal blood vessels disclosed marked basement membrane thickening of their walls. Periodic acid-Schiff-positive homogeneous acellular nodules were present and resembled those of diabetic glomerulosclerosis (Kimmelsteil-Wilson disease). Some choroidal arteries were arteriosclerotic. Choroidal compromise was suggested by luminal narrowing of the capillaries, capillary dropout, and focal scarring. Choroidal neovascularization with subretinal fibrovascular membranes occurred in two patients at the midperiphery and periphery, and resembled those of retinitis proliferans. Leakage of proteinaceous fluid into the choroidal stroma and beneath the focally detached pigment epithelium was suggested by the electron microscopic observations. Choroidal vasculopathy in diabetes mellitus is similar to much of what has been described in other tissues of the eye and body, and suggests an important role in the pathogenesis of diabetic retinopathy since the outer retinal layers are largely dependent on the choroid for their nutrition and oxygenation.

  8. A light and scanning electron microscopic evaluation of electro-discharge-compacted porous titanium implants in rabbit tibia.

    PubMed

    Drummond, J F; Dominici, J T; Sammon, P J; Okazaki, K; Geissler, R; Lifland, M I; Anderson, S A; Renshaw, W

    1995-01-01

    This study used light and scanning electron microscopic (SEM) histomorphometric methods to quantitate the rate of osseointegration of totally porous titanium alloy (Ti-6Al-4V) implants prepared by a novel fabrication technique--electrodischarge compaction (EDC). EDC was used to fuse 150-250-micrometer spherical titanium alloy beads into 4 X 6 mm cylindrical implants through application of a 300-microsecond pulse of high-voltage/high-current density. Two sterilized implants were surgically placed into each tibia of 20 New Zealand white rabbits and left in situ for periods corresponding to 2, 4, 8, 12, and 24 weeks. At each time point, 4 rabbits were humanely killed, and the implants with surrounding bone were removed, fixed, and sectioned for light and SEM studies. The degree of osseointegration was quantitated by means of a True Grid Digitizing Pad and Jandel Scan Version 3.9 software on an IBM PS/2 computer. The total pore area occupied by bone was divided by the total pore area available for bone ingrowth, and a Bone Ingrowth Factor (BIF) was calculated as a percent. The light microscopic results showed BIFs of 4% at week 2, 47% at week 4, 62% at week 8, 84% at week 12, and greater than 90% at week 24. The SEM results showed BIFs of 5% at week 2, 34% at week 4, 69% at week 8, 75% at week 12, and in excess of 90% at week 24. The results of this study show that EDC implants are biocompatible and support rapid osseointegration in the rabbit tibia and suggest that, after additional studies, they may be suitable for use as dental implants in humans.

  9. Spectral analysis of scattered light from flowers' petals

    NASA Astrophysics Data System (ADS)

    Ozawa, Atsumi; Uehara, Tomomi; Sekiguchi, Fumihiko; Imai, Hajime

    2009-07-01

    A new method was developed for studying absorption characteristics of opaque samples based on the light scattering spectroscopy. Measurements were made in white, red and violet petals of Petunia hybrida, and gave the absorption spectra in a non-destructive manner without damaging the cell structures of the petal. The red petal has absorption peak at 550 nm and the violet has three absorption peaks: at 450, 670, and 550 nm. The results were discussed in correlation with the microscopic cell structures of the petal observed with optical microscope and transmission electron microscopy (TEM). Only the cells placed in the surface have the pigments giving the color of the petal.

  10. Wakata performs microscopic analysis of the NanoRacks Module-38 Petri Dishes

    NASA Image and Video Library

    2014-01-13

    ISS038-E-029082 (12 Jan. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, performs microscopic analysis of the NanoRacks Module-38 Petri Dishes, using Celestron Reflective Microscope, in the Kibo laboratory of the International Space Station. These Module-38 experiments are designed by students as part of a competition sponsored by the International Space School Educational Trust (ISSET). This experiment examines three-dimensional growth of slime mold in petri dishes utilizing the NanoRacks Microscopes Facility.

  11. Using a university characterization facility to educate the public about microscopes: light microscopes to SEM

    NASA Astrophysics Data System (ADS)

    Healy, Nancy; Henderson, Walter

    2015-10-01

    The National Nanotechnology Infrastructure Network (NNIN)1is an integrated partnership of 14 universities across the US funded by NSF to support nanoscale researchers. The NNIN education office is located at the Institute of Electronics and Nanotechnology at the Georgia Institute of Technology. At Georgia Tech we offer programs that integrate the facility and its resources to educate the public about nanotechnology. One event that has proved highly successful involves using microscopes in our characterization suite to educate a diverse audience about a variety of imaging instruments. As part of the annual Atlanta Science Festival (ATLSF)2 we provided an event entitled: "What's all the Buzz about Nanotechnology?" which was open to the public and advertised through a variety of methods by the ATLSF. During the event, we provided hands-on demos, cleanroom tours, and activities with three of our microscopes in our recently opened Imaging and Characterization Facility: 1. Keyence VHX-600 Digital Microscope; 2. Hitachi SU823 FE-SEM; and 3. Hitachi TM 3000. During the two hour event we had approximately 150 visitors including many families with school-aged children. Visitors were invited to bring a sample for scanning with the TM-3000. This paper will discuss how to do such an event, lessons learned, and visitor survey results.

  12. Methyl green and nitrotetrazolium blue chloride co-expression in colon tissue: A hyperspectral microscopic imaging analysis

    NASA Astrophysics Data System (ADS)

    Li, Qingli; Liu, Hongying; Wang, Yiting; Sun, Zhen; Guo, Fangmin; Zhu, Jianzhong

    2014-12-01

    Histological observation of dual-stained colon sections is usually performed by visual observation under a light microscope, or by viewing on a computer screen with the assistance of image processing software in both research and clinical settings. These traditional methods are usually not sufficient to reliably differentiate spatially overlapping chromogens generated by different dyes. Hyperspectral microscopic imaging technology offers a solution for these constraints as the hyperspectral microscopic images contain information that allows differentiation between spatially co-located chromogens with similar but different spectra. In this paper, a hyperspectral microscopic imaging (HMI) system is used to identify methyl green and nitrotetrazolium blue chloride in dual-stained colon sections. Hyperspectral microscopic images are captured and the normalized score algorithm is proposed to identify the stains and generate the co-expression results. Experimental results show that the proposed normalized score algorithm can generate more accurate co-localization results than the spectral angle mapper algorithm. The hyperspectral microscopic imaging technology can enhance the visualization of dual-stained colon sections, improve the contrast and legibility of each stain using their spectral signatures, which is helpful for pathologist performing histological analyses.

  13. Light and electron microscope observations on Nephroselmis gaoae sp. nov. (Prasinophyceae)

    NASA Astrophysics Data System (ADS)

    Tseng, C. K.; Jiao-Fen, Chen; Zhe-Fu, Zhang; Hui-Qi, Zhang

    1994-09-01

    Nephroselmis gaoae sp. nov. is described on the basis of light and electron microscope observations of cultured material originally collected and isolated from seawater of Jiaozhou Bay, Qingdao, China. The periplasts on the cell body and flagella are covered by five types of scales, two types on the flagella and three on the body. Among these, the morphology and the number of spines of large stellate body scales differ remarkably from those of previously described species of Nephroselmis. Apart from these, the unusual fine structure of the eyespot (stigma) is very characteristic. As in the other species of Nephroselmis, the eyespot lies immediately under the two-membraned chloroplast envelope; unlike the others, however, it is not composed of a number of osmiophilic globules, but consists of about 14 curved rod-shaped osmiophilic bodies arranged loosely and randomly. This feature distinguishes the present new species not only from the other species of Nephroselmis but also from the other motile algal species, the eyespots structure of which had been previously described.

  14. A computer-assisted microscopic analysis of bone tissue developed inside a polyactive polymer implanted into an equine articular surface.

    PubMed

    Albert, Réka; Vásárhelyi, Gábor; Bodó, Gábor; Kenyeres, Annamária; Wolf, Ervin; Papp, Tamás; Terdik, Tünde; Módis, László; Felszeghy, Szabolcs

    2012-09-01

    One of the most promising applications for the restoration of small or moderately sized focal articular lesions is mosaicplasty (MP). Although recurrent hemarthrosis is a rare complication after MP, recently, various strategies have been designed to find an effective filling material to prevent postoperative bleeding from the donor site. The porous biodegradable polymer Polyactive (PA; a polyethylene glycol terephthalate - polybutylene terephthalate copolymer) represents a promising solution in this respect. A histological evaluation of the longterm PA-filled donor sites obtained from 10 experimental horses was performed. In this study, attention was primarily focused on the bone tissue developed in the plug. A computer-assisted image analysis and quantitative polarized light microscopic measurements of decalcified, longitudinally sectioned, dimethylmethylene blue (DMMB)- and picrosirius red (PS) stained sections revealed that the coverage area of the bone trabecules in the PA-filled donor tunnels was substantially (25%) enlarged compared to the neighboring cancellous bone. For this quantification, identical ROIs (regions of interest) were used and compared. The birefringence retardation values were also measured with a polarized light microscope using monochromatic light. Identical retardation values could be recorded from the bone trabeculae developed in the PA and in the neighboring bone, which indicates that the collagen orientation pattern does not differ significantly among these bone trabecules. Based on our new data, we speculate that PA promotes bone formation, and some of the currently identified degradation products of PA may enhance osteo-conduction and osteoinduction inside the donor canal.

  15. A versatile localization system for microscopic multiparametric analysis of cells.

    PubMed

    Thaw, H H; Rundquist, I; Johansson, U; Svensson, I; Collins, V P

    1983-03-01

    A new, simple and relatively inexpensive electronic digital position readout (DPRO) system which can be applied to the rapid localization and recovery of microscopic material is described. It is based upon a commercially available digital position readout system which is routinely utilized by industry for small machine tools and measuring equipment. This has been mounted onto the stage of various microscopic instrumentation to provide X and Y coordinates relative to an arbitrary reference point. The integration of small computers interfaced to scanning interferometric, microdensitometric and fluorescence microscopes were used to demonstrate the reliability, versatility and ease of application of this system to problems of multiparametric measurements and analysis of cultured cells. The system may be expanded and applied to clinical material to obtain automatized, multiparametric measurements of cells in haematology and clinical cytology.

  16. Advanced water window x-ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.; Wang, C.; Jiang, W.; Lin, J.

    1992-01-01

    The project was focused on the design and analysis of an advanced water window soft-x-ray microscope. The activities were accomplished by completing three tasks contained in the statement of work of this contract. The new results confirm that in order to achieve resolutions greater than three times the wavelength of the incident radiation, it will be necessary to use aspherical mirror surfaces and to use graded multilayer coatings on the secondary (to accommodate the large variations of the angle of incidence over the secondary when operating the microscope at numerical apertures of 0.35 or greater). The results are included in a manuscript which is enclosed in the Appendix.

  17. Macular photostress and visual experience between microscope and intracameral illumination during cataract surgery.

    PubMed

    Seo, Hyejin; Nam, Dong Heun; Lee, Jong Yeon; Park, Su Jin; Kim, Yu Jeong; Kim, Seong-Woo; Chung, Tae-Young; Inoue, Makoto; Kim, Terry

    2018-02-01

    To evaluate macular photostress and visual experience between coaxial microscope illumination versus oblique intracameral illumination during cataract surgery. Gachon University Gil Hospital, Incheon, South Korea. Prospective case series. Consecutive patients who had cataract surgery using microscope illumination and intracameral illumination were included. The patients were asked to complete a questionnaire (seeing strong lights, feeling photophobia, feeling startled (fright) when seeing lights, seeing any colors, seeing any instruments or surgical procedures, and estimating intraoperative visual function) designed to describe their cataract surgery experience. The images projected on the retina of the model eye (rear view) with artificial opaque fragments in the anterior chamber during simulating cataract surgery were compared between the 2 illumination types. Sixty patients completed the questionnaire. Scores for strong lights, photophobia, fright, and color perception were significantly higher with microscope illumination than with intracameral illumination (all P < .001). More patients preferred the intracameral illumination (45 [75.0%]) to the microscope illumination (13 [21.7%]). In the rear-view images created in a model eye, only the bright microscope light in the center was seen without any lens image in the microscope illumination. However, in the intracameral illumination, the less bright light from the light pipe in the periphery and the lens fragments were seen more clearly. In a view of the patients' visual experience, oblique intracameral illumination caused less subjective photostress and was preferred over coaxial microscope illumination. Objective findings from the model-eye experiment correlated to the result of visual experience. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. The enlightened microscope: re-enactment and analysis of projections with eighteenth-century solar microscopes.

    PubMed

    Heering, Peter

    2008-09-01

    Solar microscopes and their techniques attracted particular attention in the second half of the eighteenth century. This paper investigates the grounds for this interest. After a general introduction to the solar microscope, it discusses the use of original instruments to gain access to the visual culture of solar microscopes and the issues raised by these reenactments. Experiences involved in this process serve as a basis for reassessing the original source materials. Thence emerges a different account of the meaning of the solar microscope in the eighteenth century and possible reasons for its popularity.

  19. NASA Lighting Research, Test, & Analysis

    NASA Technical Reports Server (NTRS)

    Clark, Toni

    2015-01-01

    The Habitability and Human Factors Branch, at Johnson Space Center, in Houston, TX, provides technical guidance for the development of spaceflight lighting requirements, verification of light system performance, analysis of integrated environmental lighting systems, and research of lighting-related human performance issues. The Habitability & Human Factors Lighting Team maintains two physical facilities that are integrated to provide support. The Lighting Environment Test Facility (LETF) provides a controlled darkroom environment for physical verification of lighting systems with photometric and spetrographic measurement systems. The Graphics Research & Analysis Facility (GRAF) maintains the capability for computer-based analysis of operational lighting environments. The combined capabilities of the Lighting Team at Johnson Space Center have been used for a wide range of lighting-related issues.

  20. Imaging arrangement and microscope

    DOEpatents

    Pertsinidis, Alexandros; Chu, Steven

    2015-12-15

    An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.

  1. Imaging Schwarzschild multilayer X-ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Baker, Phillip C.; Shealy, David L.; Core, David B.; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.; Kerstetter, Ted

    1993-01-01

    We have designed, analyzed, fabricated, and tested Schwarzschild multilayer X-ray microscopes. These instruments use flow-polished Zerodur mirror substrates which have been coated with multilayers optimized for maximum reflectivity at normal incidence at 135 A. They are being developed as prototypes for the Water Window Imaging X-Ray Microscope. Ultrasmooth mirror sets of hemlite grade sapphire have been fabricated and they are now being coated with multilayers to reflect soft X-rays at 38 A, within the biologically important 'water window'. In this paper, we discuss the fabrication of the microscope optics and structural components as well as the mounting of the optics and assembly of the microscopes. We also describe the optical alignment, interferometric and visible light testing of the microscopes, present interferometrically measured performance data, and provide the first results of optical imaging tests.

  2. Electron microscopic evaluation of a gold glaucoma micro shunt after explantation.

    PubMed

    Berk, Thomas A; Tam, Diamond Y; Werner, Liliana; Mamalis, Nick; Ahmed, Iqbal Ike K

    2015-03-01

    We present a case of an explanted gold glaucoma micro shunt (GMS Plus) and the subsequent light and electron microscopic analyses. The shunt was implanted in a patient with medically refractive glaucoma. The intraocular pressure (IOP) was stable at 12 mm Hg 6 months postoperatively but spiked to 26 mm Hg 6 months later; membranous growth was visible on the implant gonioscopically. A second gold micro shunt was placed 2 years after the first. The IOP was 7 mm Hg 1 week postoperatively but increased to 23 mm Hg 3 weeks later; similar membranous growth was visible on this implant. One of the shunts was explanted, and light and scanning electron microscopic analyses revealed encapsulation around the shunt exterior and connective tissue invasion of the microstructure. This represents the first electron microscopic analysis of an explanted gold glaucoma micro shunt and the first unequivocal images of the fibrotic pseudo-capsule traversing its microchannels and fenestrations. Dr. Ahmed is a consultant to and has received research grants from Solx, Inc. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  3. Bi-directional transmission of molecular information by photon or electron beams passing in the close vicinity of specific molecules, and its clinical and basic research applications: 1) Diagnosis of humans or animal patients without any direct contact; 2) Light microscopic and electron microscopic localization of neuro-transmitters, heavy metals, Oncogen C-fos (AB2), etc. of intracellular fine structures of normal and abnormal single cells using light or electro-microscopic indirect Bi-Digital O-Ring Test.

    PubMed

    Omura, Y; Losco, M; Omura, A K; Takeshige, C; Hisamitsu, T; Nakajima, H; Soejima, K; Yamamoto, S; Ishikawa, H; Kagoshima, T

    1992-01-01

    In 1985, Omura, Y. discovered that, when specific molecules were placed anywhere in the close vicinity of the path of a light beam (laser), their molecular information, as well as information on electrical & magnetic fields, is transmitted bi-directionally along the path of this light beam. Namely, this information is transmitted in the direction the light beam is projected and towards the direction from which the light beam is coming. This finding was applied to the following clinical and basic research: 1) In the past, using indirect Bi-Digital O-Ring Test, human or animal patients were diagnosed through an intermediate third person holding a good electrical conducting probe, the tip of which was touching the part of the patient to be examined. However, in order to diagnose the patient in isolation from a distance, or a dangerous or unmanagable unanesthesized animal, such as a lion or tiger, the author succeeded in making a diagnosis by replacing the metal conducting probe with a soft laser beam which is held by the one hand of the third person whose index finger is placed in close vicinity of the laser beam generated by a battery-powered penlight-type solid state laser generator. Thus, diagnosis within visible distance, without direct patient contact, became a reality. 2) Using a projection light microscope, by giving indirect Bi-Digital O-Ring Test while contacting with a fine electro-conductive probe on the magnified fine structure of normal and abnormal cells, various normal and abnormal intracellular substances were localized through a third person holding a pure reference control substance with the same hand that is holding the probe as an intermediary for the indirect Bi-Digital O-Ring Test. Instead of the photon beam in a light microscope, the author found that, using an electron beam passing through the close vicinity of specific molecules of specimens in an electron microscope, the molecular information is transmitted to the magnified fluorescent screen

  4. The nervus terminalis in the mouse: light and electron microscopic immunocytochemical studies.

    PubMed

    Jennes, L

    1987-01-01

    The distribution of gonadotropin-releasing hormone (GnRH)-containing neurons and fibers in the olfactory bulb was studied with light and electron microscopic immunohistochemistry in combination with retrograde transport of "True Blue" and horseradish peroxidase and lesion experiments. GnRH-positive neurons are found in the septal roots of the nervus terminalis, in the ganglion terminale, intrafascicularly throughout the nervus terminalis, in a dorso-ventral band in the caudal olfactory bulb, in various layers of the main and accessory olfactory bulb, and in the basal aspects of the nasal epithelium. Electron microscopic studies show that the nerve fibers in the nervus terminalis are not myelinated and are not surrounded by Schwann cell sheaths. In the ganglion terminale, "smooth" GnRH neurons are seen in juxtaposition to immunonegative neurons. Occasionally, axosomatic specializations are found in the ganglion terminale, but such synaptic contacts are not seen intrafascicularly in the nervus terminalis. Retrograde transport studies indicate that certain GnRH neurons in the septal roots of the nervus terminalis were linked to the amygdala. In addition, a subpopulation of nervus terminalis-related GnRH neurons has access to fenestrated capillaries whereas other GnRH neurons terminate at the nasal epithelium. Lesions of the nervus terminalis caudal to the ganglion terminale result in sprouting of GnRH fibers at both sites of the knife cut. The results suggest that GnRH in the olfactory system of the mouse can influence a variety of target sites either via the blood stream, via the external cerebrospinal fluid or via synaptic/asynaptic contacts with, for example, the receptor cells in the nasal mucosa.

  5. The microscopes of Antoni van Leeuwenhoek.

    PubMed

    van Zuylen, J

    1981-03-01

    The seventeenth-century Dutch microscopist, Antoni van Leeuwenhoek, was the first man to make a protracted study of microscopical objects, and, unlike his contemporary Robert Hooke, he viewed by transmitted light. Leeuwenhoek made over 500 of his own, curious, simple microscopes, but now only nine are known to exist. The exact nature of the lenses Leeuwenhoek made, has for long been a puzzle. The existing microscopes have now been examined in detail, and their optical characteristics measured and tabulated. It is proposed that the lens of highest magnification, x 266, was made using a special blown bubble technique.

  6. The influence of the microscope lamp filament colour temperature on the process of digital images of histological slides acquisition standardization.

    PubMed

    Korzynska, Anna; Roszkowiak, Lukasz; Pijanowska, Dorota; Kozlowski, Wojciech; Markiewicz, Tomasz

    2014-01-01

    The aim of this study is to compare the digital images of the tissue biopsy captured with optical microscope using bright field technique under various light conditions. The range of colour's variation in immunohistochemically stained with 3,3'-Diaminobenzidine and Haematoxylin tissue samples is immense and coming from various sources. One of them is inadequate setting of camera's white balance to microscope's light colour temperature. Although this type of error can be easily handled during the stage of image acquisition, it can be eliminated with use of colour adjustment algorithms. The examination of the dependence of colour variation from microscope's light temperature and settings of the camera is done as an introductory research to the process of automatic colour standardization. Six fields of view with empty space among the tissue samples have been selected for analysis. Each field of view has been acquired 225 times with various microscope light temperature and camera white balance settings. The fourteen randomly chosen images have been corrected and compared, with the reference image, by the following methods: Mean Square Error, Structural SIMilarity and visual assessment of viewer. For two types of backgrounds and two types of objects, the statistical image descriptors: range, median, mean and its standard deviation of chromaticity on a and b channels from CIELab colour space, and luminance L, and local colour variability for objects' specific area have been calculated. The results have been averaged for 6 images acquired in the same light conditions and camera settings for each sample. The analysis of the results leads to the following conclusions: (1) the images collected with white balance setting adjusted to light colour temperature clusters in certain area of chromatic space, (2) the process of white balance correction for images collected with white balance camera settings not matched to the light temperature moves image descriptors into proper

  7. Ultra-high resolution water window x ray microscope optics design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Wang, C.

    1993-01-01

    This project has been focused on the design and analysis of an ultra-high resolution water window soft-x-ray microscope. These activities have been accomplished by completing two tasks contained in the statement of work of this contract. The new results from this work confirm: (1) that in order to achieve resolutions greater than three times the wavelength of the incident radiation, it will be necessary to use spherical mirror surfaces and to use graded multilayer coatings on the secondary in order to accommodate the large variations of the angle of incidence over the secondary when operating the microscope at numerical apertures of 0.35 or greater; (2) that surface contour errors will have a significant effect on the optical performance of the microscope and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror; and (3) that tolerance analysis of the spherical Schwarzschild microscope has been shown that the water window operations will require 2-3 times tighter tolerances to achieve a similar performance of operations with 130 A radiation. These results have been included in a manuscript included in the appendix.

  8. Estimation of safe exposure time from an ophthalmic operating microscope with regard to ultraviolet radiation and blue-light hazards to the eye

    NASA Astrophysics Data System (ADS)

    Michael, Ralph; Wegener, Alfred

    2004-08-01

    Hazards from the optical radiation of an operating microscope that cause damage at the corneal, lenticular, and retinal levels were investigated; we considered, in particular, ultraviolet radiation (UVR) and blue light. The spectral irradiance from a Zeiss operation microscope OPMI VISU 200 was measured in the corneal plane between 300 and 1100 nm. Effective irradiance and radiance were calculated with relative spectral effectiveness data from the American Conference for Governmental and Industrial Hygienists. Safe exposure time to avoid UVR injury to the lens and cornea was found to be 2 h without a filter, 4 h with a UVR filter, 200 h with a yellow filter, and 400 h with a filter combination. Safe exposure time to avoid retinal photochemical injury was found to be 3 min without a filter and with a UVR filter, 10 min with a yellow filter, and 49 min with a filter combination. The effective radiance limit for retinal thermal injury was not exceeded. The hazard due to the UVR component from the operating microscope is not critical, and operation time can be safely prolonged with the use of appropriate filters. The retinal photochemical hazard appears critical without appropriate filters, permitting only some minutes of safe exposure time. The calculated safe exposure times are for worst-case conditions and maximal light output and include a safety factor.

  9. Estimation of safe exposure time from an ophthalmic operating microscope with regard to ultraviolet radiation and blue-light hazards to the eye.

    PubMed

    Michael, Ralph; Wegener, Alfred

    2004-08-01

    Hazards from the optical radiation of an operating microscope that cause damage at the corneal, lenticular, and retinal levels were investigated; we considered, in particular, ultraviolet radiation (UVR) and blue light. The spectral irradiance from a Zeiss operation microscope OPMI VISU 200 was measured in the corneal plane between 300 and 1100 nm. Effective irradiance and radiance were calculated with relative spectral effectiveness data from the American Conference for Governmental and Industrial Hygienists. Safe exposure time to avoid UVR injury to the lens and cornea was found to be 2 h without a filter, 4 h with a UVR filter, 200 a yellow filter, and 400 h with a filter combination. Safe exposure time to avoid retinal photochemical injury was found to be 3 min without a filter and with a UVR filter, 10 min with a yellow filter, and 49 min with a filter combination. The effective radiance limit for retinal thermal injury was not exceeded. The hazard due to the UVR component from the operating microscope is not critical, and operation time can be safely prolonged with the use of appropriate filters. The retinal photochemical hazard appears critical without appropriate filters, permitting only some minutes of safe exposure time. The calculated safe exposure times are for worst-case conditions and maximal light output and include a safety factor.

  10. Auricular burns associated with operating microscope use during otologic surgery.

    PubMed

    Latuska, Richard F; Carlson, Matthew L; Neff, Brian A; Driscoll, Colin L; Wanna, George B; Haynes, David S

    2014-02-01

    To raise awareness of the potential hazard of auricular burns associated with operating microscope use during otologic surgery. Retrospective case series and summary of the Food and Drug Administration's (FDA) Manufacturer and User Facility Device Experience (MAUDE) database of voluntary adverse event reports pertaining to microscope related auricular thermal injuries. All patients who sustained auricular burns while using the operating microscope during otologic surgery at 2 tertiary academic referral centers. Surgical procedure, microscope model, intensity of illumination, length of procedure, focal length, location and severity of burn, and patient outcome. A total of 4 microscope-related auricular thermal injuries were identified from the authors' institutions. Additionally, 82 unique cases of soft tissue burns associated with the use of an operative microscope have been voluntarily reported to the FDA since 2004. A disproportionately large percent (∼ 30%) of these occurred within the field of otology, the majority of which were during tympanoplasty or tympanomastoidectomy procedures at focal length distances of 300 mm or less with xenon light source microscopes. Simultaneous advancements in light delivery technologies and lens optics have continued to improve the efficiency of the operating microscope; however, these improvements also increase the potential for thermal injuries. Although rare, a review of the FDA MAUDE database suggests that microscope-related soft tissue burns occur more frequently in otology than any other surgical specialty. A variety of factors may help explain this finding, including the unique anatomy of the external ear with thin skin and limited underlying adipose tissue. Preventative measures should be taken to decrease the risk of thermal injuries including use of the lowest comfortable light intensity, adjusting the aperture width to match the operative field, frequent wound irrigation, and covering exposed portions of the pinna

  11. Scanning Microscopes Using X Rays and Microchannels

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the

  12. Design considerations of a real-time clinical confocal microscope

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1991-06-01

    A real-time clinical confocal light microscope provides the ophthalmologist with a new tool for the observation of the cornea and the ocular lens. In addition, the ciliary body, the iris, and the sclera can be observed. The real-time light microscopic images have high contrast and resolution. The transverse resolution is about one half micron and the range resolution is one micron. The following observations were made with visible light: corneal epithelial cells, wing cells, basal cells, Bowman's membrane, nerve fibers, basal lamina, fibroblast nuclei, Descemet's membrane, endothelial cells. Observation of the in situ ocular lens showed lens capsule, lens epithelium, lens fibrils, the interior of lens fibrils. The applications of the confocal microscope include: eye banking, laser refractive surgery, observation of wound healing, observation of the iris, the sciera, the ciliary body, the ocular lens, and the intraocular lens. Digital image processing can produce three-dimensional reconstructions of the cornea and the ocular lens.

  13. Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope.

    PubMed

    Gineste, J-M; Macko, P; Patterson, E A; Whelan, M P

    2011-08-01

    The forward scattering of light in a conventional inverted optical microscope by nanoparticles ranging in diameter from 10 to 50nm has been used to automatically and quantitatively identify and track their location in three-dimensions with a temporal resolution of 200ms. The standard deviation of the location of nominally stationary 50-nm-diameter nanoparticles was found to be about 50nm along the light path and about 5nm in the plane perpendicular to the light path. The method is based on oscillating the microscope objective along the light path using a piezo actuator and acquiring images with the condenser aperture closed to a minimum to enhance the effects of diffraction. Data processing in the time and spatial domains allowed the location of particles to be obtained automatically so that the technique has potential applications both in the processing of nanoparticles and in their use in a variety of fields including nanobiotechnology, pharmaceuticals and food processing where a simple optical microscope maybe preferred for a variety of reasons. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  14. A Comparative Study of Microscopic Images Captured by a Box Type Digital Camera Versus a Standard Microscopic Photography Camera Unit

    PubMed Central

    Desai, Nandini J.; Gupta, B. D.; Patel, Pratik Narendrabhai

    2014-01-01

    Introduction: Obtaining images of slides viewed by a microscope can be invaluable for both diagnosis and teaching.They can be transferred among technologically-advanced hospitals for further consultation and evaluation. But a standard microscopic photography camera unit (MPCU)(MIPS-Microscopic Image projection System) is costly and not available in resource poor settings. The aim of our endeavour was to find a comparable and cheaper alternative method for photomicrography. Materials and Methods: We used a NIKON Coolpix S6150 camera (box type digital camera) with Olympus CH20i microscope and a fluorescent microscope for the purpose of this study. Results: We got comparable results for capturing images of light microscopy, but the results were not as satisfactory for fluorescent microscopy. Conclusion: A box type digital camera is a comparable, less expensive and convenient alternative to microscopic photography camera unit. PMID:25478350

  15. Coherent scattering of near-resonant light by a dense, microscopic cloud of cold two-level atoms: Experiment versus theory

    NASA Astrophysics Data System (ADS)

    Jennewein, Stephan; Brossard, Ludovic; Sortais, Yvan R. P.; Browaeys, Antoine; Cheinet, Patrick; Robert, Jacques; Pillet, Pierre

    2018-05-01

    We measure the coherent scattering of low-intensity, near-resonant light by a cloud of laser-cooled two-level rubidium atoms with a size comparable to the wavelength of light. We isolate a two-level atomic structure by applying a 300-G magnetic field. We measure both the temporal and the steady-state coherent optical response of the cloud for various detunings of the laser and for atom numbers ranging from 5 to 100. We compare our results to a microscopic coupled-dipole model and to a multimode, paraxial Maxwell-Bloch model. In the low-intensity regime, both models are in excellent agreement, thus validating the Maxwell-Bloch model. Comparing to the data, the models are found in very good agreement for relatively low densities (n /k3≲0.1 ), while significant deviations start to occur at higher density. This disagreement indicates that light scattering in dense, cold atomic ensembles is still not quantitatively understood, even in pristine experimental conditions.

  16. Analysis of DNA methylation in FFPE tissues using the MethyLight technology.

    PubMed

    Dallol, Ashraf; Al-Ali, Waleed; Al-Shaibani, Amina; Al-Mulla, Fahd

    2011-01-01

    Novel biomarkers are sought after by mining DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tissues. Such tissues offer the great advantage of often having complete clinical data (including survival), as well as the tissues are amenable for laser microdissection targeting specific tissue areas. Downstream analysis of such DNA includes mutational screens and methylation profiling. Screening for mutations by sequencing requires a significant amount of DNA for PCR and cycle sequencing. This is self-inhibitory if the gene screened has a large number of exons. Profiling DNA methylation using the MethyLight technology circumvents this problem and allows for the mining of several biomarkers from DNA extracted from a single microscope slide of the tissue of interest. We describe in this chapter a detailed protocol for MethyLight and its use in the determination of CpG Island Methylator Phenotype status in FFPE colorectal cancer samples.

  17. Thermal effects of white light illumination during microsurgery: clinical pilot study on the application safety of surgical microscopes.

    PubMed

    Hibst, Raimund; Saal, David; Russ, Detlef; Kunzi-Rapp, Karin; Kienle, Alwin; Stock, Karl

    2010-01-01

    Modern operating microscopes offer high power illumination to ensure optimal visualization, but can also cause thermal damage. The aim of our study is to quantify the thermal effects in vivo and discuss conditions for safe use. In a pilot study on volunteers, we measured the temperature at the skin surface during microscope illumination, including the influence of anaesthesia and the effects of staining, draping, or moistening of the skin. Irradiation within the limit given by safety regulations (200 mW/cm(2)) results in skin surface temperature of 43 degrees C. Higher intensities (forearm 335 mW/cm(2), back 250 mW/cm(2)) are tolerated, resulting in reversible hyperaemia. At a very high illumination intensity (750 mW/cm(2)), pain occurs within 30 s at temperatures of 46 degrees C+/-1 degrees C (hand and forearm), and 43 degrees C+/-2 degrees C (back), respectively. Anaesthesia has no distinct effect on the temperature, whereas staining and drapes result in much higher temperatures (>100 degrees C). Moistening at practicable flow rates can reduce temperature efficiently when combined with a light absorbing and water absorbent drape. In conclusion, surgeons must be aware that surgical microscope illumination without protective means can cause skin temperatures to rise much above pain threshold, which in our study serves as a (conservative) benchmark for potential damage.

  18. Thermal effects of white light illumination during microsurgery: clinical pilot study on the application safety of surgical microscopes

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Saal, David; Russ, Detlef; Kunzi-Rapp, Karin; Kienle, Alwin; Stock, Karl

    2010-07-01

    Modern operating microscopes offer high power illumination to ensure optimal visualization, but can also cause thermal damage. The aim of our study is to quantify the thermal effects in vivo and discuss conditions for safe use. In a pilot study on volunteers, we measured the temperature at the skin surface during microscope illumination, including the influence of anaesthesia and the effects of staining, draping, or moistening of the skin. Irradiation within the limit given by safety regulations (200 mW/cm2) results in skin surface temperature of 43 °C. Higher intensities (forearm 335 mW/cm2, back 250 mW/cm2) are tolerated, resulting in reversible hyperaemia. At a very high illumination intensity (750 mW/cm2), pain occurs within 30 s at temperatures of 46 °C+/-1 °C (hand and forearm), and 43 °C+/-2 °C (back), respectively. Anaesthesia has no distinct effect on the temperature, whereas staining and drapes result in much higher temperatures (>100 °C). Moistening at practicable flow rates can reduce temperature efficiently when combined with a light absorbing and water absorbent drape. In conclusion, surgeons must be aware that surgical microscope illumination without protective means can cause skin temperatures to rise much above pain threshold, which in our study serves as a (conservative) benchmark for potential damage.

  19. A pragmatic guide to multiphoton microscope design

    PubMed Central

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  20. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging.

    PubMed

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  1. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis.

  2. Low-frequency nondestructive analysis of cracks in multilayer structures using a scanning magnetic microscope

    NASA Astrophysics Data System (ADS)

    Adamo, M.; Nappi, C.; Sarnelli, E.

    2010-09-01

    The use of a scanning magnetic microscope (SMM) with a high temperature superconducting quantum interference device (SQUID) for quantitative measurements in eddy current nondestructive analysis (NDA) is presented. The SQUID has been used to detect the weak magnetic field variations around a small defect, close to a structural part generating an intensive magnetic field. The experimental data for a deep crack close to a rivet in a multilayer conducting plate have been taken in a RF-shielded environment and discussed in the light of the theoretical predictions. The results show that eddy current NDA can distinguish subsurface crack signals from wider structural signals, with defects located 10 mm below the surface. Moreover, in order to visualize the structure of the probing current when a circular induction coil is used, the simulation of eddy currents in a thick unflawed conducting plate has been carried out.

  3. Electron Microscopic Analysis of Hippocampal Axo‐Somatic Synapses in a Chronic Stress Model for Depression

    PubMed Central

    Csabai, Dávid; Seress, László; Varga, Zsófia; Ábrahám, Hajnalka; Miseta, Attila; Wiborg, Ove

    2016-01-01

    ABSTRACT Stress can alter the number and morphology of excitatory synapses in the hippocampus, but nothing is known about the effect of stress on inhibitory synapses. Here, we used an animal model for depression, the chronic mild stress model, and quantified the number of perisomatic inhibitory neurons and their synapses. We found reduced density of parvalbumin‐positive (PV+) neurons in response to stress, while the density of cholecystokinin‐immunoreactive (CCK+) neurons was unaffected. We did a detailed electron microscopic analysis to quantify the frequency and morphology of perisomatic inhibitory synapses in the hippocampal CA1 area. We analyzed 1100 CA1 pyramidal neurons and 4800 perisomatic terminals in five control and four chronically stressed rats. In the control animals we observed the following parameters: Number of terminals/soma = 57; Number of terminals/100 µm cell perimeter = 10; Synapse/terminal ratio = 32%; Synapse number/100 terminal = 120; Average terminal length = 920nm. None of these parameters were affected by the stress exposure. Overall, these data indicate that despite the depressive‐like behavior and the decrease in the number of perisomatic PV+ neurons in the light microscopic preparations, the number of perisomatic inhibitory synapses on CA1 pyramidal cells was not affected by stress. In the electron microscope, PV+ neurons and the axon terminals appeared to be normal and we did not find any apoptotic or necrotic cells. This data is in sharp contrast to the remarkable remodeling of the excitatory synapses on spines that has been reported in response to stress and depressive‐like behavior. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27571571

  4. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope.

    PubMed

    Wang, Ye; He, Honghui; Chang, Jintao; Zeng, Nan; Liu, Shaoxiong; Li, Migao; Ma, Hui

    2015-12-01

    Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Development of Low-Cost Inverted Microscope to Detect Early Growth of Mycobacterium tuberculosis in MODS Culture

    PubMed Central

    Zimic, Mirko; Velazco, Abner; Comina, Germán; Coronel, Jorge; Fuentes, Patricia; Luna, Carmen G.; Sheen, Patricia; Gilman, Robert H.; Moore, David A. J.

    2010-01-01

    Background The microscopic observation drug susceptibility (MODS) assay for rapid, low-cost detection of tuberculosis and multidrug resistant tuberculosis depends upon visualization of the characteristic cording colonies of Mycobacterium tuberculosis in liquid media. This has conventionally required an inverted light microscope in order to inspect the MODS culture plates from below. Few tuberculosis laboratories have this item and the capital cost of $5,000 for a high-end microscope could be a significant obstacle to MODS roll-out. Methodology We hypothesized that the precise definition provided by costly high-specification inverted light microscopes might not be necessary for pattern recognition. Significance In this work we describe the development of a low-cost artesenal inverted microscope that can operate in both a standard or digital mode to effectively replace the expensive commercial inverted light microscope, and an integrated system that could permit a local and remote diagnosis of tuberculosis. PMID:20351778

  6. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.

    PubMed

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  7. Phase-shifting interference microscope with extendable field of measurement

    NASA Astrophysics Data System (ADS)

    Lin, Shyh-Tsong; Hsu, Wei-Feng; Wang, Ming-Shiang

    2018-04-01

    An innovative phase-shifting interference microscope aimed at extending the field of measurement is proposed in this paper. The microscope comprises a light source module, a phase modulation module, and an interferometric module, which reconstructs the micro-structure contours of samples using the five-step phase-shifting algorithm. This paper discusses the measurement theory and outlines the configuration, experimental setup, and experimental results obtained using the proposed interference microscope. The results confirm the efficacy of the microscope, achieving a standard deviation of 2.4 nm from a step height of 86.2 nm in multiple examinations.

  8. Biological applications of an LCoS-based programmable array microscope (PAM)

    NASA Astrophysics Data System (ADS)

    Hagen, Guy M.; Caarls, Wouter; Thomas, Martin; Hill, Andrew; Lidke, Keith A.; Rieger, Bernd; Fritsch, Cornelia; van Geest, Bert; Jovin, Thomas M.; Arndt-Jovin, Donna J.

    2007-02-01

    We report on a new generation, commercial prototype of a programmable array optical sectioning fluorescence microscope (PAM) for rapid, light efficient 3D imaging of living specimens. The stand-alone module, including light source(s) and detector(s), features an innovative optical design and a ferroelectric liquid-crystal-on-silicon (LCoS) spatial light modulator (SLM) instead of the DMD used in the original PAM design. The LCoS PAM (developed in collaboration with Cairn Research, Ltd.) can be attached to a port of a(ny) unmodified fluorescence microscope. The prototype system currently operated at the Max Planck Institute incorporates a 6-position high-intensity LED illuminator, modulated laser and lamp light sources, and an Andor iXon emCCD camera. The module is mounted on an Olympus IX71 inverted microscope with 60-150X objectives with a Prior Scientific x,y, and z high resolution scanning stages. Further enhancements recently include: (i) point- and line-wise spectral resolution and (ii) lifetime imaging (FLIM) in the frequency domain. Multiphoton operation and other nonlinear techniques should be feasible. The capabilities of the PAM are illustrated by several examples demonstrating single molecule as well as lifetime imaging in live cells, and the unique capability to perform photoconversion with arbitrary patterns and high spatial resolution. Using quantum dot coupled ligands we show real-time binding and subsequent trafficking of individual ligand-growth factor receptor complexes on and in live cells with a temporal resolution and sensitivity exceeding those of conventional CLSM systems. The combined use of a blue laser and parallel LED or visible laser sources permits photoactivation and rapid kinetic analysis of cellular processes probed by photoswitchable visible fluorescent proteins such as DRONPA.

  9. The Columbia Debris Loan Program; Examples of Microscopic Analysis

    NASA Technical Reports Server (NTRS)

    Russell, Rick; Thurston, Scott; Smith, Stephen; Marder, Arnold; Steckel, Gary

    2006-01-01

    Following the tragic loss of the Space Shuttle Columbia NASA formed The Columbia Recovery Office (CRO). The CRO was initially formed at the Johnson Space Center after the conclusion of recovery operations on May 1,2003 and then transferred .to the Kennedy Space Center on October 6,2003 and renamed The Columbia Recovery Office and Preservation. An integral part of the preservation project was the development of a process to loan Columbia debris to qualified researchers and technical educators. The purposes of this program include aiding in the advancement of advanced spacecraft design and flight safety development, the advancement of the study of hypersonic re-entry to enhance ground safety, to train and instruct accident investigators and to establish an enduring legacy for Space Shuttle Columbia and her crew. Along with a summary of the debris loan process examples of microscopic analysis of Columbia debris items will be presented. The first example will be from the reconstruction following the STS- 107 accident and how the Materials and Proessteesa m used microscopic analysis to confirm the accident scenario. Additionally, three examples of microstructural results from the debris loan process from NASA internal, academia and private industry will be presented.

  10. Innovative Strategies for Clinical Microscopy Instruction: Virtual Versus Light Microscopy.

    PubMed

    McDaniel, M Jane; Russell, Gregory B; Crandall, Sonia J

    2018-06-01

    The purpose of the study was to compare virtual microscopy with light microscopy to determine differences in learning outcomes and learner attitudes in teaching clinical microscopy to physician assistant (PA) students. A prospective, randomized, crossover design study was conducted with a convenience sample of 67 first-year PA students randomized to 2 groups. One group used light microscopes to find microscopic structures, whereas the other group used instructor-directed video streaming of microscopic elements. At the midpoint of the study, the groups switched instructional strategies. Learning outcomes were assessed via posttest after each section of the study, with comparison of final practical examination results to previous cohorts. Attitudes about the 2 educational strategies were assessed through a postcourse questionnaire with a Likert scale. Analysis of the first posttest demonstrated that students in the video-streamed group had significantly better learning outcomes than those in the light microscopy group (P = .004; Cohen's d = 0.74). Analysis of the posttest after crossover showed no differences between the 2 groups (P = .48). Between the 2 posttests, students first assigned to the light microscopy group scored a 6.6 mean point increase (±10.4 SD; p = .0011), whereas students first assigned to the virtual microscopy group scored a 1.3 mean point increase (±7.1 SD; p = .29). The light microscopy group improved more than the virtual microscopy group (P = .019). Analysis of practical examination data revealed higher scores for the study group compared with 5 previous cohorts of first-year students (P < .0001; Cohen's d = 0.66). Students preferred virtual microscopy to traditional light microscopy. Virtual microscopy is an effective educational strategy, and students prefer this method when learning to interpret images of clinical specimens.

  11. Pseudocyanotic pigmentation of the skin induced by amiodarone: a light and electron microscopic study.

    PubMed Central

    Delage, C.; Lagacé, R.; Huard, J.

    1975-01-01

    An unusual bluish discolouration of the nose was noticed in a woman 9 months after she had begun treatment with a coronary vasodilator, amiodarone hydrochloride. Cutaneous biopsies of the nose were obtained 6 and 9 months later for light and electron microscopic studies. In the dermis were histiocytes containing cytoplasmic yellow-brown granules with histochemical properties of melanin and lipofuscin. Ultrastructurally the granules appeared as lysosomal membrane-bound dense bodies similar to lipofuscin. Similar granules were observed at diascopy in both corneas. The pathogenesis is obscure. A storage disease involving the drug or its metabolites cannot be ruled out. Another possibility is that amiodarone accelerates the normal cellular autophagocytosis, resulting in increased production of lipofuscin, which then accumulates in lysosomes because of a deficiency in lipolytic enzymes. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 PMID:47784

  12. Characterization of process-induced damage in Cu/low-k interconnect structure by microscopic infrared spectroscopy with polarized infrared light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Hirofumi, E-mail: Hirofumi-Seki@trc.toray.co.jp; Hashimoto, Hideki; Ozaki, Yukihiro

    Microscopic Fourier-transform infrared (FT-IR) spectra are measured for a Cu/low-k interconnect structure using polarized IR light for different widths of low-k spaces and Cu lines, and for different heights of Cu lines, on Si substrates. Although the widths of the Cu line and the low-k space are 70 nm each, considerably smaller than the wavelength of the IR light, the FT-IR spectra of the low-k film were obtained for the Cu/low-k interconnect structure. A suitable method was established for measuring the process-induced damage in a low-k film that was not detected by the TEM-EELS (Transmission Electron Microscope-Electron Energy-Loss Spectroscopy) using microscopicmore » IR polarized light. Based on the IR results, it was presumed that the FT-IR spectra mainly reflect the structural changes in the sidewalls of the low-k films for Cu/low-k interconnect structures, and the mechanism of generating process-induced damage involves the generation of Si-OH groups in the low-k film when the Si-CH{sub 3} bonds break during the fabrication processes. The Si-OH groups attract moisture and the OH peak intensity increases. It was concluded that the increase in the OH groups in the low-k film is a sensitive indicator of low-k damage. We achieved the characterization of the process-induced damage that was not detected by the TEM-EELS and speculated that the proposed method is applicable to interconnects with line and space widths of 70 nm/70 nm and on shorter scales of leading edge devices. The location of process-induced damage and its mechanism for the Cu/low-k interconnect structure were revealed via the measurement method.« less

  13. A method for fast automated microscope image stitching.

    PubMed

    Yang, Fan; Deng, Zhen-Sheng; Fan, Qiu-Hong

    2013-05-01

    Image stitching is an important technology to produce a panorama or larger image by combining several images with overlapped areas. In many biomedical researches, image stitching is highly desirable to acquire a panoramic image which represents large areas of certain structures or whole sections, while retaining microscopic resolution. In this study, we develop a fast normal light microscope image stitching algorithm based on feature extraction. At first, an algorithm of scale-space reconstruction of speeded-up robust features (SURF) was proposed to extract features from the images to be stitched with a short time and higher repeatability. Then, the histogram equalization (HE) method was employed to preprocess the images to enhance their contrast for extracting more features. Thirdly, the rough overlapping zones of the images preprocessed were calculated by phase correlation, and the improved SURF was used to extract the image features in the rough overlapping areas. Fourthly, the features were corresponded by matching algorithm and the transformation parameters were estimated, then the images were blended seamlessly. Finally, this procedure was applied to stitch normal light microscope images to verify its validity. Our experimental results demonstrate that the improved SURF algorithm is very robust to viewpoint, illumination, blur, rotation and zoom of the images and our method is able to stitch microscope images automatically with high precision and high speed. Also, the method proposed in this paper is applicable to registration and stitching of common images as well as stitching the microscope images in the field of virtual microscope for the purpose of observing, exchanging, saving, and establishing a database of microscope images. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Dual-mode optical microscope based on single-pixel imaging

    NASA Astrophysics Data System (ADS)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  15. Comparative study viruses with computer-aided phase microscope AIRYSCAN

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Koufal, Georgy E.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.

    1996-12-01

    Traditionally viruses are studied with scanning electron microscopy (SEM) after complicated procedure of sample preparation without the possibility to study it under natural conditions. We obtained images of viruses (Vaccinia virus, Rotavirus) and rickettsias (Rickettsia provazekii, Coxiella burnetti) in native state with computer-aided phase microscope airyscan -- the interference microscope of Linnik layout with phase modulation of the reference wave with dissector image tube as coordinate-sensitive photodetector and computer processing of phase image. A light source was the He-Ne laser. The main result is coincidence of dimensions and shape of phase images with available information concerning their morphology obtained with SEM and other methods. The fine structure of surface and nuclei is observed. This method may be applied for virus recognition and express identification, investigation of virus structure and the analysis of cell-virus interaction.

  16. Image Analysis, Microscopic, and Spectrochemical Study of the PVC Dry Blending Process,

    DTIC Science & Technology

    The dry blending process used in the production of electrical grade pvc formulations has been studies using a combination of image analysis , microscopic...by image analysis techniques. Optical and scanning electron microscopy were used to assess morphological differences. Spectrochemical techniques were used to indicate chemical changes.

  17. Thimble microscope system

    NASA Astrophysics Data System (ADS)

    Kamal, Tahseen; Rubinstein, Jaden; Watkins, Rachel; Cen, Zijian; Kong, Gary; Lee, W. M.

    2016-12-01

    Wearable computing devices, e.g. Google Glass, Smart watch, embodies the new human design frontier, where technology interfaces seamlessly with human gestures. During examination of any subject in the field (clinic, surgery, agriculture, field survey, water collection), our sensory peripherals (touch and vision) often go hand-in-hand. The sensitivity and maneuverability of the human fingers are guided with tight distribution of biological nerve cells, which perform fine motor manipulation over a range of complex surfaces that is often out of sight. Our sight (or naked vision), on the other hand, is generally restricted to line of sight that is ill-suited to view around corner. Hence, conventional imaging methods are often resort to complex light guide designs (periscope, endoscopes etc) to navigate over obstructed surfaces. Using modular design strategies, we constructed a prototype miniature microscope system that is incorporated onto a wearable fixture (thimble). This unique platform allows users to maneuver around a sample and take high resolution microscopic images. In this paper, we provide an exposition of methods to achieve a thimble microscopy; microscope lens fabrication, thimble design, integration of miniature camera and liquid crystal display.

  18. Light Microscopy Module: An On-Orbit Microscope Planned for the Fluids and Combustion Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Griffin, DeVon W.

    2001-01-01

    The Light Microscopy Module (LMM) is planned as a fully remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within NASA Glenn Research Center's Fluids and Combustion Facility on the International Space Station. Within the Fluids and Combustion Facility, four fluids physics experiments will utilize an instrument built around a light microscope. These experiments are the Constrained Vapor Bubble experiment (Peter C. Wayner of Rensselaer Polytechnic Institute), the Physics of Hard Spheres Experiment-2 (Paul M. Chaikin of Princeton University), the Physics of Colloids in Space-2 experiment (David A. Weitz of Harvard University), and the Low Volume Fraction Colloidal Assembly experiment (Arjun G. Yodh of the University of Pennsylvania). The first experiment investigates heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties. Key diagnostic capabilities for meeting the science requirements of the four experiments include video microscopy to observe sample features including basic structures and dynamics, interferometry to measure vapor bubble thin film thickness, laser tweezers for colloidal particle manipulation and patterning, confocal microscopy to provide enhanced three-dimensional visualization of colloidal structures, and spectrophotometry to measure colloidal crystal photonic properties.

  19. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope

    PubMed Central

    Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng

    2015-01-01

    We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy. PMID:26819828

  20. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope.

    PubMed

    Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng

    2016-01-01

    We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy.

  1. Microscopic and histochemical manifestations of hyaline cartilage dynamics.

    PubMed

    Malinin, G I; Malinin, T I

    1999-01-01

    Structure and function of hyaline cartilages has been the focus of many correlative studies for over a hundred years. Much of what is known regarding dynamics and function of cartilage constituents has been derived or inferred from biochemical and electron microscopic investigations. Here we show that in conjunction with ultrastructural, and high-magnification transmission light and polarization microscopy, the well-developed histochemical methods are indispensable for the analysis of cartilage dynamics. Microscopically demonstrable aspects of cartilage dynamics include, but are not limited to, formation of the intracellular liquid crystals, phase transitions of the extracellular matrix and tubular connections between chondrocytes. The role of the interchondrocytic liquid crystals is considered in terms of the tensegrity hypothesis and non-apoptotic cell death. Phase transitions of the extracellular matrix are discussed in terms of self-alignment of chondrons, matrix guidance pathways and cartilage growth in the absence of mitosis. The possible role of nonenzymatic glycation reactions in cartilage dynamics is also reviewed.

  2. A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability.

    PubMed

    Hasan, Md Mehedi; Alam, Mohammad Wajih; Wahid, Khan A; Miah, Sayem; Lukong, Kiven Erique

    2016-01-01

    This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size.

  3. A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability

    PubMed Central

    Hasan, Md. Mehedi; Wahid, Khan A.; Miah, Sayem; Lukong, Kiven Erique

    2016-01-01

    This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size. PMID:27977709

  4. MICROSCOPE Mission: First Constraints on the Violation of the Weak Equivalence Principle by a Light Scalar Dilaton

    NASA Astrophysics Data System (ADS)

    Bergé, Joel; Brax, Philippe; Métris, Gilles; Pernot-Borràs, Martin; Touboul, Pierre; Uzan, Jean-Philippe

    2018-04-01

    The existence of a light or massive scalar field with a coupling to matter weaker than gravitational strength is a possible source of violation of the weak equivalence principle. We use the first results on the Eötvös parameter by the MICROSCOPE experiment to set new constraints on such scalar fields. For a massive scalar field of mass smaller than 10-12 eV (i.e., range larger than a few 1 05 m ), we improve existing constraints by one order of magnitude to |α |<10-11 if the scalar field couples to the baryon number and to |α |<10-12 if the scalar field couples to the difference between the baryon and the lepton numbers. We also consider a model describing the coupling of a generic dilaton to the standard matter fields with five parameters, for a light field: We find that, for masses smaller than 10-12 eV , the constraints on the dilaton coupling parameters are improved by one order of magnitude compared to previous equivalence principle tests.

  5. MICROSCOPE Mission: First Constraints on the Violation of the Weak Equivalence Principle by a Light Scalar Dilaton.

    PubMed

    Bergé, Joel; Brax, Philippe; Métris, Gilles; Pernot-Borràs, Martin; Touboul, Pierre; Uzan, Jean-Philippe

    2018-04-06

    The existence of a light or massive scalar field with a coupling to matter weaker than gravitational strength is a possible source of violation of the weak equivalence principle. We use the first results on the Eötvös parameter by the MICROSCOPE experiment to set new constraints on such scalar fields. For a massive scalar field of mass smaller than 10^{-12}  eV (i.e., range larger than a few 10^{5}  m), we improve existing constraints by one order of magnitude to |α|<10^{-11} if the scalar field couples to the baryon number and to |α|<10^{-12} if the scalar field couples to the difference between the baryon and the lepton numbers. We also consider a model describing the coupling of a generic dilaton to the standard matter fields with five parameters, for a light field: We find that, for masses smaller than 10^{-12}  eV, the constraints on the dilaton coupling parameters are improved by one order of magnitude compared to previous equivalence principle tests.

  6. Microscopic analysis of Hopper flow with ellipsoidal particles

    NASA Astrophysics Data System (ADS)

    Liu, Sida; Zhou, Zongyan; Zou, Ruiping; Pinson, David; Yu, Aibing

    2013-06-01

    Hoppers are widely used in process industries. With such widespread application, difficulties in achieving desired operational behaviors have led to extensive experimental and mathematical studies in the past decades. Particularly, the discrete element method has become one of the most important simulation tools for design and analysis. So far, most studies are on spherical particles for computational convenience. In this work, ellipsoidal particles are used as they can represent a large variation of particle shapes. Hopper flow with ellipsoidal particles is presented highlighting the effect of particle shape on the microscopic properties.

  7. A Simplified, Low-Cost Method for Polarized Light Microscopy

    PubMed Central

    Maude, Richard J.; Buapetch, Wanchana; Silamut, Kamolrat

    2009-01-01

    Malaria pigment is an intracellular inclusion body that appears in blood and tissue specimens on microscopic examination and can help in establishing the diagnosis of malaria. In simple light microscopy, it can be difficult to discern from cellular background and artifacts. It has long been known that if polarized light microscopy is used, malaria pigment can be much easier to distinguish. However, this technique is rarely used because of the need for a relatively costly polarization microscope. We describe a simple and economical technique to convert any standard light microscope suitable for examination of malaria films into a polarization microscope. PMID:19861611

  8. Shearing interference microscope for step-height measurements.

    PubMed

    Trịnh, Hưng-Xuân; Lin, Shyh-Tsong; Chen, Liang-Chia; Yeh, Sheng-Lih; Chen, Chin-Sheng; Hoang, Hong-Hai

    2017-05-01

    A shearing interference microscope using a Savart prism as the shear plate is proposed for inspecting step-heights. Where the light beam propagates through the Savart prism and microscopic system to illuminate the sample, it then turns back to re-pass through the Savart prism and microscopic system to generate a shearing interference pattern on the camera. Two measurement modes, phase-shifting and phase-scanning, can be utilized to determine the depths of the step-heights on the sample. The first mode, which employs a narrowband source, is based on the five-step phase-shifting algorithm and has a measurement range of a quarter-wavelength. The second mode, which adopts a broadband source, is based on peak-intensity identification technology and has a measurement range up to a few micrometres. This paper is to introduce the configuration and measurement theory of this microscope, perform a setup used to implement it, and present the experimental results from the uses of the setup. The results not only verify the validity but also confirm the high measurement repeatability of the proposed microscope. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  9. Field-portable lensfree tomographic microscope.

    PubMed

    Isikman, Serhan O; Bishara, Waheb; Sikora, Uzair; Yaglidere, Oguzhan; Yeah, John; Ozcan, Aydogan

    2011-07-07

    We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (∼20 mm(3)) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ∼110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ±50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings. This journal is © The Royal Society of Chemistry 2011

  10. Introduction to Modern Methods in Light Microscopy.

    PubMed

    Ryan, Joel; Gerhold, Abby R; Boudreau, Vincent; Smith, Lydia; Maddox, Paul S

    2017-01-01

    For centuries, light microscopy has been a key method in biological research, from the early work of Robert Hooke describing biological organisms as cells, to the latest in live-cell and single-molecule systems. Here, we introduce some of the key concepts related to the development and implementation of modern microscopy techniques. We briefly discuss the basics of optics in the microscope, super-resolution imaging, quantitative image analysis, live-cell imaging, and provide an outlook on active research areas pertaining to light microscopy.

  11. Microcircuit testing and fabrication, using scanning electron microscopes

    NASA Technical Reports Server (NTRS)

    Nicolas, D. P.

    1975-01-01

    Scanning electron microscopes are used to determine both user-induced damages and manufacturing defects subtle enough to be missed by conventional light microscopy. Method offers greater depth of field and increased working distances.

  12. Microscope use in clinical veterinary practice and potential implications for veterinary school curricula.

    PubMed

    Stewart, Sherry M; Dowers, Kristy L; Cerda, Jacey R; Schoenfeld-Tacher, Regina M; Kogan, Lori R

    2014-01-01

    Microscopy (skill of using a microscope) and the concepts of cytology (study of cells) and histology (study of tissues) are most often taught in professional veterinary medicine programs through the traditional method of glass slides and light microscopes. Several limiting factors in veterinary training programs are encouraging educators to explore innovative options for teaching microscopy skills and the concepts of cytology and histology. An anonymous online survey was administered through the Colorado Veterinary Medical Association to Colorado veterinarians working in private practice. It was designed to assess their current usage of microscopes for cytological and histological evaluation of specimens and their perceptions of microscope use in their veterinary education. The first part of the survey was answered by 183 veterinarians, with 104 indicating they had an onsite diagnostic lab. Analysis pertaining to the use of the microscope in practice and in veterinary programs was conducted on this subset. Most respondents felt the amount of time spent in the curriculum using a microscope was just right for basic microscope use and using the microscope for viewing and learning about normal and abnormal histological sections and clinical cytology. Participants felt more emphasis could be placed on clinical and diagnostic cytology. Study results suggest that practicing veterinarians frequently use microscopes for a wide variety of cytological diagnostics. However, only two respondents indicated they prepared samples for histological evaluation. Veterinary schools should consider these results against the backdrop of pressure to implement innovative teaching techniques to meet the changing needs of the profession.

  13. Scanless nonlinear optical microscope for image reconstruction and space-time correlation analysis

    NASA Astrophysics Data System (ADS)

    Ceffa, N. G.; Radaelli, F.; Pozzi, P.; Collini, M.; Sironi, L.; D'alfonso, L.; Chirico, G.

    2017-06-01

    Optical Microscopy has been applied to life science from its birth and reached widespread application due to its major advantages: limited perturbation of the biological tissue and the easy accessibility of the light sources. However, as the spatial and time resolution requirements and the time stability of the microscopes increase, researchers are struggling against some of its limitations: limited transparency and the refractivity of the living tissue to light and the field perturbations induced by the path in the tissue. We have developed a compact stand-alone, completely scan-less, optical setup that allows to acquire non-linear excitation images and to measure the sample dynamics simultaneously on an ensemble of arbitrary chosen regions of interests. The image is obtained by shining a square array of spots on the sample obtained by a spatial light modulator and by shifting it (10 ms refresh time) on the sample. The final image is computed from the superposition of (100-1000) images. Filtering procedures can be applied to the raw images of the excitation array before building the image. We discuss results that show how this setup can be used for the correction of wave front aberrations induced by turbid samples (such as living tissues) and for the computation of space-time cross-correlations in complex networks.

  14. Development of a miniature scanning electron microscope for in-flight analysis of comet dust

    NASA Technical Reports Server (NTRS)

    Conley, J. M.; Bradley, J. G.; Giffin, C. E.; Albee, A. L.; Tomassian, A. D.

    1983-01-01

    A description is presented of an instrument which was developed with the original goal of being flown on the International Comet Mission, scheduled for a 1985 launch. The Scanning Electron Microscope and Particle Analyzer (SEMPA) electron miniprobe is a miniaturized electrostatically focused electron microscope and energy dispersive X-ray analyzer for in-flight analysis of comet dust particles. It was designed to be flown on board a comet rendezvous spacecraft. Other potential applications are related to asteroid rendezvous and planetary lander missions. According to the development objectives, SEMPA miniprobe is to have the capability for imaging and elemental analysis of particles in the size range of 0.25 microns and larger.

  15. The Scanning Optical Microscope: An Overview

    NASA Astrophysics Data System (ADS)

    Kino, G. S.; Corte, T. R.; Xiao, G. Q.

    1988-07-01

    In the last few years there has been a resurgence in research on optical microscopes. One reason stems from the invention of the acoustic microscope by Quate and Lemons,1 and the realization that some of the same principles could be applied to the optical microscope. The acoustic microscope has better transverse definition for the same wavelength than the standard optical microscope and at the same time has far better range definition. Consequently, Kompfner, who was involved with the work on the early acoustic microscope, decided to try out similar scanning microscope principles with optics, and started a group with Wilson and Sheppard to carry out such research at Oxford.2 Sometime earlier, Petran et a13 had invented the tandem scanning microscope which used many of the same principles. Now, in our laboratory at Stanford, these ideas on the tandem scanning microscope and the scanning optical microscope are converging. Another aspect of this work, which stems from the earlier experience with the acoustic microscope, involves measurement of both phase and amplitude of the optical beam. It is also possible to use scanned optical microscopy for other purposes. For instance, an optical beam can be used to excite electrons and holes in semiconductors, and the generated current can be measured. By scanning the optical beam over the semiconductor, an image can be obtained of the regions where there is strong or weak electron hole generation. This type of microscope is called OBIC (Optical Beam Induced Current). A second application involves fluorescent imaging of biological materials. Here we have the excellent range definition of a scanning optical microscope which eliminates unwanted glare from regions of the material where the beam is unfocused.3 A third application is focused on the heating effect of the light beam. With such a system, images can be obtained which are associated with changes in the thermal properties of a material, changes in recombination rates in

  16. Light and scanning electron microscope investigations comparing calculus removal using an Er:YAG laser and a frequency-doubled alexandrite laser

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Hennig, Thomas; Sadegh, Hamid M. M.; Goldin, Dan S.

    1997-05-01

    With respect to lasers emitting within the mid-IR spectral domain fiber applicators are being developed. Intended is the use of these lasers in periodontal therapy and their application inside the gingival pocket. Aim of the study presented here is to compare the effect of an Er:YAG laser on dental calculus with the results following irradiation with a frequency doubled Alexandrite laser. The surface of freshly extracted wisdom teeth and of extracted teeth suffering from severe periodontitis were irradiated with both laser wavelengths using a standardized application protocol. Calculus on the enamel surface, at the enamel cementum junction and on the root surface was irradiated. For light microscope investigations undecalcified histological sections were prepared after treatment. For the scanning electron microscope teeth were dried in alcohol and sputtered with gold. Investigations revealed that with both laser systems calculus can be removed. Using the frequency doubled Alexandrite laser selective removal of calculus is possible while engaging the Er:YAG laser even at lowest energies necessary for calculus removal healthy cementum is ablated without control.

  17. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation.

    PubMed

    Werley, Christopher A; Chien, Miao-Ping; Cohen, Adam E

    2017-12-01

    The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our 'Firefly' microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology ('Optopatch') in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes.

  18. Optical Analysis of an Ultra-High resolution Two-Mirror Soft X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Wang, Cheng; Hoover, Richard B.

    1994-01-01

    This work has summarized for a Schwarzschild microscope some relationships between numerical aperture (NA), magnification, diameter of the primary mirror, radius of curvature of the secondary mirror, and the total length of the microscope. To achieve resolutions better than a spherical Schwarzschild microscope of 3.3 Lambda for a perfectly aligned and fabricated system. it is necessary to use aspherical surfaces to control higher-order aberrations. For an NA of 0.35, the aspherical Head microscope provides diffraction limited resolution of 1.4 Lambda where the aspherical surfaces differ from the best fit spherical surface by approximately 1 micrometer. However, the angle of incidence varies significantly over the primary and the secondary mirrors, which will require graded multilayer coatings to operate near peak reflectivities. For higher numerical apertures, the variation of the angle of incidence over the secondary mirror surface becomes a serious problem which must be solved before multilayer coatings can be used for this application. Tolerance analysis of the spherical Schwarzschild microscope has shown that water window operations will require 2-3 times tighter tolerances to achieve a similar performance for operations with 130 A radiation. Surface contour errors have been shown to have a significant impact on the MTF and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror.

  19. Clinical laboratory urine analysis: comparison of the UriSed automated microscopic analyzer and the manual microscopy.

    PubMed

    Ma, Junlong; Wang, Chengbin; Yue, Jiaxin; Li, Mianyang; Zhang, Hongrui; Ma, Xiaojing; Li, Xincui; Xue, Dandan; Qing, Xiaoyan; Wang, Shengjiang; Xiang, Daijun; Cong, Yulong

    2013-01-01

    Several automated urine sediment analyzers have been introduced to clinical laboratories. Automated microscopic pattern recognition is a new technique for urine particle analysis. We evaluated the analytical and diagnostic performance of the UriSed automated microscopic analyzer and compared with manual microscopy for urine sediment analysis. Precision, linearity, carry-over, and method comparison were carried out. A total of 600 urine samples sent for urinalysis were assessed using the UriSed automated microscopic analyzer and manual microscopy. Within-run and between-run precision of the UriSed for red blood cells (RBC) and white blood cells (WBC) were acceptable at all levels (CV < 20%). Within-run and between-run imprecision of the UriSed testing for cast, squamous epithelial cells (EPI), and bacteria (BAC) were good at middle level and high level (CV < 20%). The linearity analysis revealed substantial agreement between the measured value and the theoretical value of the UriSed for RBC, WBC, cast, EPI, and BAC (r > 0.95). There was no carry-over. RBC, WBC, and squamous epithelial cells with sensitivities and specificities were more than 80% in this study. There is substantial agreement between the UriSed automated microscopic analyzer and the manual microscopy methods. The UriSed provides for a rapid turnaround time.

  20. Novel microfabrication stage allowing for one-photon and multi-photon light assisted molecular immobilization and for multi-photon microscope

    NASA Astrophysics Data System (ADS)

    Gonçalves, Odete; Snider, Scott; Zadoyan, Ruben; Nguyen, Quoc-Thang; Vorum, Henrik; Petersen, Steffen B.; Neves-Petersen, Maria Teresa

    2017-02-01

    Light Assisted Molecular Immobilization (LAMI) results in spatially oriented and localized covalent coupling of biomolecules onto thiol reactive surfaces. LAMI is possible due to the conserved spatial proximity between aromatic residues and disulfide bridges in proteins. When aromatic residues are excited with UV light (275-295nm), disulphide bridges are disrupted and the formed thiol groups covalently bind to surfaces. Immobilization hereby reported is achieved in a microfabrication stage coupled to a fs-laser, through one- or multi-photon excitation. The fundamental 840nm output is tripled to 280nm and focused onto the sample, leading to one-photon excitation and molecular immobilization. The sample rests on a xyz-stage with micrometer step resolution and is illuminated according to a pattern uploaded to the software controlling the stage and the shutter. Molecules are immobilized according to such pattern, with micrometer spatial resolution. Spatial masks inserted in the light path lead to light diffraction patterns used to immobilize biomolecules with submicrometer spatial resolution. Light diffraction patterns are imaged by an inbuilt microscope. Two-photon microscopy and imaging of the fluorescent microbeads is shown. Immobilization of proteins, e.g. C-reactive protein, and of an engineered molecular beacon has been successfully achieved. The beacon was coupled to a peptide containing a disulfide bridge neighboring a tryptophan residue, being this way possible to immobilize the beacon on a surface using one-photon LAMI. This technology is being implemented in the creation of point-of-care biosensors aiming at the detection of cancer and cardiovascular disease markers.

  1. A new computerized moving stage for optical microscopes

    NASA Astrophysics Data System (ADS)

    Hatiboglu, Can Ulas; Akin, Serhat

    2004-06-01

    Measurements of microscope stage movements in the x and y directions are of importance for some stereological methods. Traditionally, the length of stage movements is measured with differing precision and accuracy using a suitable motorized stage, a microscope and software. Such equipment is generally expensive and not readily available in many laboratories. One other challenging problem is the adaptability to available microscope systems which weakens the possibility of the equipment to be used with any kind of light microscope. This paper describes a simple and cheap programmable moving stage that can be used with the available microscopes in the market. The movements of the stage are controlled by two servo-motors and a controller chip via a Java-based image processing software. With the developed motorized stage and a microscope equipped with a CCD camera, the software allows complete coverage of the specimens with minimum overlap, eliminating the optical strain associated with counting hundreds of images through an eyepiece, in a quick and precise fashion. The uses and the accuracy of the developed stage are demonstrated using thin sections obtained from a limestone core plug.

  2. Hybrid Al/steel-joints manufactured by ultrasound enhanced friction stir welding (USE-FSW): Process comparison, nondestructive testing and microscopic analysis

    NASA Astrophysics Data System (ADS)

    Thomä, M.; Wagner, G.; Straß, B.; Wolter, B.; Benfer, S.; Fürbeth, W.

    2017-03-01

    The process of friction stir welding (FSW) is an innovative joining technique, which proved its potential in joining dissimilar metals that are poorly fusion weldable. This ability opens a wide range for applications in industrial fields, where weight reduction by partial substitution of conventional materials through lightweight materials is a current central aim. As a consequence of this, the realization of aluminum / steel-joints is of great interest. For this material compound, several friction stir welds were carried out by different researchers for varying Al/steel-joints, whereas the definition of optimal process parameters as well as the increase of mechanical properties was in the focus of the studies. To achieve further improved properties for this dissimilar joint a newly developed hybrid process named “ultrasound enhanced friction stir welding (USE-FSW)” was applied. In this paper the resulting properties of Al/steel-joints using FSW and USE-FSW will be presented and compared. Furthermore, first results by using the nondestructive testing method “computer laminography” to analyze the developed joining area will be shown supplemented by detailed light-microscopic investigations, scanning electron microscopic analysis, and EDX.

  3. Fully microscopic analysis of laser-driven finite plasmas using the example of clusters

    NASA Astrophysics Data System (ADS)

    Peltz, Christian; Varin, Charles; Brabec, Thomas; Fennel, Thomas

    2012-06-01

    We discuss a microscopic particle-in-cell (MicPIC) approach that allows bridging of the microscopic and macroscopic realms of laser-driven plasma physics. The simultaneous resolution of collisions and electromagnetic field propagation in MicPIC enables the investigation of processes that have been inaccessible to rigorous numerical scrutiny so far. This is illustrated by the two main findings of our analysis of pre-ionized, resonantly laser-driven clusters, which can be realized experimentally in pump-probe experiments. In the linear response regime, MicPIC data are used to extract the individual microscopic contributions to the dielectric cluster response function, such as surface and bulk collision frequencies. We demonstrate that the competition between surface collisions and radiation damping is responsible for the maximum in the size-dependent lifetime of the Mie surface plasmon. The capacity to determine the microscopic underpinning of optical material parameters opens new avenues for modeling nano-plasmonics and nano-photonics systems. In the non-perturbative regime, we analyze the formation and evolution of recollision-induced plasma waves in laser-driven clusters. The resulting dynamics of the electron density and local field hot spots opens a new research direction for the field of attosecond science.

  4. Fluorescence microscope (Cyscope) for malaria diagnosis in pregnant women in Medani Hospital, Sudan.

    PubMed

    Hassan, Saad El-Din H; Haggaz, Abd Elrahium D; Mohammed-Elhassan, Ehab B; Malik, Elfatih M; Adam, Ishag

    2011-09-24

    Accuracy of diagnosis is the core for malaria control. Although microscopy is the gold standard in malaria diagnosis, its reliability is largely dependent on user skill. We compared performance of Cyscope fluorescence microscope with the Giemsa stained light microscopy for the diagnosis of malaria among pregnant women at Medani Hospital in Central Sudan. The area is characterized by unstable malaria transmission. Socio-demographic characteristics and obstetrics history were gathered using pre-tested questionnaires. Blood samples were collected from febrile pregnant women who were referred as malaria case following initial diagnosis by general microscopist. During the study period 128 febrile pregnant women presented at the hospital. Among them, Plasmodium falciparum malaria was detected in 82 (64.1%) and 80 (62.5%) by the Giemsa-stained light microscopy and the Cyscope fluorescence microscope, respectively. The sensitivity of the Cyscope fluorescence microscope was 97.6% (95% CI: 92.2%-99.6%). Out of 46 which were negative by Giemsa-stained light microscopy, 5 were positive by the Cyscope fluorescence microscope. This is translated in specificity of 89.1% (95% CI: 77.5%-95.9%). The positive and negative predictive value of Cyscope fluorescence microscope was 94.1% (95% CI: 87.4% -97.8%) and 95.3% (95% CI: 85.4% - 99.2%), respectively. This study has shown that Cyscope fluorescence microscope is a reliable diagnostic, sensitive and specific in diagnosing P. falciparum malaria among pregnant women in this setting. Further studies are needed to determine effectiveness in diagnosing other Plasmodium species and to compare it with other diagnostic tools e.g. rapid diagnostic tests and PCR.

  5. Microscopic Imaging and Spectroscopy with Scattered Light

    PubMed Central

    Boustany, Nada N.; Boppart, Stephen A.; Backman, Vadim

    2012-01-01

    Optical contrast based on elastic scattering interactions between light and matter can be used to probe cellular structure and dynamics, and image tissue architecture. The quantitative nature and high sensitivity of light scattering signals to subtle alterations in tissue morphology, as well as the ability to visualize unstained tissue in vivo, has recently generated significant interest in optical scatter based biosensing and imaging. Here we review the fundamental methodologies used to acquire and interpret optical scatter data. We report on recent findings in this field and present current advances in optical scatter techniques and computational methods. Cellular and tissue data enabled by current advances in optical scatter spectroscopy and imaging stand to impact a variety of biomedical applications including clinical tissue diagnosis, in vivo imaging, drug discovery and basic cell biology. PMID:20617940

  6. Malaria Diagnosis Using a Mobile Phone Polarized Microscope

    NASA Astrophysics Data System (ADS)

    Pirnstill, Casey W.; Coté, Gerard L.

    2015-08-01

    Malaria remains a major global health burden, and new methods for low-cost, high-sensitivity, diagnosis are essential, particularly in remote areas with low-resource around the world. In this paper, a cost effective, optical cell-phone based transmission polarized light microscope system is presented for imaging the malaria pigment known as hemozoin. It can be difficult to determine the presence of the pigment from background and other artifacts, even for skilled microscopy technicians. The pigment is much easier to observe using polarized light microscopy. However, implementation of polarized light microscopy lacks widespread adoption because the existing commercial devices have complicated designs, require sophisticated maintenance, tend to be bulky, can be expensive, and would require re-training for existing microscopy technicians. To this end, a high fidelity and high optical resolution cell-phone based polarized light microscopy system is presented which is comparable to larger bench-top polarized microscopy systems but at much lower cost and complexity. The detection of malaria in fixed and stained blood smears is presented using both, a conventional polarized microscope and our cell-phone based system. The cell-phone based polarimetric microscopy design shows the potential to have both the resolution and specificity to detect malaria in a low-cost, easy-to-use, modular platform.

  7. Malaria Diagnosis Using a Mobile Phone Polarized Microscope

    PubMed Central

    Pirnstill, Casey W.; Coté, Gerard L.

    2015-01-01

    Malaria remains a major global health burden, and new methods for low-cost, high-sensitivity, diagnosis are essential, particularly in remote areas with low-resource around the world. In this paper, a cost effective, optical cell-phone based transmission polarized light microscope system is presented for imaging the malaria pigment known as hemozoin. It can be difficult to determine the presence of the pigment from background and other artifacts, even for skilled microscopy technicians. The pigment is much easier to observe using polarized light microscopy. However, implementation of polarized light microscopy lacks widespread adoption because the existing commercial devices have complicated designs, require sophisticated maintenance, tend to be bulky, can be expensive, and would require re-training for existing microscopy technicians. To this end, a high fidelity and high optical resolution cell-phone based polarized light microscopy system is presented which is comparable to larger bench-top polarized microscopy systems but at much lower cost and complexity. The detection of malaria in fixed and stained blood smears is presented using both, a conventional polarized microscope and our cell-phone based system. The cell-phone based polarimetric microscopy design shows the potential to have both the resolution and specificity to detect malaria in a low-cost, easy-to-use, modular platform. PMID:26303238

  8. Calibrating excitation light fluxes for quantitative light microscopy in cell biology

    PubMed Central

    Grünwald, David; Shenoy, Shailesh M; Burke, Sean; Singer, Robert H

    2011-01-01

    Power output of light bulbs changes over time and the total energy delivered will depend on the optical beam path of the microscope, filter sets and objectives used, thus making comparison between experiments performed on different microscopes complicated. Using a thermocoupled power meter, it is possible to measure the exact amount of light applied to a specimen in fluorescence microscopy, regardless of the light source, as the light power measured can be translated into a power density at the sample. This widely used and simple tool forms the basis of a new degree of calibration precision and comparability of results among experiments and setups. Here we describe an easy-to-follow protocol that allows researchers to precisely estimate excitation intensities in the object plane, using commercially available opto-mechanical components. The total duration of this protocol for one objective and six filter cubes is 75 min including start-up time for the lamp. PMID:18974739

  9. Three-dimensional scanning confocal laser microscope

    DOEpatents

    Anderson, R. Rox; Webb, Robert H.; Rajadhyaksha, Milind

    1999-01-01

    A confocal microscope for generating an image of a sample includes a first scanning element for scanning a light beam along a first axis, and a second scanning element for scanning the light beam at a predetermined amplitude along a second axis perpendicular to the first axis. A third scanning element scans the light beam at a predetermined amplitude along a third axis perpendicular to an imaging plane defined by the first and second axes. The second and third scanning element are synchronized to scan at the same frequency. The second and third predetermined amplitudes are percentages of their maximum amplitudes. A selector determines the second and third predetermined amplitudes such that the sum of the percentages is equal to one-hundred percent.

  10. Experiments on terahertz 3D scanning microscopic imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Qi

    2016-10-01

    Compared with the visible light and infrared, terahertz (THz) radiation can penetrate nonpolar and nonmetallic materials. There are many studies on the THz coaxial transmission confocal microscopy currently. But few researches on the THz dual-axis reflective confocal microscopy were reported. In this paper, we utilized a dual-axis reflective confocal scanning microscope working at 2.52 THz. In contrast with the THz coaxial transmission confocal microscope, the microscope adopted in this paper can attain higher axial resolution at the expense of reduced lateral resolution, revealing more satisfying 3D imaging capability. Objects such as Chinese characters "Zhong-Hua" written in paper with a pencil and a combined sheet metal which has three layers were scanned. The experimental results indicate that the system can extract two Chinese characters "Zhong," "Hua" or three layers of the combined sheet metal. It can be predicted that the microscope can be applied to biology, medicine and other fields in the future due to its favorable 3D imaging capability.

  11. Development of an environmental high-voltage electron microscope for reaction science.

    PubMed

    Tanaka, Nobuo; Usukura, Jiro; Kusunoki, Michiko; Saito, Yahachi; Sasaki, Katuhiro; Tanji, Takayoshi; Muto, Shunsuke; Arai, Shigeo

    2013-02-01

    Environmental transmission electron microscopy and ultra-high resolution electron microscopic observation using aberration correctors have recently emerged as topics of great interest. The former method is an extension of the so-called in situ electron microscopy that has been performed since the 1970s. Current research in this area has been focusing on dynamic observation with atomic resolution under gaseous atmospheres and in liquids. Since 2007, Nagoya University has been developing a new 1-MV high voltage (scanning) transmission electron microscope that can be used to observe nanomaterials under conditions that include the presence of gases, liquids and illuminating lights, and it can be also used to perform mechanical operations to nanometre-sized areas as well as electron tomography and elemental analysis by electron energy loss spectroscopy. The new instrument has been used to image and analyse various types of samples including biological ones.

  12. Integrated light and scanning electron microscopy of GFP-expressing cells.

    PubMed

    Peddie, Christopher J; Liv, Nalan; Hoogenboom, Jacob P; Collinson, Lucy M

    2014-01-01

    Integration of light and electron microscopes provides imaging tools in which fluorescent proteins can be localized to cellular structures with a high level of precision. However, until recently, there were few methods that could deliver specimens with sufficient fluorescent signal and electron contrast for dual imaging without intermediate staining steps. Here, we report protocols that preserve green fluorescent protein (GFP) in whole cells and in ultrathin sections of resin-embedded cells, with membrane contrast for integrated imaging. Critically, GFP is maintained in a stable and active state within the vacuum of an integrated light and scanning electron microscope. For light microscopists, additional structural information gives context to fluorescent protein expression in whole cells, illustrated here by analysis of filopodia and focal adhesions in Madin Darby canine kidney cells expressing GFP-Paxillin. For electron microscopists, GFP highlights the proteins of interest within the architectural space of the cell, illustrated here by localization of the conical lipid diacylglycerol to cellular membranes. © 2014 Elsevier Inc. All rights reserved.

  13. Atomic force microscopic imaging of Acanthamoeba castellanii and Balamuthia mandrillaris trophozoites and cysts.

    PubMed

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed

    2015-01-01

    Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  14. Correlative fractography: combining scanning electron microscopy and light microscopes for qualitative and quantitative analysis of fracture surfaces.

    PubMed

    Hein, Luis Rogerio de Oliveira; de Oliveira, José Alberto; de Campos, Kamila Amato

    2013-04-01

    Correlative fractography is a new expression proposed here to describe a new method for the association between scanning electron microscopy (SEM) and light microscopy (LM) for the qualitative and quantitative analysis of fracture surfaces. This article presents a new method involving the fusion of one elevation map obtained by extended depth from focus reconstruction from LM with exactly the same area by SEM and associated techniques, as X-ray mapping. The true topographic information is perfectly associated to local fracture mechanisms with this new technique, presented here as an alternative to stereo-pair reconstruction for the investigation of fractured components. The great advantage of this technique resides in the possibility of combining any imaging methods associated with LM and SEM for the same observed field from fracture surface.

  15. Diffraction-Unlimited Fluorescence Imaging with an EasySTED Retrofitted Confocal Microscope.

    PubMed

    Klauss, André; Hille, Carsten

    2017-01-01

    The easySTED technology provides the means to retrofit a confocal microscope to a diffraction-unlimited stimulated emission depletion (STED) microscope.Although commercial STED systems are available today, for many users of confocal laser scanning microscopes the option of retrofitting their confocal system to a STED system ready for diffraction-unlimited imaging may present an attractive option. The easySTED principle allowing for a joint beam path of excitation and depletion light promises some advantages concerning technical complexity and alignment effort for such an STED upgrade. In the one beam path design of easySTED the use of a common laser source, either a supercontinuum source or two separate lasers coupled into the same single-mode fiber, becomes feasible. The alignment of the focal light distribution of the STED beam relative to that of the excitation beam in all three spatial dimensions is therefore omitted respectively reduced to coupling the STED laser into the common single-mode fiber. Thus, only minor modifications need to be applied to the beam path in the confocal microscope to be upgraded. Those comprise adding polarization control elements and the easySTED waveplate, and adapting the beamsplitter to the excitation/STED wavelength combination.

  16. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation

    PubMed Central

    Werley, Christopher A.; Chien, Miao-Ping; Cohen, Adam E.

    2017-01-01

    The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our ‘Firefly’ microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology (‘Optopatch’) in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes. PMID:29296505

  17. Macroanatomic, light, and electron microscopic examination of pecten oculi in the seagull (Larus canus).

    PubMed

    Ince, Nazan Gezer; Onuk, Burcu; Kabak, Yonca Betil; Alan, Aydin; Kabak, Murat

    2017-07-01

    The present study was conducted to determine macroanatomic characteristic as well as light and electron microscopic examination (SEM) of pecten oculi and totally 20 bulbus oculi belonging to 10 seagulls (Larus canus) were used. Pecten oculi formations consisted of 18 to 21 pleats and their shape looked like a snail. Apical length of the pleats forming pecten oculi were averagely measured as 5.77 ± 0.56 mm, retina-dependent base length was 9.01 ± 1.35 mm and height was measured as 6.4 ± 0.62 mm. In pecten oculi formations which extend up to 1/3 of the bulbus oculi, two different vascular formations were determined according to thickness of the vessel diameter. Among these, vessels with larger diameters which are less than the others in count were classified as afferent and efferent vessels, smaller vessels which are greater in size were classified as capillaries. Furthermore, the granules which were observed intensely in apical side of the pleats of pecten oculi were observed to distribute randomly along the plica. © 2017 Wiley Periodicals, Inc.

  18. Kidney lesions in Rocky Mountain spotted fever: a light-, immunofluorescence-, and electron-microscopic study.

    PubMed Central

    Bradford, W. D.; Croker, B. P.; Tisher, C. C.

    1979-01-01

    The essential pathologic lesion in Rocky Mountain spotted fever (RMSF) is a vasculitis that may involve the kidneys as well as the heart, brain, skin, and subcutaneous tissues. Histopathologic information concerning the response of the kidneys in RMSF is rather limited, however. In this study renal tissue from 17 children who died of RMSF was examined by light, electron, and immunofluorescence microscopy. A lymphocytic or mixed inflammation, or both, involving vessels and interstitium of the kidney was found in all patients. In addition, 10 patients had histologic evidence of acute tubular necrosis, and another 3 had glomerular lesions consisting of focal segmental tuft necrosis or increased cellularity secondary to neutophilic infiltration, or both. Immunofluorescence- and electron-microscopic studies failed to demonstrate immune-complex deposition within glomeruli, a finding that suggests that immunoglobulin and classic immune complexes were not involved in the pathogenesis of the renal lesions at the time of death. These findings suggest the possibility that the pathogenesis of the renal lesion in RMSF may be due to a direct action of the organism (Rickettsia rickettsii) on the vessel wall. Images Figure 2 Figure 1 PMID:525676

  19. Designs for a quantum electron microscope.

    PubMed

    Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K

    2016-05-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Adaptive optics plug-and-play setup for high-resolution microscopes with multi-actuator adaptive lens

    NASA Astrophysics Data System (ADS)

    Quintavalla, M.; Pozzi, P.; Verhaegen, Michelle; Bijlsma, Hielke; Verstraete, Hans; Bonora, S.

    2018-02-01

    Adaptive Optics (AO) has revealed as a very promising technique for high-resolution microscopy, where the presence of optical aberrations can easily compromise the image quality. Typical AO systems however, are almost impossible to implement on commercial microscopes. We propose a simple approach by using a Multi-actuator Adaptive Lens (MAL) that can be inserted right after the objective and works in conjunction with an image optimization software allowing for a wavefront sensorless correction. We presented the results obtained on several commercial microscopes among which a confocal microscope, a fluorescence microscope, a light sheet microscope and a multiphoton microscope.

  1. Transmission electron microscope sample holder with optical features

    DOEpatents

    Milas, Mirko [Port Jefferson, NY; Zhu, Yimei [Stony Brook, NY; Rameau, Jonathan David [Coram, NY

    2012-03-27

    A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

  2. IMIS: An intelligence microscope imaging system

    NASA Technical Reports Server (NTRS)

    Caputo, Michael; Hunter, Norwood; Taylor, Gerald

    1994-01-01

    Until recently microscope users in space relied on traditional microscopy techniques that required manual operation of the microscope and recording of observations in the form of written notes, drawings, or photographs. This method was time consuming and required the return of film and drawings from space for analysis. No real-time data analysis was possible. Advances in digital and video technologies along with recent developments in article intelligence will allow future space microscopists to have a choice of three additional modes of microscopy: remote coaching, remote control, and automation. Remote coaching requires manual operations of the microscope with instructions given by two-way audio/video transmission during critical phases of the experiment. When using the remote mode of microscopy, the Principal Investigator controls the microscope from the ground. The automated mode employs artificial intelligence to control microscope functions and is the only mode that can be operated in the other three modes as well. The purpose of this presentation is to discuss the advantages and disadvantages of the four modes of of microscopy and how the IMIS, a proposed intelligent microscope imaging system, can be used as a model for developing and testing concepts, operating procedures, and equipment design of specifications required to provide a comprehensive microscopy/imaging capability onboard Space Station Freedom.

  3. Design and analysis of aspherical multilayer imaging X-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Jiang, WU; Hoover, Richard B.

    1991-01-01

    Spherical Schwarzschild microscopes for soft X-ray applications in microscopy and projection lithography employ two concentric spherical mirrors that are configured such that the third-order spherical aberration and coma are zero. Based on incoherent, sine-wave MTF calculations, the object-plane resolution of a magnification-factor-20 microscope is presently analyzed as a function of object height and numerical aperture of the primary for several spherical Schwarzschild, conic, and aspherical two-mirror microscope configurations.

  4. 21 CFR 884.6190 - Assisted reproductive microscopes and microscope accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... contrast microscopes, dissecting microscopes and inverted stage microscopes. (b) Classification. Class I... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproductive microscopes and microscope... Devices § 884.6190 Assisted reproductive microscopes and microscope accessories. (a) Identification...

  5. Adaptation of commercial microscopes for advanced imaging applications

    NASA Astrophysics Data System (ADS)

    Brideau, Craig; Poon, Kelvin; Stys, Peter

    2015-03-01

    Today's commercially available microscopes offer a wide array of options to accommodate common imaging experiments. Occasionally, an experimental goal will require an unusual light source, filter, or even irregular sample that is not compatible with existing equipment. In these situations the ability to modify an existing microscopy platform with custom accessories can greatly extend its utility and allow for experiments not possible with stock equipment. Light source conditioning/manipulation such as polarization, beam diameter or even custom source filtering can easily be added with bulk components. Custom and after-market detectors can be added to external ports using optical construction hardware and adapters. This paper will present various examples of modifications carried out on commercial microscopes to address both atypical imaging modalities and research needs. Violet and near-ultraviolet source adaptation, custom detection filtering, and laser beam conditioning and control modifications will be demonstrated. The availability of basic `building block' parts will be discussed with respect to user safety, construction strategies, and ease of use.

  6. LED intense headband light source for fingerprint analysis

    DOEpatents

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  7. Colonization of cashew plants by Lasiodiplodia theobromae: Microscopical features

    USDA-ARS?s Scientific Manuscript database

    Lasiodiplodia theobromae is a phytopathogenic fungus causing gummosis, a threatening disease for cashew plants in Brazil. In an attempt to investigate the ultrastructural features of the pathogen colonization and its response to immunofluorescence labeling, light, confocal and electron microscope st...

  8. Solid-state optical microscope

    DOEpatents

    Young, I.T.

    1981-01-07

    A solid state optical microscope is described wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. Means for scanning in one of two orthogonal directions are provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  9. Solid state optical microscope

    DOEpatents

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  10. Atmospheric scanning electron microscope for correlative microscopy.

    PubMed

    Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J

    2012-01-01

    The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Characterization of platelet adhesion under flow using microscopic image sequence analysis.

    PubMed

    Machin, M; Santomaso, A; Cozzi, M R; Battiston, M; Mazzuccato, M; De Marco, L; Canu, P

    2005-07-01

    A method for quantitative analysis of platelet deposition under flow is discussed here. The model system is based upon perfusion of blood platelets over an adhesive substrate immobilized on a glass coverslip acting as the lower surface of a rectangular flow chamber. The perfusion apparatus is mounted onto an inverted microscope equipped with epifluorescent illumination and intensified CCD video camera. Characterization is based on information obtained from a specific image analysis method applied to continuous sequences of microscopical images. Platelet recognition across the sequence of images is based on a time-dependent, bidimensional, gaussian-like pdf. Once a platelet is located,the variation of its position and shape as a function of time (i.e., the platelet history) can be determined. Analyzing the history we can establish if the platelet is moving on the surface, the frequency of this movement and the distance traveled before its resumes the velocity of a non-interacting cell. Therefore, we can determine how long the adhesion would last which is correlated to the resistance of the platelet-substrate bond. This algorithm enables the dynamic quantification of trajectories, as well as residence times, arrest and release frequencies for a high numbers of platelets at the same time. Statistically significant conclusions on platelet-surface interactions can then be obtained. An image analysis tool of this kind can dramatically help the investigation and characterization of the thrombogenic properties of artificial surfaces such as those used in artificial organs and biomedical devices.

  12. Endoscopic vs. microscopic transsphenoidal surgery for Cushing's disease: a systematic review and meta-analysis.

    PubMed

    Broersen, Leonie H A; Biermasz, Nienke R; van Furth, Wouter R; de Vries, Friso; Verstegen, Marco J T; Dekkers, Olaf M; Pereira, Alberto M

    2018-05-16

    Systematic review and meta-analysis comparing endoscopic and microscopic transsphenoidal surgery for Cushing's disease regarding surgical outcomes (remission, recurrence, and mortality) and complication rates. To stratify the results by tumor size. Nine electronic databases were searched in February 2017 to identify potentially relevant articles. Cohort studies assessing surgical outcomes or complication rates after endoscopic or microscopic transsphenoidal surgery for Cushing's disease were eligible. Pooled proportions were reported including 95% confidence intervals. We included 97 articles with 6695 patients in total (5711 microscopically and 984 endoscopically operated). Overall, remission was achieved in 5177 patients (80%), with no clear difference between both techniques. Recurrence was around 10% and short term mortality < 0.5% for both techniques. Cerebrospinal fluid leak occurred more often in endoscopic surgery (12.9 vs. 4.0%), whereas transient diabetes insipidus occurred less often (11.3 vs. 21.7%). For microadenomas, results were comparable between both techniques. For macroadenomas, the percentage of patients in remission was higher after endoscopic surgery (76.3 vs. 59.9%), and the percentage recurrence lower after endoscopic surgery (1.5 vs. 17.0%). Endoscopic surgery for patients with Cushing's disease reaches comparable results for microadenomas, and probably better results for macroadenomas than microscopic surgery. This is present despite the presumed learning curve of the newer endoscopic technique, although confounding cannot be excluded. Based on this study, endoscopic surgery may thus be considered the current standard of care. Microscopic surgery can be used based on neurosurgeon's preference. Endocrinologists and neurosurgeons in pituitary centers performing the microscopic technique should at least consider referring Cushing's disease patients with a macroadenoma.

  13. Microscopic analysis of Spodoptera frugiperda (Lepidoptera: Noctuidae) embryonic development before and after treatment with azadirachtin, lufenuron, and deltamethrin.

    PubMed

    Correia, Alicely A; Wanderley-Teixeira, Valéria; Teixeira, Alvaro A C; Oliveira, José V; Gonçalves, Gabriel G A; Cavalcanti, MaríIia G S; Brayner, Fábio A; Alves, Luiz C

    2013-04-01

    The botanical insecticides, growth regulators, and pyrethroids have an effect on the biology of Spodoptera frugiperda (Smith). However, no emphasis has been given to the effect of these insecticides on embryonic development of insects, in histological level. Thus, this research aimed to examine by light and scanning electron microscopy S. frugiperda eggs and to describe the embryonic development, before and after immersion treatment, using commercial concentrations and lower concentrations than commercial ones, of the compounds lufenuron (Match), azadirachtin (AzaMax), and deltamethrin (Decis-positive control). For light microscopy semithin sections of eggs were used, and for scanning electron microscopy, images of the surface of eggs, treated and untreated with insecticides. The morphological characteristics of S. frugiperda eggs, in general, were similar to those described in the literature for most of the insects in the order Lepidoptera. Spherical eggs slightly flattened at the poles, with chorion, yolk, vitelline membrane, and embryo formation. In both microscopic analysis, we observed that insecticides acted immediately and independent of concentration, resulting absence, or incomplete embryo, presented yolk granules widely dispersed, without vitellophage formation, chorion disintegration, disorganized blastoderm, presenting vacuoles, yolk region with amorphous cells, and formation of completely uncharacterized appendages. Thus, we conclude that the compounds lufenuron and azadirachtin interfere on S. frugiperda embryonic development.

  14. Microscopical and functional aspects of calcium-transport and deposition in terrestrial isopods.

    PubMed

    Ziegler, Andreas; Fabritius, Helge; Hagedorn, Monica

    2005-01-01

    Terrestrial isopods (Crustacea) are excellent model organisms to study epithelial calcium-transport and the regulation of biomineralization processes. They molt frequently and resorb cuticular CaCO(3) before the molt to prevent excessive loss of Ca(2+) ions when the old cuticle is shed. The resorbed mineral is stored in CaCO(3) deposits within the ecdysial gap of the first four anterior sternites. After the molt, the deposits are quickly resorbed to mineralise the posterior part of the new cuticle. The deposits contain numerous small spherules composed of an organic matrix and amorphous CaCO(3), which has a high solubility and, therefore, facilitates quick mobilization of Ca(2+) and HCO(3)(-) ions. During the formation and resorption of the deposits large amounts of Ca(2+), HCO(3)(-) and H(+) are transported across the anterior sternal epithelial cells. Within the last years, various light and electron microscopical techniques have been used to characterize the CaCO(3) deposits and the cellular mechanisms involved in biomineralization. The work on the CaCO(3) deposits includes studies on the ultrastructure of the deposits, the sequence of events during deposit formation and dissolution, and the mineral composition of the sternal deposits. The differentiation of the anterior sternal epithelial cells and the mechanisms of epithelial ion transport required for the mineralization and demineralisation of the deposits was studied using various analytical light and electron microscopical techniques including polarized light microscopy, immunocytochemistry, electron microprobe analysis, electron energy loss spectroscopy and electron spectroscopic imaging. Comparative analysis of deposit morphology and the differentiation of the sternal epithelia provide information on the evolution of CaCO(3) deposit formation in relation to the degree of adaptation to terrestrial environments.

  15. High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Steidtner, Jens; Pettinger, Bruno

    2007-10-01

    An optical microscope based on tip-enhanced optical processes that can be used for studies on adsorbates as well as thin layers and nanostructures is presented. The microscope provides chemical and topographic informations with a resolution of a few nanometers and can be employed in ultrahigh vacuum as well as gas phase. The construction involves a number of improvements compared to conventional instruments. The central idea is to mount, within an UHV system, an optical platform with all necessary optical elements to a rigid frame that also carries the scanning tunneling microscope unit and to integrate a high numerical aperture parabolic mirror between the scanning probe microscope head and the sample. The parabolic mirror serves to focus the incident light and to collect a large fraction of the scattered light. The first experimental results of Raman measurements on silicon samples as well as brilliant cresyl blue layers on single crystalline gold and platinum surfaces in ultrahigh vacuum are presented. For dye adsorbates a Raman enhancement of ˜106 and a net signal gain of up to 4000 was observed. The focus diameter (˜λ/2) was measured by Raman imaging the focal region on a Si surface. The requirements of the parabolic mirror in terms of alignment accuracy were experimentally determined as well.

  16. Effects of photodynamic therapy on Gram-positive and Gram-negative bacterial biofilms by bioluminescence imaging and scanning electron microscopic analysis.

    PubMed

    Garcez, Aguinaldo S; Núñez, Silvia C; Azambuja, Nilton; Fregnani, Eduardo R; Rodriguez, Helena M H; Hamblin, Michael R; Suzuki, Hideo; Ribeiro, Martha S

    2013-11-01

    The aim of this study was to test photodynamic therapy (PDT) as an alternative approach to biofilm disruption on dental hard tissue, We evaluated the effect of methylene blue and a 660 nm diode laser on the viability and architecture of Gram-positive and Gram-negative bacterial biofilms. Ten human teeth were inoculated with bioluminescent Pseudomonas aeruginosa or Enterococcus faecalis to form 3 day biofilms in prepared root canals. Bioluminescence imaging was used to serially quantify and evaluate the bacterial viability, and scanning electron microscopic (SEM) imaging was used to assess architecture and morphology of bacterial biofilm before and after PDT employing methylene blue and 40 mW, 660 nm diode laser light delivered into the root canal via a 300 μm fiber for 240 sec, resulting in a total energy of 9.6 J. The data were statistically analyzed with analysis of variance (ANOVA) followed by Tukey test. The bacterial reduction showed a dose dependence; as the light energy increased, the bioluminescence decreased in both planktonic suspension and in biofilms. The SEM analysis showed a significant reduction of biofilm on the surface. PDT promoted disruption of the biofilm and the number of adherent bacteria was reduced. The photodynamic effect seems to disrupt the biofilm by acting both on bacterial cells and on the extracellular matrix.

  17. Phototoxic effects of an operating microscope on the ocular surface and tear film.

    PubMed

    Hwang, Hyung Bin; Kim, Hyun Seung

    2014-01-01

    We evaluated light exposure-induced dry eye syndrome by investigating the phototoxic effects of an operating microscope on the ocular surface and tear film in rabbits. Sixty eyes of 30 rabbits were divided into 3 groups based on the intensity of light exposure received from an operating microscope: Control group, no exposure to light; group A, 40,000-lx intensity for 30 minutes; and group B, 100,000-lx intensity for 30 minutes. To evaluate the potential damage to the ocular surface and tear film, Schirmer tests, rose bengal staining, and conjunctival impression cytology were performed before the light exposure and at 1, 3, and 5 days afterward. In addition, the expression of interleukin 1-beta was analyzed in tear samples. The expression of mucin 5AC was evaluated using immunofluorescence staining, and periodic acid-Schiff staining was conducted on conjunctival tissues. Corneal and conjunctival tissues were observed by means of electron microscopy. Potential damage to the ocular surface and tear film was found in the light-exposed groups as evidenced by decreased aqueous tear production, devitalized corneal and conjunctival epithelial cells, squamous metaplasia of conjunctival epithelial cells, decreased conjunctival goblet cell density, decreased expression of mucin 5AC, ultrastructural cellular damage to corneal and conjunctival tissues, and increased interleukin 1-beta expression in tears. This damage was more noticeable in group B than in group A (P < 0.05). Light exposure from an operating microscope had phototoxic effects on the ocular surface and tear film in this in vivo experiment. These changes seemed to intensify as the intensity of the light increased. Therefore, excessive light exposure during ophthalmic procedures could be a pathogenic factor in dry eye syndrome after a surgery is performed.

  18. Scanning optical microscope with long working distance objective

    DOEpatents

    Cloutier, Sylvain G.

    2010-10-19

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  19. Cremated human and animal remains of the Roman period--microscopic method of analysis (Sepkovcica, Croatia).

    PubMed

    Hincak, Zdravka; Mihelić, Damir; Bugar, Aleksandra

    2007-12-01

    Human and animal cremated osteological remains from twelve graves of Roman Period from archaeological site Sepkovcica near Velika Gorica (Turopolje region, NW Croatia) were analysed. Beside the content of urns and grave pits, fillings of grave vessels like bowls, pots and amphoras from twentytwo grave samples were included in this study. The preservation of osteological and dental remains of human and animal origin was very poor, majority of fragments hardly reach lengths of 10 mm. Weight of each specimen barely exceeds 100 g per person. Apart from traditional macroscopic methods of analysing cremated remains, microscopic method for determination of age at death was also tested. Fragments of femoral bone diaphysis of eighteen persons whose remains had been found on the site were analysed. Person's age at death was presented in the range of five or ten years, and the long bone fragments of a child (infants) were detected. Taxonomic position for each analysed specimen was determined by microscopic analysis of animal cremated bones. Analysis results confirm validity of microscopic method in determination of age at death for human remains and taxonomic qualification of cremated animal remains from archaeological sites.

  20. Microscopic analysis of currency and stock exchange markets.

    PubMed

    Kador, L

    1999-08-01

    Recently it was shown that distributions of short-term price fluctuations in foreign-currency exchange exhibit striking similarities to those of velocity differences in turbulent flows. Similar profiles represent the spectral-diffusion behavior of impurity molecules in disordered solids at low temperatures. It is demonstrated that a microscopic statistical theory of the spectroscopic line shapes can be applied to the other two phenomena. The theory interprets the financial data in terms of information which becomes available to the traders and their reactions as a function of time. The analysis shows that there is no characteristic time scale in financial markets, but that instead stretched-exponential or algebraic memory functions yield good agreement with the price data. For an algebraic function, the theory yields truncated Lévy distributions which are often observed in stock exchange markets.

  1. Microscopic analysis of currency and stock exchange markets

    NASA Astrophysics Data System (ADS)

    Kador, L.

    1999-08-01

    Recently it was shown that distributions of short-term price fluctuations in foreign-currency exchange exhibit striking similarities to those of velocity differences in turbulent flows. Similar profiles represent the spectral-diffusion behavior of impurity molecules in disordered solids at low temperatures. It is demonstrated that a microscopic statistical theory of the spectroscopic line shapes can be applied to the other two phenomena. The theory interprets the financial data in terms of information which becomes available to the traders and their reactions as a function of time. The analysis shows that there is no characteristic time scale in financial markets, but that instead stretched-exponential or algebraic memory functions yield good agreement with the price data. For an algebraic function, the theory yields truncated Lévy distributions which are often observed in stock exchange markets.

  2. Enhanced optical coupling and Raman scattering via microscopic interface engineering

    NASA Astrophysics Data System (ADS)

    Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier A.; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.

    2017-11-01

    Spontaneous Raman scattering is an extremely powerful tool for the remote detection and identification of various chemical materials. However, when those materials are contained within strongly scattering or turbid media, as is the case in many biological and security related systems, the sensitivity and range of Raman signal generation and detection is severely limited. Here, we demonstrate that through microscopic engineering of the optical interface, the optical coupling of light into a turbid material can be substantially enhanced. This improved coupling facilitates the enhancement of the Raman scattering signal generated by molecules within the medium. In particular, we detect at least two-orders of magnitude more spontaneous Raman scattering from a sample when the pump laser light is focused into a microscopic hole in the surface of the sample. Because this approach enhances both the interaction time and interaction region of the laser light within the material, its use will greatly improve the range and sensitivity of many spectroscopic techniques, including Raman scattering and fluorescence emission detection, inside highly scattering environments.

  3. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    PubMed Central

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-01-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications. PMID:26525841

  4. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope.

    PubMed

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-11-03

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.

  5. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    NASA Astrophysics Data System (ADS)

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-11-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.

  6. Coherent anti-Stokes Raman scattering spectroscope/microscope based on a widely tunable laser source

    NASA Astrophysics Data System (ADS)

    Dementjev, A.; Gulbinas, V.; Serbenta, A.; Kaucikas, M.; Niaura, G.

    2010-03-01

    We present a coherent anti-Stokes Raman scattering (CARS) microscope based on a robust and simple laser source. A picosecond laser operating in a cavity dumping regime at the 1 MHz repetition rate was used to pump a traveling wave optical parametric generator, which serves as a two-color excitation light source for the CARS microscope. We demonstrate the ability of the presented CARS microscope to measure CARS spectra and images by using several detection schemes.

  7. Microscope basics.

    PubMed

    Sluder, Greenfield; Nordberg, Joshua J

    2013-01-01

    This chapter provides information on how microscopes work and discusses some of the microscope issues to be considered in using a video camera on the microscope. There are two types of microscopes in use today for research in cell biology-the older finite tube-length (typically 160mm mechanical tube length) microscopes and the infinity optics microscopes that are now produced. The objective lens forms a magnified, real image of the specimen at a specific distance from the objective known as the intermediate image plane. All objectives are designed to be used with the specimen at a defined distance from the front lens element of the objective (the working distance) so that the image formed is located at a specific location in the microscope. Infinity optics microscopes differ from the finite tube-length microscopes in that the objectives are designed to project the image of the specimen to infinity and do not, on their own, form a real image of the specimen. Three types of objectives are in common use today-plan achromats, plan apochromats, and plan fluorite lenses. The concept of mounting video cameras on the microscope is also presented in the chapter. Copyright © 2003 Elsevier Inc. All rights reserved.

  8. Quantitative characterization of the carbon/carbon composites components based on video of polarized light microscope.

    PubMed

    Li, Yixian; Qi, Lehua; Song, Yongshan; Chao, Xujiang

    2017-06-01

    The components of carbon/carbon (C/C) composites have significant influence on the thermal and mechanical properties, so a quantitative characterization of component is necessary to study the microstructure of C/C composites, and further to improve the macroscopic properties of C/C composites. Considering the extinction crosses of the pyrocarbon matrix have significant moving features, the polarized light microscope (PLM) video is used to characterize C/C composites quantitatively because it contains sufficiently dynamic and structure information. Then the optical flow method is introduced to compute the optical flow field between the adjacent frames, and segment the components of C/C composites from PLM image by image processing. Meanwhile the matrix with different textures is re-segmented by the length difference of motion vectors, and then the component fraction of each component and extinction angle of pyrocarbon matrix are calculated directly. Finally, the C/C composites are successfully characterized from three aspects of carbon fiber, pyrocarbon, and pores by a series of image processing operators based on PLM video, and the errors of component fractions are less than 15%. © 2017 Wiley Periodicals, Inc.

  9. Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.

    2000-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.

  10. A LEGO Mindstorms Brewster angle microscope

    NASA Astrophysics Data System (ADS)

    Fernsler, Jonathan; Nguyen, Vincent; Wallum, Alison; Benz, Nicholas; Hamlin, Matthew; Pilgram, Jessica; Vanderpoel, Hunter; Lau, Ryan

    2017-09-01

    A Brewster Angle Microscope (BAM) built from a LEGO Mindstorms kit, additional LEGO bricks, and several standard optics components, is described. The BAM was built as part of an undergraduate senior project and was designed, calibrated, and used to image phospholipid, cholesterol, soap, and oil films on the surface of water. A BAM uses p-polarized laser light reflected off a surface at the Brewster angle, which ideally yields zero reflectivity. When a film of different refractive index is added to the surface a small amount of light is reflected, which can be imaged in a microscope camera. Films of only one molecule (approximately 1 nm) thick, a monolayer, can be observed easily in the BAM. The BAM was used in a junior-level Physical Chemistry class to observe phase transitions of a monolayer and the collapse of a monolayer deposited on the water surface in a Langmuir trough. Using a photometric calculation, students observed a change in thickness of a monolayer during a phase transition of 7 Å, which was accurate to within 1 Å of the value determined by more advanced methods. As supplementary material, we provide a detailed manual on how to build the BAM, software to control the BAM and camera, and image processing software.

  11. Hard X-Ray Scanning Microscope with Multilayer Laue Lens Nanofocusing Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaretski, Evgeny

    Evgeny Nazaretski, a physicist at Brookhaven Lab’s National Synchrotron Light Source II, spearheaded the development of a one-of-a-kind x-ray microscope with novel nanofocusing optics called multilayer Laue lenses.

  12. Solid state optical microscope

    DOEpatents

    Young, I.T.

    1983-08-09

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

  13. Analytical model of the optical vortex microscope.

    PubMed

    Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2016-04-20

    This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.

  14. Light Microscopy at Maximal Precision

    NASA Astrophysics Data System (ADS)

    Bierbaum, Matthew; Leahy, Brian D.; Alemi, Alexander A.; Cohen, Itai; Sethna, James P.

    2017-10-01

    Microscopy is the workhorse of the physical and life sciences, producing crisp images of everything from atoms to cells well beyond the capabilities of the human eye. However, the analysis of these images is frequently little more accurate than manual marking. Here, we revolutionize the analysis of microscopy images, extracting all the useful information theoretically contained in a complex microscope image. Using a generic, methodological approach, we extract the information by fitting experimental images with a detailed optical model of the microscope, a method we call parameter extraction from reconstructing images (PERI). As a proof of principle, we demonstrate this approach with a confocal image of colloidal spheres, improving measurements of particle positions and radii by 10-100 times over current methods and attaining the maximum possible accuracy. With this unprecedented accuracy, we measure nanometer-scale colloidal interactions in dense suspensions solely with light microscopy, a previously impossible feat. Our approach is generic and applicable to imaging methods from brightfield to electron microscopy, where we expect accuracies of 1 nm and 0.1 pm, respectively.

  15. 3D interferometric microscope: color visualization of engineered surfaces for industrial applications

    NASA Astrophysics Data System (ADS)

    Schmit, Joanna; Novak, Matt; Bui, Son

    2015-09-01

    3D microscopes based on white light interference (WLI) provide precise measurement for the topography of engineering surfaces. However, the display of an object in its true colors as observed under white illumination is often desired; this traditionally has presented a challenge for WLI-based microscopes. Such 3D color display is appealing to the eye and great for presentations, and also provides fast evaluation of certain characteristics like defects, delamination, or deposition of different materials. Determination of color as observed by interferometric objectives is not straightforward; we will present how color imaging capabilities similar to an ordinary microscope can be obtained in interference microscopes based on WLI and we will give measurement and imaging examples of a few industrial samples.

  16. Pre-microscope tunnelling — Inspiration or constraint?

    NASA Astrophysics Data System (ADS)

    Walmsley, D. G.

    1987-03-01

    Before the microscope burst upon the scene, tunnelling had established for itself a substantial niche in the repertoire of the solid state physicist. Over a period of 20 years it has contributed importantly to our understanding of many systems. It elucidated the superconducting state, first by a direct display of the energy gap then by providing detailed information on the phonon spectra and electron-phonon coupling strength in junction electrodes. Its use as a phonon spectrometer was subsequently extended to semiconductors and to the oxides of insulating barriers. Eventually the vibrational spectra of monolayer organic and inorganic adsorbates became amenable with rich scientific rewards. In a few cases electronic transitions have been observed. Plasmon excitation by tunnelling electrons led to insights on the electron loss function in metals at visible frequencies and provided along the way an intriguing light emitting device. With the advent of the microscope it is now appropriate to enquire how much of this experience can profitably be carried over to the new environment. Are we constrained just to repeat the experiments in a new configuration? Happily no. The microscope offers us topographical and spectroscopic information of a new order. One might next ask how great is the contact between the two disciplines? We explore this question and seek to establish where the pre-microscope experience can be helpful in inspiring our use of this marvellous new facility that we know as the scanning tunnelling microscope.

  17. A versatile atomic force microscope integrated with a scanning electron microscope.

    PubMed

    Kreith, J; Strunz, T; Fantner, E J; Fantner, G E; Cordill, M J

    2017-05-01

    A versatile atomic force microscope (AFM), which can be installed in a scanning electron microscope (SEM), is introduced. The flexible design of the instrument enables correlated analysis for different experimental configurations, such as AFM imaging directly after nanoindentation in vacuum. In order to demonstrate the capabilities of the specially designed AFM installed inside a SEM, slip steps emanating around nanoindents in single crystalline brass were examined. This example showcases how the combination of AFM and SEM imaging can be utilized for quantitative dislocation analysis through the measurement of the slip step heights without the hindrance of oxide formation. Finally, an in situ nanoindentation technique is introduced, illustrating the use of AFM imaging during indentation experiments to examine plastic deformation occurring under the indenter tip. The mechanical indentation data are correlated to the SEM and AFM images to estimate the number of dislocations emitted to the surface.

  18. Automatic Focus Adjustment of a Microscope

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2005-01-01

    AUTOFOCUS is a computer program for use in a control system that automatically adjusts the position of an instrument arm that carries a microscope equipped with an electronic camera. In the original intended application of AUTOFOCUS, the imaging microscope would be carried by an exploratory robotic vehicle on a remote planet, but AUTOFOCUS could also be adapted to similar applications on Earth. Initially control software other than AUTOFOCUS brings the microscope to a position above a target to be imaged. Then the instrument arm is moved to lower the microscope toward the target: nominally, the target is approached from a starting distance of 3 cm in 10 steps of 3 mm each. After each step, the image in the camera is subjected to a wavelet transform, which is used to evaluate the texture in the image at multiple scales to determine whether and by how much the microscope is approaching focus. A focus measure is derived from the transform and used to guide the arm to bring the microscope to the focal height. When the analysis reveals that the microscope is in focus, image data are recorded and transmitted.

  19. Automated Image Analysis of Lung Branching Morphogenesis from Microscopic Images of Fetal Rat Explants

    PubMed Central

    Rodrigues, Pedro L.; Rodrigues, Nuno F.; Duque, Duarte; Granja, Sara; Correia-Pinto, Jorge; Vilaça, João L.

    2014-01-01

    Background. Regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development from microscopic images. Methods. The outer contour was defined using an adaptive and multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends from a skeletonized image of the lung inner epithelia. Results. The time for lung branching morphometric analysis was reduced in 98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers. PMID:25250057

  20. Analysis of disruptive events and precarious situations caused by interaction with neurosurgical microscope.

    PubMed

    Eivazi, Shahram; Afkari, Hoorieh; Bednarik, Roman; Leinonen, Ville; Tukiainen, Markku; Jääskeläinen, Juha E

    2015-07-01

    Developments in micro-neurosurgical microscopes have improved operating precision and ensured the quality of outcomes. Using the stereoscopic magnified view, however, necessitates frequent manual adjustments to the microscope during an operation. This article reports on an investigation of the interaction details concerning a state-of-the-art micro-neurosurgical microscope. The video data from detailed observations of neurosurgeons' interaction patterns with the microscope were analysed to examine disruptive events caused by adjusting the microscope. The primary findings show that interruptions caused by adjusting the microscope handgrips and mouth switch prolong the surgery time up to 10%. Surgeons, we observed, avoid interaction with the microscope's controls, settings, and configurations by working at the edge of the view, operating on a non-focused view, and assuming unergonomic body postures. The lack of an automatic method for adjusting the microscope is a major problem that causes interruptions during micro-neurosurgery. From this understanding of disruptive events, we discuss the opportunities and limitations of interactive technologies that aim to reduce the frequency or shorten the duration of interruptions caused by microscope adjustment.

  1. Volumetric bioimaging based on light field microscopy with temporal focusing illumination

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chun; Sie, Yong Da; Lai, Feng-Jie; Chen, Shean-Jen

    2018-02-01

    Light field technique at a single shot can get the whole volume image of observed sample. Therefore, the original frame rate of the optical system can be taken as the volumetric image rate. For dynamically imaging whole micron-scale biosample, a light field microscope with temporal focusing illumination has been developed. In the light field microscope, the f-number of the microlens array (MLA) is adopted to match that of the objective; hence, the subimages via adjacent lenslets do not overlay each other. A three-dimensional (3D) deconvolution algorithm is utilized to deblur the out-of-focusing part. Conventional light field microscopy (LFM) illuminates whole volume sample even noninteresting parts; nevertheless, whole volume excitation causes even more damage on bio-sample and also increase the background noise from the out of range. Therefore, temporal focusing is integrated into the light field microscope for selecting the illumination volume. Herein, a slit on the back focal plane of the objective is utilized to control the axial excitation confinement for selecting the illumination volume. As a result, the developed light field microscope with the temporal focusing multiphoton illumination (TFMPI) can reconstruct 3D images within the selected volume, and the lateral resolution approaches to the theoretical value. Furthermore, the 3D Brownian motion of two-micron fluorescent beads is observed as the criterion of dynamic sample. With superior signal-to-noise ratio and less damage to tissue, the microscope is potential to provide volumetric imaging for vivo sample.

  2. Light-sheet enhanced resolution of light field microscopy for rapid imaging of large volumes

    NASA Astrophysics Data System (ADS)

    Madrid Wolff, Jorge; Castro, Diego; Arbeláez, Pablo; Forero-Shelton, Manu

    2018-02-01

    Whole-brain imaging is challenging because it demands microscopes with high temporal and spatial resolution, which are often at odds, especially in the context of large fields of view. We have designed and built a light-sheet microscope with digital micromirror illumination and light-field detection. On the one hand, light sheets provide high resolution optical sectioning on live samples without compromising their viability. On the other hand, light field imaging makes it possible to reconstruct full volumes of relatively large fields of view from a single camera exposure; however, its enhanced temporal resolution comes at the expense of spatial resolution, limiting its applicability. We present an approach to increase the resolution of light field images using DMD-based light sheet illumination. To that end, we develop a method to produce synthetic resolution targets for light field microscopy and a procedure to correct the depth at which planes are refocused with rendering software. We measured the axial resolution as a function of depth and show a three-fold potential improvement with structured illumination, albeit by sacrificing some temporal resolution, also three-fold. This results in an imaging system that may be adjusted to specific needs without having to reassemble and realign it. This approach could be used to image relatively large samples at high rates.

  3. Combined reflection and transmission microscope for telemedicine applications in field settings.

    PubMed

    Biener, Gabriel; Greenbaum, Alon; Isikman, Serhan O; Lee, Kelvin; Tseng, Derek; Ozcan, Aydogan

    2011-08-21

    We demonstrate a field-portable upright and inverted microscope that can image specimens in both reflection and transmission modes. This compact and cost-effective dual-mode microscope weighs only ∼135 grams (<4.8 ounces) and utilizes a simple light emitting diode (LED) to illuminate the sample of interest using a beam-splitter cube that is positioned above the object plane. This LED illumination is then partially reflected from the sample to be collected by two lenses, creating a reflection image of the specimen onto an opto-electronic sensor-array that is positioned above the beam-splitter cube. In addition to this, the illumination beam is also partially transmitted through the same specimen, which then casts lensfree in-line holograms of the same objects onto a second opto-electronic sensor-array that is positioned underneath the beam-splitter cube. By rapid digital reconstruction of the acquired lensfree holograms, transmission images (both phase and amplitude) of the same specimen are also created. We tested the performance of this field-portable microscope by imaging various micro-particles, blood smears as well as a histopathology slide corresponding to skin tissue. Being compact, light-weight and cost-effective, this combined reflection and transmission microscope might especially be useful for telemedicine applications in resource limited settings. This journal is © The Royal Society of Chemistry 2011

  4. Teaching meta-analysis using MetaLight.

    PubMed

    Thomas, James; Graziosi, Sergio; Higgins, Steve; Coe, Robert; Torgerson, Carole; Newman, Mark

    2012-10-18

    Meta-analysis is a statistical method for combining the results of primary studies. It is often used in systematic reviews and is increasingly a method and topic that appears in student dissertations. MetaLight is a freely available software application that runs simple meta-analyses and contains specific functionality to facilitate the teaching and learning of meta-analysis. While there are many courses and resources for meta-analysis available and numerous software applications to run meta-analyses, there are few pieces of software which are aimed specifically at helping those teaching and learning meta-analysis. Valuable teaching time can be spent learning the mechanics of a new software application, rather than on the principles and practices of meta-analysis. We discuss ways in which the MetaLight tool can be used to present some of the main issues involved in undertaking and interpreting a meta-analysis. While there are many software tools available for conducting meta-analysis, in the context of a teaching programme such software can require expenditure both in terms of money and in terms of the time it takes to learn how to use it. MetaLight was developed specifically as a tool to facilitate the teaching and learning of meta-analysis and we have presented here some of the ways it might be used in a training situation.

  5. A crypto-lymphatic unit at the uvula of the monkey Macaca fascicularis. A light- and electron-microscopic study.

    PubMed

    Nair, P N

    1983-01-01

    A crypto-lymphatic unit was observed at the left lateral aspect of the uvula of a mature female monkey, Macaca fascicularis. A light- and transmission electron-microscopic investigation revealed that the lumen of the crypt was filled with bacteria, desquamated epithelial cells, lymphocytes and neutrophils. The non-keratinized stratified squamous epithelium of the crypt was fragmented and showed heavy mononuclear cell infiltration and surface discontinuities, exposing lymphoid cells to foreign material. The lymphatic parenchyma consisted of organized lymphatic tissue including germinal centres. The resident cell population included lymphocytes of varying size, blastforming B- and T-lymphocytes and two types of reticular cells resembling the fibroblastic reticulum cell and the follicular dendritic cell, respectively. Occasionally granulocytes were encountered. At its base and laterally the crypto-lymphatic unit was ensheathed by a thin connective tissue capsule. Three other monkeys of the same species failed to reveal similar structures at the same site.

  6. A portable fluorescence microscopic imaging system for cholecystectomy

    NASA Astrophysics Data System (ADS)

    Ye, Jian; Yang, Chaoyu; Gan, Qi; Ma, Rong; Zhang, Zeshu; Chang, Shufang; Shao, Pengfei; Zhang, Shiwu; Liu, Chenhai; Xu, Ronald

    2016-03-01

    In this paper we proposed a portable fluorescence microscopic imaging system to prevent iatrogenic biliary injuries from occurring during cholecystectomy due to misidentification of the cystic structures. The system consisted of a light source module, a CMOS camera, a Raspberry Pi computer and a 5 inch HDMI LCD. Specifically, the light source module was composed of 690 nm and 850 nm LEDs, allowing the CMOS camera to simultaneously acquire both fluorescence and background images. The system was controlled by Raspberry Pi using Python programming with the OpenCV library under Linux. We chose Indocyanine green(ICG) as a fluorescent contrast agent and then tested fluorescence intensities of the ICG aqueous solution at different concentration levels by our fluorescence microscopic system compared with the commercial Xenogen IVIS system. The spatial resolution of the proposed fluorescence microscopic imaging system was measured by a 1951 USAF resolution target and the dynamic response was evaluated quantitatively with an automatic displacement platform. Finally, we verified the technical feasibility of the proposed system in mouse models of bile duct, performing both correct and incorrect gallbladder resection. Our experiments showed that the proposed system can provide clear visualization of the confluence between the cystic duct and common bile duct or common hepatic duct, suggesting that this is a potential method for guiding cholecystectomy. The proposed portable system only cost a total of $300, potentially promoting its use in resource-limited settings.

  7. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging

    PubMed Central

    Entenberg, David; Wyckoff, Jeffrey; Gligorijevic, Bojana; Roussos, Evanthia T; Verkhusha, Vladislav V; Pollard, Jeffrey W; Condeelis, John

    2014-01-01

    Characterizing biological mechanisms dependent upon the interaction of many cell types in vivo requires both multiphoton microscope systems capable of expanding the number and types of fluorophores that can be imaged simultaneously while removing the wavelength and tunability restrictions of existing systems, and enhanced software for extracting critical cellular parameters from voluminous 4D data sets. We present a procedure for constructing a two-laser multiphoton microscope that extends the wavelength range of excitation light, expands the number of simultaneously usable fluorophores and markedly increases signal to noise via ‘over-clocking’ of detection. We also utilize a custom-written software plug-in that simplifies the quantitative tracking and analysis of 4D intravital image data. We begin by describing the optics, hardware, electronics and software required, and finally the use of the plug-in for analysis. We demonstrate the use of the setup and plug-in by presenting data collected via intravital imaging of a mouse model of breast cancer. The procedure may be completed in ~24 h. PMID:21959234

  8. Hard X-Ray Scanning Microscope with Multilayer Laue Lens Nanofocusing Optics

    ScienceCinema

    Nazaretski, Evgeny

    2018-06-13

    Evgeny Nazaretski, a physicist at Brookhaven Lab’s National Synchrotron Light Source II, spearheaded the development of a one-of-a-kind x-ray microscope with novel nanofocusing optics called multilayer Laue lenses.

  9. Light microscopic histology of supraspinatus tendon ruptures.

    PubMed

    Longo, Umile Giuseppe; Franceschi, Francesco; Ruzzini, Laura; Rabitti, Carla; Morini, Sergio; Maffulli, Nicola; Forriol, Francisco; Denaro, Vincenzo

    2007-11-01

    We analysed the morphological features of the human surgical specimens of supraspinatus tendon from patients with rotator cuff tears. Tendon samples were harvested from 31 subjects (21 men and 10 women; mean age 51 years, range 38-64) who underwent arthroscopic repair of a rotator cuff tear, and from five male patients who died of cardiovascular events (mean age, 69.6 years). Histological examination was performed using Haematoxylin and Eosin, Masson's Trichrome and Van Gieson's connective tissue stain. The specimens were examined twice by the same examiner under white light and polarized light microscopy. Particular effort was made to assess any evidence of the changes associated with tendinopathy. Within each specific category of tendon abnormalities, the chi-square test showed significant differences between the control and ruptured tendons (P < 0.05). Using the kappa statistics, the agreement between the two readings ranged from 0.57 to 0.84. We found thinning and disorientation of collagen fibres and chondroid metaplasia to be more pronounced on the articular side of the specimens from patients with rotator cuff tear (P < 0.05). The present study provides a description of the histological architecture of human surgical specimens of normal supraspinatus tendon from patients with rotator cuff tears and demonstrates more frequent tendon changes on the articular side of the rotator cuff.

  10. A simple water-immersion condenser for imaging living brain slices on an inverted microscope.

    PubMed

    Prusky, G T

    1997-09-05

    Due to some physical limitations of conventional condensers, inverted compound microscopes are not optimally suited for imaging living brain slices with transmitted light. Herein is described a simple device that converts an inverted microscope into an effective tool for this application by utilizing an objective as a condenser. The device is mounted on a microscope in place of the condenser, is threaded to accept a water immersion objective, and has a slot for a differential interference contrast (DIC) slider. When combined with infrared video techniques, this device allows an inverted microscope to effectively image living cells within thick brain slices in an open perfusion chamber.

  11. Five years of experience teaching pathology to dental students using the WebMicroscope

    PubMed Central

    2011-01-01

    Background We describe development and evaluation of the user-friendly web based virtual microscopy - WebMicroscope for teaching and learning dental students basic and oral pathology. Traditional students microscopes were replaced by computer workstations. Methods The transition of the basic and oral pathology courses from light to virtual microscopy has been completed gradually over a five-year period. A pilot study was conducted in academic year 2005/2006 to estimate the feasibility of integrating virtual microscopy into a traditional light microscopy-based pathology course. The entire training set of glass slides was subsequently converted to virtual slides and placed on the WebMicroscope server. Giving access to fully digitized slides on the web with a browser and a viewer plug-in, the computer has become a perfect companion of the student. Results The study material consists now of over 400 fully digitized slides which covering 15 entities in basic and systemic pathology and 15 entities in oral pathology. Digitized slides are linked with still macro- and microscopic images, organized with clinical information into virtual cases and supplemented with text files, syllabus, PowerPoint presentations and animations on the web, serving additionally as material for individual studies. After their examinations, the students rated the use of the software, quality of the images, the ease of handling the images, and the effective use of virtual slides during the laboratory practicals. Responses were evaluated on a standardized scale. Because of the positive opinions and support from the students, the satisfaction surveys had shown a progressive improvement over the past 5 years. The WebMicroscope as a didactic tool for laboratory practicals was rated over 8 on a 1-10 scale for basic and systemic pathology and 9/10 for oral pathology especially as various students’ suggestions were implemented. Overall, the quality of the images was rated as very good. Conclusions An

  12. LC-lens array with light field algorithm for 3D biomedical applications

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun

    2016-03-01

    In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.

  13. Excitation-scanning hyperspectral imaging system for microscopic and endoscopic applications

    NASA Astrophysics Data System (ADS)

    Mayes, Sam A.; Leavesley, Silas J.; Rich, Thomas C.

    2016-04-01

    Current microscopic and endoscopic technologies for cancer screening utilize white-light illumination sources. Hyper-spectral imaging has been shown to improve sensitivity while retaining specificity when compared to white-light imaging in both microscopy and in vivo imaging. However, hyperspectral imaging methods have historically suffered from slow acquisition times due to the narrow bandwidth of spectral filters. Often minutes are required to gather a full image stack. We have developed a novel approach called excitation-scanning hyperspectral imaging that provides 2-3 orders of magnitude increased signal strength. This reduces acquisition times significantly, allowing for live video acquisition. Here, we describe a preliminary prototype excitation-scanning hyperspectral imaging system that can be coupled with endoscopes or microscopes for hyperspectral imaging of tissues and cells. Our system is comprised of three subsystems: illumination, transmission, and imaging. The illumination subsystem employs light-emitting diode arrays to illuminate at different wavelengths. The transmission subsystem utilizes a unique geometry of optics and a liquid light guide. Software controls allow us to interface with and control the subsystems and components. Digital and analog signals are used to coordinate wavelength intensity, cycling and camera triggering. Testing of the system shows it can cycle 16 wavelengths at as fast as 1 ms per cycle. Additionally, more than 18% of the light transmits through the system. Our setup should allow for hyperspectral imaging of tissue and cells in real time.

  14. Sub-micrometer resolution proximity X-ray microscope with digital image registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chkhalo, N. I.; Salashchenko, N. N.; Sherbakov, A. V., E-mail: SherbakovAV@ipm.sci-nnov.ru

    A compact laboratory proximity soft X-ray microscope providing submicrometer spatial resolution and digital image registration is described. The microscope consists of a laser-plasma soft X-ray radiation source, a Schwarzschild objective to illuminate the test sample, and a two-coordinate detector for image registration. Radiation, which passes through the sample under study, generates an absorption image on the front surface of the detector. Optical ceramic YAG:Ce was used to convert the X-rays into visible light. An image was transferred from the scintillator to a charge-coupled device camera with a Mitutoyo Plan Apo series lens. The detector’s design allows the use of lensesmore » with numerical apertures of NA = 0.14, 0.28, and 0.55 without changing the dimensions and arrangement of the elements of the device. This design allows one to change the magnification, spatial resolution, and field of view of the X-ray microscope. A spatial resolution better than 0.7 μm and an energy conversion efficiency of the X-ray radiation with a wavelength of 13.5 nm into visible light collected by the detector of 7.2% were achieved with the largest aperture lens.« less

  15. Isotope analysis in the transmission electron microscope.

    PubMed

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani

    2016-10-10

    The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  16. Development of an ultralow-light-level luminescence image analysis system for dynamic measurements of transcriptional activity in living and migrating cells.

    PubMed

    Maire, E; Lelièvre, E; Brau, D; Lyons, A; Woodward, M; Fafeur, V; Vandenbunder, B

    2000-04-10

    We have developed an approach to study in single living epithelial cells both cell migration and transcriptional activation, which was evidenced by the detection of luminescence emission from cells transfected with luciferase reporter vectors. The image acquisition chain consists of an epifluorescence inverted microscope, connected to an ultralow-light-level photon-counting camera and an image-acquisition card associated to specialized image analysis software running on a PC computer. Using a simple method based on a thin calibrated light source, the image acquisition chain has been optimized following comparisons of the performance of microscopy objectives and photon-counting cameras designed to observe luminescence. This setup allows us to measure by image analysis the luminescent light emitted by individual cells stably expressing a luciferase reporter vector. The sensitivity of the camera was adjusted to a high value, which required the use of a segmentation algorithm to eliminate the background noise. Following mathematical morphology treatments, kinetic changes of luminescent sources were analyzed and then correlated with the distance and speed of migration. Our results highlight the usefulness of our image acquisition chain and mathematical morphology software to quantify the kinetics of luminescence changes in migrating cells.

  17. AOTF microscope for imaging with increased speed and spectral versatility.

    PubMed Central

    Wachman, E S; Niu, W; Farkas, D L

    1997-01-01

    We have developed a new fluorescence microscope that addresses the spectral and speed limitations of current light microscopy instrumentation. In the present device, interference and neutral density filters normally used for fluorescence excitation and detection are replaced by acousto-optic tunable filters (AOTFs). Improvements are described, including the use of a dispersing prism in conjunction with the imaging AOTF and an oblique-illumination excitation scheme, which together enable the AOTF microscope to produce images comparable to those obtained with conventional fluorescence instruments. The superior speed and spectral versatility of the AOTF microscope are demonstrated by a ratio image pair acquired in 3.5 ms and a micro-spectral absorbance measurement of hemoglobin through a cranial window in a living mouse. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:9284289

  18. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    NASA Astrophysics Data System (ADS)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  19. Evaluation of automated threshold selection methods for accurately sizing microscopic fluorescent cells by image analysis.

    PubMed Central

    Sieracki, M E; Reichenbach, S E; Webb, K L

    1989-01-01

    The accurate measurement of bacterial and protistan cell biomass is necessary for understanding their population and trophic dynamics in nature. Direct measurement of fluorescently stained cells is often the method of choice. The tedium of making such measurements visually on the large numbers of cells required has prompted the use of automatic image analysis for this purpose. Accurate measurements by image analysis require an accurate, reliable method of segmenting the image, that is, distinguishing the brightly fluorescing cells from a dark background. This is commonly done by visually choosing a threshold intensity value which most closely coincides with the outline of the cells as perceived by the operator. Ideally, an automated method based on the cell image characteristics should be used. Since the optical nature of edges in images of light-emitting, microscopic fluorescent objects is different from that of images generated by transmitted or reflected light, it seemed that automatic segmentation of such images may require special considerations. We tested nine automated threshold selection methods using standard fluorescent microspheres ranging in size and fluorescence intensity and fluorochrome-stained samples of cells from cultures of cyanobacteria, flagellates, and ciliates. The methods included several variations based on the maximum intensity gradient of the sphere profile (first derivative), the minimum in the second derivative of the sphere profile, the minimum of the image histogram, and the midpoint intensity. Our results indicated that thresholds determined visually and by first-derivative methods tended to overestimate the threshold, causing an underestimation of microsphere size. The method based on the minimum of the second derivative of the profile yielded the most accurate area estimates for spheres of different sizes and brightnesses and for four of the five cell types tested. A simple model of the optical properties of fluorescing objects and

  20. [Scanning electron microscope observation and image quantitative analysis of Hippocampi].

    PubMed

    Zhang, Z; Pu, Z; Xu, L; Xu, G; Wang, Q; Xu, G; Wu, L; Chen, J

    1998-12-01

    The "scale-like projects" on the derma of 3 species of Hippocampi, H. kuda Bleerer, H. trimaculatus Leach and H. japonicus Kaup were observed by scanning electron microscope (SEM). Results showed that some characteristics such us size, shape and type of arrangement of the "scale-like projects" can be considered as the evidence for microanalysis. Image quantitative analysis of the "scale-like project" was carried out on 45 pieces of photograph using area, long diameter, short diameter and shape factor as parameters. No difference among the different parts of the same species was observed, but significant differences were found among the above 3 species.

  1. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    PubMed

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  2. From atoms to steps: The microscopic origins of crystal evolution

    NASA Astrophysics Data System (ADS)

    Patrone, Paul N.; Einstein, T. L.; Margetis, Dionisios

    2014-07-01

    The Burton-Cabrera-Frank (BCF) theory of crystal growth has been successful in describing a wide range of phenomena in surface physics. Typical crystal surfaces are slightly misoriented with respect to a facet plane; thus, the BCF theory views such systems as composed of staircase-like structures of steps separating terraces. Adsorbed atoms (adatoms), which are represented by a continuous density, diffuse on terraces, and steps move by absorbing or emitting these adatoms. Here we shed light on the microscopic origins of the BCF theory by deriving a simple, one-dimensional (1D) version of the theory from an atomistic, kinetic restricted solid-on-solid (KRSOS) model without external material deposition. We define the time-dependent adatom density and step position as appropriate ensemble averages in the KRSOS model, thereby exposing the non-equilibrium statistical mechanics origins of the BCF theory. Our analysis reveals that the BCF theory is valid in a low adatom-density regime, much in the same way that an ideal gas approximation applies to dilute gasses. We find conditions under which the surface remains in a low-density regime and discuss the microscopic origin of corrections to the BCF model.

  3. Enhanced fluorescence microscope and its application

    NASA Astrophysics Data System (ADS)

    Wang, Susheng; Li, Qin; Yu, Xin

    1997-12-01

    A high gain fluorescence microscope is developed to meet the needs in medical and biological research. By the help of an image intensifier with luminance gain of 4 by 104 the sensitivity of the system can achieve 10-6 1x level and be 104 times higher than ordinary fluorescence microscope. Ultra-weak fluorescence image can be detected by it. The concentration of fluorescent label and emitting light intensity of the system are decreased as much as possible, therefore, the natural environment of the detected call can be kept. The CCD image acquisition set-up controlled by computer obtains the quantitative data of each point according to the gray scale. The relation between luminous intensity and output of CCD is obtained by using a wide range weak photometry. So the system not only shows the image of ultra-weak fluorescence distribution but also gives the intensity of fluorescence of each point. Using this system, we obtained the images of distribution of hypocrellin A (HA) in Hela cell, the images of Hela cell being protected by antioxidant reagent Vit. E, SF and BHT. The images show that the digitized ultra-sensitive fluorescence microscope is a useful tool for medical and biological research.

  4. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.

    PubMed

    Julkunen, Petro; Kiviranta, Panu; Wilson, Wouter; Jurvelin, Jukka S; Korhonen, Rami K

    2007-01-01

    Load-bearing characteristics of articular cartilage are impaired during tissue degeneration. Quantitative microscopy enables in vitro investigation of cartilage structure but determination of tissue functional properties necessitates experimental mechanical testing. The fibril-reinforced poroviscoelastic (FRPVE) model has been used successfully for estimation of cartilage mechanical properties. The model includes realistic collagen network architecture, as shown by microscopic imaging techniques. The aim of the present study was to investigate the relationships between the cartilage proteoglycan (PG) and collagen content as assessed by quantitative microscopic findings, and model-based mechanical parameters of the tissue. Site-specific variation of the collagen network moduli, PG matrix modulus and permeability was analyzed. Cylindrical cartilage samples (n=22) were harvested from various sites of the bovine knee and shoulder joints. Collagen orientation, as quantitated by polarized light microscopy, was incorporated into the finite-element model. Stepwise stress-relaxation experiments in unconfined compression were conducted for the samples, and sample-specific models were fitted to the experimental data in order to determine values of the model parameters. For comparison, Fourier transform infrared imaging and digital densitometry were used for the determination of collagen and PG content in the same samples, respectively. The initial and strain-dependent fibril network moduli as well as the initial permeability correlated significantly with the tissue collagen content. The equilibrium Young's modulus of the nonfibrillar matrix and the strain dependency of permeability were significantly associated with the tissue PG content. The present study demonstrates that modern quantitative microscopic methods in combination with the FRPVE model are feasible methods to characterize the structure-function relationships of articular cartilage.

  5. Adding an Extra Dimension to What Students See through the Light Microscope: A Lab Exercise Demonstrating Critical Analysis for Microscopy Students

    ERIC Educational Resources Information Center

    Garrill, Ashley

    2011-01-01

    This article describes an undergraduate lab exercise that demonstrates the importance of students thinking critically about what they see through a microscope. The students are given growth data from tip-growing organisms that suggest the cells grow in a pulsatile manner. The students then critique this data in several exercises that incorporate…

  6. Comparisons between conventional optical imaging and parametric indirect microscopic imaging on human skin detection

    NASA Astrophysics Data System (ADS)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    We report a new method, polarization parameters indirect microscopic imaging with a high transmission infrared light source, to detect the morphology and component of human skin. A conventional reflection microscopic system is used as the basic optical system, into which a polarization-modulation mechanics is inserted and a high transmission infrared light source is utilized. The near-field structural characteristics of human skin can be delivered by infrared waves and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated and curves of the intensity of the image can be obtained. By analyzing the near-field polarization parameters in nanoscale, we can finally get the inversion images of human skin. Compared with the conventional direct optical microscope, this method can break diffraction limit and achieve a super resolution of sub-100nm. Besides, the method is more sensitive to the edges, wrinkles, boundaries and impurity particles.

  7. Visualizing 3-D microscopic specimens

    NASA Astrophysics Data System (ADS)

    Forsgren, Per-Ola; Majlof, Lars L.

    1992-06-01

    The confocal microscope can be used in a vast number of fields and applications to gather more information than is possible with a regular light microscope, in particular about depth. Compared to other three-dimensional imaging devices such as CAT, NMR, and PET, the variations of the objects studied are larger and not known from macroscopic dissections. It is therefore important to have several complementary ways of displaying the gathered information. We present a system where the user can choose display techniques such as extended focus, depth coding, solid surface modeling, maximum intensity and other techniques, some of which may be combined. A graphical user interface provides easy and direct control of all input parameters. Motion and stereo are available options. Many three- dimensional imaging devices give recordings where one dimension has different resolution and sampling than the other two which requires interpolation to obtain correct geometry. We have evaluated algorithms with interpolation in object space and in projection space. There are many ways to simplify the geometrical transformations to gain performance. We present results of some ways to simplify the calculations.

  8. Desmosomes: A light microscopic and ultrastructural analysis of desmosomes in odontogenic cysts.

    PubMed

    Raju, Pratima; Wadhwan, Vijay; Chaudhary, Minal S

    2014-01-01

    Desmosomes together with adherens junctions represent the major adhesive cell-cell junctions of epithelial cells. Any damage to these junctions leads to loss of structural balance. The present study was designed to analyze the desmosomal junctions in different odontogenic cysts and compare them with their corresponding hematoxylin and eosin (H and E)   stained sections. Ten cases each of odontogenic keratocyst (OKC), dentigerous cysts (DCs), radicular cysts (RCs) and normal mucosa were stained with hematoxylin and eosin. Scanning electron microscopy (SEM) analysis of the sections was then carried out of all the sections. The area of interest on H and E stained section was marked and this marking was later superimposed onto the corresponding unstained sections and were subjected to SEM analysis. OKC at ×1000 magnification showed many prominent desmosomes. However, an increase in the intercellular space was also noted. SEM analysis demonstrated similar findings with the presence of many desmosomes, though they were seen to be damaged and fragile. H and E stained DC under oil immersion did not show any prominent desmosomes. SEM analysis of the same confirmed the observation and very minimal number were seen with a very condense arrangement of the epithelial cells. RC at ×1000 magnification revealed plenty of desmosomes, which were again confirmed by SEM. The number and quality of desmosomal junctions in all the cysts has a role in the clinical behavior of the cyst.

  9. Improvements in low-cost label-free QPI microscope for live cell imaging

    NASA Astrophysics Data System (ADS)

    Seniya, C.; Towers, C. E.; Towers, D. P.

    2017-07-01

    This paper reports an improvement in the development of a low-cost QPI microscope offering new capabilities in term of phase measurement accuracy for label-free live samples in the longer term (i.e., hours to days). The spatially separated scattered and non-scattered image light fields are reshaped in the Fourier plane and modulated to form an interference image at a CCD camera. The apertures that enable these two beams to be generated have been optimised by means of laser-cut apertures placed on the mirrors of a Michelson interferometer and has improved the phase measuring and reconstruction capability of the QPI microscope. The microscope was tested with transparent onion cells as an object of interest.

  10. Light Microscopy's New Jobs

    NASA Astrophysics Data System (ADS)

    Ritsch-Marte, Monika

    2009-04-01

    300 years since the first glimpse through the earliest microscopes, light microscopy is still an active field of research, breaking new frontiers in optical imaging and even becoming a means of mechanical manipulation of microparticles.

  11. Webb Instruments Perfected to Microscopic Levels

    NASA Image and Video Library

    2014-06-20

    Dressed in a cleanroom suit to prevent contamination, Optics Technician Jeff Gum aligns a replacement Focal Plane Assembly (FPA) with a powerful three-dimensional microscope at NASA's Goddard Space Flight Center in Greenbelt, Md. This FPA will be installed on the Near Infrared Camera (NIRCam) instrument, which has unique components that are individually tailored to see in a particular infrared wavelength range. By using the microscope, Gum ensures the FPA detectors are characterized and ready for installation onto NIRCam, the James Webb Space Telescope's primary imager that will see the light from the earliest stars and galaxies that formed in the universe. Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. High-resolution electron microscope

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1977-01-01

    Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.

  13. Compact Microscope Imaging System With Intelligent Controls Improved

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    The Compact Microscope Imaging System (CMIS) with intelligent controls is a diagnostic microscope analysis tool with intelligent controls for use in space, industrial, medical, and security applications. This compact miniature microscope, which can perform tasks usually reserved for conventional microscopes, has unique advantages in the fields of microscopy, biomedical research, inline process inspection, and space science. Its unique approach integrates a machine vision technique with an instrumentation and control technique that provides intelligence via the use of adaptive neural networks. The CMIS system was developed at the NASA Glenn Research Center specifically for interface detection used for colloid hard spheres experiments; biological cell detection for patch clamping, cell movement, and tracking; and detection of anode and cathode defects for laboratory samples using microscope technology.

  14. Postnatal development of microcyst in the anteroventral cochlear nucleus of the Mongolian gerbil: a light- and electron microscopic study.

    PubMed

    Yu, Shang-Ming; Ko, Tsui-Ling; Lin, Kwan-Hwa

    2011-09-01

    We investigated the postnatal formation and origin of the microcyst, which are not fully elucidated at present, in the cochlear nucleus of gerbils. Sixty-six Mongolian gerbils were investigated at the light microscope level, and 35 of them were observed at the electron microscopic level. Foamy structures were evidently found at 2 days of age and remained unchanged through 4-8 days. The first small vacuole, presumably the former microcyst, appeared at 8 days. Myelin sheath bundles first appeared at 13 days. Electron-dense bodies were frequently found in the junction of the superficial layer and the deep layer at 2 days. The medium-sized vacuole was found in close association with the spherical bushy cells in the anteroventral cochlear nucleus (AVCN) as early as 5 weeks. Various large and small vacuoles were presumably coalesced to form a large vacuole at 3 and 6 months. Membranous structures and red blood cells were in the budding-like vacuoles at 6 months. In addition to membranous structures, the microcyst contained distorted mitochondria and parts of myelin sheaths. The vacuole was interposed between spherical bushy cells at age of 10 months. Small vacuoles were mainly located in the flame-shaped neurons at 14 months. An internal detachment and an external protrusion of the myelin sheath into the adjacent microcyst were found. Thus, this study suggests the first appearance of microcysts at 8 days. Also, the microcyst and the blood vessel may exchange their contents through a leakage in the anteroventral cochlear nucleus.

  15. Portable and cost-effective pixel super-resolution on-chip microscope for telemedicine applications.

    PubMed

    Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan

    2011-01-01

    We report a field-portable lensless on-chip microscope with a lateral resolution of <1 μm and a large field-of-view of ~24 mm(2). This microscope is based on digital in-line holography and a pixel super-resolution algorithm to process multiple lensfree holograms and obtain a single high-resolution hologram. In its compact and cost-effective design, we utilize 23 light emitting diodes butt-coupled to 23 multi-mode optical fibers, and a simple optical filter, with no moving parts. Weighing only ~95 grams, we demonstrate the performance of this field-portable microscope by imaging various objects including human malaria parasites in thin blood smears.

  16. White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water

    NASA Astrophysics Data System (ADS)

    Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh

    2016-03-01

    We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.

  17. 3D real-time visualization of blood flow in cerebral aneurysms by light field particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Carlsohn, Matthias F.; Kemmling, André; Petersen, Arne; Wietzke, Lennart

    2016-04-01

    Cerebral aneurysms require endovascular treatment to eliminate potentially lethal hemorrhagic rupture by hemostasis of blood flow within the aneurysm. Devices (e.g. coils and flow diverters) promote homeostasis, however, measurement of blood flow within an aneurysm or cerebral vessel before and after device placement on a microscopic level has not been possible so far. This would allow better individualized treatment planning and improve manufacture design of devices. For experimental analysis, direct measurement of real-time microscopic cerebrovascular flow in micro-structures may be an alternative to computed flow simulations. An application of microscopic aneurysm flow measurement on a regular basis to empirically assess a high number of different anatomic shapes and the corresponding effect of different devices would require a fast and reliable method at low cost with high throughout assessment. Transparent three dimensional 3D models of brain vessels and aneurysms may be used for microscopic flow measurements by particle image velocimetry (PIV), however, up to now the size of structures has set the limits for conventional 3D-imaging camera set-ups. On line flow assessment requires additional computational power to cope with the processing large amounts of data generated by sequences of multi-view stereo images, e.g. generated by a light field camera capturing the 3D information by plenoptic imaging of complex flow processes. Recently, a fast and low cost workflow for producing patient specific three dimensional models of cerebral arteries has been established by stereo-lithographic (SLA) 3D printing. These 3D arterial models are transparent an exhibit a replication precision within a submillimeter range required for accurate flow measurements under physiological conditions. We therefore test the feasibility of microscopic flow measurements by PIV analysis using a plenoptic camera system capturing light field image sequences. Averaging across a sequence of

  18. Camera array based light field microscopy

    PubMed Central

    Lin, Xing; Wu, Jiamin; Zheng, Guoan; Dai, Qionghai

    2015-01-01

    This paper proposes a novel approach for high-resolution light field microscopy imaging by using a camera array. In this approach, we apply a two-stage relay system for expanding the aperture plane of the microscope into the size of an imaging lens array, and utilize a sensor array for acquiring different sub-apertures images formed by corresponding imaging lenses. By combining the rectified and synchronized images from 5 × 5 viewpoints with our prototype system, we successfully recovered color light field videos for various fast-moving microscopic specimens with a spatial resolution of 0.79 megapixels at 30 frames per second, corresponding to an unprecedented data throughput of 562.5 MB/s for light field microscopy. We also demonstrated the use of the reported platform for different applications, including post-capture refocusing, phase reconstruction, 3D imaging, and optical metrology. PMID:26417490

  19. Analysis of biological time-lapse microscopic experiment from the point of view of the information theory.

    PubMed

    Štys, Dalibor; Urban, Jan; Vaněk, Jan; Císař, Petr

    2011-06-01

    We report objective analysis of information in the microscopic image of the cell monolayer. The process of transfer of information about the cell by the microscope is analyzed in terms of the classical Shannon information transfer scheme. The information source is the biological object, the information transfer channel is the whole microscope including the camera chip. The destination is the model of biological system. The information contribution is analyzed as information carried by a point to overall information in the image. Subsequently we obtain information reflection of the biological object. This is transformed in the biological model which, in information terminology, is the destination. This, we propose, should be constructed as state transitions in individual cells modulated by information bonds between the cells. We show examples of detected cell states in multidimensional state space. This space is reflected as colour channel intensity phenomenological state space. We have also observed information bonds and show examples of them.

  20. Analysis of biological time-lapse microscopic experiment from the point of view of the information theory.

    PubMed

    Stys, Dalibor; Urban, Jan; Vanek, Jan; Císar, Petr

    2010-07-01

    We report objective analysis of information in the microscopic image of the cell monolayer. The process of transfer of information about the cell by the microscope is analyzed in terms of the classical Shannon information transfer scheme. The information source is the biological object, the information transfer channel is the whole microscope including the camera chip. The destination is the model of biological system. The information contribution is analyzed as information carried by a point to overall information in the image. Subsequently we obtain information reflection of the biological object. This is transformed in the biological model which, in information terminology, is the destination. This, we propose, should be constructed as state transitions in individual cells modulated by information bonds between the cells. We show examples of detected cell states in multidimensional state space reflected in space an colour channel intensity phenomenological state space. We have also observed information bonds and show examples of them. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Upgrade of a Scanning Confocal Microscope to a Single-Beam Path STED Microscope

    PubMed Central

    Klauss, André; König, Marcelle; Hille, Carsten

    2015-01-01

    By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as “easy-STED”, achieving lateral resolution < λ/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate that creates the STED-doughnut light distribution in the focal plane, while leaving the excitation beam unaltered when implemented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent beads as reference were achieved with the wavelength combination of 635 nm excitation and 766 nm depletion. To evaluate the STED performance in biological systems, we compared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by labeling F-actin filaments in vitro as well as through immunofluorescence recordings of microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvolution approach and showed that images obtained from time-gated pulsed STED microscopy may benefit concerning the signal-to-background ratio, from the joint deconvolution of sub-images with different spatial information which were extracted from offline time gating. PMID:26091552

  2. Portable, battery-operated, fluorescence field microscope for the developing world

    NASA Astrophysics Data System (ADS)

    Miller, Andrew R.; Davis, Gregory; Pierce, Mark; Oden, Z. Maria; Richards-Kortum, Rebecca

    2010-02-01

    In many areas of the world, current methods for diagnosis of infectious diseases such as malaria and tuberculosis involve microscopic evaluation of a patient specimen. Advances in fluorescence microscopy can improve diagnostic sensitivity and reduce time and expertise necessary to interpret diagnostic results. However, modern research-grade microscopes are neither available nor appropriate for use in many settings in the developing world. To address this need, we designed, fabricated, and tested a portable, battery-powered, bright field and fluorescence inverted field microscope, optimized for infrastructural constraints of the developing world. We characterized an initial prototype constructed with rapidprototyping techniques, which utilized low-cost, over-the-counter components such as a battery-powered LED flashlight as the light source. The microscope exhibited suitable spatial resolution (0.8 μm) in fluorescence mode to resolve M. tuberculosis bacilli. In bright field mode, malaria parasites were resolvable at 1000x magnification. The initial prototype cost 480 USD and we estimate that the microscope can be manufactured for 230 USD. While future studies are planned to evaluate ease-of-use and reliability, our current system serves as a proof of concept that combined fluorescence and bright field microscopy is possible in a low-cost and portable system.

  3. Polarized Light Corridor Demonstrations.

    ERIC Educational Resources Information Center

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  4. Polarized Light Microscopy

    NASA Technical Reports Server (NTRS)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  5. Atomic Force Microscope (AFM) measurements and analysis on Sagem 05R0025 secondary substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, R; Baker, S L; Robinson, J C

    2006-02-22

    The summary of Atomic Force Microscope (AFM) on Sagem 05R0025 secondary substrate: (1) 2 x 2 {micro}m{sup 2} and 10 x 10 {micro}m{sup 2} AFM measurements and analysis on Sagem 05R0025 secondary substrate at LLNL indicate rather uniform and extremely isotropic finish across the surface, with high-spatial frequency roughness {sigma} in the range 5.1-5.5 {angstrom} rms; (2) the marked absence of pronounced long-range polishing marks in any direction, combined with increased roughness in the very high spatial frequencies, are consistent with ion-beam polishing treatment on the surface. These observations are consistent with all earlier mirrors they measured from the samemore » vendor; and (3) all data were obtained with a Digital Instruments Dimension 5000{trademark} atomic force microscope.« less

  6. A stand-alone compact EUV microscope based on gas-puff target source.

    PubMed

    Torrisi, Alfio; Wachulak, Przemyslaw; Węgrzyński, Łukasz; Fok, Tomasz; Bartnik, Andrzej; Parkman, Tomáš; Vondrová, Šárka; Turňová, Jana; Jankiewicz, Bartłomiej J; Bartosewicz, Bartosz; Fiedorowicz, Henryk

    2017-02-01

    We report on a very compact desk-top transmission extreme ultraviolet (EUV) microscope based on a laser-plasma source with a double stream gas-puff target, capable of acquiring magnified images of objects with a spatial (half-pitch) resolution of sub-50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi-monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  7. Identification of mycobacterium tuberculosis in sputum smear slide using automatic scanning microscope

    NASA Astrophysics Data System (ADS)

    Rulaningtyas, Riries; Suksmono, Andriyan B.; Mengko, Tati L. R.; Saptawati, Putri

    2015-04-01

    Sputum smear observation has an important role in tuberculosis (TB) disease diagnosis, because it needs accurate identification to avoid high errors diagnosis. In development countries, sputum smear slide observation is commonly done with conventional light microscope from Ziehl-Neelsen stained tissue and it doesn't need high cost to maintain the microscope. The clinicians do manual screening process for sputum smear slide which is time consuming and needs highly training to detect the presence of TB bacilli (mycobacterium tuberculosis) accurately, especially for negative slide and slide with less number of TB bacilli. For helping the clinicians, we propose automatic scanning microscope with automatic identification of TB bacilli. The designed system modified the field movement of light microscope with stepper motor which was controlled by microcontroller. Every sputum smear field was captured by camera. After that some image processing techniques were done for the sputum smear images. The color threshold was used for background subtraction with hue canal in HSV color space. Sobel edge detection algorithm was used for TB bacilli image segmentation. We used feature extraction based on shape for bacilli analyzing and then neural network classified TB bacilli or not. The results indicated identification of TB bacilli that we have done worked well and detected TB bacilli accurately in sputum smear slide with normal staining, but not worked well in over staining and less staining tissue slide. However, overall the designed system can help the clinicians in sputum smear observation becomes more easily.

  8. Numerical Investigation of the Microscopic Heat Current Inside a Nanofluid System Based on Molecular Dynamics Simulation and Wavelet Analysis.

    PubMed

    Jia, Tao; Gao, Di

    2018-04-03

    Molecular dynamics simulation is employed to investigate the microscopic heat current inside an argon-copper nanofluid. Wavelet analysis of the microscopic heat current inside the nanofluid system is conducted. The signal of the microscopic heat current is decomposed into two parts: one is the approximation part; the other is the detail part. The approximation part is associated with the low-frequency part of the signal, and the detail part is associated with the high-frequency part of the signal. Both the probability distributions of the high-frequency and the low-frequency parts of the signals demonstrate Gaussian-like characteristics. The curves fit to data of the probability distribution of the microscopic heat current are established, and the parameters including the mean value and the standard deviation in the mathematical formulas of the curves show dramatic changes for the cases before and after adding copper nanoparticles into the argon base fluid.

  9. Müller glial cells contribute to dim light vision in the spectacled caiman (Caiman crocodilus fuscus): Analysis of retinal light transmission.

    PubMed

    Agte, Silke; Savvinov, Alexey; Karl, Anett; Zayas-Santiago, Astrid; Ulbricht, Elke; Makarov, Vladimir I; Reichenbach, Andreas; Bringmann, Andreas; Skatchkov, Serguei N

    2018-05-16

    In this study, we show the capability of Müller glial cells to transport light through the inverted retina of reptiles, specifically the retina of the spectacled caimans. Thus, confirming that Müller cells of lower vertebrates also improve retinal light transmission. Confocal imaging of freshly isolated retinal wholemounts, that preserved the refractive index landscape of the tissue, indicated that the retina of the spectacled caiman is adapted for vision under dim light conditions. For light transmission experiments, we used a setup with two axially aligned objectives imaging the retina from both sides to project the light onto the inner (vitreal) surface and to detect the transmitted light behind the retina at the receptor layer. Simultaneously, a confocal microscope obtained images of the Müller cells embedded within the vital tissue. Projections of light onto several representative Müller cell trunks within the inner plexiform layer, i.e. (i) trunks with a straight orientation, (ii) trunks which are formed by the inner processes and (iii) trunks which get split into inner processes, were associated with increases in the intensity of the transmitted light. Projections of light onto the periphery of the Müller cell endfeet resulted in a lower intensity of transmitted light. In this way, retinal glial (Müller) cells support dim light vision by improving the signal-to-noise ratio which increases the sensitivity to light. The field of illuminated photoreceptors mainly include rods reflecting the rod dominance of the of tissue. A subpopulation of Müller cells with downstreaming cone cells led to a high-intensity illumination of the cones, while the surrounding rods were illuminated by light of lower intensity. Therefore, Müller cells that lie in front of cones may adapt the intensity of the transmitted light to the different sensitivities of cones and rods, presumably allowing a simultaneous vision with both receptor types under dim light conditions

  10. Scanning electron microscope analysis of gunshot defects to bone: an underutilized source of information on ballistic trauma.

    PubMed

    Rickman, John M; Smith, Martin J

    2014-11-01

    Recent years have seen increasing involvement by forensic anthropologists in the interpretation of skeletal trauma. With regard to ballistic injuries, there is now a large literature detailing gross features of such trauma; however, less attention has been given to microscopic characteristics. This article presents analysis of experimentally induced gunshot trauma in animal bone (Bos taurus scapulae) using full metal jacket (FMJ), soft point (SP), and captive bolt projectiles. The results were examined using scanning electron microscopy (SEM). Additional analysis was conducted on a purported parietal gunshot lesion in a human cranial specimen. A range of features was observed in these samples suggesting that fibrolamellar bone response to projectile impact is analogous to that observed in synthetic composite laminates. The results indicate that direction of bullet travel can be discerned microscopically even when it is ambiguous on gross examination. It was also possible to distinguish SP from FMJ lesions. SEM analysis is therefore recommended as a previously underexploited tool in the analysis of ballistic trauma. © 2014 American Academy of Forensic Sciences.

  11. Very low risk of light-induced retinal damage during Boston keratoprosthesis surgery: a rabbit study.

    PubMed

    Salvador-Culla, Borja; Behlau, Irmgard; Sayegh, Rony R; Stacy, Rebecca C; Dohlman, Claes H; Delori, François

    2014-02-01

    The aim of this study was to assess the possibility of light damage to the retina by a surgical microscope during implantation of a Boston Keratoprosthesis (B-KPro) in rabbits. The retinal irradiance from a Zeiss OPMI Lumera S7 operating microscope was measured at the working distance (16.5 cm). Light transmittance through an isolated B-KPro was measured. A B-KPro was implanted into 1 eye of 12 rabbits with the optic covered during the procedure. The operated eyes were then continuously exposed to a fixed light intensity under the microscope for 1 hour. Fluorescein angiography was carried out on days 2 and 9 postsurgery, after which the animals were euthanized. Further, we compared the potential of these retinal exposures to well-accepted light safety guidelines applicable to humans. Light transmittance of B-KPro revealed a blockage of short wavelengths (<390 nm) and of long wavelengths (1660-1750 nm) of light. In addition, the surgical microscope filtered a part of the blue, ultraviolet, and infrared wavelengths. Neither fluorescein angiography nor a histological examination showed any morphological retinal changes in our rabbits. Moreover, the retinal exposures were well below the safety limits. Modern surgical microscopes have filters incorporated in them that block the most damaging wavelengths of light. The B-KPro is made of 100% poly(methyl methacrylate), which makes it in itself a blocker of short wavelengths of light. No damage could be demonstrated in the animal study, and the retinal exposures were well below the safety limits. Together, these results suggest that light exposures during B-KPro surgery present a low risk of photochemical damage to the retina.

  12. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, Paul L.; Gourley, Mark F.

    1997-01-01

    An apparatus and method for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis thereof.

  13. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, P.L.; Gourley, M.F.

    1997-03-04

    An apparatus and method are disclosed for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis. 20 figs.

  14. Critical dimensional linewidth calibration using UV microscope and laser interferometry

    NASA Astrophysics Data System (ADS)

    Li, Qi; Gao, Si-tian; Li, Wei; Lu, Ming-zhen; Zhang, Ming-kai

    2013-10-01

    In order to calibrate the critical dimensional (CD) uncertainty of lithography masks in semiconductor manufacturing, NIM is building a two dimensional metrological UV microscope which has traceable measurement ability for nanometer linewidths and pitches. The microscope mainly consists of UV light receiving components, piezoelectric ceramics (PZT) driven stage and interferometer calibration framework. In UV light receiving components they include all optical elements on optical path. The UV light originates from Köhler high aperture transmit/reflect illumination sources; then goes through objective lens to UV splitting optical elements; after that, one part of light attains UV camera for large range calibration, the other part of light passes through a three dimensional adjusted pinhole and is collected by PMT for nanoscale scanning. In PZT driven stage, PZT stick actuators with closed loop control are equipped to push/pull a flexural hinge based platform. The platform has a novel designed compound flexural hinges which nest separate X, Y direction moving mechanisms within one layer but avoiding from mutual cross talk, besides this, the hinges also contain leverage structures to amplify moving distance. With these designs, the platform can attain 100 μm displacement ranges as well as 1 nm resolution. In interferometer framework a heterodyne multi-pass interferometer is mounted on the platform, which measures X-Y plane movement and Z axis rotation, through reference mirror mounted on objective lens tube and Zerodur mirror mounted on PZT platform, the displacement is traced back to laser wavelength. When development is finished, the apparatus can offer the capability to calibrate one dimensional linewidths and two dimensional pitches ranging from 200nm to 50μm with expanded uncertainty below 20nm.

  15. Scanning electron microscope fractography in failure analysis of steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wouters, R.; Froyen, L.

    1996-04-01

    For many failure cases, macroscopic examination of the fracture surface permits discrimination of fatigue fractures from overload fractures. For clarifying fatigue fractures, the practical significance of microfractography is limited to an investigation of the crack initiation areas. Scanning electron microscopy is successfully used in tracing local material abnormalities that act as fatigue crack initiators. The task for the scanning electron microscope, however, is much more substantial in failure analysis of overload fractures, especially for steels. By revealing specific fractographic characteristics, complemented by information about the material and the loading conditions, scanning electron microscopy provides a strong indication of the probablemore » cause of failure. A complete dimple fracture is indicative of acceptable bulk material properties; overloading, by subdimensioning or excessive external loading, has to be verified. The presence of cleavage fracture makes the material properties questionable if external conditions causing embrittlement are absent. Intergranular brittle fracture requires verification of grain-boundary weakening conditions--a sensitized structure, whether or not combined with a local stress state or a specific environment. The role of scanning electron microscopy in failure analysis is illustrated by case histories of the aforementioned fracture types.« less

  16. Detection of banned meat and bone meal in feedstuffs by near-infrared microscopic analysis of the dense sediment fraction.

    PubMed

    Baeten, Vincent; von Holst, Christoph; Garrido, Ana; Vancutsem, Jeroen; Michotte Renier, Antoine; Dardenne, Pierre

    2005-05-01

    In this paper we present an alternative method for detection of meat and bone meal (MBM) in feedstuffs by near-infrared microscopic (NIRM) analysis of the particles in the sediment fraction (dense fraction (d >1.62) from dichloroethylene) of compound feeds. To apply this method the particles of the sediment fraction are spread on a sample holder and presented to the NIR microscope. By using the pointer of the microscope the infrared beam is focussed on each particle and the NIR spectrum (1112-2500 nm) is collected. This method can be used to detect the presence of MBM at concentrations as low as 0.05% mass fraction. When results from the NIRM method were compared with the classical microscopic method, a coefficient of determination (R2) of 0.87 was obtained. The results of this study demonstrated that this method could be proposed as a complementary tool for the detection of banned MBM in feedstuffs by reinforcement of the monitoring of feeds.

  17. Laser-Based Lighting: Experimental Analysis and Perspectives

    PubMed Central

    Yushchenko, Maksym; Buffolo, Matteo; Meneghini, Matteo; Zanoni, Enrico

    2017-01-01

    This paper presents an extensive analysis of the operating principles, theoretical background, advantages and limitations of laser-based lighting systems. In the first part of the paper we discuss the main advantages and issues of laser-based lighting, and present a comparison with conventional LED-lighting technology. In the second part of the paper, we present original experimental data on the stability and reliability of phosphor layers for laser lighting, based on high light-intensity and high-temperature degradation tests. In the third part of the paper (for the first time) we present a detailed comparison between three different solutions for laser lighting, based on (i) transmissive phosphor layers; (ii) a reflective/angled phosphor layer; and (iii) a parabolic reflector, by discussing the advantages and drawbacks of each approach. The results presented within this paper can be used as a guideline for the development of advanced lighting systems based on laser diodes. PMID:29019958

  18. An Assemblable, Multi-Angle Fluorescence and Ellipsometric Microscope

    PubMed Central

    Nguyen, Victoria; Rizzo, John

    2016-01-01

    We introduce a multi-functional microscope for research laboratories that have significant cost and space limitations. The microscope pivots around the sample, operating in upright, inverted, side-on and oblique geometries. At these geometries it is able to perform bright-field, fluorescence and qualitative ellipsometric imaging. It is the first single instrument in the literature to be able to perform all of these functionalities. The system can be assembled by two undergraduate students from a provided manual in less than a day, from off-the-shelf and 3D printed components, which together cost approximately $16k at 2016 market prices. We include a highly specified assembly manual, a summary of design methodologies, and all associated 3D-printing files in hopes that the utility of the design outlives the current component market. This open design approach prepares readers to customize the instrument to specific needs and applications. We also discuss how to select household LEDs as low-cost light sources for fluorescence microscopy. We demonstrate the utility of the microscope in varied geometries and functionalities, with particular emphasis on studying hydrated, solid-supported lipid films and wet biological samples. PMID:27907008

  19. Light, electron microscopic and immunohistochemical study of the effect of low-dose aspirin during the proestrus phase on rat endometrium in the preimplantation period.

    PubMed

    Ateş, Utku; Baka, Meral; Turgut, Mehmet; Uyanikgil, Yiğit; Ulker, Sibel; Yilmaz, Ozlem; Tavmergen, Erol; Yurtseven, Mine

    2007-04-01

    To evaluate structural alterations in rat endometrium at preimplantation following treatment with aspirin beginning from proestrus by light microscopy, electron microscopy and immunohistochemical techniques. Twenty rats were divided into control (n = 10) and experimental (n = 10) groups. Experimental rats were treated with low-dose aspirin daily (2 mg/kg/day) during estrus, beginning from the proestrus phase, mated at end of cycle and treated with aspirin. Untreated pregnant rats were the control group. Rats in both groups were sacrificed at the 84th pregnancy hour; the uterus was rapidly removed and dissected free of surrounding adipose tissue. Uteri specimens from nonpregnant rats were transferred into fixative solution and processed for light, electron microscopic and immunohistochemical study. Light and electron microscopy of endometrium from control rats conformed to mid-diestrus phase; endometrial histology of the aspirin-treated group conformed to late diestrus phase. The endometrial layer was significantly thicker in the aspirin-treated group compared to the untreated control group (p <0.001). No significant difference was found in vessel number between groups. Staining with alphaV integrin was more dense in the aspirin-treated group. Based on histologic findings, we suggest low-dose aspirin has positive effects on preparing endometrium before implantation.

  20. Light and electron microscopic observation of regenerated fungiform taste buds in patients with recovered taste function after severing chorda tympani nerve.

    PubMed

    Saito, Takehisa; Ito, Tetsufumi; Narita, Norihiko; Yamada, Takechiyo; Manabe, Yasuhiro

    2011-11-01

    The aim of this study was to evaluate the mean number of regenerated fungiform taste buds per papilla and perform light and electron microscopic observation of taste buds in patients with recovered taste function after severing the chorda tympani nerve during middle ear surgery. We performed a biopsy on the fungiform papillae (FP) in the midlateral region of the dorsal surface of the tongue from 5 control volunteers (33 total FP) and from 7 and 5 patients with and without taste recovery (34 and 29 FP, respectively) 3 years 6 months to 18 years after surgery. The specimens were observed by light and transmission electron microscopy. The taste function was evaluated by electrogustometry. The mean number of taste buds in the FP of patients with completely recovered taste function was significantly smaller (1.9 +/- 1.4 per papilla; p < 0.01) than that of the control subjects (3.8 +/- 2.2 per papilla). By transmission electron microscopy, 4 distinct types of cell (type I, II, III, and basal cells) were identified in the regenerated taste buds. Nerve fibers and nerve terminals were also found in the taste buds. It was clarified that taste buds containing taste cells and nerve endings do regenerate in the FP of patients with recovered taste function.

  1. Nanoscale coupling of photons to vibrational excitation of Ag nanoparticle 2D array studied by scanning tunneling microscope light emission spectroscopy.

    PubMed

    Katano, Satoshi; Toma, Koji; Toma, Mana; Tamada, Kaoru; Uehara, Yoichi

    2010-11-28

    Scanning tunneling microscope light emission (STM-LE) spectroscopy has been utilized to elucidate the luminescence phenomena of Ag nanoparticles capped with myristate (myristate-capped AgNP) and 2-methyl-1-propanethiolate (C(4)S-capped AgNP) on the dodecanethiol-precovered Au substrate. The STM imaging revealed that myristate-capped AgNPs form an ordered hexagonal array whereas C(4)S-capped AgNPs show imperfect ordering, indicating that a shorter alkyl chain of C(4)S-capped AgNP is not sufficient to form rigid interdigitation. It should be noted that such a nanoparticle ordering affects the luminescence properties of the Ag nanoparticle. We found that the STM-LE is only detected from the Ag nanoparticles forming the two-dimensional superlattice. This indicates that the STM-LE of the Ag nanoparticle is radiated via the collective excitation of the local surface plasmon resonance (LSPR) spread over the Ag nanoparticles. Note that the STM-LE spectra of the Ag nanoparticles exhibit spike-like peaks superimposed on the broad light emission peak. Using Raman spectroscopy, we concluded that the spike-like structure appearing in the STM-LE spectra is associated with the vibrational excitation of the molecule embedded between Ag nanoparticles.

  2. A stereo-compound hybrid microscope for combined intracellular and optical recording of invertebrate neural network activity.

    PubMed

    Frost, William N; Wang, Jean; Brandon, Christopher J

    2007-05-15

    Optical recording studies of invertebrate neural networks with voltage-sensitive dyes seldom employ conventional intracellular electrodes. This may in part be due to the traditional reliance on compound microscopes for such work. While such microscopes have high light-gathering power, they do not provide depth of field, making working with sharp electrodes difficult. Here we describe a hybrid microscope design, with switchable compound and stereo objectives, that eases the use of conventional intracellular electrodes in optical recording experiments. We use it, in combination with a voltage-sensitive dye and photodiode array, to identify neurons participating in the swim motor program of the marine mollusk Tritonia. This microscope design should be applicable to optical recording studies in many preparations.

  3. Evaluating office lighting environments: Second-level analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, B.L.; Fisher, W.S.; Gillette, G.L.

    1989-04-01

    Data from a post-occupancy evaluation (POE) of 912 work stations with lighting power density (LPD), photometric, and occupant-response measures were examined in a detailed, second-level analysis. Seven types of lighting systems were identified with different combinations of direct and indirect ambient lighting, and task lighting and daylight. The mean illuminances at the primary task location were within the IES target values for office task with a range of mean illuminances from 32 to 75 fc, depending on the lighting system. The median LPD was about 2.36 watts/sq ft, with about one-third the work stations having LPD's at or below 2.0more » watts/sq ft. Although a majority of the occupants (69%) were satisfied about their lighting, the highest percentage of those expressing dissatisfaction (37%) with lighting had an indirect fluorescent furniture-mounted (IFFM) system. The negative reaction of so many people to the IFFM system suggests that the combination of task lighting with an indirect ambient system had an important influence on lighting satisfaction, even though task illuminances tended to be higher with the IFFM system. Concepts of lighting quality, visual health, and control were explored, as well as average luminance to explain the negative reactions to the combination of indirect lighting with furniture-mounted lighting.« less

  4. Palisade pattern of mormyrid Purkinje cells: a correlated light and electron microscopic study.

    PubMed

    Meek, J; Nieuwenhuys, R

    1991-04-01

    The present study is devoted to a detailed analysis of the structural and synaptic organization of mormyrid Purkinje cells in order to evaluate the possible functional significance of their dendritic palisade pattern. For this purpose, the properties of Golgi-impregnated as well as unimpregnated Purkinje cells in lobe C1 and C3 of the cerebellum of Gnathonemus petersii were light and electron microscopically analyzed, quantified, reconstructed, and mutually compared. Special attention was paid to the degree of regularity of their dendritic trees, their relations with Bergmann glia, and the distribution and numerical properties of their synaptic connections with parallel fibers, stellate cells, "climbing" fibers, and Purkinje axonal boutons. The highest degree of palisade specialization was encountered in lobe C1, where Purkinje cells have on average 50 palisade dendrites with a very regular distribution in a sagittal plane. Their spine density decreases from superficial to deep (from 14 to 6 per micron dendritic length), a gradient correlated with a decreasing parallel fiber density but an increasing parallel fiber diameter. Each Purkinje cell makes on average 75,000 synaptic contacts with parallel fibers, some of which are rather coarse (0.45 microns), and provided with numerous short collaterals. Climbing fibers do not climb, since their synaptic contacts are restricted to the ganglionic layer (i.e., the layer of Purkinje and eurydendroid projection cells), where they make about 130 synaptic contacts per cell with 2 or 3 clusters of thorns on the proximal dendrites. These clusters contain also a type of "shunting" elements that make desmosome-like junctions with both the climbing fiber boutons and the necks of the thorns. The axons of Purkinje cells in lobe C1 make small terminal arborizations, with about 20 boutons, that may be substantially (up to 500 microns) displaced rostrally or caudally with respect to the soma. Purkinje axonal boutons were observed to

  5. Comprehensive optical and data management infrastructure for high-throughput light-sheet microscopy of whole mouse brains.

    PubMed

    Müllenbroich, M Caroline; Silvestri, Ludovico; Onofri, Leonardo; Costantini, Irene; Hoff, Marcel Van't; Sacconi, Leonardo; Iannello, Giulio; Pavone, Francesco S

    2015-10-01

    Comprehensive mapping and quantification of neuronal projections in the central nervous system requires high-throughput imaging of large volumes with microscopic resolution. To this end, we have developed a confocal light-sheet microscope that has been optimized for three-dimensional (3-D) imaging of structurally intact clarified whole-mount mouse brains. We describe the optical and electromechanical arrangement of the microscope and give details on the organization of the microscope management software. The software orchestrates all components of the microscope, coordinates critical timing and synchronization, and has been written in a versatile and modular structure using the LabVIEW language. It can easily be adapted and integrated to other microscope systems and has been made freely available to the light-sheet community. The tremendous amount of data routinely generated by light-sheet microscopy further requires novel strategies for data handling and storage. To complete the full imaging pipeline of our high-throughput microscope, we further elaborate on big data management from streaming of raw images up to stitching of 3-D datasets. The mesoscale neuroanatomy imaged at micron-scale resolution in those datasets allows characterization and quantification of neuronal projections in unsectioned mouse brains.

  6. Bessel light sheet structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Noshirvani Allahabadi, Golchehr

    Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in

  7. Micro vs. macrodiscectomy: Does use of the microscope reduce complication rates?

    PubMed

    Murphy, Meghan E; Hakim, Jeffrey S; Kerezoudis, Panagiotis; Alvi, Mohammed Ali; Ubl, Daniel S; Habermann, Elizabeth B; Bydon, Mohamad

    2017-01-01

    A single level discectomy is one of the most common procedures performed by spine surgeons. While some practitioners utilize the microscope, others do not. We postulate improved visualization with an intraoperative microscope decreases complications and inferior outcomes. A multicenter surgical registry was utilized for this retrospective cohort analysis. Patients with degenerative spinal diagnoses undergoing elective single level discectomies from 2010 to 2014 were included. Univariate analysis was performed comparing demographics, patient characteristics, operative data, and outcomes for discectomies performed with and without a microscope. Multivariable logistic regression analysis was then applied to compare outcomes of micro- and macrodiscectomies. Query of the registry yielded 23,583 patients meeting inclusion criteria. On univariate analysis the microscope was used in a greater proportion of the oldest age group as well as Hispanic white patients. Patients with any functional dependency, history of congestive heart failure, chronic corticosteroid use, or anemia (hematocrit<35%) also had greater proportions of microdiscectomies. Thoracic region discectomies more frequently involved use of the microscope than cervical or lumbar discectomies (25.0% vs. 16.4% and 13.0%, respectively, p<0.001). Median operative time (IQR) was increased in microscope cases [80min (60, 108) vs. 74min (54, 102), p<0.001]. Of the patients that required reoperation within 30days, 2.5% of them had undergone a microdiscectomy compared to 1.9% who had undergone a macrodiscectomy, p=0.044. On multivariable analysis, microdiscectomies were more likely to have an operative time in the top quartile of discectomy operative times, ≥103min (OR 1.256, 95% CI 1.151-1.371, p<0.001). In regards to other multivariable outcome models for any complication, surgical site infection, dural tears, reoperation, and readmission, no significant association with microdiscectomy was found. The use of the

  8. Arrays of microscopic organic LEDs for high-resolution optogenetics

    PubMed Central

    Steude, Anja; Witts, Emily C.; Miles, Gareth B.; Gather, Malte C.

    2016-01-01

    Optogenetics is a paradigm-changing new method to study and manipulate the behavior of cells with light. Following major advances of the used genetic constructs over the last decade, the light sources required for optogenetic control are now receiving increased attention. We report a novel optogenetic illumination platform based on high-density arrays of microscopic organic light-emitting diodes (OLEDs). Because of the small dimensions of each array element (6 × 9 μm2) and the use of ultrathin device encapsulation, these arrays enable illumination of cells with unprecedented spatiotemporal resolution. We show that adherent eukaryotic cells readily proliferate on these arrays, and we demonstrate specific light-induced control of the ionic current across the membrane of individual live cells expressing different optogenetic constructs. Our work paves the way for the use of OLEDs for cell-specific optogenetic control in cultured neuronal networks and for acute brain slices, or as implants in vivo. PMID:27386540

  9. Virtual Microscope Views of the Apollo 11 and 12 Lunar Samples

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; Tindle, A. G.; Kelley, S. P.; Pillinger, J. M.

    2016-01-01

    components, and publication on a website. Two large research quality microscopes are used to collect all the images required for a virtual microscope. The first is part of an integrated package that utilizes Leica PowerMosaic software and a motorised XYZ stage to generate large area mosaics. It includes a fast acquisition camera and depending on the PTS size normally is used to produce seamless mosaic images consisting of 100-500 individual photographs. If the sample is suitable, three mosaics of each sample are recorded - plane polarised light, between crossed polars and reflected light. In order for the VM to be a true petrological microscope it is necessary to recreate the features of a rotating stage and perform observations using filters to produce polarised light. Thus the petrological VM includes the capability of seeing changes in optical properties (pleochroism and birefringence) during rotation allowing mineral identification. The second microscope in the system provides the functions of the rotating stage. To this microscope we have added a robotically controlled motor to acquire seventy-two images (5 degree intervals) in plane polarised light and between crossed polars. To process the images acquired from the two microscopes involves a combination of proprietary software (Photoshop) and our own in-house code. The final stage involves assembling all the components in an HTML5 environment. Pathfinder investigations: We have undertaken a number of pilot studies to demonstrate the efficacy of the petrological microscope with lunar samples. The first was to make available on-line images collected from the Educational Package of Apollo samples provided by NASA to the UK STFC (Science and Technical Facilities Council) for loan as educational material e.g. for schools. The real PTSs of the samples are now no longer sent out to schools removing the risks associated with transport, accidental breakage and eliminating the possibility of loss. The availability of lunar

  10. Thermal-Wave Microscope

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy

    1989-01-01

    Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.

  11. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    PubMed

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  12. MicrOmega: a VIS/NIR hyperspectral microscope for in situ analysis in space

    NASA Astrophysics Data System (ADS)

    Leroi, V.; Bibring, J. P.; Berthé, M.

    2008-07-01

    MicrOmega is an ultra miniaturized spectral microscope for in situ analysis of samples. It is composed of 2 microscopes: one with a spatial sampling of 5 μm, working in 4 color in the visible range and one NIR hyperspectral microscope in the spectral range 0.9-4 μm with a spatial sampling of 20 μm per pixel (described in this paper). MicrOmega/NIR illuminates and images samples a few mm in size and acquires the NIR spectrum of each resolved pixel in up to 600 contiguous spectral channels. The goal of this instrument is to analyse in situ the composition of collected samples at almost their grain size scale, in a non destructive way. It should be among the first set of instruments who will analyse the sample and enable other complementary analyses to be performed on it. With the spectral range and resolution chosen, a wide variety of constituents can be identified: minerals, such as pyroxene and olivine, ferric oxides, hydrated phyllosilicates, sulfates and carbonates; ices and organics. The composition of the various phases within a given sample is a critical record of its formation and evolution. Coupled to the mapping information, it provides unique clues to describe the history of the parent body. In particular, the capability to identify hydrated grains and to characterize their adjacent phases has a huge potential in the search for potential bio-relics. We will present the major instrumental principles and specifications of MicrOmega/NIR, and its expected performances in particular for the ESA/ExoMars Mission.

  13. A mini-microscope for in situ monitoring of cells.

    PubMed

    Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R; Hamilton, Geraldine A; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E; Khademhosseini, Ali

    2012-10-21

    A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost.

  14. Surface imaging microscope

    NASA Astrophysics Data System (ADS)

    Rogala, Eric W.; Bankman, Isaac N.

    2008-04-01

    The three-dimensional shapes of microscopic objects are becoming increasingly important for battlespace CBRNE sensing. Potential applications of microscopic 3D shape observations include characterization of biological weapon particles and manufacturing of micromechanical components. Aerosol signatures of stand-off lidar systems, using elastic backscatter or polarization, are dictated by the aerosol particle shapes and sizes that must be well characterized in the lab. A low-cost, fast instrument for 3D surface shape microscopy will be a valuable point sensor for biological particle sensing applications. Both the cost and imaging durations of traditional techniques such as confocal microscopes, atomic force microscopes, and electron scanning microscopes are too high. We investigated the feasibility of a low-cost, fast interferometric technique for imaging the 3D surface shape of microscopic objects at frame rates limited only by the camera in the system. The system operates at two laser wavelengths producing two fringe images collected simultaneously by a digital camera, and a specialized algorithm we developed reconstructs the surface map of the microscopic object. The current implementation assembled to test the concept and develop the new 3D reconstruction algorithm has 0.25 micron resolution in the x and y directions, and about 0.1 micron accuracy in the z direction, as tested on a microscopic glass test object manufactured with etching techniques. We describe the interferometric instrument, present the reconstruction algorithm, and discuss further development.

  15. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  16. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  17. Increasing Student Understanding of Microscope Optics by Building and Testing the Limits of Simple, Hand-Made Model Microscopes†

    PubMed Central

    Drace, Kevin; Couch, Brett; Keeling, Patrick J.

    2012-01-01

    The ability to effectively use a microscope to observe microorganisms is a crucial skill required for many disciplines within biology, especially general microbiology and cell biology. A basic understanding of the optical properties of light microscopes is required for students to use microscopes effectively, but this subject can also be a challenge to make personally interesting to students. To explore basic optical principles of magnification and resolving power in a more engaging and hands-on fashion, students constructed handmade lenses and microscopes based on Antony van Leeuwenhoek’s design using simple materials—paper, staples, glass, and adhesive putty. Students determined the power of their lenses using a green laser pointer to magnify a copper grid of known size, which also allowed students to examine variables affecting the power and resolution of a lens such as diameter, working distance, and wavelength of light. To assess the effectiveness of the laboratory’s learning objectives, four sections of a general microbiology course were given a brief pre-activity assessment quiz to determine their background knowledge on the subject. One week after the laboratory activity, students were given the same quiz (unannounced) under similar conditions. Students showed significant gains in their understanding of microscope optics. PMID:23653781

  18. Identification and quantitative evaluation of the fiber structure in the pathological tissue using Mueller matrix microscope

    NASA Astrophysics Data System (ADS)

    Zhou, Jialing; He, Honghui; Wang, Ye; Ma, Hui

    2017-02-01

    Fiber structure changes in the various pathological processes, such as the increase of fibrosis in liver diseases, the derangement of fiber in cervical cancer and so on. Currently, clinical pathologic diagnosis is regarded as the golden criterion, but different doctors with discrepancy in knowledge and experience may obtain different conclusions. Up to a point, quantitative evaluation of the fiber structure in the pathological tissue can be of great service to quantitative diagnosis. Mueller matrix measurement is capable of probing comprehensive microstructural information of samples and different wavelength of lights can provide more information. In this paper, we use a Mueller matrix microscope with light sources in six different wavelength. We use unstained, dewaxing liver tissue slices in four stages and the pathological biopsy of the filtration channels from rabbit eyes as samples. We apply the Mueller matrix polar decomposition (MMPD) parameter δ which corresponds to retardance to liver slices. The mean value of abnormal region get bigger when the level of fibrosis get higher and light in short wavelength is more sensitive to the microstructure of fiber. On the other hand, we use the Mueller matrix transformation (MMT) parameter Φ which is associated to the angel of fast axis in the analysis of the slices of the filtration channels from rabbit eyes. The value of kurtosis and the value of skewness shows big difference between new born region and normal region and can reveal the arrangement of fiber. These results indicate that the Mueller matrix microscope has great potential in auxiliary diagnosis.

  19. A stereo-compound hybrid microscope for combined intracellular and optical recording of invertebrate neural network activity

    PubMed Central

    Frost, William N.; Wang, Jean; Brandon, Christopher J.

    2007-01-01

    Optical recording studies of invertebrate neural networks with voltage-sensitive dyes seldom employ conventional intracellular electrodes. This may in part be due to the traditional reliance on compound microscopes for such work. While such microscopes have high light-gathering power, they do not provide depth of field, making working with sharp electrodes difficult. Here we describe a hybrid microscope design, with switchable compound and stereo objectives, that eases the use of conventional intracellular electrodes in optical recording experiments. We use it, in combination with a voltage-sensitive dye and photodiode array, to identify neurons participating in the swim motor program of the marine mollusk Tritonia. This microscope design should be applicable to optical recording studies in many preparations. PMID:17306887

  20. Compact Microscope Imaging System Developed

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2001-01-01

    The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.

  1. Effect of microscopic modeling of skin in electrical and thermal analysis of transcranial direct current stimulation

    NASA Astrophysics Data System (ADS)

    Gomez-Tames, Jose; Sugiyama, Yukiya; Laakso, Ilkka; Tanaka, Satoshi; Koyama, Soichiro; Sadato, Norihiro; Hirata, Akimasa

    2016-12-01

    Transcranial direct current stimulation (tDCS) is a neuromodulation scheme where a small current is delivered to the brain via two electrodes attached to the scalp. The electrode design is an important topic, not only as regards efficacy, but also from a safety perspective, as tDCS may be related to skin lesions that are sometimes observed after stimulation. Previous computational models of tDCS have omitted the effects of microscopic structures in the skin, and the different soak conditions of the electrodes, and model validation has been limited. In this study, multiphysics and multiscale analysis are proposed to demonstrate the importance of microscopic modeling of the skin, in order to clarify the effects of the internal electric field, and to examine temperature elevation around the electrodes. This novel microscopic model of the skin layer took into consideration the effect of saline/water penetration in hair follicles and sweat ducts on the field distribution around the electrodes. The temperature elevation in the skin was then computed by solving the bioheat equation. Also, a multiscale model was introduced to account for macroscopic and microscopic tissues of the head and skin, which was validated by measurement of the head resistance during tDCS. As a result, the electric field in the microscopic model of the skin was less localized when the follicles/ducts were filled with saline instead of hair or tap water. Temperature elevation was also lessened with saline, in comparison with other substances. Saline, which may penetrate the hair follicles and sweat ducts, suppressed the field concentration around the electrodes. For conventional magnitudes of current injection, and a head resistance of less than 10 kΩ, the temperature elevation in the skin when using saline-soaked electrodes was low, less than 0.1 °C, and unlikely to cause adverse thermal effects.

  2. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    PubMed

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  3. Optical forces, torques, and force densities calculated at a microscopic level using a self-consistent hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Chan, C. T.

    2018-04-01

    The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.

  4. eduSPIM: Light Sheet Microscopy in the Museum

    PubMed Central

    Schmid, Benjamin; Weber, Michael; Huisken, Jan

    2016-01-01

    Light Sheet Microscopy in the Museum Light sheet microscopy (or selective plane illumination microscopy) is an important imaging technique in the life sciences. At the same time, this technique is also ideally suited for community outreach projects, because it produces visually appealing, highly dynamic images of living organisms and its working principle can be understood with basic optics knowledge. Still, the underlying concepts are widely unknown to the non-scientific public. On the occasion of the UNESCO International Year of Light, a technical museum in Dresden, Germany, launched a special, interactive exhibition. We built a fully functional, educational selective plane illumination microscope (eduSPIM) to demonstrate how developments in microscopy promote discoveries in biology. Design Principles of an Educational Light Sheet Microscope To maximize educational impact, we radically reduced a standard light sheet microscope to its essential components without compromising functionality and incorporated stringent safety concepts beyond those needed in the lab. Our eduSPIM system features one illumination and one detection path and a sealed sample chamber. We image fixed zebrafish embryos with fluorescent vasculature, because the structure is meaningful to laymen and visualises the optical principles of light sheet microscopy. Via a simplified interface, visitors acquire fluorescence and transmission data simultaneously. The eduSPIM Design Is Tailored Easily to Fit Numerous Applications The universal concepts presented here may also apply to other scientific approaches that are communicated to laymen in interactive settings. The specific eduSPIM design is adapted easily for various outreach and teaching activities. eduSPIM may even prove useful for labs needing a simple SPIM. A detailed parts list and schematics to rebuild eduSPIM are provided. PMID:27560188

  5. Wave optics theory and 3-D deconvolution for the light field microscope

    PubMed Central

    Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc

    2013-01-01

    Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383

  6. The impact of loupes and microscopes on vision in endodontics.

    PubMed

    Perrin, P; Neuhaus, K W; Lussi, A

    2014-05-01

    To report on an intraradicular visual test in a simulated clinical setting under different optical conditions. Miniaturized visual tests with E-optotypes (bar distance from 0.01 to 0.05 mm) were fixed inside the root canal system of an extracted maxillary molar at different locations: at the orifice, a depth of 5 mm and the apex. The tooth was mounted in a phantom head for a simulated clinical setting. Unaided vision was compared with Galilean loupes (2.5× magnification) with integrated light source and an operating microscope (6× magnification). The influence of the dentists' age within two groups was evaluated: <40 years (n = 9) and ≥40 years (n = 15). Some younger dentists were able to identify the E-optotypes at the orifice, but otherwise, natural vision did not reveal any measurable result. With Galilean loupes, the younger dentists <40 years could see a 0.05 mm structure at the root canal orifice, in contrast to the older group ≥40 years. Only the microscope allowed the observation of structures inside the root canal, independent of age. Unaided vision and Galilean loupes with an integrated light source could not provide any measurable vision inside the root canal, but younger dentists <40 years could detect with Galilean loupes a canal orifice corresponding to the tip of the smallest endodontic instruments. Dentists over 40 years of age were dependent on the microscope to inspect the root canal system. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Excitation-scanning hyperspectral imaging microscope

    PubMed Central

    Favreau, Peter F.; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2014-01-01

    Abstract. Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909

  8. Excitation-scanning hyperspectral imaging microscope.

    PubMed

    Favreau, Peter F; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F; Rich, Thomas C; Prabhat, Prashant; Leavesley, Silas J

    2014-04-01

    Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications.

  9. Low-cost cryo-light microscopy stage fabrication for correlated light/electron microscopy.

    PubMed

    Carlson, David B; Evans, James E

    2011-06-05

    The coupling of cryo-light microscopy (cryo-LM) and cryo-electron microscopy (cryo-EM) poses a number of advantages for understanding cellular dynamics and ultrastructure. First, cells can be imaged in a near native environment for both techniques. Second, due to the vitrification process, samples are preserved by rapid physical immobilization rather than slow chemical fixation. Third, imaging the same sample with both cryo-LM and cryo-EM provides correlation of data from a single cell, rather than a comparison of "representative samples". While these benefits are well known from prior studies, the widespread use of correlative cryo-LM and cryo-EM remains limited due to the expense and complexity of buying or building a suitable cryogenic light microscopy stage. Here we demonstrate the assembly, and use of an inexpensive cryogenic stage that can be fabricated in any lab for less than $40 with parts found at local hardware and grocery stores. This cryo-LM stage is designed for use with reflected light microscopes that are fitted with long working distance air objectives. For correlative cryo-LM and cryo-EM studies, we adapt the use of carbon coated standard 3-mm cryo-EM grids as specimen supports. After adsorbing the sample to the grid, previously established protocols for vitrifying the sample and transferring/handling the grid are followed to permit multi-technique imaging. As a result, this setup allows any laboratory with a reflected light microscope to have access to direct correlative imaging of frozen hydrated samples.

  10. Investigation of skin structures based on infrared wave parameter indirect microscopic imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Liu, Xuefeng; Xiong, Jichuan; Zhou, Lijuan

    2017-02-01

    Detailed imaging and analysis of skin structures are becoming increasingly important in modern healthcare and clinic diagnosis. Nanometer resolution imaging techniques such as SEM and AFM can cause harmful damage to the sample and cannot measure the whole skin structure from the very surface through epidermis, dermis to subcutaneous. Conventional optical microscopy has the highest imaging efficiency, flexibility in onsite applications and lowest cost in manufacturing and usage, but its image resolution is too low to be accepted for biomedical analysis. Infrared parameter indirect microscopic imaging (PIMI) uses an infrared laser as the light source due to its high transmission in skins. The polarization of optical wave through the skin sample was modulated while the variation of the optical field was observed at the imaging plane. The intensity variation curve of each pixel was fitted to extract the near field polarization parameters to form indirect images. During the through-skin light modulation and image retrieving process, the curve fitting removes the blurring scattering from neighboring pixels and keeps only the field variations related to local skin structures. By using the infrared PIMI, we can break the diffraction limit, bring the wide field optical image resolution to sub-200nm, in the meantime of taking advantage of high transmission of infrared waves in skin structures.

  11. Contributed review: Review of integrated correlative light and electron microscopy.

    PubMed

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  12. Dynamic deformation analysis of light-weight mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Cao, Xuedong; Kuang, Long; Yang, Wei

    2012-10-01

    In the process of optical dynamic target work, under the effort of the arm of dynamic target, the mirror needs to do circular motion, additional accelerated motion and uniform motion. The maximum acceleration is 10°/s2 and the maximum velocity is 30°/s. In this paper, we mostly analyze the dynamic deformation of a 600 mm honeycomb light-weight mirror of a certain dynamic target. Using the FEA (finite element analysis) method, first of all, we analyze the deformation of the light-weight mirror induced in gravity at different position; later, the dynamic deformation of light-weight mirror is analyzed in detailed. The analysis results indicate that, when the maximum acceleration is 10°/s2 and the maximum velocity is 30°/s, the centripetal force is 5% of the gravity at the equal mass, and the dynamic deformation of the mirror is 6.1% of the deformation induced by gravity.

  13. Matching Microscopic and Macroscopic Responses in Glasses.

    PubMed

    Baity-Jesi, M; Calore, E; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Iñiguez, D; Maiorano, A; Marinari, E; Martin-Mayor, V; Monforte-Garcia, J; Muñoz-Sudupe, A; Navarro, D; Parisi, G; Perez-Gaviro, S; Ricci-Tersenghi, F; Ruiz-Lorenzo, J J; Schifano, S F; Seoane, B; Tarancon, A; Tripiccione, R; Yllanes, D

    2017-04-14

    We first reproduce on the Janus and Janus II computers a milestone experiment that measures the spin-glass coherence length through the lowering of free-energy barriers induced by the Zeeman effect. Secondly, we determine the scaling behavior that allows a quantitative analysis of a new experiment reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett. 118, 157203 (2017)].PRLTAO0031-900710.1103/PhysRevLett.118.157203 The value of the coherence length estimated through the analysis of microscopic correlation functions turns out to be quantitatively consistent with its measurement through macroscopic response functions. Further, nonlinear susceptibilities, recently measured in glass-forming liquids, scale as powers of the same microscopic length.

  14. Near real-time digital holographic microscope based on GPU parallel computing

    NASA Astrophysics Data System (ADS)

    Zhu, Gang; Zhao, Zhixiong; Wang, Huarui; Yang, Yan

    2018-01-01

    A transmission near real-time digital holographic microscope with in-line and off-axis light path is presented, in which the parallel computing technology based on compute unified device architecture (CUDA) and digital holographic microscopy are combined. Compared to other holographic microscopes, which have to implement reconstruction in multiple focal planes and are time-consuming the reconstruction speed of the near real-time digital holographic microscope can be greatly improved with the parallel computing technology based on CUDA, so it is especially suitable for measurements of particle field in micrometer and nanometer scale. Simulations and experiments show that the proposed transmission digital holographic microscope can accurately measure and display the velocity of particle field in micrometer scale, and the average velocity error is lower than 10%.With the graphic processing units(GPU), the computing time of the 100 reconstruction planes(512×512 grids) is lower than 120ms, while it is 4.9s using traditional reconstruction method by CPU. The reconstruction speed has been raised by 40 times. In other words, it can handle holograms at 8.3 frames per second and the near real-time measurement and display of particle velocity field are realized. The real-time three-dimensional reconstruction of particle velocity field is expected to achieve by further optimization of software and hardware. Keywords: digital holographic microscope,

  15. Study of factors affecting the appearance of colors under microscopes

    NASA Astrophysics Data System (ADS)

    Zakizadeh, Roshanak; Martinez-Garcia, Juan; Raja, Kiran B.; Siakidis, Christos

    2013-11-01

    The variation of colors in microscopy systems can be quite critical for some users. To address this problem, a study is conducted to analyze how different factors such as size of the sample, intensity of the microscope's light source and the characteristics of the material like chroma and saturation can affect the color appearance through the eyepiece of the microscope. To study the changes in colors considering these factors, the spectral reflectance of 24 colors of GretagMacbeth Classic ColorChecker® and Mini ColorChecker® which are placed under a Nikon ECLIPSE MA200 microscope®2 using dark filed and bright field illuminations which result in different intensity levels, is measured using a spectroradiometer®3 which was placed in front of the eyepiece of the microscope. The results are compared with the original data from N. Ohta1. The evaluation is done by observing the shift in colors in the CIE 1931 Chromaticity Diagram and the CIELAB space, also by applying a wide set of color-difference formulas, namely: CIELAB, CMC, BFD, CIE94, CIEDE2000, DIN99d and DIN99b. Furthermore, to emphasize on the color regions in which the highest difference is observed, the authors have obtained the results from another microscope; Olympus SZX10®4, which in this case the measurement is done by mounting the spectroradiometer to the camera port of the microscope. The experiment leads to some interesting results, among which is the consistency in the highest difference observed considering different factors or how the change in saturation of the samples of the same hue can affect the results.

  16. Non-label bioimaging utilizing scattering lights

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomonobu M.; Ichimura, Taro; Fujita, Hideaki

    2017-04-01

    Optical microscopy is an indispensable tool for medical and life sciences. Especially, the microscopes utilized with scattering light offer a detailed internal observation of living specimens in real time because of their non-labeling and non-invasive capability. We here focus on two kinds of scattering lights, Raman scattering light and second harmonic generation light. Raman scattering light includes the information of all the molecular vibration modes of the molecules, and can be used to distinguish types and/or state of cell. Second harmonic generation light is derived from electric polarity of proteins in the specimen, and enables to detect their structural change. In this conference, we would like to introduce our challenges to extract biological information from those scattering lights.

  17. Imaging, microscopic analysis, and modeling of a CdTe module degraded by heat and light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Steve; Albin, David; Hacke, Peter

    Photoluminescence (PL), electroluminescence (EL), and dark lock-in thermography are collected during stressing of a CdTe module under one-Sun light at an elevated temperature of 100 degrees C. The PL imaging system is simple and economical. The PL images show differing degrees of degradation across the module and are less sensitive to effects of shunting and resistance that appear on the EL images. Regions of varying degradation are chosen based on avoiding pre-existing shunt defects. These regions are evaluated using time-of-flight secondary ion-mass spectrometry and Kelvin probe force microscopy. Reduced PL intensity correlates to increased Cu concentration at the front interface.more » Numerical modeling and measurements agree that the increased Cu concentration at the junction also correlates to a reduced space charge region.« less

  18. Imaging, microscopic analysis, and modeling of a CdTe module degraded by heat and light

    DOE PAGES

    Johnston, Steve; Albin, David; Hacke, Peter; ...

    2018-01-12

    Photoluminescence (PL), electroluminescence (EL), and dark lock-in thermography are collected during stressing of a CdTe module under one-Sun light at an elevated temperature of 100 degrees C. The PL imaging system is simple and economical. The PL images show differing degrees of degradation across the module and are less sensitive to effects of shunting and resistance that appear on the EL images. Regions of varying degradation are chosen based on avoiding pre-existing shunt defects. These regions are evaluated using time-of-flight secondary ion-mass spectrometry and Kelvin probe force microscopy. Reduced PL intensity correlates to increased Cu concentration at the front interface.more » Numerical modeling and measurements agree that the increased Cu concentration at the junction also correlates to a reduced space charge region.« less

  19. Direction-division multiplexed holographic free-electron-driven light sources

    NASA Astrophysics Data System (ADS)

    Clarke, Brendan P.; MacDonald, Kevin F.; Zheludev, Nikolay I.

    2018-01-01

    We report on a free-electron-driven light source with a controllable direction of emission. The source comprises a microscopic array of plasmonic surface-relief holographic domains, each tailored to direct electron-induced light emission at a selected wavelength into a collimated beam in a prescribed direction. The direction-division multiplexed source is tested by driving it with the 30 kV electron beam of a scanning electron microscope: light emission, at a wavelength of 800 nm in the present case, is switched among different output angles by micron-scale repositioning of the electron injection point among domains. Such sources, with directional switching/tuning possible at picosecond timescales, may be applied to field-emission and surface-conduction electron-emission display technologies, optical multiplexing, and charged-particle-beam position metrology.

  20. Endoscopic Versus Microscopic Transsphenoidal Surgery in the Treatment of Pituitary Adenoma: A Systematic Review and Meta-Analysis.

    PubMed

    Li, Aijun; Liu, Weisheng; Cao, Peicheng; Zheng, Yuehua; Bu, Zhenfu; Zhou, Tao

    2017-05-01

    Inconsistent findings have been reported regarding the efficacy and safety of endoscopic and microscopic transsphenoidal surgery for pituitary adenoma. This study aimed to assess the benefits and shortcomings of these surgical methods in patients with pituitary adenoma. The electronic databases PubMed, Embase, and the Cochrane Library were systematically searched, as well as proceedings of major meetings. Eligible studies with a retrospective or prospective design that evaluated endoscopic versus microscopic methods in patients with pituitary adenoma were included. Primary outcomes included gross tumor removal, cerebrospinal fluid leak, diabetes insipidus, and other complications. Overall, 23 studies (4 prospective and 19 retrospective) assessing 2272 patients with pituitary adenoma were included in the final analysis. Endoscopic transsphenoidal surgery was associated with a higher incidence of gross tumor removal (odds ratio, 1.52; 95% confidence interval, 1.11-2.08; P = 0.009) than those with microscopic transsphenoidal surgery. In addition, endoscopic transsphenoidal surgery had no significant effect on the risk of cerebrospinal fluid leak, compared with microscopic transsphenoidal surgery. Furthermore, endoscopic transsphenoidal surgery was associated with a 22% reduction in risk of diabetes insipidus compared with microscopic transsphenoidal surgery, but the difference was not statistically significant. Endoscopic transsphenoidal surgery significantly reduced the risk of septal perforation (odds ratio, 0.29; 95% confidence interval, 0.11-0.78; P = 0.014) and was not associated with the risk of meningitis, epistaxis, hematoma, hypopituitarism, hypothyroidism, hypocortisolism, total mortality, and recurrence. Endoscopic transsphenoidal surgery is associated with higher gross tumor removal and lower incidence of septal perforation in patients with pituitary adenoma. Future large-scale prospective randomized controlled trials are needed to verify these findings

  1. Another look through Heisenberg’s microscope

    NASA Astrophysics Data System (ADS)

    Boughn, Stephen; Reginatto, Marcel

    2018-05-01

    Heisenberg introduced his famous uncertainty relations in a seminal 1927 paper entitled The Physical Content of Quantum Kinematics and Mechanics. He motivated his arguments with a gedanken experiment, a gamma ray microscope to measure the position of a particle. A primary result was that, due to the quantum nature of light, there is an inherent uncertainty in the determinations of the particle’s position and momentum dictated by an indeterminacy relation, δ qδ p∼ h. Heisenberg offered this demonstration as ‘a direct physical interpretation of the [quantum mechanical] equation {{pq}}-{{qp}}=-{{i}}{\\hslash }’ but considered the indeterminacy relation to be much more than this. He also argued that it implies limitations on the very meanings of position and momentum and emphasised that these limitations are the source of the statistical character of quantum mechanics. In addition, Heisenberg hoped but was unable to demonstrate that the laws of quantum mechanics could be derived directly from the uncertainty relation. In this paper, we revisit Heisenberg’s microscope and argue that the Schrödinger equation for a free particle does indeed follow from the indeterminacy relation together with reasonable statistical assumptions.

  2. Comprehensive study of unexpected microscope condensers formed in sample arrangements commonly used in optical microscopy.

    PubMed

    Desai, Darshan B; Aldawsari, Mabkhoot Mudith S; Alharbi, Bandar Mohammed H; Sen, Sanchari; Grave de Peralta, Luis

    2015-09-01

    We show that various setups for optical microscopy which are commonly used in biomedical laboratories behave like efficient microscope condensers that are responsible for observed subwavelength resolution. We present a series of experiments and simulations that reveal how inclined illumination from such unexpected condensers occurs when the sample is perpendicularly illuminated by a microscope's built-in white-light source. In addition, we demonstrate an inexpensive add-on optical module that serves as an efficient and lightweight microscope condenser. Using such add-on optical module in combination with a low-numerical-aperture objective lens and Fourier plane imaging microscopy technique, we demonstrate detection of photonic crystals with a period nearly eight times smaller than the Rayleigh resolution limit.

  3. Retracing in correlative light electron microscopy: where is my object of interest?

    PubMed

    Hodgson, Lorna; Nam, David; Mantell, Judith; Achim, Alin; Verkade, Paul

    2014-01-01

    Correlative light electron microscopy (CLEM) combines the strengths of light and electron microscopy in a single experiment. There are many ways to perform a CLEM experiment and a variety of microscopy modalities can be combined either on separate instruments or as completely integrated solutions. In general, however, a CLEM experiment can be divided into three parts: probes, processing, and analysis. Most of the existing technologies are focussed around the development and use of probes or describe processing methodologies that explain or circumvent some of the compromises that need to be made when performing both light and electron microscopy on the same sample. So far, relatively little attention has been paid to the analysis part of CLEM experiments. Although it is an essential part of each CLEM experiment, it is usually a cumbersome manual process. Here, we briefly discuss each of the three above-mentioned steps, with a focus on the analysis part. We will also introduce an automated registration algorithm that can be applied to the analysis stage to enable the accurate registration of LM and EM images. This facilitates tracing back the right cell/object seen in the light microscope in the EM. © 2014 Elsevier Inc. All rights reserved.

  4. Imaging C. elegans embryos using an epifluorescent microscope and open source software.

    PubMed

    Verbrugghe, Koen J C; Chan, Raymond C

    2011-03-24

    Cellular processes, such as chromosome assembly, segregation and cytokinesis,are inherently dynamic. Time-lapse imaging of living cells, using fluorescent-labeled reporter proteins or differential interference contrast (DIC) microscopy, allows for the examination of the temporal progression of these dynamic events which is otherwise inferred from analysis of fixed samples(1,2). Moreover, the study of the developmental regulations of cellular processes necessitates conducting time-lapse experiments on an intact organism during development. The Caenorhabiditis elegans embryo is light-transparent and has a rapid, invariant developmental program with a known cell lineage(3), thus providing an ideal experiment model for studying questions in cell biology(4,5)and development(6-9). C. elegans is amendable to genetic manipulation by forward genetics (based on random mutagenesis(10,11)) and reverse genetics to target specific genes (based on RNAi-mediated interference and targeted mutagenesis(12-15)). In addition, transgenic animals can be readily created to express fluorescently tagged proteins or reporters(16,17). These traits combine to make it easy to identify the genetic pathways regulating fundamental cellular and developmental processes in vivo(18-21). In this protocol we present methods for live imaging of C. elegans embryos using DIC optics or GFP fluorescence on a compound epifluorescent microscope. We demonstrate the ease with which readily available microscopes, typically used for fixed sample imaging, can also be applied for time-lapse analysis using open-source software to automate the imaging process.

  5. A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork.

    PubMed

    Xu, Yi; Chen, Quansheng; Liu, Yan; Sun, Xin; Huang, Qiping; Ouyang, Qin; Zhao, Jiewen

    2018-04-01

    This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control.

  6. A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork

    PubMed Central

    Xu, Yi; Chen, Quansheng; Liu, Yan; Sun, Xin; Huang, Qiping; Ouyang, Qin; Zhao, Jiewen

    2018-01-01

    Abstract This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control. PMID:29805285

  7. Transition of a dental histology course from light to virtual microscopy.

    PubMed

    Weaker, Frank J; Herbert, Damon C

    2009-10-01

    The transition of the dental histology course at the University of Texas Health Science Center at San Antonio Dental School was completed gradually over a five-year period. A pilot project was initially conducted to study the feasibility of integrating virtual microscopy into a traditional light microscopic lecture and laboratory course. Because of the difficulty of procuring quality calcified and decalcified sections of teeth, slides from the student loan collection in the oral histology block of the course were outsourced for conversion to digital images and placed on DVDs along with a slide viewer. The slide viewer mimicked the light microscope, allowing horizontal and vertical movement and changing of magnification, and, in addition, a feature to capture static images. In a survey, students rated the ease of use of the software, quality of the images, maneuverability of the images, and questions regarding use of the software, effective use of laboratory, and faculty time. Because of the positive support from the students, our entire student loan collection of 153 glass slides was subsequently converted to virtual images and distributed on an Apricorn pocket external hard drive. Students were asked to assess the virtual microscope over a four-year period. As a result of the surveys, light microscopes have been totally eliminated, and microscope exams have been replaced with project slide examinations. In the future, we plan to expand our virtual slides and incorporate computer testing.

  8. Dynamic light scattering microscopy

    NASA Astrophysics Data System (ADS)

    Dzakpasu, Rhonda

    An optical microscope technique, dynamic light scattering microscopy (DLSM) that images dynamically scattered light fluctuation decay rates is introduced. Using physical optics we show theoretically that within the optical resolution of the microscope, relative motions between scattering centers are sufficient to produce significant phase variations resulting in interference intensity fluctuations in the image plane. The time scale for these intensity fluctuations is predicted. The spatial coherence distance defining the average distance between constructive and destructive interference in the image plane is calculated and compared with the pixel size. We experimentally tested DLSM on polystyrene latex nanospheres and living macrophage cells. In order to record these rapid fluctuations, on a slow progressive scan CCD camera, we used a thin laser line of illumination on the sample such that only a single column of pixels in the CCD camera is illuminated. This allowed the use of the rate of the column-by-column readout transfer process as the acquisition rate of the camera. This manipulation increased the data acquisition rate by at least an order of magnitude in comparison to conventional CCD cameras rates defined by frames/s. Analysis of the observed fluctuations provides information regarding the rates of motion of the scattering centers. These rates, acquired from each position on the sample are used to create a spatial map of the fluctuation decay rates. Our experiments show that with this technique, we are able to achieve a good signal-to-noise ratio and can monitor fast intensity fluctuations, on the order of milliseconds. DLSM appears to provide dynamic information about fast motions within cells at a sub-optical resolution scale and provides a new kind of spatial contrast.

  9. Fermi Gas Microscope

    NASA Astrophysics Data System (ADS)

    Setiawan, Widagdo

    Recent advances in using microscopes in ultracold atom experiment have allowed experimenters for the first time to directly observe and manipulate individual atoms in individual lattice sites. This technique enhances our capability to simulate strongly correlated systems such as Mott insulator and high temperature superconductivity. Currently, all ultracold atom experiments with high resolution imaging capability use bosonic atoms. In this thesis, I present our progress towards creating the fermionic version of the microscope experiment which is more suitable for simulating real condensed matter systems. Lithium is ideal due to the existence of both fermionic and bosonic isotopes, its light mass, which means faster experiment time scales that suppresses many sources of technical noise, and also due to the existence of a broad Feshbach resonance, which can be used to tune the inter-particle interaction strength over a wide range from attractive, non-interacting, and repulsive interactions. A high numerical aperture objective will be used to image and manipulate the atoms with single lattice site resolution. This setup should allow us to implement the Hubbard hamiltonian which could describe interesting quantum phases such as antiferromagnetism, d-wave superfluidity, and high temperature superconductivity. I will also discuss the feasibility of the Raman sideband cooling method for cooling the atoms during the imaging process. We have also developed a new electronic control system to control the sequence of the experiment. This electronic system is very scalable in order to keep up with the increasing complexity of atomic physics experiments. Furthermore, the system is also designed to be more precise in order to keep up with the faster time scale of lithium experiment.

  10. Evaluation of a Mobile Phone-Based Microscope for Screening of Schistosoma haematobium Infection in Rural Ghana.

    PubMed

    Bogoch, Isaac I; Koydemir, Hatice C; Tseng, Derek; Ephraim, Richard K D; Duah, Evans; Tee, Joseph; Andrews, Jason R; Ozcan, Aydogan

    2017-06-01

    AbstractSchistosomiasis affects over 170 million people in Africa. Here we compare a novel, low-cost mobile phone microscope to a conventional light microscope for the label-free diagnosis of Schistosoma haematobium infections in a rural Ghanaian school setting. We tested the performance of our handheld microscope using 60 slides that were randomly chosen from an ongoing epidemiologic study in school-aged children. The mobile phone microscope had a sensitivity of 72.1% (95% confidence interval [CI]: 56.1-84.2), specificity of 100% (95% CI: 75.9-100), positive predictive value of 100% (95% CI: 86.3-100), and a negative predictive value of 57.1% (95% CI: 37.4-75.0). With its modest sensitivity and high specificity, this handheld and cost-effective mobile phone-based microscope is a stepping-stone toward developing a powerful tool in clinical and public health settings where there is limited access to conventional laboratory diagnostic support.

  11. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Bridgers, Kevin; Brown, Cecelia Wright

    1995-01-01

    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  12. Analysis of microscopic parameters of surface charging in polymer caused by defocused electron beam irradiation.

    PubMed

    Liu, Jing; Zhang, Hai-Bo

    2014-12-01

    The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Analysis of red light violation data collected from intersections equipped with red light photo enforcement cameras

    DOT National Transportation Integrated Search

    2006-03-01

    This report presents results from an analysis of about 47,000 red light violation records collected from 11 intersections in the : City of Sacramento, California, by red light photo enforcement cameras between May 1999 and June 2003. The goal of this...

  14. Hyperspectral microscopy to identify foodborne bacteria with optimum lighting source

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral microscopy is an emerging technology for rapid detection of foodborne pathogenic bacteria. Since scattering spectral signatures from hyperspectral microscopic images (HMI) vary with lighting sources, it is important to select optimal lights. The objective of this study is to compare t...

  15. [Microscopic study of powders of hallucinogenic mushrooms--Psilocybe sp].

    PubMed

    Schäfer, A T

    2000-01-01

    The paper presents simple methods for microscopic examination and basic microchemical testing for the identification of suspect mushroom powders. The microscopic features of the most commonly cultivated and trafficked hallucinogenic genus Psilocybin are described and may serve for the decision whether any suspect material consists of such mushroom powder (and is therefore to be subjected to further analysis) or not.

  16. A mini-microscope for in situ monitoring of cells†‡

    PubMed Central

    Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R.; Hamilton, Geraldine A.; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E.

    2013-01-01

    A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost. PMID:22911426

  17. Scanning electron microscope cathodoluminescence imaging of subgrain boundaries, twins and planar deformation features in quartz

    NASA Astrophysics Data System (ADS)

    Hamers, M. F.; Pennock, G. M.; Drury, M. R.

    2017-04-01

    The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.

  18. [Microscopic investigation of vessel wall after endovascular catheter atherectomy].

    PubMed

    Tsygankov, V N; Khovalkin, R G; Chekmareva, I A; Kalinin, D V; Filippova, E M

    2014-01-01

    Endovascular target catheter atherectomy (ETCA) - method of artery patency allowing to obtain occlusion substrate. Given the high destructive effect of atherectome's elements on tissue the objective was determination possibility of histological and electron microscopic investigation of this substrate after atherectomy. The research included 8 patients who underwent ETCA of legs arteries. It was observed substrate removal from broken stent in 1 case. 2 of 8 patients had diabetes. Obtained substrate was available for histological and electron microscopic investigation. Atherosclerosis was confirmed in all cases. It was not observed substrate significant morphological changes in patients with presence or absence of diabetes. Microscopic investigation of substrate from broken stent shows pronounced development of granulation tissue that was regarded as special form of reparative regeneration. Finding internal elastic membrane during microscopic investigation in some cases proves radical intervention. The authors consider that microscopic investigation of substrate after ETCA may be used for diagnosis verification, thorough analysis of morphological changes in lesion area and radicalism of atherectomy.

  19. Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy.

    PubMed

    Su, Ting-Wei; Erlinger, Anthony; Tseng, Derek; Ozcan, Aydogan

    2010-10-01

    We demonstrate a compact and lightweight platform to conduct automated semen analysis using a lensfree on-chip microscope. This holographic on-chip imaging platform weighs ∼46 g, measures ∼4.2 × 4.2 × 5.8 cm, and does not require any lenses, lasers or other bulky optical components to achieve phase and amplitude imaging of sperms over ∼24 mm(2) field-of-view with an effective numerical aperture of ∼0.2. Using this wide-field lensfree on-chip microscope, semen samples are imaged for ∼10 s, capturing a total of ∼20 holographic frames. Digital subtraction of these consecutive lensfree frames, followed by appropriate processing of the reconstructed images, enables automated quantification of the count, the speed and the dynamic trajectories of motile sperms, while summation of the same frames permits counting of immotile sperms. Such a compact and lightweight automated semen analysis platform running on a wide-field lensfree on-chip microscope could be especially important for fertility clinics, personal male fertility tests, as well as for field use in veterinary medicine such as in stud farming and animal breeding applications.

  20. Stray Light Analysis

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Based on a Small Business Innovation Research contract from the Jet Propulsion Laboratory, TracePro is state-of-the-art interactive software created by Lambda Research Corporation to detect stray light in optical systems. An image can be ruined by incidental light in an optical system. To maintain image excellence from an optical system, stray light must be detected and eliminated. TracePro accounts for absorption, specular reflection and refraction, scattering and aperture diffraction of light. Output from the software consists of spatial irradiance plots and angular radiance plots. Results can be viewed as contour maps or as ray histories in tabular form. TracePro is adept at modeling solids such as lenses, baffles, light pipes, integrating spheres, non-imaging concentrators, and complete illumination systems. The firm's customer base includes Lockheed Martin, Samsung Electronics and other manufacturing, optical, aerospace, and educational companies worldwide.

  1. Seamless stitching of tile scan microscope images.

    PubMed

    Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R

    2015-06-01

    For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos. © 2015 The Authors Journal of Microscopy © 2015 Royal

  2. The quantitative models for broiler chicken response to monochromatic, combined, and mixed light-emitting diode light: A meta-analysis.

    PubMed

    Yang, Yefeng; Pan, Chenhao; Zhong, Renhai; Pan, Jinming

    2018-06-01

    Although many experiments have been conducted to clarify the response of broiler chickens to light-emitting diode (LED) light, those published results do not provide a solid scientific basis for quantifying the response of broiler chickens. This study used a meta-analysis to establish light spectral models of broiler chickens. The results indicated that 455 to 495 nm blue LED light produced the greatest positive response in body weight by 10.66% (BW; P < 0.001) and 515 to 560 nm green LED light increased BW by 6.27% (P < 0.001) when compared with white light. Regression showed that the wavelength (455 to 660 nm) was negatively related to BW change of birds, with a decrease of about 4.9% BW for each 100 nm increase in wavelength (P = 0.002). Further analysis suggested that a combination of the two beneficial light sources caused a synergistic effect. BW was further increased in birds transferred either from green LED light to blue LED light (17.23%; P < 0.001) or from blue LED light to green LED light (17.52%; P < 0.001). Moreover, birds raised with a mixture of green and blue LED light showed a greater BW promotion (10.66%; P < 0.001) than those raised with green LED light (6.27%). A subgroup analysis indicated that BW response to monochromatic LED light was significant regardless of the genetic strain, sex, control light sources, light intensity and regime of LED light, environmental temperature, and dietary ME and CP (P > 0.05). However, there was an interaction between the FCR response to monochromatic LED light with those covariant factors (P < 0.05). Additionally, green and yellow LED light played a role in affecting the meat color, quality, and nutrition of broiler chickens. The results indicate that the optimal ratio of green × blue of mixed LED light or shift to green-blue of combined LED light may produce the optimized production performance, whereas the optimal ratio of green/yellow of mixed or combined LED light may result in the optimized meat

  3. National Ignition Facility main laser stray light analysis and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, R E; Miller, J L; Peterson, G

    1998-06-26

    Stray light analysis has been carried out for the main laser section of the National Ignition Facility main laser section using a comprehensive non-sequential ray trace model supplemented with additional ray trace and diffraction propagation modeling. This paper describes the analysis and control methodology, gives examples of ghost paths and required tilted lenses, baffles, absorbers, and beam dumps, and discusses analysis of stray light "pencil beams" in the system.

  4. Rapid identification of Salmonella serotypes through hyperspectral microscopy with different lighting sources

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral microscope imaging (HMI) has the potential to classify foodborne pathogenic bacteria at cell level by combining microscope images with a spectrophotometer. In this study, the spectra generated from HMIs of five live Salmonella serovars from two light sources, metal halide (MH) and tun...

  5. Simultaneous dual-color fluorescence microscope: a characterization study.

    PubMed

    Li, Zheng; Chen, Xiaodong; Ren, Liqiang; Song, Jie; Li, Yuhua; Zheng, Bin; Liu, Hong

    2013-01-01

    High spatial resolution and geometric accuracy is crucial for chromosomal analysis of clinical cytogenetic applications. High resolution and rapid simultaneous acquisition of multiple fluorescent wavelengths can be achieved by utilizing concurrent imaging with multiple detectors. However, such class of microscopic systems functions differently from traditional fluorescence microscopes. To develop a practical characterization framework to assess and optimize the performance of a high resolution and dual-color fluorescence microscope designed for clinical chromosomal analysis. A dual-band microscopic imaging system utilizes a dichroic mirror, two sets of specially selected optical filters, and two detectors to simultaneously acquire two fluorescent wavelengths. The system's geometric distortion, linearity, the modulation transfer function, and the dual detectors' alignment were characterized. Experiment results show that the geometric distortion at lens periphery is less than 1%. Both fluorescent channels show linear signal responses, but there exists discrepancy between the two due to the detectors' non-uniform response ratio to different wavelengths. In terms of the spatial resolution, the two contrast transfer function curves trend agreeably with the spatial frequency. The alignment measurement allows quantitatively assessing the cameras' alignment. A result image of adjusted alignment is demonstrated to show the reduced discrepancy by using the alignment measurement method. In this paper, we present a system characterization study and its methods for a specially designed imaging system for clinical cytogenetic applications. The presented characterization methods are not only unique to this dual-color imaging system but also applicable to evaluation and optimization of other similar multi-color microscopic image systems for improving their clinical utilities for future cytogenetic applications.

  6. Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope.

    PubMed

    den Engelsen, Daniel; Harris, Paul G; Ireland, Terry G; Fern, George R; Silver, Jack

    2015-10-01

    Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Cryogenic immersion microscope

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  8. Lateral resolution testing of a novel developed confocal microscopic imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhang, Yunhai; Chang, Jian; Huang, Wei; Xue, Xiaojun; Xiao, Yun

    2015-10-01

    Laser scanning confocal microscope has been widely used in biology, medicine and material science owing to its advantages of high resolution and tomographic imaging. Based on a set of confirmatory experiments and system design, a novel confocal microscopic imaging system is developed. The system is composed of a conventional fluorescence microscope and a confocal scanning unit. In the scanning unit a laser beam coupling module provides four different wavelengths 405nm 488nm 561nm and 638nm which can excite a variety of dyes. The system works in spot-to-spot scanning mode with a two-dimensional galvanometer. A 50 microns pinhole is used to guarantee that stray light is blocked and only the fluorescence signal from the focal point can be received . The three-channel spectral splitter is used to perform fluorescence imaging at three different working wavelengths simultaneously. The rat kidney tissue slice is imaged using the developed confocal microscopic imaging system. Nucleues labeled by DAPI and kidney spherule curved pipe labeled by Alexa Fluor 488 can be imaged clearly and respectively, realizing the distinction between the different components of mouse kidney tissue. The three-dimensional tomographic imaging of mouse kidney tissue is reconstructed by several two-dimensional images obtained in different depths. At last the resolution of the confocal microscopic imaging system is tested quantitatively. The experimental result shows that the system can achieve lateral resolution priority to 230nm.

  9. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.

    PubMed

    Woess, Claudia; Unterberger, Seraphin Hubert; Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    . Cluster-analyses of data from Raman microscopic imaging reconstructed histo-anatomical features in comparison to the light microscopic image and finally, by application of principal component analyses (PCA), it was possible to see a clear distinction between forensic and archaeological bone samples. Hence, the spectral characterization of inorganic and organic compounds by the afore mentioned techniques, followed by analyses such as multivariate imaging analysis (MIAs) and principal component analyses (PCA), appear to be suitable for the post mortem interval (PMI) estimation of human skeletal remains.

  10. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains

    PubMed Central

    Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    time. Cluster-analyses of data from Raman microscopic imaging reconstructed histo-anatomical features in comparison to the light microscopic image and finally, by application of principal component analyses (PCA), it was possible to see a clear distinction between forensic and archaeological bone samples. Hence, the spectral characterization of inorganic and organic compounds by the afore mentioned techniques, followed by analyses such as multivariate imaging analysis (MIAs) and principal component analyses (PCA), appear to be suitable for the post mortem interval (PMI) estimation of human skeletal remains. PMID:28334006

  11. Microscopic modeling of multi-lane highway traffic flow

    NASA Astrophysics Data System (ADS)

    Hodas, Nathan O.; Jagota, Anand

    2003-12-01

    We discuss a microscopic model for the study of multi-lane highway traffic flow dynamics. Each car experiences a force resulting from a combination of the desire of the driver to attain a certain velocity, aerodynamic drag, and change of the force due to car-car interactions. The model also includes multi-lane simulation capability and the ability to add and remove obstructions. We implement the model via a Java applet, which is used to simulate traffic jam formation, the effect of bottlenecks on traffic flow, and the existence of light, medium, and heavy traffic flow. The simulations also provide insight into how the properties of individual cars result in macroscopic behavior. Because the investigation of emergent characteristics is so common in physics, the study of traffic in this manner sheds new light on how the micro-to-macro transition works in general.

  12. Diagnostic value and cost utility analysis for urine Gram stain and urine microscopic examination as screening tests for urinary tract infection.

    PubMed

    Wiwanitkit, Viroj; Udomsantisuk, Nibhond; Boonchalermvichian, Chaiyaporn

    2005-06-01

    The aim of this study was to evaluate the diagnostic properties of urine Gram stain and urine microscopic examination for screening for urinary tract infection (UTI), and to perform an additional cost utility analysis. This descriptive study was performed on 95 urine samples sent for urine culture to the Department of Microbiology, Faculty of Medicine, Chulalongkorn University. The first part of the study was to determine the diagnostic properties of two screening tests (urine Gram stain and urine microscopic examination). Urine culture was set as the gold standard and the results from both methods were compared to this. The second part of this study was to perform a cost utility analysis. The sensitivity of urine Gram stain was 96.2%, the specificity 93.0%, the positive predictive value 94.3% and the negative predictive value 95.2%. False positives occurred with a frequency of 7.0% and false negatives 3.8%. For the microscopic examination, the sensitivity was 65.4%, specificity 74.4%, positive predictive value 75.6% and negative predictive value 64.0%. False positives occurred with a frequency of 25.6% and false negatives 34.6%. Combining urine Gram stain and urine microscopic examination, the sensitivity was 98.1%, specificity 74.4%, positive predictive value 82.3% and negative predictive value 97.0%. False positives occurred with a frequency of 25.6% and false negatives 1.9%. However, the cost per utility of the combined method was higher than either urine microscopic examination or urine Gram stain alone. Urine Gram stain provided the lowest cost per utility. Economically, urine Gram stain is the proper screening tool for presumptive diagnosis of UTI.

  13. Ultrastructural sinusoidal changes in extrahepatic cholestasis. Light and electron microscopic immunohistochemical localization of collagen type III and type IV.

    PubMed

    Gulubova, M V

    1996-07-01

    Extrahepatic cholestasis causes excessive extracellular matrix formation perisinusoidally. Ito cells, transitional and endothelial cells are considered to be a source of extracellular matrix proteins in experimental cholestasis. The localization of collagens type III and type IV in human liver in extrahepatic cholestasis was investigated immunohistochemically in the present study. Immersion fixation was used after modification to be applied to surgical biopsies with commercially available kits. Sinusoidal changes were observed that indicated excessive collagen and matrix formation. Light microscopically, increased immunostaining with the two collagen antibodies was found perisinusoidally and portally. Ultrastructurally, collagen type III positive fibres were found beneath basement membranes of vessels, in collagen bundles and as a fibrillar network in the space of Disse. Collagen type IV immunostaining was located in portal tracts and near hepatocyte microvilli. Intracellular staining with collagen type IV was detected in the rough endoplasmic reticulum of some transitional cells. Immunostaining was located around transitional cells, Ito cells or endothelial cells mainly. Our study indicates that Ito cells, transitional and endothelial cells are the main source of collagens type III and IV in the space of Disse in extrahepatic cholestasis in humans.

  14. Optical analysis of a compound quasi-microscope for planetary landers

    NASA Technical Reports Server (NTRS)

    Wall, S. D.; Burcher, E. E.; Huck, F. O.

    1974-01-01

    A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.

  15. The Interior Analysis and 3-D Reconstruction of Internally-Mixed Light-Absorbing Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Collins, S. M.; Anderson, I.; Herzing, A.

    2010-12-01

    Carbon-containing atmospheric particles may either absorb solar or outgoing long-wave radiation or scatter solar radiation, and thus, affect Earth’s radiative balance in multiple ways. Light-absorbing carbon that is common in urban air particles such as industrial coke dust, road dust, and diesel soot, often exists in the same particle with other phases that contain, for example, aluminum, calcium, iron, and sulfur. While the optical properties of atmospheric particles in general depend on overall particle size and shape, the inhomogeneity of chemical phases within internally-mixed particles may also greatly affect particle optical properties. In this study, a series of microscopic approaches were used to identify individual light-absorbing coarse-mode particles and to assess their interior structure and composition. Particle samples were collected in 2004 from one of the U.S. EPA’s Los Angeles Particulate Matter Supersites, and were likely affected substantially by road dust and construction dust. First, bright-field and dark-field light microscopy and computer-controlled scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDX) were used to distinguish predominantly light-absorbing carbonaceous particles from other particle types such as mineral dust, sea salt, and brake wear. Second, high-resolution SEM-EDX elemental mapping of individual carbonaceous particles was used to select particles with additional elemental phases that exhibited spatial inhomogeneity. Third, focused ion-beam SEM (FIB-SEM) with EDX was used to slice through selected particles to expose interior surfaces and to determine the spatial distribution of element phases throughout the particles. Fourth, study of the interior phases of a particle was augmented by the transmission electron microscopy (TEM) of a thin section of the particle prepared by FIB-SEM. Here, electron energy loss spectroscopy with TEM was used to study chemical bonding in the carbonaceous phase

  16. Corrugated metal-coated tapered tip for scanning near-field optical microscope.

    PubMed

    Antosiewicz, Tomasz J; Szoplik, Tomasz

    2007-08-20

    This paper addresses an important issue of light throughput of a metal-coated tapered tip for scanning near-field microscope (SNOM). Corrugations of the interface between the fiber core and metal coating in the form of parallel grooves of different profiles etched in the core considerably increase the energy throughput. In 2D FDTD simulations in the Cartesian coordinates we calculate near-field light emitted from such tips. For a certain wavelength range total intensity of forward emission from the corrugated tip is 10 times stronger than that from a classical tapered tip. When realized in practice the idea of corrugated tip may lead up to twice better resolution of SNOM.

  17. Assessment of incomplete clipping of aneurysms intraoperatively by a near-infrared indocyanine green-video angiography (Niicg-Va) integrated microscope.

    PubMed

    Imizu, S; Kato, Y; Sangli, A; Oguri, D; Sano, H

    2008-08-01

    The objective of this article was to assess the clinical use and the completeness of clipping with total occlusion of the aneurysmal lumen, real-time assessment of vascular patency in the parent, branching and perforating vessels, intraoperative assessment of blood flow, image quality, spatial resolution and clinical value in difficult aneurysms using near infrared indocyanine green video angiography integrated on to an operative Pentero neurosurgical microscope (Carl Zeiss, Oberkochen Germany). Thirteen patients with aneurysms were operated upon. An infrared camera with near infrared technology was adapted on to the OPMI Pentero microscope with a special filter and infrared excitation light to illuminate the operating field which was designed to allow passage of the near infrared light required for excitation of indocyanine green (ICG) which was used as the intravascular marker. The intravascular fluorescence was imaged with a video camera attached to the microscope. ICG fluorescence (700-850 nm) from a modified microscope light source on to the surgical field and passage of ICG fluorescence (780-950 nm) from the surgical field, back into the optical path of the microscope was used to detect the completeness of aneurysmal clipping Incomplete clipping in three patients (1 female and 2 males) with unruptured complicated aneurysms was detected using indocyanine green video angiography. There were no adverse effects after injection of indocyanine green. The completeness of clipping was inadequately detected by Doppler ultrasound miniprobe and rigid endoscopy and was thus complemented by indocyanine green video angiography. The operative microscope-integrated ICG video angiography as a new intraoperative method for detecting vascular flow, was found to be quick, reliable, cost-effective and possibly a substitute or adjunct for Doppler ultrasonography or intraoperative DSA, which is presently the gold standard. The simplicity of the method, the speed with which the

  18. Design of an imaging microscope for soft X-ray applications

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Shealy, David L.; Gabardi, David R.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    1988-01-01

    An imaging soft X-ray microscope with a spatial resolution of 0.1 micron and normal incidence multilayer optics is discussed. The microscope has a Schwarzschild configuration, which consists of two concentric spherical mirrors with radii of curvature which minimize third-order spherical aberration, coma, and astigmatism. The performance of the Stanford/MSFC Cassegrain X-ray telescope and its relevance to the present microscope are addressed. A ray tracing analysis of the optical system indicates that diffraction-limited performance can be expected for an object height of 0.2 mm.

  19. Effect of the angle of the operating microscope light beam on visual recovery after phacoemulsification: Randomized trial.

    PubMed

    Harman, Francesca E; Corbett, Melanie C; Stevens, Julian D

    2010-08-01

    To evaluate differences in visual recovery after phacoemulsification with direct or tilted surgical microscope illumination using a macular photostress test. Western Eye Hospital, Imperial College Health Care National Health Service Trust, London, United Kingdom. This randomized double-masked controlled trial enrolled patients presenting to a daycare unit for single-eye cataract surgery. Inclusion criteria were no ocular pathology other than cataract, corneal keratometric astigmatism less than 1.50 diopters, intended target of emmetropia in the operated eye, and cataract grade 1 to 3 (Lens Opacification Classification System II). Exclusion criteria were an abnormal preoperative photostress test. Patients were randomized to have phacoemulsification with the operating microscope angled 15 degrees nasal to the fovea (study group) or with the operating microscope directly overhead around the optic disc region (control group). The same surgeon performed all phacoemulsification procedures using a standardized technique and topical anesthesia. Outcome measures were uncorrected (UDVA) and corrected (CDVA) distance visual acuity 10 minutes and 60 minutes postoperatively. In the 30 patients evaluated, the mean UDVA 10 minutes postoperatively was 0.40 logMAR +/- 0.26 (SD) in the study group and 0.72 +/- 0.36 logMAR in the control group (P<.01). The mean CDVA was 0.18 +/- 0.26 logMAR and 0.44 +/- 0.30 logMAR, respectively (P = .016). There was no significant between-group difference in acuity at 60 minutes. Tilting the microscope beam away from the fovea resulted in faster visual recovery and less macular photic stress. No author has a financial or proprietary interest in any material or method mentioned. Copyright 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  20. Use of a night vision intensifier for direct visualization by eye of far-red and near-infrared fluorescence through an optical microscope.

    PubMed

    Siddiqi, M A; Kilduff, G M; Gearhart, J D

    2003-11-01

    We describe the design, construction and testing of a prototype device that allows the direct visualization by eye of far-red and near-infrared (NIR) fluorescence through an optical microscope. The device incorporates a gallium arsenide (GaAs) image intensifier, typically utilized in low-light or 'night vision' applications. The intensifier converts far-red and NIR light into electrons and then into green light, which is visible to the human eye. The prototype makes possible the direct, real-time viewing by eye of normally invisible far-red and NIR fluorescence from a wide variety of fluorophores, using the full field of view of the microscope to which it is applied. The high sensitivity of the image intensifier facilitates the viewing of a wide variety of photosensitive specimens, including live cells and embryos, at vastly reduced illumination levels in both fluorescence and bright-field microscopy. Modifications to the microscope are not required in order to use the prototype, which is fully compatible with all current fluorescence techniques. Refined versions of the prototype device will have broad research and clinical applications.

  1. Fine needle aspiration (FNA) of synovial sarcoma--a comparative histological-cytological study of 15 cases, including immunohistochemical, electron microscopic and cytogenetic examination and DNA-ploidy analysis.

    PubMed

    Akerman, M; Willén, H; Carlén, B; Mandahl, N; Mertens, F

    1996-06-01

    A retrospective study of 25 FNAs (11 aspirates from primary tumours and 14 from recurrencies and metastases) from 15 synovial sarcomas was performed. The cytological findings were correlated with the histopathology and the value of immunohistochemical and electron microscopic examination as well as DNA-ploidy and cytogenetic analysis for diagnosis were assessed. A reproducible cellular pattern with a reliable diagnosis of spindle cell sarcoma was possible provided that the aspirates were cell rich. However, a true biphasic pattern indicative of synovial sarcoma was only seen in one of the 25 specimens. Electron microscopic examination of the aspirates was a valuable adjunctive diagnostic method, whereas immunocytochemistry and DNA-ploidy analysis were not. Immunohistochemical, electron microscopic and cytogenetic analysis were all valuable ancillary methods when performed on surgical specimens. Malignant haemangiopericytoma and fibrosarcoma were the most important differential diagnoses in the FNA specimens.

  2. Light-driven liquid microlenses

    NASA Astrophysics Data System (ADS)

    Angelini, A.; Pirani, F.; Frascella, F.; Ricciardi, S.; Descrovi, E.

    2017-02-01

    We propose a liquid polymeric compound based on photo-responsive azo-polymers to be used as light-activated optical element with tunable and reversible functionalities. The interaction of a laser beam locally modifies the liquid density thus producing a refractive index gradient. The laser induced refractive index profiles are observed along the optical axis of the microscope to evaluate the total phase shift induced and along the orthogonal direction to provide the axial distribution of the refractive index variation. The focusing and imaging properties of the liquid lenses as functions of the light intensity are illustrated.

  3. Conjugation of both on-axis and off-axis light in Nipkow disk confocal microscope to increase availability of incoherent light source.

    PubMed

    Saito, Kenta; Arai, Yoshiyuki; Zhang, Jize; Kobayashi, Kentaro; Tani, Tomomi; Nagai, Takeharu

    2011-01-01

    Laser-scanning confocal microscopy has been employed for exploring structures at subcellular, cellular and tissue level in three dimensions. To acquire the confocal image, a coherent light source, such as laser, is generally required in conventional single-point scanning microscopy. The illuminating beam must be focused onto a small spot with diffraction-limited size, and this determines the spatial resolution of the microscopy system. In contrast, multipoint scanning confocal microscopy using a Nipkow disk enables the use of an incoherent light source. We previously demonstrated successful application of a 100 W mercury arc lamp as a light source for the Yokogawa confocal scanner unit in which a microlens array was coupled with a Nipkow disk to focus the collimated incident light onto a pinhole (Saito et al., Cell Struct. Funct., 33: 133-141, 2008). However, transmission efficiency of incident light through the pinhole array was low because off-axis light, the major component of the incident light, was blocked by the non-aperture area of the disk. To improve transmission efficiency, we propose an optical system in which off-axis light is able to be transmitted through pinholes surrounding the pinhole located on the optical axis of the collimator lens. This optical system facilitates the use of not only the on-axis but also the off-axis light such that the available incident light is considerably improved. As a result, we apply the proposed system to high-speed confocal and multicolor imaging both with a satisfactory signal-to-noise ratio.

  4. Distributed microscopic actuation analysis of paraboloidal membrane shells of different geometric parameters

    NASA Astrophysics Data System (ADS)

    Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen

    2018-03-01

    Paraboloidal membrane shells of revolution are commonly used as key components for advanced aerospace structures and aviation mechanical systems. Due to their high flexibility and low damping property, active vibration control is of significant importance for these in-orbit membrane structures. To explore the dynamic control behavior of space flexible paraboloidal membrane shells, precision distributed actuation and control effectiveness of free-floating paraboloidal membrane shells with piezoelectric actuators are investigated. Governing equations of the shell structronic system are presented first. Then, distributed control forces and control actions are formulated. A transverse mode shape function of the paraboloidal shell based on the membrane approximation theory and specified boundary condition is assumed in the modal control force analysis. The actuator induced modal control forces on the paraboloidal shell are derived. The expressions of microscopic local modal control forces are obtained by shrinking the actuator area into infinitesimal and the four control components are investigated respectively to predict the spatial microscopic actuation behavior. Geometric parameter (height-radius ratio and shell thickness) effects on the modal actuation behavior are explored when evaluating the micro-control efficiency. Four different cases are discussed and the results reveal the fact that shallow (e.g., antennas/reflectors) and deep (e.g., rocket/missile fairing) paraboloidal shells exhibit totally different modal actuation behaviors due to their curvature differences. Analytical results in this paper can serve as guidelines for optimal actuator placement for vibration control of different paraboloidal structures.

  5. A setup for combined multiphoton laser scanning microscopic and multi-electrode patch clamp experiments on brain slices

    NASA Astrophysics Data System (ADS)

    Helm, P. Johannes; Reppen, Trond; Heggelund, Paul

    2009-02-01

    Multi Photon Laser Scanning Microscopy (MPLSM) appears today as one of the most powerful experimental tools in cellular neurophysiology, notably in studies of the functional dynamics of signal processing in single neurons. Simultaneous recording of fluorescence signals at high spatial and temporal resolution and electric signals by means of multi electrode patch clamp techniques have provided new paths for the systematic investigation of neuronal mechanisms. In particular, this approach has opened for direct studies of dendritic signal processing in neurons. We report about a setup optimized for simultaneous electrophysiological multi electrode patch clamp and multi photon laser scanning fluorescence microscopic experiments on brain slices. The microscopic system is based on a modified commercially available confocal scanning laser microscope (CLSM). From a technical and operational point of view, two developments are important: Firstly, in order to reduce the workload for the experimentalist, who in general is forced to concentrate on controlling the electrophysiological parameters during the recordings, a system of shutters has been installed together with dedicated electronic modules protecting the photo detectors against destructive light levels caused by erroneous opening or closing of microscopic light paths by the experimentalist. Secondly, the standard detection unit has been improved by installing the photomultiplier tubes (PMT) in a Peltier cooled thermal box shielding the detector from both room temperature and distortions caused by external electromagnetic fields. The electrophysiological system is based on an industrial standard multi patch clamp unit ergonomically arranged around the microscope stage. The electrophysiological and scanning processes can be time coordinated by standard trigger electronics.

  6. A surface science compatible epifluorescence microscope for inspection of samples under ultra high vacuum and cryogenic conditions.

    PubMed

    Marquardt, Christian; Paulheim, Alexander; Rohbohm, Nils; Merkel, Rudolf; Sokolowski, Moritz

    2017-08-01

    We modified an epi-illumination light microscope and mounted it on an ultra high vacuum chamber for investigating samples used in a surface science experiment. For easy access and bake out, all optical components are placed outside the vacuum and the sample is imaged through a glass window. The microscope can be operated in reflection brightfield or epifluorescence mode to image the sample surface or fluorescent dye molecules adsorbed on it. The homemade sample mounting was made compatible for the use under the microscope; sample temperatures as low as 6 K can be achieved. The performance of the microscope is demonstrated on two model samples: Brightfield-images of a well-prepared Ag(100) surface show a macroscopic corrugation of the surface, although low energy electron diffraction data indicate a highly ordered crystalline surface. The surface shows macroscopic protrusions with flat regions, about 20-200 μm in diameter, in between. Fluorescence images of diluted 3,4,9,10-perylene tetracarboxylicacid dianhydride (PTCDA) molecules adsorbed on an ultrathin epitaxial KCl film on the Ag(100) surface show a shading effect at surface protrusions due to an inclined angle of incidence of the PTCDA beam during deposition. For some preparations, the distribution of the fluorescence intensity is inhomogeneous and shows a dense network of bright patches about 5 μm in diameter related to the macroscopic corrugation of the surface. We propose that such a light microscope can aid many surface science experiments, especially those dealing with epitaxial growth or fluorescent materials.

  7. Light-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, Jr., Edward I.; Soden, Jerry M.

    1995-01-01

    An apparatus and method are described for analyzing an integrated circuit (IC), The invention uses a focused light beam that is scanned over a surface of the IC to generate a light-induced voltage alteration (LIVA) signal for analysis of the IC, The LIVA signal may be used to generate an image of the IC showing the location of any defects in the IC; and it may be further used to image and control the logic states of the IC. The invention has uses for IC failure analysis, for the development of ICs, for production-line inspection of ICs, and for qualification of ICs.

  8. Light-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, E.I. Jr.; Soden, J.M.

    1995-07-04

    An apparatus and method are described for analyzing an integrated circuit (IC). The invention uses a focused light beam that is scanned over a surface of the IC to generate a light-induced voltage alteration (LIVA) signal for analysis of the IC. The LIVA signal may be used to generate an image of the IC showing the location of any defects in the IC; and it may be further used to image and control the logic states of the IC. The invention has uses for IC failure analysis, for the development of ICs, for production-line inspection of ICs, and for qualification of ICs. 18 figs.

  9. Microscopic Analysis of Bacterial Motility at High Pressure

    PubMed Central

    Nishiyama, Masayoshi; Sowa, Yoshiyuki

    2012-01-01

    The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment. PMID:22768943

  10. Automated system for characterization and classification of malaria-infected stages using light microscopic images of thin blood smears.

    PubMed

    Das, D K; Maiti, A K; Chakraborty, C

    2015-03-01

    In this paper, we propose a comprehensive image characterization cum classification framework for malaria-infected stage detection using microscopic images of thin blood smears. The methodology mainly includes microscopic imaging of Leishman stained blood slides, noise reduction and illumination correction, erythrocyte segmentation, feature selection followed by machine classification. Amongst three-image segmentation algorithms (namely, rule-based, Chan-Vese-based and marker-controlled watershed methods), marker-controlled watershed technique provides better boundary detection of erythrocytes specially in overlapping situations. Microscopic features at intensity, texture and morphology levels are extracted to discriminate infected and noninfected erythrocytes. In order to achieve subgroup of potential features, feature selection techniques, namely, F-statistic and information gain criteria are considered here for ranking. Finally, five different classifiers, namely, Naive Bayes, multilayer perceptron neural network, logistic regression, classification and regression tree (CART), RBF neural network have been trained and tested by 888 erythrocytes (infected and noninfected) for each features' subset. Performance evaluation of the proposed methodology shows that multilayer perceptron network provides higher accuracy for malaria-infected erythrocytes recognition and infected stage classification. Results show that top 90 features ranked by F-statistic (specificity: 98.64%, sensitivity: 100%, PPV: 99.73% and overall accuracy: 96.84%) and top 60 features ranked by information gain provides better results (specificity: 97.29%, sensitivity: 100%, PPV: 99.46% and overall accuracy: 96.73%) for malaria-infected stage classification. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  11. Optimizing the performance of dual-axis confocal microscopes via Monte-Carlo scattering simulations and diffraction theory.

    PubMed

    Chen, Ye; Liu, Jonathan T C

    2013-06-01

    Dual-axis confocal (DAC) microscopy has been found to exhibit superior rejection of out-of-focus and multiply scattered background light compared to conventional single-axis confocal microscopy. DAC microscopes rely on the use of separated illumination and collection beam paths that focus and intersect at a single focal volume (voxel) within tissue. While it is generally recognized that the resolution and contrast of a DAC microscope depends on both the crossing angle of the DAC beams, 2θ, and the focusing numerical aperture of the individual beams, α, a detailed study to investigate these dependencies has not been performed. Contrast and resolution are considered as two main criteria to assess the performance of a point-scanned DAC microscope (DAC-PS) and a line-scanned DAC microscope (DAC-LS) as a function of θ and α. The contrast and resolution of these designs are evaluated by Monte-Carlo scattering simulations and diffraction theory calculations, respectively. These results can be used for guiding the optimal designs of DAC-PS and DAC-LS microscopes.

  12. Confocal endomicroscopy for in vivo microscopic analysis of upper gastrointestinal tract premalignant and malignant lesions.

    PubMed

    Gheorghe, Cristian; Iacob, Razvan; Becheanu, Gabriel; Dumbrav Abreve, Mona

    2008-03-01

    Confocal LASER endomicroscopy (CLE) is a new endoscopic technique which allows subsurface in vivo microscopic analysis during ongoing endoscopy, using systemically or topically administered fluorescent agents. It allows targeted biopsies to be taken, potentially improving the diagnostic rate in certain gastrointestinal diseases. Worldwide experience with CLE for upper gastrointestinal malignant and premalignant lesions is still reduced. Potential clinical applications are presented, including diagnosis of NERD, Barrett's esophagus, atrophic gatritis, gastric intestinal metaplasia and dysplasia, gastric adenomatous or hyperplastic polyps, gastric cancer.

  13. Comparison between laser terahertz emission microscope and conventional methods for analysis of polycrystalline silicon solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Hidetoshi, E-mail: nakanisi@screen.co.jp; Ito, Akira, E-mail: a.ito@screen.co.jp; Takayama, Kazuhisa, E-mail: takayama.k0123@gmail.com

    2015-11-15

    A laser terahertz emission microscope (LTEM) can be used for noncontact inspection to detect the waveforms of photoinduced terahertz emissions from material devices. In this study, we experimentally compared the performance of LTEM with conventional analysis methods, e.g., electroluminescence (EL), photoluminescence (PL), and laser beam induced current (LBIC), as an inspection method for solar cells. The results showed that LTEM was more sensitive to the characteristics of the depletion layer of the polycrystalline solar cell compared with EL, PL, and LBIC and that it could be used as a complementary tool to the conventional analysis methods for a solar cell.

  14. Laser-induced fluorescence microscopic system using an optical parametric oscillator for tunable detection in microchip analysis.

    PubMed

    Kumemura, Momoko; Odake, Tamao; Korenaga, Takashi

    2005-06-01

    A laser-induced fluorescence microscopic system based on optical parametric oscillation has been constructed as a tunable detector for microchip analysis. The detection limit of sulforhodamine B (Ex. 520 nm, Em. 570 nm) was 0.2 mumol, which was approximately eight orders of magnitude better than with a conventional fluorophotometer. The system was applied to the determination of fluorescence-labeled DNA (Ex. 494 nm, Em. 519 nm) in a microchannel and the detection limit reached a single molecule. These results showed the feasibility of this system as a highly sensitive and tunable fluorescence detector for microchip analysis.

  15. Neonatal lines in the enamel of primary teeth--a morphological and scanning electron microscopic investigation.

    PubMed

    Sabel, Nina; Johansson, Carina; Kühnisch, Jan; Robertson, Agneta; Steiniger, Frank; Norén, Jörgen G; Klingberg, Gunilla; Nietzsche, Sandor

    2008-10-01

    The neonatal line (NNL) is in principle found in all primary teeth and the line represents the time of birth. Earlier findings of the appearance of the NNL in light microscope and in microradiographs have shown not only changes in the prism direction of the enamel, but that the NNL has a hypomineralized character. The neonatal line was analyzed in un-decalcified sections of primary lower and central incisors, collected from individuals of different ages utilizing polarized light microscopy, microradiography, scanning electron microscopy (SEM) and X-ray analysis (XRMA). In polarized light the NNL appeared to have a more porous structure than the enamel in general. The appearance of the NNL as a dark line in microradiographs is interpreted as the NNL being less mineralized than neighbouring enamel. Analysis with ImageJ visualized the reduction of the amount of grey value, indicating that the NNL is less mineralized. Analysis of the NNL in SEM showed a reduction of the diameter of enamel prisms, the more narrow diameters continued through the postnatal enamel. A change of the growth direction of the prisms was also observed at the NNL. In a three-dimensional image the NNL appeared as a grove, however, in non-etched enamel no grove was seen. The elemental analyses with XRMA showed no marked changes in the content of C, Ca, P, N, O or S in the area around the NNL. The NNL is an optical phenomenon due to alterations in height, and degree of mineralization of the enamel prisms.

  16. Comparison of skin responses from macroscopic and microscopic UV challenges

    NASA Astrophysics Data System (ADS)

    Seo, InSeok; Bargo, Paulo R.; Chu, Melissa; Ruvolo, Eduardo; Kollias, Nikiforos

    2011-03-01

    The minimal erythema dose induced by solar-simulated radiation is a useful measure of UV sensitivity of skin. Most skin phototests have been conducted by projecting a flat field of UV radiation onto the skin in an area greater than 15 cm × 15 cm with an increment of radiation doses. In this study, we investigated the responses of human skin to solar-simulated radiation of different field sizes. Twelve human subjects of skin phototype I-IV were exposed to solar-simulated radiation (SSR) on their upper inner arm or on their lower back with a series of doses in increments of 20% in order to determine the threshold dose to induce a minimal perceptible erythema response (MED). Each dose was delivered with a liquid light guide (8 mm diameter on the back or 6 mm on the upper inner arm) and with quartz optical fibers of 200 μm diameter. The resulting skin responses were evaluated visually and investigated with a reflectance confocal microscope and imaging. The erythema response to the microscopic challenge was always diffuse with no clear boundaries extending to several times the exposed site diameter at doses greater than 2 MED. The skin returned to normal appearance from the microscopic challenge after two weeks of exposure while change in appearance for the larger areas persisted for several weeks to months. This new modality of testing provides the possibility to study skin at the microscopic level with a rapid recovery following challenge.

  17. Sleep Deprivation Alters Rat Ventral Prostate Morphology, Leading to Glandular Atrophy: A Microscopic Study Contrasted with the Hormonal Assays

    PubMed Central

    Venâncio, Daniel P.; Andersen, Monica L.; Vilamaior, Patricia S. L.; Santos, Fernanda C.; Zager, Adriano; Tufik, Sérgio; Taboga, Sebastião R.; De Mello, Marco T.

    2012-01-01

    We investigated the effect of 96 h paradoxical sleep deprivation (PSD) and 21-day sleep restriction (SR) on prostate morphology using stereological assays in male rats. After euthanasia, the rat ventral prostate was removed, weighed, and prepared for conventional light microscopy. Microscopic analysis of the prostate reveals that morphology of this gland was altered after 96 h of PSD and 21 days of SR, with the most important alterations occurring in the epithelium and stroma in the course of both procedures compared with the control group. Both 96 h PSD and 21-day SR rats showed lower serum testosterone and higher corticosterone levels than control rats. The significance of our result referring to the sleep deprivation was responsible for deep morphological alterations in ventral prostate tissue, like to castration microscopic modifications. This result is due to the marked alterations in hormonal status caused by PSD and SR. PMID:22927719

  18. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    PubMed

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Virtual reality microscope versus conventional microscope regarding time to diagnosis: an experimental study.

    PubMed

    Randell, Rebecca; Ruddle, Roy A; Mello-Thoms, Claudia; Thomas, Rhys G; Quirke, Phil; Treanor, Darren

    2013-01-01

      To create and evaluate a virtual reality (VR) microscope that is as efficient as the conventional microscope, seeking to support the introduction of digital slides into routine practice.   A VR microscope was designed and implemented by combining ultra-high-resolution displays with VR technology, techniques for fast interaction, and high usability. It was evaluated using a mixed factorial experimental design with technology and task as within-participant variables and grade of histopathologist as a between-participant variable. Time to diagnosis was similar for the conventional and VR microscopes. However, there was a significant difference in the mean magnification used between the two technologies, with participants working at a higher level of magnification on the VR microscope.   The results suggest that, with the right technology, efficient use of digital pathology for routine practice is a realistic possibility. Further work is required to explore what magnification is required on the VR microscope for histopathologists to identify diagnostic features, and the effect on this of the digital slide production process. © 2012 Blackwell Publishing Limited.

  20. The head-mounted microscope.

    PubMed

    Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J

    2012-04-01

    Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  1. Enhanced coupling of light into a turbid medium through microscopic interface engineering

    PubMed Central

    Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.

    2017-01-01

    There are many optical detection and sensing methods used today that provide powerful ways to diagnose, characterize, and study materials. For example, the measurement of spontaneous Raman scattering allows for remote detection and identification of chemicals. Many other optical techniques provide unique solutions to learn about biological, chemical, and even structural systems. However, when these systems exist in a highly scattering or turbid medium, the optical scattering effects reduce the effectiveness of these methods. In this article, we demonstrate a method to engineer the geometry of the optical interface of a turbid medium, thereby drastically enhancing the coupling efficiency of light into the material. This enhanced optical coupling means that light incident on the material will penetrate deeper into (and through) the medium. It also means that light thus injected into the material will have an enhanced interaction time with particles contained within the material. These results show that, by using the multiple scattering of light in a turbid medium, enhanced light–matter interaction can be achieved; this has a direct impact on spectroscopic methods such as Raman scattering and fluorescence detection in highly scattering regimes. Furthermore, the enhanced penetration depth achieved by this method will directly impact optical techniques that have previously been limited by the inability to deposit sufficient amounts of optical energy below or through highly scattering layers. PMID:28701381

  2. Statistical analysis of traversal behavior under different types of traffic lights

    NASA Astrophysics Data System (ADS)

    Wang, Boran; Wang, Ziyang; Li, Zhiyin

    2017-12-01

    According to the video observation, it is found that the traffic signal type signal has a significant effect on the illegal crossing behavior of pedestrians at the intersection. Through the method of statistical analysis and variance analysis, the difference between the violation rate and the waiting position of pedestrians at different intersecting lights is compared, and the influence of traffic signal type on pedestrian crossing behavior is evaluated. The results show that the violation rate of the intersection of the static pedestrian lights is significantly higher than that of the countdown signal lights. There are significant differences in the waiting position of the intersection of different signal lights.

  3. Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery

    NASA Astrophysics Data System (ADS)

    Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong

    2015-07-01

    Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.

  4. High-resolution, high-throughput imaging with a multibeam scanning electron microscope

    PubMed Central

    EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D

    2015-01-01

    Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873

  5. The Homemade Microscope.

    ERIC Educational Resources Information Center

    Baker, Roger C., Jr.

    1991-01-01

    Directions for the building of a pocket microscope that will make visible the details of insect structure and living bacteria are described. Background information on the history of microscopes and lenses is provided. The procedures for producing various types of lenses are included. (KR)

  6. Parallel-multiplexed excitation light-sheet microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Laser scanning light-sheet imaging allows fast 3D image of live samples with minimal bleach and photo-toxicity. Existing light-sheet techniques have very limited capability in multi-label imaging. Hyper-spectral imaging is needed to unmix commonly used fluorescent proteins with large spectral overlaps. However, the challenge is how to perform hyper-spectral imaging without sacrificing the image speed, so that dynamic and complex events can be captured live. We report wavelength-encoded structured illumination light sheet imaging (λ-SIM light-sheet), a novel light-sheet technique that is capable of parallel multiplexing in multiple excitation-emission spectral channels. λ-SIM light-sheet captures images of all possible excitation-emission channels in true parallel. It does not require compromising the imaging speed and is capable of distinguish labels by both excitation and emission spectral properties, which facilitates unmixing fluorescent labels with overlapping spectral peaks and will allow more labels being used together. We build a hyper-spectral light-sheet microscope that combined λ-SIM with an extended field of view through Bessel beam illumination. The system has a 250-micron-wide field of view and confocal level resolution. The microscope, equipped with multiple laser lines and an unlimited number of spectral channels, can potentially image up to 6 commonly used fluorescent proteins from blue to red. Results from in vivo imaging of live zebrafish embryos expressing various genetic markers and sensors will be shown. Hyper-spectral images from λ-SIM light-sheet will allow multiplexed and dynamic functional imaging in live tissue and animals.

  7. DNA Binding Peptide Directed Synthesis of Continuous DNA Nanowires for Analysis of Large DNA Molecules by Scanning Electron Microscope.

    PubMed

    Kim, Kyung-Il; Lee, Seonghyun; Jin, Xuelin; Kim, Su Ji; Jo, Kyubong; Lee, Jung Heon

    2017-01-01

    Synthesis of smooth and continuous DNA nanowires, preserving the original structure of native DNA, and allowing its analysis by scanning electron microscope (SEM), is demonstrated. Gold nanoparticles densely assembled on the DNA backbone via thiol-tagged DNA binding peptides work as seeds for metallization of DNA. This method allows whole analysis of DNA molecules with entangled 3D features. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Design of a normal incidence multilayer imaging X-ray microscope

    NASA Astrophysics Data System (ADS)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  9. A simple backscattering microscope for fast tracking of biological molecules

    PubMed Central

    Sowa, Yoshiyuki; Steel, Bradley C.; Berry, Richard M.

    2010-01-01

    Recent developments in techniques for observing single molecules under light microscopes have helped reveal the mechanisms by which molecular machines work. A wide range of markers can be used to detect molecules, from single fluorophores to micron sized markers, depending on the research interest. Here, we present a new and simple objective-type backscattering microscope to track gold nanoparticles with nanometer and microsecond resolution. The total noise of our system in a 55 kHz bandwidth is ∼0.6 nm per axis, sufficient to measure molecular movement. We found our backscattering microscopy to be useful not only for in vitro but also for in vivo experiments because of lower background scattering from cells than in conventional dark-field microscopy. We demonstrate the application of this technique to measuring the motion of a biological rotary molecular motor, the bacterial flagellar motor, in live Escherichia coli cells. PMID:21133475

  10. Ethnic Distribution of Microscopic Colitis in the United States.

    PubMed

    Turner, Kevin; Genta, Robert M; Sonnenberg, Amnon

    2015-11-01

    A large electronic database of histopathology reports was used to study the ethnic distribution of microscopic colitis in the United States. Miraca Life Sciences is a nation-wide pathology laboratory that receives biopsy specimens submitted by 1500 gastroenterologists distributed throughout the United States. In a case-control study, the prevalence of microscopic colitis in 4 ethnic groups (East Asians, Indians, Hispanics, and Jews) was compared with that of all other ethnic groups (composed of American Caucasians and African Americans), serving as reference group. A total of 11,706 patients with microscopic colitis were included in the analysis. In all ethnic groups alike, microscopic colitis was more common in women than men (78% versus 22%, odds ratio = 3.40, 95% confidence interval = 3.26-3.55). In all ethnic groups, the prevalence of microscopic colitis showed a continuous age-dependent rise. Hispanic patients with microscopic colitis were on average younger than the reference group (59.4 ± 16.2 years versus 64.2 ± 13.8 years, P < 0.001). Jewish patients with microscopic colitis were slightly older than the reference group (65.6 ± 13.4 years, P = 0.015). Compared with the reference group (prevalence = 1.20%), microscopic colitis was significantly less common among patients of Indian (prevalence = 0.28%, odds ratio = 0.32, 95% confidence interval = 0.13-0.65), East Asian (0.22%, 0.19, 0.14-0.26), or Hispanic decent (0.48%, 0.40, 0.36-0.45) and significantly more common among Jewish patients (1.30%, 1.10, 1.01-1.21). Microscopic colitis shows striking variations of its occurrence among different ethnic groups. Such variations could point at differences in the exposure to environmental risk factors.

  11. Mailing microscope slides

    USDA-ARS?s Scientific Manuscript database

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  12. Multispectral digital lensless holographic microscopy: from femtosecond laser to white light LED

    NASA Astrophysics Data System (ADS)

    Garcia-Sucerquia, J.

    2015-04-01

    The use of femtosecond laser radiation and super bright white LED in digital lensless holographic microscopy is presented. For the ultrafast laser radiation two different configurations of operation of the microscope are presented and the dissimilar performance of each one analyzed. The microscope operating with a super bright white light LED in combination with optical filters shows very competitive performance as it is compared with more expensive optical sources. The broadband emission of both radiation sources allows the multispectral imaging of biological samples to obtain spectral responses and/or full color images of the microscopic specimens; sections of the head of a Drosophila melanogaster fly are imaged in this contribution. The simple, solid, compact, lightweight, and reliable architecture of digital lensless holographic microscopy operating with broadband light sources to image biological specimens exhibiting micrometer-sized details is evaluated in the present contribution.

  13. Refining Students' Explanations of an Unfamiliar Physical Phenomenon-Microscopic Friction

    NASA Astrophysics Data System (ADS)

    Corpuz, Edgar De Guzman; Rebello, N. Sanjay

    2017-08-01

    The first phase of this multiphase study involves modeling of college students' thinking of friction at the microscopic level. Diagnostic interviews were conducted with 11 students with different levels of physics backgrounds. A phenomenographic approach of data analysis was used to generate categories of responses which subsequently were used to generate a model of explanation. Most of the students interviewed consistently used mechanical interactions in explaining microscopic friction. According to these students, friction is due to the interlocking or rubbing of atoms. Our data suggest that students' explanations of microscopic friction are predominantly influenced by their macroscopic experiences. In the second phase of the research, teaching experiment was conducted with 18 college students to investigate how students' explanations of microscopic friction can be refined by a series of model-building activities. Data were analyzed using Redish's two-level transfer framework. Our results show that through sequences of hands-on and minds-on activities, including cognitive dissonance and resolution, it is possible to facilitate the refinement of students' explanations of microscopic friction. The activities seemed to be productive in helping students activate associations that refine their ideas about microscopic friction.

  14. A cost-effective fluorescence mini-microscope for biomedical applications.

    PubMed

    Zhang, Yu Shrike; Ribas, João; Nadhman, Akhtar; Aleman, Julio; Selimović, Šeila; Lesher-Perez, Sasha Cai; Wang, Ting; Manoharan, Vijayan; Shin, Su-Ryon; Damilano, Alessia; Annabi, Nasim; Dokmeci, Mehmet Remzi; Takayama, Shuichi; Khademhosseini, Ali

    2015-01-01

    We have designed and fabricated a miniature microscope from off-the-shelf components and a webcam, with built-in fluorescence capability for biomedical applications. The mini-microscope was able to detect both biochemical parameters, such as cell/tissue viability (e.g. live/dead assay), and biophysical properties of the microenvironment such as oxygen levels in microfabricated tissues based on an oxygen-sensitive fluorescent dye. This mini-microscope has adjustable magnifications from 8-60×, achieves a resolution as high as <2 μm, and possesses a long working distance of 4.5 mm (at a magnification of 8×). The mini-microscope was able to chronologically monitor cell migration and analyze beating of microfluidic liver and cardiac bioreactors in real time, respectively. The mini-microscope system is cheap, and its modularity allows convenient integration with a wide variety of pre-existing platforms including, but not limited to, cell culture plates, microfluidic devices, and organs-on-a-chip systems. Therefore, we envision its widespread application in cell biology, tissue engineering, biosensing, microfluidics, and organs-on-chips, which can potentially replace conventional bench-top microscopy where long-term in situ and large-scale imaging/analysis is required.

  15. Working at the microscope: analysis of the activities involved in diagnostic pathology.

    PubMed

    Randell, Rebecca; Ruddle, Roy A; Quirke, Phil; Thomas, Rhys G; Treanor, Darren

    2012-02-01

    To study the current work practice of histopathologists to inform the design of digital microscopy systems. Four gastrointestinal histopathologists were video-recorded as they undertook their routine work. Analysis of the video data shows a range of activities beyond viewing slides involved in reporting a case. There is much overlapping of activities, supported by the 'eyes free' nature of the pathologists' interaction with the microscope. The order and timing of activities varies according to consultant. In order to support the work of pathologists adequately, digital microscopy systems need to provide support for a range of activities beyond viewing slides. Digital microscopy systems should support multitasking, while also providing flexibility so that pathologists can adapt their use of the technology to their own working patterns. © 2011 Blackwell Publishing Ltd.

  16. Laser confocal microscope for analysis of 3013 inner container closure weld region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Rodriguez, M. J.

    As part of the protocol to investigate the corrosion in the inner container closure weld region (ICCWR) a laser confocal microscope (LCM) was used to perform close visual examination of the surface and measurements of corrosion features on the surface. However, initial analysis of selected destructively evaluated (DE) containers using the LCM revealed several challenges for acquiring, processing and interpreting the data. These challenges include topography of the ICCWR sample, surface features, and the amount of surface area for collecting data at high magnification conditions. In FY17, the LCM parameters were investigated to identify the appropriate parameter values for datamore » acquisition and identification of regions of interest. Using these parameter values, selected DE containers were analyzed to determine the extent of the ICCWR to be examined.« less

  17. Optical design and system characterization of an imaging microscope at 121.6 nm

    NASA Astrophysics Data System (ADS)

    Gao, Weichuan; Finan, Emily; Kim, Geon-Hee; Kim, Youngsik; Milster, Thomas D.

    2018-03-01

    We present the optical design and system characterization of an imaging microscope prototype at 121.6 nm. System engineering processes are demonstrated through the construction of a Schwarzschild microscope objective, including tolerance analysis, fabrication, alignment, and testing. Further improvements on the as-built system with a correction phase plate are proposed and analyzed. Finally, the microscope assembly and the imaging properties of the prototype are demonstrated.

  18. Automated Microscopy: Macro Language Controlling a Confocal Microscope and its External Illumination: Adaptation for Photosynthetic Organisms.

    PubMed

    Steinbach, Gábor; Kaňa, Radek

    2016-04-01

    Photosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (through Time Controller offered by Olympus or Experiment Designer offered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with the Cell⊕Finder software was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) the Cell⊕Finder software with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser. Cell⊕Finder can be downloaded from http://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity in Synechocystis sp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.

  19. Microscope collision protection apparatus

    DOEpatents

    DeNure, Charles R.

    2001-10-23

    A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.

  20. General model for the pointing error analysis of Risley-prism system based on ray direction deviation in light refraction

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yuan, Yan; Su, Lijuan; Huang, Fengzhen; Bai, Qing

    2016-09-01

    The Risley-prism-based light beam steering apparatus delivers superior pointing accuracy and it is used in imaging LIDAR and imaging microscopes. A general model for pointing error analysis of the Risley prisms is proposed in this paper, based on ray direction deviation in light refraction. This model captures incident beam deviation, assembly deflections, and prism rotational error. We derive the transmission matrixes of the model firstly. Then, the independent and cumulative effects of different errors are analyzed through this model. Accuracy study of the model shows that the prediction deviation of pointing error for different error is less than 4.1×10-5° when the error amplitude is 0.1°. Detailed analyses of errors indicate that different error sources affect the pointing accuracy to varying degree, and the major error source is the incident beam deviation. The prism tilting has a relative big effect on the pointing accuracy when prism tilts in the principal section. The cumulative effect analyses of multiple errors represent that the pointing error can be reduced by tuning the bearing tilting in the same direction. The cumulative effect of rotational error is relative big when the difference of these two prism rotational angles equals 0 or π, while it is relative small when the difference equals π/2. The novelty of these results suggests that our analysis can help to uncover the error distribution and aid in measurement calibration of Risley-prism systems.

  1. Nanocarpets for Trapping Microscopic Particles

    NASA Technical Reports Server (NTRS)

    Noca, Flavio; Chen, Fei; Hunt, Brian; Bronikowski, Michael; Hoenk, Michael; Kowalczyk, Robert; Choi, Daniel

    2004-01-01

    Nanocarpets that is, carpets of carbon nanotubes are undergoing development as means of trapping microscopic particles for scientific analysis. Examples of such particles include inorganic particles, pollen, bacteria, and spores. Nanocarpets can be characterized as scaled-down versions of ordinary macroscopic floor carpets, which trap dust and other particulate matter, albeit not purposefully. Nanocarpets can also be characterized as mimicking both the structure and the particle-trapping behavior of ciliated lung epithelia, the carbon nanotubes being analogous to cilia. Carbon nanotubes can easily be chemically functionalized for selective trapping of specific particles of interest. One could, alternatively, use such other three-dimensionally-structured materials as aerogels and activated carbon for the purposeful trapping of microscopic particles. However, nanocarpets offer important advantages over these alternative materials: (1) Nanocarpets are amenable to nonintrusive probing by optical means; and (2) Nanocarpets offer greater surface-to-volume ratios.

  2. Elemental distribution analysis of urinary crystals.

    PubMed

    Fazil Marickar, Y M; Lekshmi, P R; Varma, Luxmi; Koshy, Peter

    2009-10-01

    Various crystals are seen in human urine. Some of them, particularly calcium oxalate dihydrate, are seen normally. Pathological crystals indicate crystal formation initiating urinary stones. Unfortunately, many of the relevant crystals are not recognized in light microscopic analysis of the urinary deposit performed in most of the clinical laboratories. Many crystals are not clearly identifiable under the ordinary light microscopy. The objective of the present study was to perform scanning electron microscopic (SEM) assessment of various urinary deposits and confirm the identity by elemental distribution analysis (EDAX). 50 samples of urinary deposits were collected from urinary stone clinic. Deposits containing significant crystalluria (more than 10 per HPF) were collected under liquid paraffin in special containers and taken up for SEM studies. The deposited crystals were retrieved with appropriate Pasteur pipettes, and placed on micropore filter paper discs. The fluid was absorbed by thicker layers of filter paper underneath and discs were fixed to brass studs. They were then gold sputtered to 100 A and examined under SEM (Jeol JSM 35C microscope). When crystals were seen, their morphology was recorded by taking photographs at different angles. At appropriate magnification, EDAX probe was pointed to the crystals under study and the wave patterns analyzed. Components of the crystals were recognized by utilizing the data. All the samples analyzed contained significant number of crystals. All samples contained more than one type of crystal. The commonest crystals encountered included calcium oxalate monohydrate (whewellite 22%), calcium oxalate dihydrate (weddellite 32%), uric acid (10%), calcium phosphates, namely, apatite (4%), brushite (6%), struvite (6%) and octocalcium phosphate (2%). The morphological appearances of urinary crystals described were correlated with the wavelengths obtained through elemental distribution analysis. Various urinary crystals that

  3. Efficacy of oral exfoliative cytology in diabetes mellitus patients: a light microscopic and confocal microscopic study.

    PubMed

    Gopal, Deepika; Malathi, N; Reddy, B Thirupathi

    2015-03-01

    Diabetes mellitus (DM) has become a global problem. By monitoring the health status of these individuals, diabetic complications can be prevented. We aimed to analyze alterations in the morphology and cytomorphometry of buccal epithelial cells of type 2 DM patients using oral exfoliative cytology technique and determine its importance in public health screening, diagnosis and monitoring of diabetes mellitus. The study was carried out in 100 type 2 DM patients and 30 healthy individuals. Smears were taken from the right buccal mucosa and stained by the Papanicolaou technique. Staining with Acridine orange was carried out to view qualitative changes with confocal laser scanning microscope (LSM-510 Meta). The cytomorphometry was evaluated using IMAGE PRO PLUS 5.5 software with Evolution LC camera. All findings were statistically analyzed. The results showed that with increase in fasting plasma glucose levels, there is significant increase in nuclear area, decrease in cytoplasmic area, and increase in nuclear cytoplasmic ratio (p < 0.05) when compared to the control group. Various qualitative changes were noted, such as cell degeneration, micronuclei, binucleation, intracytoplasmic inclusion, candida and keratinization. In the present study, we found significant alterations in the cytomorphometry and cytomorphology of buccal epithelial cells of type 2 DM patients. This study supports and extends the view that these cellular changes can alert the clinician to the possibility of diabetes and aid in monitoring of diabetes throughout the lifetime of the patient.

  4. Macro-microscopic anatomy: obtaining a composite view of barrier zone formation in Acer saccharum

    Treesearch

    Kenneth Dudzik

    1988-01-01

    The technique for constructing a montage of large wood sections cut on a sliding microtome is discussed. Briefly, the technique involves photographing many serial micrographs in a pattern under a light microscope similar to the way flight lines are run in aerial photography. Assembly of the resulting overlapping photographs requires careful trimming. A composite of...

  5. Diffuse light-sheet microscopy for stripe-free calcium imaging of neural populations.

    PubMed

    Taylor, Michael A; Vanwalleghem, Gilles C; Favre-Bulle, Itia A; Scott, Ethan K

    2018-06-19

    Light-sheet microscopy is used extensively in developmental biology and neuroscience. One limitation of this approach is that absorption and scattering produces shadows in the illuminating light sheet, resulting in stripe artifacts. Here, we introduce diffuse light-sheet microscopes that use a line diffuser to randomize the light propagation within the image plane, allowing the light sheets to reform after obstacles. We incorporate diffuse light sheets in two existing configurations: selective plane illumination microscopy (SPIM) in which the sample is illuminated with a static sheet of light, and digitally scanned light sheet (DSLS) in which a thin Gaussian beam is scanned across the image plane during each acquisition. We compare diffuse light-sheet microscopes to their conventional counterparts for calcium imaging of neural activity in larval zebrafish. We show that stripe artifacts can cast deep shadows that conceal some neurons, and that the stripes can flicker, producing spurious signals that could be interpreted as biological activity. Diffuse light sheets mitigate these problems, illuminating the blind spots produced by stripes and removing artifacts produced by the stripes' movements. The upgrade to diffuse light sheets is simple and inexpensive, especially in the case of DSLS, where it requires the addition of one optical element. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Microscopic Description of Le Châtelier's Principle

    NASA Astrophysics Data System (ADS)

    Novak, Igor

    2005-08-01

    The analysis based on microscopic descriptors (energy levels and their populations) is given that provides visualization of free energies and conceptual rationalization of Le Châtelier's principle. The misconception "nature favors equilibrium" is highlighted.

  7. Physics and engineering aspects of cell and tissue imaging systems: microscopic devices and computer assisted diagnosis.

    PubMed

    Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong

    2013-01-01

    The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.

  8. Microscopic Analysis of Plankton, Periphyton, and Activated Sludge. Training Manual.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This manual is intended for professional personnel in the fields of water pollution control, limnology, water supply and waste treatment. Primary emphasis is given to practice in the identification and enumeration of microscopic organisms which may be encountered in water and activated sludge. Methods for the chemical and instrumental evaluation…

  9. Correlative light and electron microscopic detection of GFP-labeled proteins using modular APEX.

    PubMed

    Ariotti, Nicholas; Hall, Thomas E; Parton, Robert G

    2017-01-01

    The use of green fluorescent protein (GFP) and related proteins has revolutionized light microscopy. Here we describe a rapid and simple method to localize GFP-tagged proteins in cells and in tissues by electron microscopy (EM) using a modular approach involving a small GFP-binding peptide (GBP) fused to the ascorbate peroxidase-derived APEX2 tag. We provide a method for visualizing GFP-tagged proteins by light and EM in cultured cells and in the zebrafish using modular APEX-GBP. Furthermore, we describe in detail the benefits of this technique over many of the currently available correlative light and electron microscopy approaches and demonstrate APEX-GBP is readily applicable to modern three-dimensional techniques. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Morphology of the leather defect light flecks and spots.

    PubMed

    Nafstad, O; Wisløff, H; Grønstøl, H

    2001-01-01

    The skin histology and the scanning electron microscope morphology of the hide defect light flecks and spots after tanning were studied in 11 steers infested with biting lice (Damalinia bovis). Nine steers from herds free of lice were used as controls. Skin biopsies from 6 of the animals in the lice infested group showed mild to moderate hyperkeratosis and moderate perivascular to diffuse dermatitis with infiltration of mainly mononuclear cells and some eosinophilic granulocytes. The steers were slaughtered at an age of 18 to 23 months. Light flecks and spots occurred on all examined hides from the infested group after tanning. No examined hides from the control group demonstrated similar damage. Both light microscopic examination of sections of tanned hide with light flecks and spots and scanning electron microscopy of the same defects showed superficial grain loss and craters with a irregular fibre base encircled by smooth and intact grain. The association between louse infestation at an early age and damage of hides following slaughter 6 to 15 months later, suggested that louse infestations lead to a prolonged or lifelong weakening in the dermis. This weakening may cause superficial grain loss during the tanning process.

  11. Morphology of the Leather Defect Light Flecks and Spots

    PubMed Central

    Nafstad, O; Wisløff, H; Grønstøl, H

    2001-01-01

    The skin histology and the scanning electron microscope morphology of the hide defect light flecks and spots after tanning were studied in 11 steers infested with biting lice (Damalinia bovis). Nine steers from herds free of lice were used as controls. Skin biopsies from 6 of the animals in the lice infested group showed mild to moderate hyperkeratosis and moderate perivascular to diffuse dermatitis with infiltration of mainly mononuclear cells and some eosinophilic granulocytes. The steers were slaughtered at an age of 18 to 23 months. Light flecks and spots occurred on all examined hides from the infested group after tanning. No examined hides from the control group demonstrated similar damage. Both light microscopic examination of sections of tanned hide with light flecks and spots and scanning electron microscopy of the same defects showed superficial grain loss and craters with a irregular fibre base encircled by smooth and intact grain. The association between louse infestation at an early age and damage of hides following slaughter 6 to 15 months later, suggested that louse infestations lead to a prolonged or lifelong weakening in the dermis. This weakening may cause superficial grain loss during the tanning process. PMID:11455890

  12. Retinal adaptation to dim light vision in spectacled caimans (Caiman crocodilus fuscus): Analysis of retinal ultrastructure.

    PubMed

    Karl, Anett; Agte, Silke; Zayas-Santiago, Astrid; Makarov, Felix N; Rivera, Yomarie; Benedikt, Jan; Francke, Mike; Reichenbach, Andreas; Skatchkov, Serguei N; Bringmann, Andreas

    2018-05-19

    It has been shown that mammalian retinal glial (Müller) cells act as living optical fibers that guide the light through the retinal tissue to the photoreceptor cells (Agte et al., 2011; Franze et al., 2007). However, for nonmammalian species it is unclear whether Müller cells also improve the transretinal light transmission. Furthermore, for nonmammalian species there is a lack of ultrastructural data of the retinal cells, which, in general, delivers fundamental information of the retinal function, i.e. the vision of the species. A detailed study of the cellular ultrastructure provides a basic approach of the research. Thus, the aim of the present study was to investigate the retina of the spectacled caimans at electron and light microscopical levels to describe the structural features. For electron microscopy, we used a superfast microwave fixation procedure in order to achieve more precise ultrastructural information than common fixation techniques. As result, our detailed ultrastructural study of all retinal parts shows structural features which strongly indicate that the caiman retina is adapted to dim light and night vision. Various structural characteristics of Müller cells suppose that the Müller cell may increase the light intensity along the path of light through the neuroretina and, thus, increase the sensitivity of the scotopic vision of spectacled caimans. Müller cells traverse the whole thickness of the neuroretina and thus may guide the light from the inner retinal surface to the photoreceptor cell perikarya and the Müller cell microvilli between the photoreceptor segments. Thick Müller cell trunks/processes traverse the layers which contain light-scattering structures, i.e., nerve fibers and synapses. Large Müller cell somata run through the inner nuclear layer and contain flattened, elongated Müller cell nuclei which are arranged along the light path and, thus, may reduce the loss of the light intensity along the retinal light path. The

  13. Extended morphological processing: a practical method for automatic spot detection of biological markers from microscopic images.

    PubMed

    Kimori, Yoshitaka; Baba, Norio; Morone, Nobuhiro

    2010-07-08

    A reliable extraction technique for resolving multiple spots in light or electron microscopic images is essential in investigations of the spatial distribution and dynamics of specific proteins inside cells and tissues. Currently, automatic spot extraction and characterization in complex microscopic images poses many challenges to conventional image processing methods. A new method to extract closely located, small target spots from biological images is proposed. This method starts with a simple but practical operation based on the extended morphological top-hat transformation to subtract an uneven background. The core of our novel approach is the following: first, the original image is rotated in an arbitrary direction and each rotated image is opened with a single straight line-segment structuring element. Second, the opened images are unified and then subtracted from the original image. To evaluate these procedures, model images of simulated spots with closely located targets were created and the efficacy of our method was compared to that of conventional morphological filtering methods. The results showed the better performance of our method. The spots of real microscope images can be quantified to confirm that the method is applicable in a given practice. Our method achieved effective spot extraction under various image conditions, including aggregated target spots, poor signal-to-noise ratio, and large variations in the background intensity. Furthermore, it has no restrictions with respect to the shape of the extracted spots. The features of our method allow its broad application in biological and biomedical image information analysis.

  14. Frequency-doubled Alexandrite laser for use in periodontology: a scanning electron microscopic investigation

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Hennig, Thomas

    1996-12-01

    During prior studies it could be demonstrated that engaging a frequency double Alexandrite-laser allows a fast and strictly selective ablation of supra- and subgingival calculus. Furthermore, the removal of unstained microbial plaque was observed. First conclusions were drawn following light microscopic investigations on undecalcified sections of irradiated teeth. In the present study the cementum surface after irradiation with a frequency doubled Alexandrite-laser was observed by means of a scanning electron microscope. After irradiation sections of teeth were dried in alcohol and sputtered with gold. In comparison irradiated cementum surfaces of unerupted operatively removed wisdom teeth and tooth surfaces after the selective removal of calculus were investigated. A complete removal of calculus was observed as well as a remaining smooth surface of irradiated cementum.

  15. Robotic autopositioning of the operating microscope.

    PubMed

    Oppenlander, Mark E; Chowdhry, Shakeel A; Merkl, Brandon; Hattendorf, Guido M; Nakaji, Peter; Spetzler, Robert F

    2014-06-01

    Use of the operating microscope has become pervasive since its introduction to the neurosurgical world. Neuronavigation fused with the operating microscope has allowed accurate correlation of the focal point of the microscope and its location on the downloaded imaging study. However, the robotic ability of the Pentero microscope has not been utilized to orient the angle of the microscope or to change its focal length to hone in on a predefined target. To report a novel technology that allows automatic positioning of the operating microscope onto a set target and utilization of a planned trajectory, either determined with the StealthStation S7 by using preoperative imaging or intraoperatively with the microscope. By utilizing the current motorized capabilities of the Zeiss OPMI Pentero microscope, a robotic autopositioning feature was developed in collaboration with Surgical Technologies, Medtronic, Inc. (StealthStation S7). The system is currently being tested at the Barrow Neurological Institute. Three options were developed for automatically positioning the microscope: AutoLock Current Point, Align Parallel to Plan, and Point to Plan Target. These options allow the microscope to pivot around the lesion, hover in a set plane parallel to the determined trajectory, or rotate and point to a set target point, respectively. Integration of automatic microscope positioning into the operative workflow has potential to increase operative efficacy and safety. This technology is best suited for precise trajectories and entry points into deep-seated lesions.

  16. Scanning transmission x-ray microscope for materials science spectromicroscopy at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warwick, T.; Seal, S.; Shin, H.

    1997-04-01

    The brightness of the Advanced Light Source will be exploited by several new instruments for materials science spectromicroscopy over the next year or so. The first of these to become operational is a scanning transmission x-ray microscope with which near edge x-ray absorption spectra (NEXAFS) can be measured on spatial features of sub-micron size. Here the authors describe the instrument as it is presently implemented, its capabilities, some studies made to date and the developments to come. The Scanning Transmission X-ray Microscope makes use of a zone plate lens to produce a small x-ray spot with which to perform absorptionmore » spectroscopy through thin samples. The x-ray beam from ALS undulator beamline 7.0 emerges into the microscope vessel through a silicon nitride vacuum window 160nm thick and 300{mu}m square. The vessel is filled with helium at atmospheric pressure. The zone plate lens is illuminated 1mm downstream from the vacuum window and forms an image in first order of a pinhole which is 3m upstream in the beamline. An order sorting aperture passes the first order converging light and blocks the unfocused zero order. The sample is at the focus a few mm downstream of the zone plate and mounted from a scanning piezo stage which rasters in x and y so that an image is formed, pixel by pixel, by an intensity detector behind the sample. Absorption spectra are measured point-by-point as the photon energy is scanned by rotating the diffraction grating in the monochromator and changing the undulator gap.« less

  17. In-office dental bleaching with light vs. without light: A systematic review and meta-analysis.

    PubMed

    Maran, Bianca Medeiros; Burey, Adrieli; de Paris Matos, Thalita; Loguercio, Alessandro D; Reis, Alessandra

    2018-03-01

    A systematic review and meta-analysis were performed to answer the following research question: Does light-activated in-office vital bleaching have a greater whitening efficacy and higher tooth sensitivity (TS) in comparison with in-office vital bleaching without light when used in adults? Only randomized clinical trials (RCTs) involving adults who had in-office bleaching with and without light activation were included. Controlled vocabulary and keywords were used in a comprehensive search for titles and abstracts in PubMed, and this search was adapted for Scopus, Web of Science, LILACS, BBO, Cochrane Library, and SIGLE without restrictions in May 2016 and was updated in August 2017. IADR abstracts (1990-2016), unpublished- and ongoing-trial registries, dissertations, and theses were also searched. The risk-of-bias tool of the Cochrane Collaboration was used for quality assessment. The quality of the evidence was rated using the Grading of Recommendations: Assessment, Development, and Evaluation approach. Through the use of the random effects model, a meta-analysis with a subgroup analysis (low and high hydrogen peroxide concentration) was conducted for color change (ΔE*, ΔSGU) as well as the risk and intensity of TS. We retrieved 6663 articles, but after removing duplicates and non-relevant articles, only 21 RCTs remained. No significant difference in ΔE*, ΔSGU, and risk and intensity of TS was observed (p > .05). For ΔE and risk of TS, the quality of the evidence was graded as moderate whereas the evidence for ΔSGU and intensity of TS was graded as very low and low, respectively. Without considering variations in the protocols, the activation of in-office bleaching gel with light does not seem to improve color change or affect tooth sensitivity, regardless of the hydrogen peroxide concentration. (PROSPERO - CRD42016037630). Although it is commercially claimed that in-office bleaching associated with light improves and accelerates color change, this

  18. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  19. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  20. Light Microscopy Module (LMM)-Emulator

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Smith, Trent M.; Richards, Stephanie E.

    2016-01-01

    The Light Microscopy Module (LMM) is a microscope facility developed at Glenn Research Center (GRC) that provides researchers with powerful imaging capability onboard the International Space Station (ISS). LMM has the ability to have its hardware recongured on-orbit to accommodate a wide variety of investigations, with the capability of remotely acquiring and downloading digital images across multiple levels of magnication.

  1. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  2. Foveal light exposure is increased at the time of removal of silicone oil with the potential for phototoxicity.

    PubMed

    Dogramaci, Mahmut; Williams, Katie; Lee, Ed; Williamson, Tom H

    2013-01-01

    There is sudden and dramatic visual function deterioration in 1-10 % of eyes filled with silicone oil at the time of removal of silicon oil. Transmission of high-energy blue light is increased in eyes filled with silicone oil. We sought to identify if increased foveal light exposure is a potential factor in the pathophysiology of the visual loss at the time of removal of silicone oil. A graphic ray tracing computer program and laboratory models were used to determine the effect of the intraocular silicone oil bubble size on the foveal illuminance at the time of removal of silicone oil under direct microscope light. The graphic ray tracing computer program revealed a range of optical vignetting effects created by different sizes of silicone oil bubble within the vitreous cavity giving rise to an uneven macular illumination. The laboratory model was used to quantify the variation of illuminance at the foveal region with different sizes of silicone oil bubble with in the vitreous cavity at the time of removal of silicon oil under direct microscope light. To substantiate the hypothesis of the light toxicity during removal of silicone oil, The outcome of oil removal procedures performed under direct microscope illumination in compared to those performed under blocked illumination. The computer program showed that the optical vignetting effect at the macula was dependent on the size of the intraocular silicone oil bubble. The laboratory eye model showed that the foveal illuminance followed a bell-shaped curve with 70 % greater illuminance demonstrated at with 50-60 % silicone oil fill. The clinical data identified five eyes with unexplained vision loss out of 114 eyes that had the procedure performed under direct microscope illumination compared to none out of 78 eyes that had the procedure under blocked illumination. Foveal light exposure, and therefore the potential for phototoxicity, is transiently increased at the time of removal of silicone oil. This is due to

  3. Optical Coherence Tomography–Enhanced Microlaryngoscopy: Preliminary Report of a Noncontact Optical Coherence Tomography System Integrated With a Surgical Microscope

    PubMed Central

    Vokes, David E.; Jackson, Ryan; Guo, Shuguang; Perez, Jorge A.; Su, Jianping; Ridgway, James M.; Armstrong, William B.; Chen, Zhongping; Wong, Brian J. F.

    2014-01-01

    Objectives Optical coherence tomography (OCT) is a new imaging modality that uses near-infrared light to produce cross-sectional images of tissue with a resolution approaching that of light microscopy. We have previously reported use of OCT imaging of the vocal folds (VFs) during direct laryngoscopy with a probe held in contact or near-contact with the VFs. This aim of this study was to develop and evaluate a novel OCT system integrated with a surgical microscope to allow hands-free OCT imaging of the VFs, which could be performed simultaneously with microscopic visualization. Methods We performed a prospective evaluation of a new method of acquiring OCT images of the VFs. Results An OCT system was successfully integrated with a surgical microscope to permit noncontact OCT imaging of the VFs of 10 patients. With this novel device we were able to identify VF epithelium and lamina propria; however, the resolution was reduced compared to that achieved with the standard contact or near-contact OCT. Conclusions Optical coherence tomography is able to produce high-resolution images of vocal fold mucosa to a maximum depth of 1.6 mm. It may be used in the diagnosis of VF lesions, particularly early squamous cell carcinoma, in which OCT can show disruption of the basement membrane. Mounting the OCT device directly onto the operating microscope allows hands-free noncontact OCT imaging and simultaneous conventional microscopic visualization of the VFs. However, the lateral resolution of the OCT microscope system is 50 µm, in contrast to the conventional handheld probe system (10 µm). Although such images at this resolution are still useful clinically, improved resolution would enhance the system’s performance, potentially enabling real-time OCT-guided microsurgery of the larynx. PMID:18700431

  4. Light-sheet microscopy for everyone? Experience of building an OpenSPIM to study flatworm development.

    PubMed

    Girstmair, Johannes; Zakrzewski, Anne; Lapraz, François; Handberg-Thorsager, Mette; Tomancak, Pavel; Pitrone, Peter Gabriel; Simpson, Fraser; Telford, Maximilian J

    2016-06-30

    Selective plane illumination microscopy (SPIM a type of light-sheet microscopy) involves focusing a thin sheet of laser light through a specimen at right angles to the objective lens. As only the thin section of the specimen at the focal plane of the lens is illuminated, out of focus light is naturally absent and toxicity due to light (phototoxicity) is greatly reduced enabling longer term live imaging. OpenSPIM is an open access platform (Pitrone et al. 2013 and OpenSPIM.org) created to give new users step-by-step instructions on building a basic configuration of a SPIM microscope, which can in principle be adapted and upgraded to each laboratory's own requirements and budget. Here we describe our own experience with the process of designing, building, configuring and using an OpenSPIM for our research into the early development of the polyclad flatworm Maritigrella crozieri - a non-model animal. Our OpenSPIM builds on the standard design with the addition of two colour laser illumination for simultaneous detection of two probes/molecules and dual sided illumination, which provides more even signal intensity across a specimen. Our OpenSPIM provides high resolution 3d images and time lapse recordings, and we demonstrate the use of two colour lasers and the benefits of two color dual-sided imaging. We used our microscope to study the development of the embryo of the polyclad flatworm M. crozieri. The capabilities of our microscope are demonstrated by our ability to record the stereotypical spiral cleavage pattern of M. crozieri with high-speed multi-view time lapse imaging. 3D and 4D (3D + time) reconstruction of early development from these data is possible using image registration and deconvolution tools provided as part of the open source Fiji platform. We discuss our findings on the pros and cons of a self built microscope. We conclude that home-built microscopes, such as an OpenSPIM, together with the available open source software, such as MicroManager and

  5. Vibrational spectroscopy in the electron microscope.

    PubMed

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  6. Contents of microscopic fungi in dusts coming from cereal analysis laboratories.

    PubMed

    Szwajkowska-Michalek, Lidia; Stuper, Kinga; Lakomy, Piotr; Matysiak, Anna; Perkowski, Juliusz

    2010-01-01

    Microscopic fungi - components of bioaerosol found in the workplace environment of individuals employed in the agricultural sector - constitute a considerable hazard for their health. This study includes quantitative and qualitative analyses of mycobionta contained in 20 samples of dusts collected from laboratories conducting analyses of cereals. A total of 27 species of viable microscopic fungi were isolated. The most frequently isolated genera Penicillium and Aspergillus, accounting for 27 percent and 26 percent of analyzed isolates. The content of fungal biomass was determined quantitatively using a fungal marker, ergosterol (ERG). Concentrations of this metabolite for all samples ranged from 0.48 mg/kg-212.36 mg/kg. Based on the analyses, it may be stated that the concentration of microfungi in settled dust from laboratories conducting analyses of cereals was varied, and in several cases markedly exceeded admissible concentration levels.

  7. [Authentication of Trace Material Evidence in Forensic Science Field with Infrared Microscopic Technique].

    PubMed

    Jiang, Zhi-quan; Hu, Ke-liang

    2016-03-01

    In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science.

  8. In vivo microscopic imaging of the bronchial mucosa using an endo-cytoscopy system.

    PubMed

    Shibuya, Kiyoshi; Fujiwara, Taiki; Yasufuku, Kazuhiro; Alaa, Mohamed; Chiyo, Masako; Nakajima, Takahiro; Hoshino, Hidehisa; Hiroshima, Kenzo; Nakatani, Yukio; Yoshino, Ichiro

    2011-05-01

    We investigated the capabilities of an endo-cytoscopy system (ECS) that enables microscopic imaging of the tracheobronchial tree during bronchoscopy, including normal bronchial epithelium, dysplastic mucosa and squamous cell carcinoma. The newly developed ECS has a 3.2 mm diameter that can be passed through the 4.2 mm working channel of a mother endoscope for insertion of the ECS. It has a high magnification of 570× on a 17 in. video monitor. Twenty-two patients (7 squamous cell carcinoma, 11 squamous dysplasia and 4 after PDT therapies) were underwent white light, NBI light and AFI bronchoscopy. Both abnormal areas of interest and normal bronchial mucosa were stained with 0.5% methylene blue and examined with ECS at high magnification (570×). Histological examinations using haematoxylin and eosin staining were made of biopsied specimens. Analyzed ECS images were compared with the corresponding histological examinations. In normal bronchial mucosa, ciliated columnar epithelial cells were visible. In bronchial squamous dysplasia, superficial cells with abundant cytoplasm were arranged regularly. In squamous cell carcinoma, large, polymorphic tumor cells showed increased cellular densities with irregular stratified patterns. These ECS images corresponded well with the light-microscopic examination of conventional histology. ECS was useful for the discrimination between normal bronchial epithelial cells and dysplastic cells or malignant cells during bronchoscopy in real time. This novel technology has an excellent potential to provide in vivo diagnosis during bronchoscopic examinations. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Biobeam—Multiplexed wave-optical simulations of light-sheet microscopy

    PubMed Central

    Weigert, Martin; Bundschuh, Sebastian T.

    2018-01-01

    Sample-induced image-degradation remains an intricate wave-optical problem in light-sheet microscopy. Here we present biobeam, an open-source software package that enables simulation of operational light-sheet microscopes by combining data from 105–106 multiplexed and GPU-accelerated point-spread-function calculations. The wave-optical nature of these simulations leads to the faithful reproduction of spatially varying aberrations, diffraction artifacts, geometric image distortions, adaptive optics, and emergent wave-optical phenomena, and renders image-formation in light-sheet microscopy computationally tractable. PMID:29652879

  10. Digital holographic microscope with low-frequency attenuation filter for position measurement of a nanoparticle.

    PubMed

    Pham, Quang Duc; Kusumi, Yuichi; Hasegawa, Satoshi; Hayasaki, Yoshio

    2012-10-01

    We propose a new method for three-dimensional (3D) position measurement of nanoparticles using an in-line digital holographic microscope. The method improves the signal-to-noise ratio of the amplitude of the interference fringes to achieve higher accuracy in the position measurement by increasing weak scattered light from a nanoparticle relative to the reference light by using a low spatial frequency attenuation filter. We demonstrated the improvements of signal-to-noise ratio of the optical system and contrast of the interference fringes, allowing the 3D positions of nanoparticles to be determined more precisely.

  11. Macroscopic irreversibility and microscopic paradox: A Constructal law analysis of atoms as open systems

    PubMed Central

    Lucia, Umberto

    2016-01-01

    The relation between macroscopic irreversibility and microscopic reversibility is a present unsolved problem. Constructal law is introduced to develop analytically the Einstein’s, Schrödinger’s, and Gibbs’ considerations on the interaction between particles and thermal radiation (photons). The result leads to consider the atoms and molecules as open systems in continuous interaction with flows of photons from their surroundings. The consequent result is that, in any atomic transition, the energy related to the microscopic irreversibility is negligible, while when a great number of atoms (of the order of Avogadro’s number) is considered, this energy related to irreversibility becomes so large that its order of magnitude must be taken into account. Consequently, macroscopic irreversibility results related to microscopic irreversibility by flows of photons and amount of atoms involved in the processes. PMID:27762333

  12. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  13. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues.

    PubMed

    Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui

    2016-07-01

    Today the increasing cancer incidence rate is becoming one of the biggest threats to human health.Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper,we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameter scan provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis.

  14. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues

    NASA Astrophysics Data System (ADS)

    Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui

    2016-07-01

    Today the increasing cancer incidence rate is becoming one of the biggest threats to human health. Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper, we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameters can provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis.

  15. Development of a SEM-based low-energy in-line electron holography microscope for individual particle imaging.

    PubMed

    Adaniya, Hidehito; Cheung, Martin; Cassidy, Cathal; Yamashita, Masao; Shintake, Tsumoru

    2018-05-01

    A new SEM-based in-line electron holography microscope has been under development. The microscope utilizes conventional SEM and BF-STEM functionality to allow for rapid searching of the specimen of interest, seamless interchange between SEM, BF-STEM and holographic imaging modes, and makes use of coherent low-energy in-line electron holography to obtain low-dose, high-contrast images of light element materials. We report here an overview of the instrumentation and first experimental results on gold nano-particles and carbon nano-fibers for system performance tests. Reconstructed images obtained from the holographic imaging mode of the new microscope show substantial image contrast and resolution compared to those acquired by SEM and BF-STEM modes, demonstrating the feasibility of high-contrast imaging via low-energy in-line electron holography. The prospect of utilizing the new microscope to image purified biological specimens at the individual particle level is discussed and electron optical issues and challenges to further improve resolution and contrast are considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Two-way communication with neural networks in vivo using focused light

    PubMed Central

    Wilson, Nathan R.; Schummers, James; Runyan, Caroline A.; Yan, Sherry; Chen, Robert F.; Deng, Yuting; Sur, Mriganka

    2014-01-01

    Neuronal networks process information in a distributed, spatially heterogeneous fashion that transcends the layout of electrodes. In contrast, directed and steerable light offers the potential to engage specific cells on demand. We present a unified framework for adapting microscopes to use light for simultaneous in vivo stimulation and recording of cells at fine spatiotemporal resolutions. We utilize straightforward optics to lock onto networks in vivo, steer light to activate circuit elements, and simultaneously record from other cells. We then actualize this “free” augmentation on both an “open” two-photon microscope, and a leading commercial one. Following this protocol, setup of the system takes a few days and the result is a non-invasive interface to brain dynamics based on directed light, at a network resolution that was not previously possible and which will further improve with the rapid advance in development of optical reporters and effectors. This protocol is for physiologists who are competent with computers and wish to extend hardware and software to interface more fluidly with neuronal networks. PMID:23702834

  17. Two-Photon Fluorescence Microscope for Microgravity Research

    NASA Technical Reports Server (NTRS)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2005-01-01

    longer-wavelength excitation light and passes the shorter-wavelength fluorescence light. Also, the confocal pinhole has been removed to increase the signal strength. The laser beam is scanned by a twoperpendicular- axis pair of galvanometer mirrors through a pupil transfer lens into the side port of an inverted microscope. Finally, the beam is focused by a 63-magnification, 1.3-numerical- aperture oil-immersion objective lens onto a specimen. The pupil transfer lens serves to match the intermediate image planes of the scanning head and the microscope, and its location is critical. In order to maximize the quality of the image, (that is, the point spread function of the objective lens for all scan positions), the entire system was modeled in optical-design software, and the various free design parameters (the parameters of the spatial-filter components as well as the separations of all of the system components) were determined through an iterative optimization process. A modular design was chosen to facilitate access to the optical train for future fluorescence correlation spectroscopy and fluorescence-lifetime experiments.

  18. Martian Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.

  19. The Scanning Optical Microscope.

    ERIC Educational Resources Information Center

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  20. Evaluation of the microscopic distribution of florfenicol in feed pellets for salmon by Fourier Transform infrared imaging and multivariate analysis.

    PubMed

    Bastidas, Camila Y; von Plessing, Carlos; Troncoso, José; Del P Castillo, Rosario

    2018-04-15

    Fourier Transform infrared imaging and multivariate analysis were used to identify, at the microscopic level, the presence of florfenicol (FF), a heavily-used antibiotic in the salmon industry, supplied to fishes in feed pellets for the treatment of salmonid rickettsial septicemia (SRS). The FF distribution was evaluated using Principal Component Analysis (PCA) and Augmented Multivariate Curve Resolution with Alternating Least Squares (augmented MCR-ALS) on the spectra obtained from images with pixel sizes of 6.25 μm × 6.25 μm and 1.56 μm × 1.56 μm, in different zones of feed pellets. Since the concentration of the drug was 3.44 mg FF/g pellet, this is the first report showing the powerful ability of the used of spectroscopic techniques and multivariate analysis, especially the augmented MCR-ALS, to describe the FF distribution in both the surface and inner parts of feed pellets at low concentration, in a complex matrix and at the microscopic level. The results allow monitoring the incorporation of the drug into the feed pellets. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Spectrally And Temporally Resolved Low-Light Level Video Microscopy

    NASA Astrophysics Data System (ADS)

    Wampler, John E.; Furukawa, Ruth; Fechheimer, Marcus

    1989-12-01

    The IDG law-light video microscope system was designed to aid studies of localization of subcellular luminescence sources and stimulus/response coupling in single living cells using luminescent probes. Much of the motivation for design of this instrument system came from the pioneering efforts of Dr. Reynolds (Reynolds, Q. Rev. Biophys. 5, 295-347; Reynolds and Taylor, Bioscience 30, 586-592) who showed the value of intensified video camera systems for detection and localizion of fluorescence and bioluminescence signals from biological tissues. Our instrument system has essentially two roles, 1) localization and quantitation of very weak bioluminescence signals and 2) quantitation of intracellular environmental characteristics such as pH and calcium ion concentrations using fluorescent and bioluminescent probes. The instrument system exhibits over one million fold operating range allowing visualization and enhancement of quantum limited images with quantum limited response, spectral analysis of fluorescence signals, and transmitted light imaging. The computer control of the system implements rapid switching between light regimes, spatially resolved spectral scanning, and digital data processing for spectral shape analysis and for detailed analysis of the statistical distribution of single cell measurements. The system design and software algorithms used by the system are summarized. These design criteria are illustrated with examples taken from studies of bioluminescence, applications of bioluminescence to study developmental processes and gene expression in single living cells, and applications of fluorescent probes to study stimulus/response coupling in living cells.

  2. Preparation of adult Drosophila eyes for thin sectioning and microscopic analysis.

    PubMed

    Jenny, Andreas

    2011-08-27

    Drosophila has long been used as model system to study development, mainly due to the ease with which it is genetically tractable. Over the years, a plethora of mutant strains and technical tricks have been developed to allow sophisticated questions to be asked and answered in a reasonable amount of time. Fundamental insight into the interplay of components of all known major signaling pathways has been obtained in forward and reverse genetic Drosophila studies. The fly eye has proven to be exceptionally well suited for mutational analysis, since, under laboratory conditions, flies can survive without functional eyes. Furthermore, the surface of the insect eye is composed of some 800 individual unit eyes (facets or ommatidia) that form a regular, smooth surface when looked at under a dissecting microscope. Thus, it is easy to see whether a mutation might affect eye development or growth by externally looking for the loss of the smooth surface ('rough eye' phenotype; Fig. 1) or overall eye size, respectively (for examples of screens based on external eye morphology see e.g.). Subsequent detailed analyses of eye phenotypes require fixation, plastic embedding and thin-sectioning of adult eyes. The Drosophila eye develops from the so-called eye imaginal disc, a bag of epithelial cells that proliferate and differentiate during larval and pupal stages (for review see e.g.). Each ommatidium consists of 20 cells, including eight photoreceptors (PR or R-cells; Fig. 2), four lens-secreting cone cells, pigment cells ('hexagon' around R-cell cluster) and a bristle. The photoreceptors of each ommatidium, most easily identified by their light sensitive organelles, the rhabdomeres, are organized in a trapezoid made up of the six "outer" (R1-6) and two "inner" photoreceptors (R7/8; R8 [Fig. 2] is underneath R7 and thus only seen in sections from deeper areas of the eye). The trapezoid of each facet is precisely aligned with those of its neighbors and the overall anteroposterior

  3. Application of principal component analysis to multispectral-multimodal optical image analysis for malaria diagnostics.

    PubMed

    Omucheni, Dickson L; Kaduki, Kenneth A; Bulimo, Wallace D; Angeyo, Hudson K

    2014-12-11

    Multispectral imaging microscopy is a novel microscopic technique that integrates spectroscopy with optical imaging to record both spectral and spatial information of a specimen. This enables acquisition of a large and more informative dataset than is achievable in conventional optical microscopy. However, such data are characterized by high signal correlation and are difficult to interpret using univariate data analysis techniques. In this work, the development and application of a novel method which uses principal component analysis (PCA) in the processing of spectral images obtained from a simple multispectral-multimodal imaging microscope to detect Plasmodium parasites in unstained thin blood smear for malaria diagnostics is reported. The optical microscope used in this work has been modified by replacing the broadband light source (tungsten halogen lamp) with a set of light emitting diodes (LEDs) emitting thirteen different wavelengths of monochromatic light in the UV-vis-NIR range. The LEDs are activated sequentially to illuminate same spot of the unstained thin blood smears on glass slides, and grey level images are recorded at each wavelength. PCA was used to perform data dimensionality reduction and to enhance score images for visualization as well as for feature extraction through clusters in score space. Using this approach, haemozoin was uniquely distinguished from haemoglobin in unstained thin blood smears on glass slides and the 590-700 spectral range identified as an important band for optical imaging of haemozoin as a biomarker for malaria diagnosis. This work is of great significance in reducing the time spent on staining malaria specimens and thus drastically reducing diagnosis time duration. The approach has the potential of replacing a trained human eye with a trained computerized vision system for malaria parasite blood screening.

  4. Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy

    NASA Astrophysics Data System (ADS)

    Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente

    2017-02-01

    We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes.

  5. Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy

    PubMed Central

    Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente

    2017-01-01

    We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes. PMID:28233829

  6. Ghost microscope imaging system from the perspective of coherent-mode representation

    NASA Astrophysics Data System (ADS)

    Shen, Qian; Bai, Yanfeng; Shi, Xiaohui; Nan, Suqin; Qu, Lijie; Li, Hengxing; Fu, Xiquan

    2018-03-01

    The coherent-mode representation theory of partially coherent fields is firstly used to analyze a two-arm ghost microscope imaging system. It is shown that imaging quality of the generated images depend crucially on the distribution of the decomposition coefficients of the object imaged when the light source is fixed. This theory is also suitable for demonstrating the effects from the distance the object is moved away from the original plane on imaging quality. Our results are verified theoretically and experimentally.

  7. Distributed microscopic actuation analysis of deformable plate membrane mirrors

    NASA Astrophysics Data System (ADS)

    Lu, Yifan; Yue, Honghao; Deng, Zongquan; Tzou, Hornsen

    2018-02-01

    To further reduce the areal density of optical mirrors used in space telescopes and other space-borne optical structures, the concept of flexible membrane deformable mirror has been proposed. Because of their high flexibility, poor stiffness and low damping properties, environmental excitations such as orbital maneuver, path changing, and non-uniform heating may induce unexpected vibrations and thus reduce working performance. Therefore, active vibration control is essential for these membrane mirrors. In this paper, two different mirror models, i.e., the plate membrane model and pure membrane model, are studied respectively. In order to investigate the modal vibration characteristics of the mirror, a piezoelectric layer is fully laminated on its non-reflective side to serve as actuators. Dynamic equations of the mirror laminated with piezoelectric actuators are presented first. Then, the actuator induced modal control force is defined. When the actuator area shrinks to infinitesimal, the expressions of microscopic local modal control force and its two components are obtained to predict the spatial microscopic actuation behavior of the mirror. Different membrane pretension forces are also applied to reveal the tension effects on the actuation of the mirror. Analyses indicate that the spatial distribution of modal micro-control forces is exactly the same with the sensing signals distribution of the mirror, which provides crucial guidelines for optimal actuator placement of membrane deformable mirrors.

  8. Accuracy of microscopic urine analysis and chest radiography in patients with severe sepsis and septic shock.

    PubMed

    Capp, Roberta; Chang, Yuchiao; Brown, David F M

    2012-01-01

    Diagnosis of source of infection in patients with septic shock and severe sepsis needs to be done rapidly and accurately to guide appropriate antibiotic therapy. The purpose of this study is to evaluate the accuracy of two diagnostic studies used in the emergency department (ED) to guide diagnosis of source of infection in this patient population. This was a retrospective review of ED patients admitted to an intensive care unit with the diagnosis of severe sepsis or septic shock over a 12-month period. We evaluated accuracy of initial microscopic urine analysis testing and chest radiography in the diagnosis of urinary tract infections and pneumonia, respectively. Of the 1400 patients admitted to intensive care units, 170 patients met criteria for severe sepsis and septic shock. There were a total of 47 patients diagnosed with urinary tract infection, and their initial microscopic urine analysis with counts>10 white blood cells were 80% sensitive (95% confidence interval [CI] .66-.90) and 66% specific (95% CI .52-.77) for the positive final urine culture result. There were 85 patients with final diagnosis of pneumonia. The sensitivity and specificity of initial chest radiography were, respectively, 58% (95% CI .46-.68) and 91% (95% CI .81-.95) for the diagnosis of pneumonia. In patients with severe sepsis and septic shock, the chest radiograph has low sensitivity of 58%, whereas urine analysis has a low specificity of 66%. Given the importance of appropriate antibiotic selection and optimal but not perfect test characteristics, this population may benefit from broad-spectrum antibiotics, rather than antibiotics tailored toward a particular source of infection. Published by Elsevier Inc.

  9. Coherent imaging with incoherent light in digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Chmelik, Radim

    2012-01-01

    Digital holographic microscope (DHM) allows for imaging with a quantitative phase contrast. In this way it becomes an important instrument, a completely non-invasive tool for a contrast intravital observation of living cells and a cell drymass density distribution measurement. A serious drawback of current DHMs is highly coherent illumination which makes the lateral resolution worse and impairs the image quality by a coherence noise and a parasitic interference. An uncompromising solution to this problem can be found in the Leith concept of incoherent holography. An off-axis hologram can be formed with arbitrary degree of light coherence in systems equipped with an achromatic interferometer and thus the resolution and the image quality typical for an incoherent-light wide-field microscopy can be achieved. In addition, advanced imaging modes based on limited coherence can be utilized. The typical example is a coherence-gating effect which provides a finite axial resolution and makes DHM image similar to that of a confocal microscope. These possibilities were described theoretically using the formalism of three-dimensional coherent transfer functions and proved experimentally by the coherence-controlled holographic microscope which is DHM based on the Leith achromatic interferometer. Quantitative-phase-contrast imaging is demonstrated with incoherent light by the living cancer cells observation and their motility evaluation. The coherence-gating effect was proved by imaging of model samples through a scattering layer and living cells inside an opalescent medium.

  10. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    PubMed

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  11. Polychromatic polarization microscope: bringing colors to a colorless world.

    PubMed

    Shribak, Michael

    2015-11-27

    Interference of two combined white light beams produces Newton colors if one of the beams is retarded relative to the other by from 400 nm to 2000 nm. In this case the corresponding interfering spectral components are added as two scalars at the beam combination. If the retardance is below 400 nm the two-beam interference produces grey shades only. The interference colors are widely used for analyzing birefringent samples in mineralogy. However, many of biological structures have retardance <100 nm. Therefore, cells and tissues under a regular polarization microscope are seen as grey image, which contrast disappears at certain orientations. Here we are proposing for the first time using vector interference of polarized light in which the full spectrum colors are created at retardance of several nanometers, with the hue determined by orientation of the birefringent structure. The previously colorless birefringent images of organelles, cells, and tissues become vividly colored. This approach can open up new possibilities for the study of biological specimens with weak birefringent structures, diagnosing various diseases, imaging low birefringent crystals, and creating new methods for controlling colors of the light beam.

  12. A smartphone-based chip-scale microscope using ambient illumination.

    PubMed

    Lee, Seung Ah; Yang, Changhuei

    2014-08-21

    Portable chip-scale microscopy devices can potentially address various imaging needs in mobile healthcare and environmental monitoring. Here, we demonstrate the adaptation of a smartphone's camera to function as a compact lensless microscope. Unlike other chip-scale microscopy schemes, this method uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is based on the shadow imaging technique where the sample is placed on the surface of the image sensor, which captures direct shadow images under illumination. To improve the image resolution beyond the pixel size, we perform pixel super-resolution reconstruction with multiple images at different angles of illumination, which are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. The lensless imaging scheme allows for sub-micron resolution imaging over an ultra-wide field-of-view (FOV). Image acquisition and reconstruction are performed on the device using a custom-built Android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.

  13. A smartphone-based chip-scale microscope using ambient illumination

    PubMed Central

    Lee, Seung Ah; Yang, Changhuei

    2014-01-01

    Portable chip-scale microscopy devices can potentially address various imaging needs in mobile healthcare and environmental monitoring. Here, we demonstrate the adaptation of a smartphone’s camera to function as a compact lensless microscope. Unlike other chip-scale microscopy schemes, this method uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is based on the shadow imaging technique where the sample is placed on the surface of the image sensor, which captures direct shadow images under illumination. To improve the imaging resolution beyond the pixel size, we perform pixel super-resolution reconstruction with multiple images at different angles of illumination, which are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. The lensless imaging scheme allows for sub-micron resolution imaging over an ultra-wide field-of-view (FOV). Image acquisition and reconstruction is performed on the device using a custom-built android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system. PMID:24964209

  14. Nondestructive measurement of an optical fiber refractive-index profile by a transmitted-light differential interference contact microscope.

    PubMed

    Liu, Zhongyao; Dong, Xiaoman; Chen, Qianghua; Yin, Chunyong; Xu, Yuxian; Zheng, Yingjun

    2004-03-01

    A novel transmitted-light differential interference contrast (DIC) system is used for nondestructive measurement of the refractive-index profile (RIP) of an optical fiber. By means of this system the phase of a measured light beam can be modulated with an analyzer, and the phase distribution of a fiber is obtained by calculation of the various interference patterns. The measurement theory and structure and some typical applications of this system are demonstrated. The results of measuring RIPs in graded-index fiber are presented. Both the experimental results and theoretical analysis show that the system takes the advantage of high index resolution and of sufficient measurement accuracy for measuring the refractive index of the optical fiber. The system has strong ability to overcome environmental disturbance because of its common-path design. Moreover, one can use the system to measure the RIP along the fiber axis and acquire an image of the three-dimensional RIP of the fiber.

  15. Automatic analysis and quantification of fluorescently labeled synapses in microscope images

    NASA Astrophysics Data System (ADS)

    Yona, Shai; Katsman, Alex; Orenbuch, Ayelet; Gitler, Daniel; Yitzhaky, Yitzhak

    2011-09-01

    The purpose of this work is to classify and quantify synapses and their properties in the cultures of a mouse's hippocampus, from images acquired by a fluorescent microscope. Quantification features include the number of synapses, their intensity and their size characteristics. The images obtained by the microscope contain hundreds to several thousands of synapses with various elliptic-like shape features and intensities. These images also include other features such as glia cells and other biological objects beyond the focus plane; those features reduce the visibility of the synapses and interrupt the segmentation process. The proposed method comprises several steps, including background subtraction, identification of suspected centers of synapses as local maxima of small neighborhoods, evaluation of the tendency of objects to be synapses according to intensity properties at their larger neighborhoods, classification of detected synapses into categories as bulks or single synapses and finally, delimiting the borders of each synapse.

  16. New gonioscopy system using only infrared light.

    PubMed

    Sugimoto, Kota; Ito, Kunio; Matsunaga, Koichi; Miura, Katsuya; Esaki, Koji; Uji, Yukitaka

    2005-08-01

    To describe an infrared gonioscopy system designed to observe the anterior chamber angle under natural mydriasis in a completely darkened room. An infrared light filter was used to modify the light source of the slit-lamp microscope. A television monitor connected to a CCD monochrome camera was used to indirectly observe the angle. Use of the infrared system enabled observation of the angle under natural mydriasis in a completely darkened room. Infrared gonioscopy is a useful procedure for the observation of the angle under natural mydriasis.

  17. Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback.

    PubMed

    Ehlers, Justis P; Srivastava, Sunil K; Feiler, Daniel; Noonan, Amanda I; Rollins, Andrew M; Tao, Yuankai K

    2014-01-01

    To demonstrate key integrative advances in microscope-integrated intraoperative optical coherence tomography (iOCT) technology that will facilitate adoption and utilization during ophthalmic surgery. We developed a second-generation prototype microscope-integrated iOCT system that interfaces directly with a standard ophthalmic surgical microscope. Novel features for improved design and functionality included improved profile and ergonomics, as well as a tunable lens system for optimized image quality and heads-up display (HUD) system for surgeon feedback. Novel material testing was performed for potential suitability for OCT-compatible instrumentation based on light scattering and transmission characteristics. Prototype surgical instruments were developed based on material testing and tested using the microscope-integrated iOCT system. Several surgical maneuvers were performed and imaged, and surgical motion visualization was evaluated with a unique scanning and image processing protocol. High-resolution images were successfully obtained with the microscope-integrated iOCT system with HUD feedback. Six semi-transparent materials were characterized to determine their attenuation coefficients and scatter density with an 830 nm OCT light source. Based on these optical properties, polycarbonate was selected as a material substrate for prototype instrument construction. A surgical pick, retinal forceps, and corneal needle were constructed with semi-transparent materials. Excellent visualization of both the underlying tissues and surgical instrument were achieved on OCT cross-section. Using model eyes, various surgical maneuvers were visualized, including membrane peeling, vessel manipulation, cannulation of the subretinal space, subretinal intraocular foreign body removal, and corneal penetration. Significant iterative improvements in integrative technology related to iOCT and ophthalmic surgery are demonstrated.

  18. Lobular and cellular patterns of early hepatic glycogen deposition in the rat as observed by light and electron microscopic radioautography after injection of /sup 3/H-galactose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, J.E.; Hung, J.T.; Garfield, S.A.

    1984-05-01

    Very low hepatic glycogen levels are achieved by overnight fasting of adrenalectomized (ADX) rats. Subsequent injection of dexamethasone (DEX), a synthetic glucocorticoid, stimulates marked increases in glycogen synthesis. Using this system and injecting /sup 3/H-galactose as a glycogen precursor 1 hr prior to sacrifice, the intralobular and intracellular patterns of labeled glycogen deposition were studied by light (LM) and electron (EM) microscopic radioautography. LM radioautography revealed that 1 hr after DEX treatment, labeling patterns for both periportal and centrilobular hepatocytes resembled those in rats with no DEX treatment: 18% of the hepatocytes were unlabeled, and 82% showed light labeling. Twomore » hours after treatment with DEX, 14% of the hepatocytes remained unlabeled, and 78% were lightly labeled; however, 8% of the cells, located randomly throughout the lobule, were intensely labeled. An increased number of heavily labeled cells (26%) appeared 3 hr after DEX treatment; and by 5 hr 91% of the hepatocytes were intensely labeled. Label over the periportal cells at this time was aggregated, whereas centrilobular cells displayed dispersed label. EM radioautographs showed that 2 to 3 hr after DEX injection initial labeling of hepatocytes, regardless of their intralobular location, occurred over foci of smooth endoplasmic reticulum (SER) and small electron-dense particles of presumptive glycogen, and in areas of SER and distinct glycogen particles. After 5 hrs of treatment with DEX, the intracellular distribution of label reflected the glycogen patterns characteristic of periportal or centrilobular regions.« less

  19. Shock compression dynamics under a microscope.

    NASA Astrophysics Data System (ADS)

    Dlott, Dana

    2015-06-01

    We have developed a tabletop laser flyer launch system1 that solves many of the problems that plagued previous efforts. Using a novel mechanism where a spatially-uniform laser pulse creates a shock in a glass substrate just underneath a metal foil, we can launch tiny (0.7 mm diameter x 100 μm thick) flyers at speeds ranging from 0-5 km/s and the foils are flat, cold and intact. This tabletop launch system, where we often launch 100 flyers per day, provides a platform for a wide variety of time-resolved spectroscopies. The shocked material is viewed by a microscope objective that transmits near-infrared light from a photon Doppler velocimeter to monitor the flyer, and collects the light for spectroscopic and video images. Fluorescent probes, which have been highly developed for the biomedical sciences, have proven especially useful for these experiments. Using emission measurements, we have investigated the fundamental mechanisms of many shock wave effects including: viscoelastic compression of high molecular weight polymers, visualization of shocks in porous media such as sand, where we can observe the behavior of individual grains of sand, shock attenuation by passing the shock through reactive materials that undergo endothermic chemical reactions, and shock initiation of nanoenergetic materials.

  20. Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope.

    PubMed

    Dong, Yang; Qi, Ji; He, Honghui; He, Chao; Liu, Shaoxiong; Wu, Jian; Elson, Daniel S; Ma, Hui

    2017-08-01

    Polarization imaging has been recognized as a potentially powerful technique for probing the microstructural information and optical properties of complex biological specimens. Recently, we have reported a Mueller matrix microscope by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission-light microscope, and applied it to differentiate human liver and cervical cancerous tissues with fibrosis. In this paper, we apply the Mueller matrix microscope for quantitative detection of human breast ductal carcinoma samples at different stages. The Mueller matrix polar decomposition and transformation parameters of the breast ductal tissues in different regions and at different stages are calculated and analyzed. For more quantitative comparisons, several widely-used image texture feature parameters are also calculated to characterize the difference in the polarimetric images. The experimental results indicate that the Mueller matrix microscope and the polarization parameters can facilitate the quantitative detection of breast ductal carcinoma tissues at different stages.

  1. Role of Caspase-3 in acute light damage to retina of rats.

    PubMed

    Wang, Xiao; Hu, Shi-Xing; Li, Wei; Lin, Shao-Chun

    2007-03-01

    To investigate the role of Caspase-3 in retinal damage caused by light exposure in rats. Light injury to retina was induced by persistent exposure to illumination (intensity: 30 000 +/- 50 lux) of operating microscope for 30 minutes in the right eyes of Sprague-Dawley rats. The pathological changes of retina were observed under optical and electron microscopies at different time points, which were 6 hours, 1, 3, 7, and 15 days after the light exposure. Apoptosis of retinal cells was analyzed by flow cytometry. The activity of Caspase-3 was evaluated by using the Caspase-3 assay kit. At the same time, the expression of Caspase-3 protease was determined with Western blot analysis. The examination results of optical and transmission electron microscopes showed that edema of inner and outer segments of the retina, especially the chondriosome inside the inner segment, became obvious 6 hours after the light exposure. The change was deteriorated along with the increasing time. The structures of the discoidal valve dissociated in the outer segment simultaneously. Disorderly arranged nuclei, karyopycnosis, and thinning in the outer nuclear layer were observed. The retinal pigment epithelium almost disappeared during the later stage. The staining results of Annexin-V combined with PI demonstrated that the proportion of apoptotic cells increased with time. The proportion between 7th day (82.7%) and 15th day (80.4%), however, showed no significant difference. Caspase-3 became remarkably active with the lapse of time, which increased from 0.02 at 6th hour to the peak of 9.8 at 7th day before it started to descend. The Western blot detected a expression of the active form of Caspase-3 at 7th day and 15th day. Apoptosis of photoreceptor cells is markedly involved in the light damage and Caspase-3 protease may play an important role in the apoptotic process of the retina after light exposure in rats.

  2. Computer analysis of lighting style in fine art: steps towards inter-artist studies

    NASA Astrophysics Data System (ADS)

    Stork, David G.

    2011-03-01

    Stylometry in visual art-the mathematical description of artists' styles - has been based on a number of properties of works, such as color, brush stroke shape, visual texture, and measures of contours' curvatures. We introduce the concept of quantitative measures of lighting, such as statistical descriptions of spatial coherence, diuseness, and so forth, as properties of artistic style. Some artists of the high Renaissance, such as Leonardo, worked from nature and strove to render illumination "faithfully" photorealists, such as Richard Estes, worked from photographs and duplicated the "physics based" lighting accurately. As such, each had dierent motivations, methodologies, stagings, and "accuracies" in rendering lighting clues. Perceptual studies show that observers are poor judges of properties of lighting in photographs such as consistency (and thus by extension in paintings as well); computer methods such as rigorous cast-shadow analysis, occluding-contour analysis and spherical harmonic based estimation of light fields can be quite accurate. For this reasons, computer lighting analysis can provide a new tools for art historical studies. We review lighting analysis in paintings such as Vermeer's Girl with a pearl earring, de la Tour's Christ in the carpenter's studio, Caravaggio's Magdalen with the smoking flame and Calling of St. Matthew) and extend our corpus to works where lighting coherence is of interest to art historians, such as Caravaggio's Adoration of the Shepherds or Nativity (1609) in the Capuchin church of Santa Maria degli Angeli. Our measure of lighting coherence may help reveal the working methods of some artists and in diachronic studies of individual artists. We speculate on artists and art historical questions that may ultimately profit from future renements to these new computational tools.

  3. Optimisation approaches for concurrent transmitted light imaging during confocal microscopy.

    PubMed

    Collings, David A

    2015-01-01

    The transmitted light detectors present on most modern confocal microscopes are an under-utilised tool for the live imaging of plant cells. As the light forming the image in this detector is not passed through a pinhole, out-of-focus light is not removed. It is this extended focus that allows the transmitted light image to provide cellular and organismal context for fluorescence optical sections generated confocally. More importantly, the transmitted light detector provides images that have spatial and temporal registration with the fluorescence images, unlike images taken with a separately-mounted camera. Because plants often provide difficulties for taking transmitted light images, with the presence of pigments and air pockets in leaves, this study documents several approaches to improving transmitted light images beginning with ensuring that the light paths through the microscope are correctly aligned (Köhler illumination). Pigmented samples can be imaged in real colour using sequential scanning with red, green and blue lasers. The resulting transmitted light images can be optimised and merged in ImageJ to generate colour images that maintain registration with concurrent fluorescence images. For faster imaging of pigmented samples, transmitted light images can be formed with non-absorbed wavelengths. Transmitted light images of Arabidopsis leaves expressing GFP can be improved by concurrent illumination with green and blue light. If the blue light used for YFP excitation is blocked from the transmitted light detector with a cheap, coloured glass filters, the non-absorbed green light will form an improved transmitted light image. Changes in sample colour can be quantified by transmitted light imaging. This has been documented in red onion epidermal cells where changes in vacuolar pH triggered by the weak base methylamine result in measurable colour changes in the vacuolar anthocyanin. Many plant cells contain visible levels of pigment. The transmitted light

  4. Micromega/IR: Design and status of a near-infrared spectral microscope for in situ analysis of Mars samples

    NASA Astrophysics Data System (ADS)

    Leroi, Vaitua; Bibring, Jean-Pierre; Berthe, Michel

    2009-07-01

    MicrOmega is an ultra miniaturized spectral microscope for in situ analysis of samples. It is composed of 2 microscopes; one with a spatial sampling less or equal to 4 μm, working in 4 colors in the visible range: MicrOmega/VIS, and a NIR hyperspectral microscope working in the spectral range 0.9-4 μm with a spatial sampling of 20 μm per pixel: MicrOmega/IR (described in this paper). MicrOmega/IR illuminates and images samples a few mm in size and acquires the NIR spectrum of each resolved pixel in up to 320 contiguous spectral channels. The goal of this instrument is to analyze in situ the composition of collected samples at almost their grain size scale, in a non-destructive way. With the chosen spectral range and resolution, a wide variety of constituents can be identified: minerals, such as pyroxene and olivine, ferric oxides, hydrated phyllosilicates, sulfates and carbonates and ices and organics. The composition of the various phases within a given sample is a critical record of its formation and evolution. Coupled to the mapping information, it provides unique clues to describe the history of the parent body (planet, satellite and small body). In particular, the capability to identify hydrated grains and to characterize their adjacent phases has a huge potential in the search for possible bio-relics.

  5. Super-Resolution Imaging Strategies for Cell Biologists Using a Spinning Disk Microscope

    PubMed Central

    Hosny, Neveen A.; Song, Mingying; Connelly, John T.; Ameer-Beg, Simon; Knight, Martin M.; Wheeler, Ann P.

    2013-01-01

    In this study we use a spinning disk confocal microscope (SD) to generate super-resolution images of multiple cellular features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of biological probes, combining Photoactivation Light-Microscopy (PALM)/Stochastic Optical Reconstruction Microscopy (STORM) methodologies. We compared different image analysis algorithms for processing super-resolution data to identify the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution of ca. 80 nm; however higher resolution was possible >30 nm, dependant on the super-resolution image analysis algorithm used. Our method uses low laser power and fluorescent probes which are available either commercially or through the scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured illumination microscopy (SIM) and widefield epifluorescence imaging we identified that our methodology was advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging. PMID:24130668

  6. Analysis of condition for uniform lighting generated by array of light emitting diodes with large view angle.

    PubMed

    Qin, Zong; Wang, Kai; Chen, Fei; Luo, Xiaobing; Liu, Sheng

    2010-08-02

    In this research, the condition for uniform lighting generated by array of LEDs with large view angle was studied. The luminous intensity distribution of LED is not monotone decreasing with view angle. A LED with freeform lens was designed as an example for analysis. In a system based on LEDs designed in house with a thickness of 20mm and rectangular arrangement, the condition for uniform lighting was derived and the analytical results demonstrated that the uniformity was not decreasing monotonously with the increasing of LED-to-LED spacing. The illuminance uniformities were calculated with Monte Carlo ray tracing simulations and the uniformity was found to increase with the increasing of certain LED-to-LED spacings anomalously. Another type of large view angle LED and different arrangements were discussed in addition. Both analysis and simulation results showed that the method is available for LED array lighting system design on the basis of large view angle LED..

  7. Design, assembly, and metrology of an oil-immersion microscope objective with long working distance

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Jei; Lin, Wen-Lung; Kuo, Hui-Jean; Ho, Cheng-Fang; Hsu, Wei-Yao

    2016-10-01

    The design, tolerance sensitivity reduction, assembly, and optical bench test for an oil-immersion microscope objective with long working distance employed in a lattice light-sheet microscope is presented in this paper. In this application, the orthogonal excitation and detection objectives are dipped in an oil medium. The excitation objective focuses the incident laser beam to generate fluorescence on specimen for collecting by detection objective. The excitation objective is custom-designed to meet the requirement specification such as oil-immersion, the long working distance, and numerical aperture (NA) of 0.5, etc. To produce an acceptable point spread function (PSF) for effective excitation, the performance of the objective needs to be close to diffraction limit. Because the tolerance of the modulation transfer function (MTF) is more and more sensitive at higher spatial frequency, it is extremely critical to keep the performance after manufacture. Consequently, an insensitive optical design is very important for relaxing tolerance. We compare the design with and without tolerance sensitivity reduction, and the as-built MTF shows the result. Furthermore, the method for sensitivity reduction is presented. The opto-mechanical design and assembly method are also discussed. Eventually, the objective with five spherical lenses was fabricated. In optical bench test, the depth of the oil is sensitive to MTF, and it leads to the complicated adjustment. For solving this issue, we made an index-matching lens to replace oil for measurement easily. Finally, the measured MTF of the excitation objective can accomplish the requirement specification and successfully employed in a lattice light-sheet microscope.

  8. Macroscopic and microscopic analysis of the tongue of the common opossum (Didelphis marsupialis).

    PubMed

    Mançanares, Celina A F; Santos, Amilton C; Piemonte, Maria V; Vasconcelos, Bruno G; Carvalho, Ana F; Miglino, Maria A; Ambrósio, Carlos E; Assis Neto, Antônio C

    2012-10-01

    We performed a macroscopic and microscopic study of the tongues of common opossums, Didelphis marsupialis, from South America. We studied two males and two females. We collected morphometric data on the tongue with precision calipers. For the light microscopy and scanning electron microscopy analyses, we fixed tissue fragments in 10% formaldehyde and 2.5% glutaraldehyde, respectively. The opossum tongues averaged 5.87 ± 0.20 cm in length, 3.27 ± 0.15 cm in width at the lingual body, and 3.82 ± 0.15 cm in width at the root. The mean thickness of the lingual body was 1.8 ± 0.1 cm, and the thickness of the root was 3.82 ± 0.15 cm. Sharp filiform papillae were scattered across the entire tongue; conical filiform papillae occurred on the lingual body and tongue tip; fungiform papillae were scattered among the filiform papillae on the lingual body and tongue tip; and there were three vallate papillae at the root of the tongue. We found two strands of papillary projections in the tongue root. Despite the low variability observed in the lingual papillae, the morphological data obtained in this study may be related to the opossum's diverse food habits and the extensive geographic distribution of the species throughout America. Copyright © 2012 Wiley Periodicals, Inc.

  9. Cathodoluminescence in the scanning transmission electron microscope.

    PubMed

    Kociak, M; Zagonel, L F

    2017-05-01

    Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Cathodoluminescence in the scanning transmission electron microscope.

    PubMed

    Kociak, M; Zagonel, L F

    2016-12-19

    Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Distribution of melanosomes across the retinal pigment epithelium of a hooded rat: implications for light damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, W.L.; Rapp, L.M.; Williams, T.P.

    1982-02-01

    Distribution of melanosomes across the retinal pigment epithelium of hooded rats (Long-Evans) is studied at the light microscopic and electron microscopic levels. This distribution is shown to be nonuniform: more melanosomes exist in the periphery than elsewhere and, importantly, there are very few melanosomes in a restricted area of the central portion of the superior hemisphere compared with the corresponding part of the inferior hemisphere. The region with fewest melanosomes is precisely the one that is highly susceptible to light damage. Because this region is the same in both pigmented and albino eyes, the paucity of melanin in this regionmore » is not the cause of its great sensitivity to light damage. Nor does light cause the nonuniform distribution of melanin. A possible explanation, involving a proposed vestigial tapetum, is given in order to explain the correlation of melanosome counts and sensitivity to light damage.« less

  12. Confocal multispot microscope for fast and deep imaging in semicleared tissues

    NASA Astrophysics Data System (ADS)

    Adam, Marie-Pierre; Müllenbroich, Marie Caroline; Di Giovanna, Antonino Paolo; Alfieri, Domenico; Silvestri, Ludovico; Sacconi, Leonardo; Pavone, Francesco Saverio

    2018-02-01

    Although perfectly transparent specimens are imaged faster with light-sheet microscopy, less transparent samples are often imaged with two-photon microscopy leveraging its robustness to scattering; however, at the price of increased acquisition times. Clearing methods that are capable of rendering strongly scattering samples such as brain tissue perfectly transparent specimens are often complex, costly, and time intensive, even though for many applications a slightly lower level of tissue transparency is sufficient and easily achieved with simpler and faster methods. Here, we present a microscope type that has been geared toward the imaging of semicleared tissue by combining multispot two-photon excitation with rolling shutter wide-field detection to image deep and fast inside semicleared mouse brain. We present a theoretical and experimental evaluation of the point spread function and contrast as a function of shutter size. Finally, we demonstrate microscope performance in fixed brain slices by imaging dendritic spines up to 400-μm deep.

  13. [Structure of newly formed capillaries of the rabbit cornea (electron microscopic study)].

    PubMed

    Gurina, O Iu; Karaganov, Ia L

    1984-08-01

    Owing to a complex application of topical analysis and tracer technique, it is possible to carry out a light optic and electron microscopic investigation of newly formed capillaries growing in the rabbit cornea after its chemical burn. The ultrastructural analysis demonstrates certain polymorphism of morphological organization of endotheliocyte in the newly formed capillaries. There is a rather elevated amount of free ribosomes, mitochondria, microtubules and microfilaments in cytoplasm. The granular endoplasmic reticulum and Golgi complex are hypertrophied. Weibel--Palade bodies appear. Taking into account certain morpho-functional peculiarities of endothelial cells along the course of the growing capillaries, on the 8th day of growth three zone are distinguished: 1--area of nondifferentiated endothelium (apex of the capillary), 2--transitional zone, 3--zone of relatively differentiated endothelium situating in the place where the capillary gets off the parental vessel. According to the zones distinguished, the ways of trans-endothelial transport of molecules are investigated. In formation of the capillary barrier-transport function an important role belongs to polymorphism of the endothelial cells along the course of the growing capillary which is determined by differentiation degree of these cells depending on their participation in permeability.

  14. Development of High-Speed Copper Chemical Mechanical Polishing Slurry for Through Silicon Via Application Based on Friction Analysis Using Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Amanokura, Jin; Ono, Hiroshi; Hombo, Kyoko

    2011-05-01

    In order to obtain a high-speed copper chemical mechanical polishing (CMP) process for through silicon vias (TSV) application, we developed a new Cu CMP slurry through friction analysis of Cu reaction layer by an atomic force microscope (AFM) technique. A lateral modulation friction force microscope (LM-FFM) is able to measure the friction value properly giving a vibration to the layer. We evaluated the torsional displacement between the probe of the LM-FFM and the Cu reaction layer under a 5 nm vibration to cancel the shape effect of the Cu reaction layer. The developed Cu CMP slurry forms a frictionally easy-removable Cu reaction layer.

  15. 9Be scattering with microscopic wave functions and the continuum-discretized coupled-channel method

    NASA Astrophysics Data System (ADS)

    Descouvemont, P.; Itagaki, N.

    2018-01-01

    We use microscopic 9Be wave functions defined in a α +α +n multicluster model to compute 9Be+target scattering cross sections. The parameter sets describing 9Be are generated in the spirit of the stochastic variational method, and the optimal solution is obtained by superposing Slater determinants and by diagonalizing the Hamiltonian. The 9Be three-body continuum is approximated by square-integral wave functions. The 9Be microscopic wave functions are then used in a continuum-discretized coupled-channel (CDCC) calculation of 9Be+208Pb and of 9Be+27Al elastic scattering. Without any parameter fitting, we obtain a fair agreement with experiment. For a heavy target, the influence of 9Be breakup is important, while it is weaker for light targets. This result confirms previous nonmicroscopic CDCC calculations. One of the main advantages of the microscopic CDCC is that it is based on nucleon-target interactions only; there is no adjustable parameter. The present work represents a first step towards more ambitious calculations involving heavier Be isotopes.

  16. Mars Life? - Microscopic Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the center of this electron microscope image of a small chip from a meteorite are several tiny structures that are possible microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.

  17. Mars Life? - Microscopic Structures

    NASA Image and Video Library

    1996-08-09

    In the center of this electron microscope image of a small chip from a meteorite are several tiny structures that are possible microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. http://photojournal.jpl.nasa.gov/catalog/PIA00283

  18. Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD)

    NASA Astrophysics Data System (ADS)

    De Beule, Pieter A. A.; de Vries, Anthony H. B.; Arndt-Jovin, Donna J.; Jovin, Thomas M.

    2011-03-01

    We report progress on the construction of an optical sectioning programmable array microscope (PAM) implemented with a digital micro-mirror device (DMD) spatial light modulator (SLM) utilized for both fluorescence illumination and detection. The introduction of binary intensity modulation at the focal plane of a microscope objective in a computer controlled pixilated mode allows the recovery of an optically sectioned image. Illumination patterns can be changed very quickly, in contrast to static Nipkow disk or aperture correlation implementations, thereby creating an optical system that can be optimized to the optical specimen in a convenient manner, e.g. for patterned photobleaching, photobleaching reduction, or spatial superresolution. We present a third generation (Gen-3) dual path PAM module incorporating the 25 kHz binary frame rate TI 1080p DMD and a newly developed optical system that offers diffraction limited imaging with compensation of tilt angle distortion.

  19. Microscopic origin of black hole reentrant phase transitions

    NASA Astrophysics Data System (ADS)

    Zangeneh, M. Kord; Dehyadegari, A.; Sheykhi, A.; Mann, R. B.

    2018-04-01

    Understanding the microscopic behavior of the black hole ingredients has been one of the important challenges in black hole physics during the past decades. In order to shed some light on the microscopic structure of black holes, in this paper, we explore a recently observed phenomenon for black holes namely reentrant phase transition, by employing the Ruppeiner geometry. Interestingly enough, we observe two properties for the phase behavior of small black holes that leads to reentrant phase transition. They are correlated and they are of the interaction type. For the range of pressure in which the system underlies reentrant phase transition, it transits from the large black holes phase to the small one which possesses higher correlation than the other ranges of pressures. On the other hand, the type of interaction between small black holes near the large/small transition line differs for usual and reentrant phase transitions. Indeed, for the usual case, the dominant interaction is repulsive whereas for the reentrant case we encounter an attractive interaction. We show that in the reentrant phase transition case, the small black holes behave like a bosonic gas whereas in the usual phase transition case, they behave like a quantum anyon gas.

  20. Operating microscopes: past, present, and future.

    PubMed

    Uluç, Kutluay; Kujoth, Gregory C; Başkaya, Mustafa K

    2009-09-01

    The operating microscope is a fixture of modern surgical facilities, and it is a critically important factor in the success of many of the most complex and difficult surgical interventions used in medicine today. The rise of this key surgical tool reflects advances in understanding the principles of optics and vision that have occurred over centuries. The development of reading spectacles in the late 13th century led to the construction of early compound microscopes in the 16th and 17th centuries by Lippershey, Janssen, Galileo, Hooke, and others. Perhaps surprisingly, Leeuwenhoek's simple microscopes of this era offered improved performance over his contemporaries' designs. The intervening years saw improvements that reduced the spherical and chromatic aberrations present in compound microscopes. By the late 19th century, Carl Zeiss and Ernst Abbe ushered the compound microscope into the beginnings of the modern era of commercial design and production. The introduction of the microscope into the operating room by Nylén in 1921 initiated a revolution in surgical practice that gained momentum throughout the 1950s with multiple refinements, the introduction of the Zeiss OPMI series, and Kurze's application of the microscope to neurosurgery in 1957. Many of the refinements of the last 50 years have greatly improved the handling and practical operation of the surgical microscope, considerations which are equally important to its optical performance. Today's sophisticated operating microscopes allow for advanced real-time angiographic and tumor imaging. In this paper the authors discuss what might be found in the operating rooms of tomorrow.