Hammouda, Hédi; Alvarado, Camille; Bouchet, Brigitte; Kalthoum-Chérif, Jamila; Trabelsi-Ayadi, Malika; Guyot, Sylvain
2014-07-16
A histological approach including light microscopy and transmission electron microscopy (TEM) was used to provide accurate information on the localization of condensed tannins in the edible tissues and in the stone of date fruits (Phoenix dactylifera L.). Light microscopy was carried out on fresh tissues after staining by 4-dimethylaminocinnamaldehyde (DMACA) for a specific detection of condensed tannins. Thus, whether under light microscopy or transmission electron microscopy (TEM), results showed that tannins are not located in the epidermis but more deeply in the mesocarp in the vacuole of very large cells. Regarding the stones, tannins are found in a specific cell layer located at 50 μm from the sclereid cells of the testa.
Value of Reflected Light Microscopy in Teaching.
ERIC Educational Resources Information Center
Pasteris, Jill Dill
1983-01-01
Briefly reviews some optical and other physical properties of minerals that can be determined in reflected/incident light. Topics include optical properties of minerals, reflectance, internal reflections, color, bireflectance and reflection pleochroism, anisotropism, zonation, and reflected light microscopy as a teaching tool in undergraduate…
Microscopy and Image Analysis.
McNamara, George; Difilippantonio, Michael; Ried, Thomas; Bieber, Frederick R
2017-07-11
This unit provides an overview of light microscopy, including objectives, light sources, filters, film, and color photography for fluorescence microscopy and fluorescence in situ hybridization (FISH). We believe there are excellent opportunities for cytogeneticists, pathologists, and other biomedical readers, to take advantage of specimen optical clearing techniques and expansion microscopy-we briefly point to these new opportunities. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities.
Hauser, Meghan; Wojcik, Michal; Kim, Doory; Mahmoudi, Morteza; Li, Wan; Xu, Ke
2017-06-14
Correlative microscopy, the integration of two or more microscopy techniques performed on the same sample, produces results that emphasize the strengths of each technique while offsetting their individual weaknesses. Light microscopy has historically been a central method in correlative microscopy due to its widespread availability, compatibility with hydrated and live biological samples, and excellent molecular specificity through fluorescence labeling. However, conventional light microscopy can only achieve a resolution of ∼300 nm, undercutting its advantages in correlations with higher-resolution methods. The rise of super-resolution microscopy (SRM) over the past decade has drastically improved the resolution of light microscopy to ∼10 nm, thus creating exciting new opportunities and challenges for correlative microscopy. Here we review how these challenges are addressed to effectively correlate SRM with other microscopy techniques, including light microscopy, electron microscopy, cryomicroscopy, atomic force microscopy, and various forms of spectroscopy. Though we emphasize biological studies, we also discuss the application of correlative SRM to materials characterization and single-molecule reactions. Finally, we point out current limitations and discuss possible future improvements and advances. We thus demonstrate how a correlative approach adds new dimensions of information and provides new opportunities in the fast-growing field of SRM.
Application of SEM and EDX in studying biomineralization in plant tissues.
He, Honghua; Kirilak, Yaowanuj
2014-01-01
This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.
Applications of microscopy to genetic therapy of cystic fibrosis and other human diseases.
Moninger, Thomas O; Nessler, Randy A; Moore, Kenneth C
2006-01-01
Gene therapy has become an extremely important and active field of biomedical research. Microscopy is an integral component of this effort. This chapter presents an overview of imaging techniques used in our facility in support of cystic fibrosis gene therapy research. Instrumentation used in these studies includes light and confocal microscopy, transmission electron microscopy, and scanning electron microscopy. Techniques outlined include negative staining, cryo-electron microscopy, three-dimentional reconstruction, enzyme cytochemistry, immunocytochemistry, and fluorescence imaging.
NASA Technical Reports Server (NTRS)
Sicker, Ronald J.; Meyer, William V.; Foster, William M.; Fletcher, William A.; Williams, Stuart J.; Lee, Chang-Soo
2016-01-01
This presentation will feature a series of short, entertaining, and informative videos that describe the current status and science support for the Light Microscopy Module (LMM) facility on the International Space Station. These interviews will focus on current experiments and provide an overview of future capabilities. The recently completed experiments include nano-particle haloing, 3-D self-assembly with Janus particles and a model system for nano-particle drug delivery. The videos will share perspectives from the scientists, engineers, and managers working with the NASA Light Microscopy program.
Bertram, Christof A; Firsching, Theresa; Klopfleisch, Robert
2018-01-01
Several veterinary faculties have integrated virtual microscopy into their curricula in recent years to improve and refine their teaching techniques. The many advantages of this recent technology are described in the literature, including remote access and an equal and constant slide quality for all students. However, no study has analyzed the change of perception toward virtual microscopy at different time points of students' academic educations. In the present study, veterinary students in 3 academic years were asked for their perspectives and attitudes toward virtual microscopy and conventional light microscopy. Third-, fourth-, and fifth-year veterinary students filled out a questionnaire with 12 questions. The answers revealed that virtual microscopy was overall well accepted by students of all academic years. Most students even suggested that virtual microscopy be implemented more extensively as the modality for final histopathology examinations. Nevertheless, training in the use of light microscopy and associated skills was surprisingly well appreciated. Regardless of their academic year, most students considered these skills important and necessary, and they felt that light microscopy should not be completely replaced. The reasons for this view differed depending on academic year, as the perceived main disadvantage of virtual microscopy varied. Third-year students feared that they would not acquire sufficient light microscopy skills. Fifth-year students considered technical difficulties (i.e., insufficient transmission speed) to be the main disadvantage of this newer teaching modality.
Gerbich, Therese M.; Rana, Kishan; Suzuki, Aussie; Schaefer, Kristina N.; Heppert, Jennifer K.; Boothby, Thomas C.; Allbritton, Nancy L.; Gladfelter, Amy S.; Maddox, Amy S.
2018-01-01
Fluorescence microscopy is a powerful approach for studying subcellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light-sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective by using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel live-cell LSFM method, lateral interference tilted excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, and coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution. PMID:29490939
Condenser-free contrast methods for transmitted-light microscopy
WEBB, K F
2015-01-01
Phase contrast microscopy allows the study of highly transparent yet detail-rich specimens by producing intensity contrast from phase objects within the sample. Presented here is a generalized phase contrast illumination schema in which condenser optics are entirely abrogated, yielding a condenser-free yet highly effective method of obtaining phase contrast in transmitted-light microscopy. A ring of light emitting diodes (LEDs) is positioned within the light-path such that observation of the objective back focal plane places the illuminating ring in appropriate conjunction with the phase ring. It is demonstrated that true Zernike phase contrast is obtained, whose geometry can be flexibly manipulated to provide an arbitrary working distance between illuminator and sample. Condenser-free phase contrast is demonstrated across a range of magnifications (4–100×), numerical apertures (0.13–1.65NA) and conventional phase positions. Also demonstrated is condenser-free darkfield microscopy as well as combinatorial contrast including Rheinberg illumination and simultaneous, colour-contrasted, brightfield, darkfield and Zernike phase contrast. By providing enhanced and arbitrary working space above the preparation, a range of concurrent imaging and electrophysiological techniques will be technically facilitated. Condenser-free phase contrast is demonstrated in conjunction with scanning ion conductance microscopy (SICM), using a notched ring to admit the scanned probe. The compact, versatile LED illumination schema will further lend itself to novel next-generation transmitted-light microscopy designs. The condenser-free illumination method, using rings of independent or radially-scanned emitters, may be exploited in future in other electromagnetic wavebands, including X-rays or the infrared. PMID:25226859
The Light Microscopy Module: An On-Orbit Multi-User Microscope Facility
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Snead, John H.
2002-01-01
The Light Microscopy Module (LMM) is planned as a remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and operation of fluids and biology experiments within the Fluids and Combustion Facility (FCF) Fluids Integrated Rack (FIR) on the International Space Station (ISS). The LMM will be the first integrated payload with the FIR to conduct four fluid physics experiments. A description of the LMM diagnostic capabilities, including video microscopy, interferometry, laser tweezers, confocal, and spectrophotometry, will be provided.
Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.
Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J
2014-01-01
Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described. © 2014 Elsevier Inc. All rights reserved.
Camera array based light field microscopy
Lin, Xing; Wu, Jiamin; Zheng, Guoan; Dai, Qionghai
2015-01-01
This paper proposes a novel approach for high-resolution light field microscopy imaging by using a camera array. In this approach, we apply a two-stage relay system for expanding the aperture plane of the microscope into the size of an imaging lens array, and utilize a sensor array for acquiring different sub-apertures images formed by corresponding imaging lenses. By combining the rectified and synchronized images from 5 × 5 viewpoints with our prototype system, we successfully recovered color light field videos for various fast-moving microscopic specimens with a spatial resolution of 0.79 megapixels at 30 frames per second, corresponding to an unprecedented data throughput of 562.5 MB/s for light field microscopy. We also demonstrated the use of the reported platform for different applications, including post-capture refocusing, phase reconstruction, 3D imaging, and optical metrology. PMID:26417490
Walker, G.K.; Black, M.G.; Edwards, C.A.
1996-01-01
Adult zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels were induced to release large quantities of live spermatozoa by the administration of 5-hydroxytryptamine (serotonin). Sperm were photographed alive using phase-contrast microscopy and were fixed subsequently with glutaraldehyde followed by osmium tetroxide for eventual examination by transmission or scanning electron microscopy. The sperm of both genera are of the ect-aquasperm type. Their overall dimensions and shape allow for easy discrimination at the light and scanning electron microscopy level. Transmission electron microscopy of the cells reveals a barrel-shaped nucleus in zebra mussel sperm and an elongated nucleus in quagga mussel sperm. In both species, an acrosome is cradled in a nuclear fossa. The ultrastructure of the acrosome and axial body, however, is distinctive for each species. The structures of the midpiece are shown, including a unique mitochondrial "skirt" that includes densely packed parallel cristae and extends in a narrow sheet from the mitochondria.
Coates, Colin G; Denvir, Donal J; McHale, Noel G; Thornbury, Keith D; Hollywood, Mark A
2004-01-01
The back-illuminated electron multiplying charge-coupled device (EMCCD) camera is having a profound influence on the field of low-light dynamic cellular microscopy, combining highest possible photon collection efficiency with the ability to virtually eliminate the readout noise detection limit. We report here the use of this camera, in 512 x 512 frame-transfer chip format at 10-MHz pixel readout speed, in optimizing a demanding ultra-low-light intracellular calcium flux microscopy setup. The arrangement employed includes a spinning confocal Nipkow disk, which, while facilitating the need to both generate images at very rapid frame rates and minimize background photons, yields very weak signals. The challenge for the camera lies not just in detecting as many of these scarce photons as possible, but also in operating at a frame rate that meets the temporal resolution requirements of many low-light microscopy approaches, a particular demand of smooth muscle calcium flux microscopy. Results presented illustrate both the significant sensitivity improvement offered by this technology over the previous standard in ultra-low-light CCD detection, the GenIII+intensified charge-coupled device (ICCD), and also portray the advanced temporal and spatial resolution capabilities of the EMCCD. Copyright 2004 Society of Photo-Optical Instrumentation Engineers.
Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed
2015-01-01
Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.
Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology.
Johnson, Sam A
2015-01-01
Imaging methods have presented scientists with powerful means of investigation for centuries. The ability to resolve structures using light microscopes is though limited to around 200 nm. Fluorescence-based super-resolution light microscopy techniques of several principles and methods have emerged in recent years and offer great potential to extend the capabilities of microscopy. This resolution improvement is especially promising for nanoscience where the imaging of nanoscale structures is inherently restricted by the resolution limit of standard forms of light microscopy. Resolution can be improved by several distinct approaches including structured illumination microscopy, stimulated emission depletion, and single-molecule positioning methods such as photoactivated localization microscopy and stochastic optical reconstruction microscopy and several derivative variations of each of these. These methods involve substantial differences in the resolutions achievable in the different axes, speed of acquisition, compatibility with different labels, ease of use, hardware complexity, and compatibility with live biological samples. The field of super-resolution imaging and its application to nanotechnology is relatively new and still rapidly developing. An overview of how these methods may be used with nanomaterials is presented with some examples of pioneering uses of these approaches. © 2014 Wiley Periodicals, Inc.
Jahan-Tigh, Richard R; Chinn, Garrett M; Rapini, Ronald P
2016-01-01
The incorporation of high-resolution cameras into smartphones has allowed for a variety of medical applications including the use of lens attachments that provide telescopic, macroscopic, and dermatoscopic data, but the feasibility and performance characteristics of such a platform for use in dermatopathology have not been described. To determine the diagnostic performance of a smartphone microscope compared to traditional light microscopy in dermatopathology specimens. A simple smartphone microscope constructed with a 3-mm ball lens was used to prospectively evaluate 1021 consecutive dermatopathology cases in a blinded fashion. Referred, consecutive specimens from the community were evaluated at a single university hospital. The performance characteristics of the smartphone platform were calculated by using conventional light microscopy as the gold standard. The sensitivity and specificity for the diagnosis of melanoma, nonmelanoma skin cancers, and other miscellaneous conditions by the phone microscopy platform, as compared with traditional light microscopy, were calculated. For basal cell carcinoma (n = 136), the sensitivity and specificity of smartphone microscopy were 95.6% and 98.1%, respectively. The sensitivity and specificity for squamous cell carcinoma (n = 94) were 89.4% and 97.3%, respectively. The lowest sensitivity was found in melanoma (n = 15) at 60%, although the specificity was high at 99.1%. The accuracy of diagnosis of inflammatory conditions and other neoplasms was variable. Mobile phone-based microscopy has excellent performance characteristics for the inexpensive diagnosis of nonmelanoma skin cancers in a setting where a traditional microscope is not available.
The evolution of structured illumination microscopy in studies of HIV.
Marno, Kelly; Al'Zoubi, Lara; Pearson, Matthew; Posch, Markus; McKnight, Áine; Wheeler, Ann P
2015-10-15
The resolution limit of conventional light microscopy has proven to be limiting for many biological structures such as viruses including Human immunodeficiency virus (HIV). Individual HIV virions are impossible to study using confocal microscopy as they are well below the 200 nm resolution limit of conventional light microscopes. Structured illumination microscopy (SIM) allows a twofold enhancement in image resolution compared to standard widefield illumination and so provides an excellent tool for study of HIV. Viral capsids (CAs) vary between 110 and 146 nm so this study challenges the performance of SIM microscopes. SIM microscopy was first developed in 2000, commercialised in 2007 and rapidly developed. Here we present the changes in capabilities of the SIM microscopes for study of HIV localisation as the instrumentation for structured illumination microscopy has evolved over the past 8 years. Copyright © 2015. Published by Elsevier Inc.
Pump-probe optical microscopy for imaging nonfluorescent chromophores.
Wei, Lu; Min, Wei
2012-06-01
Many chromophores absorb light intensely but have undetectable fluorescence. Hence microscopy techniques other than fluorescence are highly desirable for imaging these chromophores inside live cells, tissues, and organisms. The recently developed pump-probe optical microscopy techniques provide fluorescence-free contrast mechanisms by employing several fundamental light-molecule interactions including excited state absorption, stimulated emission, ground state depletion, and the photothermal effect. By using the pump pulse to excite molecules and the subsequent probe pulse to interrogate the created transient states on a laser scanning microscope, pump-probe microscopy offers imaging capability with high sensitivity and specificity toward nonfluorescent chromophores. Single-molecule sensitivity has even been demonstrated. Here we review and summarize the underlying principles of this emerging class of molecular imaging techniques.
Curcumin Inhibits Tau Aggregation and Disintegrates Preformed Tau Filaments in vitro.
Rane, Jitendra Subhash; Bhaumik, Prasenjit; Panda, Dulal
2017-01-01
The pathological aggregation of tau is a common feature of most of the neuronal disorders including frontotemporal dementia, Parkinson's disease, and Alzheimer's disease. The inhibition of tau aggregation is considered to be one of the important strategies for treating these neurodegenerative diseases. Curcumin, a natural polyphenolic molecule, has been reported to have neuroprotective ability. In this work, curcumin was found to bind to adult tau and fetal tau with a dissociation constant of 3.3±0.4 and 8±1 μM, respectively. Molecular docking studies indicated a putative binding site of curcumin in the microtubule-binding region of tau. Using several complementary techniques, including dynamic light scattering, thioflavin S fluorescence, 90° light scattering, electron microscopy, and atomic force microscopy, curcumin was found to inhibit the aggregation of tau. The dynamic light scattering analysis and atomic force microscopic images revealed that curcumin inhibits the oligomerization of tau. Curcumin also disintegrated preformed tau oligomers. Using Far-UV circular dichroism, curcumin was found to inhibit the β-sheets formation in tau indicating that curcumin inhibits an initial step of tau aggregation. In addition, curcumin inhibited tau fibril formation. Furthermore, the effect of curcumin on the preformed tau filaments was analyzed by atomic force microscopy, transmission electron microscopy, and 90° light scattering. Curcumin treatment disintegrated preformed tau filaments. The results indicated that curcumin inhibited the oligomerization of tau and could disaggregate tau filaments.
Current methods for the size determination of nanomaterials in aqueous suspension include dynamic or static light scattering and electron or atomic force microscopy techniques. Light scattering techniques are limited by poor resolution and the scattering intensity dependence on p...
Bertram, Christof A; Gurtner, Corinne; Dettwiler, Martina; Kershaw, Olivia; Dietert, Kristina; Pieper, Laura; Pischon, Hannah; Gruber, Achim D; Klopfleisch, Robert
2018-07-01
Integration of new technologies, such as digital microscopy, into a highly standardized laboratory routine requires the validation of its performance in terms of reliability, specificity, and sensitivity. However, a validation study of digital microscopy is currently lacking in veterinary pathology. The aim of the current study was to validate the usability of digital microscopy in terms of diagnostic accuracy, speed, and confidence for diagnosing and differentiating common canine cutaneous tumor types and to compare it to classical light microscopy. Therefore, 80 histologic sections including 17 different skin tumor types were examined twice as glass slides and twice as digital whole-slide images by 6 pathologists with different levels of experience at 4 time points. Comparison of both methods found digital microscopy to be noninferior for differentiating individual tumor types within the category epithelial and mesenchymal tumors, but diagnostic concordance was slightly lower for differentiating individual round cell tumor types by digital microscopy. In addition, digital microscopy was associated with significantly shorter diagnostic time, but diagnostic confidence was lower and technical quality was considered inferior for whole-slide images compared with glass slides. Of note, diagnostic performance for whole-slide images scanned at 200× magnification was noninferior in diagnostic performance for slides scanned at 400×. In conclusion, digital microscopy differs only minimally from light microscopy in few aspects of diagnostic performance and overall appears adequate for the diagnosis of individual canine cutaneous tumors with minor limitations for differentiating individual round cell tumor types and grading of mast cell tumors.
Two-photon confocal microscopy in wound healing
NASA Astrophysics Data System (ADS)
Navarro, Fernando A.; So, Peter T. C.; Driessen, Antoine; Kropf, Nina; Park, Christine S.; Huertas, Juan C.; Lee, Hoon B.; Orgill, Dennis P.
2001-04-01
Advances in histopathology and immunohistochemistry have allowed for precise microanatomic detail of tissues. Two Photon Confocal Microscopy (TPCM) is a new technology useful in non-destructive analysis of tissue. Laser light excites the natural florophores, NAD(P)H and NADP+ and the scattering patterns of the emitted light are analyzed to reconstruct microanatomic features. Guinea pig skin was studied using TPCM and skin preparation methods including chemical depilation and tape striping. Results of TPCM were compared with conventional hematoxylin and eosin microscopy. Two-dimensional images were rendered from the three dimensional reconstructions. Images of deeper layers including basal cells and the dermo-epidermal junction improved after removing the stratum corneum with chemical depilation or tape stripping. TCPM allows good resolution of corneocytes, basal cells and collagen fibers and shows promise as a non-destructive method to study wound healing.
Mukhamadiyarov, Rinat A; Sevostyanova, Victoria V; Shishkova, Daria K; Nokhrin, Andrey V; Sidorova, Olga D; Kutikhin, Anton G
2016-06-01
A broad use of the graft replacement requires a detailed investigation of the host-graft interaction, including both histological examination and electron microscopy. A high quality sectioning of the host tissue with a graft seems to be complicated; in addition, it is difficult to examine the same tissue area by both of the mentioned microscopy techniques. To solve these problems, we developed a new technique of epoxy resin embedding with the further grinding, polishing, and staining. Graft-containing tissues prepared by grinding and polishing preserved their structure; however, sectioning frequently required the explantation of the graft and led to tissue disintegration. Moreover, stained samples prepared by grinding and polishing may then be assessed by both light microscopy and backscattered scanning electron microscopy. Therefore, grinding and polishing outperform sectioning when applied to the tissues with a graft. Copyright © 2016 Elsevier Ltd. All rights reserved.
Remineralization Potential of Three Tooth Pastes on Enamel Caries.
Singhal, Rajnish K; Rai, Balwant
2017-08-15
Different formulations of dentifrices exist in the market. Usually, single toothpaste is used by all family members including children. There is a big concern of fluoride ingestion with the toothpaste containing high fluoride content in children. Recently, new toothpaste (including toothpaste) with remineralization potential without fluoride content has been formulated. There is an urgent need to compare remineralization potential of this new formulation with the exiting dentifrices. Therefore, the present study has been undertaken to assess and compare the remineralization potential of three dentifrices with different compositions on artificially induced carious lesions in vitro by using scanning electron microscopy and polarised light microscopy. The present in vitro study was conducted on 21 healthy extracted primary central incisor teeth surfaces, which were divided into three groups and were treated by three different dentifrices. Artificial demineralization was followed by remineralization using dentifrice slurry as per the group distribution. All the samples were studied for remineralization by using scanning electron microscopy and polarised light microscopy. Data were analysed using SPSS version 11 software. A significant difference was found between the remineralization potential of incudent toothpaste and other toothpaste groups based on the analysis of polarised light microscopy and stereomicroscope. The remineralizing ability of incudent toothpaste for artificial enamel lesions was found to be significantly higher than that of Colgate® and Crest toothpaste. The limitations of this study include, being a short term study, low sample size and in vitro experiment. incudent toothpaste has exhibited a higher remineralizing potential as compared to fluoride based toothpaste in our study.
Circumventing photodamage in live-cell microscopy
Magidson, Valentin; Khodjakov, Alexey
2013-01-01
Fluorescence microscopy has become an essential tool in cell biology. This technique allows researchers to visualize the dynamics of tissue, cells, individual organelles and macromolecular assemblies inside the cell. Unfortunately, fluorescence microscopy is not completely ‘non-invasive’ as the high-intensity excitation light required for excitation of fluorophores is inherently toxic for live cells. Physiological changes induced by excessive illumination can lead to artifacts and abnormal responses. In this chapter we review major factors that contribute to phototoxicity and discuss practical solutions for circumventing photodamage. These solutions include the proper choice of image acquisition parameters, optimization of filter sets, hardware synchronization, and the use of intelligent illumination to avoid unnecessary light exposure. PMID:23931522
Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection
Zhi, Yanan; Wang, Benquan; Yao, Xincheng
2016-01-01
Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches—including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy—have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact–free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina. PMID:27480461
Calibrating excitation light fluxes for quantitative light microscopy in cell biology
Grünwald, David; Shenoy, Shailesh M; Burke, Sean; Singer, Robert H
2011-01-01
Power output of light bulbs changes over time and the total energy delivered will depend on the optical beam path of the microscope, filter sets and objectives used, thus making comparison between experiments performed on different microscopes complicated. Using a thermocoupled power meter, it is possible to measure the exact amount of light applied to a specimen in fluorescence microscopy, regardless of the light source, as the light power measured can be translated into a power density at the sample. This widely used and simple tool forms the basis of a new degree of calibration precision and comparability of results among experiments and setups. Here we describe an easy-to-follow protocol that allows researchers to precisely estimate excitation intensities in the object plane, using commercially available opto-mechanical components. The total duration of this protocol for one objective and six filter cubes is 75 min including start-up time for the lamp. PMID:18974739
Killingsworth, Murray C; Lai, Ken; Wu, Xiaojuan; Yong, Jim L C; Lee, C Soon
2012-11-01
Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy.
Lai, Ken; Wu, Xiaojuan; Yong, Jim L. C.; Lee, C. Soon
2012-01-01
Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy. PMID:22899862
The Fluids Integrated Rack and Light Microscopy Module Integrated Capabilities
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Gati, Frank; Snead, John H.; Hill, Myron E.; Griffin, DeVon W.
2003-01-01
The Fluids Integrated Rack (FIR), a facility class payload, and the Light Microscopy Module (LMM), a subrack payload, are scheduled to be launched in 2005. The LMM integrated into the FIR will provide a unique platform for conducting fluids and biological experiments on ISS. The FIR is a modular, multi-user scientific research facility that will fly in the U.S. laboratory module, Destiny, of the International Space Station (ISS). The first payload in the FIR will be the Light Microscopy Module (LMM). The LMM is planned as a remotely controllable, automated, on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within the FIR. Key diagnostic capabilities for meeting science requirements include video microscopy to observe microscopic phenomena and dynamic interactions, interferometry to make thin film measurements with nanometer resolution, laser tweezers for particle manipulation, confocal microscopy to provide enhanced three-dimensional visualization of structures, and spectrophotometry to measure photonic properties of materials. The LMM also provides experiment sample containment for frangibles and fluids. This paper will provide a description of the current FIR and LMM designs, planned capabilities and key features. In addition a brief description of the initial five experiments planned for LMM/FIR will be provided.
Advances in Light Microscopy for Neuroscience
Wilt, Brian A.; Burns, Laurie D.; Ho, Eric Tatt Wei; Ghosh, Kunal K.; Mukamel, Eran A.
2010-01-01
Since the work of Golgi and Cajal, light microscopy has remained a key tool for neuroscientists to observe cellular properties. Ongoing advances have enabled new experimental capabilities using light to inspect the nervous system across multiple spatial scales, including ultrastructural scales finer than the optical diffraction limit. Other progress permits functional imaging at faster speeds, at greater depths in brain tissue, and over larger tissue volumes than previously possible. Portable, miniaturized fluorescence microscopes now allow brain imaging in freely behaving mice. Complementary progress on animal preparations has enabled imaging in head-restrained behaving animals, as well as time-lapse microscopy studies in the brains of live subjects. Mouse genetic approaches permit mosaic and inducible fluorescence-labeling strategies, whereas intrinsic contrast mechanisms allow in vivo imaging of animals and humans without use of exogenous markers. This review surveys such advances and highlights emerging capabilities of particular interest to neuroscientists. PMID:19555292
Analysis of Cutmarks on Bone: Can Light Microscopy Be of Any Help?
Cerutti, Elisa; Spagnoli, Laura; Araujo, Nadezhda; Gibelli, Daniele; Mazzarelli, Debora; Cattaneo, Cristina
2016-12-01
One of the main issues in forensic anthropology consists of the identification of signs of trauma in skeletal remains, including sharp-force injuries. So far, several studies have been performed to assess differences between injuries caused by different instruments, not, however, through light microscopy.In this study, 152 sharp-force injuries were performed by 5 different tools through 2 different orientations on 2 humeral diaphyses and were analyzed by stereo and light microscopy to assess possible morphological differences.This study showed that although W-shaped injuries are frequently reported in cases of wood-cutting saws, other shapes are often observed; lesions due to metal-cutting saws are almost always U shaped, whereas injuries caused by knives are V shaped. Although cut marks may represent a variable range of features, the present study was able to highlight typical profiles that may be of some help for the diagnosis of weapon and the intentionality of the action.
Bioorthogonal Chemical Imaging for Biomedicine
NASA Astrophysics Data System (ADS)
Min, Wei
2017-06-01
Innovations in light microscopy have tremendously revolutionized the way researchers study biological systems with subcellular resolution. Although fluorescence microscopy is currently the method of choice for cellular imaging, it faces fundamental limitations for studying the vast number of small biomolecules. This is because relatively bulky fluorescent labels could introduce considerable perturbation to or even completely alter the native functions of vital small biomolecules. Hence, despite their immense functional importance, these small biomolecules remain largely undetectable by fluorescence microscopy. To address this challenge, we have developed a bioorthogonal chemical imaging platform. By coupling stimulated Raman scattering (SRS) microscopy, an emerging nonlinear Raman microscopy technique, with tiny and Raman-active vibrational probes (e.g., alkynes, nitriles and stable isotopes including 2H and 13C), bioorthogonal chemical imaging exhibits superb sensitivity, specificity, multiplicity and biocompatibility for imaging small biomolecules in live systems including tissues and organisms. Exciting biomedical applications such as imaging fatty acid metabolism related to lipotoxicity, glucose uptake and metabolism, drug trafficking, protein synthesis, DNA replication, protein degradation, RNA synthesis and tumor metabolism will be presented. This bioorthogonal chemical imaging platform is compatible with live-cell biology, thus allowing real-time imaging of small-molecule dynamics. Moreover, further chemical and spectroscopic strategies allow for multicolor bioorthogonal chemical imaging, a valuable technique in the era of "omics". We envision that the coupling of SRS microscopy with vibrational probes would do for small biomolecules what fluorescence microscopy of fluorophores has done for larger molecular species, bringing small molecules under the illumination of modern light microscopy.
NASA Astrophysics Data System (ADS)
Kemper, Björn; Kastl, Lena; Schnekenburger, Jürgen; Ketelhut, Steffi
2018-02-01
Main restrictions of using laser light in digital holographic microscopy (DHM) are coherence induced noise and parasitic reflections in the experimental setup which limit resolution and measurement accuracy. We explored, if coherence properties of partial coherent light sources can be generated synthetically utilizing spectrally tunable lasers. The concept of the method is demonstrated by label-free quantitative phase imaging of living pancreatic tumor cells and utilizing an experimental configuration including a commercial microscope and a laser source with a broad tunable spectral range of more than 200 nm.
Correlated Light and Electron Microscopy/Electron Tomography of Mitochondria In Situ
Perkins, Guy A.; Sun, Mei G.; Frey, Terrence G.
2009-01-01
Three-dimensional light microscopy and three-dimensional electron microscopy (electron tomography) separately provide very powerful tools to study cellular structure and physiology, including the structure and physiology of mitochondria. Fluorescence microscopy allows one to study processes in live cells with specific labels and stains that follow the movement of labeled proteins and changes within cellular compartments but does not have sufficient resolution to define the ultrastructure of intracellular organelles such as mitochondria. Electron microscopy and electron tomography provide the highest resolution currently available to study mitochondrial ultrastructure but cannot follow processes in living cells. We describe the combination of these two techniques in which fluorescence confocal microscopy is used to study structural and physiologic changes in mitochondria within apoptotic HeLa cells to define the apoptotic timeframe. Cells can then be selected at various stages of the apoptotic timeframe for examination at higher resolution by electron microscopy and electron tomography. This is a form of “virtual” 4-dimensional electron microscopy that has revealed interesting structural changes in the mitochondria of HeLa cells during apoptosis. The same techniques can be applied, with modification, to study other dynamic processes within cells in other experimental contexts. PMID:19348881
Innovative Strategies for Clinical Microscopy Instruction: Virtual Versus Light Microscopy.
McDaniel, M Jane; Russell, Gregory B; Crandall, Sonia J
2018-06-01
The purpose of the study was to compare virtual microscopy with light microscopy to determine differences in learning outcomes and learner attitudes in teaching clinical microscopy to physician assistant (PA) students. A prospective, randomized, crossover design study was conducted with a convenience sample of 67 first-year PA students randomized to 2 groups. One group used light microscopes to find microscopic structures, whereas the other group used instructor-directed video streaming of microscopic elements. At the midpoint of the study, the groups switched instructional strategies. Learning outcomes were assessed via posttest after each section of the study, with comparison of final practical examination results to previous cohorts. Attitudes about the 2 educational strategies were assessed through a postcourse questionnaire with a Likert scale. Analysis of the first posttest demonstrated that students in the video-streamed group had significantly better learning outcomes than those in the light microscopy group (P = .004; Cohen's d = 0.74). Analysis of the posttest after crossover showed no differences between the 2 groups (P = .48). Between the 2 posttests, students first assigned to the light microscopy group scored a 6.6 mean point increase (±10.4 SD; p = .0011), whereas students first assigned to the virtual microscopy group scored a 1.3 mean point increase (±7.1 SD; p = .29). The light microscopy group improved more than the virtual microscopy group (P = .019). Analysis of practical examination data revealed higher scores for the study group compared with 5 previous cohorts of first-year students (P < .0001; Cohen's d = 0.66). Students preferred virtual microscopy to traditional light microscopy. Virtual microscopy is an effective educational strategy, and students prefer this method when learning to interpret images of clinical specimens.
Chu, Jun; Oh, Young-Hee; Sens, Alex; Ataie, Niloufar; Dana, Hod; Macklin, John J.; Laviv, Tal; Welf, Erik S.; Dean, Kevin M.; Zhang, Feijie; Kim, Benjamin B.; Tang, Clement Tran; Hu, Michelle; Baird, Michelle A.; Davidson, Michael W.; Kay, Mark A.; Fiolka, Reto; Yasuda, Ryohei; Kim, Douglas S.; Ng, Ho-Leung; Lin, Michael Z.
2016-01-01
Orange-red fluorescent proteins (FPs) are widely used in biomedical research for multiplexed epifluorescence microscopy with GFP-based probes, but their different excitation requirements make multiplexing with new advanced microscopy methods difficult. Separately, orange-red FPs are useful for deep-tissue imaging in mammals due to the relative tissue transmissibility of orange-red light, but their dependence on illumination limits their sensitivity as reporters in deep tissues. Here we describe CyOFP1, a bright engineered orange-red FP that is excitable by cyan light. We show that CyOFP1 enables single-excitation multiplexed imaging with GFP-based probes in single-photon and two-photon microscopy, including time-lapse imaging in light-sheet systems. CyOFP1 also serves as an efficient acceptor for resonance energy transfer from the highly catalytic blue-emitting luciferase NanoLuc. An optimized fusion of CyOFP1 and NanoLuc, called Antares, functions as a highly sensitive bioluminescent reporter in vivo, producing substantially brighter signals from deep tissues than firefly luciferase and other bioluminescent proteins. PMID:27240196
Restoration of uneven illumination in light sheet microscopy images.
Uddin, Mohammad Shorif; Lee, Hwee Kuan; Preibisch, Stephan; Tomancak, Pavel
2011-08-01
Light microscopy images suffer from poor contrast due to light absorption and scattering by the media. The resulting decay in contrast varies exponentially across the image along the incident light path. Classical space invariant deconvolution approaches, while very effective in deblurring, are not designed for the restoration of uneven illumination in microscopy images. In this article, we present a modified radiative transfer theory approach to solve the contrast degradation problem of light sheet microscopy (LSM) images. We confirmed the effectiveness of our approach through simulation as well as real LSM images.
Concepts in Light Microscopy of Viruses
Witte, Robert; Georgi, Fanny
2018-01-01
Viruses threaten humans, livestock, and plants, and are difficult to combat. Imaging of viruses by light microscopy is key to uncover the nature of known and emerging viruses in the quest for finding new ways to treat viral disease and deepening the understanding of virus–host interactions. Here, we provide an overview of recent technology for imaging cells and viruses by light microscopy, in particular fluorescence microscopy in static and live-cell modes. The review lays out guidelines for how novel fluorescent chemical probes and proteins can be used in light microscopy to illuminate cells, and how they can be used to study virus infections. We discuss advantages and opportunities of confocal and multi-photon microscopy, selective plane illumination microscopy, and super-resolution microscopy. We emphasize the prevalent concepts in image processing and data analyses, and provide an outlook into label-free digital holographic microscopy for virus research. PMID:29670029
Concepts in Light Microscopy of Viruses.
Witte, Robert; Andriasyan, Vardan; Georgi, Fanny; Yakimovich, Artur; Greber, Urs F
2018-04-18
Viruses threaten humans, livestock, and plants, and are difficult to combat. Imaging of viruses by light microscopy is key to uncover the nature of known and emerging viruses in the quest for finding new ways to treat viral disease and deepening the understanding of virus–host interactions. Here, we provide an overview of recent technology for imaging cells and viruses by light microscopy, in particular fluorescence microscopy in static and live-cell modes. The review lays out guidelines for how novel fluorescent chemical probes and proteins can be used in light microscopy to illuminate cells, and how they can be used to study virus infections. We discuss advantages and opportunities of confocal and multi-photon microscopy, selective plane illumination microscopy, and super-resolution microscopy. We emphasize the prevalent concepts in image processing and data analyses, and provide an outlook into label-free digital holographic microscopy for virus research.
HANFORD WASTE MINERALOGY REFERENCE REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
DISSELKAMP RS
2010-06-29
This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.
HANFORD WASTE MINEROLOGY REFERENCE REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
DISSELKAMP RS
2010-06-18
This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.
Capturing the Surface Texture and Shape of Pollen: A Comparison of Microscopy Techniques
Sivaguru, Mayandi; Mander, Luke; Fried, Glenn; Punyasena, Surangi W.
2012-01-01
Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques), and brightfield and differential interference contrast microscopy (DIC) (transmitted light techniques). We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae), Mabea occidentalis (Euphorbiaceae) and Agropyron repens (Poaceae). No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (∼250 nm; NDL) presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical microscopy technique investigated here. Maximizing the recovery of morphological information from pollen grains should lead to more robust classifications, and an increase in the taxonomic precision with which ancient vegetation can be reconstructed. PMID:22720050
Automatic and adaptive heterogeneous refractive index compensation for light-sheet microscopy.
Ryan, Duncan P; Gould, Elizabeth A; Seedorf, Gregory J; Masihzadeh, Omid; Abman, Steven H; Vijayaraghavan, Sukumar; Macklin, Wendy B; Restrepo, Diego; Shepherd, Douglas P
2017-09-20
Optical tissue clearing has revolutionized researchers' ability to perform fluorescent measurements of molecules, cells, and structures within intact tissue. One common complication to all optically cleared tissue is a spatially heterogeneous refractive index, leading to light scattering and first-order defocus. We designed C-DSLM (cleared tissue digital scanned light-sheet microscopy) as a low-cost method intended to automatically generate in-focus images of cleared tissue. We demonstrate the flexibility and power of C-DSLM by quantifying fluorescent features in tissue from multiple animal models using refractive index matched and mismatched microscope objectives. This includes a unique measurement of myelin tracks within intact tissue using an endogenous fluorescent reporter where typical clearing approaches render such structures difficult to image. For all measurements, we provide independent verification using standard serial tissue sectioning and quantification methods. Paired with advancements in volumetric image processing, C-DSLM provides a robust methodology to quantify sub-micron features within large tissue sections.Optical clearing of tissue has enabled optical imaging deeper into tissue due to significantly reduced light scattering. Here, Ryan et al. tackle first-order defocus, an artefact of a non-uniform refractive index, extending light-sheet microscopy to partially cleared samples.
Amat, Fernando; Keller, Philipp J
2013-05-01
Understanding the development of complex multicellular organisms as a function of the underlying cell behavior is one of the most fundamental goals of developmental biology. The ability to quantitatively follow cell dynamics in entire developing embryos is an indispensable step towards such a system-level understanding. In recent years, light-sheet fluorescence microscopy has emerged as a particularly promising strategy for recording the in vivo data required to realize this goal. Using light-sheet fluorescence microscopy, entire complex organisms can be rapidly imaged in three dimensions at sub-cellular resolution, achieving high temporal sampling and excellent signal-to-noise ratio without damaging the living specimen or bleaching fluorescent markers. The resulting datasets allow following individual cells in vertebrate and higher invertebrate embryos over up to several days of development. However, the complexity and size of these multi-terabyte recordings typically preclude comprehensive manual analyses. Thus, new computational approaches are required to automatically segment cell morphologies, accurately track cell identities and systematically analyze cell behavior throughout embryonic development. We review current efforts in light-sheet microscopy and bioimage informatics towards this goal, and argue that comprehensive cell lineage reconstructions are finally within reach for many key model organisms, including fruit fly, zebrafish and mouse. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
Eum, Juneyong; Kwak, Jina; Kim, Hee Joung; Ki, Seoyoung; Lee, Kooyeon; Raslan, Ahmed A.; Park, Ok Kyu; Chowdhury, Md Ashraf Uddin; Her, Song; Kee, Yun; Kwon, Seung-Hae; Hwang, Byung Joon
2016-01-01
Environmental contamination by trinitrotoluene is of global concern due to its widespread use in military ordnance and commercial explosives. Despite known long-term persistence in groundwater and soil, the toxicological profile of trinitrotoluene and other explosive wastes have not been systematically measured using in vivo biological assays. Zebrafish embryos are ideal model vertebrates for high-throughput toxicity screening and live in vivo imaging due to their small size and transparency during embryogenesis. Here, we used Single Plane Illumination Microscopy (SPIM)/light sheet microscopy to assess the developmental toxicity of explosive-contaminated water in zebrafish embryos and report 2,4,6-trinitrotoluene-associated developmental abnormalities, including defects in heart formation and circulation, in 3D. Levels of apoptotic cell death were higher in the actively developing tissues of trinitrotoluene-treated embryos than controls. Live 3D imaging of heart tube development at cellular resolution by light-sheet microscopy revealed trinitrotoluene-associated cardiac toxicity, including hypoplastic heart chamber formation and cardiac looping defects, while the real time PCR (polymerase chain reaction) quantitatively measured the molecular changes in the heart and blood development supporting the developmental defects at the molecular level. Identification of cellular toxicity in zebrafish using the state-of-the-art 3D imaging system could form the basis of a sensitive biosensor for environmental contaminants and be further valued by combining it with molecular analysis. PMID:27869673
High-Throughput Light Sheet Microscopy for the Automated Live Imaging of Larval Zebrafish
NASA Astrophysics Data System (ADS)
Baker, Ryan; Logan, Savannah; Dudley, Christopher; Parthasarathy, Raghuveer
The zebrafish is a model organism with a variety of useful properties; it is small and optically transparent, it reproduces quickly, it is a vertebrate, and there are a large variety of transgenic animals available. Because of these properties, the zebrafish is well suited to study using a variety of optical technologies including light sheet fluorescence microscopy (LSFM), which provides high-resolution three-dimensional imaging over large fields of view. Research progress, however, is often not limited by optical techniques but instead by the number of samples one can examine over the course of an experiment, which in the case of light sheet imaging has so far been severely limited. Here we present an integrated fluidic circuit and microscope which provides rapid, automated imaging of zebrafish using several imaging modes, including LSFM, Hyperspectral Imaging, and Differential Interference Contrast Microscopy. Using this system, we show that we can increase our imaging throughput by a factor of 10 compared to previous techniques. We also show preliminary results visualizing zebrafish immune response, which is sensitive to gut microbiota composition, and which shows a strong variability between individuals that highlights the utility of high throughput imaging. National Science Foundation, Award No. DBI-1427957.
Minion, Jessica; Pai, Madhukar; Ramsay, Andrew; Menzies, Dick; Greenaway, Christina
2011-01-01
Introduction Light emitting diode fluorescence microscopes have many practical advantages over conventional mercury vapour fluorescence microscopes, which would make them the preferred choice for laboratories in both low- and high-resource settings, provided performance is equivalent. Methods In a nested case-control study, we compared diagnostic accuracy and time required to read slides with the Zeiss PrimoStar iLED, LW Scientific Lumin, and a conventional fluorescence microscope (Leica DMLS). Mycobacterial culture was used as the reference standard, and subgroup analysis by specimen source and organism isolated were performed. Results There was no difference in sensitivity or specificity between the three microscopes, and agreement was high for all comparisons and subgroups. The Lumin and the conventional fluorescence microscope were equivalent with respect to time required to read smears, but the Zeiss iLED was significantly time saving compared to both. Conclusions Light emitting diode microscopy should be considered by all tuberculosis diagnostic laboratories, including those in high income countries, as a replacement for conventional fluorescence microscopes. Our findings provide support to the recent World Health Organization policy recommending that conventional fluorescence microscopy be replaced by light emitting diode microscopy using auramine staining in all settings where fluorescence microscopy is currently used. PMID:21811622
Subach, Fedor V; Patterson, George H; Renz, Malte; Lippincott-Schwartz, Jennifer; Verkhusha, Vladislav V
2010-05-12
Rapidly emerging techniques of super-resolution single-molecule microscopy of living cells rely on the continued development of genetically encoded photoactivatable fluorescent proteins. On the basis of monomeric TagRFP, we have developed a photoactivatable TagRFP protein that is initially dark but becomes red fluorescent after violet light irradiation. Compared to other monomeric dark-to-red photoactivatable proteins including PAmCherry, PATagRFP has substantially higher molecular brightness, better pH stability, substantially less sensitivity to blue light, and better photostability in both ensemble and single-molecule modes. Spectroscopic analysis suggests that PATagRFP photoactivation is a two-step photochemical process involving sequential one-photon absorbance by two distinct chromophore forms. True monomeric behavior, absence of green fluorescence, and single-molecule performance in live cells make PATagRFP an excellent protein tag for two-color imaging techniques, including conventional diffraction-limited photoactivation microscopy, super-resolution photoactivated localization microscopy (PALM), and single particle tracking PALM (sptPALM) of living cells. Two-color sptPALM imaging was demonstrated using several PATagRFP tagged transmembrane proteins together with PAGFP-tagged clathrin light chain. Analysis of the resulting sptPALM images revealed that single-molecule transmembrane proteins, which are internalized into a cell via endocytosis, colocalize in space and time with plasma membrane domains enriched in clathrin light-chain molecules.
Label-free volumetric optical imaging of intact murine brains
NASA Astrophysics Data System (ADS)
Ren, Jian; Choi, Heejin; Chung, Kwanghun; Bouma, Brett E.
2017-04-01
A central effort of today’s neuroscience is to study the brain’s ’wiring diagram’. The nervous system is believed to be a network of neurons interacting with each other through synaptic connection between axons and dendrites, therefore the neuronal connectivity map not only depicts the underlying anatomy, but also has important behavioral implications. Different approaches have been utilized to decipher neuronal circuits, including electron microscopy (EM) and light microscopy (LM). However, these approaches typically demand extensive sectioning and reconstruction for a brain sample. Recently, tissue clearing methods have enabled the investigation of a fully assembled biological system with greatly improved light penetration. Yet, most of these implementations, still require either genetic or exogenous contrast labeling for light microscopy. Here we demonstrate a high-speed approach, termed as Clearing Assisted Scattering Tomography (CAST), where intact brains can be imaged at optical resolution without labeling by leveraging tissue clearing and the scattering contrast of optical frequency domain imaging (OFDI).
NASA Astrophysics Data System (ADS)
Lu, Xiang; Heintzmann, Rainer; Leischner, Ulrich
2015-09-01
Light sheet microscopy is a microscopy technique characterized by an illumination from the side, perpendicular to the direction of observation. While this is often used and easy to implement for imaging samples with water-immersion, the application in combination with oil-immersion is less often used and requires a specific optimization. In this paper we present our design of a light-sheet illumination optical system with a ~1μm illumination thickness, a long working distance through the immersion oil, and including a focusing system allowing for moving the focus-spot of the lightsheet laterally through the field of view. This optical design allows for the acquisition of fluorescence images in 3D with isotropic resolution of below 1 micrometer of whole-mount samples with a size of ~1mm diameter. This technique enables high-resolution insights in the 3D structure of biological samples, e.g. for research of insect anatomy or for imaging of biopsies in medical diagnostics.
Buzzini, Patrick; Massonnet, Genevieve
2015-05-01
In the second part of this survey, the ability of micro-Raman spectroscopy to discriminate 180 fiber samples of blue, black, and red cottons, wools, and acrylics was compared to that gathered with the traditional methods for the examination of textile fibers in a forensic context (including light microscopy methods, UV-vis microspectrophotometry and thin-layer chromatography). This study shows that the Raman technique plays a complementary and useful role to obtain further discriminations after the application of light microscopy methods and UV-vis microspectrophotometry and assure the nondestructive nature of the analytical sequence. These additional discriminations were observed despite the lower discriminating powers of Raman data considered individually, compared to those of light microscopy and UV-vis MSP. This study also confirms that an instrument equipped with several laser lines is necessary for an efficient use as applied to the examination of textile fibers in a forensic setting. © 2015 American Academy of Forensic Sciences.
Ophthalmic applications of confocal microscopy: diagnostics, refractive surgery, and eye banking
NASA Astrophysics Data System (ADS)
Masters, Barry R.
1990-11-01
Confocal microscopy of ocular tissue provides two advantages over traditional imaging techniques: increased range and transverse resolution and increased contrast. The semitransparent cornea and ocular lens in the living eye can be optically sectioned and observed by reflected light confocal microscopy. Within the cornea we observed various cell components nerve fibers nerve cell bodies and fibrous networks. The confocal microscopic images from the in-situ ocular lens show the lens capsule the lens epithelium and the individual lens fibrils. All of the reflected light confocal microscopic images have high contrast and high resolution. Some of the applications of confocal imaging in ophthalmology include: diagnostics of the cornea and the ocular lens examination prior to and after refractive surgery examination of intraocular lenses (IOL) and examination of eye bank material. Other ophthalmic uses of confocal imaging include: studies of wound healing therapeutics and the effects of contact lenses on the cornea. The proposed features of a clinical confocal microscope are reviewed. 2.
Research and application on imaging technology of line structure light based on confocal microscopy
NASA Astrophysics Data System (ADS)
Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen
2009-11-01
In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.
Evaluation of mobile digital light-emitting diode fluorescence microscopy in Hanoi, Viet Nam.
Chaisson, L H; Reber, C; Phan, H; Switz, N; Nilsson, L M; Myers, F; Nhung, N V; Luu, L; Pham, T; Vu, C; Nguyen, H; Nguyen, A; Dinh, T; Nahid, P; Fletcher, D A; Cattamanchi, A
2015-09-01
Hanoi Lung Hospital, Hanoi, Viet Nam. To compare the accuracy of CellScopeTB, a manually operated mobile digital fluorescence microscope, with conventional microscopy techniques. Patients referred for sputum smear microscopy to the Hanoi Lung Hospital from May to September 2013 were included. Ziehl-Neelsen (ZN) smear microscopy, conventional light-emitting diode (LED) fluorescence microscopy (FM), CellScopeTB-based LED FM and Xpert(®) MTB/RIF were performed on sputum samples. The sensitivity and specificity of microscopy techniques were determined in reference to Xpert results, and differences were compared using McNemar's paired test of proportions. Of 326 patients enrolled, 93 (28.5%) were Xpert-positive for TB. The sensitivity of ZN microscopy, conventional LED FM, and CellScopeTB-based LED FM was respectively 37.6% (95%CI 27.8-48.3), 41.9% (95%CI 31.8-52.6), and 35.5% (95%CI 25.8-46.1). The sensitivity of CellScopeTB was similar to that of conventional LED FM (difference -6.5%, 95%CI -18.2 to 5.3, P = 0.33) and ZN microscopy (difference -2.2%, 95%CI -9.2 to 4.9, P = 0.73). The specificity was >99% for all three techniques. CellScopeTB performed similarly to conventional microscopy techniques in the hands of experienced TB microscopists. However, the sensitivity of all sputum microscopy techniques was low. Options enabled by digital microscopy, such as automated imaging with real-time computerized analysis, should be explored to increase sensitivity.
Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo
2015-12-01
In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wang, Ya-Qiong; Liang, Zhi-Tao; Li, Qin; Yang, Hua; Chen, Hu-Biao; Zhao, Zhong-Zhen; Li, Ping
2011-03-01
The light microscope has been successfully used in identification of Chinese herbal medicines (CHMs) for more than a century. However, positive identification is not always possible. Given the popularity of fluorescence microscopy in bioanalysis, researchers dedicated to finding new ways to identify CHMs more effectively are now turning to fluorescence microscopy for authentication purposes. Some studies on distinguishing confused species from the same genus and on exploring distributions of chemicals in tissues of CHMs by fluorescence microscopy have been reported; however, no systematic investigations on fluorescent characteristics of powdered CHMs have been reported. Here, 46 samples of 16 CHMs were investigated. Specifically, the mechanical tissues including stone cells and fibers, the conducting tissues including three types of vessels, and ergastic substances including crystals of calcium oxalate and secretions, in various powdered CHMs were investigated by both light microscope and fluorescence microscope. The results showed many microscopic features emit fluorescence that makes them easily observed, even against complex backgrounds. Under the fluorescence microscope, different microscopic features from the same powdered CHM or some same features from different powdered CHMs emitted the different fluorescence, making this information very helpful for the authentication of CHMs in powder form. Moreover, secretions with unique chemical profiles from different powdered CHMs showed different fluorescent characteristics. Hence, fluorescence microscopy could be a useful additional method for the authentication of powdered CHMs if the fluorescent characteristics of specific CHMs are known. Copyright © 2010 Wiley-Liss, Inc.
The e-evolution of microscopy in dental education.
Farah, Camile S; Maybury, Terrence S
2009-08-01
Recent technological innovation has now made it possible to turn the computer into a microscope. This has entailed a shift from light microscopy to virtual microscopy. This development then foregrounds the issue of the pedagogy involved in this move from the analogue technology of the light microscope to the digital, computerized instance of virtual microscopy. In order to address this issue, undergraduate students enrolled in the Bachelor of Dental Science program at the University of Queensland School of Dentistry were surveyed to ascertain their preference for light or virtual microscopy. The value of this study is that it was conducted on the same cohort of students in two separate courses in 2006 and 2008, giving it longitudinal validity. The responses were overwhelmingly in favor of virtual microscopy. When it came to completely replacing the light microscope with virtual microscopy, however, students were much more ambivalent about such a wholesale change although this was less of an issue in the senior year. This shift from light to virtual microscopy signals larger changes in the tertiary sector from print-literate to electronic forms of knowledge and from teacher-centered to student-focused frames of learning. In short, we are in the midst of the e-evolution of microscopy in dental education.
NASA Astrophysics Data System (ADS)
Park, Byullee; Lee, Hongki; Upputuri, Paul Kumar; Pramanik, Manojit; Kim, Donghyun; Kim, Chulhong
2018-02-01
Super-resolution microscopy has been increasingly important to delineate nanoscale biological structures or nanoparticles. With these increasing demands, several imaging modalities, including super-resolution fluorescence microscope (SRFM) and electron microscope (EM), have been developed and commercialized. These modalities achieve nanoscale resolution, however, SRFM cannot image without fluorescence, and sample preparation of EM is not suitable for biological specimens. To overcome those disadvantages, we have numerically studied the possibility of superresolution photoacoustic microscopy (SR-PAM) based on near-field localization of light. Photoacoustic (PA) signal is generally acquired based on optical absorption contrast; thus it requires no agents or pre-processing for the samples. The lateral resolution of the conventional photoacoustic microscopy is limited to 200 nm by diffraction limit, therefore reducing the lateral resolution is a major research impetus. Our approach to breaking resolution limit is to use laser pulses of extremely small spot size as a light source. In this research, we simulated the PA signal by constructing the three dimensional SR-PAM system environment using the k-Wave toolbox. As the light source, we simulated ultrashort light pulses using geometrical nanoaperture with near-field localization of surface plasmons. Through the PA simulation, we have successfully distinguish cuboids spaced 3 nm apart. In the near future, we will develop the SR-PAM and it will contribute to biomedical and material sciences.
Bessel light sheet structured illumination microscopy
NASA Astrophysics Data System (ADS)
Noshirvani Allahabadi, Golchehr
Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in confocal quality images in thick tissue. The technique was applied to live transgenic zebra fish tg(kdrl:GFP), and the sub-cellular structure of fish vasculature genetically labeled with GFP was captured in 3D. The superior speed of the microscope enables us to acquire signal from 200 layers of a thick sample in 4 minutes. The compact microscope uses exclusively off-the-shelf components and offers a low-cost imaging solution for studying small animal models or tissue samples.
Zhang, Xiaoyu; Sun, Ling; Shen, Yang; Tian, Mi; Zhao, Jing; Zhao, Yu; Li, Meiyan; Zhou, Xingtao
2017-07-01
This study aimed to compare the biomechanical and histopathologic effects of transepithelial and accelerated epithelium-off pulsed-light accelerated corneal collagen cross-linking (CXL). A total of 24 New Zealand rabbits were analyzed after sham operation (control) or transepithelial or epithelium-off operation (45 mW/cm for both). The transepithelial group was treated with pulsed-light ultraviolet A for 5 minutes 20 seconds, and the epithelium-off group was treated for 90 seconds. Biomechanical testing, including ultimate stress, Young modulus, and the physiological modulus, was analyzed. Histological changes were evaluated by light microscopy and transmission electron microscopy. The stress-strain curve was nonlinear in both accelerated transepithelial and epithelium-off CXL groups. The stress and elastic moduli were all significantly higher in both experimental groups compared with the control group (P < 0.05), whereas there were no significant differences between the 2 treatment groups (P > 0.05). Six months after the operation, hematoxylin and eosin staining and transmission electron microscopy showed that the subcutaneous collagen fibers were arranged in a regular pattern, and the fiber density was higher in the experimental groups. Both transepithelial and accelerated epithelium-off CXL produced biomechanical and histopathologic improvements, which were not significantly different between the 2 pulsed-light accelerated CXL treatments.
Lerner, Thomas R.; Burden, Jemima J.; Nkwe, David O.; Pelchen-Matthews, Annegret; Domart, Marie-Charlotte; Durgan, Joanne; Weston, Anne; Jones, Martin L.; Peddie, Christopher J.; Carzaniga, Raffaella; Florey, Oliver; Marsh, Mark; Gutierrez, Maximiliano G.
2017-01-01
ABSTRACT The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research. PMID:27445312
The role of light microscopy in aerospace analytical laboratories
NASA Technical Reports Server (NTRS)
Crutcher, E. R.
1977-01-01
Light microscopy has greatly reduced analytical flow time and added new dimensions to laboratory capability. Aerospace analytical laboratories are often confronted with problems involving contamination, wear, or material inhomogeneity. The detection of potential problems and the solution of those that develop necessitate the most sensitive and selective applications of sophisticated analytical techniques and instrumentation. This inevitably involves light microscopy. The microscope can characterize and often identify the cause of a problem in 5-15 minutes with confirmatory tests generally less than one hour. Light microscopy has and will make a very significant contribution to the analytical capabilities of aerospace laboratories.
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Griffin, DeVon W.
2001-01-01
The Light Microscopy Module (LMM) is planned as a fully remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within NASA Glenn Research Center's Fluids and Combustion Facility on the International Space Station. Within the Fluids and Combustion Facility, four fluids physics experiments will utilize an instrument built around a light microscope. These experiments are the Constrained Vapor Bubble experiment (Peter C. Wayner of Rensselaer Polytechnic Institute), the Physics of Hard Spheres Experiment-2 (Paul M. Chaikin of Princeton University), the Physics of Colloids in Space-2 experiment (David A. Weitz of Harvard University), and the Low Volume Fraction Colloidal Assembly experiment (Arjun G. Yodh of the University of Pennsylvania). The first experiment investigates heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties. Key diagnostic capabilities for meeting the science requirements of the four experiments include video microscopy to observe sample features including basic structures and dynamics, interferometry to measure vapor bubble thin film thickness, laser tweezers for colloidal particle manipulation and patterning, confocal microscopy to provide enhanced three-dimensional visualization of colloidal structures, and spectrophotometry to measure colloidal crystal photonic properties.
Notes on Citrullius spp. and Acanthosicyos naudinianus
USDA-ARS?s Scientific Manuscript database
Scanning electron and light microscopy were utilized to examine pollen of the currently recognized species (and forms) within the genus Citrullus (Cucurbitaceae). Materials examined included: C. lanatus (Thunb.) Matsum. & Nakai including the citron (C. amarus Schrad.) and egusi (C. lanatus subsp. mu...
Shao, Yonghong; Qin, Wan; Liu, Honghai; Qu, Junle; Peng, Xiang; Niu, Hanben; Gao, Bruce Z
2012-07-01
We present an ultrafast, large-field multiphoton excitation fluorescence microscope with high lateral and axial resolutions based on a two-dimensional (2-D) acousto-optical deflector (AOD) scanner and spatial light modulator (SLM). When a phase-only SLM is used to shape the near-infrared light from a mode-locked titanium:sapphire laser into a multifocus array including the 0-order beam, a 136 μm × 136 μm field of view is achieved with a 60× objective using a 2-D AOD scanner without any mechanical scan element. The two-photon fluorescence image of a neuronal network that was obtained using this system demonstrates that our microscopy permits observation of dynamic biological events in a large field with high-temporal and -spatial resolution.
Bending the Rules: Widefield Microscopy and the Abbe Limit of Resolution
Verdaasdonk, Jolien S.; Stephens, Andrew D.; Haase, Julian; Bloom, Kerry
2014-01-01
One of the most fundamental concepts of microscopy is that of resolution–the ability to clearly distinguish two objects as separate. Recent advances such as structured illumination microscopy (SIM) and point localization techniques including photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM) strive to overcome the inherent limits of resolution of the modern light microscope. These techniques, however, are not always feasible or optimal for live cell imaging. Thus, in this review, we explore three techniques for extracting high resolution data from images acquired on a widefield microscope–deconvolution, model convolution, and Gaussian fitting. Deconvolution is a powerful tool for restoring a blurred image using knowledge of the point spread function (PSF) describing the blurring of light by the microscope, although care must be taken to ensure accuracy of subsequent quantitative analysis. The process of model convolution also requires knowledge of the PSF to blur a simulated image which can then be compared to the experimentally acquired data to reach conclusions regarding its geometry and fluorophore distribution. Gaussian fitting is the basis for point localization microscopy, and can also be applied to tracking spot motion over time or measuring spot shape and size. All together, these three methods serve as powerful tools for high-resolution imaging using widefield microscopy. PMID:23893718
Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles.
Killingsworth, Murray C; Bobryshev, Yuri V
2016-08-07
A method is described whereby quantum dot (QD) nanoparticles can be used for correlative immunocytochemical studies of human pathology tissue using widefield fluorescence light microscopy and transmission electron microscopy (TEM). To demonstrate the protocol we have immunolabeled ultrathin epoxy sections of human somatostatinoma tumor using a primary antibody to somatostatin, followed by a biotinylated secondary antibody and visualization with streptavidin conjugated 585 nm cadmium-selenium (CdSe) quantum dots (QDs). The sections are mounted on a TEM specimen grid then placed on a glass slide for observation by widefield fluorescence light microscopy. Light microscopy reveals 585 nm QD labeling as bright orange fluorescence forming a granular pattern within the tumor cell cytoplasm. At low to mid-range magnification by light microscopy the labeling pattern can be easily recognized and the level of non-specific or background labeling assessed. This is a critical step for subsequent interpretation of the immunolabeling pattern by TEM and evaluation of the morphological context. The same section is then blotted dry and viewed by TEM. QD probes are seen to be attached to amorphous material contained in individual secretory granules. Images are acquired from the same region of interest (ROI) seen by light microscopy for correlative analysis. Corresponding images from each modality may then be blended to overlay fluorescence data on TEM ultrastructure of the corresponding region.
Differential dynamic microscopy of bidisperse colloidal suspensions.
Safari, Mohammad S; Poling-Skutvik, Ryan; Vekilov, Peter G; Conrad, Jacinta C
2017-01-01
Research tasks in microgravity include monitoring the dynamics of constituents of varying size and mobility in processes such as aggregation, phase separation, or self-assembly. We use differential dynamic microscopy, a method readily implemented with equipment available on the International Space Station, to simultaneously resolve the dynamics of particles of radius 50 nm and 1 μm in bidisperse aqueous suspensions. Whereas traditional dynamic light scattering fails to detect a signal from the larger particles at low concentrations, differential dynamic microscopy exhibits enhanced sensitivity in these conditions by accessing smaller wavevectors where scattering from the large particles is stronger. Interference patterns due to scattering from the large particles induce non-monotonic decay of the amplitude of the dynamic correlation function with the wavevector. We show that the position of the resulting minimum contains information on the vertical position of the particles. Together with the simple instrumental requirements, the enhanced sensitivity of differential dynamic microscopy makes it an appealing alternative to dynamic light scattering to characterize samples with complex dynamics.
Weber, Michael; Mickoleit, Michaela; Huisken, Jan
2014-01-01
This chapter introduces the concept of light sheet microscopy along with practical advice on how to design and build such an instrument. Selective plane illumination microscopy is presented as an alternative to confocal microscopy due to several superior features such as high-speed full-frame acquisition, minimal phototoxicity, and multiview sample rotation. Based on our experience over the last 10 years, we summarize the key concepts in light sheet microscopy, typical implementations, and successful applications. In particular, sample mounting for long time-lapse imaging and the resulting challenges in data processing are discussed in detail. © 2014 Elsevier Inc. All rights reserved.
Introduction to Modern Methods in Light Microscopy.
Ryan, Joel; Gerhold, Abby R; Boudreau, Vincent; Smith, Lydia; Maddox, Paul S
2017-01-01
For centuries, light microscopy has been a key method in biological research, from the early work of Robert Hooke describing biological organisms as cells, to the latest in live-cell and single-molecule systems. Here, we introduce some of the key concepts related to the development and implementation of modern microscopy techniques. We briefly discuss the basics of optics in the microscope, super-resolution imaging, quantitative image analysis, live-cell imaging, and provide an outlook on active research areas pertaining to light microscopy.
Integration of a high-NA light microscope in a scanning electron microscope.
Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P
2013-10-01
We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Ochoa, Gina H; Clark, Ying Mei; Matsumoto, Brian; Torres-Ruiz, Jose A; Robles, Laura J
2002-02-01
Light- and dark-adaptation leads to changes in rhabdom morphology and photopigment distribution in the octopus retina. Molecular chaperones, including heat shock proteins (Hsps), may be involved in specific signaling pathways that cause changes in photoreceptor actin- and tubulin-based cytoskeletons and movement of the photopigments, rhodopsin and retinochrome. In this study, we used immunoblotting, in situ RT-PCR, immunofluorescence and confocal microscopy to localize the inducible form of Hsp70 and the larger Hsp90 in light- and dark-adapted and dorsal and ventral halves of adult octopus retinas. The Hsps showed differences in distribution between the light and dark and in dorsal vs. ventral position in the retina. Double labeling confocal microscopy co-localized Hsp70 with actin and tubulin, and Hsp90 with the photopigment, retinochrome. Our results demonstrate the presence of Hsp70 and Hsp90 in otherwise non-stressed light- and dark-adapted octopus retinas. These Hsps may help stabilize the cytoskeleton, important for rhabdom structure, and are perhaps involved in the redistribution of retinochrome in conditions of light and dark.
Szczurek, Aleksander; Birk, Udo; Knecht, Hans; Dobrucki, Jurek; Mai, Sabine; Cremer, Christoph
2018-01-01
Methods of super-resolving light microscopy (SRM) have found an exponentially growing range of applications in cell biology, including nuclear structure analyses. Recent developments have proven that Single Molecule Localization Microscopy (SMLM), a type of SRM, is particularly useful for enhanced spatial analysis of the cell nucleus due to its highest resolving capability combined with very specific fluorescent labeling. In this commentary we offer a brief review of the latest methodological development in the field of SMLM of chromatin designated DNA Structure Fluctuation Assisted Binding Activated Localization Microscopy (abbreviated as fBALM) as well as its potential future applications in biology and medicine.
Knecht, Hans; Dobrucki, Jurek; Mai, Sabine
2018-01-01
ABSTRACT Methods of super-resolving light microscopy (SRM) have found an exponentially growing range of applications in cell biology, including nuclear structure analyses. Recent developments have proven that Single Molecule Localization Microscopy (SMLM), a type of SRM, is particularly useful for enhanced spatial analysis of the cell nucleus due to its highest resolving capability combined with very specific fluorescent labeling. In this commentary we offer a brief review of the latest methodological development in the field of SMLM of chromatin designated DNA Structure Fluctuation Assisted Binding Activated Localization Microscopy (abbreviated as fBALM) as well as its potential future applications in biology and medicine. PMID:29297245
Biobeam—Multiplexed wave-optical simulations of light-sheet microscopy
Weigert, Martin; Bundschuh, Sebastian T.
2018-01-01
Sample-induced image-degradation remains an intricate wave-optical problem in light-sheet microscopy. Here we present biobeam, an open-source software package that enables simulation of operational light-sheet microscopes by combining data from 105–106 multiplexed and GPU-accelerated point-spread-function calculations. The wave-optical nature of these simulations leads to the faithful reproduction of spatially varying aberrations, diffraction artifacts, geometric image distortions, adaptive optics, and emergent wave-optical phenomena, and renders image-formation in light-sheet microscopy computationally tractable. PMID:29652879
Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.
Svitkina, Tatyana M
2017-05-01
Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.
Platinum Replica Electron Microscopy: Imaging the Cytoskeleton Globally and Locally
SVITKINA, Tatyana M.
2017-01-01
Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the “comfort zones” of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. PMID:28323208
Notes on Citrullus spp.: Pollen morphology, C values, and interspecific hybridization
USDA-ARS?s Scientific Manuscript database
Scanning electron and light microscopy were utilized to examine pollen of the currently recognized species (and forms) within the genus Citrullus (Cucurbitaceae). Materials examined included: C. lanatus (Thunb.) Matsum. & Nakai including the citron (C. amarus Schrad.) and egusi (C. mucosospermus (Fu...
NASA Astrophysics Data System (ADS)
Cerbino, Roberto; Cicuta, Pietro
2017-09-01
Differential dynamic microscopy (DDM) is a technique that exploits optical microscopy to obtain local, multi-scale quantitative information about dynamic samples, in most cases without user intervention. It is proving extremely useful in understanding dynamics in liquid suspensions, soft materials, cells, and tissues. In DDM, image sequences are analyzed via a combination of image differences and spatial Fourier transforms to obtain information equivalent to that obtained by means of light scattering techniques. Compared to light scattering, DDM offers obvious advantages, principally (a) simplicity of the setup; (b) possibility of removing static contributions along the optical path; (c) power of simultaneous different microscopy contrast mechanisms; and (d) flexibility of choosing an analysis region, analogous to a scattering volume. For many questions, DDM has also advantages compared to segmentation/tracking approaches and to correlation techniques like particle image velocimetry. The very straightforward DDM approach, originally demonstrated with bright field microscopy of aqueous colloids, has lately been used to probe a variety of other complex fluids and biological systems with many different imaging methods, including dark-field, differential interference contrast, wide-field, light-sheet, and confocal microscopy. The number of adopting groups is rapidly increasing and so are the applications. Here, we briefly recall the working principles of DDM, we highlight its advantages and limitations, we outline recent experimental breakthroughs, and we provide a perspective on future challenges and directions. DDM can become a standard primary tool in every laboratory equipped with a microscope, at the very least as a first bias-free automated evaluation of the dynamics in a system.
Takayama, Yuki; Yonekura, Koji
2016-03-01
Coherent X-ray diffraction imaging at cryogenic temperature (cryo-CXDI) allows the analysis of internal structures of unstained, non-crystalline, whole biological samples in micrometre to sub-micrometre dimensions. Targets include cells and cell organelles. This approach involves preparing frozen-hydrated samples under controlled humidity, transferring the samples to a cryo-stage inside a vacuum chamber of a diffractometer, and then exposing the samples to coherent X-rays. Since 2012, cryo-coherent diffraction imaging (CDI) experiments have been carried out with the X-ray free-electron laser (XFEL) at the SPring-8 Ångstrom Compact free-electron LAser (SACLA) facility in Japan. Complementary use of cryo-electron microscopy and/or light microscopy is highly beneficial for both pre-checking samples and studying the integrity or nature of the sample. This article reports the authors' experience in cryo-XFEL-CDI of biological cells and organelles at SACLA, and describes an attempt towards reliable and higher-resolution reconstructions, including signal enhancement with strong scatterers and Patterson-search phasing.
Kim, Jonghyun; Moon, Seokil; Jeong, Youngmo; Jang, Changwon; Kim, Youngmin; Lee, Byoungho
2018-06-01
Here, we present dual-dimensional microscopy that captures both two-dimensional (2-D) and light-field images of an in-vivo sample simultaneously, synthesizes an upsampled light-field image in real time, and visualizes it with a computational light-field display system in real time. Compared with conventional light-field microscopy, the additional 2-D image greatly enhances the lateral resolution at the native object plane up to the diffraction limit and compensates for the image degradation at the native object plane. The whole process from capturing to displaying is done in real time with the parallel computation algorithm, which enables the observation of the sample's three-dimensional (3-D) movement and direct interaction with the in-vivo sample. We demonstrate a real-time 3-D interactive experiment with Caenorhabditis elegans. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Karatutlu, Ali; Istengir, Sumeyra; Cosgun, Sedat; Seker, Isa; Unal, Bayram
2017-11-01
In this research paper, light emitting porous silicon (Lep-Si) samples were fabricated by a surfactant-mediated chemical stain etching solution in order to form homogenous luminescent nanostructures at room temperature. As an industrially important solvent, decalin (decahydronaphtalene) was used as a surfactant in the HF/HNO3 solutions in order to control the etching process. Morphological, surface and optical properties of the Lep-Si samples were examined using atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL) spectroscopy, and laser scanning confocal microscopy (LSCM) techniques. These characterization techniques were correlated with the various etching times including depth dependent luminescence profiles for the first time. We report the optimum conditions for production of the most efficient Lep-Si using decalin (decahydronaphtalene) and possible structural origins of light emission using the depth dependent luminescence measurements.
NASA Astrophysics Data System (ADS)
Yano, Taka-aki; Hara, Masahiko
2018-06-01
Tip-enhanced Raman scattering microscopy, a family of scanning probe microscopy techniques, has been recognized as a powerful surface analytical technique with both single-molecule sensitivity and angstrom-scale spatial resolution. This review covers the current status of tip-enhanced Raman scattering microscopy in surface and material nanosciences, including a brief history, the basic principles, and applications for the nanoscale characterization of a variety of nanomaterials. The focus is on the recent trend of combining tip-enhanced Raman scattering microscopy with various external stimuli such as pressure, voltage, light, and temperature, which enables the local control of the molecular properties and functions and also enables chemical reactions to be induced on a nanometer scale.
Ultrafast optical pulse delivery with fibers for nonlinear microscopy
Kim, Daekeun; Choi, Heejin; Yazdanfar, Siavash; So, Peter T. C.
2008-01-01
Nonlinear microscopies including multiphoton excitation fluorescence microscopy and multiple-harmonic generation microscopy have recently gained popularity for cellular and tissue imaging. The optimization of these imaging methods for minimally invasive use will require optical fibers to conduct light into tight space where free space delivery is difficult. The delivery of high peak power laser pulses with optical fibers is limited by dispersion resulting from nonlinear refractive index responses. In this paper, we characterize a variety of commonly used optical fibers in terms of how they affect pulse profile and imaging performance of nonlinear microscopy; the following parameters are quantified: spectral bandwidth and temporal pulse width, two-photon excitation efficiency, and optical resolution. A theoretical explanation for the measured performance of these is also provided. PMID:18816597
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.
2007-03-23
Surface features of tungsten carbide composites processed by bound abrasive deterministic microgrinding and magnetorheological finishing (MRF) were studied for five WC-Ni composites, including one binderless material. All the materials studied were nonmagnetic with different microstructures and mechanical properties. White-light interferometry, scanning electron microscopy, and atomic force microscopy were used to characterize the surfaces after various grinding steps, surface etching, and MRF spot-taking.
Ippolitov, E V; Didenko, L V; Tzarev, V N
2015-12-01
The study was carried out to analyze morphology of biofilm of periodontium and to develop electronic microscopic criteria of differentiated diagnostic of inflammatory diseases of gums. The scanning electronic microscopy was applied to analyze samples of bioflm of periodont from 70 patients. Including ten patients with every nosologic form of groups with chronic catarrhal periodontitis. of light, mean and severe degree, chronic catarrhal gingivitis, Candida-associated paroperiodontitis and 20 healthy persons with intact periodontium. The analysis was implemented using dual-beam scanning electronic microscope Quanta 200 3D (FEI company, USA) and walk-through electronic micJEM 100B (JEOL, Japan). To detect marker DNA of periodont pathogenic bacteria in analyzed samples the kit of reagentsfor polymerase chain reaction "MultiDent-5" ("GenLab", Russia). The scanning electronic microscopy in combination with transmission electronic microscopy and polymerase chain reaction permits analyzing structure, composition and degree of development of biofilm of periodontium and to apply differentiated diagnostic of different nosologic forms of inflammatory diseases of periodontium, including light form of chronic periodontitis and gingivitis. The electronic microscopical indications of diseases ofperiodontium of inflammatory character are established: catarrhal gingivitis, (coccal morphological alternate), chronic periodontitis (bacillary morphological alternate), Candida-associated periodontitis (Candida morphological alternate of biofilm ofperiodontium).
Sample holder for axial rotation of specimens in 3D microscopy.
Bruns, T; Schickinger, S; Schneckenburger, H
2015-10-01
In common light microscopy, observation of samples is only possible from one perspective. However, especially for larger three-dimensional specimens observation from different views is desirable. Therefore, we are presenting a sample holder permitting rotation of the specimen around an axis perpendicular to the light path of the microscope. Thus, images can be put into a defined multidimensional context, enabling reliable three-dimensional reconstructions. The device can be easily adapted to a great variety of common light microscopes and is suitable for various applications in science, education and industry, where the observation of three-dimensional specimens is essential. Fluorescence z-projection images of copepods and ixodidae ticks at different rotation angles obtained by confocal laser scanning microscopy and light sheet fluorescence microscopy are reported as representative results. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Photocontrollable Fluorescent Proteins for Superresolution Imaging
Shcherbakova, Daria M.; Sengupta, Prabuddha; Lippincott-Schwartz, Jennifer; Verkhusha, Vladislav V.
2014-01-01
Superresolution fluorescence microscopy permits the study of biological processes at scales small enough to visualize fine subcellular structures that are unresolvable by traditional diffraction-limited light microscopy. Many superresolution techniques, including those applicable to live cell imaging, utilize genetically encoded photocontrollable fluorescent proteins. The fluorescence of these proteins can be controlled by light of specific wavelengths. In this review, we discuss the biochemical and photophysical properties of photocontrollable fluorescent proteins that are relevant to their use in superresolution microscopy. We then describe the recently developed photoactivatable, photoswitchable, and reversibly photoswitchable fluorescent proteins, and we detail their particular usefulness in single-molecule localization–based and nonlinear ensemble–based superresolution techniques. Finally, we discuss recent applications of photocontrollable proteins in superresolution imaging, as well as how these applications help to clarify properties of intracellular structures and processes that are relevant to cell and developmental biology, neuroscience, cancer biology and biomedicine. PMID:24895855
Microscopy imaging system and method employing stimulated raman spectroscopy as a contrast mechanism
Xie, Xiaoliang Sunney [Lexington, MA; Freudiger, Christian [Boston, MA; Min, Wei [Cambridge, MA
2011-09-27
A microscopy imaging system includes a first light source for providing a first train of pulses at a first center optical frequency .omega..sub.1, a second light source for providing a second train of pulses at a second center optical frequency .omega..sub.2, a modulator system, an optical detector, and a processor. The modulator system is for modulating a beam property of the second train of pulses at a modulation frequency f of at least 100 kHz. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of the first train of pulses from the common focal volume by blocking the second train of pulses being modulated. The processor is for detecting, a modulation at the modulation frequency f, of the integrated intensity of the optical frequency components of the first train of pulses to provide a pixel of an image for the microscopy imaging system.
High spatial resolution soft-x-ray microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer-Ilse, W.; Medecki, H.; Brown, J.T.
1997-04-01
A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy tomore » use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.« less
Madela, Kazimierz; Banhart, Sebastian; Zimmermann, Anja; Piesker, Janett; Bannert, Norbert; Laue, Michael
2014-01-01
Plastic cell culture dishes that contain a thin bottom of highest optical quality including an imprinted finder grid (μ-Dish Grid-500) are optimally suited for routine correlative light and electron microscopy using chemical fixation. Such dishes allow high-resolution fluorescence and bright-field imaging using fixed and living cells and are compatible with standard protocols for scanning and transmission electron microscopy. Ease of use during cell culture and imaging, as well as a tight cover render the dishes particularly suitable for working with infectious organisms up to the highest biosafety level. Detailed protocols are provided and demonstrated by showing two examples: monitoring the production of virus-like particles of the Human Endogenous Retrovirus HERV-K(HML-2) by HeLa cells and investigation of Rab11-positive membrane-compartments of HeLa cells after infection with Chlamydia trachomatis. © 2014 Elsevier Inc. All rights reserved.
Onouchi, Takanori; Shiogama, Kazuya; Mizutani, Yasuyoshi; Takaki, Takashi; Tsutsumi, Yutaka
2016-01-01
Neutrophil extracellular traps (NETs) released from dead neutrophils at the site of inflammation represent webs of neutrophilic DNA stretches dotted with granule-derived antimicrobial proteins, including lactoferrin, and play important roles in innate immunity against microbial infection. We have shown the coexistence of NETs and fibrin meshwork in varied fibrinopurulent inflammatory lesions at both light and electron microscopic levels. In the present study, correlative light and electron microscopy (CLEM) employing confocal laser scanning microscopy and scanning electron microscopy was performed to bridge light and electron microscopic images of NETs and fibrin fibrils in formalin-fixed, paraffin-embedded, autopsied lung sections of legionnaire’s pneumonia. Lactoferrin immunoreactivity and 4'-6-diamidino-2-phenylindole (DAPI) reactivity were used as markers of NETs, and fibrin was probed by fibrinogen gamma chain. Of note is that NETs light microscopically represented as lactoferrin and DAPI-colocalized dots, 2.5 μm in diameter. CLEM gave super-resolution images of NETs and fibrin fibrils: “Dotted” NETs were ultrastructurally composed of fine filaments and masses of 58 nm-sized globular materials. A fibrin fibril consisted of clusters of smooth-surfaced filaments. NETs filaments (26 nm in diameter) were significantly thinner than fibrin filaments (295 nm in diameter). Of note is that CLEM was applicable to formalin-fixed, paraffin-embedded sections of autopsy material. PMID:27917008
SPED light sheet microscopy: fast mapping of biological system structure and function
Tomer, Raju; Lovett-Barron, Matthew; Kauvar, Isaac; Andalman, Aaron; Burns, Vanessa M.; Sankaran, Sethuraman; Grosenick, Logan; Broxton, Michael; Yang, Samuel; Deisseroth, Karl
2016-01-01
The goal of understanding living nervous systems has driven interest in high-speed and large field-of-view volumetric imaging at cellular resolution. Light-sheet microscopy approaches have emerged for cellular-resolution functional brain imaging in small organisms such as larval zebrafish, but remain fundamentally limited in speed. Here we have developed SPED light sheet microscopy, which combines large volumetric field-of-view via an extended depth of field with the optical sectioning of light sheet microscopy, thereby eliminating the need to physically scan detection objectives for volumetric imaging. SPED enables scanning of thousands of volumes-per-second, limited only by camera acquisition rate, through the harnessing of optical mechanisms that normally result in unwanted spherical aberrations. We demonstrate capabilities of SPED microscopy by performing fast sub-cellular resolution imaging of CLARITY mouse brains and cellular-resolution volumetric Ca2+ imaging of entire zebrafish nervous systems. Together, SPED light sheet methods enable high-speed cellular-resolution volumetric mapping of biological system structure and function. PMID:26687363
Non-label bioimaging utilizing scattering lights
NASA Astrophysics Data System (ADS)
Watanabe, Tomonobu M.; Ichimura, Taro; Fujita, Hideaki
2017-04-01
Optical microscopy is an indispensable tool for medical and life sciences. Especially, the microscopes utilized with scattering light offer a detailed internal observation of living specimens in real time because of their non-labeling and non-invasive capability. We here focus on two kinds of scattering lights, Raman scattering light and second harmonic generation light. Raman scattering light includes the information of all the molecular vibration modes of the molecules, and can be used to distinguish types and/or state of cell. Second harmonic generation light is derived from electric polarity of proteins in the specimen, and enables to detect their structural change. In this conference, we would like to introduce our challenges to extract biological information from those scattering lights.
Lavagnino, Zeno; Sancataldo, Giuseppe; d’Amora, Marta; Follert, Philipp; De Pietri Tonelli, Davide; Diaspro, Alberto; Cella Zanacchi, Francesca
2016-01-01
In the last decade light sheet fluorescence microscopy techniques, such as selective plane illumination microscopy (SPIM), has become a well established method for developmental biology. However, conventional SPIM architectures hardly permit imaging of certain tissues since the common sample mounting procedure, based on gel embedding, could interfere with the sample morphology. In this work we propose an inverted selective plane microscopy system (iSPIM), based on non-linear excitation, suitable for 3D tissue imaging. First, the iSPIM architecture provides flexibility on the sample mounting, getting rid of the gel-based mounting typical of conventional SPIM, permitting 3D imaging of hippocampal slices from mouse brain. Moreover, all the advantages brought by two photon excitation (2PE) in terms of reduction of scattering effects and contrast improvement are exploited, demonstrating an improved image quality and contrast compared to single photon excitation. The system proposed represents an optimal platform for tissue imaging and it smooths the way to the applicability of light sheet microscopy to a wider range of samples including those that have to be mounted on non-transparent surfaces. PMID:27033347
Robertson, J. Brian; Zhang, Yunfei; Johnson, Carl Hirschie
2009-01-01
Summary Light-emitting diodes (LEDs) are becoming more commonly used as light sources for fluorescence microscopy. We describe the adaptation of a commercially available LED flashlight for use as a source for fluorescence excitation. This light source is long-lived, inexpensive, and is effective for excitation in the range of 440–600 nm. PMID:19772530
Fully Hydrated Yeast Cells Imaged with Electron Microscopy
Peckys, Diana B.; Mazur, Peter; Gould, Kathleen L.; de Jonge, Niels
2011-01-01
We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccaromyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. PMID:21575587
Fully hydrated yeast cells imaged with electron microscopy.
Peckys, Diana B; Mazur, Peter; Gould, Kathleen L; de Jonge, Niels
2011-05-18
We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccharomyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
D'Amelio, F.; Daunton, N. G.
1992-01-01
The effects of spaceflight upon the "slow" muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.
Mahende, Coline; Ngasala, Billy; Lusingu, John; Yong, Tai-Soon; Lushino, Paminus; Lemnge, Martha; Mmbando, Bruno; Premji, Zul
2016-07-26
Rapid diagnostic tests (RDT) and light microscopy are still recommended for diagnosis to guide the clinical management of malaria despite difficult challenges in rural settings. The performance of these tests may be affected by several factors, including malaria prevalence and intensity of transmission. The study evaluated the diagnostic performance of malaria RDT, light microscopy and polymerase chain reaction (PCR) in detecting malaria infections among febrile children at outpatient clinic in Korogwe District, northeastern Tanzania. The study enrolled children aged 2-59 months with fever and/or history of fever in the previous 48 h attending outpatient clinics. Blood samples were collected for identification of Plasmodium falciparum infection using histidine-rich-protein-2 (HRP-2)-based malaria RDT, light microscopy and conventional PCR. A total of 867 febrile patients were enrolled into the study. Malaria-positive samples were 85/867 (9.8 %, 95 % CI, 7.9-12.0 %) by RDT, 72/867 (8.3 %, 95 % CI, 6.5-10.1 %) by microscopy and 79/677 (11.7 %, 95 % CI, 9.3-14.3 %) by PCR. The performance of malaria RDT compared with microscopy results had sensitivity and positive predictive value (PPV) of 88.9 % (95 % CI, 79.3-95.1 %) and 75.3 % (95 % CI, 64.8-84.0 %), respectively. Confirmation of P. falciparum infection with PCR analysis provided lower sensitivity and PPV of 88.6 % (95 % CI, 79.5-94.7 %) and 84.3 % (95 % CI, 74.7-91.4 %) for RDT compared to microscopy. Diagnosis of malaria infection is still a challenge due to variation in results among diagnostic methods. HRP-2 malaria RDT and microscopy were less sensitive than PCR. Diagnostic tools with high sensitivity are required in areas of low malaria transmission.
Chemical analyses of fossil bone.
Zheng, Wenxia; Schweitzer, Mary Higby
2012-01-01
The preservation of microstructures consistent with soft tissues, cells, and other biological components in demineralized fragments of dinosaur bone tens of millions of years old was unexpected, and counter to current hypotheses of tissue, cellular, and molecular degradation. Although the morphological similarity of these tissues to extant counterparts was unmistakable, after at least 80 million years exposed to geochemical influences, morphological similarity is insufficient to support an endogenous source. To test this hypothesis, and to characterize these materials at a molecular level, we applied multiple independent chemical, molecular, and microscopic analyses to identify the presence of original components produced by the extinct organisms. Microscopic techniques included field emission scanning electron microscopy, analytical transmission electron microscopy, transmitted light microscopy (LM), and fluorescence microscopy (FM). The chemical and molecular techniques include enzyme-linked immunosorbant assay, sodium dodecyl sulfate polyacrylamide gel electrophoresis, western blot (immunoblot), and attenuated total reflectance infrared spectroscopy. In situ analyses performed directly on tissues included immunohistochemistry and time-of-flight secondary ion mass spectrometry. The details of sample preparation and methodology are described in detail herein.
NASA Astrophysics Data System (ADS)
Lu, Chieh Han; Chen, Peilin; Chen, Bi-Chang
2017-02-01
Optical imaging techniques provide much important information in understanding life science especially cellular structure and morphology because "seeing is believing". However, the resolution of optical imaging is limited by the diffraction limit, which is discovered by Ernst Abbe, i.e. λ/2(NA) (NA is the numerical aperture of the objective lens). Fluorescence super-resolution microscopic techniques such as Stimulated emission depletion microscopy (STED), Photoactivated localization microscopy (PALM), and Stochastic optical reconstruction microscopy (STORM) are invented to have the capability of seeing biological entities down to molecular level that are smaller than the diffraction limit (around 200-nm in lateral resolution). These techniques do not physically violate the Abbe limit of resolution but exploit the photoluminescence properties and labelling specificity of fluorescence molecules to achieve super-resolution imaging. However, these super-resolution techniques limit most of their applications to the 2D imaging of fixed or dead samples due to the high laser power needed or slow speed for the localization process. Extended from 2D imaging, light sheet microscopy has been proven to have a lot of applications on 3D imaging at much better spatiotemporal resolutions due to its intrinsic optical sectioning and high imaging speed. Herein, we combine the advantage of localization microscopy and light-sheet microscopy to have super-resolved cellular imaging in 3D across large field of view. With high-density labeled spontaneous blinking fluorophore and wide-field detection of light-sheet microscopy, these allow us to construct 3D super-resolution multi-cellular imaging at high speed ( minutes) by light-sheet single-molecule localization microscopy.
Yutaka Kataoka; Makoto Kiguchi; R. Sam Williams; Philip D. Evans
2006-01-01
FT-IR microscopy was used to depth profile the photodegradation of Japanese cedar earlywood exposed to monochromatic light in the UV and visible ranges (band pass: 20nm). Parallel experiments assessed the transmission of the light through thin sections of Japanese cedar. The depth of photodegradation increased with wavelength up to and including the violet region of...
QUALITY ASSESSMENT OF CONFOCAL MICROSCOPY SLIDE-BASED SYSTEMS: INSTABLITY
Background: All slide-based fluorescence cytometry detections systems basically include an excitation light source, intermediate optics, and a detection device (CCD or PMT). Occasionally, this equipment becomes unstable, generating unreliable and inferior data. Methods: A num...
Hyperspectral microscopy to identify foodborne bacteria with optimum lighting source
USDA-ARS?s Scientific Manuscript database
Hyperspectral microscopy is an emerging technology for rapid detection of foodborne pathogenic bacteria. Since scattering spectral signatures from hyperspectral microscopic images (HMI) vary with lighting sources, it is important to select optimal lights. The objective of this study is to compare t...
Jemielita, Matthew; Taormina, Michael J; Delaurier, April; Kimmel, Charles B; Parthasarathy, Raghuveer
2013-12-01
The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Simple low-cost device enables four epi-illumination techniques on standard light microscopes.
Ishmukhametov, Robert R; Russell, Aidan N; Wheeler, Richard J; Nord, Ashley L; Berry, Richard M
2016-02-08
Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.
A Simple low-cost device enables four epi-illumination techniques on standard light microscopes
NASA Astrophysics Data System (ADS)
Ishmukhametov, Robert R.; Russell, Aidan N.; Wheeler, Richard J.; Nord, Ashley L.; Berry, Richard M.
2016-02-01
Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.
Zhao, Ming; Zhang, Han; Li, Yu; Ashok, Amit; Liang, Rongguang; Zhou, Weibin; Peng, Leilei
2014-01-01
In vivo fluorescent cellular imaging of deep internal organs is highly challenging, because the excitation needs to penetrate through strong scattering tissue and the emission signal is degraded significantly by photon diffusion induced by tissue-scattering. We report that by combining two-photon Bessel light-sheet microscopy with nonlinear structured illumination microscopy (SIM), live samples up to 600 microns wide can be imaged by light-sheet microscopy with 500 microns penetration depth, and diffused background in deep tissue light-sheet imaging can be reduced to obtain clear images at cellular resolution in depth beyond 200 microns. We demonstrate in vivo two-color imaging of pronephric glomeruli and vasculature of zebrafish kidney, whose cellular structures located at the center of the fish body are revealed in high clarity by two-color two-photon Bessel light-sheet SIM. PMID:24876996
A Simplified, Low-Cost Method for Polarized Light Microscopy
Maude, Richard J.; Buapetch, Wanchana; Silamut, Kamolrat
2009-01-01
Malaria pigment is an intracellular inclusion body that appears in blood and tissue specimens on microscopic examination and can help in establishing the diagnosis of malaria. In simple light microscopy, it can be difficult to discern from cellular background and artifacts. It has long been known that if polarized light microscopy is used, malaria pigment can be much easier to distinguish. However, this technique is rarely used because of the need for a relatively costly polarization microscope. We describe a simple and economical technique to convert any standard light microscope suitable for examination of malaria films into a polarization microscope. PMID:19861611
Application of organic petrography in North American shale petroleum systems: A review
Hackley, Paul C.; Cardott, Brian J.
2016-01-01
Organic petrography via incident light microscopy has broad application to shale petroleum systems, including delineation of thermal maturity windows and determination of organo-facies. Incident light microscopy allows practitioners the ability to identify various types of organic components and demonstrates that solid bitumen is the dominant organic matter occurring in shale plays of peak oil and gas window thermal maturity, whereas oil-prone Type I/II kerogens have converted to hydrocarbons and are not present. High magnification SEM observation of an interconnected organic porosity occurring in the solid bitumen of thermally mature shale reservoirs has enabled major advances in our understanding of hydrocarbon migration and storage in shale, but suffers from inability to confirm the type of organic matter present. Herein we review organic petrography applications in the North American shale plays through discussion of incident light photographic examples. In the first part of the manuscript we provide basic practical information on the measurement of organic reflectance and outline fluorescence microscopy and other petrographic approaches to the determination of thermal maturity. In the second half of the paper we discuss applications of organic petrography and SEM in all of the major shale petroleum systems in North America including tight oil plays such as the Bakken, Eagle Ford and Niobrara, and shale gas and condensate plays including the Barnett, Duvernay, Haynesville-Bossier, Marcellus, Utica, and Woodford, among others. Our review suggests systematic research employing correlative high resolution imaging techniques and in situ geochemical probing is needed to better document hydrocarbon storage, migration and wettability properties of solid bitumen at the pressure and temperature conditions of shale reservoirs.
NASA Astrophysics Data System (ADS)
Tan, Yong; Xu, Chuan Shan; Xia, Xin Shu; Yu, He Ping; Bai, Ding Qun; He, Yong; Xu, Jing; Wang, Ping; Wang, Xin Na; Leung, Albert Wing Nang
2009-05-01
In the present study, a novel LED source was applied for activating pyropheophorbids-a methyl ester (MPPa) in cisplatin-resistant ovarian cell line COC1/DDP cells. MPPa concentration was 2 μM and light energy from 0.125-8 J/cm2. Cytotoxicity was investigated 24 h using MTT reduction assay and light microscopy after treatment. Cellular ultrastructure was observed using transmission electron microscopy (TEM) and nuclear chromatin by fluorescent microscope with Hoechst33258 staining. MTT reduction assay showed that the cytotoxicity of LED-activated MPPa in the COC1/DDP cells increased along with the light dose of LED source and LED-activated MPPa resulted in light-dependent cytotoxicity. The observations from light microscopy reinforced the above results. TEM showed that necrotic cells with the disruption of karyotheca, karyorrhexis, and karyolysis of nucleus and apoptotic cells, especially the apoptotic body, can be seen post LED-activated MPPa. Hoechst33258 staining showed that condensation of chromatin and nuclear fragmentations could be found in many treated cells and some of them formed the structure of apoptotic bodies when COC1/DDP cells were exposed to 2 μM MPPa for 20 h and then 1 J/cm2 irradiation of LED source. The findings demonstrated that the novel LED source could efficiently activated MPPa and LED-activated MPPa could significantly kill cisplatin-resistant ovarian cell line COC1/DDP cells through two major pathways including necrosis and apoptosis, suggesting that LED is a novel and efficient light source and LED-activated MPPa might be potential therapeutic modality for treating cisplatin-resistant ovarian carcinoma.
Serezhnikova, N B; Pogodina, L S; Lipina, T V; Trofimova, N N; Gurieva, T S; Zak, P P
2017-07-01
The effect of everyday blue light (λ = 440-460 nm) on mitochondria of the retinal pigment epithelium of different age groups of Japanese quail was studied using electron microscopy, morphometric methods, and biochemical analysis. We have found a significant increase in the number of mitochondria, including those modified, mainly in young birds. In addition, cell metabolic activity increased in response to blue lighting. These changes are assumed to reflect an adaptive response of mitochondria aimed at neutralizing the phototoxic effect of blue light caused by accumulation of lipofuscin granules.
Liu, Xian; Han, Lujia; Veys, Pascal; Baeten, Vincent; Jiang, Xunpeng; Dardenne, Pierre
2011-08-01
From the first cases of bovine spongiform encephalopathy (BSE) among cattle in the United Kingdom in 1986, the route of infection of BSE is generally believed by means of feeds containing low level of processed animal proteins (PAPs). Therefore, many feed bans and alternative and complementary techniques were resulted for the BSE safeguards in the world. Now the feed bans are expected to develop into a "species to species" ban, which requires the corresponding species-specific identification methods. Currently, banned PAPs can be detected by various methods as light microscopy, polymerase chain reaction, enzyme-linked immunosorbent assay, near infrared spectroscopy, and near infrared microscopy. Light microscopy as described in the recent Commission Regulation EC/152/2009 is the only official method for the detection and characterization of PAPs in feed in the European Union. It is able to detect the presence of constituents of animal origin in feed at the level of 1 g/kg with hardly any false negative. Nevertheless, light microscopy has the limitation of lack of species specificity. This article presents a review of legislations on the use of PAPs in feedstuff, the detection details of animal proteins by light microscopy, and also presents and discusses the analysis procedure and expected development of the technique. Copyright © 2010 Wiley-Liss, Inc.
2013-01-01
Background Malaria rapid diagnostic tests (RDTs) are a useful tool in endemic malaria countries, where light microscopy is not feasible. In non-endemic countries they can be used as complementary tests to provide timely results in case of microscopy inexperience. This study aims to compare the new VIKIA Malaria Ag Pf/Pan™ RDT with PCR-corrected microscopy results and the commonly used CareStart™ RDT to diagnose falciparum and non-falciparum malaria in the endemic setting of Bamako, Mali and the non-endemic setting of Lyon, France. Methods Blood samples were collected during a 12-months and six-months period in 2011 from patients suspected to have malaria in Lyon and Bamako respectively. The samples were examined by light microscopy, the VIKIA Malaria Ag Pf/Pan™ test and in Bamako additionally with the CareStart™ RDT. Discordant results were corrected by real-time PCR. Sensitivity, specificity, positive predictive value and negative predictive value were used to evaluate test performance. Results Samples of 877 patients from both sites were included. The VIKIA Malaria Ag Pf/Pan™ had a sensitivity of 98% and 96% for Plasmodium falciparum in Lyon and Bamako, respectively, performing similar to PCR-corrected microscopy. Conclusions The VIKIA Malaria Ag Pf/Pan™ performs similar to PCR-corrected microscopy for the detection of P. falciparum, making it a valuable tool in malaria endemic and non-endemic regions. PMID:23742633
Eibach, Daniel; Traore, Boubacar; Bouchrik, Mourad; Coulibaly, Boubacar; Coulibaly, Nianégué; Siby, Fanta; Bonnot, Guillaume; Bienvenu, Anne-Lise; Picot, Stéphane
2013-06-06
Malaria rapid diagnostic tests (RDTs) are a useful tool in endemic malaria countries, where light microscopy is not feasible. In non-endemic countries they can be used as complementary tests to provide timely results in case of microscopy inexperience. This study aims to compare the new VIKIA Malaria Ag Pf/Pan™ RDT with PCR-corrected microscopy results and the commonly used CareStart™ RDT to diagnose falciparum and non-falciparum malaria in the endemic setting of Bamako, Mali and the non-endemic setting of Lyon, France. Blood samples were collected during a 12-months and six-months period in 2011 from patients suspected to have malaria in Lyon and Bamako respectively. The samples were examined by light microscopy, the VIKIA Malaria Ag Pf/Pan™ test and in Bamako additionally with the CareStart™ RDT. Discordant results were corrected by real-time PCR. Sensitivity, specificity, positive predictive value and negative predictive value were used to evaluate test performance. Samples of 877 patients from both sites were included. The VIKIA Malaria Ag Pf/Pan™ had a sensitivity of 98% and 96% for Plasmodium falciparum in Lyon and Bamako, respectively, performing similar to PCR-corrected microscopy. The VIKIA Malaria Ag Pf/Pan™ performs similar to PCR-corrected microscopy for the detection of P. falciparum, making it a valuable tool in malaria endemic and non-endemic regions.
NASA Astrophysics Data System (ADS)
Ritsch-Marte, Monika
2009-04-01
300 years since the first glimpse through the earliest microscopes, light microscopy is still an active field of research, breaking new frontiers in optical imaging and even becoming a means of mechanical manipulation of microparticles.
Frontiers of in situ electron microscopy
Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying
2015-01-01
In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by inmore » this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.« less
Inter-comparison of unrelated fiber evidence.
Houck, Max M
2003-08-12
The foreign textile fibers recovered from one item of evidence from each of 20 unrelated crimes in three categories (bank robbery, kidnapping, and homicide) were cross-compared. The items of evidence were scraped to remove the trace evidence and a sample of the collected fibers was examined using a standard scheme of analysis. The fibers were examined with light microscopy (including polarized light microscopy), fluorescence microscopy, and microspectrophotometry. The fibers were divided into natural and manufactured groups and then categorized by color and generic (polymer) class. Cross-comparing all 2083 fibers resulted in 2,168,403 comparisons, after removing duplicate (same fiber) comparisons. Colorless and denim fibers were excluded from this study. No two fibers were found to exhibit the same microscopic characteristics and analytical properties. Therefore, it is rare to find two unrelated items that have foreign fibers that are analytically indistinguishable. These results corroborate other population studies conducted in Europe and target fiber studies conducted both in the US and in Europe.
Gonococcal attachment to eukaryotic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, J.F.; Lammel, C.J.; Draper, D.L.
The attachment of Neisseria gonorrhoeae to eukaryotic cells grown in tissue culture was analyzed by use of light and electron microscopy and by labeling of the bacteria with (/sup 3/H)- and (/sup 14/C)adenine. Isogenic piliated and nonpiliated N. gonorrhoeae from opaque and transparent colonies were studied. The results of light microscopy studies showed that the gonococci attached to cells of human origin, including Flow 2000, HeLa 229, and HEp 2. Studies using radiolabeled gonococci gave comparable results. Piliated N. gonorrhoeae usually attached in larger numbers than nonpiliated organisms, and those from opaque colonies attached more often than isogenic variants frommore » transparent colonies. Day-to-day variation in rate of attachment was observed. Scanning electron microscopy studies showed the gonococcal attachment to be specific for microvilli of the host cells. It is concluded that more N. gonorrhoeae from opaque colonies, as compared with isogenic variants from transparent colonies, attach to eukaryotic cells grown in tissue culture.« less
Ishida, Nobuyuki; Fujita, Daisuke
2014-11-01
Solar cells (SCs) that contain elaborate nanostructures, such as quantum dots and quantum wells, have been rigorously investigated as a way to harvest a wide range of the solar spectrum [1]. However, the energy conversion efficiency of those SCs still remains low. For the further improvement of the device performance, a much deeper understanding of the role of nanostructures in the photovoltaic conversion process is essential to gain the effective design criteria. To achieve this, local electronic properties including electrical potential, energy states, and charge distribution around the excitation centers have to be characterized under light irradiation since they govern the behavior of excited carriers. These properties have so far been indirectly deduced from macroscopic characterization such as current-voltage (I-V) measurement; however, it is not sufficient to clarify rather complicated roles of the nanostructures [2]. Thus, a direct measurement of those properties with high spatial resolution is required to understand the detailed mechanisms of the photovoltaic conversion process. To this end, we have been developing a platform for performing scanning tunneling microscopy/spectroscopy (STM/STS), atomic force microscopy (AFM), and Kelvin probe force microscopy (KPFM) working under light irradiation conditions.Here, we outline the characterization of a multiple quantum well (QW) SC based on III-V compounds that is expected to be a potential candidate of intermediate band type SC. First, we show the electrical potential measurements along the p-i-n junction of the SC using KPFM in air. Measurements were performed in open and short circuit configurations under light irradiation conditions [Fig.1]. We demonstrate that the dependence of the open circuit voltage on the intensity of light can be successfully measured by careful interpretation of the KPFM data. Second, we introduce some examples of the atomic scale characterization of the multiple QW using ultrahigh vacuum STM including the atomic arrangement, electronic states, and band profile. Also, charge accumulation at the QW is discussed based on the topographic measurement under light irradiation.jmicro;63/suppl_1/i12/DFU042F1F1DFU042F1Fig. 1.(a) Schematic illustration of measurement system of KPFM in air. (b) Effect of light irradiation on potential profile in open circuit configuration. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Malaria Diagnosis Using a Mobile Phone Polarized Microscope
NASA Astrophysics Data System (ADS)
Pirnstill, Casey W.; Coté, Gerard L.
2015-08-01
Malaria remains a major global health burden, and new methods for low-cost, high-sensitivity, diagnosis are essential, particularly in remote areas with low-resource around the world. In this paper, a cost effective, optical cell-phone based transmission polarized light microscope system is presented for imaging the malaria pigment known as hemozoin. It can be difficult to determine the presence of the pigment from background and other artifacts, even for skilled microscopy technicians. The pigment is much easier to observe using polarized light microscopy. However, implementation of polarized light microscopy lacks widespread adoption because the existing commercial devices have complicated designs, require sophisticated maintenance, tend to be bulky, can be expensive, and would require re-training for existing microscopy technicians. To this end, a high fidelity and high optical resolution cell-phone based polarized light microscopy system is presented which is comparable to larger bench-top polarized microscopy systems but at much lower cost and complexity. The detection of malaria in fixed and stained blood smears is presented using both, a conventional polarized microscope and our cell-phone based system. The cell-phone based polarimetric microscopy design shows the potential to have both the resolution and specificity to detect malaria in a low-cost, easy-to-use, modular platform.
Malaria Diagnosis Using a Mobile Phone Polarized Microscope
Pirnstill, Casey W.; Coté, Gerard L.
2015-01-01
Malaria remains a major global health burden, and new methods for low-cost, high-sensitivity, diagnosis are essential, particularly in remote areas with low-resource around the world. In this paper, a cost effective, optical cell-phone based transmission polarized light microscope system is presented for imaging the malaria pigment known as hemozoin. It can be difficult to determine the presence of the pigment from background and other artifacts, even for skilled microscopy technicians. The pigment is much easier to observe using polarized light microscopy. However, implementation of polarized light microscopy lacks widespread adoption because the existing commercial devices have complicated designs, require sophisticated maintenance, tend to be bulky, can be expensive, and would require re-training for existing microscopy technicians. To this end, a high fidelity and high optical resolution cell-phone based polarized light microscopy system is presented which is comparable to larger bench-top polarized microscopy systems but at much lower cost and complexity. The detection of malaria in fixed and stained blood smears is presented using both, a conventional polarized microscope and our cell-phone based system. The cell-phone based polarimetric microscopy design shows the potential to have both the resolution and specificity to detect malaria in a low-cost, easy-to-use, modular platform. PMID:26303238
NASA Technical Reports Server (NTRS)
Daunton, N. G.; DAmelio, F.; Wu, L.; Ilyina-Kakueva, E. I.; Krasnov, I. B.; Hyde, T. M.; Sigworth, S. K.
1994-01-01
The effects of spaceflight upon the 'slow' muscle adductor longus was examined in rats flown in the Soviet Biosatellite COSMOS 2044. Three groups - synchronous, vivarium and basal served as controls. The techniques employed included standard methods for light microscopy, N-CAM immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy, contraction bands and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leucocytes and mononuclear cells. N-CAM immunoreactivity was seen (N-CAM-IR) on the myofiber surface, satellite cells and in regenerating myofibers reminiscent of myotubes. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments that displayed varied distributive patterns. The principal electron microscopic changes of the neuromuscular junctions consisted of a decrease or absence of synaptic vesicles, degeneration of axon terminals, increased number of microtubules, vacant axonal spaces and axonal sprouting. The present observations indicate that major alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.
Refractive index measurements of single, spherical cells using digital holographic microscopy.
Schürmann, Mirjam; Scholze, Jana; Müller, Paul; Chan, Chii J; Ekpenyong, Andrew E; Chalut, Kevin J; Guck, Jochen
2015-01-01
In this chapter, we introduce digital holographic microscopy (DHM) as a marker-free method to determine the refractive index of single, spherical cells in suspension. The refractive index is a conclusive measure in a biological context. Cell conditions, such as differentiation or infection, are known to yield significant changes in the refractive index. Furthermore, the refractive index of biological tissue determines the way it interacts with light. Besides the biological relevance of this interaction in the retina, a lot of methods used in biology, including microscopy, rely on light-tissue or light-cell interactions. Hence, determining the refractive index of cells using DHM is valuable in many biological applications. This chapter covers the main topics that are important for the implementation of DHM: setup, sample preparation, and analysis. First, the optical setup is described in detail including notes and suggestions for the implementation. Following that, a protocol for the sample and measurement preparation is explained. In the analysis section, an algorithm for the determination of quantitative phase maps is described. Subsequently, all intermediate steps for the calculation of the refractive index of suspended cells are presented, exploiting their spherical shape. In the last section, a discussion of possible extensions to the setup, further measurement configurations, and additional analysis methods are given. Throughout this chapter, we describe a simple, robust, and thus easily reproducible implementation of DHM. The different possibilities for extensions show the diverse fields of application for this technique. Copyright © 2015 Elsevier Inc. All rights reserved.
Adnet, F A O; Anjos, D H S; Menezes-Oliveira, A; Lanfredi, R M
2009-04-01
Species of Cruzia are parasites of the large intestine of marsupials, reptiles, amphibians, and mammalians. Cruzia tentaculata specimens were collected from the large intestine of Didelphis marsupialis (Mammalia: Didelphidae) from Colombia (new geographical record) and from Brazil and analyzed by light and scanning electron microscopy. The morphology of males and females by light microscopy corroborated most of the previous description and the ultrastructure by scanning electron microscopy evidence: the topography of the cuticle, deirids, amphids, phasmids in both sexes, a pair of papillae near the vulva opening, and the number and location of male caudal papillae, adding new features for species identification only observed by this technique.
The 2015 super-resolution microscopy roadmap
NASA Astrophysics Data System (ADS)
Hell, Stefan W.; Sahl, Steffen J.; Bates, Mark; Zhuang, Xiaowei; Heintzmann, Rainer; Booth, Martin J.; Bewersdorf, Joerg; Shtengel, Gleb; Hess, Harald; Tinnefeld, Philip; Honigmann, Alf; Jakobs, Stefan; Testa, Ilaria; Cognet, Laurent; Lounis, Brahim; Ewers, Helge; Davis, Simon J.; Eggeling, Christian; Klenerman, David; Willig, Katrin I.; Vicidomini, Giuseppe; Castello, Marco; Diaspro, Alberto; Cordes, Thorben
2015-11-01
Far-field optical microscopy using focused light is an important tool in a number of scientific disciplines including chemical, (bio)physical and biomedical research, particularly with respect to the study of living cells and organisms. Unfortunately, the applicability of the optical microscope is limited, since the diffraction of light imposes limitations on the spatial resolution of the image. Consequently the details of, for example, cellular protein distributions, can be visualized only to a certain extent. Fortunately, recent years have witnessed the development of ‘super-resolution’ far-field optical microscopy (nanoscopy) techniques such as stimulated emission depletion (STED), ground state depletion (GSD), reversible saturated optical (fluorescence) transitions (RESOLFT), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) or saturated structured illumination microscopy (SSIM), all in one way or another addressing the problem of the limited spatial resolution of far-field optical microscopy. While SIM achieves a two-fold improvement in spatial resolution compared to conventional optical microscopy, STED, RESOLFT, PALM/STORM, or SSIM have all gone beyond, pushing the limits of optical image resolution to the nanometer scale. Consequently, all super-resolution techniques open new avenues of biomedical research. Because the field is so young, the potential capabilities of different super-resolution microscopy approaches have yet to be fully explored, and uncertainties remain when considering the best choice of methodology. Thus, even for experts, the road to the future is sometimes shrouded in mist. The super-resolution optical microscopy roadmap of Journal of Physics D: Applied Physics addresses this need for clarity. It provides guidance to the outstanding questions through a collection of short review articles from experts in the field, giving a thorough discussion on the concepts underlying super-resolution optical microscopy, the potential of different approaches, the importance of label optimization (such as reversible photoswitchable proteins) and applications in which these methods will have a significant impact. Mark Bates, Christian Eggeling
Retracing in correlative light electron microscopy: where is my object of interest?
Hodgson, Lorna; Nam, David; Mantell, Judith; Achim, Alin; Verkade, Paul
2014-01-01
Correlative light electron microscopy (CLEM) combines the strengths of light and electron microscopy in a single experiment. There are many ways to perform a CLEM experiment and a variety of microscopy modalities can be combined either on separate instruments or as completely integrated solutions. In general, however, a CLEM experiment can be divided into three parts: probes, processing, and analysis. Most of the existing technologies are focussed around the development and use of probes or describe processing methodologies that explain or circumvent some of the compromises that need to be made when performing both light and electron microscopy on the same sample. So far, relatively little attention has been paid to the analysis part of CLEM experiments. Although it is an essential part of each CLEM experiment, it is usually a cumbersome manual process. Here, we briefly discuss each of the three above-mentioned steps, with a focus on the analysis part. We will also introduce an automated registration algorithm that can be applied to the analysis stage to enable the accurate registration of LM and EM images. This facilitates tracing back the right cell/object seen in the light microscope in the EM. © 2014 Elsevier Inc. All rights reserved.
Polarization-resolved SHG microscopy in cardiac hypertrophy study (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wang, Zhonghai; Yuan, Cai; Shao, Yonghong; Bradshaw, Amy D.; Borg, Thomas K.; Gao, Bruce Z.
2017-02-01
Cardiac hypertrophy, a process initiated by mechanical alterations, is hypothesized to cause long-term molecular-level alteration in the sarcomere lattice, which is the main force-generating component in the heart muscle. This molecular-level alteration is beyond the resolving capacity of common light microscopy. Second harmonic generation (SHG) microscopy has unique capability for visualizing ordered molecular structures in biological tissues without labeling. Combined with polarization imaging technique, SHG microscopy is able to extract structural details of myosin at the molecular level so as to reveal molecular-level alterations that occur during hypertrophy. The myosin filaments are believed to possess C6 symmetry; thus, the nonlinear polarization response relationship between generated second harmonic light I^2ωand incident fundamental light I^ω is determined by nonlinear coefficients, χ_15, χ_31 and χ_33. χ_31/χ_15 is believed to be an indicator of the molecular symmetry of myosin filament, whileχ_33/χ_15represents the intramyosin orientation angle of the double helix. By changing the polarization of the incident light and evaluating the corresponding SHG signals, the molecular structure of the myosin, reflected by the χ coefficients, can be revealed. With this method, we studied the structural properties of heart tissues in different conditions, including those in normal, physiologically hypertrophic (heart tissue from postpartum female rats), and pathologically hypertrophic (heart tissue from transverse-aorta constricted rats) conditions. We found that ratios of χ_31/χ_15 showed no significant difference between heart tissues from different conditions; their values were all close to 1, which demonstrated that Kleinman symmetry held for all conditions. Ratios of χ_33/χ_15 from physiologically or pathologically hypertrophic heart tissues were raised and showed significant difference from those from normal heart tissues, which indicated that the intramyosin orientation angle of the double helix was altered when heart tissues hypertrophied. Polarization-resolved SHG microscopy permitted us to study heart tissues at the molecular level and may serve as a diagnostic tool for cardiac hypertrophy.
Matsumoto, Naoya; Konno, Alu; Inoue, Takashi; Okazaki, Shigetoshi
2018-06-18
In this paper, excitation light wavefront modulation is performed considering the curved sample surface shape to demonstrate high-quality deep observation using two-photon excitation microscopy (TPM) with a dry objective lens. A large spherical aberration typically occurs when the refractive index (RI) interface between air and the sample is a plane perpendicular to the optical axis. Moreover, the curved sample surface shape and the RI mismatch cause various aberrations, including spherical ones. Consequently, the fluorescence intensity and resolution of the obtained image are degraded in the deep regions. To improve them, we designed a pre-distortion wavefront for correcting the aberration caused by the curved sample surface shape by using a novel, simple optical path length difference calculation method. The excitation light wavefront is modulated to the pre-distortion wavefront by a spatial light modulator incorporated in the TPM system before passing through the interface, where the RI mismatch occurs. Thus, the excitation light is condensed without aberrations. Blood vessels were thereby observed up to an optical depth of 2,000 μm in a cleared mouse brain by using a dry objective lens.
Multilayer mounting for long-term light sheet microscopy of zebrafish.
Weber, Michael; Mickoleit, Michaela; Huisken, Jan
2014-02-27
Light sheet microscopy is the ideal imaging technique to study zebrafish embryonic development. Due to minimal photo-toxicity and bleaching, it is particularly suited for long-term time-lapse imaging over many hours up to several days. However, an appropriate sample mounting strategy is needed that offers both confinement and normal development of the sample. Multilayer mounting, a new embedding technique using low-concentration agarose in optically clear tubes, now overcomes this limitation and unleashes the full potential of light sheet microscopy for real-time developmental biology.
Correlative light-electron fractography for fatigue striations characterization in metallic alloys.
Hein, Luis Rogerio de Oliveira; de Oliveira, José Alberto; de Campos, Kamila Amato
2013-09-01
The correlative light-electron fractography technique combines correlative microscopy concepts to the extended depth-from-focus reconstruction method, associating the reliable topographic information of 3-D maps from light microscopy ordered Z-stacks to the finest lateral resolution and large focus depth from scanning electron microscopy. Fatigue striations spacing analysis can be precisely measured, by correcting the mean surface tilting with the knowledge of local elevation data from elevation maps. This new technique aims to improve the accuracy of quantitative fractography in fatigue fracture investigations. Copyright © 2013 Wiley Periodicals, Inc.
Multilayer Mounting for Long-term Light Sheet Microscopy of Zebrafish
Weber, Michael; Mickoleit, Michaela; Huisken, Jan
2014-01-01
Light sheet microscopy is the ideal imaging technique to study zebrafish embryonic development. Due to minimal photo-toxicity and bleaching, it is particularly suited for long-term time-lapse imaging over many hours up to several days. However, an appropriate sample mounting strategy is needed that offers both confinement and normal development of the sample. Multilayer mounting, a new embedding technique using low-concentration agarose in optically clear tubes, now overcomes this limitation and unleashes the full potential of light sheet microscopy for real-time developmental biology. PMID:24637614
NASA Astrophysics Data System (ADS)
Chun, Wanhee; Do, Dukho; Gweon, Dae-Gab
2013-01-01
We developed a multimodal microscopy based on an optical scanning system in order to obtain diverse optical information of the same area of a sample. Multimodal imaging researches have mostly depended on a commercial microscope platform, easy to use but restrictive to extend imaging modalities. In this work, the beam scanning optics, especially including a relay lens, was customized to transfer broadband (400-1000 nm) lights to a sample without any optical error or loss. The customized scanning optics guarantees the best performances of imaging techniques utilizing the lights within the design wavelength. Confocal reflection, confocal fluorescence, and two-photon excitation fluorescence images were obtained, through respective implemented imaging channels, to demonstrate imaging feasibility for near-UV, visible, near-IR continuous light, and pulsed light in the scanning optics. The imaging performances for spatial resolution and image contrast were verified experimentally; the results were satisfactory in comparison with theoretical results. The advantages of customization, containing low cost, outstanding combining ability and diverse applications, will contribute to vitalize multimodal imaging researches.
Super-resolution optical microscopy for studying membrane structure and dynamics.
Sezgin, Erdinc
2017-07-12
Investigation of cell membrane structure and dynamics requires high spatial and temporal resolution. The spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent developments in microscopy enabled us to access the nano-scale regime spatially, thus to elucidate the nanoscopic structures in the cellular membranes. In this review, we will explain the resolution limit, address the working principles of the most commonly used super-resolution microscopy techniques and summarise their recent applications in the biomembrane field.
eduSPIM: Light Sheet Microscopy in the Museum
Schmid, Benjamin; Weber, Michael; Huisken, Jan
2016-01-01
Light Sheet Microscopy in the Museum Light sheet microscopy (or selective plane illumination microscopy) is an important imaging technique in the life sciences. At the same time, this technique is also ideally suited for community outreach projects, because it produces visually appealing, highly dynamic images of living organisms and its working principle can be understood with basic optics knowledge. Still, the underlying concepts are widely unknown to the non-scientific public. On the occasion of the UNESCO International Year of Light, a technical museum in Dresden, Germany, launched a special, interactive exhibition. We built a fully functional, educational selective plane illumination microscope (eduSPIM) to demonstrate how developments in microscopy promote discoveries in biology. Design Principles of an Educational Light Sheet Microscope To maximize educational impact, we radically reduced a standard light sheet microscope to its essential components without compromising functionality and incorporated stringent safety concepts beyond those needed in the lab. Our eduSPIM system features one illumination and one detection path and a sealed sample chamber. We image fixed zebrafish embryos with fluorescent vasculature, because the structure is meaningful to laymen and visualises the optical principles of light sheet microscopy. Via a simplified interface, visitors acquire fluorescence and transmission data simultaneously. The eduSPIM Design Is Tailored Easily to Fit Numerous Applications The universal concepts presented here may also apply to other scientific approaches that are communicated to laymen in interactive settings. The specific eduSPIM design is adapted easily for various outreach and teaching activities. eduSPIM may even prove useful for labs needing a simple SPIM. A detailed parts list and schematics to rebuild eduSPIM are provided. PMID:27560188
Structure and location of macronutrients in ancient and alternative crops (abstract)
USDA-ARS?s Scientific Manuscript database
Structure, histochemistry and composition of mature seeds of several ancient or alternative crops were studied by light and electron microscopies to localize specific macronutrients including protein, starch, non-starch carbohydrates and lipid. Botanically, these seeds fall into different classifica...
Even illumination in total internal reflection fluorescence microscopy using laser light.
Fiolka, R; Belyaev, Y; Ewers, H; Stemmer, A
2008-01-01
In modern fluorescence microscopy, lasers are a widely used source of light, both for imaging in total internal reflection and epi-illumination modes. In wide-field imaging, scattering of highly coherent laser light due to imperfections in the light path typically leads to nonuniform illumination of the specimen, compromising image analysis. We report the design and construction of an objective-launch total internal reflection fluorescence microscopy system with excellent evenness of specimen illumination achieved by azimuthal rotation of the incoming illuminating laser beam. The system allows quick and precise changes of the incidence angle of the laser beam and thus can also be used in an epifluorescence mode. 2007 Wiley-Liss, Inc
NASA Technical Reports Server (NTRS)
Synowicki, R. A.; Hale, Jeffrey S.; Woollam, John A.
1992-01-01
The University of Nebraska is currently evaluating Low Earth Orbit (LEO) simulation techniques as well as a variety of thin film protective coatings to withstand atomic oxygen (AO) degradation. Both oxygen plasma ashers and an electron cyclotron resonance (ECR) source are being used for LEO simulation. Thin film coatings are characterized by optical techniques including Variable Angle Spectroscopic Ellipsometry, Optical spectrophotometry, and laser light scatterometry. Atomic Force Microscopy (AFM) is also used to characterize surface morphology. Results on diamondlike carbon (DLC) films show that DLC degrades with simulated AO exposure at a rate comparable to Kapton polyimide. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights.
A multi-modal stereo microscope based on a spatial light modulator.
Lee, M P; Gibson, G M; Bowman, R; Bernet, S; Ritsch-Marte, M; Phillips, D B; Padgett, M J
2013-07-15
Spatial Light Modulators (SLMs) can emulate the classic microscopy techniques, including differential interference (DIC) contrast and (spiral) phase contrast. Their programmability entails the benefit of flexibility or the option to multiplex images, for single-shot quantitative imaging or for simultaneous multi-plane imaging (depth-of-field multiplexing). We report the development of a microscope sharing many of the previously demonstrated capabilities, within a holographic implementation of a stereo microscope. Furthermore, we use the SLM to combine stereo microscopy with a refocusing filter and with a darkfield filter. The instrument is built around a custom inverted microscope and equipped with an SLM which gives various imaging modes laterally displaced on the same camera chip. In addition, there is a wide angle camera for visualisation of a larger region of the sample.
Batth, B K; Parshad, R K
2000-02-01
The distribution of mast cells in various ovarian compartments was studied during different stages of the reproductive cycles in Rattus rattus. Two types of mast cell populations were recognized with light microscopy i.e., light purple and deep purple, the latter also includes deeply stained cells with extruded granules. Mast cells identified by electron microscopy showed the ultrastructural features during granule formation and release of their content. Significantly higher numbers of mast cells per unit area of ovary were seen at estrus and diestrus. Numbers of mast cells also remained high during pregnancy with possible involvement of mast cell products in vascularization of corpora lutea. A positive correlation existed between mast cell counts and embryo number during pregnancy. However, numbers of mast cells declined significantly after parturition.
Ultrastructural effects of silicone oil on the clear crystalline lens of the human eye.
Soliman, Wael; Sharaf, Mohamed; Abdelazeem, Khaled; El-Gamal, Dalia; Nafady, Allam
2018-03-01
To evaluate light and electron microscopic changes of the anterior capsule and its epithelium after clear lens extraction of vitrectomized myopic eyes with silicone oil tamponade. This prospective, controlled, non-randomized, interventional study included 20 anterior lens capsular specimens that were excised during combined clear lens extraction and silicone oil removal from previously vitrectomized highly myopic patients with silicone oil tamponade for previous retinal detachment surgeries. The specimens were examined via light microscopy and electron microscopy and compared with 20 anterior capsule specimens removed during clear lens extraction of non-vitrectomized highly myopic eyes. Light microscopic examination of clear lens anterior capsule specimens of vitrectomized myopic eyes filled with silicone oil showed relatively more flat cells with irregular outline of lens' epithelial cells with wide intercellular spaces, deeply stained nuclei, and multiple intracytoplasmic vacuoles. Scanning electron microscopy revealed collagenous surfaces filled with multiple pits, depressions, and abnormal deposits. Transmission electron microscopy revealed lens epithelial cells with apoptotic changes, many cytoplasmic vacuoles, and filopodia-like protrusions between lens epithelial cells and the capsule. Epithelial proliferation and multilayering were also observed. silicone oil may play a role in the development of apoptotic and histopathological changes in clear lens epithelial cells. Clarity of the lens at the time of silicone oil removal does not indicate an absence of cataractous changes. We found justification of combined clear lens extraction and silicone oil removal or combined phacovitrectomy when silicone oil injection is planned, but further long-term studies with larger patient groups are required.
Saito, Kenta; Arai, Yoshiyuki; Zhang, Jize; Kobayashi, Kentaro; Tani, Tomomi; Nagai, Takeharu
2011-01-01
Laser-scanning confocal microscopy has been employed for exploring structures at subcellular, cellular and tissue level in three dimensions. To acquire the confocal image, a coherent light source, such as laser, is generally required in conventional single-point scanning microscopy. The illuminating beam must be focused onto a small spot with diffraction-limited size, and this determines the spatial resolution of the microscopy system. In contrast, multipoint scanning confocal microscopy using a Nipkow disk enables the use of an incoherent light source. We previously demonstrated successful application of a 100 W mercury arc lamp as a light source for the Yokogawa confocal scanner unit in which a microlens array was coupled with a Nipkow disk to focus the collimated incident light onto a pinhole (Saito et al., Cell Struct. Funct., 33: 133-141, 2008). However, transmission efficiency of incident light through the pinhole array was low because off-axis light, the major component of the incident light, was blocked by the non-aperture area of the disk. To improve transmission efficiency, we propose an optical system in which off-axis light is able to be transmitted through pinholes surrounding the pinhole located on the optical axis of the collimator lens. This optical system facilitates the use of not only the on-axis but also the off-axis light such that the available incident light is considerably improved. As a result, we apply the proposed system to high-speed confocal and multicolor imaging both with a satisfactory signal-to-noise ratio.
Strobl, Frederic; Schmitz, Alexander; Stelzer, Ernst H K
2017-06-01
Light-sheet-based fluorescence microscopy features optical sectioning in the excitation process. This reduces phototoxicity and photobleaching by up to four orders of magnitude compared with that caused by confocal fluorescence microscopy, simplifies segmentation and quantification for three-dimensional cell biology, and supports the transition from on-demand to systematic data acquisition in developmental biology applications.
ERIC Educational Resources Information Center
Davidson, Michael W.
1991-01-01
Describes techniques and equipment which allows school microscopes to perform crossed-polarized light microscopy, reflected light microscopy, and photomicrography. Provides information on using chemicals from a high school stockroom to view crystals, viewing integrated circuits, and capturing images on film. Lists possible independent student…
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM). PMID:29568263
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).
Pluk, H; Stokes, D J; Lich, B; Wieringa, B; Fransen, J
2009-03-01
A method of direct visualization by correlative scanning electron microscopy (SEM) and fluorescence light microscopy of cell structures of tissue cultured cells grown on conductive glass slides is described. We show that by growing cells on indium-tin oxide (ITO)-coated glass slides, secondary electron (SE) and backscatter electron (BSE) images of uncoated cells can be obtained in high-vacuum SEM without charging artefacts. Interestingly, we observed that BSE imaging is influenced by both accelerating voltage and ITO coating thickness. By combining SE and BSE imaging with fluorescence light microscopy imaging, we were able to reveal detailed features of actin cytoskeletal and mitochondrial structures in mouse embryonic fibroblasts. We propose that the application of ITO glass as a substrate for cell culture can easily be extended and offers new opportunities for correlative light and electron microscopy studies of adherently growing cells.
Wu, Yicong; Chandris, Panagiotis; Winter, Peter W.; Kim, Edward Y.; Jaumouillé, Valentin; Kumar, Abhishek; Guo, Min; Leung, Jacqueline M.; Smith, Corey; Rey-Suarez, Ivan; Liu, Huafeng; Waterman, Clare M.; Ramamurthi, Kumaran S.; La Riviere, Patrick J.; Shroff, Hari
2016-01-01
Most fluorescence microscopes are inefficient, collecting only a small fraction of the emitted light at any instant. Besides wasting valuable signal, this inefficiency also reduces spatial resolution and causes imaging volumes to exhibit significant resolution anisotropy. We describe microscopic and computational techniques that address these problems by simultaneously capturing and subsequently fusing and deconvolving multiple specimen views. Unlike previous methods that serially capture multiple views, our approach improves spatial resolution without introducing any additional illumination dose or compromising temporal resolution relative to conventional imaging. When applying our methods to single-view wide-field or dual-view light-sheet microscopy, we achieve a twofold improvement in volumetric resolution (~235 nm × 235 nm × 340 nm) as demonstrated on a variety of samples including microtubules in Toxoplasma gondii, SpoVM in sporulating Bacillus subtilis, and multiple protein distributions and organelles in eukaryotic cells. In every case, spatial resolution is improved with no drawback by harnessing previously unused fluorescence. PMID:27761486
Isotope effect in heavy/light water suspensions of optically active gold nanoparticles
NASA Astrophysics Data System (ADS)
Kutsenko, V. Y.; Artykulnyi, O. P.; Petrenko, V. I.; Avdeev, M. V.; Marchenko, O. A.; Bulavin, L. A.; Snegir, S. V.
2018-04-01
Aqueous suspensions of optically active gold nanoparticles coated with trisodium citrate were synthesized in light (H2O) water and mixture of light and heavy (H2O/D2O) water using the modified Turkevich protocol. The objective of the paper was to verify sensitivity of neutron scattering methods (in particular, neutron reflectometry) to the potential isotope H/D substitution in the stabilizing organic shell around particles in colloidal solutions. First, the isotope effect was studied with respect to the changes in the structural properties of metal particles (size, shape, crystalline morphology) in solutions by electron microscopy including high-resolution transmission electron microscopy from dried systems. The structural factors determining the variation in the adsorption spectra in addition to the change in the optical properties of surrounding medium were discussed. Then, neutron reflectometry was applied to the layered nanoparticles anchored on a silicon wafer via 3-aminopropyltriethoxysilane molecules to reveal the presence of deuterated water molecules in the shell presumably formed by citrate molecules around the metallic core.
NASA Astrophysics Data System (ADS)
Eghbali-Arani, Mohammad; Sobhani-Nasab, Ali; Rahimi-Nasrabadi, Mehdi; Pourmasoud, Saeid
2018-03-01
SmVO4 nanoparticles were synthesized through a fast and simple procedure (green method). The effects of three parameters including temperature, type of capping agent, and concentration on the size and morphology behavior of SmVO4 nanoparticles were explored. The analysis of SmVO4 nanoparticles was performed through some techniques including, Fourier transform infrared spectroscopy, x-ray diffraction, energy dispersive x-ray microanalysis, scanning electron microscopy, transmission electron microscopy, thermogravimetry, differential thermal analysis, ultraviolet-visible spectroscopy, and vibrating sample magnetometers. The study of photocatalytic behaviour of the SmVO4 nanoparticles in various conditions has been carried out. The impacts of different factors such as dosage, grain size, and kind of pollutant (methylene blue = MB and methyl orange = MO) on the photocatalytic property of SmVO4 nanoparticles were assessed. The photocatalytic activities of SmVO4 catalysts were studied for the degradation of dye under visible light (λ > 400 nm).
NASA Astrophysics Data System (ADS)
Osseiran, Sam; Wang, Hequn; Evans, Conor L.
2017-02-01
Over the past decade, nonlinear optical microscopy has seen a dramatic rise in its use in research settings due to its noninvasiveness, enhanced penetration depth, intrinsic optical sectioning, and the ability to probe chemical compounds with molecular specificity without exogenous contrast agents. Nonlinear optical techniques including two-photon excitation fluorescence (2PEF), fluorescence lifetime imaging microscopy (FLIM), second harmonic generation (SHG), coherent anti-Stokes and stimulated Raman scattering (CARS and SRS, respectively), as well as transient and sum frequency absorption (TA and SFA, respectively), have been widely used to explore the physiology and microanatomy of skin. Recently, these modalities have shed light on dermal processes that could not have otherwise been observed, including the spatiotemporal monitoring of cosmetics and pharmaceuticals. However, a challenge quickly arises when studying such chemicals in a dermatological context: many exogenous compounds have optical signatures that can interfere with the signals that would otherwise be acquired from intact skin. For example, oily solvents exhibit strong signals when probing CH2 vibrations with CARS/SRS; chemical sun filters appear bright in 2PEF microscopy; and darkly colored compounds readily absorb light across a broad spectrum, producing strong TA/SFA signals. Thus, this discussion will first focus on the molecular contrast in skin that can be probed using the aforementioned nonlinear optical techniques. This will be followed by an overview of strategies that take advantage of the exogenous compounds' optical signatures to probe spatiotemporal dynamics while preserving endogenous information from skin.
Distribution of tubulin, kinesin, and dynein in light- and dark-adapted octopus retinas.
Martinez, J M; Elfarissi, H; De Velasco, B; Ochoa, G H; Miller, A M; Clark, Y M; Matsumoto, B; Robles, L J
2000-01-01
Cephalopod retinas exhibit several responses to light and dark adaptation, including rhabdom size changes, photopigment movements, and pigment granule migration. Light- and dark-directed rearrangements of microfilament and microtubule cytoskeletal transport pathways could drive these changes. Recently, we localized actin-binding proteins in light-/dark-adapted octopus rhabdoms and suggested that actin cytoskeletal rearrangements bring about the formation and degradation of rhabdomere microvilli subsets. To determine if the microtubule cytoskeleton and associated motor proteins control the other light/dark changes, we used immunoblotting and immunocytochemical procedures to map the distribution of tubulin, kinesin, and dynein in dorsal and ventral halves of light- and dark-adapted octopus retinas. Immunoblots detected alpha- and beta-tubulin, dynein intermediate chain, and kinesin heavy chain in extracts of whole retinas. Epifluorescence and confocal microscopy showed that the tubulin proteins were distributed throughout the retina with more immunoreactivity in retinas exposed to light. Kinesin localization was heavy in the pigment layer of light- and dark-adapted ventral retinas but was less prominent in the dorsal region. Dynein distribution also varied in dorsal and ventral retinas with more immunoreactivity in light- and dark-adapted ventral retinas and confocal microscopy emphasized the granular nature of this labeling. We suggest that light may regulate the distribution of microtubule cytoskeletal proteins in the octopus retina and that position, dorsal versus ventral, also influences the distribution of motor proteins. The microtubule cytoskeleton is most likely involved in pigment granule migration in the light and dark and with the movement of transport vesicles from the photoreceptor inner segments to the rhabdoms.
Low cost light-sheet microscopy for whole brain imaging
NASA Astrophysics Data System (ADS)
Kumar, Manish; Nasenbeny, Jordan; Kozorovitskiy, Yevgenia
2018-02-01
Light-sheet microscopy has evolved as an indispensable tool in imaging biological samples. It can image 3D samples at fast speed, with high-resolution optical sectioning, and with reduced photobleaching effects. These properties make light-sheet microscopy ideal for imaging fluorophores in a variety of biological samples and organisms, e.g. zebrafish, drosophila, cleared mouse brains, etc. While most commercial turnkey light-sheet systems are expensive, the existing lower cost implementations, e.g. OpenSPIM, are focused on achieving high-resolution imaging of small samples or organisms like zebrafish. In this work, we substantially reduce the cost of light-sheet microscope system while targeting to image much larger samples, i.e. cleared mouse brains, at single-cell resolution. The expensive components of a lightsheet system - excitation laser, water-immersion objectives, and translation stage - are replaced with an incoherent laser diode, dry objectives, and a custom-built Arduino-controlled translation stage. A low-cost CUBIC protocol is used to clear fixed mouse brain samples. The open-source platforms of μManager and Fiji support image acquisition, processing, and visualization. Our system can easily be extended to multi-color light-sheet microscopy.
Correlative light and electron microscopic detection of GFP-labeled proteins using modular APEX.
Ariotti, Nicholas; Hall, Thomas E; Parton, Robert G
2017-01-01
The use of green fluorescent protein (GFP) and related proteins has revolutionized light microscopy. Here we describe a rapid and simple method to localize GFP-tagged proteins in cells and in tissues by electron microscopy (EM) using a modular approach involving a small GFP-binding peptide (GBP) fused to the ascorbate peroxidase-derived APEX2 tag. We provide a method for visualizing GFP-tagged proteins by light and EM in cultured cells and in the zebrafish using modular APEX-GBP. Furthermore, we describe in detail the benefits of this technique over many of the currently available correlative light and electron microscopy approaches and demonstrate APEX-GBP is readily applicable to modern three-dimensional techniques. Copyright © 2017 Elsevier Inc. All rights reserved.
Imaging galectin-3 dependent endocytosis with lattice light-sheet microscopy
NASA Astrophysics Data System (ADS)
Baek, Jongho; Lou, Jieqiong; Coelho, Simao; Lim, Yean Jin; Seidlitz, Silvia; Nicovich, Philip R.; Wunder, Christian; Johannes, Ludger; Gaus, Katharina
2017-04-01
Lattice light-sheet (LLS) microscopy provides ultrathin light sheets of a two-dimensional optical lattice that allows us imaging three-dimensional (3D) objects for hundreds of time points at sub-second intervals and at or below the diffraction limit. Galectin-3 (Gal3), a carbohydrate-binding protein, triggers glycosphingolipid (GSL)-dependent biogenesis of morphologically distinct endocytic vesicles that are cargo specific and clathrin independent. In this study, we apply LLS microscopy to study the dynamics of Gal3 dependent endocytosis in live T cells. This will allow us to observe Gal3-mediated endocytosis at high temporal and excellent 3D spatial resolution, which may shed light on our understanding of the mechanism and physiological function of Gal3-induced endocytosis.
NASA Astrophysics Data System (ADS)
Mehta, Dalip Singh; Ahmad, Azeem; Dubey, Vishesh; Singh, Veena; Butola, Ankit; Mohanty, Tonmoy; Nandi, Sreyankar
2018-02-01
We report longitudinal spatial coherence (LSC) gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination using laser as a light source. To accomplish this a pseudo thermal light source was synthesized by passing laser beams through an optical system, which is basically a speckle reduction system with combined effect of spatial, temporal, angular and polarisation diversity. The longitudinal spatial coherence length of such light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular and temporal diversity. This results in a low spatially coherent (i.e., broad angular frequency spectrum) light source with narrow temporal frequency spectrum. Light from such a pseudo thermal light source was passed through an interference microscope with varying magnification, such as, 10X and 50X. The interference microscope was used for full-field OCT imaging of multilayer objects and topography of industrial objects. Experimental results of optical sectioning of multilayer biological objects with high axial-resolution less than 10μm was achieved which is comparable to broadband white light source. The synthesized light source with reduced speckles having uniform illumination on the sample, which can be very useful for fluorescence microscopy as well as quantitative phase microscopy with less phase noise. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.
Park, Jun-Beom; Yang, Seung-Min; Ko, Youngkyung
2015-12-01
The purpose of this study was to evaluate the surface characteristics of various implant abutment materials, such as of titanium alloy (Ti6Al4V; Ma), machined cobalt-chrome-molybdenum alloy (CCM), titanium nitride coating on a titanium alloy disc (TiN), anodic oxidized titanium alloy disc (AO), composite resin coating on a titanium alloy disc (Res), and zirconia disc (Zr), using confocal microscopy and white light interferometry. Measurements from the 2 methods were evaluated to see if these methods would give equivalent results. The precision of measurements were evaluated by the coefficient of variation. Five discs each of Ma, CCM, TiN, AO, Res, and Zr were used. The surface roughness was evaluated by confocal laser microscopy and white light interferometry. Confocal microscopy showed that the Res group showed significantly greater Ra, Rq, Rz, Sa, Sq, and Sz values compared with those of the Ma group (P < 0.05). The white light interferometry results showed that the Res group had significantly higher Ra, Rq, Rz, Rt, Sa, Sq, Sz, and Sdr values compared with the Ma group (P < 0.05). All the roughness parameters obtained from the 2 methods differed, and the Sa values of the Zr group from confocal microscopy were greater by 0.163 μm than those obtained by white light interferometry. Least difference was seen in the TiN group where the difference was 0.058 μm. Roughness parameters of different abutment materials varied significantly. Precision of measurement differed according to the characteristics of the material used. White light interferometry could be recommended for measurement of TiN and AO. Confocal microscopy gave more precise measurements for Ma and CCM groups. The optical characteristics of the surface should be considered before choosing the examination method.
Low-cost cryo-light microscopy stage fabrication for correlated light/electron microscopy.
Carlson, David B; Evans, James E
2011-06-05
The coupling of cryo-light microscopy (cryo-LM) and cryo-electron microscopy (cryo-EM) poses a number of advantages for understanding cellular dynamics and ultrastructure. First, cells can be imaged in a near native environment for both techniques. Second, due to the vitrification process, samples are preserved by rapid physical immobilization rather than slow chemical fixation. Third, imaging the same sample with both cryo-LM and cryo-EM provides correlation of data from a single cell, rather than a comparison of "representative samples". While these benefits are well known from prior studies, the widespread use of correlative cryo-LM and cryo-EM remains limited due to the expense and complexity of buying or building a suitable cryogenic light microscopy stage. Here we demonstrate the assembly, and use of an inexpensive cryogenic stage that can be fabricated in any lab for less than $40 with parts found at local hardware and grocery stores. This cryo-LM stage is designed for use with reflected light microscopes that are fitted with long working distance air objectives. For correlative cryo-LM and cryo-EM studies, we adapt the use of carbon coated standard 3-mm cryo-EM grids as specimen supports. After adsorbing the sample to the grid, previously established protocols for vitrifying the sample and transferring/handling the grid are followed to permit multi-technique imaging. As a result, this setup allows any laboratory with a reflected light microscope to have access to direct correlative imaging of frozen hydrated samples.
Structured Illumination Microscopy for the Investigation of Synaptic Structure and Function.
Hong, Soyon; Wilton, Daniel K; Stevens, Beth; Richardson, Douglas S
2017-01-01
The neuronal synapse is a primary building block of the nervous system to which alterations in structure or function can result in numerous pathologies. Studying its formation and elimination is the key to understanding how brains are wired during development, maintained throughout adulthood plasticity, and disrupted during disease. However, due to its diffraction-limited size, investigations of the synaptic junction at the structural level have primarily relied on labor-intensive electron microscopy or ultra-thin section array tomography. Recent advances in the field of super-resolution light microscopy now allow researchers to image synapses and associated molecules with high-spatial resolution, while taking advantage of the key characteristics of light microscopy, such as easy sample preparation and the ability to detect multiple targets with molecular specificity. One such super-resolution technique, Structured Illumination Microscopy (SIM), has emerged as an attractive method to examine synapse structure and function. SIM requires little change in standard light microscopy sample preparation steps, but results in a twofold improvement in both lateral and axial resolutions compared to widefield microscopy. The following protocol outlines a method for imaging synaptic structures at resolutions capable of resolving the intricacies of these neuronal connections.
Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections
Bruno, D.W.; Nowak, B.; Elliott, D.G.
2006-01-01
The identification of protozoan and metazoan parasites is traditionally carried out using a series of classical keys based upon the morphology of the whole organism. However, in stained tissue sections prepared for light microscopy, taxonomic features will be missing, thus making parasite identification difficult. This work highlights the characteristic features of representative parasites in tissue sections to aid identification. The parasite examples discussed are derived from species affecting finfish, and predominantly include parasites associated with disease or those commonly observed as incidental findings in disease diagnostic cases. Emphasis is on protozoan and small metazoan parasites (such as Myxosporidia) because these are the organisms most likely to be missed or mis-diagnosed during gross examination. Figures are presented in colour to assist biologists and veterinarians who are required to assess host/parasite interactions by light microscopy.
Lattice Light Sheet Microscopy: Imaging Molecules to Embryos at High Spatiotemporal Resolution
Chen, Bi-Chang; Legant, Wesley R.; Wang, Kai; Shao, Lin; Milkie, Daniel E.; Davidson, Michael W.; Janetopoulos, Chris; Wu, Xufeng S.; Hammer, John A.; Liu, Zhe; English, Brian P.; Mimori-Kiyosue, Yuko; Romero, Daniel P.; Ritter, Alex T.; Lippincott-Schwartz, Jennifer; Fritz-Laylin, Lillian; Mullins, R. Dyche; Mitchell, Diana M.; Bembenek, Joshua N.; Reymann, Anne-Cecile; Böhme, Ralph; Grill, Stephan W.; Wang, Jennifer T.; Seydoux, Geraldine; Tulu, U. Serdar; Kiehart, Daniel P.; Betzig, Eric
2015-01-01
Although fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, too small, or occur too rapidly to see clearly with existing tools. We crafted ultra-thin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of volumes, often at sub-second intervals, at the diffraction limit and beyond. We applied this to systems spanning four orders of magnitude in space and time, including the diffusion of single transcription factor molecules in stem cell spheroids, the dynamic instability of mitotic microtubules, the immunological synapse, neutrophil motility in a 3D matrix, and embryogenesis in Caenorhabditis elegans and Drosophila melanogaster. The results provide a visceral reminder of the beauty and complexity of living systems. PMID:25342811
Cytochemical Detection of Peroxisomes in Light and Electron Microscopy with 3,3'-diaminobenzidine.
Fahimi, H Dariush
2017-01-01
Peroxisomes are ubiquitous dynamic and multifunctional organelles that contribute to numerous anabolic and catabolic pathways, being essential for human health and development. Their best known functions include the oxidation of fatty acids and metabolism of hydrogen peroxide with catalase as a marker enzyme. Indeed, historically, it was the cytochemical staining of catalase in many different cells and tissues that revealed the ubiquitous presence of peroxisomes in almost all animal and plant cells. In this chapter, the method for cytochemical staining of catalase with the alkaline 3, 3'-diaminobenzidine (DAB) is described. Since aldehyde fixation is a prerequisite for staining of catalase with DAB, a method for perfusion fixation of rat liver with glutaraldehyde is presented prior to the cytochemical staining method and the subsequent tissue processing for light and electron microscopy.
Near-infrared branding efficiently correlates light and electron microscopy.
Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas
2011-06-05
The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.
Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert
2015-01-01
The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Signal improvement in multiphoton microscopy by reflection with simple mirrors near the sample
NASA Astrophysics Data System (ADS)
Rehberg, Markus; Krombach, Fritz; Pohl, Ulrich; Dietzel, Steffen
2010-03-01
In conventional fluorescence or confocal microscopy, emitted light is generated not only in the focal plane but also above and below. The situation is different in multiphoton-induced fluorescence and multiphoton-induced higher harmonic generation. Here, restriction of signal generation to a single focal point permits that all emitted photons can contribute to image formation if collected, regardless of their path through the specimen. Often, the intensity of the emitted light is rather low in biological specimens. We present a method to significantly increase the fraction of photons collected by an epi (backward) detector by placing a simple mirror, an aluminum-coated coverslip, directly under the sample. Samples investigated include fluorescent test slides, collagen gels, and thin-layered, intact mouse skeletal muscles. Quantitative analysis revealed an intensity increase of second- and third-harmonic generated signal in skeletal muscle of nine- and sevenfold respectively, and of fluorescent signal in test slides of up to twofold. Our approach thus allows significant signal improvement also for situations were a forward detection is impossible, e.g., due to the anatomy of animals in intravital microscopy.
Silver stain for electron microscopy
NASA Technical Reports Server (NTRS)
Corbett, R. L.
1972-01-01
Ammoniacal silver stain used for light microscopy was adapted advantageously for use with very thin biological sections required for electron microscopy. Silver stain can be performed in short time, has more contrast, and is especially useful for low power electron microscopy.
Time-lapse contact microscopy of cell cultures based on non-coherent illumination
NASA Astrophysics Data System (ADS)
Gabriel, Marion; Balle, Dorothée; Bigault, Stéphanie; Pornin, Cyrille; Gétin, Stéphane; Perraut, François; Block, Marc R.; Chatelain, François; Picollet-D'Hahan, Nathalie; Gidrol, Xavier; Haguet, Vincent
2015-10-01
Video microscopy offers outstanding capabilities to investigate the dynamics of biological and pathological mechanisms in optimal culture conditions. Contact imaging is one of the simplest imaging architectures to digitally record images of cells due to the absence of any objective between the sample and the image sensor. However, in the framework of in-line holography, other optical components, e.g., an optical filter or a pinhole, are placed underneath the light source in order to illuminate the cells with a coherent or quasi-coherent incident light. In this study, we demonstrate that contact imaging with an incident light of both limited temporal and spatial coherences can be achieved with sufficiently high quality for most applications in cell biology, including monitoring of cell sedimentation, rolling, adhesion, spreading, proliferation, motility, death and detachment. Patterns of cells were recorded at various distances between 0 and 1000 μm from the pixel array of the image sensors. Cells in suspension, just deposited or at mitosis focalise light into photonic nanojets which can be visualised by contact imaging. Light refraction by cells significantly varies during the adhesion process, the cell cycle and among the cell population in connection with every modification in the tridimensional morphology of a cell.
Whole-animal imaging with high spatio-temporal resolution
NASA Astrophysics Data System (ADS)
Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.
2016-03-01
We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.
Using Light Microscopy to Study Geotropism.
ERIC Educational Resources Information Center
Barclay, Greg Fraser; Clifford, Paul E.
1991-01-01
An activity that uses dandelions to show the phenomenon of geotropism is described. The process of sedimentation, which causes the bending, is observed at moderate magnification under a standard microscope. A list of needed materials, directions for the tissue dissection, and time-lapse photographs of the process are included. (KR)
Mafra, A C; Lanfredi, R M
1998-06-01
This study was undertaken to clarify several aspects of morphological and taxonomic characters of Physaloptera bispiculata Vaz and Pereira, 1935, a parasite of the water rat, Nectomys squamipes. The cephalic structures (including lips, papillae, teeth, amphids, and porous areas) and details of the posterior end of male and female adult worms were examined by scanning electron microscopy, leading to the addition of new taxonomic characters for this species. We consider P. bispiculata a valid species, based on a comparative analysis of the specific characters for P. bispiculata and P. getula Seurat, 1917, including the morphology and morphometry of body structures as well as number and disposition of caudal papillae of the males.
Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition.
Liu, Juanjuan; Kutty, R Govindan; Liu, Zheng
2016-11-29
Hexagonal boron nitrite (h-BN) is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.
Transmission X-ray microscopy for full-field nano-imaging of biomaterials
ANDREWS, JOY C; MEIRER, FLORIAN; LIU, YIJIN; MESTER, ZOLTAN; PIANETTA, PIERO
2010-01-01
Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. These techniques are discussed and compared in light of results from imaging of biological materials including microorganisms, bone and mineralized tissue and plants, with a focus on hard X-ray TXM at ≤ 40 nm resolution. PMID:20734414
Sinusoidal obstruction syndrome (SOS): A light and electron microscopy study in human liver.
Vreuls, C P H; Driessen, A; Olde Damink, S W M; Koek, G H; Duimel, H; van den Broek, M A J; Dejong, C H C; Braet, F; Wisse, E
2016-05-01
Oxaliplatin is an important chemotherapeutic agent, used in the treatment of hepatic colorectal metastases, and known to induce the sinusoidal obstruction syndrome (SOS). Pathophysiological knowledge concerning SOS is based on a rat model. Therefore, the aim was to perform a comprehensive study of the features of human SOS, using both light microscopy (LM) and electron microscopy (EM). Included were all patients of whom wedge liver biopsies were collected during a partial hepatectomy for colorectal liver metastases, in a 4-year period. The wedge biopsy were perfusion fixated and processed for LM and EM. The SOS lesions were selected by LM and details were studied using EM. Material was available of 30 patients, of whom 28 patients received neo-adjuvant oxaliplatin. Eighteen (64%) of the 28 patients showed SOS lesions, based on microscopy. The lesions consisted of sinusoidal endothelial cell detachment from the space of Disse on EM. In the enlarged space of Disse a variable amount of erythrocytes were located. Sinusoidal endothelial cell detachment was present in human SOS, accompanied by enlargement of the space of Disse and erythrocytes in this area. These findings, originally described in a rat model, were now for the first time confirmed in human livers under clinically relevant settings. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Empirical Foundations of Telepathology: Evidence of Feasibility and Intermediate Effects
Krupinski, Elizabeth A.; Weinstein, Ronald S.; Dunn, Matthew R.; Bashshur, Noura
2017-01-01
Abstract Introduction: Telepathology evolved from video microscopy (i.e., “television microscopy”) research in the early 1950s to video microscopy used in basic research in the biological sciences to a basic diagnostic tool in telemedicine clinical applications. Its genesis can be traced to pioneering feasibility studies regarding the importance of color and other image-based parameters for rendering diagnoses and a series of studies assessing concordance of virtual slide and light microscopy diagnoses. This article documents the empirical foundations of telepathology. Methods: A selective review of the research literature during the past decade (2005–2016) was conducted using robust research design and adequate sample size as criteria for inclusion. Conclusions: The evidence regarding feasibility/acceptance of telepathology and related information technology applications has been well documented for several decades. The majority of evidentiary studies focused on intermediate outcomes, as indicated by comparability between telepathology and conventional light microscopy. A consistent trend of concordance between the two modalities was observed in terms of diagnostic accuracy and reliability. Additional benefits include use of telepathology and whole slide imaging for teaching, research, and outreach to resource-limited countries. Challenges still exist, however, in terms of use of telepathology as an effective diagnostic modality in clinical practice. PMID:28170313
Microwave Processing of Crowns from Winter Cereals for Light Microscopy.
USDA-ARS?s Scientific Manuscript database
Microwave processing of tissue considerably shortens the time it takes to prepare samples for light and electron microscopy. However, plant tissues from different species and different regions of the plant respond differently making it impossible to use a single protocol for all plant tissue. The ...
Orbital angular momentum light in microscopy
2017-01-01
Light with a helical phase has had an impact on optical imaging, pushing the limits of resolution or sensitivity. Here, special emphasis will be given to classical light microscopy of phase samples and to Fourier filtering techniques with a helical phase profile, such as the spiral phase contrast technique in its many variants and areas of application. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069768
Focus on membrane differentiation and membrane domains in the prokaryotic cell.
Boekema, Egbert J; Scheffers, Dirk-Jan; van Bezouwen, Laura S; Bolhuis, Henk; Folea, I Mihaela
2013-01-01
A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different cellular processes. Typical membrane domains are found in bacteria where a specific membrane protein is abundantly expressed. Lipid rafts form another example. Despite the rareness of conventional organelles as found in eukaryotes, some bacteria are known to have an intricate internal cell membrane organization. Membrane proliferation can be divided into curvature and invaginations which can lead to internal compartmentalization. This study discusses some of the clearest examples of bacteria with such domains and internal membranes. The need for membrane specialization is highest among the heterogeneous group of bacteria which harvest light energy, such as photosynthetic bacteria and halophilic archaea. Most of the highly specialized membranes and domains, such as the purple membrane, chromatophore and chlorosome, are found in these autotrophic organisms. Otherwise the need for membrane differentiation is lower and variable, except for those structures involved in cell division. Microscopy techniques have given essential insight into bacterial membrane morphology. As microscopy will further contribute to the unraveling of membrane organization in the years to come, past and present technology in electron microscopy and light microscopy is discussed. Electron microscopy was the first to unravel bacterial morphology because it can directly visualize membranes with inserted proteins, which no other technique can do. Electron microscopy techniques developed in the 1950s and perfected in the following decades involve the thin sectioning and freeze fractioning of cells. Several studies from the golden age of these techniques show amazing examples of cell membrane morphology. More recently, light microscopy in combination with the use of fluorescent dyes has become an attractive technique for protein localization with the natural membrane. However, the resolution problem in light microscopy remains and overinterpretation of observed phenomena is a pitfall. Thus, light microscopy as a stand-alone technique is not sufficient to prove, for instance, the long-range helical distribution of proteins in membrane such as MinD spirals in Bacillus subtilis. Electron tomography is an emerging electron microscopy technique that can provide three-dimensional reconstructions of small, nonchemically fixed bacteria. It will become a useful tool for studying prokaryotic membranes in more detail and is expected to collect information complementary to those of advanced light microscopy. Together, microscopy techniques can meet the challenge of the coming years: to specify membrane structures in more detail and to bring them to the level of specific protein-protein interactions. Copyright © 2013 S. Karger AG, Basel.
Wide-field imaging through scattering media by scattered light fluorescence microscopy
NASA Astrophysics Data System (ADS)
Zhou, Yulan; Li, Xun
2017-08-01
To obtain images through scattering media, scattered light fluorescence (SLF) microscopy that utilizes the optical memory effect has been developed. However, the small field of view (FOV) of SLF microscopy limits its application. In this paper, we have introduced a re-modulation method to achieve wide-field imaging through scattering media by SLF microscopy. In the re-modulation method, to raster scan the focus across the object plane, the incident wavefront is re-modulated via a spatial light modulator (SLM) in the updated phase compensation calculated using the optimized iterative algorithm. Compared with the conventional optical memory effect method, the re-modulation method can greatly increase the FOV of a SLF microscope. With the phase compensation theoretically calculated, the process of updating the phase compensation of a high speed SLM is fast. The re-modulation method does not increase the imaging time. The re-modulation method is, therefore, expected to make SLF microscopy have much wider applications in biology, medicine and physiology.
Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei
2016-08-16
The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.
Tuijtel, Maarten W; Mulder, Aat A; Posthuma, Clara C; van der Hoeven, Barbara; Koster, Abraham J; Bárcena, Montserrat; Faas, Frank G A; Sharp, Thomas H
2017-09-05
Correlative light-electron microscopy (CLEM) combines the high spatial resolution of transmission electron microscopy (TEM) with the capability of fluorescence light microscopy (FLM) to locate rare or transient cellular events within a large field of view. CLEM is therefore a powerful technique to study cellular processes. Aligning images derived from both imaging modalities is a prerequisite to correlate the two microscopy data sets, and poor alignment can limit interpretability of the data. Here, we describe how uranyl acetate, a commonly-used contrast agent for TEM, can be induced to fluoresce brightly at cryogenic temperatures (-195 °C) and imaged by cryoFLM using standard filter sets. This dual-purpose contrast agent can be used as a general tool for CLEM, whereby the equivalent staining allows direct correlation between fluorescence and TEM images. We demonstrate the potential of this approach by performing multi-colour CLEM of cells containing equine arteritis virus proteins tagged with either green- or red-fluorescent protein, and achieve high-precision localization of virus-induced intracellular membrane modifications. Using uranyl acetate as a dual-purpose contrast agent, we achieve an image alignment precision of ~30 nm, twice as accurate as when using fiducial beads, which will be essential for combining TEM with the evolving field of super-resolution light microscopy.
FIR Light Microscopy Module Set Up
2009-11-09
ISS021-E-022460 (9 Nov. 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 21 flight engineer, installs the Light Microscopy Module (LMM) Spindle Bracket Assembly in the Fluids Integrated Rack (FIR) in the Destiny laboratory of the International Space Station. NASA astronaut Nicole Stott (out of frame), flight engineer, assisted Thirsk.
FIR Light Microscopy Module Set Up
2009-11-09
ISS021-E-022459 (9 Nov. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, installs the Light Microscopy Module (LMM) Spindle Bracket Assembly in the Fluids Integrated Rack (FIR) in the Destiny laboratory of the International Space Station. Canadian Space Agency astronaut Robert Thirsk (out of frame) assisted Stott.
Diffuse light-sheet microscopy for stripe-free calcium imaging of neural populations.
Taylor, Michael A; Vanwalleghem, Gilles C; Favre-Bulle, Itia A; Scott, Ethan K
2018-06-19
Light-sheet microscopy is used extensively in developmental biology and neuroscience. One limitation of this approach is that absorption and scattering produces shadows in the illuminating light sheet, resulting in stripe artifacts. Here, we introduce diffuse light-sheet microscopes that use a line diffuser to randomize the light propagation within the image plane, allowing the light sheets to reform after obstacles. We incorporate diffuse light sheets in two existing configurations: selective plane illumination microscopy (SPIM) in which the sample is illuminated with a static sheet of light, and digitally scanned light sheet (DSLS) in which a thin Gaussian beam is scanned across the image plane during each acquisition. We compare diffuse light-sheet microscopes to their conventional counterparts for calcium imaging of neural activity in larval zebrafish. We show that stripe artifacts can cast deep shadows that conceal some neurons, and that the stripes can flicker, producing spurious signals that could be interpreted as biological activity. Diffuse light sheets mitigate these problems, illuminating the blind spots produced by stripes and removing artifacts produced by the stripes' movements. The upgrade to diffuse light sheets is simple and inexpensive, especially in the case of DSLS, where it requires the addition of one optical element. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Biological Bulletin Virtual Symposium 2016: Cellular Imaging in the Biological Sciences
Tani, Tomomi; Shribak, Michael; Oldenbourg, Rudolf
2017-01-01
In 1948, Shinya Inoué arrived in the United States for graduate studies at Princeton. A year later he came to Woods Hole, starting a long tradition of summer research at MBL, which quickly became Inoué’s scientific home. Primed by his Japanese mentor Katsuma Dan, Inoué followed Dan’s mantra to work with healthy living cells, on a fundamental problem (mitosis), with a unique tool set that he refined for precise and quantitative observations (polarized light microscopy), and a fresh and brilliant mind that was unafraid of challenging current dogma. Building on this potent combination, Inoué contributed landmark observations and concepts in cell biology, including the notion of dynamic fine structures inside living cells in which molecular assemblies such as mitotic spindle fibers exist in a delicate equilibrium with their molecular building blocks suspended in the cytoplasm. In the late 1970s and 80s, Inoué and others at the MBL were instrumental in conceiving of video microscopy, a groundbreaking technique that married light microscopy and electronic imaging and ushered in a revolution in how we know and what we know about living cells and the molecular mechanisms of life. This article recounts some of Inoué’s accomplishments and how his legacy has shaped current activities in polarized light imaging at the MBL. PMID:27638697
Hyperspectral stimulated emission depletion microscopy and methods of use thereof
Timlin, Jerilyn A; Aaron, Jesse S
2014-04-01
A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").
The EIGER detector for low-energy electron microscopy and photoemission electron microscopy.
Tinti, G; Marchetto, H; Vaz, C A F; Kleibert, A; Andrä, M; Barten, R; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Franz, T; Fröjdh, E; Greiffenberg, D; Lopez-Cuenca, C; Mezza, D; Mozzanica, A; Nolting, F; Ramilli, M; Redford, S; Ruat, M; Ruder, Ch; Schädler, L; Schmidt, Th; Schmitt, B; Schütz, F; Shi, X; Thattil, D; Vetter, S; Zhang, J
2017-09-01
EIGER is a single-photon-counting hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland. It is designed for applications at synchrotron light sources with photon energies above 5 keV. Features of EIGER include a small pixel size (75 µm × 75 µm), a high frame rate (up to 23 kHz), a small dead-time between frames (down to 3 µs) and a dynamic range up to 32-bit. In this article, the use of EIGER as a detector for electrons in low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) is reported. It is demonstrated that, with only a minimal modification to the sensitive part of the detector, EIGER is able to detect electrons emitted or reflected by the sample and accelerated to 8-20 keV. The imaging capabilities are shown to be superior to the standard microchannel plate detector for these types of applications. This is due to the much higher signal-to-noise ratio, better homogeneity and improved dynamic range. In addition, the operation of the EIGER detector is not affected by radiation damage from electrons in the present energy range and guarantees more stable performance over time. To benchmark the detector capabilities, LEEM experiments are performed on selected surfaces and the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm are detected using the PEEM endstation at the Surface/Interface Microscopy (SIM) beamline of the Swiss Light Source.
Hyperspectral interferometry: Sizing microscale surface features in the pine bark beetle.
Beach, James M; Uertz, James L; Eckhardt, Lori G
2015-10-01
A new method of interferometry employing a Fabry-Perot etalon model was used to locate and size microscale features on the surface of the pine bark beetle. Oscillations in the reflected light spectrum, caused by self-interference of light reflecting from surfaces of foreleg setae and spores on the elytrum, were recorded using white light hyperspectral microscopy. By making the assumption that pairs of reflecting surfaces produce an etalon effect, the distance between surfaces could be determined from the oscillation frequency. Low frequencies of less than 0.08 nm(-1) were observed in the spectrum below 700 nm while higher frequencies generally occupied wavelengths from 600 to 850 nm. In many cases, two frequencies appeared separately or in combination across the spectrum. The etalon model gave a mean spore size of 3.04 ± 1.27 μm and a seta diameter of 5.44 ± 2.88 μm. The tapering near the setae tip was detected as a lowering of frequency. Spatial fringes were observed together with spectral oscillations from surfaces on the exoskeleton at higher magnification. These signals were consistent with embedded multi-layer reflecting surfaces. Possible applications for hyperspectral interferometry include medical imaging, detection of spore loads in insects and other fungal carriers, wafer surface and subsurface inspection, nanoscale materials, biological surface analysis, and spectroscopy calibration. This is, to our knowledge, the first report of oscillations directly observed by microscopy in the reflected light spectra from Coleoptera, and the first demonstration of broadband hyperspectral interferometry using microscopy that does not employ an internal interferometer. © 2015 Wiley Periodicals, Inc.
An introduction to optical super-resolution microscopy for the adventurous biologist
NASA Astrophysics Data System (ADS)
Vangindertael, J.; Camacho, R.; Sempels, W.; Mizuno, H.; Dedecker, P.; Janssen, K. P. F.
2018-04-01
Ever since the inception of light microscopy, the laws of physics have seemingly thwarted every attempt to visualize the processes of life at its most fundamental, sub-cellular, level. The diffraction limit has restricted our view to length scales well above 250 nm and in doing so, severely compromised our ability to gain true insights into many biological systems. Fortunately, continuous advancements in optics, electronics and mathematics have since provided the means to once again make physics work to our advantage. Even though some of the fundamental concepts enabling super-resolution light microscopy have been known for quite some time, practically feasible implementations have long remained elusive. It should therefore not come as a surprise that the 2014 Nobel Prize in Chemistry was awarded to the scientists who, each in their own way, contributed to transforming super-resolution microscopy from a technological tour de force to a staple of the biologist’s toolkit. By overcoming the diffraction barrier, light microscopy could once again be established as an indispensable tool in an age where the importance of understanding life at the molecular level cannot be overstated. This review strives to provide the aspiring life science researcher with an introduction to optical microscopy, starting from the fundamental concepts governing compound and fluorescent confocal microscopy to the current state-of-the-art of super-resolution microscopy techniques and their applications.
Castejon, O J; Castejon, H V; Diaz, M; Castellano, A
2001-10-01
Cortical biopsies of 11 patients with traumatic brain oedema were consecutively studied by light microscopy (LM) using thick plastic sections, scanning-transmission electron microscopy ((S)TEM) using semithin plastic sections and transmission electron microscopy (TEM) using ultrathin sections. Samples were glutaraldehyde-osmium fixed and embedded in Araldite or Epon. Thick sections were stained with toluidine-blue for light microscopy. Semithin sections were examined unstained and uncoated for (S)TEM. Ultrathin sections were stained with uranyl and lead. Perivascular haemorrhages and perivascular extravasation of proteinaceous oedema fluid were observed in both moderate and severe oedema. Ischaemic pyramidal and non-pyramidal nerve cells appeared shrunken, electron dense and with enlargement of intracytoplasmic membrane compartment. Notably swollen astrocytes were observed in all samples examined. Glycogen-rich and glycogen-depleted astrocytes were identified in anoxic-ischaemic regions. Dark and hydropic satellite, interfascicular and perivascular oligodendrocytes were also found. The status spongiosus of severely oedematous brain parenchyma observed by LM and (S)TEM was correlated with the enlarged extracellular space and disrupted neuropil observed by TEM. The (S)TEM is recommended as a suitable technique for studying pathological processes in the central nervous system and as an informative adjunct to LM and TEM.
NASA Astrophysics Data System (ADS)
Relaix, Sabrina; Bourgerette, Christian; Mitov, Michel
2006-12-01
It is shown that the natural ultraviolet light absorbing properties of the liquid crystal constituent during the photoinduced elaboration of a liquid crystalline gel induce the broadening of the reflection bandwidth. The polymer component is then included in a resin by preserving its spatial distribution, and transmission electron microscopy investigations of cross sections show the existence of a structure gradient, which is at the origin of the broadening phenomenon. Such reflectors may be of interest for reflective polarizer-free displays or smart windows for the control of solar light for which a broadband reflection is required.
USDA-ARS?s Scientific Manuscript database
The fat and protein in milk may be examined by scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy, and any bacteria present may be viewed by light microscopy. The fat exists as globules, the bulk of the protein is in the form of casein micelles, a...
Faster and less phototoxic 3D fluorescence microscopy using a versatile compressed sensing scheme
Woringer, Maxime; Darzacq, Xavier; Zimmer, Christophe
2017-01-01
Three-dimensional fluorescence microscopy based on Nyquist sampling of focal planes faces harsh trade-offs between acquisition time, light exposure, and signal-to-noise. We propose a 3D compressed sensing approach that uses temporal modulation of the excitation intensity during axial stage sweeping and can be adapted to fluorescence microscopes without hardware modification. We describe implementations on a lattice light sheet microscope and an epifluorescence microscope, and show that images of beads and biological samples can be reconstructed with a 5-10 fold reduction of light exposure and acquisition time. Our scheme opens a new door towards faster and less damaging 3D fluorescence microscopy. PMID:28788909
Fu, Qinyi; Martin, Benjamin L.; Matus, David Q.; Gao, Liang
2016-01-01
Despite the progress made in selective plane illumination microscopy, high-resolution 3D live imaging of multicellular specimens remains challenging. Tiling light-sheet selective plane illumination microscopy (TLS-SPIM) with real-time light-sheet optimization was developed to respond to the challenge. It improves the 3D imaging ability of SPIM in resolving complex structures and optimizes SPIM live imaging performance by using a real-time adjustable tiling light sheet and creating a flexible compromise between spatial and temporal resolution. We demonstrate the 3D live imaging ability of TLS-SPIM by imaging cellular and subcellular behaviours in live C. elegans and zebrafish embryos, and show how TLS-SPIM can facilitate cell biology research in multicellular specimens by studying left-right symmetry breaking behaviour of C. elegans embryos. PMID:27004937
Superresolution microscopy for microbiology
Coltharp, Carla; Xiao, Jie
2014-01-01
Summary This review provides a practical introduction to superresolution microscopy from the perspective of microbiological research. Because of the small sizes of bacterial cells, superresolution methods are particularly powerful and suitable for revealing details of cellular structures that are not resolvable under conventional fluorescence light microscopy. Here we describe the methodological concepts behind three major categories of super-resolution light microscopy: photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) and stimulated emission-depletion (STED) microscopy. We then present recent applications of each of these techniques to microbial systems, which have revealed novel conformations of cellular structures and described new properties of in vivo protein function and interactions. Finally, we discuss the unique issues related to implementing each of these superresolution techniques with bacterial specimens and suggest avenues for future development. The goal of this review is to provide the necessary technical background for interested microbiologists to choose the appropriate super-resolution method for their biological systems, and to introduce the practical considerations required for designing and analysing superresolution imaging experiments. PMID:22947061
Visualization of early influenza A virus trafficking in human dendritic cells using STED microscopy.
Baharom, Faezzah; Thomas, Oliver S; Lepzien, Rico; Mellman, Ira; Chalouni, Cécile; Smed-Sörensen, Anna
2017-01-01
Influenza A viruses (IAV) primarily target respiratory epithelial cells, but can also replicate in immune cells, including human dendritic cells (DCs). Super-resolution microscopy provides a novel method of visualizing viral trafficking by overcoming the resolution limit imposed by conventional light microscopy, without the laborious sample preparation of electron microscopy. Using three-color Stimulated Emission Depletion (STED) microscopy, we visualized input IAV nucleoprotein (NP), early and late endosomal compartments (EEA1 and LAMP1 respectively), and HLA-DR (DC membrane/cytosol) by immunofluorescence in human DCs. Surface bound IAV were internalized within 5 min of infection. The association of virus particles with early endosomes peaked at 5 min when 50% of NP+ signals were also EEA1+. Peak association with late endosomes occurred at 15 min when 60% of NP+ signals were LAMP1+. At 30 min of infection, the majority of NP signals were in the nucleus. Our findings illustrate that early IAV trafficking in human DCs proceeds via the classical endocytic pathway.
Engelmann, Péter; Hayashi, Yuya; Bodó, Kornélia; Ernszt, Dávid; Somogyi, Ildikó; Steib, Anita; Orbán, József; Pollák, Edit; Nyitrai, Miklós; Németh, Péter; Molnár, László
2016-12-01
Flow cytometry is a common approach to study invertebrate immune cells including earthworm coelomocytes. However, the link between light-scatter- and microscopy-based phenotyping remains obscured. Here we show, by means of light scatter-based cell sorting, both subpopulations (amoebocytes and eleocytes) can be physically isolated with good sort efficiency and purity confirmed by downstream morphological and cytochemical applications. Immunocytochemical analysis using anti-EFCC monoclonal antibodies combined with phalloidin staining has revealed antigenically distinct, sorted subsets. Screening of lectin binding capacity indicated wheat germ agglutinin (WGA) as the strongest reactor to amoebocytes. This is further evidenced by WGA inhibition assays that suggest high abundance of N-acetyl-d-glucosamine in amoebocytes. Post-sort phagocytosis assays confirmed the functional differences between amoebocytes and eleocytes, with the former being in favor of bacterial engulfment. This study has proved successful in linking flow cytometry and microscopy analysis and provides further experimental evidence of phenotypic and functional heterogeneity in earthworm coelomocyte subsets. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Meyer, William; Foster, William M.; Motil, Brian J.; Sicker, Ronald; Abbott-Hearn, Amber; Chao, David; Chiaramonte, Fran; Atherton, Arthur; Beltram, Alexander; Bodzioney, Christopher M.;
2016-01-01
The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2016, if all goes as planned, three experiments will be completed: [1] Advanced Colloids Experiments with Heated base-2 (ACE-H2) and [2] Advanced Colloids Experiments with Temperature control (ACE-T1). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al. and [2] from Chungnam National University, Daejeon, S. Korea: Chang-Soo Lee, et al.
Light Microscopy Module: International Space Station Premier Automated Microscope
NASA Technical Reports Server (NTRS)
Sicker, Ronald J.; Foster, William M.; Motil, Brian J.; Meyer, William V.; Chiaramonte, Francis P.; Abbott-Hearn, Amber; Atherton, Arthur; Beltram, Alexander; Bodzioney, Christopher; Brinkman, John;
2016-01-01
The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began hardware operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2016, if all goes as planned, three experiments will be completed: [1] Advanced Colloids Experiments with Heated base-2 (ACE-H2) and [2] Advanced Colloids Experiments with Temperature control (ACE-T1). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al. and [2] from Chungnam National University, Daejeon, S. Korea: Chang-Soo Lee, et al.
NASA Astrophysics Data System (ADS)
Hamers, M. F.; Pennock, G. M.; Drury, M. R.
2017-04-01
The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.
Optofluidic time-stretch quantitative phase microscopy.
Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke
2018-03-01
Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.
Optical Diagnostics in Medicine
NASA Astrophysics Data System (ADS)
Iftimia, Nicusor
2003-03-01
Light has a unique potential for non-invasive tissue diagnosis. The relatively short wavelength of light allows imaging of tissue at the resolution of histopathology. While strong multiple scattering of light in tissue makes attainment of this resolution difficult for thick tissues, most pathology emanates from epithelial surfaces. Therefore, high-resolution diagnosis of many important diseases may be achieved by transmitting light to the surface of interest. The recent fiber-optic implementation of technologies that reject multiple scattering, such as confocal microscopy and optical low coherence interferometry, have brought us one step closer to realizing non-invasive imaging of architectural and cellular features of tissue. Optical coherence tomography (OCT) can produce high-resolution cross-sectional images of biological structures. Clinical OCT studies conducted in the gastrointestinal tract and cardiovascular system have shown that OCT is capable of providing images of the architectural (> 20 µm) microanatomy of a variety of epithelial tissues, including the layered structure of squamous epithelium and arterial vessels. Fine Needle Aspiration- Low Coherence Interferometry (FNA-LCI) is another optical diagnostics technique, which is a suitable solution to increase the effectiveness of the FNA procedures. LCI is capable of measuring depth resolved (axial, z) tissue structure, birefringence, flow (Doppler shift), and spectra at a resolution of several microns. Since LCI systems are fiber-optic based, LCI probes may easily fit within the bore of a fine gauge needle, allowing diagnostic information to be obtained directly from the FNA biopsy site. Fiber optic spectrally encoded confocal microscopy (SECM) is a new confocal microscopy method, which eliminates the need for rapid beam scanning within the optical probe. This advance enables confocal microscopy to be performed through small diameter probes and will allow assessment of internal human tissues in vivo at the cellular level. A detailed description of several fiber optics based systems for early diseases diagnosis, as well as preliminary clinic results, will be presented.
NASA Astrophysics Data System (ADS)
Bruns, Thomas; Schickinger, Sarah; Wittig, Rainer; Schneckenburger, Herbert
2012-10-01
A device for selective plane illumination microscopy (SPIM) of three-dimensional multicellular spheroids, in culture medium under stationary or microfluidic conditions, is described. Cell spheroids are located in a micro-capillary and a light sheet, for illumination, is generated in an optical setup adapted to a conventional inverse microscope. Layers of the sample, of about 10 μm or less in diameter, are, thus, illuminated selectively and imaged by high resolution fluorescence microscopy. SPIM is operated at low light exposure even if a larger number of layers is imaged and is easily combined with laser scanning microscopy. Chinese hamster ovary cells expressing a membrane-associated green fluorescent protein are used for preliminary tests, and the uptake of the fluorescent marker, acridine orange via a microfluidic system, is visualized to demonstrate its potential in cancer research such as for the detection of cellular responses to anticancer drugs.
Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy.
Gualda, Emilio J; Simão, Daniel; Pinto, Catarina; Alves, Paula M; Brito, Catarina
2014-01-01
The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment.
Impact of New Camera Technologies on Discoveries in Cell Biology.
Stuurman, Nico; Vale, Ronald D
2016-08-01
New technologies can make previously invisible phenomena visible. Nowhere is this more obvious than in the field of light microscopy. Beginning with the observation of "animalcules" by Antonie van Leeuwenhoek, when he figured out how to achieve high magnification by shaping lenses, microscopy has advanced to this day by a continued march of discoveries driven by technical innovations. Recent advances in single-molecule-based technologies have achieved unprecedented resolution, and were the basis of the Nobel prize in Chemistry in 2014. In this article, we focus on developments in camera technologies and associated image processing that have been a major driver of technical innovations in light microscopy. We describe five types of developments in camera technology: video-based analog contrast enhancement, charge-coupled devices (CCDs), intensified sensors, electron multiplying gain, and scientific complementary metal-oxide-semiconductor cameras, which, together, have had major impacts in light microscopy. © 2016 Marine Biological Laboratory.
Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy
Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina
2014-01-01
The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607
USDA-ARS?s Scientific Manuscript database
Trachymolgus purpureus Fisher & Dowling sp. nov. is described from the Ozark highlands of North America. A diversity of imaging techniques are used to illustrate the species including field emission low-temperature scanning electron microscopy (FE-LTSEM), stereomicrography, compound light micrograph...
Titanium Dioxide (Ti02) and Silver (Ag) nanoparticles are used in many domestic applications, including sunscreens and paints. Evaluation of the potential hazard of manmade nanomaterials has been hampered by a limited ability to detect and measure nanoparticles in cells. In the p...
FIR Light Microscopy Module Set Up
2009-11-09
ISS021-E-022457 (9 Nov. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, uses a communication system while installing the Light Microscopy Module (LMM) Spindle Bracket Assembly in the Fluids Integrated Rack (FIR) in the Destiny laboratory of the International Space Station. Canadian Space Agency astronaut Robert Thirsk (out of frame) assisted Stott.
Dhaliwal, Jasmeet S; Kaufman, Stephen C
2009-01-01
The purpose of this study was to evaluate morphological changes induced by corneal collagen cross-linking in a human ex vivo cornea, using confocal, electron, and light microscopy. The central epithelium was partially removed from ex vivo human corneal buttons. Riboflavin 0.1% solution was applied before ultraviolet A light treatment and then for every 2 minutes for 30 minutes while the corneas were exposed to ultraviolet A light at a wavelength of 370 nm and intensity of 3 mW/cm(2). Each cornea was evaluated using confocal, electron, and light microscopy. Confocal microscopy demonstrated normal-appearing corneas on their initial pretreatment examination, with reduced stromal detail. After treatment, a superficial layer of highly reflective spherical structures (4-10 microm) was observed. Many of these hyperreflective structures appeared up to a depth of 300 microm. The remainder of the corneal stroma and endothelium appeared normal. Electron microscopy showed keratocyte apoptotic changes to a depth of 300 microm. No observable pathologic changes were seen on histology. Based on clinical studies, corneal cross-linking is a promising treatment that appears to be safe and to halt ectatic corneal disease progression. Initial European studies used animal models to extrapolate human protocols. In conjunction with clinical studies, we believe that human ex vivo corneal studies provide a means to evaluate the structural and morphological changes associated with this procedure, within human corneas, in a manner that cannot be accomplished in vivo.
eduSPIM: Light Sheet Microscopy in the Museum.
Jahr, Wiebke; Schmid, Benjamin; Weber, Michael; Huisken, Jan
2016-01-01
Light sheet microscopy (or selective plane illumination microscopy) is an important imaging technique in the life sciences. At the same time, this technique is also ideally suited for community outreach projects, because it produces visually appealing, highly dynamic images of living organisms and its working principle can be understood with basic optics knowledge. Still, the underlying concepts are widely unknown to the non-scientific public. On the occasion of the UNESCO International Year of Light, a technical museum in Dresden, Germany, launched a special, interactive exhibition. We built a fully functional, educational selective plane illumination microscope (eduSPIM) to demonstrate how developments in microscopy promote discoveries in biology. To maximize educational impact, we radically reduced a standard light sheet microscope to its essential components without compromising functionality and incorporated stringent safety concepts beyond those needed in the lab. Our eduSPIM system features one illumination and one detection path and a sealed sample chamber. We image fixed zebrafish embryos with fluorescent vasculature, because the structure is meaningful to laymen and visualises the optical principles of light sheet microscopy. Via a simplified interface, visitors acquire fluorescence and transmission data simultaneously. The universal concepts presented here may also apply to other scientific approaches that are communicated to laymen in interactive settings. The specific eduSPIM design is adapted easily for various outreach and teaching activities. eduSPIM may even prove useful for labs needing a simple SPIM. A detailed parts list and schematics to rebuild eduSPIM are provided.
2012-01-01
Background Mollusc shells are commonly investigated using high-resolution imaging techniques based on cryo-fixation. Less detailed information is available regarding the light-optical properties. Sea shells of Haliotis pulcherina were embedded for polishing in defined orientations in order to investigate the interface between prismatic calcite and nacreous aragonite by standard materialographic methods. A polished thin section of the interface was prepared with a defined thickness of 60 μm for quantitative birefringence analysis using polarized light and LC-PolScope microscopy. Scanning electron microscopy images were obtained for comparison. In order to study structural-mechanical relationships, nanoindentation experiments were performed. Results Incident light microscopy revealed a super-structure in semi-transparent regions of the polished cross-section under a defined angle. This super-structure is not visible in transmitted birefringence analysis due to the blurred polarization of small nacre platelets and numerous organic interfaces. The relative orientation and homogeneity of calcite prisms was directly identified, some of them with their optical axes exactly normal to the imaging plane. Co-oriented "prism colonies" were identified by polarized light analyses. The nacreous super-structure was also visualized by secondary electron imaging under defined angles. The domains of the super-structure were interpreted to consist of crystallographically aligned platelet stacks. Nanoindentation experiments showed that mechanical properties changed with the same periodicity as the domain size. Conclusions In this study, we have demonstrated that insights into the growth mechanisms of nacre can be obtained by conventional light-optical methods. For example, we observed super-structures formed by co-oriented nacre platelets as previously identified using X-ray Photo-electron Emission Microscopy (X-PEEM) [Gilbert et al., Journal of the American Chemical Society 2008, 130:17519–17527]. Polarized optical microscopy revealed unprecedented super-structures in the calcitic shell part. This bears, in principle, the potential for in vivo studies, which might be useful for investigating the growth modes of nacre and other shell types. PMID:22967319
1981-01-01
Video cameras with contrast and black level controls can yield polarized light and differential interference contrast microscope images with unprecedented image quality, resolution, and recording speed. The theoretical basis and practical aspects of video polarization and differential interference contrast microscopy are discussed and several applications in cell biology are illustrated. These include: birefringence of cortical structures and beating cilia in Stentor, birefringence of rotating flagella on a single bacterium, growth and morphogenesis of echinoderm skeletal spicules in culture, ciliary and electrical activity in a balancing organ of a nudibranch snail, and acrosomal reaction in activated sperm. PMID:6788777
Holographic microscopy for in situ studies of microorganism motility
NASA Astrophysics Data System (ADS)
Nadeau, J.; Hu, S.; Jericho, S.; Lindensmith, C.
2011-12-01
Robust technologies for the detection and identification of microorganisms at low concentrations in complex liquid media are needed for numerous applications: environmental and medical microbiology, food safety, and for the search for microbial life elsewhere in the Solar System. The best current method for microbial enumeration is specific labeling with fluorescent dyes followed by high-resolution light microscopy. However, fluorescent techniques are difficult to use in situ in extreme environments (such as the Arctic and Antarctic or the open ocean) due to the fragility of the instruments and their high power demands. In addition, light microscopic techniques rarely provide insight into microbial motility behaviors. Tracking single cells would provide important insight into the physics of micron-scale motility as well as into key microbial phenomena such as surface attachment and invasiveness. An alternative to traditional light microscopy that is attracting increasing attention is holographic microscopy. Holographic microscopy works by illuminating the object of interest with coherent light from a laser. The light reflected from (or transmitted through) the object is then combined with a coherent reference beam to create an interference pattern that contains the phase and intensity information required to reconstruct a three dimensional image of the object. The interference pattern is recorded on a high resolution detector and can be used to computationally reconstruct a 3D image of the object. The lateral resolution of the image depends upon the wavelength of the light used, the laser power, camera quality, and external noise sources (vibration, stray light, and so forth). Although the principle is simple, technological barriers have prevented wider use of holographic microscopy. Laser sources and CCD cameras with the appropriate properties have only very recently become affordable. In addition, holographic microscopy leads to large data sets that are computationally intensive to reconstruct images from, so the technology to store and process large amounts of data are required. We have successfully deployed a digital in-line holographic microscope in lakes of the Canadian High Arctic and the open ocean. We present characteristic data sets from these experiments, as well as discussing how data acquisition and instrumentation can be improved. A design for a new type of autonomous, submersible holographic microscope incorporating an off-axis reference beam is presented, and future plans for controlled microbe-polymer studies are detailed.
Transmission X-ray microscopy for full-field nano imaging of biomaterials.
Andrews, Joy C; Meirer, Florian; Liu, Yijin; Mester, Zoltan; Pianetta, Piero
2011-07-01
Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure imaging. These techniques are discussed and compared in light of results from the imaging of biological materials including microorganisms, bone and mineralized tissue, and plants, with a focus on hard X-ray TXM at ≤ 40-nm resolution. Copyright © 2010 Wiley-Liss, Inc.
Feleke, Daniel Getacher; Tarko, Shambel; Hadush, Haftom
2017-06-06
Rapid diagnostic tests (RDTs) are alternative methods for microscopy in the diagnosis of malaria in resource limited settings. Among commercially available RDTs, CareStart™ Malaria test was found to show reliable results. This study evaluated the performance of CareStart™ Malaria Combo test kit in Northwestern Tigray in Ethiopia. Blood samples were collected from 320 malaria-suspected patients at Mayani Hospital in Northwestern Tigray from December 2015 to March 2016. All blood samples were examined using both light microscopy and CareStart™ Malaria HRP2/pLDH Combo Test kit. Statistical analyses were performed using SPSS version 20. The overall parasite positivity using light microscopy and CareStart™ RDT was 41 (12.8%) and 43 (13.4%), respectively. The sensitivity and specificity of CareStart™ RDT, regardless of species, were found to be 95.4 and 99.3%, respectively. Furthermore, the sensitivity of CareStart™ RDT for Plasmodium falciparum or mixed infection and non-falciparum malaria parasites was 94.4 and 85.0%, respectively while the specificity was found to be 98.9 and 99.7%, respectively. The agreement between the two test methods was "excellent" with a kappa value of 0.92. CareStart™ RDT has very good sensitivity and specificity for malaria diagnosis. The test kit also has an excellent agreement with light microscopy. It is therefore useful in resource-limited areas where microscopy is not available.
Accessible Microscopy Workstation for Students and Scientists with Mobility Impairments
ERIC Educational Resources Information Center
Duerstock, Bradley S.
2006-01-01
An integrated accessible microscopy workstation was designed and developed to allow persons with mobility impairments to control all aspects of light microscopy with minimal human assistance. This system, named AccessScope, is capable of performing brightfield and fluorescence microscopy, image analysis, and tissue morphometry requisite for…
Effects of microgravity on muscle and cerebral cortex: a suggested interaction
NASA Astrophysics Data System (ADS)
D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.; Corcoran, M. L.
The ``slow'' antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension (``simulated'' microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.
Light Microscopy Module Imaging Tested and Demonstrated
NASA Technical Reports Server (NTRS)
Gati, Frank
2004-01-01
The Fluids Integrated Rack (FIR), a facility-class payload, and the Light Microscopy Module (LMM), a subrack payload, are integrated research facilities that will fly in the U.S. Laboratory module, Destiny, aboard the International Space Station. Both facilities are being engineered, designed, and developed at the NASA Glenn Research Center by Northrop Grumman Information Technology. The FIR is a modular, multiuser scientific research facility that is one of two racks that make up the Fluids and Combustion Facility (the other being the Combustion Integrated Rack). The FIR has a large volume dedicated for experimental hardware; easily reconfigurable diagnostics, power, and data systems that allow for unique experiment configurations; and customizable software. The FIR will also provide imagers, light sources, power management and control, command and data handling for facility and experiment hardware, and data processing and storage. The first payload in the FIR will be the LMM. The LMM integrated with the FIR is a remotely controllable, automated, on-orbit microscope subrack facility, with key diagnostic capabilities for meeting science requirements--including video microscopy to observe microscopic phenonema and dynamic interactions, interferometry to make thin-film measurements with nanometer resolution, laser tweezers to manipulate micrometer-sized particles, confocal microscopy to provide enhanced three-dimensional visualization of structures, and spectrophotometry to measure the photonic properties of materials. Vibration disturbances were identified early in the LMM development phase as a high risk for contaminating the science microgravity environment. An integrated FIR-LMM test was conducted in Glenn's Acoustics Test Laboratory to assess mechanical sources of vibration and their impact to microscopic imaging. The primary purpose of the test was to characterize the LMM response at the sample location, the x-y stage within the microscope, to vibration emissions from the FIR and LMM support structures.
Garcia-Sucerquia, Jorge
2013-01-01
By engineering the light from a light-emitting diode (LED) the noises present in digital lensless holographic microscopy (DLHM) are reduced. The partially coherent light from an LED is tailored to produce a spherical wavefront with limited coherence time and the spatial coherence needed by DLHM to work. DLHM with this engineered light source is used to image biological samples that cover areas of the order of mm(2). The ratio between the diameter of the area that is almost coherently illuminated to the diameter of the illumination area is utilized as parameter to quantify the performance of the DLHM with the engineered LED light source. Experimental results show that while the noises can be reduced effectively the spatial resolution can be kept in the micrometer range.
A novel fibrous duct structure discovered in the brain meninges by using polarized light microscopy
NASA Astrophysics Data System (ADS)
Nam, Min-Ho; Jung, Sharon Jiyoon; Soh, Kwang-Sup; Lim, Jaekwan; Seo, Eunseok; Lim, Jun; Baek, Miok; Lee, Sang Joon
2016-05-01
We have previously reported the discovery of a novel fibrous structure (NFS) consisting of unidirectionally arranged collagen fibers in the spinal pia mater. Due to its unique structure, it was easily detected using polarized light microscopy. In the current study, we describe the discovery of a similar NFS in the brain meninges of rats by using polarized light microscopy. This NFS is located beneath the superior sagittal sinus. Initially, we systemically analyzed the polarization properties of the NFS. The change in the light intensity of the NFS, with respect to the polarization angle, was eight times greater than that of blood vessels, showing that the collagen fibers are oriented in a particular direction with almost perfect parallelism (0.99). The orientation angle of the polarization ellipse confirmed the orientation of the collagen fibers in the NFS. Histological studies further confirmed that the unidirectionally arranged collagen fibers were responsible for this distinct polarization property. Surprisingly, X-ray microtomography and 3D confocal imaging revealed that the NFS contains within it a duct structure, a putative primo vessel. In conclusion, we report a NFS in the brain meninges, detected by using polarized light microscopy, that provides space for a putative primo vessel, not a blood vessel.
Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles
NASA Astrophysics Data System (ADS)
Kazemzadeh, Farnoud; Wong, Alexander
2016-12-01
Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.
Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles.
Kazemzadeh, Farnoud; Wong, Alexander
2016-12-13
Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm 2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.
NASA Technical Reports Server (NTRS)
Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)
2008-01-01
A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.
Light Microscopy Module (LMM)-Emulator
NASA Technical Reports Server (NTRS)
Levine, Howard G.; Smith, Trent M.; Richards, Stephanie E.
2016-01-01
The Light Microscopy Module (LMM) is a microscope facility developed at Glenn Research Center (GRC) that provides researchers with powerful imaging capability onboard the International Space Station (ISS). LMM has the ability to have its hardware recongured on-orbit to accommodate a wide variety of investigations, with the capability of remotely acquiring and downloading digital images across multiple levels of magnication.
Lightless cataract surgery using a near-infrared operating microscope.
Kim, Bong-Hyun
2006-10-01
To describe the near-infrared (NIR) operating microscopy (NIOM) system using the NIR wavelength as the illumination source and to evaluate the feasibility of this system for lightless cataract surgery. HenAm Kim Eye Center, Haenam-Gun, South Korea. In this noncomparative interventional case series, cataract surgery was performed in 4 patients with bilateral cataract using the NIOM system in 1 eye and conventional microscopy in the fellow eye. The primary components of the system include an optical filter, a stereoscopic camera, head-mounted displays, and a recording system. This system uses invisible NIR (wavelength 850 to 1300 nm) illumination to facilitate cataract surgery without light. The differences between the NIOM system and conventional microscopy during cataract surgery were evaluated. The NIOM system provided excellent 3-dimensional viewing in real time. The image resolution was sufficient while performing all steps of cataract surgery. Immediately postoperatively and at 10 and 30 minutes and 1 hour, the visual acuity was better in the 4 eyes in which the NIOM system was used than in the 4 eyes in which conventional microscopy was used. However, using the NIOM system required good surgical skill. Lightless cataract surgery using the NIOM system seems useful for obtaining good visual acuity immediately postoperatively. The system may also reduce the incidence of light-induced retinal toxicity and the need for mydriatic administration and be a good educational tool.
Light Microscopy of the Hair: A Simple Tool to “Untangle” Hair Disorders
Adya, Keshavmurthy A; Inamadar, Arun C; Palit, Aparna; Shivanna, Ragunatha; Deshmukh, Niranjan S
2011-01-01
Light microscopy of the hair forms an important bedside clinical tool for the diagnosis of various disorders affecting the hair. Hair abnormalities can be seen in the primary diseases affecting the hair or as a secondary involvement of hair in diseases affecting the scalp. Hair abnormalities also form a part of various genodermatoses and syndromes. In this review, we have briefly highlighted the light microscopic appearance of various infectious and non-infectious conditions affecting the hair. PMID:21769242
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanathan, Nathan Muruganathan; Darling, Seth B.
2015-01-01
Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.
Paddock, Stephen W; Eliceiri, Kevin W
2014-01-01
Confocal microscopy is an established light microscopical technique for imaging fluorescently labeled specimens with significant three-dimensional structure. Applications of confocal microscopy in the biomedical sciences include the imaging of the spatial distribution of macromolecules in either fixed or living cells, the automated collection of 3D data, the imaging of multiple labeled specimens and the measurement of physiological events in living cells. The laser scanning confocal microscope continues to be chosen for most routine work although a number of instruments have been developed for more specific applications. Significant improvements have been made to all areas of the confocal approach, not only to the instruments themselves, but also to the protocols of specimen preparation, to the analysis, the display, the reproduction, sharing and management of confocal images using bioinformatics techniques.
Ducic, Tanja; Paunesku, Tatjana; Chen, Si; ...
2016-12-09
The glioblastoma (GBM) is characterized by a short median survival and an almost 100% tumor related mortality. GBM cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores application of X-ray and visible light microscopy to display the elemental and structural images of cells from 3 patient derived GMB samples and an established GMB cell line. Slight differences in elemental concentrations, in actin cytoskeleton organization and cell morphology were noted between all cells types by X-ray fluorescence and full field soft X-ray microscopy, as well as the Structured Illumination Super-resolution Microscope (SIM). Different samplemore » preparation approaches were used to match each imaging technique. While preparation for SIM included cell fixation and staining, intact frozen hydrated cells were used for the trace element imaging by hard X-ray fluorescence and exploration of the structural features by soft X-ray absorption tomography. In conclusion, each technique documented differences between samples with regard to morphology and elemental composition and underscored the importance of use of multiple patient derived samples for detailed GBM study.« less
Digital learning programs - competition for the classical microscope?
Schmidt, Peter
2013-01-01
The development of digital media has been impressive in recent years which is also among the reason for their increasing use in academic teaching. This is especially true for teaching Anatomy and Histology in the first two years in medical and dental curricula. Modern digital technologies allow for efficient, affordable and easily accessible distribution of histological images in high quality. Microscopy depends almost exclusively on such images. Since 20 years numerous digital teaching systems have been developed for this purpose. Respective developments have changed the ways students acquire knowledge and prepare for exams. Teaching staff should adapt lectures, seminars and labs accordingly. As a first step, a collection of high resolution digital microscopic slides was made available for students at the Friedrich-Schiller-University in Jena. The aim of the present study was to evaluate the importance of conventional light microscopy and related technologies in current and future medical and dental education aswell. A survey was done among 172 medical and dental students at the Friedrich-Schiller-University Jena. 51% of students use now frequently new digital media for learning histology in contrast to 5% in the year 2000 [1]. Digital media including Internet, CD- based learning combined with social networks successfully compete with classical light microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ducic, Tanja; Paunesku, Tatjana; Chen, Si
The glioblastoma (GBM) is characterized by a short median survival and an almost 100% tumor related mortality. GBM cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores application of X-ray and visible light microscopy to display the elemental and structural images of cells from 3 patient derived GMB samples and an established GMB cell line. Slight differences in elemental concentrations, in actin cytoskeleton organization and cell morphology were noted between all cells types by X-ray fluorescence and full field soft X-ray microscopy, as well as the Structured Illumination Super-resolution Microscope (SIM). Different samplemore » preparation approaches were used to match each imaging technique. While preparation for SIM included cell fixation and staining, intact frozen hydrated cells were used for the trace element imaging by hard X-ray fluorescence and exploration of the structural features by soft X-ray absorption tomography. In conclusion, each technique documented differences between samples with regard to morphology and elemental composition and underscored the importance of use of multiple patient derived samples for detailed GBM study.« less
Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.
Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A
2007-09-03
We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.
Chowdhury, Mustafa H.; Catchmark, Jeffrey M.; Lakowicz, Joseph R.
2009-01-01
The authors introduce a technique for three-dimensional (3D) imaging of the light transmitted through periodic nanoapertures using a scanning probe to perform optical sectioning microscopy. For a 4×4 nanohole array, the transmitted light displays intensity modulations along the propagation axis, with the maximum intensity occurring at 450 μm above the surface. The propagating fields show low divergence, suggesting a beaming effect induced by the array. At distances within 25 μm from the surface, they observe subwavelength confinement of light propagating from the individual nanoholes. Hence, this technique can potentially be used to map the 3D distribution of propagating light, with high spatial resolution. PMID:19696912
Navarrete-Dechent, Cristián; Bajaj, Shirin; Marghoob, Ashfaq A; Marchetti, Michael A
2015-06-01
Dermatophytoses are common skin infections. Traditional diagnostic tests such as skin scrapings for light microscopy examination, fungal cultures and biopsies remain imperfect due to false-negative test results, cost, time required to perform the procedure, time delays in test results and/or a requirement for an invasive procedure. Herein, we present a case of an 80-year-old female whose tinea incognito was non-invasively diagnosed within seconds using handheld reflectance confocal microscopy (RCM). As non-invasive skin imaging continues to improve, we expect light-based office microscopy to be replaced with technologies such as RCM, which has multiple and continually expanding diagnostic applications. © 2015 Blackwell Verlag GmbH.
Asensio, L; Lopez-Llorca, L V; López-Jiménez, J A
2005-01-01
We have evaluated the parasitism of the red scale insect of the date palm (Phoenicococcus marlatti) by entomopathogenic fungi, using light microscopy (LM), scanning electron microscopy (SEM) and low temperature scanning electron microscopy (LTSEM). Beauveria bassiana, Lecanicillium dimorphum and Lecanicillium cf. psalliotae, were inoculated directly on the scale insects or on insect infested plant material. We found that L. dimorphum and L. cf. psalliotae developed on plant material and on scale insects, making infection structures. B. bassiana was a bad colonizer of date palm leaves (Phoenix dactylifera L.) and did not parasite the scale insects.
Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H
2015-02-01
The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.
Bushong, Eric A.; Johnson, Donald D.; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T.; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H.
2015-01-01
The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging. PMID:25392009
Inaga, Sumire; Hirashima, Sayuri; Tanaka, Keiichi; Katsumoto, Tetsuo; Kameie, Toshio; Nakane, Hironobu; Naguro, Tomonori
2009-07-01
The present study introduces a novel method for the direct observation of histological paraffin sections by low vacuum scanning electron microscopy (LVSEM) with platinum blue (Pt-blue) treatment. Pt-blue was applied not only as a backscattered electron (BSE) signal enhancer but also as a histologically specific stain. In this method, paraffin sections of the rat tongue prepared for conventional light microscopy (LM) were stained on glass slides with a Pt-blue staining solution (pH 9) and observed in a LVSEM using BSE detector. Under LVSEM, overviews of whole sections as well as three-dimensional detailed observations of individual cells and tissues could be easily made at magnifications from x40 to x10,000. Each kind of cell and tissue observed in the section could be clearly distinguished due to the different yields of BSE signals, which depended on the surface structures and different affinities to Pt-blue. Thus, we roughly classified cellular and tissue components into three groups according to the staining intensity of Pt-blue observed by LM and LVSEM: 1) a strongly stained (deep blue by LM and brightest by LVSEM) group which included epithelial tissue, endothelium and mast cells; 2) a moderately stained (light blue and bright) group which included muscular tissue and nervous tissue; 3) an unstained or weakly stained (colorless and dark) group which included elastic fibers and collagen fibers. We expect that this method will prove useful for the three-dimensional direct observation of histological paraffin sections of various tissues by LVSEM with higher resolutions than LM.
Varga, Zsuzsanna; Cassoly, Estelle; Li, Qiyu; Oehlschlegel, Christian; Tapia, Coya; Lehr, Hans Anton; Klingbiel, Dirk; Thürlimann, Beat; Ruhstaller, Thomas
2015-01-01
Background Proliferative activity (Ki-67 Labelling Index) in breast cancer increasingly serves as an additional tool in the decision for or against adjuvant chemotherapy in midrange hormone receptor positive breast cancer. Ki-67 Index has been previously shown to suffer from high inter-observer variability especially in midrange (G2) breast carcinomas. In this study we conducted a systematic approach using different Ki-67 assessments on large tissue sections in order to identify the method with the highest reliability and the lowest variability. Materials and Methods Five breast pathologists retrospectively analyzed proliferative activity of 50 G2 invasive breast carcinomas using large tissue sections by assessing Ki-67 immunohistochemistry. Ki-67-assessments were done on light microscopy and on digital images following these methods: 1) assessing five regions, 2) assessing only darkly stained nuclei and 3) considering only condensed proliferative areas (‘hotspots’). An individual review (the first described assessment from 2008) was also performed. The assessments on light microscopy were done by estimating. All measurements were performed three times. Inter-observer and intra-observer reliabilities were calculated using the approach proposed by Eliasziw et al. Clinical cutoffs (14% and 20%) were tested using Fleiss’ Kappa. Results There was a good intra-observer reliability in 5 of 7 methods (ICC: 0.76–0.89). The two highest inter-observer reliability was fair to moderate (ICC: 0.71 and 0.74) in 2 methods (region-analysis and individual-review) on light microscopy. Fleiss’-kappa-values (14% cut-off) were the highest (moderate) using the original recommendation on light-microscope (Kappa 0.58). Fleiss’ kappa values (20% cut-off) were the highest (Kappa 0.48 each) in analyzing hotspots on light-microscopy and digital-analysis. No methodologies using digital-analysis were superior to the methods on light microscope. Conclusion Our results show that all methods on light-microscopy for Ki-67 assessment in large tissue sections resulted in a good intra-observer reliability. Region analysis and individual review (the original recommendation) on light-microscopy yielded the highest inter-observer reliability. These results show slight improvement to previously published data on poor-reproducibility and thus might be a practical-pragmatic way for routine assessment of Ki-67 Index in G2 breast carcinomas. PMID:25885288
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2015-11-24
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2016-10-25
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2016-11-22
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2017-04-25
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
Cytological Analysis of Meiosis in Caenorhabditis elegans
Phillips, Carolyn M.; McDonald, Kent L.; Dernburg, Abby F.
2011-01-01
The nematode Caenorhabditis elegans has emerged as an informative experimental system for analysis of meiosis, in large part because of the advantageous physical organization of meiotic nuclei as a gradient of stages within the germline. Here we provide tools for detailed observational studies of cells within the worm gonad, including techniques for light and electron microscopy. PMID:19685325
Tanev, Stoyan; Sun, Wenbo; Pond, James; Tuchin, Valery V.; Zharov, Vladimir P.
2010-01-01
The formulation of the Finite-Difference Time-Domain (FDTD) approach is presented in the framework of its potential applications to in vivo flow cytometry based on light scattering. The consideration is focused on comparison of light scattering by a single biological cell alone in controlled refractive index matching conditions and by cells labeled by gold nanoparticles. The optical schematics including phase contrast (OPCM) microscopy as a prospective modality for in vivo flow cytometry is also analyzed. The validation of the FDTD approach for the simulation of flow cytometry may open a new avenue in the development of advanced cytometric techniques based on scattering effects from nanoscale targets. PMID:19670359
Yao, Ying; Wang, Su-Xia; Zhang, You-Kang; Wang, Yan; Liu, Li; Liu, Gang
2014-01-01
Light chain proximal tubulopathy is a rarely reported entity associated with plasma cell dyscrasia that classically manifests as acquired Fanconi syndrome and is characterized by the presence of κ-restricted crystals in the proximal tubular cytoplasm. We herein present a case of multiple myeloma with Fanconi syndrome and acute kidney injury due to light chain proximal tubulopathy with light chain cast nephropathy. Prominent phagolysosomes and numerous irregularly shaped inclusions with a fibrillary matrix in the cytoplasm of the proximal tubules were identified on electron microscopy. A monotypic light chain of the λ type was detected in the distal tubular casts, proximal tubular cytoplasmic lysosomes and fibrillary inclusions on immunofluorescence and immune electron microscopy. This case underscores the importance of conducting careful ultrastructural investigations and immunocytologic examinations of light chains for detecting and diagnosing light chain proximal tubulopathy.
Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution
Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.
2016-01-01
We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939
[Current approaches to evaluating the anatomic and functional status of the cornea].
Avetisov, S E; Borodina, N V; Kobzova, M V; Musaeva, G M
2010-01-01
The review provides data on current methods for evaluating the anatomic and functional status of the cornea (light refraction, light transmission, and biomechanical properties, in particular). It analyzes the main advantages and disadvantages of basic (biomicroscopy, endothelial microscopy, ophthalmometry, topography, and pachymetry) and special (confocal microscopy, optical coherence tomography, ultrasound biomicroscopy, aberrometry, bidirectional corneal applanation, and keratoesthesiometry) studies.
Label-free, multi-scale imaging of ex-vivo mouse brain using spatial light interference microscopy
NASA Astrophysics Data System (ADS)
Min, Eunjung; Kandel, Mikhail E.; Ko, Chemyong J.; Popescu, Gabriel; Jung, Woonggyu; Best-Popescu, Catherine
2016-12-01
Brain connectivity spans over broad spatial scales, from nanometers to centimeters. In order to understand the brain at multi-scale, the neural network in wide-field has been visualized in detail by taking advantage of light microscopy. However, the process of staining or addition of fluorescent tags is commonly required, and the image contrast is insufficient for delineation of cytoarchitecture. To overcome this barrier, we use spatial light interference microscopy to investigate brain structure with high-resolution, sub-nanometer pathlength sensitivity without the use of exogenous contrast agents. Combining wide-field imaging and a mosaic algorithm developed in-house, we show the detailed architecture of cells and myelin, within coronal olfactory bulb and cortical sections, and from sagittal sections of the hippocampus and cerebellum. Our technique is well suited to identify laminar characteristics of fiber tract orientation within white matter, e.g. the corpus callosum. To further improve the macro-scale contrast of anatomical structures, and to better differentiate axons and dendrites from cell bodies, we mapped the tissue in terms of its scattering property. Based on our results, we anticipate that spatial light interference microscopy can potentially provide multiscale and multicontrast perspectives of gross and microscopic brain anatomy.
Light sheet theta microscopy for rapid high-resolution imaging of large biological samples.
Migliori, Bianca; Datta, Malika S; Dupre, Christophe; Apak, Mehmet C; Asano, Shoh; Gao, Ruixuan; Boyden, Edward S; Hermanson, Ola; Yuste, Rafael; Tomer, Raju
2018-05-29
Advances in tissue clearing and molecular labeling methods are enabling unprecedented optical access to large intact biological systems. These developments fuel the need for high-speed microscopy approaches to image large samples quantitatively and at high resolution. While light sheet microscopy (LSM), with its high planar imaging speed and low photo-bleaching, can be effective, scaling up to larger imaging volumes has been hindered by the use of orthogonal light sheet illumination. To address this fundamental limitation, we have developed light sheet theta microscopy (LSTM), which uniformly illuminates samples from the same side as the detection objective, thereby eliminating limits on lateral dimensions without sacrificing the imaging resolution, depth, and speed. We present a detailed characterization of LSTM, and demonstrate its complementary advantages over LSM for rapid high-resolution quantitative imaging of large intact samples with high uniform quality. The reported LSTM approach is a significant step for the rapid high-resolution quantitative mapping of the structure and function of very large biological systems, such as a clarified thick coronal slab of human brain and uniformly expanded tissues, and also for rapid volumetric calcium imaging of highly motile animals, such as Hydra, undergoing non-isomorphic body shape changes.
Imaging a seizure model in zebrafish with structured illumination light sheet microscopy
NASA Astrophysics Data System (ADS)
Liu, Yang; Dale, Savannah; Ball, Rebecca; VanLeuven, Ariel J.; Baraban, Scott; Sornborger, Andrew; Lauderdale, James D.; Kner, Peter
2018-02-01
Zebrafish are a promising vertebrate model for elucidating how neural circuits generate behavior under normal and pathological conditions. The Baraban group first demonstrated that zebrafish larvae are valuable for investigating seizure events and can be used as a model for epilepsy in humans. Because of their small size and transparency, zebrafish embryos are ideal for imaging seizure activity using calcium indicators. Light-sheet microscopy is well suited to capturing neural activity in zebrafish because it is capable of optical sectioning, high frame rates, and low excitation intensities. We describe work in our lab to use light-sheet microscopy for high-speed long-time imaging of neural activity in wildtype and mutant zebrafish to better understand the connectivity and activity of inhibitory neural networks when GABAergic signaling is altered in vivo. We show that, with light-sheet microscopy, neural activity can be recorded at 23 frames per second in twocolors for over 10 minutes allowing us to capture rare seizure events in mutants. We have further implemented structured illumination to increase resolution and contrast in the vertical and axial directions during high-speed imaging at an effective frame rate of over 7 frames per second.
Smart, Matthew; Cornman, Robert S.; Iwanowicz, Deborah; McDermott-Kubeczko, Margaret; Pettis, Jeff S; Spivak, Marla S; Otto, Clint R.
2017-01-01
Taxonomic identification of pollen has historically been accomplished via light microscopy but requires specialized knowledge and reference collections, particularly when identification to lower taxonomic levels is necessary. Recently, next-generation sequencing technology has been used as a cost-effective alternative for identifying bee-collected pollen; however, this novel approach has not been tested on a spatially or temporally robust number of pollen samples. Here, we compare pollen identification results derived from light microscopy and DNA sequencing techniques with samples collected from honey bee colonies embedded within a gradient of intensive agricultural landscapes in the Northern Great Plains throughout the 2010–2011 growing seasons. We demonstrate that at all taxonomic levels, DNA sequencing was able to discern a greater number of taxa, and was particularly useful for the identification of infrequently detected species. Importantly, substantial phenological overlap did occur for commonly detected taxa using either technique, suggesting that DNA sequencing is an appropriate, and enhancing, substitutive technique for accurately capturing the breadth of bee-collected species of pollen present across agricultural landscapes. We also show that honey bees located in high and low intensity agricultural settings forage on dissimilar plants, though with overlap of the most abundantly collected pollen taxa. We highlight practical applications of utilizing sequencing technology, including addressing ecological issues surrounding land use, climate change, importance of taxa relative to abundance, and evaluating the impact of conservation program habitat enhancement efforts.
Development of novel two-photon microscopy for living brain and neuron.
Nemoto, Tomomi
2014-11-01
"In vivo" two-photon microscopy (TPLSM) has revealed vital information on neural activity for brain function, even in light of its limitation in imaging events at depths greater than a several hundred micrometers from the brain surface. To break the limit of this penetration depth, we introduced a novel light source based on a semiconductor laser [1]. The light source successfully visualized not only cortex layer V pyramidal neurons spreading to all cortex layers at a superior S/N ratio, but visualize hippocampal CA1 neurons in young adult mice [2]. These results indicate that the penetration depth of this laser was ∼1.4 mm. In vivo TPLSM with a laser emitting a longer wavelength might give us insights on activities of neurons in the cortex or the hippocampus. This deep imaging method could be applicable to other living organs including tumor tissues. In addition, we developed liquid crystal devices to convert linearly polarized beams (LP) to vector beams [3]. A liquid device generated a vector beam called higher-order radially polarized (HRP) beam, which enabled that each of the aggregated 0.17 m beads was distinguished individually, whereas in conventional confocal microscopy or TPLSM they could not. We also visualized the finer structures of networks of filamentous cytoskeleton microtubule fluorescently-labeled in the COS-7, and primary culture of mouse neurons. Moreover, by taking an advantage of the LCDs that can utilize various wavelengths including near-infrared, we could employ an HRP beam for improving TPLSM. An HRP beam visualized fine intracellular structures not only in fixed cells stained with various dyes, but also in living cells expressing a fluorescent protein [4]. HRP beam also visualized finer structures of microtubules in fixed cells. Here, we will discuss these improvements and future application on the basis of our recent data.jmicro;63/suppl_1/i7/DFU087F1F1DFU087F1Fig. 1."in vivo" imaging of living mouse brain (H-line). © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Femtosecond digital lensless holographic microscopy to image biological samples.
Mendoza-Yero, Omel; Calabuig, Alejandro; Tajahuerce, Enrique; Lancis, Jesús; Andrés, Pedro; Garcia-Sucerquia, Jorge
2013-09-01
The use of femtosecond laser radiation in digital lensless holographic microscopy (DLHM) to image biological samples is presented. A mode-locked Ti:Sa laser that emits ultrashort pulses of 12 fs intensity FWHM, with 800 nm mean wavelength, at 75 MHz repetition rate is used as a light source. For comparison purposes, the light from a light-emitting diode is also used. A section of the head of a drosophila melanogaster fly is studied with both light sources. The experimental results show very different effects of the pinhole size on the spatial resolution with DLHM. Unaware phenomena on the field of the DLHM are analyzed.
Structured light optical microscopy for three-dimensional reconstruction of technical surfaces
NASA Astrophysics Data System (ADS)
Kettel, Johannes; Reinecke, Holger; Müller, Claas
2016-04-01
In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.
White-light diffraction phase microscopy at doubled space-bandwidth product.
Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel
2016-12-12
White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.
Albert, Heidi; Nakiyingi, Lydia; Sempa, Joseph; Mbabazi, Olive; Mukkada, Sheena; Nyesiga, Barnabas; Perkins, Mark D; Manabe, Yukari C
2013-01-01
Light emitting diode (LED) fluorescence microscopy (FM) is an affordable, technology targeted for use in resource-limited settings and recommended for widespread roll-out by the World Health Organization (WHO). We sought to compare the operational performance of three LED FM methods compared to light microscopy in a cohort of HIV-positive tuberculosis (TB) suspects at an urban clinic in a high TB burden country. Two spot specimens collected from TB suspects were included in the study. Smears were stained using auramine O method and read after blinding by three LED-based FM methods by trained laboratory technicians in the Infectious Diseases Institutelaboratory. Leftover portions of the refrigerated sputum specimens were transported to the FIND Tuberculosis Research Laboratory for Ziehl Neelsen (ZN) smear preparation and reading by experienced technologist as well as liquid and solid culture. 174 of 627 (27.8%) specimens collected yielded one or more positive mycobacterial cultures. 94.3% (164/174) were M. tuberculosis complex. LED FM was between 7.3-11.0% more sensitive compared to ZN microscopy. Of the 592 specimens examined by all microscopy methods, there was no significant difference in sensitivity between the three LED FM methods. The specificity of the LED FM methods was between 6.1% and 7.7% lower than ZN microscopy (P<0.001), although exclusion of the single poor reader resulted in over 98% specificity for all FM methods. Laboratory technicians in routine settings can be trained to use FM which is more sensitive than ZN microscopy. Despite rigorous proficiency testing, there were operator-dependent accuracy issues which highlight the critical need for intensive quality assurance procedures during LED FM implementation. The low sensitivity of FM for HIV-positive individuals particularly those with low CD4 T cell counts, will limit the number of additional patients found by LED FM in countries with high rates of HIV co-infection.
Albert, Heidi; Nakiyingi, Lydia; Sempa, Joseph; Mbabazi, Olive; Mukkada, Sheena; Nyesiga, Barnabas; Perkins, Mark D.; Manabe, Yukari C.
2013-01-01
Background Light emitting diode (LED) fluorescence microscopy (FM) is an affordable, technology targeted for use in resource-limited settings and recommended for widespread roll-out by the World Health Organization (WHO). We sought to compare the operational performance of three LED FM methods compared to light microscopy in a cohort of HIV-positive tuberculosis (TB) suspects at an urban clinic in a high TB burden country. Methods Two spot specimens collected from TB suspects were included in the study. Smears were stained using auramine O method and read after blinding by three LED-based FM methods by trained laboratory technicians in the Infectious Diseases Institutelaboratory. Leftover portions of the refrigerated sputum specimens were transported to the FIND Tuberculosis Research Laboratory for Ziehl Neelsen (ZN) smear preparation and reading by experienced technologist as well as liquid and solid culture. Results 174 of 627 (27.8%) specimens collected yielded one or more positive mycobacterial cultures. 94.3% (164/174) were M. tuberculosis complex. LED FM was between 7.3–11.0% more sensitive compared to ZN microscopy. Of the 592 specimens examined by all microscopy methods, there was no significant difference in sensitivity between the three LED FM methods. The specificity of the LED FM methods was between 6.1% and 7.7% lower than ZN microscopy (P<0.001), although exclusion of the single poor reader resulted in over 98% specificity for all FM methods. Conclusions Laboratory technicians in routine settings can be trained to use FM which is more sensitive than ZN microscopy. Despite rigorous proficiency testing, there were operator-dependent accuracy issues which highlight the critical need for intensive quality assurance procedures during LED FM implementation. The low sensitivity of FM for HIV-positive individuals particularly those with low CD4 T cell counts, will limit the number of additional patients found by LED FM in countries with high rates of HIV co-infection. PMID:24039780
Spectrally resolved laser interference microscopy
NASA Astrophysics Data System (ADS)
Butola, Ankit; Ahmad, Azeem; Dubey, Vishesh; Senthilkumaran, P.; Singh Mehta, Dalip
2018-07-01
We developed a new quantitative phase microscopy technique, namely, spectrally resolved laser interference microscopy (SR-LIM), with which it is possible to quantify multi-spectral phase information related to biological specimens without color crosstalk using a color CCD camera. It is a single shot technique where sequential switched on/off of red, green, and blue (RGB) wavelength light sources are not required. The method is implemented using a three-wavelength interference microscope and a customized compact grating based imaging spectrometer fitted at the output port. The results of the USAF resolution chart while employing three different light sources, namely, a halogen lamp, light emitting diodes, and lasers, are discussed and compared. The broadband light sources like the halogen lamp and light emitting diodes lead to stretching in the spectrally decomposed images, whereas it is not observed in the case of narrow-band light sources, i.e. lasers. The proposed technique is further successfully employed for single-shot quantitative phase imaging of human red blood cells at three wavelengths simultaneously without color crosstalk. Using the present technique, one can also use a monochrome camera, even though the experiments are performed using multi-color light sources. Finally, SR-LIM is not only limited to RGB wavelengths, it can be further extended to red, near infra-red, and infra-red wavelengths, which are suitable for various biological applications.
DeepNeuron: an open deep learning toolbox for neuron tracing.
Zhou, Zhi; Kuo, Hsien-Chi; Peng, Hanchuan; Long, Fuhui
2018-06-06
Reconstructing three-dimensional (3D) morphology of neurons is essential for understanding brain structures and functions. Over the past decades, a number of neuron tracing tools including manual, semiautomatic, and fully automatic approaches have been developed to extract and analyze 3D neuronal structures. Nevertheless, most of them were developed based on coding certain rules to extract and connect structural components of a neuron, showing limited performance on complicated neuron morphology. Recently, deep learning outperforms many other machine learning methods in a wide range of image analysis and computer vision tasks. Here we developed a new Open Source toolbox, DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neuron morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet challenging problems in neuron tracing. These problems include but not limited to: (1) detecting neuron signal under different image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and refining tree morphology, (4) quantifying the quality of morphology, and (5) classifying dendrites and axons in real time. We have tested DeepNeuron using light microscopy images including bright-field and confocal images of human and mouse brain, on which DeepNeuron demonstrates robustness and accuracy in neuron tracing.
Martínez-Girón, Rafael; van Woerden, Hugo Cornelis
2013-01-01
The objective of this study is to assess the relationship between protozoa in spontaneously expectorated sputum samples and a range of clinical and immunological variables. Clinical details including age, gender, smoking status, and use of oral or inhaled steroids were recorded for a cohort of 199 patients whose spontaneously expectorated sputum samples were submitted to a Cytology Laboratory in Spain between January 2005 and December 2006. Slides were scanned for protozoa under light microscopy and scanned for monocytes/small macrophages highlighted by immunocytochemistry (CD68 monoclonal antibody). One hundred ninety-one patients provided adequate sputum samples, of whom 70 had protozoa in their sputum. There was a strong relationship between the presence of protozoa and monocytes/small macrophages identified under light microscopy (P < 0.001). A binary logistic regression model also indicated a relationship between protozoa and both smoking status and steroid use. The diagnoses in those with protozoa included infection (including tuberculosis), chronic obstructive pulmonary disease (COPD), lung fibrosis, asthma, chronic liver disease, immunosuppression, cancer, pancreatic or renal disease, heart failure, and AIDS. The identified association between protozoa and monocytes/small macrophages in sputum suggests an immune response and warrants further investigation to clarify whether or not these organisms have any pathological significance in this wide range of conditions. Copyright © 2011 Wiley Periodicals, Inc.
Dersch, Simon; Graumann, Peter L
2018-06-01
We are witnessing a breathtaking development in light (fluorescence) microscopy, where structures can be resolved down to the size of a ribosome within cells. This has already yielded surprising insight into the subcellular structure of cells, including the smallest cells, bacteria. Moreover, it has become possible to visualize and track single fluorescent protein fusions in real time, and quantify molecule numbers within individual cells. Combined, super resolution and single molecule tracking are pushing the limits of our understanding of the spatio-temporal organization even of the smallest cells to an unprecedented depth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tip-enhanced near-field optical microscopy
Mauser, Nina; Hartschuh, Achim
2013-01-01
Tip-enhanced near-field optical microscopy (TENOM) is a scanning probe technique capable of providing a broad range of spectroscopic information on single objects and structured surfaces at nanometer spatial resolution and with highest detection sensitivity. In this review, we first illustrate the physical principle of TENOM that utilizes the antenna function of a sharp probe to efficiently couple light to excitations on nanometer length scales. We then discuss the antenna-induced enhancement of different optical sample responses including Raman scattering, fluorescence, generation of photocurrent and electroluminescence. Different experimental realizations are presented and several recent examples that demonstrate the capabilities of the technique are reviewed. PMID:24100541
Looking at tardigrades in a new light: using epifluorescence to interpret structure.
Perry, E S; Miller, W R; Lindsay, S
2015-02-01
The use of epifluorescence microscopy coupled with ultraviolet (UV) autofluorescence is suggested as a means to view and interpret tardigrade structures. Endogenous fluorochromes are a known component of tardigrade cuticle, claws and bucco-pharyngeal apparatus. By imaging the autofluorescence from tardigrades, it is possible to document these structures in detail, including the subdivisions and boundaries of echiniscid (heterotardigrade) plates and the nature and spatial relationships of the texture (pores, granules, papillae and tubercles) on the various plates. This allows the determination of taxonomic features not easily seen with other microscopic techniques. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Till, Ugo; Gaucher-Delmas, Mireille; Saint-Aguet, Pascale; Hamon, Glenn; Marty, Jean-Daniel; Chassenieux, Christophe; Payré, Bruno; Goudounèche, Dominique; Mingotaud, Anne-Françoise; Violleau, Frédéric
2014-12-01
Polymersomes formed from amphiphilic block copolymers, such as poly(ethyleneoxide-b-ε-caprolactone) (PEO-b-PCL) or poly(ethyleneoxide-b-methylmethacrylate), were characterized by asymmetrical flow field-flow fractionation coupled with quasi-elastic light scattering (QELS), multi-angle light scattering (MALS), and refractive index detection, leading to the determination of their size, shape, and molecular weight. The method was cross-examined with more classical ones, like batch dynamic and static light scattering, electron microscopy, and atomic force microscopy. The results show good complementarities between all the techniques; asymmetrical flow field-flow fractionation being the most pertinent one when the sample exhibits several different types of population.
Interferometric temporal focusing microscopy using three-photon excitation fluorescence.
Toda, Keisuke; Isobe, Keisuke; Namiki, Kana; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi
2018-04-01
Super-resolution microscopy has become a powerful tool for biological research. However, its spatial resolution and imaging depth are limited, largely due to background light. Interferometric temporal focusing (ITF) microscopy, which combines structured illumination microscopy and three-photon excitation fluorescence microscopy, can overcome these limitations. Here, we demonstrate ITF microscopy using three-photon excitation fluorescence, which has a spatial resolution of 106 nm at an imaging depth of 100 µm with an excitation wavelength of 1060 nm.
Live CLEM imaging to analyze nuclear structures at high resolution.
Haraguchi, Tokuko; Osakada, Hiroko; Koujin, Takako
2015-01-01
Fluorescence microscopy (FM) and electron microscopy (EM) are powerful tools for observing molecular components in cells. FM can provide temporal information about cellular proteins and structures in living cells. EM provides nanometer resolution images of cellular structures in fixed cells. We have combined FM and EM to develop a new method of correlative light and electron microscopy (CLEM), called "Live CLEM." In this method, the dynamic behavior of specific molecules of interest is first observed in living cells using fluorescence microscopy (FM) and then cellular structures in the same cell are observed using electron microscopy (EM). Following image acquisition, FM and EM images are compared to enable the fluorescent images to be correlated with the high-resolution images of cellular structures obtained using EM. As this method enables analysis of dynamic events involving specific molecules of interest in the context of specific cellular structures at high resolution, it is useful for the study of nuclear structures including nuclear bodies. Here we describe Live CLEM that can be applied to the study of nuclear structures in mammalian cells.
Utility of fluorescence microscopy in embryonic/fetal topographical analysis.
Zucker, R M; Elstein, K H; Shuey, D L; Ebron-McCoy, M; Rogers, J M
1995-06-01
For topographical analysis of developing embryos, investigators typically rely on scanning electron microscopy (SEM) to provide the surface detail not attainable with light microscopy. SEM is an expensive and time-consuming technique, however, and the preparation procedure may alter morphology and leave the specimen friable. We report that by using a high-resolution compound epifluorescence microscope with inexpensive low-power objectives and the fluorochrome acridine orange, we were able to obtain surface images of fixed or fresh whole rat embryos and fetal palates of considerably greater topographical detail than those obtained using routine light microscopy. Indeed the resulting high-resolution images afford not only superior qualitative documentation of morphological observations, but the capability for detailed morphometry via digitization and computer-assisted image analysis.
Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens
Glaser, Adam K.; Reder, Nicholas P.; Chen, Ye; McCarty, Erin F.; Yin, Chengbo; Wei, Linpeng; Wang, Yu; True, Lawrence D.; Liu, Jonathan T.C.
2017-01-01
For the 1.7 million patients per year in the U.S. who receive a new cancer diagnosis, treatment decisions are largely made after a histopathology exam. Unfortunately, the gold standard of slide-based microscopic pathology suffers from high inter-observer variability and limited prognostic value due to sampling limitations and the inability to visualize tissue structures and molecular targets in their native 3D context. Here, we show that an open-top light-sheet microscope optimized for non-destructive slide-free pathology of clinical specimens enables the rapid imaging of intact tissues at high resolution over large 2D and 3D fields of view, with the same level of detail as traditional pathology. We demonstrate the utility of this technology for various applications: wide-area surface microscopy to triage surgical specimens (with ~200 μm surface irregularities), rapid intraoperative assessment of tumour-margin surfaces (12.5 sec/cm2), and volumetric assessment of optically cleared core–needle biopsies (1 mm in diameter, 2 cm in length). Light-sheet microscopy can be a versatile tool for both rapid surface microscopy and deep volumetric microscopy of human specimens. PMID:29750130
Quadriplegic areflexic ICU illness: selective thick filament loss and normal nerve histology.
Sander, Howard W; Golden, Marianna; Danon, Moris J
2002-10-01
Areflexic quadriplegia that occurs in the intensive care unit (ICU) is commonly ascribed to critical illness polyneuropathy based upon electrophysiology or muscle light microscopy. However, electron microscopy often documents a selective thick filament loss myopathy. Eight ICU patients who developed areflexic quadriplegia underwent biopsy. Seven patients had received steroids, and 2 had also received paralytic agents. Electrodiagnostic studies revealed absent or low-amplitude motor responses in 7. Sensory responses were normal in 5 of 6 and absent in 1. Initial electromyography revealed absent (n = 3), small (n = 3), or polyphasic (n = 1) motor unit potentials, and diffuse fibrillation potentials (n = 5). In all 8, light microscopy of muscle revealed numerous atrophic-angulated fibers and corelike lesions, and electron microscopy revealed extensive thick filament loss. Morphology of sural and intramuscular nerves, and, in one autopsied case, of the obturator nerve and multiple nerve roots, was normal. Although clinical, electrodiagnostic, and light microscopic features mimicked denervating disease, muscle electron microscopy revealed thick filament loss, and nerve histology was normal. This suggests that areflexic ICU quadriplegia is a primary myopathy and not an axonal polyneuropathy. Copyright 2002 Wiley Periodicals, Inc. Muscle Nerve 26: 499-505, 2002
The Pathologist 2.0: An Update on Digital Pathology in Veterinary Medicine.
Bertram, Christof A; Klopfleisch, Robert
2017-09-01
Using light microscopy to describe the microarchitecture of normal and diseased tissues has changed very little since the middle of the 19th century. While the premise of histologic analysis remains intact, our relationship with the microscope is changing dramatically. Digital pathology offers new forms of visualization, and delivery of images is facilitated in unprecedented ways. This new technology can untether us entirely from our light microscopes, with many pathologists already performing their jobs using virtual microscopy. Several veterinary colleges have integrated virtual microscopy in their curriculum, and some diagnostic histopathology labs are switching to virtual microscopy as their main tool for the assessment of histologic specimens. Considering recent technical advancements of slide scanner and viewing software, digital pathology should now be considered a serious alternative to traditional light microscopy. This review therefore intends to give an overview of the current digital pathology technologies and their potential in all fields of veterinary pathology (ie, research, diagnostic service, and education). A future integration of digital pathology in the veterinary pathologist's workflow seems to be inevitable, and therefore it is proposed that trainees should be taught in digital pathology to keep up with the unavoidable digitization of the profession.
Medeiros, Jansen Fernandes; Almeida, Tatiana Amaral Pires; Silva, Lucyane Bastos Tavares; Rubio, Jose Miguel; Crainey, James Lee; Pessoa, Felipe Arley Costa; Luz, Sergio Luiz Bessa
2015-05-20
Mansonella ozzardi is a poorly understood human filarial parasite with a broad distribution throughout Latin America. Most of what is known about its parasitism has come from epidemiological studies that have estimated parasite incidence using light microscopy. Light microscopy can, however, miss lighter, submicroscopic, infections. In this study we have compared M. ozzardi incidence estimates made using light microscopy, with estimates made using PCR. 214 DNA extracts made from Large Volume Venous Blood Samples (LVVBS) were taken from volunteers from two study sites in the Rio Solimões region: Codajás [n = 109] and Tefé [n = 105] and were subsequently assayed for M. ozzardi parasitism using a diagnostic PCR (Mo-dPCR). Peripheral finger-prick blood samples were taken from the same individuals and used for microscopic examination. Finger-prick blood, taken from individuals from Tefé, was also used for the creation of FTAcard dried blood spots (DBS) that were subsequently subjected to Mo-dPCR. Overall M. ozzardi incidence estimates made with LVVBS PCRs were 1.8 times higher than those made using microscopy (44.9% [96/214] compared with 24.3% [52/214]) and 1.5 times higher than the PCR estimates made from FTAcard DBS (48/105 versus 31/105). PCR-based detection of FTAcard DBS proved 1.3 times more sensitive at diagnosing infections from peripheral blood samples than light microscopy did: detecting 24/105 compared with 31/105. PCR of LVVBS reported the fewest number of false negatives, detecting: 44 of 52 (84.6%) individuals diagnosed by microscopy; 27 of 31 (87.1%) of those diagnosed positive from DBSs and 17 out of 18 (94.4%) of those diagnosed as positive by both alternative methodologies. In this study, Mo-dPCR of LVVBS was by far the most sensitive method of detecting M. ozzardi infections and detected submicroscopic infections. Mo-dPCR FTAcard DBS also provided a more sensitive test for M. ozzardi diagnosis than light microscopy based diagnosis did and thus in settings where only finger-prick assays can be carried-out, it may be a more reliable method of detection. Most existing M. ozzardi incidence estimates, which are often based on light microscope diagnosis, are likely to dramatically underestimate true M. ozzardi parasitism incidence levels.
Light Microscopy Microscope Experiment
2016-02-04
Ground testing for the first confocal Light Microscopy Microscope (LMM) Experiment. Procter and Gamble is working with NASA Glenn scientists to prepare for a study that examines product stabilizers in a microgravity environment. The particles in the tube glow orange because they have been fluorescently tagged with a dye that reacts to green laser lights to allow construction of a 3D image point by point. The experiment, which will be sent to the ISS later this year, will help P&G develop improved product stabilizers to extend shelf life and develop more environmentally friendly packaging.
Keevil, C W
2003-01-01
Knowledge of biofilm structure and function has changed significantly in the last few years due to advances in light microscopy. One pertinent example is the use of scanning confocal laser microscopy (SCLM) to visualise corrosion pits caused by the biofilm mosaic footprint on corroding metal surfaces. Nevertheless, SCLM has some limitations as to its widespread use, including cost, inability to observe motile bacteria and eukaryotic grazers within biofilms, and difficulty to scan a curved surface. By contrast, episcopic differential interference contrast (EDIC) microscopy has provided a rapid, real time analysis of biofilms on opaque, curved, natural or man-made surfaces without the need for cover slips and oil. EDIC, coupled with epi-fluorescence (EDIC/EF), microscopy has been used successfully to visualise the 3-D biofilm structure, physiological niches, protozoal grazing and iron biomineralization, and the location of specific pathogens such as Legionella pneumophila, Campylobacter jejuni and Cryptosporidium parvum. These species were identified using gold nanoparticles or fluorophores coupled to monoclonal antibodies or 16S rRNA probes, respectively. Among its many potential uses, the EDIC technique will provide a rapid procedure to facilitate the calibration of the modern generation of biofilm-sensing electrodes.
Accessible microscopy workstation for students and scientists with mobility impairments.
Duerstock, Bradley S
2006-01-01
An integrated accessible microscopy workstation was designed and developed to allow persons with mobility impairments to control all aspects of light microscopy with minimal human assistance. This system, named AccessScope, is capable of performing brightfield and fluorescence microscopy, image analysis, and tissue morphometry requisite for undergraduate science courses to graduate-level research. An accessible microscope is necessary for students and scientists with mobility impairments to be able to use a microscope independently to better understand microscopical imaging concepts and cell biology. This knowledge is not always apparent by simply viewing a catalog of histological images. The ability to operate a microscope independently eliminates the need to hire an assistant or rely on a classmate and permits one to take practical laboratory examinations by oneself. Independent microscope handling is also crucial for graduate students and scientists with disabilities to perform scientific research. By making a personal computer as the user interface for controlling AccessScope functions, different upper limb mobility impairments could be accommodated by using various computer input devices and assistive technology software. Participants with a range of upper limb mobility impairments evaluated the prototype microscopy workstation. They were able to control all microscopy functions including loading different slides without assistance.
Microscopy illumination engineering using a low-cost liquid crystal display.
Guo, Kaikai; Bian, Zichao; Dong, Siyuan; Nanda, Pariksheet; Wang, Ying Min; Zheng, Guoan
2015-02-01
Illumination engineering is critical for obtaining high-resolution, high-quality images in microscope settings. In a typical microscope, the condenser lens provides sample illumination that is uniform and free from glare. The associated condenser diaphragm can be manually adjusted to obtain the optimal illumination numerical aperture. In this paper, we report a programmable condenser lens for active illumination control. In our prototype setup, we used a $15 liquid crystal display as a transparent spatial light modulator and placed it at the back focal plane of the condenser lens. By setting different binary patterns on the display, we can actively control the illumination and the spatial coherence of the microscope platform. We demonstrated the use of such a simple scheme for multimodal imaging, including bright-field microscopy, darkfield microscopy, phase-contrast microscopy, polarization microscopy, 3D tomographic imaging, and super-resolution Fourier ptychographic imaging. The reported illumination engineering scheme is cost-effective and compatible with most existing platforms. It enables a turnkey solution with high flexibility for researchers in various communities. From the engineering point-of-view, the reported illumination scheme may also provide new insights for the development of multimodal microscopy and Fourier ptychographic imaging.
NASA Astrophysics Data System (ADS)
Zhao, Yifan; Du, Jing; Zhang, Jinrun; Shen, Li; Wang, Jian
2018-04-01
Mid-infrared (2-20 μm) light has been attracting great attention in many areas of science and technology. Beyond the extended wavelength range from visible and near-infrared to mid-infrared, shaping spatial structures may add opportunities to grooming applications of mid-infrared photonics. Here, we design and fabricate a reflection-enhanced plasmonic metasurface and demonstrate efficient generation of structured light with the phase helix and intensity helix at 2 μm. This work includes two distinct aspects. First, structured light (phase helix, intensity helix) generation at 2 μm, which is far beyond the ability of conventional spatial light modulators, is enabled by the metasurface with sub-wavelength engineered structures. Second, the self-referenced intensity helix against environmental noise is generated without using a spatially separated light. The demonstrations may open up advanced perspectives to structured light applications at 2 μm, such as phase helix for communications and non-communications (imaging, sensing) and intensity helix for enhanced microscopy and advanced metrology.
Neuronal connectome of a sensory-motor circuit for visual navigation
Randel, Nadine; Asadulina, Albina; Bezares-Calderón, Luis A; Verasztó, Csaba; Williams, Elizabeth A; Conzelmann, Markus; Shahidi, Réza; Jékely, Gáspár
2014-01-01
Animals use spatial differences in environmental light levels for visual navigation; however, how light inputs are translated into coordinated motor outputs remains poorly understood. Here we reconstruct the neuronal connectome of a four-eye visual circuit in the larva of the annelid Platynereis using serial-section transmission electron microscopy. In this 71-neuron circuit, photoreceptors connect via three layers of interneurons to motorneurons, which innervate trunk muscles. By combining eye ablations with behavioral experiments, we show that the circuit compares light on either side of the body and stimulates body bending upon left-right light imbalance during visual phototaxis. We also identified an interneuron motif that enhances sensitivity to different light intensity contrasts. The Platynereis eye circuit has the hallmarks of a visual system, including spatial light detection and contrast modulation, illustrating how image-forming eyes may have evolved via intermediate stages contrasting only a light and a dark field during a simple visual task. DOI: http://dx.doi.org/10.7554/eLife.02730.001 PMID:24867217
Crystal morphology of sunflower wax in soybean oil organogel
USDA-ARS?s Scientific Manuscript database
While sunflower wax has been recognized as an excellent organogelator for edible oil, the detailed morphology of sunflower wax crystals formed in an edible oil organogel has not been fully understood. In this study, polarized light microscopy, phase contrast microscopy, scanning electron microscopy ...
Jespersen, Sune N.; Bjarkam, Carsten R.; Nyengaard, Jens R.; Chakravarty, M. Mallar; Hansen, Brian; Vosegaard, Thomas; Østergaard, Leif; Yablonskiy, Dmitriy; Nielsen, Niels Chr.; Vestergaard-Poulsen, Peter
2010-01-01
Due to its unique sensitivity to tissue microstructure, diffusion-weighted magnetic resonance imaging (MRI) has found many applications in clinical and fundamental science. With few exceptions, a more precise correspondence between physiological or biophysical properties and the obtained diffusion parameters remain uncertain due to lack of specificity. In this work, we address this problem by comparing diffusion parameters of a recently introduced model for water diffusion in brain matter to light microscopy and quantitative electron microscopy. Specifically, we compare diffusion model predictions of neurite density in rats to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy. We find that the diffusion model describes data better and that its parameters show stronger correlation with optical and electron microscopy, and thus reflect myelinated neurite density better than the more frequently used diffusion tensor imaging (DTI) and cumulant expansion methods. Furthermore, the estimated neurite orientations capture dendritic architecture more faithfully than DTI diffusion ellipsoids. PMID:19732836
Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution
Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; ...
2016-01-01
Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less
EELS from organic crystalline materials
NASA Astrophysics Data System (ADS)
Brydson, R.; Eddleston, M. D.; Jones, W.; Seabourne, C. R.; Hondow, N.
2014-06-01
We report the use of the electron energy loss spectroscopy (EELS) for providing light element chemical composition information from organic, crystalline pharmaceutical materials including theophylline and paracetamol and discuss how this type of data can complement transmission electron microscopy (TEM) imaging and electron diffraction when investigating polymorphism. We also discuss the potential for the extraction of bonding information using electron loss near-edge structure (ELNES).
Pneumocyte injury and ubiquitin-positive pneumocytes in interstitial lung diseases*
Yamada, Tsutomu; Kawabata, Yoshinori
2015-01-01
Pneumocyte injury is a characteristic of pulmonary interstitial pneumonias (IPs). Histological markers of pneumocyte injury and inflammation include pneumocyte necrosis, erosion, hyaline membrane and fibrin exudation with subsequent intraluminal granulation tissue formation. We found that intracytoplasmic inclusions in pneumocytes are ubiquitin-positive (Ub+) and that the number of Ub+ pneumocytes shows positive correlation with the extent of diffuse alveolar damage (DAD). To determine the role of Ub+ pneumocytes and inclusions in IPs, we studied their relationship with pathological and clinical features of DAD, usual interstitial pneumonia (UIP) and organizing pneumonia (OP), including airspace enlargement with fibrosis (AEF). We analysed Ub+ pneumocytes, inclusions, erosions and intraluminal granulation tissue in relation to pneumocyte injury. The numbers of immunohistochemically identified Ub+ inclusions in each IP were higher than the number of inclusions detected by light microscopy. The inclusions detected by Ub+ immunostaining were identical to the inclusions observed by light microscopy. UIP and DAD had many Ub+ inclusions, while OP and AEF had fewer Ub+ inclusions. These results suggest that the extent of Ub+ inclusions reflects the severity of pneumocyte injury among IPs. Thus, Ub+ inclusions are a histological marker of pneumocyte injury that may be helpful in determining the severity and prognosis of IPs. PMID:25123224
Reproducibility in light microscopy: Maintenance, standards and SOPs.
Deagle, Rebecca C; Wee, Tse-Luen Erika; Brown, Claire M
2017-08-01
Light microscopy has grown to be a valuable asset in both the physical and life sciences. It is a highly quantitative method available in individual research laboratories and often centralized in core facilities. However, although quantitative microscopy is becoming a customary tool in research, it is rarely standardized. To achieve accurate quantitative microscopy data and reproducible results, three levels of standardization must be considered: (1) aspects of the microscope, (2) the sample, and (3) the detector. The accuracy of the data is only as reliable as the imaging system itself, thereby imposing the need for routine standard performance testing. Depending on the task some maintenance procedures should be performed once a month, some before each imaging session, while others conducted annually. This text should be implemented as a resource for researchers to integrate with their own standard operating procedures to ensure the highest quality quantitative microscopy data. Copyright © 2017. Published by Elsevier Ltd.
Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection.
Mertz, Jerome; Kim, Jinhyun
2010-01-01
It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast.
Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection
NASA Astrophysics Data System (ADS)
Mertz, Jerome; Kim, Jinhyun
2010-01-01
It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast.
Spectral confocal reflection microscopy using a white light source
NASA Astrophysics Data System (ADS)
Booth, M.; Juškaitis, R.; Wilson, T.
2008-08-01
We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.
Du, Yu; Zhuang, Ziwei; He, Jiexing; Liu, Hongji; Qiu, Ping; Wang, Ke
2018-05-16
With tunable excitation light, multiphoton microscopy (MPM) is widely used for imaging biological structures at subcellular resolution. Axial chromatic dispersion, present in virtually every transmissive optical system including the multiphoton microscope, leads to focal (and the resultant image) plane separation. Here we demonstrate experimentally a technique to measure the axial chromatic dispersion in a multiphoton microscope, using simultaneous 2-color third-harmonic generation (THG) imaging excited by a 2-color soliton source with tunable wavelength separation. Our technique is self-referenced, eliminating potential measurement error when 1-color tunable excitation light is used which necessitates reciprocating motion of the mechanical translation stage. Using this technique, we demonstrate measured axial chromatic dispersion with 2 different objective lenses in a multiphoton microscope. Further measurement in a biological sample also indicates that this axial chromatic dispersion, in combination with 2-color imaging, may open up opportunity for simultaneous imaging of two different axial planes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Teng, Jiamin; Turbat-Herrera, Elba A; Herrera, Guillermo A
2014-04-01
In vitro studies have provided much information regarding the process of glomerular AL-amyloidogenesis. Research efforts have been successful in deciphering how glomerulopathic light chains interact with mesangial cells. The sequential steps involved in the genesis of amyloid fibrils include interactions with surface caveolae in mesangial cells and internalization of the monoclonal light chains through a clathrin-mediated process followed by trafficking in the mesangial cells to the mature lysosomal compartment where fibrils are formed. This manuscript focuses on how mesangial cells, once amyloid has been formed, deliver the fibrils to the extracellular matrix. The delivery of amyloid fibrils to the outside of the cells is carried out by lysosomes, which abut the mesangial cell membranes and extrude their contents into the extracellular space. This final step responsible for the fibrils to be present predominantly in the extracellular space is well demonstrated with scanning electron microscopy.
Domingue, Scott R.; Bartels, Randy A.
2014-12-04
Here, we demonstrate 1250 nm pulses generated in dual-zero dispersion photonic crystal fiber capable of three-photon excitation fluorescence microscopy. The total power conversion efficiency from the 28 fs seed pulse centered at 1075 nm to pulses at 1250 nm, including coupling losses from the nonlinear fiber, is 35%, with up to 67% power conversion efficiency of the fiber coupled light. Frequency-resolved optical gating measurements characterize 1250 nm pulses at 0.6 nJ and 2 nJ, illustrating the change in nonlinear spectral phase accumulation with pulse energy even for nonlinear fiber lengths < 50 mm. The 0.6 nJ pulse has a 26more » fs duration and is the shortest nonlinear fiber derived 1250 nm pulse yet reported (to the best of our knowledge). The short pulse durations and energies make these pulses a viable route to producing light at 1250 nm for multiphoton microscopy, which we we demonstrate here, via a three-photon excitation fluorescence microscope.« less
USDA-ARS?s Scientific Manuscript database
Light wavelengths preferentially absorbed by chlorophyll (chl) often display steep absorption gradients. This oversaturates photosynthesis in upper chloroplasts and deprives lower chloroplasts of blue and red light, causing a steep gradient in carbon fixation. Reducing chl content could create a mor...
Characteristic thickened cell walls of the bracts of the 'eternal flower' Helichrysum bracteatum.
Nishikawa, Kuniko; Ito, Hiroaki; Awano, Tatsuya; Hosokawa, Munetaka; Yazawa, Susumu
2008-07-01
Helichrysum bracteatum is called an 'eternal flower' and has large, coloured, scarious bracts. These maintain their aesthetic value without wilting or discoloration for many years. There have been no research studies of cell death or cell morphology of the scarious bract, and hence the aim of this work was to elucidate these characteristics for the bract of H. bracteatum. DAPI (4'6-diamidino-2-phenylindol dihydrochloride) staining and fluorescence microscopy were used for observation of cell nuclei. Light microscopy (LM), transmission electron microscopy (TEM) and polarized light microscopy were used for observation of cells, including cell wall morphology. Cell death occurred at the bract tip during the early stage of flower development. The cell wall was the most prominent characteristic of H. bracteatum bract cells. Characteristic thickened secondary cell walls on the inside of the primary cell walls were observed in both epidermal and inner cells. In addition, the walls of all cells exhibited birefringence. Characteristic thickened secondary cell walls have orientated cellulose microfibrils as well as general secondary cell walls of the tracheary elements. For comparison, these characters were not observed in the petal and bract tissues of Chrysanthemum morifolium. Bracts at anthesis are composed of dead cells. Helichrysum bracteatum bracts have characteristic thickened secondary cell walls that have not been observed in the parenchyma of any other flowers or leaves. The cells of the H. bracteatum bract differ from other tissues with secondary cell walls, suggesting that they may be a new cell type.
Morphological observation of the stria vascularis in midkine and pleiotrophin knockout mice.
Sone, Michihiko; Muramatsu, Hisako; Muramatsu, Takashi; Nakashima, Tsutomu
2011-02-01
Midkine and Pleiotrophin are low molecular weight basic proteins with closely related structures and serve as growth/differentiation factors. They have been reported to be expressed in the cochlea during the embryonic and perinatal periods. In the present study, we focused on the roles of midkine and pleiotrophin in the stria vascularis and investigated morphological changes using mice deficient in these genes. Midkine knockout, pleiotrophin knockout, and double knockout mice were used and compared to wild-type mice. Auditory brain stem responses (ABRs) and cochlear blood flows were measured in each type of mice. Pathological changes in the stria vascularis were examined by light microscopy, including immunohistochemical staining with anti-Kir4.1 antibody, and electron microscopy. Hearing thresholds examined by ABRs were significantly higher in midkine knockout and pleiotrophin knockout mice than in wild-type mice. Double knockout mice showed higher thresholds compared to midkine knockout and pleiotrophin knockout mice. Blood flow in the lateral walls did not significantly differ and light microscopy examination showed an almost normal appearance of the stria vascularis in these knockout mice. However, the expression of Kir4.1 was weak in the knockout mice and severe vacuolar degeneration was observed by electron microscopy in the intermediate cells of the double knockout mice. The present study demonstrates that midkine and pleiotrophin play some roles for the morphological maintenance of intermediate cell in the stria vascularis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Anderson, Lorinda K
2017-01-01
Immunolocalization using either fluorescence for light microscopy (LM) or gold particles for electron microscopy (EM) has become a common tool to pinpoint proteins involved in recombination during meiotic prophase. Each method has its advantages and disadvantages. For example, LM immunofluorescence is comparatively easier and higher throughput compared to immunogold EM localization. In addition, immunofluorescence has the advantages that a faint signal can often be enhanced by longer exposure times and colocalization using two (or more) probes with different absorbance and emission spectra is straightforward. However, immunofluorescence is not useful if the object of interest does not label with an antibody probe and is below the resolution of the LM. In comparison, immunogold EM localization is higher resolution than immunofluorescent LM localization, and individual nuclear structures, such as recombination nodules, can be identified by EM regardless of whether they are labeled or not. However, immunogold localization has other disadvantages including comparatively low signal-to-noise ratios, more difficult colocalization using gold particles of different sizes, and the inability to evaluate labeling efficiency before examining the sample using EM (a more expensive and time-consuming technique than LM). Here we describe a method that takes advantage of the good points of both immunofluorescent LM and EM to analyze two classes of late recombination nodules (RNs), only one of which labels with antibodies to MLH1 protein, a marker of crossovers. The method can be used readily with other antibodies to analyze early recombination nodules or other prophase I structures.
Evaluation of laser ablation microtomy for correlative microscopy of hard tissues.
Boyde, A
2018-02-27
Laser ablation machining or microtomy (LAM) is a relatively new approach to producing slide mounted sections of translucent materials. We evaluated the method with a variety of problems from the bone, joint and dental tissues fields where we require thin undecalcified and undistorted sections for correlative light microscopy (LM) and backscattered electron scanning electron microscopy (BSE SEM). All samples were embedded in poly-methylmethacrlate (PMMA) and flat block surfaces had been previously studied by BSE-SEM and confocal scanning light microscopy (CSLM). Most were also studied by X-yay microtomography (XMT). The block surface is stuck to a glass slide with cyanoacrylate adhesive. Setting the section thickness and levelling uses inbuilt optical coherence tomographic imaging. Tight focusing of near-infrared laser radiation in the sectioning plane gives extreme intensities causing photodisruption of material at the focal point. The laser beam is moved by a fast scanner to write a cutting line, which is simultaneously moved by an XY positioning unit to create a sectioning plane. The block is thereby released from the slide, leaving the section stuck to the slide. Light, wet polishing on the finest grade (4000 grit) silicon carbide polishing paper is used to remove a 1-2 μm thick damaged layer at the surface of the section. Sections produced by laser cutting are fine in quality and superior to those produced by mechanical cutting and can be thinner than the 'voxel' in most laboratory X-ray microtomography systems. The present extensive pilot studies have shown that it works to produce samples which we can study by both light and electron microscopy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Singh Mehta, Dalip; Srivastava, Vishal
2012-11-01
We report quantitative phase imaging of human red blood cells (RBCs) using phase-shifting interference microscopy. Five phase-shifted white light interferograms are recorded using colour charge coupled device camera. White light interferograms were decomposed into red, green, and blue colour components. The phase-shifted interferograms of each colour were then processed by phase-shifting analysis and phase maps for red, green, and blue colours were reconstructed. Wavelength dependent refractive index profiles of RBCs were computed from the single set of white light interferogram. The present technique has great potential for non-invasive determination of refractive index variation and morphological features of cells and tissues.
NASA Astrophysics Data System (ADS)
Oh, Juyeong; Kim, Yu Jeong; Kim, Chul-Ki; Lee, Taik Jin; Seo, Mina; Lee, Seok; Woo, Deok Ha; Jun, Seong Chan; Park, Ki-Ho; Kim, Seok Hwan; Kim, Jae Hun
2017-02-01
Glaucoma is a progressive optic neuropathy, characterized by the selective loss of retinal ganglion cells (RGCs). Therefore, monitoring the change of number or morphology of RGC is essential for the early detection as well as investigation of pathophysiology of glaucoma. Since RGC layer is transparent and hyporeflective, the direct optical visualization of RGCs has not been successful so far. Therefore, glaucoma evaluation mostly depends on indirect diagnostic methods such as the evaluation of optic disc morphology or retinal nerve fiber layer thickness measurement by optical coherence tomography. We have previously demonstrated single photoreceptor cell imaging with differential interference contrast (DIC) microscopy. Herein, we successfully visualized single RGC using DIC microscopy. Since RGC layer is much less reflective than photoreceptor layer, various techniques including the control of light wavelength and bandwidth using a tunable band pass filter were adopted to reduce the chromatic aberration in z-axis for higher and clearer resolution. To verify that the imaged cells were the RGCs, the flat-mounted retina of Sprague-Dawley rat, in which the RGCs were retrogradely labeled with fluorescence, was observed by both fluorescence and DIC microscopies for direct comparison. We have confirmed that the cell images obtained by fluorescence microscopy were perfectly matched with cell images by DIC microscopy. As conclusion, we have visualized single RGC with DIC microscopy, and confirmed with fluorescence microscopy.
Application of Multiphoton Microscopy in Dermatological Studies: a Mini-Review
Yew, Elijah; Rowlands, Christopher
2014-01-01
This review summarizes the historical and more recent developments of multiphoton microscopy, as applied to dermatology. Multiphoton microscopy offers several advantages over competing microscopy techniques: there is an inherent axial sectioning, penetration depths that compete well with confocal microscopy on account of the use of near-infrared light, and many two-photon contrast mechanisms, such as second-harmonic generation, have no analogue in one-photon microscopy. While the penetration depths of photons into tissue are typically limited on the order of hundreds of microns, this is of less concern in dermatology, as the skin is thin and readily accessible. As a result, multiphoton microscopy in dermatology has generated a great deal of interest, much of which is summarized here. The review covers the interaction of light and tissue, as well as the various considerations that must be made when designing an instrument. The state of multiphoton microscopy in imaging skin cancer and various other diseases is also discussed, along with the investigation of aging and regeneration phenomena, and finally, the use of multiphoton microscopy to analyze the transdermal transport of drugs, cosmetics and other agents is summarized. The review concludes with a look at potential future research directions, especially those that are necessary to push these techniques into widespread clinical acceptance. PMID:25075226
González-Ortega, C; Cancino-Villarreal, P; Alonzo-Torres, V E; Martínez-Robles, I; Pérez-Peña, E; Gutiérrez-Gutiérrez, A M
2016-04-01
Identification of the best embryos to transfer is a key element for success in assisted reproduction. In the last decade, several morphological criteria of oocytes and embryos were evaluated with regard to their potential for predicting embryo viability. The introduction of polarization light microscopy systems has allowed the visualization of the meiotic spindle and the different layers of the zona pellucida in human oocytes on the basis of birefringence in a non-destructive way. Conflicting results have been reported regarding the predictive value in ICSI cycles. To assess the predictive ability of meiotic spindle and zona pellucida of human oocytes to implant by polarized microscopy in ICSI cycles. Prospective and observational clinical study. 903 oocytes from 94 ICSI cycles were analyzed with polarized microscopy. Meiotic spindle visualization and zona pellucida birefringence values by polarized microscopy were correlated with ICSI cycles results. Meiotic spindle visualization and birefringence values of zona pellucida decreased in a direct basis with increasing age. In patients aged over the 35 years, the percentage of a visible spindle and mean zona pellucida birefringence was lower than in younger patients. Fertilization rate were higher in oocytes with visible meiotic spindle (81.3% vs. 64%; p < 0.0001), as well as embryo quality (47.4% vs. 39%; p=0.01). Fertilization rate was higher in oocytes with positive values of birefringence (77.5 % vs. 68.5% p=0.005) with similar embryo quality. Conception cycles showed oocytes with higher mean value of zona birefringence and visible spindle vs. no-conception cycles (p<0.05). Polarized light microscopy improves oocyte selection, which significantly impacts in the development of embryos with greater implantation potential. The use of polarized light microscopy with sperm selection methods, blastocyst culture and deferred embryo transfers will contribute to transfer fewer embryos without diminishing rates of live birth and single embryo transfer will be more feasible.
Digital learning programs - competition for the classical microscope?
Schmidt, Peter
2013-01-01
The development of digital media has been impressive in recent years which is also among the reason for their increasing use in academic teaching. This is especially true for teaching Anatomy and Histology in the first two years in medical and dental curricula. Modern digital technologies allow for efficient, affordable and easily accessible distribution of histological images in high quality. Microscopy depends almost exclusively on such images. Since 20 years numerous digital teaching systems have been developed for this purpose. Respective developments have changed the ways students acquire knowledge and prepare for exams. Teaching staff should adapt lectures, seminars and labs accordingly. As a first step, a collection of high resolution digital microscopic slides was made available for students at the Friedrich-Schiller-University in Jena. The aim of the present study was to evaluate the importance of conventional light microscopy and related technologies in current and future medical and dental education aswell. A survey was done among 172 medical and dental students at the Friedrich-Schiller-University Jena. 51% of students use now frequently new digital media for learning histology in contrast to 5% in the year 2000 [1]. Digital media including Internet, CD- based learning combined with social networks successfully compete with classical light microscopy. PMID:23467698
Owens, Barry M; Kitchens, Michael
2007-11-01
Using scanning electron and light microscopy, this study qualitatively evaluated the erosive potential of carbonated cola beverages as well as sports and high-energy drinks on enamel surface substrate. Beverages used in this study included: Coca Cola Classic, Diet Coke, Gatorade sports drink, Red Bull high-energy drink, and tap water (control). Extracted human permanent molars free of hypocalcification and/or caries were used in this study. The coronal portion of each tooth was removed and sectioned longitudinally from the buccal to the lingual surface. The crown sections were embedded in acrylic resin, leaving the enamel surfaces exposed. Following finishing and polishing of all surfaces, one side was covered with red nail varnish while the remaining side was exposed to individual beverage immersion for 14 days, 24 hours per day, at 37 degrees C. The specimens were evaluated for enamel surface changes using scanning electron and light microscopy. Enamel specimens exhibited visual surface changes following immersion in the test beverages with Red Bull and Gatorade revealing the most striking surface morphological changes. Specimens subjected to Coca Cola Classic and Diet Coke immersion also displayed irregular post-treatment surface morphology. As verified by microscopic evaluation, all test beverages displayed enamel dissolution in the following order: Red Bull>Gatorade>Coca-Cola Classic>Diet Coke.
Imaging Subcellular Structures in the Living Zebrafish Embryo.
Engerer, Peter; Plucinska, Gabriela; Thong, Rachel; Trovò, Laura; Paquet, Dominik; Godinho, Leanne
2016-04-02
In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.
Castellano-Muñoz, Manuel; Peng, Anthony Wei; Salles, Felipe T.; Ricci, Anthony J.
2013-01-01
Confocal fluorescence microscopy is a broadly used imaging technique that enhances the signal-to-noise ratio by removing out of focal plane fluorescence. Confocal microscopes come with a variety of modifications depending on the particular experimental goals. Microscopes, illumination pathways, and light collection were originally focused upon obtaining the highest resolution image possible, typically on fixed tissue. More recently, live-cell confocal imaging has gained importance. Since measured signals are often rapid or transient, thus requiring higher sampling rates, specializations are included to enhance spatial and temporal resolution while maintaining tissue viability. Thus, a balance between image quality, temporal resolution, and tissue viability is needed. A subtype of confocal imaging, termed swept field confocal (SFC) microscopy, can image live cells at high rates while maintaining confocality. SFC systems can use a pinhole array to obtain high spatial resolution, similar to spinning disc systems. In addition, SFC imaging can achieve faster rates by using a slit to sweep the light across the entire image plane, thus requiring a single scan to generate an image. Coupled to a high-speed charge-coupled device camera and a laser illumination source, images can be obtained at greater than 1,000 frames per second while maintaining confocality. PMID:22831554
Cassette Series Designed for Live-Cell Imaging of Proteins and High Resolution Techniques in Yeast
Young, Carissa L.; Raden, David L.; Caplan, Jeffrey; Czymmek, Kirk; Robinson, Anne S.
2012-01-01
During the past decade, it has become clear that protein function and regulation are highly dependent upon intracellular localization. Although fluorescent protein variants are ubiquitously used to monitor protein dynamics, localization, and abundance; fluorescent light microscopy techniques often lack the resolution to explore protein heterogeneity and cellular ultrastructure. Several approaches have been developed to identify, characterize, and monitor the spatial localization of proteins and complexes at the sub-organelle level; yet, many of these techniques have not been applied to yeast. Thus, we have constructed a series of cassettes containing codon-optimized epitope tags, fluorescent protein variants that cover the full spectrum of visible light, a TetCys motif used for FlAsH-based localization, and the first evaluation in yeast of a photoswitchable variant – mEos2 – to monitor discrete subpopulations of proteins via confocal microscopy. This series of modules, complete with six different selection markers, provides the optimal flexibility during live-cell imaging and multicolor labeling in vivo. Furthermore, high-resolution imaging techniques include the yeast-enhanced TetCys motif that is compatible with diaminobenzidine photooxidation used for protein localization by electron microscopy and mEos2 that is ideal for super-resolution microscopy. We have examined the utility of our cassettes by analyzing all probes fused to the C-terminus of Sec61, a polytopic membrane protein of the endoplasmic reticulum of moderate protein concentration, in order to directly compare fluorescent probes, their utility and technical applications. Our series of cassettes expand the repertoire of molecular tools available to advance targeted spatiotemporal investigations using multiple live-cell, super-resolution or electron microscopy imaging techniques. PMID:22473760
Friesen, J; Fuhrmann, J; Kietzmann, H; Tannich, E; Müller, M; Ignatius, R
2018-03-23
Multiplex PCR assays offer highly sensitive and specific tools for the detection of enteric pathogens. This prospective study aimed at comparing the novel Roche LightMix Modular Assay Gastro Parasites (LMAGP) detecting Giardia duodenalis, Entamoeba histolytica, Cryptosporidium spp., Blastocystishominis, and Dientamoebafragilis with routine laboratory procedures. Stool specimens (n = 1062 from 1009 patients) were consecutively examined by LMAGP, R-Biopharm Ridascreen enzyme immunoassays (EIAs) detecting G. duodenalis or E. histolytica/dispar, and microscopy of wet mounts. Discrepant results were analysed by in-house PCR. D. fragilis or B. hominis were detected by LMAGP in 131 (14.4%) and 179 (19.9%; 16 samples positive by microscopy; p < 0.0001) of 909 samples, respectively. Of 918 samples analysed for Cryptosporidium spp., six were positive by LMAGP (three could be confirmed by Kinyoun staining and one by in-house PCR). G. duodenalis was detected by LMAGP, EIA, or microscopy in 20, 16, or 9 of 1039 stool samples, respectively; all four samples missed by EIA were confirmed by in-house PCR. In total, 938 stool samples were analysed for E. histolytica/dispar. Nine of ten EIA-positive samples were negative by LMAGP but positive by in-house PCR for E. dispar. One E. histolytica infection (positive by both LMAGP and in-house PCR) was missed by EIA and microscopy. Parasites only detected by microscopy included Enterobius vermicularis eggs (n = 3) and apathogenic amoebae (n = 27). The data call for routine use of multiplex PCR assays for the detection of enteric protozoan parasites in laboratory diagnostics. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas
2016-05-01
Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).
Hsieh, Feng-Jen; Chen, Yen-Wei; Huang, Yao-Kuan; Lee, Hsien-Ming; Lin, Chun-Hung; Chang, Huan-Cheng
2018-02-06
Containing an ensemble of nitrogen-vacancy centers in crystal matrices, fluorescent nanodiamonds (FNDs) are a new type of photostable markers that have found wide applications in light microscopy. The nanomaterial also has a dense carbon core, making it visible to electron microscopy. Here, we show that FNDs encapsulated in biotinylated lipids (bLs) are useful for subdiffraction imaging of antigens on cell surface with correlative light-electron microscopy (CLEM). The lipid encapsulation enables not only good dispersion of the particles in biological buffers but also high specific labeling of live cells. By employing the bL-encapsulated FNDs to target CD44 on HeLa cell surface through biotin-mediated immunostaining, we obtained the spatial distribution of these antigens by CLEM with a localization accuracy of ∼50 nm in routine operations. A comparative study with dual-color imaging, in which CD44 was labeled with FND and MICA/MICB was labeled with Alexa Fluor 488, demonstrated the superior performance of FNDs as fluorescent fiducial markers for CLEM of cell surface antigens.
NASA Astrophysics Data System (ADS)
Linnenberger, A.
2018-02-01
Wavefront shaping devices such as deformable mirrors, liquid crystal spatial light modulators (SLMs), and active lenses are of considerable interest in microscopy for aberration correction, volumetric imaging, and programmable excitation. Liquid crystal SLMs are high resolution phase modulators capable of creating complex phase profiles to reshape, or redirect light within a three-dimensional (3D) volume. Recent advances in Meadowlark Optics (MLO) SLMs reduce losses by increasing fill factor from 83.4% to 96%, and improving resolution from 512 x 512 pixels to 1920 x 1152 pixels while maintaining a liquid crystal response time of 300 Hz at 1064 nm. This paper summarizes new SLM capabilities, and benefits for microscopy.
2013-01-01
Pterygodermatites (Mesopectines) quentini n. sp. (Nematoda, Rictulariidae) is described from the murine host Praomys rostratus in the south of the Republic of Mali. It differs from other species of the subgenus by the morphology of the head, which bears four simple cephalic papillae and a nearly axial oral opening, the number of caudal papillae, the number of precloacal cuticular formations, unequal spicules and the ratio of spicule lengths/body length. The use of scanning electron microscopy in combination with conventional light microscopy enabled us to give a detailed description of the morphological characters of this new species. PMID:24025692
Steinbach, Gábor; Kaňa, Radek
2016-04-01
Photosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (through Time Controller offered by Olympus or Experiment Designer offered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with the Cell⊕Finder software was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) the Cell⊕Finder software with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser. Cell⊕Finder can be downloaded from http://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity in Synechocystis sp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.
Smart, M D; Cornman, R S; Iwanowicz, D D; McDermott-Kubeczko, M; Pettis, J S; Spivak, M S; Otto, C R V
2017-02-01
Taxonomic identification of pollen has historically been accomplished via light microscopy but requires specialized knowledge and reference collections, particularly when identification to lower taxonomic levels is necessary. Recently, next-generation sequencing technology has been used as a cost-effective alternative for identifying bee-collected pollen; however, this novel approach has not been tested on a spatially or temporally robust number of pollen samples. Here, we compare pollen identification results derived from light microscopy and DNA sequencing techniques with samples collected from honey bee colonies embedded within a gradient of intensive agricultural landscapes in the Northern Great Plains throughout the 2010-2011 growing seasons. We demonstrate that at all taxonomic levels, DNA sequencing was able to discern a greater number of taxa, and was particularly useful for the identification of infrequently detected species. Importantly, substantial phenological overlap did occur for commonly detected taxa using either technique, suggesting that DNA sequencing is an appropriate, and enhancing, substitutive technique for accurately capturing the breadth of bee-collected species of pollen present across agricultural landscapes. We also show that honey bees located in high and low intensity agricultural settings forage on dissimilar plants, though with overlap of the most abundantly collected pollen taxa. We highlight practical applications of utilizing sequencing technology, including addressing ecological issues surrounding land use, climate change, importance of taxa relative to abundance, and evaluating the impact of conservation program habitat enhancement efforts. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.
Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection
Mertz, Jerome; Kim, Jinhyun
2010-01-01
It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast. PMID:20210471
NASA Astrophysics Data System (ADS)
Yin, Yujian; Su, Ping; Ma, Jianshe
2018-01-01
A method to improve the radial resolution using special structured light is proposed in the field of digital holographic microscopy (DHM). A specimen is illuminated with circular symmetrical structured light that makes the spectrum have radial movement, so that high frequency components of the specimen are moved into the passband of the receiver to overcome the diffraction limit. In the DHM imaging system, Computer Generated Hologram (CGH) technology is used to generate the required structured light grating. Then the grating is loaded into a spatial light modulator (SLM) to obtain specific structured illumination. After recording the hologram, digital reconstruction, for the microstructure of a binary optical element that needs to observe radial distribution, the radial resolution of the specimen is improved experimentally compare it with the result of one-dimensional sinusoidal structured light imaging. And a method of designing structured light is presented.
Cai, Aijun; Wang, Xiuping; Guo, Aiying; Chang, Yongfang
2016-09-01
Polydopamine-Ag-AgCl composites (PDA-Ag-AgCl) were synthesized using a mussel-inspired method at room temperature, where PDA acts as a reducing agent to obtain the noble Ag nanoparticles from a precursor. The morphologies and structures of the as-prepared PDA-Ag-AgCl were characterized by several techniques including field emission scanning electron microscopy (FESEM), transmission electron microscopy (SEM), Raman spectra, and X-Ray photoelectron spectrum (XPS). The morphological observation depicts formation of nanoparticles with various micrometer size diameters and surface XPS analysis shows presence of various elements including Ag, N, Cl, and O. The enhanced absorbance of the PDA-Ag-AgCl particles in the visible light region is confirmed through UV-Vis diffuse reflectance spectra (DRS), and the charge transfer is demonstrated by photoluminescence (PL) and photocurrent response. The synthesized PDA-Ag-AgCl composites could be used as visible-light-driven photocatalysts for the degradation of Rhodamine B. The elevated photocatalytic activity is ascribed to the effective charge transfer from plasmon-excited Ag to AgCl that can improve the efficiency of the charge separation during the photocatalytic reaction. Furthermore, differences in the photocatalytic performance among the different PDA-Ag-AgCl composites are noticed that could be attributed to the Brunauer-Emmett-Teller (BET) specific surface area, which benefits to capture the visible light efficiently. The PDA-Ag-AgCl exhibits excellent stability without a significant loss in activity after 5cycles. The proposed method is low-cost and environmentally friendly, hence a promising new way to fabricate plasmon photocatalysts. Copyright © 2016. Published by Elsevier B.V.
Souza, Joyce; Garcia, Juberlan; Neves, Renata H; Machado-Silva, José Roberto; Maldonado, Arnaldo
2013-12-01
Trypsin and bile salts have been identified as important triggers for excystation of Echinostoma metacercariae. Although excystation in trematodes is a well-known phenomenon, some morphological developmental changes remain to be elucidated. In order to gain further insight into the in vitro development of metacercariae, we assayed different cultivating conditions: 0.5% trypsin and 0.5% bile salts; 1% trypsin and 1% bile salts; 1% trypsin and 0.5% bile salts; 0.5% bile salts; or 0.5% trypsin. By means of light microscopy and confocal microscopy, we characterized each encysted, activated, breached and excysted stage based on the morphological features. However, breached and excysted stages were not revealed in both bile salts and trypsin-free medium. Excretory concretions (25 ± 3.9) were visualized within excretory tubules, close to the ventral sucker and genital anlage. The oral sucker armed with spines and digestive system was similar to those of adult worms. The reproductive system is composed of a genital anlage and the cirrus sac primordium. In short, trypsin and bile salts associated were fundamental for the in vitro metacercariae excystation of Echinostoma paraensei. This article presents the first detailed information of all stages of metacercariae excystation obtained through light and confocal microscopy. Copyright © 2013. Published by Elsevier Inc.
Sousa-Figueiredo, José Carlos; Oguttu, David; Adriko, Moses; Besigye, Fred; Nankasi, Andrina; Arinaitwe, Moses; Namukuta, Annet; Betson, Martha; Kabatereine, Narcis B; Stothard, J Russell
2010-08-27
Prompt and correct diagnosis of malaria is crucial for accurate epidemiological assessment and better case management, and while the gold standard of light microscopy is often available, it requires both expertise and time. Portable fluorescent microscopy using the CyScope offers a potentially quicker, easier and more field-applicable alternative. This article reports on the strengths, limitations of this methodology and its diagnostic performance in cross-sectional surveys on young children and women of child-bearing age. 552 adults (99% women of child-bearing age) and 980 children (99% ≤ 5 years of age) from rural and peri-urban regions of Ugandan were examined for malaria using light microscopy (Giemsa-stain), a lateral-flow test (Paracheck-Pf) and the CyScope. Results from the surveys were used to calculate diagnostic performance (sensitivity and specificity) as well as to perform a receiver operating characteristics (ROC) analyses, using light microscopy as the gold-standard. Fluorescent microscopy (qualitative reads) showed reduced specificity (<40%), resulting in higher community prevalence levels than those reported by light microscopy, particularly in adults (+180% in adults and +20% in children). Diagnostic sensitivity was 92.1% in adults and 86.7% in children, with an area under the ROC curve of 0.63. Importantly, optimum performance was achieved for higher parasitaemia (>400 parasites/μL blood): sensitivity of 64.2% and specificity of 86.0%. Overall, the diagnostic performance of the CyScope was found inferior to that of Paracheck-Pf. Fluorescent microscopy using the CyScope is certainly a field-applicable and relatively affordable solution for malaria diagnoses especially in areas where electrical supplies may be lacking. While it is unlikely to miss higher parasitaemia, its application in cross-sectional community-based studies leads to many false positives (i.e. small fluorescent bodies of presently unknown origin mistaken as malaria parasites). Without recourse to other technologies, arbitration of these false positives is presently equivocal, which could ultimately lead to over-treatment; something that should be further explored in future investigations if the CyScope is to be more widely implemented.
Girshovitz, Pinhas; Frenklach, Irena; Shaked, Natan T
2015-11-01
We propose a new portable imaging configuration that can double the field of view (FOV) of existing off-axis interferometric imaging setups, including broadband off-axis interferometers. This configuration is attached at the output port of the off-axis interferometer and optically creates a multiplexed interferogram on the digital camera, which is composed of two off-axis interferograms with straight fringes at orthogonal directions. Each of these interferograms contains a different FOV of the imaged sample. Due to the separation of these two FOVs in the spatial-frequency domain, they can be fully reconstructed separately, while obtaining two complex wavefronts from the sample at once. Since the optically multiplexed off-axis interferogram is recorded by the camera in a single exposure, fast dynamics can be recorded with a doubled imaging area. We used this technique for quantitative phase microscopy of biological samples with extended FOV. We demonstrate attaching the proposed module to a diffractive phase microscopy interferometer, illuminated by a broadband light source. The biological samples used for the experimental demonstrations include microscopic diatom shells, cancer cells, and flowing blood cells.
Farnum, C E; Turgai, J; Wilsman, N J
1990-09-01
The functional unit within the growth plate consists of a column of chondrocytes that passes through a sequence of phases including proliferation, hypertrophy, and death. It is important to our understanding of the biology of the growth plate to determine if distal hypertrophic cells are viable, highly differentiated cells with the potential of actively controlling terminal events of endochondral ossification prior to their death at the chondro-osseous junction. This study for the first time reports on the visualization of living hypertrophic chondrocytes in situ, including the terminal hypertrophic chondrocyte. Chondrocytes in growth plate explants are visualized using rectified differential interference contrast microscopy. We record and measure, using time-lapse cinematography, the rate of movement of subcellular organelles at the limit of resolution of this light microscopy system. Control experiments to assess viability of hypertrophic chondrocytes include coincubating organ cultures with the intravital dye fluorescein diacetate to assess the integrity of the plasma membrane and cytoplasmic esterases. In this system, all hypertrophic chondrocytes, including the very terminal chondrocyte, exist as rounded, fully hydrated cells. By the criteria of intravital dye staining and organelle movement, distal hypertrophic chondrocytes are identical to chondrocytes in the proliferative and early hypertrophic cell zones.
2007-02-01
fabrication of dense thin sheets of gamma titanium aluminide . Polarized light microscopy revealed a fine-grained microstructure but a few isolated...HIPed (near-gamma) microstructure occurred. 15. SUBJECT TERMS gamma titanium aluminide , thin sheet, tape casting, hot isostatic pressing 16...sheets (250–300 μm thick) of gamma titanium aluminide (γ-TiAl). Polarized light microscopy revealed a fine-grained microstructure (average grain
Majumder, Erica L-W; Wolf, Benjamin M; Liu, Haijun; Berg, R Howard; Timlin, Jerilyn A; Chen, Min; Blankenship, Robert E
2017-11-01
Far-Red Light (FRL) acclimation is a process that has been observed in cyanobacteria and algae that can grow solely on light above 700 nm. The acclimation to FRL results in rearrangement and synthesis of new pigments and pigment-protein complexes. In this study, cyanobacteria containing chlorophyll f, Synechococcus sp. PCC 7335 and Halomicronema hongdechloris, were imaged as live cells with confocal microscopy. H. hongdechloris was further studied with hyperspectral confocal fluorescence microscopy (HCFM) and freeze-substituted thin-section transmission electron microscopy (TEM). Under FRL, phycocyanin-containing complexes and chlorophyll-containing complexes were determined to be physically separated and the synthesis of red-form phycobilisome and Chl f was increased. The timing of these responses was observed. The heterogeneity and eco-physiological response of the cells was noted. Additionally, a gliding motility for H. hongdechloris is reported.
Multiphoton imaging with high peak power VECSELs
NASA Astrophysics Data System (ADS)
Mirkhanov, Shamil; Quarterman, Adrian H.; Swift, Samuel; Praveen, Bavishna B.; Smyth, Conor J. C.; Wilcox, Keith G.
2016-03-01
Multiphoton imaging (MMPI) has become one of thee key non-invasive light microscopy techniques. This technique allows deep tissue imaging with high resolution and less photo-damage than conventional confocal microscopy. MPI is type of laser-scanning microscopy that employs localized nonlinear excitation, so that fluorescence is excited only with is scanned focal volume. For many years, Ti: sapphire femtosecond lasers have been the leading light sources for MPI applications. However, recent developments in laser sources and new types of fluorophores indicate that longer wavelength excitation could be a good alternative for these applications. Mode-locked VECSEELs have the potential to be low cost, compact light sources for MPI systems, with the additional advantage of broad wavelength coverage through use of different semiconductor material systems. Here, we use a femtosecond fibber laser to investigate the effect average power and repetition rate has on MPI image quality, to allow us to optimize our mode-locked VVECSELs for MPI.
Perspectives in Super-resolved Fluorescence Microscopy: What comes next?
NASA Astrophysics Data System (ADS)
Cremer, Christoph; Birk, Udo
2016-04-01
The Nobel Prize in Chemistry 2014 has been awarded to three scientists involved in the development of STED and PALM super-resolution fluorescence microscopy (SRM) methods. They have proven that it is possible to overcome the hundred year old theoretical limit for the resolution potential of light microscopy (of about 200 nm for visible light), which for decades has precluded a direct glimpse of the molecular machinery of life. None of the present-day super-resolution techniques have invalidated the Abbe limit for light optical detection; however, they have found clever ways around it. In this report, we discuss some of the challenges still to be resolved before arising SRM approaches will be fit to bring about the revolution in Biology and Medicine envisaged. Some of the challenges discussed are the applicability to image live and/or large samples, the further enhancement of resolution, future developments of labels, and multi-spectral approaches.
Phase Sensitive Demodulation in Multiphoton Microscopy
NASA Astrophysics Data System (ADS)
Fisher, Walt G.; Piston, David W.; Wachter, Eric A.
2002-06-01
Multiphoton laser scanning microscopy offers advantages in depth of penetration into intact samples over other optical sectioning techniques. To achieve these advantages it is necessary to detect the emitted light without spatial filtering. In this nondescanned (nonconfocal) approach, ambient room light can easily contaminate the signal, forcing experiments to be performed in absolute darkness. For multiphoton microscope systems employing mode-locked lasers, signal processing can be used to reduce such problems by taking advantage of the pulsed characteristics of such lasers. Specifically, by recovering fluorescence generated at the mode-locked frequency, interference from stray light and other ambient noise sources can be significantly reduced. This technology can be adapted to existing microscopes by inserting demodulation circuitry between the detector and data collection system. The improvement in signal-to-noise ratio afforded by this approach yields a more robust microscope system and opens the possibility of moving multiphoton microscopy from the research lab to more demanding settings, such as the clinic.
Multispectral digital lensless holographic microscopy: from femtosecond laser to white light LED
NASA Astrophysics Data System (ADS)
Garcia-Sucerquia, J.
2015-04-01
The use of femtosecond laser radiation and super bright white LED in digital lensless holographic microscopy is presented. For the ultrafast laser radiation two different configurations of operation of the microscope are presented and the dissimilar performance of each one analyzed. The microscope operating with a super bright white light LED in combination with optical filters shows very competitive performance as it is compared with more expensive optical sources. The broadband emission of both radiation sources allows the multispectral imaging of biological samples to obtain spectral responses and/or full color images of the microscopic specimens; sections of the head of a Drosophila melanogaster fly are imaged in this contribution. The simple, solid, compact, lightweight, and reliable architecture of digital lensless holographic microscopy operating with broadband light sources to image biological specimens exhibiting micrometer-sized details is evaluated in the present contribution.
Qiu, Wen-Ya; Zheng, Li-Bin; Pan, Fei; Wang, Bei-Bei; Yao, Yu-Feng
2016-09-02
Reis-Bücklers corneal dystrophy (RBCD) was consistently reported as a corneal dystrophy only affected Bowman's layer and superficial corneal stroma, and superficial keratectomy was a recommendation surgery for treatment in literatures. The study reported new histopathological and ultrastructural findings in RBCD caused by the Arg124Leu mutation of transforming growth factor induced (TGFBI) gene in a four-generation Chinese pedigree. Subjects including eight patients and seven unaffected family members received slit-lamp biomicroscopy and photography. DNA was obtained from all subjects, and exons 4 and 11 to 14 of TGFBI gene were analyzed by polymerase chain reaction and the products were sequenced. Anterior segment optical coherence tomography (AS OCT) and in vivo confocal microscopy were conducted for ten eyes of five patients. Based on the results of AS OCT and in vivo confocal microscopy, deep anterior lamellar keratoplasty (DLKP) using cryopreserved donor cornea was applied for four eyes of four patients. Four lamellar dystrophic corneal buttons were studied by light and transmission electron microscopy, and TGFBI immunohistochemistry. Eight patients had typical clinical manifestations of RBCD presenting recurrent painful corneal erosion starting in their early first decades, along with age-dependent progressive geographic corneal opacities. TGFBI sequencing revealed a heterozygous mutation, Arg124Leu in all eight patients. Anterior segment optical coherence tomography and in vivo confocal microscopy showed the dystrophic deposits involved not only in subepithelial and superficial stroma, but also in mid- or posterior stroma in four examined advanced eyes. Light microscopy showed Bowman's layer was absent, replaced by abnormal deposits stain bright red with Masson's trichrome. In superficial cornea, the deposits stacked and produced three to five continuous bands parallel to the corneal collagen lamellae. In mid- to posterior stroma, numerous granular or dot- like aggregates were heavily scattered, and most of them presented around the nuclei of stromal keratocytes. Transmission electron microscopy revealed the multiple electron-dense rod-shaped deposits aggregated and formed a characteristic pattern of three to five continuous bands in superficial cornea, which were similar to those seen under light microscopy. In mid- to posterior stroma, clusters of rod-shaped bodies were scattered extracellular or intracellular of the stromal keratocytes between the stromal lamellae suggesting the close relationship between mutated proteins and keratocyte. The study offer evidences indicating DLKP is a viable treatment option for advanced RBCD to avoid recurrence, and the mutated TGFBIp in dystrophic corneas are of keratocytes origin.
A soft X-ray beamline for transmission X-ray microscopy at ALBA.
Pereiro, E; Nicolás, J; Ferrer, S; Howells, M R
2009-07-01
The MISTRAL beamline is one of the seven phase-I beamlines at the ALBA synchrotron light source (Barcelona, Spain) that will be opened to users at the end of 2010. MISTRAL will be devoted to cryotomography in the water window and multi-keV spectral regions for biological applications. The optics design consists of a plane-grating monochromator that has been implemented using variable-line-spacing gratings to fulfil the requirements of X-ray microscopy using a reflective condenser. For instance, a fixed-focus condition independent of the included angle, constant magnification as well as coma and spherical aberration corrections are achieved with this system. The reported design is of wider use.
How to use 3D shadows for simple microscopy and vibrometry
NASA Astrophysics Data System (ADS)
Parikesit, Gea O. F.; Kusumaningtyas, Indraswari
2017-07-01
In 2014, we reported that shadows can be displayed in 3D using a stereoscopic setup. We now report that the 3D shadows can also be used to perform simple measurements, which are suitable for physics education in schools and colleges. Two different types of measurements are demonstrated, i.e. microscopy and vibrometry. Both types of measurements take advantage of the geometrical optics of the 3D shadows, where the 3D position of an object can be estimated using the coordinates of the colored light sources and the coordinates of the colored shadow images. We also include several student activities that can raise the students’ curiosity and capability.
NASA Astrophysics Data System (ADS)
Hsu, Jen-Feng; Dhingra, Shonali; D'Urso, Brian
2017-01-01
Mirror galvanometer systems (galvos) are commonly employed in research and commercial applications in areas involving laser imaging, laser machining, laser-light shows, and others. Here, we present a robust, moderate-speed, and cost-efficient home-built galvo system. The mechanical part of this design consists of one mirror, which is tilted around two axes with multiple surface transducers. We demonstrate the ability of this galvo by scanning the mirror using a computer, via a custom driver circuit. The performance of the galvo, including scan range, noise, linearity, and scan speed, is characterized. As an application, we show that this galvo system can be used in a confocal scanning microscopy system.
Neethu, Sahadevan; Midhun, Sebastian Jose; Sunil, M A; Soumya, Soman; Radhakrishnan, E K; Jyothis, Mathew
2018-03-01
The green synthesis of silver nanoparticles (AgNPs) using biological systems such as fungi has evolved to become an important area of nanobiotechnology. Herein, we report for the first time the light-induced extracellular synthesis of silver nanoparticles using algicolous endophytic fungus Penicillium polonicum ARA 10, isolated from the marine green alga Chetomorpha antennina. Parametric optimization, including the concentration of AgNO 3 , fungal biomass, ratio of cell filtrate and AgNO 3 , pH, reaction time and presence of light, was done for rapid AgNPs production. The obtained silver nanoparticles (AgNPs) were characterized by UV-Visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and Transmission electron microscopy (HRTEM-EDAX). The AgNPs showed a characteristic UV-visible peak at 430 nm with an average size of 10-15 nm. The NH stretches in FTIR indicate the presence of protein molecules. The Raman vibrational bands suggest that the molecules responsible for the reduction and stability of AgNPs were extracellular proteins produced by P.polonicum. Antibacterial evaluation of AgNPs against the major foodborne bacterial pathogen Salmonella enterica serovar Typhimurium MTCC 1251, was assessed by well diffusion, Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assay. Killing kinetic studies revealed complete killing of the bacterial cells within 4 h and the bactericidal nature of synthesized nanoparticles was confirmed by fluorescent microscopy and scanning electron microscopy. Furthermore, the bactericidal studies with Transmission electron microscopy (TEM) at different time intervals explored the presence of AgNPs in the cell wall of S.Typhimurium at about 30 min and the complete bacterial lysis was found at 24 h. The current research opens an insight into the green synthesis of AgNPs and the mechanism of bacterial lysis by direct damage to the cell wall. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schmidt, Hannes; Seki, David; Woebken, Dagmar; Eickhorst, Thilo
2017-04-01
Fluorescence in situ hybridization (FISH) is routinely used for the phylogenetic identification, detection, and quantification of single microbial cells environmental microbiology. Oligonucleotide probes that match the 16S rRNA sequence of target organisms are generally applied and the resulting signals are visualized via fluorescence microscopy. Consequently, the detection of the microbial cells of interest is limited by the resolution and the sensitivity of light microscopy where objects smaller than 0.2 µm can hardly be represented. Visualizing microbial cells at magnifications beyond light microscopy, however, can provide information on the composition and potential complexity of microbial habitats - the actual sites of nutrient cycling in soil and sediments. We present a recently developed technique that combines (1) the phylogenetic identification and detection of individual microorganisms by epifluorescence microscopy, with (2) the in situ localization of gold-labelled target cells on an ultrastructural level by SEM. Based on 16S rRNA targeted in situ hybridization combined with catalyzed reporter deposition, a streptavidin conjugate labeled with a fluorescent dye and nanogold particles is introduced into whole microbial cells. A two-step visualization process including an autometallographic enhancement of nanogold particles then allows for either fluorescence or electron microscopy, or a correlative application thereof. We will present applications of the Gold-FISH protocol to samples of marine sediments, agricultural soils, and plant roots. The detection and enumeration of bacterial cells in soil and sediment samples was comparable to CARD-FISH applications via fluorescence microscopy. Examples of microbe-surface interaction analysis will be presented on the basis of bacteria colonizing the rhizoplane of rice roots. In principle, Gold-FISH can be performed on any material to give a snapshot of microbe-surface interactions and provides a promising tool for the acquisition of correlative information on microorganisms within their respective habitats.
Höhn, K; Fuchs, J; Fröber, A; Kirmse, R; Glass, B; Anders-Össwein, M; Walther, P; Kräusslich, H-G; Dietrich, C
2015-08-01
In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV-pulsed mature human dendritic cells. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
ERIC Educational Resources Information Center
Mukherjee, Maheswari S.
2012-01-01
Traditionally, cytotechnology (CT) students have been trained by using light microscopy (LM) and glass slides. However, this method of training has some drawbacks. Several other educational programs with similar issues have incorporated virtual microscopy (VM) in their curricula. In VM, the specimens on glass slides are converted into virtual…
Scanning Capacitance Microscopy | Materials Science | NREL
obtained using scanning capacitance microscopy. Top Right: Image of p-type and n-type material, obtained 'fingers' of light-colored n-type material on a yellow and blue background representing p-type material ; measurement data were obtained using scanning capacitance microscopy. Bottom Right: Image of p-type and n-type
Electronic Blending in Virtual Microscopy
ERIC Educational Resources Information Center
Maybury, Terrence S.; Farah, Camile S.
2010-01-01
Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…
Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei
2016-01-01
Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis. PMID:27078690
HÖHN, K.; FUCHS, J.; FRÖBER, A.; KIRMSE, R.; GLASS, B.; ANDERS‐ÖSSWEIN, M.; WALTHER, P.; KRÄUSSLICH, H.‐G.
2015-01-01
Summary In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV‐pulsed mature human dendritic cells. PMID:25786567
Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.
Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki
2014-01-01
Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.
Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei
2016-01-01
Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis.
Use of a white light supercontinuum laser for confocal interference-reflection microscopy
Chiu, L-D; Su, L; Reichelt, S; Amos, WB
2012-01-01
Shortly after its development, the white light supercontinuum laser was applied to confocal scanning microscopy as a more versatile substitute for the multiple monochromatic lasers normally used for the excitation of fluorescence. This light source is now available coupled to commercial confocal fluorescence microscopes. We have evaluated a supercontinuum laser as a source for a different purpose: confocal interferometric imaging of living cells and artificial models by interference reflection. We used light in the range 460–700 nm where this source provides a reasonably flat spectrum, and obtained images free from fringe artefacts caused by the longer coherence length of conventional lasers. We have also obtained images of cytoskeletal detail that is difficult to see with a monochromatic laser. PMID:22432542
40 CFR 61.146 - Standard for spraying.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Microscopy, except as provided in paragraph (c) of this section. (b) For spray-on application of materials..., subpart E, 40 CFR part 763, section 1, Polarized Light Microscopy, on equipment and machinery, except as...
40 CFR 61.146 - Standard for spraying.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Microscopy, except as provided in paragraph (c) of this section. (b) For spray-on application of materials..., subpart E, 40 CFR part 763, section 1, Polarized Light Microscopy, on equipment and machinery, except as...
40 CFR 61.146 - Standard for spraying.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Microscopy, except as provided in paragraph (c) of this section. (b) For spray-on application of materials..., subpart E, 40 CFR part 763, section 1, Polarized Light Microscopy, on equipment and machinery, except as...
40 CFR 61.146 - Standard for spraying.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Microscopy, except as provided in paragraph (c) of this section. (b) For spray-on application of materials..., subpart E, 40 CFR part 763, section 1, Polarized Light Microscopy, on equipment and machinery, except as...
40 CFR 61.146 - Standard for spraying.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Microscopy, except as provided in paragraph (c) of this section. (b) For spray-on application of materials..., subpart E, 40 CFR part 763, section 1, Polarized Light Microscopy, on equipment and machinery, except as...
Setting up and running an advanced light microscopy and imaging facility.
Sánchez, Carlos; Muñoz, Ma Ángeles; Villalba, Maite; Labrador, Verónica; Díez-Guerra, F Javier
2011-07-01
During the last twenty years, interest in light microscopy and imaging techniques has grown in various fields, such as molecular and cellular biology, developmental biology, and neurobiology. In addition, the number of scientific articles and journals using these techniques is rapidly increasing. Nowadays, most research institutions require sophisticated microscopy systems to cover their investigation demands. In general, such instruments are too expensive and complex to be purchased and managed by a single laboratory or research group, so they have to be shared with other groups and supervised by specialized personnel. This is the reason why microscopy and imaging facilities are becoming so important at research institutions nowadays. In this unit, we have gathered and presented a number of issues and considerations from our own experience that we hope will be helpful when planning or setting up a new facility.
Wang, Lili; Eng, Edward T.; Law, Kenneth; Gordon, Ronald E.; Rice, William J.
2016-01-01
ABSTRACT Virological synapses (VS) are adhesive structures that form between infected and uninfected cells to enhance the spread of HIV-1. During T cell VS formation, viral proteins are actively recruited to the site of cell-cell contact where the viral material is efficiently translocated to target cells into heterogeneous, protease-resistant, antibody-inaccessible compartments. Using correlative light and electron microscopy (CLEM), we define the membrane topography of the virus-containing compartments (VCC) where HIV is found following VS-mediated transfer. Focused ion beam scanning electron microscopy (FIB-SEM) and serial sectioning transmission electron microscopy (SS-TEM) were used to better resolve the fluorescent Gag-containing structures within the VCC. We found that small punctate fluorescent signals correlated with single viral particles in enclosed vesicular compartments or surface-localized virus particles and that large fluorescent signals correlated with membranous Gag-containing structures with unknown pathological function. CLEM imaging revealed distinct pools of newly deposited viral proteins within endocytic and nonendocytic compartments in VS target T cells. IMPORTANCE This study directly correlates individual virus-associated objects observed in light microscopy with ultrastructural features seen by electron microscopy in the HIV-1 virological synapse. This approach elucidates which infection-associated ultrastructural features represent bona fide HIV protein complexes. We define the morphology of some HIV cell-to-cell transfer intermediates as true endocytic compartments and resolve unique synapse-associated viral structures created by transfer across virological synapses. PMID:27847357
Optimization of the excitation light sheet in selective plane illumination microscopy
Gao, Liang
2015-01-01
Selective plane illumination microscopy (SPIM) allows rapid 3D live fluorescence imaging on biological specimens with high 3D spatial resolution, good optical sectioning capability and minimal photobleaching and phototoxic effect. SPIM gains its advantage by confining the excitation light near the detection focal plane, and its performance is determined by the ability to create a thin, large and uniform excitation light sheet. Several methods have been developed to create such an excitation light sheet for SPIM. However, each method has its own strengths and weaknesses, and tradeoffs must be made among different aspects in SPIM imaging. In this work, we present a strategy to select the excitation light sheet among the latest SPIM techniques, and to optimize its geometry based on spatial resolution, field of view, optical sectioning capability, and the sample to be imaged. Besides the light sheets discussed in this work, the proposed strategy is also applicable to estimate the SPIM performance using other excitation light sheets. PMID:25798312
Vasotropic light-chain amyloidosis and ischaemic cholangiopathy.
Johnston, Emma L; Wilkinson, Mark; Knisely, A S
2015-06-25
A 75-year-old woman was incidentally found to have deranged liver function tests (LFTs). She was well, apart from 2 years of dyspnoea. Investigations had revealed atrial fibrillation and a right pleural effusion, without identified aetiology. On examination, the only finding was a palpable liver edge. Initial blood and ultrasound screening suggested no cause. The patient underwent liver biopsy. Microscopy showed κ-immunoglobulin light chains deposited exclusively in portal tracts, within blood vessel and bile duct walls. This pattern, although unusual, raised the possibility of κ-light chain disease. Serum electrophoresis was normal, as were serum immunoglobulin values. Serum concentrations of κ-light chains were elevated and microscopy of aspirated bone marrow found light-chain deposits with 10% plasmacytosis. Serum amyloid P (SAP) scintigraphy demonstrated splenic uptake. Myeloma, κ-light chain, with light-chain amyloidosis was diagnosed. The patient has responded well to cyclophosphamide, bortazomib and dexamethasone chemotherapy, and her LFTs are now nearly normal. 2015 BMJ Publishing Group Ltd.
A STED-FLIM microscope applied to imaging the natural killer cell immune synapse
NASA Astrophysics Data System (ADS)
Lenz, M. O.; Brown, A. C. N.; Auksorius, E.; Davis, D. M.; Dunsby, C.; Neil, M. A. A.; French, P. M. W.
2011-03-01
We present a stimulated emission depletion (STED) fluorescence lifetime imaging (FLIM) microscope, excited by a microstructured optical fibre supercontinuum source that is pumped by a femtosecond Ti:Sapphire-laser, which is also used for depletion. Implemented using a piezo-scanning stage on a laser scanning confocal fluorescence microscope system with FLIM realised using time correlated single photon counting (TCSPC), this provides convenient switching between confocal and STED-FLIM with spatial resolution down to below 60 nm. We will present our design considerations to make a robust instrument for biological applications including a comparison between fixed phase plate and spatial light modulator (SLM) approaches to shape the STED beam and the correlation of STED and confocal FLIM microscopy. Following our previous application of FLIM-FRET to study intercellular signalling at the immunological synapse (IS), we are employing STED microscopy to characterize the spatial distribution of cellular molecules with subdiffraction resolution at the IS. In particular, we are imaging cytoskeletal structure at the Natural Killer cell activated immune synapse. We will also present our progress towards multilabel STED microscopy to determine how relative spatial molecular organization, previously undetectable by conventional microscopy techniques, is important for NK cell cytotoxic function. Keywords: STED, Stimulated Emission Depletion Microscopy, Natural Killer (NK) cell, Fluorescence lifetime imaging, FLIM, Super resolution microscopy.
Fractal propagation method enables realistic optical microscopy simulations in biological tissues
Glaser, Adam K.; Chen, Ye; Liu, Jonathan T.C.
2017-01-01
Current simulation methods for light transport in biological media have limited efficiency and realism when applied to three-dimensional microscopic light transport in biological tissues with refractive heterogeneities. We describe here a technique which combines a beam propagation method valid for modeling light transport in media with weak variations in refractive index, with a fractal model of refractive index turbulence. In contrast to standard simulation methods, this fractal propagation method (FPM) is able to accurately and efficiently simulate the diffraction effects of focused beams, as well as the microscopic heterogeneities present in tissue that result in scattering, refractive beam steering, and the aberration of beam foci. We validate the technique and the relationship between the FPM model parameters and conventional optical parameters used to describe tissues, and also demonstrate the method’s flexibility and robustness by examining the steering and distortion of Gaussian and Bessel beams in tissue with comparison to experimental data. We show that the FPM has utility for the accurate investigation and optimization of optical microscopy methods such as light-sheet, confocal, and nonlinear microscopy. PMID:28983499
NASA Astrophysics Data System (ADS)
Montereali, R. M.; Bonfigli, F.; Menchini, F.; Vincenti, M. A.
2012-08-01
Broad-band light-emitting radiation-induced F2 and F3+ electronic point defects, which are stable and laser-active at room temperature in lithium fluoride crystals and films, are used in dosimeters, tuneable color-center lasers, broad-band miniaturized light sources and novel radiation imaging detectors. A brief review of their photoemission properties is presented, and their behavior at liquid nitrogen temperatures is discussed. Some experimental data from optical spectroscopy and fluorescence microscopy of these radiation-induced point defects in LiF crystals and thin films are used to obtain information about the coloration curves, the efficiency of point defect formation, the effects of photo-bleaching processes, etc. Control of the local formation, stabilization, and transformation of radiation-induced light-emitting defect centers is crucial for the development of optically active micro-components and nanostructures. Some of the advantages of low temperature measurements for novel confocal laser scanning fluorescence microscopy techniques, widely used for spatial mapping of these point defects through the optical reading of their visible photoluminescence, are highlighted.
Light Microscopy at Maximal Precision
NASA Astrophysics Data System (ADS)
Bierbaum, Matthew; Leahy, Brian D.; Alemi, Alexander A.; Cohen, Itai; Sethna, James P.
2017-10-01
Microscopy is the workhorse of the physical and life sciences, producing crisp images of everything from atoms to cells well beyond the capabilities of the human eye. However, the analysis of these images is frequently little more accurate than manual marking. Here, we revolutionize the analysis of microscopy images, extracting all the useful information theoretically contained in a complex microscope image. Using a generic, methodological approach, we extract the information by fitting experimental images with a detailed optical model of the microscope, a method we call parameter extraction from reconstructing images (PERI). As a proof of principle, we demonstrate this approach with a confocal image of colloidal spheres, improving measurements of particle positions and radii by 10-100 times over current methods and attaining the maximum possible accuracy. With this unprecedented accuracy, we measure nanometer-scale colloidal interactions in dense suspensions solely with light microscopy, a previously impossible feat. Our approach is generic and applicable to imaging methods from brightfield to electron microscopy, where we expect accuracies of 1 nm and 0.1 pm, respectively.
Towards native-state imaging in biological context in the electron microscope
Weston, Anne E.; Armer, Hannah E. J.
2009-01-01
Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039
NASA Astrophysics Data System (ADS)
Birk, Udo; Szczurek, Aleksander; Cremer, Christoph
2017-12-01
Current approaches to overcome the conventional limit of the resolution potential of light microscopy (of about 200 nm for visible light), often suffer from non-linear effects, which render the quantification of the image intensities in the reconstructions difficult, and also affect the quantification of the biological structure under investigation. As an attempt to face these difficulties, we discuss a particular method of localization microscopy which is based on photostable fluorescent dyes. The proposed method can potentially be implemented as a fast alternative for quantitative localization microscopy, circumventing the need for the acquisition of thousands of image frames and complex, highly dye-specific imaging buffers. Although the need for calibration remains in order to extract quantitative data (such as the number of emitters), multispectral approaches are largely facilitated due to the much less stringent requirements on imaging buffers. Furthermore, multispectral acquisitions can be readily obtained using commercial instrumentation such as e.g. the conventional confocal laser scanning microscope.
Lidke, Diane S; Lidke, Keith A
2012-06-01
A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.
Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging
NASA Astrophysics Data System (ADS)
Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei
2014-02-01
Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.
Zacher, Denise; Liu, Jianing; Huber, Klaus; Fischer, Roland A
2009-03-07
The formation of [Cu(3)(btc)(2)] (HKUST-1; btc = 1,3,5-benzenetricarboxylate) nanocrystals from a super-saturated mother solution at room temperature was monitored by time-resolved light scattering (TLS); the system is characterized by a rapid growth up to a size limit of 200 nm within a few minutes, and the size and shape of the crystallites were also determined by scanning electron microscopy (SEM).
Janik, Ewa; Bednarska, Joanna; Zubik, Monika; Puzio, Michal; Luchowski, Rafal; Grudzinski, Wojciech; Mazur, Radoslaw; Garstka, Maciej; Maksymiec, Waldemar; Kulik, Andrzej; Dietler, Giovanni; Gruszecki, Wieslaw I.
2013-01-01
In this study, we analyzed multibilayer lipid-protein membranes composed of the photosynthetic light-harvesting complex II (LHCII; isolated from spinach [Spinacia oleracea]) and the plant lipids monogalcatosyldiacylglycerol and digalactosyldiacylglycerol. Two types of pigment-protein complexes were analyzed: those isolated from dark-adapted leaves (LHCII) and those from leaves preilluminated with high-intensity light (LHCII-HL). The LHCII-HL complexes were found to be partially phosphorylated and contained zeaxanthin. The results of the x-ray diffraction, infrared imaging microscopy, confocal laser scanning microscopy, and transmission electron microscopy revealed that lipid-LHCII membranes assemble into planar multibilayers, in contrast with the lipid-LHCII-HL membranes, which form less ordered structures. In both systems, the protein formed supramolecular structures. In the case of LHCII-HL, these structures spanned the multibilayer membranes and were perpendicular to the membrane plane, whereas in LHCII, the structures were lamellar and within the plane of the membranes. Lamellar aggregates of LHCII-HL have been shown, by fluorescence lifetime imaging microscopy, to be particularly active in excitation energy quenching. Both types of structures were stabilized by intermolecular hydrogen bonds. We conclude that the formation of trans-layer, rivet-like structures of LHCII is an important determinant underlying the spontaneous formation and stabilization of the thylakoid grana structures, since the lamellar aggregates are well suited to dissipate excess energy upon overexcitation. PMID:23898030
Janik, Ewa; Bednarska, Joanna; Zubik, Monika; Puzio, Michal; Luchowski, Rafal; Grudzinski, Wojciech; Mazur, Radoslaw; Garstka, Maciej; Maksymiec, Waldemar; Kulik, Andrzej; Dietler, Giovanni; Gruszecki, Wieslaw I
2013-06-01
In this study, we analyzed multibilayer lipid-protein membranes composed of the photosynthetic light-harvesting complex II (LHCII; isolated from spinach [Spinacia oleracea]) and the plant lipids monogalcatosyldiacylglycerol and digalactosyldiacylglycerol. Two types of pigment-protein complexes were analyzed: those isolated from dark-adapted leaves (LHCII) and those from leaves preilluminated with high-intensity light (LHCII-HL). The LHCII-HL complexes were found to be partially phosphorylated and contained zeaxanthin. The results of the x-ray diffraction, infrared imaging microscopy, confocal laser scanning microscopy, and transmission electron microscopy revealed that lipid-LHCII membranes assemble into planar multibilayers, in contrast with the lipid-LHCII-HL membranes, which form less ordered structures. In both systems, the protein formed supramolecular structures. In the case of LHCII-HL, these structures spanned the multibilayer membranes and were perpendicular to the membrane plane, whereas in LHCII, the structures were lamellar and within the plane of the membranes. Lamellar aggregates of LHCII-HL have been shown, by fluorescence lifetime imaging microscopy, to be particularly active in excitation energy quenching. Both types of structures were stabilized by intermolecular hydrogen bonds. We conclude that the formation of trans-layer, rivet-like structures of LHCII is an important determinant underlying the spontaneous formation and stabilization of the thylakoid grana structures, since the lamellar aggregates are well suited to dissipate excess energy upon overexcitation.
van Wyk, A. C.; Marais, B. J.; Warren, R. M.; van Wyk, S. S.; Wright, C. A.
2011-01-01
SUMMARY BACKGROUND Fine-needle aspiration biopsy (FNAB) is a simple, safe and effective method for investigating suspected mycobacterial lymphadenitis in children. Fluorescence microscopy can provide rapid mycobacterial confirmation. Light-emitting diodes (LEDs) provide a cheap and robust excitation light source, making fluorescence microscopy feasible in resource-limited settings. OBJECTIVE To compare the diagnostic performance of LED fluorescence microscopy on Papanicolaou (PAP) stained smears with the conventional mercury vapour lamp (MVL). METHODS FNAB smears routinely collected from palpable lymph nodes in children with suspected mycobacterial disease were PAP-stained and evaluated by two independent microscopists using different excitatory light sources (MVL and LED). Mycobacterial culture results provided the reference standard. A manually rechargeable battery-powered LED power source was evaluated in a random subset. RESULTS We evaluated 182 FNAB smears from 121 children (median age 31 months, interquartile range 10–67). Mycobacterial cultures were positive in 84 of 121 (69%) children. The mean sensitivity with LED (mains-powered), LED (rechargeable battery-powered) and MVL was respectively 48.2%, 50.0% and 51.8% (specificity 78.4%, 86.7% and 78.4%). Inter-observer variation was similar for LED and MVL (κ = 0.5). CONCLUSION LED fluorescence microscopy provides a reliable alternative to conventional methods and has many favourable attributes that would facilitate improved, decentralised diagnostic services. PMID:21276297
Single-Molecule Light-Sheet Imaging of Suspended T Cells.
Ponjavic, Aleks; McColl, James; Carr, Alexander R; Santos, Ana Mafalda; Kulenkampff, Klara; Lippert, Anna; Davis, Simon J; Klenerman, David; Lee, Steven F
2018-05-08
Adaptive immune responses are initiated by triggering of the T cell receptor. Single-molecule imaging based on total internal reflection fluorescence microscopy at coverslip/basal cell interfaces is commonly used to study this process. These experiments have suggested, unexpectedly, that the diffusional behavior and organization of signaling proteins and receptors may be constrained before activation. However, it is unclear to what extent the molecular behavior and cell state is affected by the imaging conditions, i.e., by the presence of a supporting surface. In this study, we implemented single-molecule light-sheet microscopy, which enables single receptors to be directly visualized at any plane in a cell to study protein dynamics and organization in live, resting T cells. The light sheet enabled the acquisition of high-quality single-molecule fluorescence images that were comparable to those of total internal reflection fluorescence microscopy. By comparing the apical and basal surfaces of surface-contacting T cells using single-molecule light-sheet microscopy, we found that most coated-glass surfaces and supported lipid bilayers profoundly affected the diffusion of membrane proteins (T cell receptor and CD45) and that all the surfaces induced calcium influx to various degrees. Our results suggest that, when studying resting T cells, surfaces are best avoided, which we achieve here by suspending cells in agarose. Copyright © 2018. Published by Elsevier Inc.
Role of immunoflourescence in the diagnosis of glomerulonephritis.
Nasir, Humaira; Chaudhry, Sarah; Raza, Wajiha; Moatasim, Ambreen; Mamoon, Nadira; Akhtar, Noreen
2012-03-01
To correlate the findings of immunoflorescence (IF) with morphology in renal biopsies of patients with glomerulonephritis (GN) of both primary and secondary nature. The cross-sectional analytical study was conducted at the Shifa International Hospital's Department of Pathology form March 2007 to August 2008, during which a total of 207 renal biopsies were done. Of them, the study included 92 cases which were diagnosed as primary or secondary glomerulonephritis under light microscope. Those cases were selected in which both light microscopy (LM) and immunoflorescence were done. Of the 92 patients, 79 (85.8%) were adults (> or = 19 years) and 13 (14%) were children (< 19 years). The mean age of adults was 36.44 +/- 11.55 (range 19-69 years) and that of the children was 10.54 +/- 3.85 years (range 4-18 years). immunoflorescence changed the morphologic diagnosis in 20 (21.73%) cases. The pattern of disease was: membranous glomerulonephritis in 24%, focal segmental glomerulosclerosis (FSGS) in 18.4%, mesangiocapillary glomerulonephritis in 2%, and minimal change disease (MCD) in 16% of the cases. Light microscopy alone can misdiagnose renal disease. This is especially important in cases of early stage membranous, IgA nephropathy (IgAN), Lupus nephritis and IgM nephropathy (IgMN), as these entities can only be diagnosed by correlating the microscopic, immunoflorescence findings and clinical details.
Microscopic video observation of capillary vessel systems using diffuse back lighting
NASA Astrophysics Data System (ADS)
Sakai, Minako; Arai, Hiroki; Iwai, Toshiaki
2017-04-01
We have been developing a simple and practical video microscopy system based on absorption spectra of biological substance to perform spectroscopic observation of living tissues. The diffuse backlighting effect is actively used in the developed system, which is generated by multiple light scattering in the tissue. It is demonstrated that the light specularly reflected from the skin surface can be completely suppressed in the microscopic observation and the biological activity of the capillary vessel systems distributed under the skin can be successfully observed. As a result, we can confirm the effectiveness of the video microscopy system using diffuse backlighting and the applicability of our developed system.
Analysis of off-axis incoherent digital holographic microscopy
NASA Astrophysics Data System (ADS)
Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro
2017-05-01
Off-axis incoherent digital holography that enables single-shot three-dimensional (3D) distribution is introduced in the paper. Conventional fluorescence microscopy images 3D fields by sectioning, this prevents instant imaging of fast reactions of living cells. In order to realize digital holography from incoherent light, we adapted common path configuration to achieve the best temporal coherence. And by introducing gratings, we shifted the direction of each light to achieve off-axis interference. Simulations and preliminary experiments using LED light have confirmed the results. We expect to use this method to realize 3D phase imaging and fluorescent imaging at the same time from the same biological sample.
Thermal Images of Seeds Obtained at Different Depths by Photoacoustic Microscopy (PAM)
NASA Astrophysics Data System (ADS)
Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.
2015-06-01
The objective of the present study was to obtain thermal images of a broccoli seed ( Brassica oleracea) by photoacoustic microscopy, at different modulation frequencies of the incident light beam ((0.5, 1, 5, and 20) Hz). The thermal images obtained in the amplitude of the photoacoustic signal vary with each applied frequency. In the lowest light frequency modulation, there is greater thermal wave penetration in the sample. Likewise, the photoacoustic signal is modified according to the structural characteristics of the sample and the modulation frequency of the incident light. Different structural components could be seen by photothermal techniques, as shown in the present study.
NASA Astrophysics Data System (ADS)
Srivastava, Vishal; Nandy, Sreyankar; Singh Mehta, Dalip
2013-04-01
Topography and tomography of fish cornea is reconstructed using high resolution white light interference microscopy. White light interferograms at different depths were recorded by moving the object axially. For each depth position, five phase shifted interferograms were recorded and analyzed. From the reconstructed phase maps, the corneal topography and hence the refractive index was determined and from amplitude images the cross-sectional image of fish cornea was reconstructed. In the present method, we utilize a nearly common-path interference microscope and wide field illumination and hence do not require any mechanical B-scan. Therefore, the phase stability of the recorded data is improved.
Tanev, Stoyan; Sun, Wenbo; Pond, James; Tuchin, Valery V; Zharov, Vladimir P
2009-09-01
The formulation of the finite-difference time-domain (FDTD) approach is presented in the framework of its potential applications to in-vivo flow cytometry based on light scattering. The consideration is focused on comparison of light scattering by a single biological cell alone in controlled refractive-index matching conditions and by cells labeled by gold nanoparticles. The optical schematics including phase contrast (OPCM) microscopy as a prospective modality for in-vivo flow cytometry is also analyzed. The validation of the FDTD approach for the simulation of flow cytometry may open up a new avenue in the development of advanced cytometric techniques based on scattering effects from nanoscale targets. 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2013-01-01
Background In biomedical research, a huge variety of different techniques is currently available for the structural examination of small specimens, including conventional light microscopy (LM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), microscopic X-ray computed tomography (microCT), and many others. Since every imaging method is physically limited by certain parameters, a correlative use of complementary methods often yields a significant broader range of information. Here we demonstrate the advantages of the correlative use of microCT, light microscopy, and transmission electron microscopy for the analysis of small biological samples. Results We used a small juvenile bivalve mollusc (Mytilus galloprovincialis, approximately 0.8 mm length) to demonstrate the workflow of a correlative examination by microCT, LM serial section analysis, and TEM-re-sectioning. Initially these three datasets were analyzed separately, and subsequently they were fused in one 3D scene. This workflow is very straightforward. The specimen was processed as usual for transmission electron microscopy including post-fixation in osmium tetroxide and embedding in epoxy resin. Subsequently it was imaged with microCT. Post-fixation in osmium tetroxide yielded sufficient X-ray contrast for microCT imaging, since the X-ray absorption of epoxy resin is low. Thereafter, the same specimen was serially sectioned for LM investigation. The serial section images were aligned and specific organ systems were reconstructed based on manual segmentation and surface rendering. According to the region of interest (ROI), specific LM sections were detached from the slides, re-mounted on resin blocks and re-sectioned (ultrathin) for TEM. For analysis, image data from the three different modalities was co-registered into a single 3D scene using the software AMIRA®. We were able to register both the LM section series volume and TEM slices neatly to the microCT dataset, with small geometric deviations occurring only in the peripheral areas of the specimen. Based on co-registered datasets the excretory organs, which were chosen as ROI for this study, could be investigated regarding both their ultrastructure as well as their position in the organism and their spatial relationship to adjacent tissues. We found structures typical for mollusc excretory systems, including ultrafiltration sites at the pericardial wall, and ducts leading from the pericardium towards the kidneys, which exhibit a typical basal infolding system. Conclusions The presented approach allows a comprehensive analysis and presentation of small objects regarding both the overall organization as well as cellular and subcellular details. Although our protocol involves a variety of different equipment and procedures, we maintain that it offers savings in both effort and cost. Co-registration of datasets from different imaging modalities can be accomplished with high-end desktop computers and offers new opportunities for understanding and communicating structural relationships within organisms and tissues. In general, the correlative use of different microscopic imaging techniques will continue to become more widespread in morphological and structural research in zoology. Classical TEM serial section investigations are extremely time consuming, and modern methods for 3D analysis of ultrastructure such as SBF-SEM and FIB-SEM are limited to very small volumes for examination. Thus the re-sectioning of LM sections is suitable for speeding up TEM examination substantially, while microCT could become a key-method for complementing ultrastructural examinations. PMID:23915384
Wave optics theory and 3-D deconvolution for the light field microscope
Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc
2013-01-01
Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383
Polymeric capsule-cushioned leukocyte cell membrane vesicles as a biomimetic delivery platform
NASA Astrophysics Data System (ADS)
Gao, Changyong; Wu, Zhiguang; Lin, Zhihua; Lin, Xiankun; He, Qiang
2016-02-01
We report a biomimetic delivery of microsized capsule-cushioned leukocyte membrane vesicles (CLMVs) through the conversion of freshly reassembled leukocyte membrane vesicles (LMVs), including membrane lipids and membrane-bound proteins onto the surface of layer-by-layer assembled polymeric multilayer microcapsules. The leukocyte membrane coating was verified by using electron microscopy, a quartz crystal microbalance, dynamic light scattering, and confocal laser scanning microscopy. The resulting CLMVs have the ability to effectively evade clearance by the immune system and thus prolong the circulation time in mice. Moreover, we also show that the right-side-out leukocyte membrane coating can distinctly improve the accumulation of capsules in tumor sites through the molecular recognition of membrane-bound proteins of CLMVs with those of tumor cells in vitro and in vivo. The natural cell membrane camouflaged polymeric multilayer capsules with the immunosuppressive and tumor-recognition functionalities of natural leukocytes provide a new biomimetic delivery platform for disease therapy.We report a biomimetic delivery of microsized capsule-cushioned leukocyte membrane vesicles (CLMVs) through the conversion of freshly reassembled leukocyte membrane vesicles (LMVs), including membrane lipids and membrane-bound proteins onto the surface of layer-by-layer assembled polymeric multilayer microcapsules. The leukocyte membrane coating was verified by using electron microscopy, a quartz crystal microbalance, dynamic light scattering, and confocal laser scanning microscopy. The resulting CLMVs have the ability to effectively evade clearance by the immune system and thus prolong the circulation time in mice. Moreover, we also show that the right-side-out leukocyte membrane coating can distinctly improve the accumulation of capsules in tumor sites through the molecular recognition of membrane-bound proteins of CLMVs with those of tumor cells in vitro and in vivo. The natural cell membrane camouflaged polymeric multilayer capsules with the immunosuppressive and tumor-recognition functionalities of natural leukocytes provide a new biomimetic delivery platform for disease therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08407e
NASA Astrophysics Data System (ADS)
Li, Tianmeng; Hui, Hui; Ma, He; Yang, Xin; Tian, Jie
2018-02-01
Non-invasive imaging technologies, such as magnetic resonance imaging (MRI) and optical multimodality imaging methods, are commonly used for diagnosing and supervising the development of inflammatory bowel disease (IBD). These in vivo imaging methods can provide morphology changes information of IBD in macro-scale. However, it is difficult to investigate the intestinal wall in molecular and cellular level. State-of-art light-sheet and two-photon microscopy have the ability to acquire the changes for IBD in micro-scale. The aim of this work is to evaluate the size of the enterocoel and the thickness of colon wall using both MRI for in vivo imaging, and light-sheet and two-photon microscope for in vitro imaging. C57BL/6 mice were received 3.5% Dextran sodium sulfate (DSS) in the drinking water for 5 days to build IBD model. Mice were imaged with MRI on days 0, 6 to observe colitis progression. After MRI imaging, the mice were sacrificed to take colons for tissue clearing. Then, light-sheet and two-photon microscopies are used for in vitro imaging of the cleared samples. The experimental group showed symptoms of bloody stools, sluggishness and weight loss. It showed that the colon wall was thicker while the enterocoel was narrower compare to control group. The more details are observed using light-sheet and two-photon microscope. It is demonstrated that hybrid of MRI in macro-scale and light-sheet and two-photon microscopy in micro-scale imaging is feasible for colon inflammation diagnosing and supervising.
Characteristic Thickened Cell Walls of the Bracts of the ‘Eternal Flower’ Helichrysum bracteatum
Nishikawa, Kuniko; Ito, Hiroaki; Awano, Tatsuya; Hosokawa, Munetaka; Yazawa, Susumu
2008-01-01
Background and Aims Helichrysum bracteatum is called an ‘eternal flower’ and has large, coloured, scarious bracts. These maintain their aesthetic value without wilting or discoloration for many years. There have been no research studies of cell death or cell morphology of the scarious bract, and hence the aim of this work was to elucidate these characteristics for the bract of H. bracteatum. Methods DAPI (4'6-diamidino-2-phenylindol dihydrochloride) staining and fluorescence microscopy were used for observation of cell nuclei. Light microscopy (LM), transmission electron microscopy (TEM) and polarized light microscopy were used for observation of cells, including cell wall morphology. Key Results Cell death occurred at the bract tip during the early stage of flower development. The cell wall was the most prominent characteristic of H. bracteatum bract cells. Characteristic thickened secondary cell walls on the inside of the primary cell walls were observed in both epidermal and inner cells. In addition, the walls of all cells exhibited birefringence. Characteristic thickened secondary cell walls have orientated cellulose microfibrils as well as general secondary cell walls of the tracheary elements. For comparison, these characters were not observed in the petal and bract tissues of Chrysanthemum morifolium. Conclusions Bracts at anthesis are composed of dead cells. Helichrysum bracteatum bracts have characteristic thickened secondary cell walls that have not been observed in the parenchyma of any other flowers or leaves. The cells of the H. bracteatum bract differ from other tissues with secondary cell walls, suggesting that they may be a new cell type. PMID:18436550
PREFACE: Ultrafast biophotonics Ultrafast biophotonics
NASA Astrophysics Data System (ADS)
Gu, Min; Reid, Derryck; Ben-Yakar, Adela
2010-08-01
The use of light to explore biology can be traced to the first observations of tissue made with early microscopes in the mid-seventeenth century, and has today evolved into the discipline which we now know as biophotonics. This field encompasses a diverse range of activities, each of which shares the common theme of exploiting the interaction of light with biological material. With the rapid advancement of ultrafast optical technologies over the last few decades, ultrafast lasers have increasingly found applications in biophotonics, to the extent that the distinctive new field of ultrafast biophotonics has now emerged, where robust turnkey ultrafast laser systems are facilitating cutting-edge studies in the life sciences to take place in everyday laboratories. The broad spectral bandwidths, precision timing resolution, low coherence and high peak powers of ultrafast optical pulses provide unique opportunities for imaging and manipulating biological systems. Time-resolved studies of bio-molecular dynamics exploit the short pulse durations from such lasers, while other applications such as optical coherence tomography benefit from the broad optical bandwidths possible by using super-continuum generation and additionally allowing for high speed imaging with speeds as high as 47 000 scans per second. Continuing progress in laser-system technology is accelerating the adoption of ultrafast techniques across the life sciences, both in research laboratories and in clinical applications, such as laser-assisted in situ keratomileusis (LASIK) eye surgery. Revolutionizing the field of optical microscopy, two-photon excitation fluorescence (TPEF) microscopy has enabled higher spatial resolution with improved depth penetration into biological specimens. Advantages of this nonlinear optical process include: reduced photo-interactions, allowing for extensive imaging time periods; simultaneously exciting multiple fluorescent molecules with only one excitation wavelength; and reduced chromatic aberration effects. These extensive advantages have led to further exploration of nonlinear processes including second-harmonic generation (SHG) microscopy and third-harmonic generation (THG) microscopy. Second-harmonic generation has provided biologists with an extremely powerful tool for generating contrast in biological imaging, with the additional benefit of non-invasive three-dimensional imaging. The recent popularity of THG microscopy is largely due to the fact that three-dimensional imaging is achievable without the need for any labels, but rather relying on the intrinsic properties of the biological specimen itself. This optical nonlinear technique has attracted much attention recently from the biological community due to its non-invasive capabilities. Users of ultrafast lasers in the biological and medical fields are becoming a fast-growing community, employing pulse-shaping microscopy, resolution-enhancing microscopy techniques, linear and nonlinear micro-spectroscopy, functional deep-tissue imaging, optical coherence tomography, nonlinear fluorescence microscopy, molecular imaging and control, harmonic microscopy and femtosecond lifetime imaging, for cutting-edge research concerning the interaction of light with biological dynamics. The adaptability of ultrafast lasers to interact with a large array of materials through nonlinear excitation has enabled precise control of laser fluence allowing for highly localized material interactions, permitting micro-structured fabricated surfaces. The resultant multi-dimensional fabricated micro-structures are capable of replicating and/or manipulating microenvironments for controlled cell biology. In this special issue of Journal of Optics readers have a chance to view a collection of new contributions to the growing research field of ultrafast biophotonics. They are presented with recent advances in ultrafast technology applied to biological and medical investigations, where topics include advances in the visualization and identification of photo-reaction dynamics of biological functions under relevant physiological conditions, theoretically proposed imaging designs for obtaining super-resolved optical sectioned images in single exposures and fabricated micro-structured surfaces for biological micro-environments. We hope the collection will stimulate innovative new research in this growing field by showcasing new techniques for the visualization and manipulation of complex biological systems using linear and and nonlinear optical processes. Professor Min Gu would like to acknowledge Dr Betty Kouskousis for her contribution and support towards this editorial.
Elemental distribution analysis of urinary crystals.
Fazil Marickar, Y M; Lekshmi, P R; Varma, Luxmi; Koshy, Peter
2009-10-01
Various crystals are seen in human urine. Some of them, particularly calcium oxalate dihydrate, are seen normally. Pathological crystals indicate crystal formation initiating urinary stones. Unfortunately, many of the relevant crystals are not recognized in light microscopic analysis of the urinary deposit performed in most of the clinical laboratories. Many crystals are not clearly identifiable under the ordinary light microscopy. The objective of the present study was to perform scanning electron microscopic (SEM) assessment of various urinary deposits and confirm the identity by elemental distribution analysis (EDAX). 50 samples of urinary deposits were collected from urinary stone clinic. Deposits containing significant crystalluria (more than 10 per HPF) were collected under liquid paraffin in special containers and taken up for SEM studies. The deposited crystals were retrieved with appropriate Pasteur pipettes, and placed on micropore filter paper discs. The fluid was absorbed by thicker layers of filter paper underneath and discs were fixed to brass studs. They were then gold sputtered to 100 A and examined under SEM (Jeol JSM 35C microscope). When crystals were seen, their morphology was recorded by taking photographs at different angles. At appropriate magnification, EDAX probe was pointed to the crystals under study and the wave patterns analyzed. Components of the crystals were recognized by utilizing the data. All the samples analyzed contained significant number of crystals. All samples contained more than one type of crystal. The commonest crystals encountered included calcium oxalate monohydrate (whewellite 22%), calcium oxalate dihydrate (weddellite 32%), uric acid (10%), calcium phosphates, namely, apatite (4%), brushite (6%), struvite (6%) and octocalcium phosphate (2%). The morphological appearances of urinary crystals described were correlated with the wavelengths obtained through elemental distribution analysis. Various urinary crystals that are not reported under light microscopy could be recognized by SEM-EDAX combination. EDAX is a significant tool for recognizing unknown crystals not identified by ordinary light microscopy or SEM alone.
Chisman, Robin; Lowry, Danielle; Saeed, Mujahid A; Tiwari, Alok; David, Miruna D
2017-08-01
The aim of this study was to evaluate the role of microscopy, Gram stain and the culture of tissue samples in the antibiotic treatment of patients with diabetic foot infection. A retrospective review of patients with a diabetic foot infection was undertaken. Data analysed included the severity of infection, antibiotic prescribing patterns, microscopy and culture results. A total of 71 patients were included, from whom 114 tissue samples were collected. Gram stain results were in agreement with final culture results in 45·8% (n = 54) of samples. Overall sensitivity and specificity of the Gram stains were low (74·5% and 69·8%, respectively), although the specificity for Gram-negative rods was high (98·5%). The presence or absence of 'pus cells' on microscopy was a poor predictor of culture results. Empirical prescribing of antibiotics was in accordance with local policy in 31·1% of patients, improving to 86·8 % following culture results. Microscopy, a skilled laboratory procedure, was generally a poor predictor of tissue culture results. However, the presence of Gram-negative rods was suggestive of isolation in the culture of such organisms and could allow the early broadening of antibiotic treatment. Despite initial poor compliance of empirical antibiotic treatment regimens, prescribing was adjusted in light of culture results, suggesting these were important for clinicians. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
A Combination Tissue Engineering Strategy for Schwann Cell-Induced Spinal Cord Repair
2016-10-01
block copolymer consisting of polyethylene oxide (PEO) and polypropylene oxide (PPO). It has thermoreversible gelation properties when used at...high; Zeus Inc., Orangeburg, SC) were placed on top of the aligned and random fibrous PVDF-TrFE disks in 96-well polypropylene plates to prevent them...2011. Preparation of spinal cord injured tissue for light and electron microscopy including preparation for immunostaining. In: Lane LE , Dunnett BS
Electrical and Optical Characterization of Nanowire based Semiconductor Devices
NASA Astrophysics Data System (ADS)
Ayvazian, Talin
This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand and optimize the electrical and optical properties of two types of nanoscale devices; in first type lithographically patterned nanowire electrodeposition (LPNE) method has been utilized to fabricate nanowire field effect transistors (NWFET) and second type involved the development of light emitting semiconductor nanowire arrays (NWLED). Field effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrode- position (LPNE) process on SiO2 /Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C x 4 h either with or without exposure to CdCl 2 in methanol a grain growth promoter. The influence of CdCl2 treatment was to increase the mean grain diameter as determined by X-ray diffraction pattern and to convert the crystal structure from cubic to wurtzite. Transfer characteristics showed an increase of the field effect mobility (mu eff) by an order of magnitude and increase of the Ion/I off ratio by a factor of 3-4. Light emitting devices (NW-LED) based on lithographically patterned pc-CdSe nanowire arrays have been investigated. Electroluminescence (EL) spectra of CdSe nanowires under various biases exhibited broad emission spectra centered at 750 nm close to the band gap of CdSe (1.7eV). To enhance the intensity of the emitted light and the external quantum efficiency (EQE), the distance between the contacts were reduced from 5 mum to less than 1 mum which increased the efficiency by an order of magnitude. Also, increasing the annealing temperature of nanowires from 300 °C x4 h to 450 This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand and optimize the electrical and optical properties of two types of nanoscale devices; in first type lithographically patterned nanowire electrodeposition (LPNE) method has been utilized to fabricate nanowire field effect transistors (NWFET) and second type involved the development of light emitting semiconductor nanowire arrays (NWLED). Field effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrode- position (LPNE) process on SiO2 /Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C x 4 h either with or without exposure to CdCl2 in methanol- a grain growth promoter. The influence of CdCl2 treatment was to increase the mean grain diameter as determined by X-ray diffraction pattern and to convert the crystal structure from cubic to wurtzite. Transfer characteristics showed an increase of the field effect mobility (mueff<) by an order of magnitude and increase of the Ion/Ioff ratio by a factor of 3-4. Light emitting devices (NW-LED) based on lithographically patterned pc-CdSe nanowire arrays have been investigated. Electroluminescence (EL) spectra of CdSe nanowires under various biases exhibited broad emission spectra centered at 750 nm close to the band gap of CdSe (1.7eV). To enhance the intensity of the emitted light and the external quantum efficiency (EQE), the distance between the contacts were reduced from 5 mum to less than 1 mum which increased the efficiency by an order of magnitude. Also, increasing the annealing temperature of nanowires from 300 °C x4 h to 450 °C x 1h enhanced grain growth confirmed by structural characterization including X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Raman Spectroscopy. Correspondingly the light emission intensity and EQE improved due to this grain growth. Kelvin probe force microscopy (KPFM) was utilized to understand mechanism of light emission in CdSe nanowires. Arrays of CdTe nanowires were electrodeposited using LPNE process where the elec- trodeposition of pc-CdTe was carried out at two temperatures: 20 °C (cold) and 55 °C (hot). Transmission electron microscopy (TEM) and X-ray diffraction (XRD) re- sults revealed higher crystallinity, larger grain size and presence of Te for nanowires prepared at 55°C compared to nanowires deposited at 20°C. Nanowires prepared at 55°C showed higher electrical conductivity and enhanced electroluminescence proper- ties, including higher light emission intensity and improved External Quantum Efficiency (EQE). Electrical conduction mechanism also investigated for CdTe nanowires. Thermionic emission over schottky barrier height was identified as the dominant charge transport mechanism in pc-CdTe nanowires.°C x 1h enhanced grain growth confirmed by structural characterization including X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Raman Spectroscopy. Correspondingly the light emission intensity and EQE improved due to this grain growth. Kelvin probe force microscopy (KPFM) was utilized to understand mechanism of light emission in CdSe nanowires. Arrays of CdTe nanowires were electrodeposited using LPNE process where the electrodeposition of pc-CdTe was carried out at two temperatures: 20 °C (cold) and 55 °C (hot). Transmission electron microscopy (TEM) and X-ray diffraction (XRD) re- sults revealed higher crystallinity, larger grain size and presence of Te for nanowires prepared at 55°C compared to nanowires deposited at 20°C. Nanowires prepared at 55°C showed higher electrical conductivity and enhanced electroluminescence properties, including higher light emission intensity and improved External Quantum Efficiency (EQE). Electrical conduction mechanism also investigated for CdTe nanowires. Thermionic emission over schottky barrier height was identified as the dominant charge transport mechanism in pc-CdTe nanowires.
Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenekhe, Samson A.; Ginger, David S.; Cao, Guozhong
We combined the synthesis of new polymers and organic-inorganic hybrid materials with new experimental characterization tools to investigate bulk heterojunction (BHJ) polymer solar cells and hybrid organic-inorganic solar cells during the 2007-2010 period (phase I) of this project. We showed that the bulk morphology of polymer/fullerene blend solar cells could be controlled by using either self-assembled polymer semiconductor nanowires or diblock poly(3-alkylthiophenes) as the light-absorbing and hole transport component. We developed new characterization tools in-house, including photoinduced absorption (PIA) spectroscopy, time-resolved electrostatic force microscopy (TR-EFM) and conductive and photoconductive atomic force microscopy (c-AFM and pc-AFM), and used them to investigatemore » charge transfer and recombination dynamics in polymer/fullerene BHJ solar cells, hybrid polymer-nanocrystal (PbSe) devices, and dye-sensitized solar cells (DSSCs); we thus showed in detail how the bulk photovoltaic properties are connected to the nanoscale structure of the BHJ polymer solar cells. We created various oxide semiconductor (ZnO, TiO 2) nanostructures by solution processing routes, including hierarchical aggregates and nanorods/nanotubes, and showed that the nanostructured photoanodes resulted in substantially enhanced light-harvesting and charge transport, leading to enhanced power conversion efficiency of dye-sensitized solar cells.« less
A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece.
Bravakos, Panos; Kotoulas, Georgios; Skaraki, Katerina; Pantazidou, Adriani; Economou-Amilli, Athena
2016-05-01
Strains of Cyanobacteria isolated from mats of 9 thermal springs of Greece have been studied for their taxonomic evaluation. A polyphasic taxonomic approach was employed which included: morphological observations by light microscopy and scanning electron microscopy, maximum parsimony, maximum likelihood and Bayesian analysis of 16S rDNA sequences, secondary structural comparisons of 16S-23S rRNA Internal Transcribed Spacer sequences, and finally environmental data. The 17 cyanobacterial isolates formed a diverse group that contained filamentous, coccoid and heterocytous strains. These included representatives of the polyphyletic genera of Synechococcus and Phormidium, and the orders Oscillatoriales, Spirulinales, Chroococcales and Nostocales. After analysis, at least 6 new taxa at the genus level provide new evidence in the taxonomy of Cyanobacteria and highlight the abundant diversity of thermal spring environments with many potential endemic species or ecotypes. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of an environmental high-voltage electron microscope for reaction science.
Tanaka, Nobuo; Usukura, Jiro; Kusunoki, Michiko; Saito, Yahachi; Sasaki, Katuhiro; Tanji, Takayoshi; Muto, Shunsuke; Arai, Shigeo
2013-02-01
Environmental transmission electron microscopy and ultra-high resolution electron microscopic observation using aberration correctors have recently emerged as topics of great interest. The former method is an extension of the so-called in situ electron microscopy that has been performed since the 1970s. Current research in this area has been focusing on dynamic observation with atomic resolution under gaseous atmospheres and in liquids. Since 2007, Nagoya University has been developing a new 1-MV high voltage (scanning) transmission electron microscope that can be used to observe nanomaterials under conditions that include the presence of gases, liquids and illuminating lights, and it can be also used to perform mechanical operations to nanometre-sized areas as well as electron tomography and elemental analysis by electron energy loss spectroscopy. The new instrument has been used to image and analyse various types of samples including biological ones.
NASA Astrophysics Data System (ADS)
Taormina, Michael J.
Adapting the tools of optical microscopy to the large-scale dynamic systems encountered in the development of multicellular organisms provides a path toward understanding the physical processes necessary for complex life to form and function. Obtaining quantitatively meaningful results from such systems has been challenging due to difficulty spanning the spatial and temporal scales representative of the whole, while also observing the many individual members from which complex and collective behavior emerges. A three-dimensional imaging technique known as light sheet fluorescence microscopy provides a number of significant benefits for surmounting these challenges and studying developmental systems. A thin plane of fluorescence excitation light is produced such that it coincides with the focal plane of an imaging system, providing rapid acquisition of optically sectioned images that can be used to construct a three-dimensional rendition of a sample. I discuss the implementation of this technique for use in larva of the model vertebrate Danio rerio (zebrafish). The nature of light sheet imaging makes it especially well suited to the study of large systems while maintaining good spatial resolution and minimizing damage to the specimen from excessive exposure to excitation light. I show the results from a comparative study that demonstrates the ability to image certain developmental processes non-destructively, while in contrast confocal microscopy results in abnormal growth due to phototoxicity. I develop the application of light sheet microscopy to the study of a previously inaccessible system: the bacterial colonization of a host organism. Using the technique, we are able to obtain a survey of the intestinal tract of a larval zebrafish and observe the location of microbes as they grow and establish a stable population in an initially germ free fish. Finally, I describe a new technique to measure the fluid viscosity of this intestinal environment in vivo using magnetically driven particles. By imaging such particles as they are oscillated in a frequency chirped field, it is possible to calculate properties such as the viscosity of the material in which they are embedded. Here I provide the first known measurement of intestinal mucus rheology in vivo.
NASA Astrophysics Data System (ADS)
Pal, Shreyasi; Dutta, Shibsankar; De, Sukanta
2018-05-01
RGO/BiVO4 composites were synthesized by a simple hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) and surface analysis (BET). The photocatalytic activity of the as-prepared samples was evaluated by studying the degradation of model dyes rhodamine B (RhB) under visible light. The prepared rGO/BiVO4 composites exhibited higher photocatalytic activity for the degradation of RhB with a maximum removal rate of 86% under visible light irradiation under visible-light irradiation than pure BiVO4 nanoparticles (63%). This behavior could be associated to their higher specific surface area (BET), increased light absorption intensity and the degradation of electron-hole pair recombination in BiVO4 with the introduction of the rGO.
Setting Up a Simple Light Sheet Microscope for In Toto Imaging of C. elegans Development
Bertrand, Vincent; Lenne, Pierre-François
2014-01-01
Fast and low phototoxic imaging techniques are pre-requisite to study the development of organisms in toto. Light sheet based microscopy reduces photo-bleaching and phototoxic effects compared to confocal microscopy, while providing 3D images with subcellular resolution. Here we present the setup of a light sheet based microscope, which is composed of an upright microscope and a small set of opto-mechanical elements for the generation of the light sheet. The protocol describes how to build, align the microscope and characterize the light sheet. In addition, it details how to implement the method for in toto imaging of C. elegans embryos using a simple observation chamber. The method allows the capture of 3D two-colors time-lapse movies over few hours of development. This should ease the tracking of cell shape, cell divisions and tagged proteins over long periods of time. PMID:24836407
Mansoor, Awais; Ahmed, Wamiq M; Samarapungavan, Ala; Cirillo, John; Schwarte, David; Robinson, J Paul; Duerstock, Bradley S
2010-01-01
A web-based application was developed to remotely view slide specimens and control all functions of a research-level light microscopy workstation, called AccessScope. Students and scientists with upper limb mobility and visual impairments are often unable to use a light microscope by themselves and must depend on others in its operation. Users with upper limb mobility impairments and low vision were recruited to assist in the design process of the AccessScope personal computer (PC) user interface. Participants with these disabilities were evaluated in their ability to use AccessScope to perform microscopical tasks. AccessScope usage was compared with inspecting prescanned slide images by grading participants' identification and understanding of histological features and knowledge of microscope operation. With AccessScope subjects were able to independently perform common light microscopy functions through an Internet browser by employing different PC pointing devices or accessibility software according to individual abilities. Subjects answered more histology and microscope usage questions correctly after first participating in an AccessScope test session. AccessScope allowed users with upper limb or visual impairments to successfully perform light microscopy without assistance. This unprecedented capability is crucial for students and scientists with disabilities to perform laboratory coursework or microscope-based research and pursue science, technology, engineering, and mathematics fields.
Hampton, Cheri M; Strauss, Joshua D; Ke, Zunlong; Dillard, Rebecca S; Hammonds, Jason E; Alonas, Eric; Desai, Tanay M; Marin, Mariana; Storms, Rachel E; Leon, Fredrick; Melikyan, Gregory B; Santangelo, Philip J; Spearman, Paul W; Wright, Elizabeth R
2016-01-01
Correlative light and electron microscopy (CLEM) combines spatiotemporal information from fluorescence light microscopy (fLM) with high-resolution structural data from cryo-electron tomography (cryo-ET). These technologies provide opportunities to bridge knowledge gaps between cell and structural biology. Here we describe our protocol for correlated cryo-fLM, cryo-electron microscopy (cryo-EM), and cryo-ET (i.e., cryo-CLEM) of virus-infected or transfected mammalian cells. Mammalian-derived cells are cultured on EM substrates, using optimized conditions that ensure that the cells are spread thinly across the substrate and are not physically disrupted. The cells are then screened by fLM and vitrified before acquisition of cryo-fLM and cryo-ET images, which is followed by data processing. A complete session from grid preparation through data collection and processing takes 5–15 d for an individual experienced in cryo-EM. PMID:27977021
NASA Technical Reports Server (NTRS)
Frandsen, Athela F.
2016-01-01
Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often advised, If you cant determine a specific optical property of a particle after two minutes, move onto another configuration. Since optical properties can be seen so very quickly and easily under polarized light, it is only necessary to spend a maximum of two minutes on a technique to determine a particular property, though often only a few seconds are required.
Hillman, Elizabeth Mc; Voleti, Venkatakaushik; Patel, Kripa; Li, Wenze; Yu, Hang; Perez-Campos, Citlali; Benezra, Sam E; Bruno, Randy M; Galwaduge, Pubudu T
2018-06-01
As optical reporters and modulators of cellular activity have become increasingly sophisticated, the amount that can be learned about the brain via high-speed cellular imaging has increased dramatically. However, despite fervent innovation, point-scanning microscopy is facing a fundamental limit in achievable 3D imaging speeds and fields of view. A range of alternative approaches are emerging, some of which are moving away from point-scanning to use axially-extended beams or sheets of light, for example swept confocally aligned planar excitation (SCAPE) microscopy. These methods are proving effective for high-speed volumetric imaging of the nervous system of small organisms such as Drosophila (fruit fly) and D. Rerio (Zebrafish), and are showing promise for imaging activity in the living mammalian brain using both single and two-photon excitation. This article describes these approaches and presents a simple model that demonstrates key advantages of axially-extended illumination over point-scanning strategies for high-speed volumetric imaging, including longer integration times per voxel, improved photon efficiency and reduced photodamage. Copyright © 2018 Elsevier Ltd. All rights reserved.
Facile one-pot synthesis of hexagons of NaSrB5O9:Tb3+ phosphor for solid-state lighting
NASA Astrophysics Data System (ADS)
Ramesh, B.; Dillip, G. R.; Deva Prasad Raju, B.; Somasundaram, K.; Prasad Peddi, Siva; de Carvalho dos Anjos, Virgilio; Joo, S. W.
2017-04-01
NaSrB5O9:Tb3+ hexagons were synthesized by a facile solid-state reaction method. The synthesized powders were structurally examined by x-ray diffraction analysis (XRD), and Rietveld refinement was performed using the XRD data and Fullprof software. Hexagon-like morphology was observed using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The elemental composition of the phosphors was investigated qualitatively by energy dispersive x-ray analysis (EDS) and quantitatively by x-ray photoelectron spectroscopy (XPS). The phosphor has a strong green emission at 545 nm under excitation of 379 nm, which is due to the 5{{\\text{D}}4}{{\\to}7}{{\\text{F}}5} transition of the Tb3+ ion. A lifetime of 3.48 ms was obtained for the phosphor. The important parameters of the light source were determined, such as the thermal quenching, critical distance, the nature of the dopant ion interaction, color coordinates, and quantum yield values. Other reported properties include the site occupancy of the dopant, surface properties, morphological properties, and optical properties.
György, Bence; Módos, Károly; Pállinger, Eva; Pálóczi, Krisztina; Pásztói, Mária; Misják, Petra; Deli, Mária A; Sipos, Aron; Szalai, Anikó; Voszka, István; Polgár, Anna; Tóth, Kálmán; Csete, Mária; Nagy, György; Gay, Steffen; Falus, András; Kittel, Agnes; Buzás, Edit I
2011-01-27
Numerous diseases, recently reported to associate with elevated microvesicle/microparticle (MP) counts, have also long been known to be characterized by accelerated immune complex (IC) formation. The goal of this study was to investigate the potential overlap between parameters of protein complexes (eg, ICs or avidin-biotin complexes) and MPs, which might perturb detection and/or isolation of MPs. In this work, after comprehensive characterization of MPs by electron microscopy, atomic force microscopy, dynamic light-scattering analysis, and flow cytometry, for the first time, we drive attention to the fact that protein complexes, especially insoluble ICs, overlap in biophysical properties (size, light scattering, and sedimentation) with MPs. This, in turn, affects MP quantification by flow cytometry and purification by differential centrifugation, especially in diseases in which IC formation is common, including not only autoimmune diseases, but also hematologic disorders, infections, and cancer. These data may necessitate reevaluation of certain published data on patient-derived MPs and contribute to correct the clinical laboratory assessment of the presence and biologic functions of MPs in health and disease.
Wood, Bayden R; Hermelink, Antje; Lasch, Peter; Bambery, Keith R; Webster, Grant T; Khiavi, Mehdi Asghari; Cooke, Brian M; Deed, Samantha; Naumann, Dieter; McNaughton, Don
2009-06-01
Our goal is to produce a rapid and accurate diagnostic tool for malaria using resonance Raman spectroscopy to detect small inclusions of haemozoin in Plasmodium falciparum infected red blood cells. In pursuit of this aim we serendipitously discovered a partial dark-field effect generated by our experimental setup, which helps identify in thick blood films potential parasites that are normally difficult to see with conventional bright-field microscopy. The haemozoin deposits 'light up' and these can be selectively targeted with the Raman microscope to confirm the presence or absence of haemozoin by the strong 1569 cm(-1) band, which is a marker for haemozoin. With newly developed imaging Raman microscopes incorporating ultra-sensitive rapid readout CCDs it is possible to obtain spectra with a good signal-to-noise ratio in 1 second. Moreover, images from a smear of potentially infected cells can be recorded and analysed with multivariate methods. The reconstructed images show what appear to be sub-micron-inclusions of haemozoin in some cells indicating that the technique has potential to identify low pigmented forms of the parasite including early trophozoite-stage infected cells. Further work is required to unambiguously confirm the presence of such forms through systematic staining but the results are indeed promising and may lead to the development of a new Raman-based malaria diagnostic.
Fluorescence Microscopy Gets Faster and Clearer: Roles of Photochemistry and Selective Illumination
Wolenski, Joseph S.; Julich, Doerthe
2014-01-01
Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophore chemistry have enabled scientists to see beyond the diffraction barrier, image deeper into live specimens, and acquire images at unprecedented speed. Selective plane illumination microscopy has provided significant gains in the spatial and temporal acquisition of fluorescence specimens several mm in thickness. With commercial systems now available, this method promises to expand on recent advances in 2-photon deep-tissue imaging with improved speed and reduced photobleaching compared to laser scanning confocal microscopy. Superresolution microscopes are also available in several modalities and can be coupled with selective plane illumination techniques. The combination of methods to increase resolution, acquisition speed, and depth of collection are now being married to common microscope systems, enabling scientists to make significant advances in live cell and in situ imaging in real time. We show that light sheet microscopy provides significant advantages for imaging live zebrafish embryos compared to laser scanning confocal microscopy. PMID:24600334
Contributed review: Review of integrated correlative light and electron microscopy.
Timmermans, F J; Otto, C
2015-01-01
New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Bindu; Mulla, Rafiq; Rabinal, M. K., E-mail: mkrabinal@yahoo.com
2015-06-24
Herein, a facile chemical approach has been adopted to prepare silver nanoparticles (AgNPs)- graphene (G) composite to study photothermal effect. Sodium borohydride (SBH), a strong reducing agent has been selected for this work. Effect of SBH concentrations on optical behavior of AgNPs-G composite was also investigated. Resultant materials were characterized by various techniques including X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), optical absorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM micrographs confirm wrapping of AgNPs into graphene whereas XRD analysis reveals their particle size variation between 47 nm to 69 nm. Optical studies throw a light on theirmore » strong absorption behavior towards solar radiation.« less
Isolating and moving single atoms using silicon nanocrystals
Carroll, Malcolm S.
2010-09-07
A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka
2016-03-01
Near infrared (NIR) photoimmunotherapy (PIT) is a new type of molecularly-targeted cancer photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (MAb) targeting cancer-specific cell-surface molecules. When exposed to NIR light, the conjugate induces a highly-selective necrotic/ immunogenic cell death (ICD) only in receptor-positive, MAb-IR700-bound cancer cells. This cell death occurs as early as 1 minute after exposure to NIR light. Meanwhile, immediately adjacent receptor-negative cells including immune cells are unharmed. Therefore, we hypothesized that NIR-PIT could efficiently elicit host immunity against treated cancer cells. Three-dimensional dynamic quantitative phase contrast microscopy and selective plane illumination microscopy of tumor cells undergoing PIT showed rapid swelling in treated cells immediately after light exposure suggesting rapid water influx into cells, followed by irreversible morphologic changes such as bleb formation, and rupture of vesicles. Furthermore, biological markers of ICD including relocation of HSP70/90 and calreticulin, and release of ATP and High Mobility Group Box 1 (HMGB1), were clearly detected immediately after NIR-PIT. When NIR-PIT was performed in a mixture of cancer cells and immature dendritic cells, maturation of immature dendritic cells was strongly induced rapidly after NIR-PIT. In summary, NIR-PIT can induce necrotic/ immunogenic cell death that promotes rapid maturation of immature dendritic cells adjacent to dying cancer cells. Therefore, NIR-PIT could efficiently initiate host immune response against NIR-PIT treated cancer cells growing in patients.
Correlation of live-cell imaging with volume scanning electron microscopy.
Lucas, Miriam S; Günthert, Maja; Bittermann, Anne Greet; de Marco, Alex; Wepf, Roger
2017-01-01
Live-cell imaging is one of the most widely applied methods in live science. Here we describe two setups for live-cell imaging, which can easily be combined with volume SEM for correlative studies. The first procedure applies cell culture dishes with a gridded glass support, which can be used for any light microscopy modality. The second approach is a flow-chamber setup based on Ibidi μ-slides. Both live-cell imaging strategies can be followed up with serial blockface- or focused ion beam-scanning electron microscopy. Two types of resin embedding after heavy metal staining and dehydration are presented making best use of the particular advantages of each imaging modality: classical en-bloc embedding and thin-layer plastification. The latter can be used only for focused ion beam-scanning electron microscopy, but is advantageous for studying cell-interactions with specific substrates, or when the substrate cannot be removed. En-bloc embedding has diverse applications and can be applied for both described volume scanning electron microscopy techniques. Finally, strategies for relocating the cell of interest are discussed for both embedding approaches and in respect to the applied light and scanning electron microscopy methods. Copyright © 2017 Elsevier Inc. All rights reserved.
In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy.
Weber, Michael; Huisken, Jan
2015-01-01
Detailed studies of heart development and function are crucial for our understanding of cardiac failures and pave the way for better diagnostics and treatment. However, the constant motion and close incorporation into the cardiovascular system prevent in vivo studies of the living, unperturbed heart. The complementary strengths of the zebrafish model and light sheet microscopy provide a useful platform to fill this gap. High-resolution images of the embryonic vertebrate heart are now recorded from within the living animal: deep inside the unperturbed heart we can follow cardiac contractions and measure action potentials and calcium transients. Three-dimensional reconstructions of the entire beating heart with cellular resolution give new insights into its ever-changing morphology and facilitate studies into how individual cells form the complex cardiac network. In addition, cardiac dynamics and robustness are now examined with targeted optical manipulation. Overall, the combination of zebrafish and light sheet microscopy represents a promising addition for cardiac research and opens the door to a better understanding of heart function and development.
NASA Technical Reports Server (NTRS)
Harrison, G.; Mackenzie, W.
1973-01-01
The lungs of rats exposed to OF2 were examined by light and electron microscopy. The exposures were for 30 to 60 minutes to an average of 4.5 ppm OF2, the minimal lethal dose. Animals were sacrificed after 30 (group 1) and 60 minutes (group 2) exposure and 1 (group 3) and 2 (group 4) hours following 60 minutes exposure. Mild gross changes were observed in groups 3 and 4, but no light microscopic lesions were found. Alterations were noted in all four groups using electron microscopy. These were mostly indicative of fluid change and consisted of blebbing of the endothelial and epithelial layers of the alveolocapillary wall and rarification of the cytoplasm of these cells. The lamellar bodies of the Type II cells showed an increasing and consistent loss of matrix structure and density. These fine structural changes increased in quantity and severity as time of exposure or post-exposure period increased. (Modified author abstract)
Onset of molar incisor hypomineralization (MIH).
Fagrell, Tobias G; Salmon, Phil; Melin, Lisa; Norén, Jörgen G
2013-01-01
The etiological factors and timing of the onset of molar incisor hypomineralization (MIH) are still not clear. The aim of this study was to examine ground radial and sagittal sections from teeth diagnosed with MIH using light microscopy, polarized light microscopy and X-ray micro-computed tomography (XMCT) and to estimate the onset and timing of the MIH and to relate the hypomineralized enamel to the incremental lines. Thirteen extracted permanent first molars diagnosed MIH, were analyzed with light microscopy and XMCT. The hypomineralized areas were mainly located in the mesio-buccal cusps, starting at the enamel-dentin-junction and continuing towards the enamel surface. In a relative gray scale analysis the values decreased from the EDJ towards the enamel surface. The findings indicate that the ameloblasts in the hypomineralized enamel are capable of forming an enamel of normal thickness, but with a substantial reduction of their capacity for maturation of enamel. Chronologically, it is estimated that the timing of the disturbance is at a period during the first 6-7 months of age.
Light Sheet Fluorescence Microscopy (LSFM)
Adams, Michael W.; Loftus, Andrew F.; Dunn, Sarah E.; Joens, Matthew S.; Fitzpatrick, James A.J.
2015-01-01
The development of confocal microscopy techniques introduced the ability to optically section fluorescent samples in the axial dimension, perpendicular to the image plane. These approaches, via the placement of a pinhole in the conjugate image plane, provided superior resolution in the axial (z) dimension resulting in nearly isotropic optical sections. However, increased axial resolution, via pinhole optics, comes at the cost of both speed and excitation efficiency. Light Sheet Fluorescent Microscopy (LSFM), a century old idea (Siedentopf and Zsigmondy, 1902) made possible with modern developments in both excitation and detection optics, provides sub-cellular resolution and optical sectioning capabilities without compromising speed or excitation efficiency. Over the past decade, several variations of LSFM have been implemented each with its own benefits and deficiencies. Here we discuss LSFM fundamentals and outline the basic principles of several major light sheet based imaging modalities (SPIM, inverted SPIM, multi-view SPIM, Bessel beam SPIM, and stimulated emission depletion SPIM while considering their biological relevance in terms of intrusiveness, temporal resolution, and sample requirements. PMID:25559221
Scene-based Shack-Hartmann wavefront sensor for light-sheet microscopy
NASA Astrophysics Data System (ADS)
Lawrence, Keelan; Liu, Yang; Dale, Savannah; Ball, Rebecca; VanLeuven, Ariel J.; Sornborger, Andrew; Lauderdale, James D.; Kner, Peter
2018-02-01
Light-sheet microscopy is an ideal imaging modality for long-term live imaging in model organisms. However, significant optical aberrations can be present when imaging into an organism that is hundreds of microns or greater in size. To measure and correct optical aberrations, an adaptive optics system must be incorporated into the microscope. Many biological samples lack point sources that can be used as guide stars with conventional Shack-Hartmann wavefront sensors. We have developed a scene-based Shack-Hartmann wavefront sensor for measuring the optical aberrations in a light-sheet microscopy system that does not require a point-source and can measure the aberrations for different parts of the image. The sensor has 280 lenslets inside the pupil, creates an image from each lenslet with a 500 micron field of view and a resolution of 8 microns, and has a resolution for the wavefront gradient of 75 milliradians per lenslet. We demonstrate the system on both fluorescent bead samples and zebrafish embryos.
Ultrafast Imaging of Chiral Surface Plasmon by Photoemission Electron Microscopy
NASA Astrophysics Data System (ADS)
Dai, Yanan; Dabrowski, Maciej; Petek, Hrvoje
We employ Time-Resolved Photoemission Electron Microscopy (TR-PEEM) to study surface plasmon polariton (SPP) wave packet dynamics launched by tunable (VIS-UV) femtosecond pulses of various linear and circular polarizations. The plasmonic structures are micron size single-crystalline Ag islands grown in situ on Si surfaces and characterized by Low Energy Electron Microscopy (LEEM). The local fields of plasmonic modes enhance two and three photon photoemission (2PP and 3PP) at the regions of strong field enhancement. Imaging of the photoemission signal with PEEM electron optics thus images the plasmonic fields excited in the samples. The observed PEEM images with left and right circularly polarized light show chiral images, which is a consequence of the transverse spin momentum of surface plasmon. By changing incident light polarization, the plasmon interference pattern shifts with light ellipticity indicating a polarization dependent excitation phase of SPP. In addition, interferometric-time resolved measurements record the asymmetric SPP wave packet motion in order to characterize the dynamical properties of chiral SPP wave packets.
Exploring the brain on multiple scales with correlative two-photon and light sheet microscopy
NASA Astrophysics Data System (ADS)
Silvestri, Ludovico; Allegra Mascaro, Anna Letizia; Costantini, Irene; Sacconi, Leonardo; Pavone, Francesco S.
2014-02-01
One of the unique features of the brain is that its activity cannot be framed in a single spatio-temporal scale, but rather spans many orders of magnitude both in space and time. A single imaging technique can reveal only a small part of this complex machinery. To obtain a more comprehensive view of brain functionality, complementary approaches should be combined into a correlative framework. Here, we describe a method to integrate data from in vivo two-photon fluorescence imaging and ex vivo light sheet microscopy, taking advantage of blood vessels as reference chart. We show how the apical dendritic arbor of a single cortical pyramidal neuron imaged in living thy1-GFP-M mice can be found in the large-scale brain reconstruction obtained with light sheet microscopy. Starting from the apical portion, the whole pyramidal neuron can then be segmented. The correlative approach presented here allows contextualizing within a three-dimensional anatomic framework the neurons whose dynamics have been observed with high detail in vivo.
Vyas, S; Puwar, B; Patel, V; Bhatt, G; Kulkarni, S; Fancy, M
2014-05-01
Light microscopy of blood smears for diagnosis of malaria in the field has several limitations, notably delays in diagnosis. This study in Ahmedabad in Gujarat State, India, evaluated the diagnostic performance of a rapid diagnostic test for malaria (SD Bioline Malaria Ag P.f/Pan) versus blood smear examination as the gold standard. All fever cases presenting at 13 urban health centres were subjected to rapid diagnostic testing and thick and thin blood smears. A total of 677 cases with fever were examined; 135 (20.0%) tested positive by rapid diagnostic test and 86 (12.7%) by blood smear. The sensitivity of the rapid diagnostic test for malaria was 98.8%, specificity was 91.5%, positive predictive value 63.0% and negative predictive value 99.8%. For detection of Plasmodium falciparum the sensitivity of rapid diagnostic test was 100% and specificity was 97.3%. The results show the acceptability of the rapid test as an alternative to light microscopy in the field setting.
Salas, Desirée; Le Gall, Antoine; Fiche, Jean-Bernard; Valeri, Alessandro; Ke, Yonggang; Bron, Patrick; Bellot, Gaetan
2017-01-01
Superresolution light microscopy allows the imaging of labeled supramolecular assemblies at a resolution surpassing the classical diffraction limit. A serious limitation of the superresolution approach is sample heterogeneity and the stochastic character of the labeling procedure. To increase the reproducibility and the resolution of the superresolution results, we apply multivariate statistical analysis methods and 3D reconstruction approaches originally developed for cryogenic electron microscopy of single particles. These methods allow for the reference-free 3D reconstruction of nanomolecular structures from two-dimensional superresolution projection images. Since these 2D projection images all show the structure in high-resolution directions of the optical microscope, the resulting 3D reconstructions have the best possible isotropic resolution in all directions. PMID:28811371
Topography and refractometry of nanostructures using spatial light interference microscopy.
Wang, Zhuo; Chun, Ik Su; Li, Xiuling; Ong, Zhun-Yong; Pop, Eric; Millet, Larry; Gillette, Martha; Popescu, Gabriel
2010-01-15
Spatial light interference microscopy (SLIM) is a novel method developed in our laboratory that provides quantitative phase images of transparent structures with a 0.3 nm spatial and 0.03 nm temporal accuracy owing to the white light illumination and its common path interferometric geometry. We exploit these features and demonstrate SLIM's ability to perform topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed for cylindrical structures, we extract the axially averaged refractive index of semiconductor nanotubes and a neurite of a live hippocampal neuron in culture. We believe that this study will set the basis for novel high-throughput topography and refractometry of man-made and biological nanostructures.
Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T
2018-02-08
Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text
Giannini, C.; Siliqi, D.; Bunk, O.; Beraudi, A.; Ladisa, M.; Altamura, D.; Stea, S.; Baruffaldi, F.
2012-01-01
Scanning small and wide angle X-ray scattering (scanning SWAXS) experiments were performed on healthy and pathologic human bone sections. Via crystallographic tools the data were transformed into quantitative images and as such compared with circularly polarized light (CPL) microscopy images. SWAXS and CPL images allowed extracting information of the mineral nanocrystalline phase embedded, with and without preferred orientation, in the collagen fibrils, mapping local changes at sub-osteon resolution. This favorable combination has been applied for the first time to biopsies of dwarfism syndrome and Paget's disease to shed light onto the cortical structure of natural bone in healthy and pathologic sections. PMID:22666538
Total internal reflection and dynamic light scattering microscopy of gels
NASA Astrophysics Data System (ADS)
Gregor, Brian F.
Two different techniques which apply optical microscopy in novel ways to the study of biological systems and materials were built and applied to several samples. The first is a system for adapting the well-known technique of dynamic light scattering (DLS) to an optical microscope. This can detect and scatter light from very small volumes, as compared to standard DLS which studies light scattering from volumes 1000x larger. The small scattering volume also allows for the observation of nonergodic dynamics in appropriate samples. Porcine gastric mucin (PGM) forms a gel at low pH which lines the epithelial cell layer and acts as a protective barrier against the acidic stomach environment. The dynamics and microscopic viscosity of PGM at different pH levels is studied using polystyrene microspheres as tracer particles. The microscopic viscosity and microrheological properties of the commercial basement membrane Matrigel are also studied with this instrument. Matrigel is frequently used to culture cells and its properties remain poorly determined. Well-characterized and purely synthetic Matrigel substitutes will need to have the correct rheological and morphological characteristics. The second instrument designed and built is a microscope which uses an interferometry technique to achieve an improvement in resolution 2.5x better in one dimension than the Abbe diffraction limit. The technique is based upon the interference of the evanescent field generated on the surface of a prism by a laser in a total internal reflection geometry. The enhanced resolution is demonstrated with fluorescent samples. Additionally. Raman imaging microscopy is demonstrated using the evanescent field in resonant and non-resonant samples, although attempts at applying the enhanced resolution technique to the Raman images were ultimately unsuccessful. Applications of this instrument include high resolution imaging of cell membranes and macroscopic structures in gels and proteins. Finally, a third section incorporating previous research on simulations of complex fluids is included. Two dimensional simulations of oil, water, and surfactant mixtures were computed with a lattice gas method. The simulated systems were randomly mixed and then the temperature was quenched to a predetermined point. Spontaneous micellization is observed for a narrow range of temperature quenches, and the overall growth rate of macroscopic structure is found to follow a Vogel-Fulcher growth law.
Biomolecular Analysis Capability for Cellular and Omics Research on the International Space Station
NASA Technical Reports Server (NTRS)
Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.
2016-01-01
International Space Station (ISS) assembly complete ushered a new era focused on utilization of this state-of-the-art orbiting laboratory to advance science and technology research in a wide array of disciplines, with benefits to Earth and space exploration. ISS enabling capability for research in cellular and molecular biology includes equipment for in situ, on-orbit analysis of biomolecules. Applications of this growing capability range from biomedicine and biotechnology to the emerging field of Omics. For example, Biomolecule Sequencer is a space-based miniature DNA sequencer that provides nucleotide sequence data for entire samples, which may be used for purposes such as microorganism identification and astrobiology. It complements the use of WetLab-2 SmartCycler"TradeMark", which extracts RNA and provides real-time quantitative gene expression data analysis from biospecimens sampled or cultured onboard the ISS, for downlink to ground investigators, with applications ranging from clinical tissue evaluation to multigenerational assessment of organismal alterations. And the Genes in Space-1 investigation, aimed at examining epigenetic changes, employs polymerase chain reaction to detect immune system alterations. In addition, an increasing assortment of tools to visualize the subcellular distribution of tagged macromolecules is becoming available onboard the ISS. For instance, the NASA LMM (Light Microscopy Module) is a flexible light microscopy imaging facility that enables imaging of physical and biological microscopic phenomena in microgravity. Another light microscopy system modified for use in space to image life sciences payloads is initially used by the Heart Cells investigation ("Effects of Microgravity on Stem Cell-Derived Cardiomyocytes for Human Cardiovascular Disease Modeling and Drug Discovery"). Also, the JAXA Microscope system can perform remotely controllable light, phase-contrast, and fluorescent observations. And upcoming confocal microscopy capability will allow for optical sectioning of biological tissues to determine microanatomical localization of biomarkers. Furthermore, NASA's geneLAB effort addresses integration of genomic, epigenomic, transcriptomic, proteomic and metabolomic datasets, by applying an innovative open source science platform for multi-investigator high throughput utilization of the ISS. In sum, the expanding ISS capability for analysis of biomolecules is enabling innovative research in a broad spectrum of areas such as cellular and molecular biology, biotechnology, tissue engineering, biomedicine, and Omics, providing manifold benefits for humanity.
Use of astronomy filters in fluorescence microscopy.
Piper, Jörg
2012-02-01
Monochrome astronomy filters are well suited for use as excitation or suppression filters in fluorescence microscopy. Because of their particular optical design, such filters can be combined with standard halogen light sources for excitation in many fluorescent probes. In this "low energy excitation," photobleaching (fading) or other irritations of native specimens are avoided. Photomicrographs can be taken from living motile fluorescent specimens also with a flash so that fluorescence images can be created free from indistinctness caused by movement. Special filter cubes or dichroic mirrors are not needed for our method. By use of suitable astronomy filters, fluorescence microscopy can be carried out with standard laboratory microscopes equipped with condensers for bright-field (BF) and dark-field (DF) illumination in transmitted light. In BF excitation, the background brightness can be modulated in tiny steps up to dark or black. Moreover, standard industry microscopes fitted with a vertical illuminator for examinations of opaque probes in DF or BF illumination based on incident light (wafer inspections, for instance) can also be used for excitation in epi-illumination when adequate astronomy filters are inserted as excitatory and suppression filters in the illuminating and imaging light path. In all variants, transmission bands can be modulated by transmission shift.
Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy
Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei
2015-01-01
Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453
Wu, Wei-Chun; Ma, Hong; Xie, Rong-Ai; Gao, Li-Jian; Tang, Yue; Wang, Hao
2016-04-01
This study evaluated the role of two-dimensional speckle tracking echocardiography (2DSTE) for predicting left ventricular (LV) diastolic dysfunction in pacing-induced canine heart failure. Pacing systems were implanted in 8 adult mongrel dogs, and continuous rapid right ventricular pacing (RVP, 240 beats/min) was maintained for 2 weeks. The obtained measurements from 2DSTE included global strain rate during early diastole (SRe) and during late diastole (SRa) in the longitudinal (L-SRe, L-SRa), circumferential (C-SRe, C-SRa), and radial directions (R-SRe, R-SRa). Changes in heart morphology were observed by light microscopy and transmission electron microscopy at 2 weeks. The onset of LV diastolic dysfunction with early systolic dysfunction occurred 3 days after RVP initiation. Most of the strain rate imaging indices were altered at 1 or 3 days after RVP onset and continued to worsen until heart failure developed. Light and transmission electron microscopy showed myocardial vacuolar degeneration and mitochondrial swelling in the left ventricular at 2 weeks after RVP onset. Pearson's correlation analysis revealed that parameters of conventional echocardiography and 2DSTE showed moderate correlation with LV pressure parameters, including E/Esep' (r = 0.58, P < 0.01), L-SRe (r = -0.58, P < 0.01), E/L-SRe (r = 0.65, P < 0.01), and R-SRe (r = 0.53, P < 0.01). ROC curves analysis showed that these indices of conventional echocardiography and strain rate imaging could effectively predict LV diastolic dysfunction (area under the curve: E/Esep' 0.78; L-SRe 0.84; E/L-SRe 0.80; R-SRe 0.80). 2DSTE was a sensitive and accurate technique that could be used for predicting LV diastolic dysfunction in canine heart failure model. © 2015, Wiley Periodicals, Inc.
Zheng, Chan-Ying; Wang, Ya-Xia; Kachar, Bechara; Petralia, Ronald S
2011-01-01
Synapse-associated protein 102 (SAP102) and postsynaptic density 95 (PSD-95) are two major cytoskeleton proteins in the postsynaptic density (PSD). Both of them belong to the membrane-associated guanylate kinase (MAGUK) family, which clusters and anchors glutamate receptors and other proteins at synapses. In our previous study, we found that SAP102 and PSD-95 have different distributions, using combined light/electron microscopy (LM/EM) methods.1 Here, we double labeled endogenous SAP102 and PSD-95 in mature hippocampal neurons, and then took images by two different kinds of super resolution microscopy-Stimulated Emission Depletion microscopy (STED) and DeltaVision OMX 3D super resolution microscopy. We found that our 2D and 3D super resolution data were consistent with our previous LM/EM data, showing significant differences in the localization of SAP102 and PSD-95 in spines: SAP102 is distributed in both the PSD and cytoplasm of spines, while PSD-95 is concentrated only in the PSD area. These results indicate functional differences between SAP102 and PSD-95 in synaptic organization and plasticity.
Heterotrophic euglenids from marine sediments of cape tribulation, tropical australia
NASA Astrophysics Data System (ADS)
Je Lee, Won
2006-06-01
This paper presents new data on free-living heterotrophic euglenids (Euglenozoa, Protista) that occurred in the marine sediments at Cape Tribulation, Queensland, Australia. Twenty-nine species from 9 genera are described with uninterpreted records based on light microscopy, including one new taxon: Notosolenus capetribulationi n. sp. There was little evidence for endemism because the majority of heterotrophic euglenid species encountered here have been reported or were found from other habitats.
NASA Astrophysics Data System (ADS)
Prasad, Paras N.
2017-02-01
This talk will focus on design and applications of nanomaterials exhibiting strong multiphoton upconversion for multiphoton microscopy as well as for image-guided and light activated therapy .1-3 Such processes can occur by truly nonlinear optical interactions proceeding through virtual intermediate states or by stepwise coupled linear excitations through real intermediate states. Multiphoton processes in biocompatible multifunctional nanoparticles allow for 3D deep tissue imaging. In addition, they can produce in-situ photon conversion of deep tissue penetrating near IR light into a needed shorter wavelength light for photo-activated therapy at a targeted site, thus overcoming the limited penetration of UV or visible light into biological media. We are using near IR emitters such as silicon quantum dots which also exhibit strong multiphoton excitation for multiphoton microscopy. Another approach involves nonlinear nanocrystals such as ZnO which can produce four wave mixing, sum frequency generation as well as second harmonic generation to convert a deep tissue penetrating Near IR light at the targeted biological site to a desired shorter wavelength light suitable for bio imaging or activation of a therapy. We have utilized this approach to activate a photosensitizer for photodynamic therapy. Yet another type of upconversion materials is rare-earth ion doped optical nanotransformers which transform a Near IR (NIR) light from an external source by sequential single photon absorption, in situ and on demand, to a needed wavelength. Applications of these nanotransformers in multiphoton photoacoustic imaging will also be presented. An exciting direction pursued by us using these multiphoton nanoparticles, is functional imaging of brain. Simultaneously, they can effect optogenetics for regioselective stimulation of neurons for providing an effective intervention/augmentation strategy to enhance the cognitive state and lead to a foundation for futuristic vision of super human capabilities. Challenges and opportunities will be discussed.
Laboratory diagnosis of tuberculosis: Advances in technology and drug susceptibility testing.
Oommen, Seema; Banaji, Nandita
2017-01-01
There have been rapid technological advances in the detection of Mycobacterium tuberculosis and its drug susceptibility in clinical samples. These include advances in microscopic examination, in vitro culture and application of molecular techniques. The World Health Organization (WHO) has played a large role in evaluating these technologies for their efficacy and feasibility, especially in the developing countries. Amongst these, the Revised National Tuberculosis Control Programme (RNTCP), through its national network of designated microscopy centres and intermediate reference laboratories, has adopted certain technologies that are currently implemented in India. Advances in microscopy technology include fluorescent microscopy using light-emitting diode source, sodium hypochlorite microscopy and vital fluorescent staining of sputum smears. Automation of in vitro culture has markedly reduced the turnaround time (TAT), even in smear-negative samples, and permits simultaneous detection of resistant mutants. Molecular detection of drug resistance has further reduced the TAT, and the cartridge-based nucleic acid amplification test with its performance convenience and rapid results, appears poised to become the future of tuberculosis (TB) diagnosis in all settings, provided the cost of testing is reduced especially for use in private diagnostic settings. This article reviews technologies currently available for the diagnosis of TB, keeping in mind the WHO recommendations and the RNTCP practices. This is a thematic synthesis of data available on diagnosis in literature, preserving the conclusions of the primary studies.
A line scanned light-sheet microscope with phase shaped self-reconstructing beams.
Fahrbach, Florian O; Rohrbach, Alexander
2010-11-08
We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.
Photodynamic action of methylene blue in osteosarcoma cells in vitro.
Guan, Jiemin; Lai, Xiaoping; Wang, Xinna; Leung, Albert Wingnang; Zhang, Hongwei; Xu, Chuanshan
2014-03-01
Osteosarcoma is a common malignant bone tumor which threatens the life of young people worldwide. To explore alternative strategy for combating osteosarcoma, a light-emitting diode (LED) that activates methylene blue (MB) was used in the present study to investigate cell death of osteosarcoma-derived UMR106 cells. Photocytotoxicity in UMR106 cells was investigated 24h after photodynamic activation of MB using sulforhodamine B (SRB) assay and light microscopy. Apoptosis induction was observed 24h after photodynamic treatment using a confocal laser scanning microscopy (CLSM) with Hoechst 33342 staining. The change in mitochondrial membrane potential (MMP) was analyzed using a flow cytometry with rhodamine 123 staining. MB under red light irradiation caused a drug-concentration (0-100μM) and light-dose (0-32J/cm(2)) dependent cytotoxicity in UMR106 cells. The SRB assay and light microscopy observed a significant decrease in the number of UMR106 cells attached to the bottom of culture well after LED light-activated MB (100μM, 32J/cm(2)). Nuclear shrinkage, chromatin condensation and fragmentation were found in the treated cells by nuclear staining. In addition, flow cytometry showed that the MMP in UMR106 cells was rapidly reduced by photo-activated MB (100μM, 32J/cm(2)). Photodynamic action of MB under LED irradiation could remarkably kill osteosarcoma cells and induce cell apoptosis as well as MMP collapse. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Xurun, Yu; Xinyu, Chen; Liang, Zhou; Jing, Zhang; Heng, Yu; Shanshan, Shao; Fei, Xiong; Zhong, Wang
2015-03-01
Nutrients from spikelet phloem are commonly delivered to endosperm via caryopsis nutrient transfer tissues (NTTs). Elucidation of NTTs development is paramount to developing an understanding of the control of assimilate partitioning. Little information was available on the structural development of the entire NTTs and their functions, particularly those involved in the relationship between development of NTTs and growth of filial tissues including endosperm and embryo. In this study, wheat caryopses at different development stages were collected for observation of the NTTs by light microscopy, stereoscopic microscopy, and scanning electron microscopy. The cytological features of NTTs in the developing wheat caryopsis were clearly elucidated. The results were as follows: NTTs in the wheat caryopsis include maternal transfer tissues that are composed of vascular bundle, chalaza and nucellar projection transfer cells, and endosperm transfer tissues that consist of the aleurone transfer cells, starchy endosperm transfer cells, and endosperm conducting cells. The initiation, development, and apoptosis of these NTTs revealed the pattern of temporal and spatial gradient and were closely coordinated with endosperm and embryo development. These results may give us a further understanding about the functions of NTTs and their relationships with endosperm and embryo development.
NASA Astrophysics Data System (ADS)
Zhang, Hanqing; Stangner, Tim; Wiklund, Krister; Rodriguez, Alvaro; Andersson, Magnus
2017-10-01
We present a versatile and fast MATLAB program (UmUTracker) that automatically detects and tracks particles by analyzing video sequences acquired by either light microscopy or digital in-line holographic microscopy. Our program detects the 2D lateral positions of particles with an algorithm based on the isosceles triangle transform, and reconstructs their 3D axial positions by a fast implementation of the Rayleigh-Sommerfeld model using a radial intensity profile. To validate the accuracy and performance of our program, we first track the 2D position of polystyrene particles using bright field and digital holographic microscopy. Second, we determine the 3D particle position by analyzing synthetic and experimentally acquired holograms. Finally, to highlight the full program features, we profile the microfluidic flow in a 100 μm high flow chamber. This result agrees with computational fluid dynamic simulations. On a regular desktop computer UmUTracker can detect, analyze, and track multiple particles at 5 frames per second for a template size of 201 ×201 in a 1024 × 1024 image. To enhance usability and to make it easy to implement new functions we used object-oriented programming. UmUTracker is suitable for studies related to: particle dynamics, cell localization, colloids and microfluidic flow measurement. Program Files doi : http://dx.doi.org/10.17632/fkprs4s6xp.1 Licensing provisions : Creative Commons by 4.0 (CC by 4.0) Programming language : MATLAB Nature of problem: 3D multi-particle tracking is a common technique in physics, chemistry and biology. However, in terms of accuracy, reliable particle tracking is a challenging task since results depend on sample illumination, particle overlap, motion blur and noise from recording sensors. Additionally, the computational performance is also an issue if, for example, a computationally expensive process is executed, such as axial particle position reconstruction from digital holographic microscopy data. Versatile robust tracking programs handling these concerns and providing a powerful post-processing option are significantly limited. Solution method: UmUTracker is a multi-functional tool to extract particle positions from long video sequences acquired with either light microscopy or digital holographic microscopy. The program provides an easy-to-use graphical user interface (GUI) for both tracking and post-processing that does not require any programming skills to analyze data from particle tracking experiments. UmUTracker first conduct automatic 2D particle detection even under noisy conditions using a novel circle detector based on the isosceles triangle sampling technique with a multi-scale strategy. To reduce the computational load for 3D tracking, it uses an efficient implementation of the Rayleigh-Sommerfeld light propagation model. To analyze and visualize the data, an efficient data analysis step, which can for example show 4D flow visualization using 3D trajectories, is included. Additionally, UmUTracker is easy to modify with user-customized modules due to the object-oriented programming style Additional comments: Program obtainable from https://sourceforge.net/projects/umutracker/
Sim, H H; Kim, Y J; Choi, H J
2012-12-01
Black inorganic pigment modified with poly(styrene-co-acrylonitrile) was fabricated via dispersion polymerization, and then the synthesized hybrid nanoparticles were examined by SEM to confirm their morphology, while their density and size were studied using a gas pycnometer and electrophoretic light scattering apparatus, respectively. We also confirmed their chemical structure and coated state via FT-IR and TGA. Electrophoretic characteristics including the zeta potential were examined via an electrophoretic light scattering apparatus, while the movement of particles was directly observed by an optical microscopy under an electric field applied. The hybrid nanoparticles were confirmed to possess an electrophoretic property as a potential candidate for the microcapsule-type electrophoretic display.
Analysis of Long Bone and Vertebral Failure Patterns.
1982-09-30
processes further supported the findings of • :the scanning electron microscopy studies . In the impacted animals, the cartilage surface was eroded... cartilage matrix. In the six years post-impaction group, the articular cartilage had converted to fibrocartilage instead of normal hyaline cartilage . The...columns of four rhesus monkeys have been collected and are being processed for study with light microscopy and scanning electron microscopy. The baboon
Stirling, C A
1978-09-01
Molten (328 K) 20% gelatin is used as a 'glue' to hold together separate tissue elements or tissue elements that may be separated when cutting small blocks of tissue for plastic embedding. Standard aldehyde and osmium fixation, dehydration and epoxy embedding are compatible with this as is semi-thin sectioning for light microscopy or thin sectioning for electron microscopy.
High Prevalence of Human Liver Infection by Amphimerus spp. Flukes, Ecuador
Calvopiña, Manuel; Cevallos, William; Kumazawa, Hideo; Eisenberg, Joseph
2011-01-01
Amphimerus spp. flukes are known to infect mammals, but human infections have not been confirmed. Microscopy of fecal samples from 397 persons from Ecuador revealed Opisthorchiidae eggs in 71 (24%) persons. Light microscopy of adult worms and scanning electron microscopy of eggs were compatible with descriptions of Amphimerus spp. This pathogen was only observed in communities that consumed undercooked fish. PMID:22172165
Australian Red Dune Sand: A Potential Martian Regolith Analog
NASA Technical Reports Server (NTRS)
Kuhlman, K. R.; Marshall, J.; Evans, N. D.; Luttge, A.
2001-01-01
To demonstrate the potential scientific and technical merits of in situ microscopy on Mars, we analyzed a possible Martian regolith analog - an acolian red dune sand from the central Australian desert (near Mt. Olga). This sand was chosen for its ubiquitous red coating and the desert environment in which is it found. Grains of this sand were analyzed using a variety of microanalytical techniques. A database of detailed studies of such terrestrial analogs would assist the study of geological and astrobiological specimens in future missions to Mars. Potential instrument concepts for in situ deployment on Mars include local electrode atom probe nanoanalysis (LEAP), vertical scanning white light interferometry (VSWLI), scanning electron microscopies, energy dispersive x-ray microanalysis (EDX), atomic force microscopy (AFM) and X-ray diffraction (XRD). While in situ deployment of these techniques is many years away, ground-based studies using these analytical techniques extend our understanding of the data obtained from instruments to be flown in the near future.
Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue
Chaigneau, Emmanuelle; Wright, Amanda J.; Poland, Simon P.; Girkin, John M.; Silver, R. Angus
2011-01-01
Two-photon (2P) microscopy is widely used in neuroscience, but the optical properties of brain tissue are poorly understood. We have investigated the effect of brain tissue on the 2P point spread function (PSF2P) by imaging fluorescent beads through living cortical slices. By combining this with measurements of the mean free path of the excitation light, adaptive optics and vector-based modeling that includes phase modulation and scattering, we show that tissue-induced wavefront distortions are the main determinant of enlargement and distortion of the PSF2P at intermediate imaging depths. Furthermore, they generate surrounding lobes that contain more than half of the 2P excitation. These effects reduce the resolution of fine structures and contrast and they, together with scattering, limit 2P excitation. Our results disentangle the contributions of scattering and wavefront distortion in shaping the cortical PSF2P, thereby providing a basis for improved 2P microscopy. PMID:22109156
NASA Astrophysics Data System (ADS)
Geetha, P.; Latha, M. S.; Pillai, Saumya S.; Deepa, B.; Santhosh Kumar, K.; Koshy, Mathew
2016-02-01
Green synthesis of nanoparticles has attained considerable attention in recent years because of its myriad of applications including drug delivery, tissue engineering and water purification. In the present study, alginate nanoparticles stabilized by honey were prepared by cross-linking aqueous solution of alginate with calcium ions. Honey mediated synthesis has been reported earlier for the production of metal nanoparticles. However no literature is available on the use of this technique for polymeric nanoparticles. Highly stable nanoparticles of 10-100 nm size were generated by this technique. The synthesised nanoparticles were characterized by transmission electron microscopy, scanning electron microscopy, atomic force microscopy, dynamic light scattering and Fourier transform infrared spectroscopic techniques. Potential of using these nanoparticles for heavy metal removal was studied by using Cr(VI) from aqueous solution, where a maximum removal efficiency of 93.5% was obtained. This method was also successfully employed for the production of other polymeric nanoparticles like casein, chitosan and albumin.
Characterization of contaminant removal by an optical strip material
NASA Astrophysics Data System (ADS)
Hamilton, James P.; Frigo, S. P.; Caroll, Brenden J.; Assoufidyen, L.; Lewis, Matthew S.; Cook, Russell E.; de Carlo, F.
2001-03-01
Department of Chemistry and Engineering Physics, University of Wisconsin-Platteville, Platteville, WI 53818 Advanced Photon Source, X-Ray Facilities Division, Argonne National Laboratory, Advanced Photon Source, User Program Division, Argonne National Laboratory, *Electron Microscopy Center, Materials Science Division, Argonne National Laboratory, Argonne National Laboratory, 9700 S. Cass Ave., Argonne IL 60439-4856 USA A novel optical strip coating material, Opticlean, has been shown to safely remove fingerprints, particles and contamination from a variety of optical surfaces including coated glass, Si and first surface mirrors. Contaminant removal was monitored by Nomarski, Atomic Force and Scanning Electron Microscopy. Sub-micron features on diffraction gratings and silicon wafers were also cleaned without leaving light scattering particles on the surface. **This work was supported in part by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences, under contract no. W-31-109-ENG-38. The authors acknowledge the support and facilities provided by the Advanced Photon Source and the Electron Microscopy Center at Argonne National Laboratory.
A new genus and species of Nematalycidae (Acari: Endeostigmata)
USDA-ARS?s Scientific Manuscript database
Osperalycus tenerphagus, a new genus and species of Nematalycidae (Acari: Endeostigmata), is described from Ohio, USA, using light microscopy and low temperature scanning electron microscopy. Specimens were extracted from two different loam soils. This genus can be readily distinguished from the oth...
Jackowiak, Hanna; Trzcielińska-Lorych, Joanna; Godynicki, Szymon
2009-03-01
The microstructure of lingual papillae on the dorsal surface of the tongue of adult Egyptian fruit bats was examined by light microscopy (LM) and scanning electron microscopy (SEM). This elongated tongue with a rounded apex is approximately 3 cm long -- including the 1.7cm length of the anterior free part of the tongue -- which facilitates considerable freedom of movement. The surface of the tongue has four types of lingual papillae: two types of mechanical papillae -- filiform and conical papillae, and two types of gustatory papillae -- fungiform and vallate papillae. Most numerous are filiform papillae with well developed keratinized processes represented by four morphological subtypes -- small, giant, elongated, and bifid papillae. Our observations showed the small and giant filiform papillae to be present in the anterior part of the tongue and tilted to the back of the tongue. In the posterior part of the tongue, the filiform papillae with elongated processes were arranged on each side of the tongue and oriented perpendicularly to the median line of tongue. This arrangement of filiform papillae is considered to be useful for the efficient uptake of semiliquid food as it can be collected toward the median line of the tongue. Gustatory fungiform papillae were distributed among filiform papillae on the border of the apex and the anterior part of the body of the tongue and also on the posterior part of the tongue, while three vallate papillae surrounded by conical papillae were found on the root of the tongue. There were also taste buds along the ducts of the posterior lingual glands in the posterior-lateral part of the tongue. These morphological features are discussed in relation to adaptation to food uptake in the Egyptian fruit bat.
Sayed, Ramy K A; de Leonardis, Erika Chacin; Guerrero-Martínez, José A; Rahim, Ibtissem; Mokhtar, Doaa M; Saleh, Abdelmohaimen M; Abdalla, Kamal E H; Pozo, María J; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío
2016-10-01
The gastrocnemius muscle (GM) of young (3months) and aged (12months) female wild-type C57/BL6 mice was examined by light and electron microscopy, looking for the presence of structural changes at early stage of the aging process. Morphometrical parameters including body and gastrocnemius weights, number and type of muscle fibers, cross section area (CSA), perimeter, and Feret's diameter of single muscle fiber, were measured. Moreover, lengths of the sarcomere, A-band, I-band, H-zone, and number and CSA of intermyofibrillar mitochondria (IFM), were also determined. The results provide evidence that 12month-old mice had significant changes on skeletal muscle structure, beginning with the reduction of gastrocnemius weight to body weight ratio, compatible with an early loss of skeletal muscle function and strength. Moreover, light microscopy revealed increased muscle fibers size, with a significant increase on their CSA, perimeter, and diameter of both type I and type II muscle fibers, and a reduction in the percentage of muscle area occupied by type II fibers. Enhanced connective tissue infiltrations, and the presence of centrally nucleated muscle fibers, were also found in aged mice. These changes may underlie an attempt to compensate the loss of muscle mass and muscle fibers number. Furthermore, electron microscopy discovered a significant age-dependent increase in the length of sarcomeres, I and H bands, and reduction on the overlapped actin/myosin length, supporting contractile force loss with age. Electron microscopy also showed an increased number and CSA of IFM with age, which may reveal more endurance at 12months of age. Together, mice at early stage of aging already show significant changes in gastrocnemius muscle morphology and ultrastructure that are suggestive of the onset of sarcopenia. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Christensen, A. Kent; Lowry, Terry B.
1995-10-01
Ethanol (ethyl alcohol) has long been a standard reagent used in preparing tissues for light and electron microscopy. After fixation, tissues are usually dehydrated with ethanol before being embedded in paraffin or plastic. In this study we show that the ethanol-infiltrated tissue can be frozen and sectioned directly without embedding. When tissue impregnated with ethanol is cooled below about [minus sign]117°C with liquid nitrogen, the ethanol solidifies without appreciable crystallization. The frozen tissue can then be sectioned in a commercial cryoultramicrotome that is set at [minus sign]155 to [minus sign]170°C to produce semithin frozen sections (0.5 to 3 [mu]m thick) for light microscopy or ultrathin frozen sections (50 to 100 nm thick) for electron microscopy. Sections are picked up and mounted on glass slides or EM grids by means that are in current use for ice ultrathin frozen sectioning. Because there is no apparent freezing damage, the morphology in these ethanol frozen sections of unembedded tissue appears generally quite good, often resembling that obtained by conventional EM techniques. Examples are provided that illustrate the use of this material for immunocytochemistry at the light and electron microscope levels.
Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope.
Kaufmann, Anna; Mickoleit, Michaela; Weber, Michael; Huisken, Jan
2012-09-01
Light sheet microscopy techniques, such as selective plane illumination microscopy (SPIM), are ideally suited for time-lapse imaging of developmental processes lasting several hours to a few days. The success of this promising technology has mainly been limited by the lack of suitable techniques for mounting fragile samples. Embedding zebrafish embryos in agarose, which is common in conventional confocal microscopy, has resulted in severe growth defects and unreliable results. In this study, we systematically quantified the viability and mobility of zebrafish embryos mounted under more suitable conditions. We found that tubes made of fluorinated ethylene propylene (FEP) filled with low concentrations of agarose or methylcellulose provided an optimal balance between sufficient confinement of the living embryo in a physiological environment over 3 days and optical clarity suitable for fluorescence imaging. We also compared the effect of different concentrations of Tricaine on the development of zebrafish and provide guidelines for its optimal use depending on the application. Our results will make light sheet microscopy techniques applicable to more fields of developmental biology, in particular the multiview long-term imaging of zebrafish embryos and other small organisms. Furthermore, the refinement of sample preparation for in toto and in vivo imaging will promote other emerging optical imaging techniques, such as optical projection tomography (OPT).
Mitchell, V; Sigala, J; Ballot, C; Jumeau, F; Barbotin, A L; Duhamel, A; Rives, N; Rigot, J M; Escalier, D; Peers, M C
2015-03-01
Although electron microscopy provides a detailed analysis of ultrastructural abnormalities, this technique is not available in all laboratories. We sought to determine whether certain characteristics of the flagellum as assessed by light microscopy were related to axonemal abnormalities. Forty-one patients with an absence of outer dynein arms (type I), a lack of a central complex (type III) and an absence of peripheral doublets (type IV) were studied. Sperm morphology was scored according to David's modified classification. Flagella with an irregular thickness were classified as being of normal length, short or broken. There were correlations between missing outer dynein arms and abnormal, short or coiled flagellum. Type III patients showed the highest flagellar defects (a short (P = 0.0027) or an absent flagellum (P = 0.011)). Just over 68% of the irregular flagella were short in Type III patients, whereas this value was only 34.5% in type I and 26.4% in type IV (P = 0.002). There was a negative correlation between misassembly and spermatozoa of irregular flagella (r = -0.79; P = 0.019). It is concluded that light microscopy analysis of flagellum abnormalities may help provide a correct diagnosis, identify sperm abnormalities with fertility potentials and outcomes in assisted reproduction technologies and assess the genetic risk. © 2014 Blackwell Verlag GmbH.
Photoassisted Kelvin probe force microscopy at GaN surfaces: The role of polarity
NASA Astrophysics Data System (ADS)
Wei, J. D.; Li, S. F.; Atamuratov, A.; Wehmann, H.-H.; Waag, A.
2010-10-01
The behavior of GaN surfaces during photoassisted Kelvin probe force microscopy is demonstrated to be strongly dependant on surface polarity. The surface photovoltage of GaN surfaces illuminated with above-band gap light is analyzed as a function of time and light intensity. Distinct differences between Ga-polar and N-polar surfaces could be identified, attributed to photoinduced chemisorption of oxygen during illumination. These differences can be used for a contactless, nondestructive, and easy-performable analysis of the polarity of GaN surfaces.
Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light
Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou
2015-01-01
Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet–visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films. PMID:26156001
Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light
NASA Astrophysics Data System (ADS)
Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou
2015-07-01
Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.
Littlejohn, George R; Mansfield, Jessica C; Parker, David; Lind, Rob; Perfect, Sarah; Seymour, Mark; Smirnoff, Nicholas; Love, John; Moger, Julian
2015-05-01
The cuticle is a ubiquitous, predominantly waxy layer on the aerial parts of higher plants that fulfils a number of essential physiological roles, including regulating evapotranspiration, light reflection, and heat tolerance, control of development, and providing an essential barrier between the organism and environmental agents such as chemicals or some pathogens. The structure and composition of the cuticle are closely associated but are typically investigated separately using a combination of structural imaging and biochemical analysis of extracted waxes. Recently, techniques that combine stain-free imaging and biochemical analysis, including Fourier transform infrared spectroscopy microscopy and coherent anti-Stokes Raman spectroscopy microscopy, have been used to investigate the cuticle, but the detection sensitivity is severely limited by the background signals from plant pigments. We present a new method for label-free, in vivo structural and biochemical analysis of plant cuticles based on stimulated Raman scattering (SRS) microscopy. As a proof of principle, we used SRS microscopy to analyze the cuticles from a variety of plants at different times in development. We demonstrate that the SRS virtually eliminates the background interference compared with coherent anti-Stokes Raman spectroscopy imaging and results in label-free, chemically specific confocal images of cuticle architecture with simultaneous characterization of cuticle composition. This innovative use of the SRS spectroscopy may find applications in agrochemical research and development or in studies of wax deposition during leaf development and, as such, represents an important step in the study of higher plant cuticles. © 2015 American Society of Plant Biologists. All Rights Reserved.
Developing best practice for fungal specimen management: audit of UK microbiology laboratories.
Lasseter, G; Palmer, M; Morgan, J; Watts, J; Yoxall, H; Kibbler, C; McNulty, C
2011-01-01
This study represents an audit of microbiology laboratories in the UK to ascertain whether they are aware of, or follow, the Health Protection Agency (HPA) National Standard Methods Standard Operating Procedure (NSM SOP) for the investigation of dermatological specimens for superficial mycoses, or use a locally adapted version. A questionnaire audit was distributed to 179 NHS microbiology laboratories throughout England, Wales, Scotland and Northern Ireland. The NSM SOP was followed by 92% of laboratories for the microscopy of dermatological samples; light microscopy/ KOH digestion was used by 63% and fluorescence microscopy/KOH digestion by 29% of laboratories. Preliminary reports post-microscopy were issued by 98% of laboratories, with 93% issuing reports within 48 hours. Adherence to the NSM SOP guidelines for culture was low; only 34% of laboratories incubated microscopy-negative specimens for the recommended 14 days, while approximately 60% incubated microscopy-positive specimens for 21 days. The culture medium recommended by the NSM SOP was used in 82% of laboratories. Comments were added to culture reports by 51% of laboratories; most were added manually and comments varied between laboratories. Nail samples were the most common sample received from primary care, followed by skin and hair. These results show no significant difference in the rate of microscopy positives versus culture positives. Microscopy and culture are the easiest and cheapest methods available to UK laboratories for the investigation of suspected superficial fungal infections. Although most laboratories included in this audit claimed to follow the NSM SOP for microscopy and culture, these results show that the techniques used vary throughout the UK. To maximise the service provided to primary care, UK laboratories should use standardise methods based on the NSM SOP.
Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.
Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu
2013-01-01
Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (<1 μm thick) sections of biological specimens, many questions involve the three-dimensional organization of a cell or the interconnectivity of cells. X-ray microscopy offers superior imaging resolution compared to light microscopy, and unique capability of nondestructive three-dimensional imaging of hydrated unstained biological cells, complementary to existing light and electron microscopy. Until now, X-ray microscopes operating in the "water window" energy range between carbon and oxygen k-shell absorption edges have produced outstanding 3D images of cryo-preserved cells. The relatively low X-ray energy (<540 eV) of the water window imposes two important limitations: limited penetration (<10 μm) not suitable for imaging larger cells or tissues, and small depth of focus (DoF) for high resolution 3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.
Increased numbers of Demodex in contact lens wearers.
Jalbert, Isabelle; Rejab, Shazana
2015-06-01
The aim of this study was to determine if Demodex infestation is more frequent in contact lens wearers than in nonwearers. Secondary aims were to evaluate the effects of Demodex on the ocular surface (symptoms and signs) and to evaluate the ability of confocal laser scanning microscopy to detect and quantify the Demodex infestation compared with the conventional light microscopic technique. Forty Asian female participants (20 nonwearers, 20 lens wearers) with a mean (± SD) age of 27 (± 9) years were recruited. Ocular comfort scores (Ocular Surface Disease Index, Ocular Comfort Index, and Dry Eye Questionnaire), vital staining (corneal, conjunctival, and lid wiper), tear osmolarity, tear breakup time, and meibomian gland evaluation were evaluated. Demodex was detected using in vivo confocal microscopy and conventional light microscopy. The number of Demodex was higher in lens wearers than in nonwearers (7.6 [± 5.8] vs. 5.0 [± 3.1]; p = 0.02). Demodex was observed in a large majority (90%) of lens wearers and in 65% of nonwearers using confocal microscopy (p = 0.06). The detection rate was lower in both groups using conventional light microscopy (p = 0.003) where Demodex could only be confirmed in 70% and 60% of lens wearers and nonwearers, respectively. The number of Demodex tended to increase with age (ρ = 0.28, p = 0.08), but Demodex did not appear to affect ocular comfort or any clinical signs (p > 0.05). Contact lens wearers harbor Demodex as frequently as nonwearers and in higher numbers, which is best detected using in vivo confocal microscopy. The significance of these findings is uncertain because no associations were found with any symptoms and signs of dry eye disease.
NASA Astrophysics Data System (ADS)
Wang, Shengyao; Yang, Xianglong; Zhang, Xuehao; Ding, Xing; Yang, Zixin; Dai, Ke; Chen, Hao
2017-01-01
In this study, a direct Z-scheme heterojunction BiOBr-Bi2MoO6 with greatly enhanced visible light photocatalytic performance was fabricated via a two-step coprecipitation method. It was indicated that a plate-on-plate heterojunctions be present between BiOBr and Bi2MoO6 through different characterization techniques including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS) and photoelectrochemical measurements. The crystal structure and morphology analysis revealed that the heterointerface in BiOBr-Bi2MoO6 occurred mainly on the (001) facets of BiOBr and (001) facets of Bi2MoO6. The photocatalytic activity of the BiOBr-Bi2MoO6 was investigated by degradation of RhB and about 66.7% total organic carbon (TOC) could be removed. Ciprofloxacin (CIP) was employed to rule out the photosensitization. It was implied that the higher activity of BiOBr-Bi2MoO6 could be attribute to the strong redox ability in the Z-scheme system, which was subsequently confirmed by photoluminescence spectroscopy (PL) and active spices trapping experiments. This study provides a promising platform for Z-scheme heterojunction constructing and also sheds light on highly efficient visible-light-driven photocatalysts designing.
Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks
NASA Astrophysics Data System (ADS)
Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie
2017-03-01
Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.
Single-molecule fluorescence microscopy review: shedding new light on old problems
Shashkova, Sviatlana
2017-01-01
Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called ‘green revolution’, has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called ‘super-resolution’ fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. PMID:28694303
Visualisation of collagen fibrils in joint cartilage using STIM
NASA Astrophysics Data System (ADS)
Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gründer, W.
2001-07-01
The scanning transmission ion microscopy (STIM) method was used to investigate the collagen network structure of the articular cartilage from a pig's knee in comparison with high resolution nuclear magnetic resonance imaging (microscopic NMR-tomography) and polarised light microscopy (PLM). Single collagen fibrils down to 200 nm in diameter were visualised. It was proved that the cartilage collagen network consists partly of zones of oriented fibrils as suggested by NMR measurements. Radially oriented fibrils were found in the zone near the calcified zone (hypertrophic zone) of both tibia and femur, and in the tibial radial zone. Tangentially oriented fibrils were found in the femoral and tibial superficial zone and in a second zone of the femoral cartilage. Polarisation light microscopy reveals broader zones of orientation than it was found with STIM.
Gomez-Gelvez, Juan C; Kryvenko, Oleksandr N; Chabot-Richards, Devon S; Foucar, Kathryn; Inamdar, Kedar V; Karner, Kristin H
2015-07-01
Evaluation of the peripheral blood smear (PBS) is an essential diagnostic test in current medical practice. We aimed to evaluate the use of digital microscopy for the examination of PBS as an option to provide expert interpretation to remote sites and in "on-call" situations. We collected 100 Wright-Giemsa-stained PBS slides representing normal and abnormal findings seen at a community-based hospital. Four hematopathologists independently evaluated the cases using conventional light and digital microscopy. When comparing digital vs light microscopy, most of the cellular features evaluated showed at least a moderate degree of agreement in at least three of the reviewers. Discrepancies in final diagnosis were identified in a minority of the cases, most of which were attributed to the poorer resolution of digital microscopy at high magnification (×400). These results support the limited use of digital microscopy for evaluation and triage of peripheral blood smears as a practical option to obtain expert opinion in locations where experienced staff is not available on site. Our results indicate that while digital microscopy is well suited for basic triage of these blood smears, limitations in quality of imaging at higher magnification as well as large file size may limit its utility in certain settings and situations. Copyright© by the American Society for Clinical Pathology.
Castel, M; Belenky, M; Cohen, S; Wagner, S; Schwartz, W J
1997-09-01
Although light is known to regulate the level of c-fos gene expression in the suprachiasmatic nucleus (SCN), the site of an endogenous circadian clock, little is known about the identities of the photically activated cells. We used light-microscopic immunocytochemistry and immunoelectron microscopy to detect c-Fos protein in the SCN of Sabra mice exposed to brief nocturnal light pulses at zeitgeber time 15-16. Stimulation with light pulses that saturated the phase-shifting response of the circadian locomotor rhythm revealed an upper limit to the number of photo-inducible c-Fos cells at about one-fifth of the estimated total SCN cell population. This functionally defined set was morphologically and phenotypically heterogeneous. About 24% could be labelled for vasoactive intestinal polypeptide, 13% for vasopressin-neurophysin, and 7% for glial fibrillary acidic protein. The remaining 56% of c-Fos-positive cells were largely of unknown phenotype, although many were presumptive interneurons, some of which were immunoreactive for nitric oxide synthase.
3D single-molecule super-resolution microscopy with a tilted light sheet.
Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E
2018-01-09
Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.
Topography and refractometry of nanostructures using spatial light interference microscopy (SLIM)
Wang, Zhuo; Chun, Ik Su; Li, Xiuling; Ong, Zhun-Yong; Pop, Eric; Millet, Larry; Gillette, Martha; Popescu, Gabriel
2010-01-01
Spatial Light Interference Microscopy (SLIM) is a novel method developed in our laboratory that provides quantitative phase images of transparent structures with 0.3 nm spatial and 0.03 nm temporal accuracy owing to the white light illumination and its common path interferometric geometry. We exploit these features and demonstrate SLIM's ability to perform topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed for cylindrical structures, we extract the axially-averaged refractive index of semiconductor nanotubes and a neurite of a live hippocampal neuron in culture. We believe that this study will set the basis for novel high-throughput topography and refractometry of man-made and biological nanostructures. PMID:20081970
Programmable LED-based integrating sphere light source for wide-field fluorescence microscopy.
Rehman, Aziz Ul; Anwer, Ayad G; Goldys, Ewa M
2017-12-01
Wide-field fluorescence microscopy commonly uses a mercury lamp, which has limited spectral capabilities. We designed and built a programmable integrating sphere light (PISL) source which consists of nine LEDs, light-collecting optics, a commercially available integrating sphere and a baffle. The PISL source is tuneable in the range 365-490nm with a uniform spatial profile and a sufficient power at the objective to carry out spectral imaging. We retrofitted a standard fluorescence inverted microscope DM IRB (Leica) with a PISL source by mounting it together with a highly sensitive low- noise CMOS camera. The capabilities of the setup have been demonstrated by carrying out multispectral autofluorescence imaging of live BV2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Schneidereit, Dominik; Kraus, Larissa; Meier, Jochen C; Friedrich, Oliver; Gilbert, Daniel F
2017-06-15
High-content screening microscopy relies on automation infrastructure that is typically proprietary, non-customizable, costly and requires a high level of skill to use and maintain. The increasing availability of rapid prototyping technology makes it possible to quickly engineer alternatives to conventional automation infrastructure that are low-cost and user-friendly. Here, we describe a 3D printed inexpensive open source and scalable motorized positioning stage for automated high-content screening microscopy and provide detailed step-by-step instructions to re-building the device, including a comprehensive parts list, 3D design files in STEP (Standard for the Exchange of Product model data) and STL (Standard Tessellation Language) format, electronic circuits and wiring diagrams as well as software code. System assembly including 3D printing requires approx. 30h. The fully assembled device is light-weight (1.1kg), small (33×20×8cm) and extremely low-cost (approx. EUR 250). We describe positioning characteristics of the stage, including spatial resolution, accuracy and repeatability, compare imaging data generated with our device to data obtained using a commercially available microplate reader, demonstrate its suitability to high-content microscopy in 96-well high-throughput screening format and validate its applicability to automated functional Cl - - and Ca 2+ -imaging with recombinant HEK293 cells as a model system. A time-lapse video of the stage during operation and as part of a custom assembled screening robot can be found at https://vimeo.com/158813199. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourne, Roger
2013-03-15
This commentary outlines how magnetic resonance imaging (MRI) microscopy studies of prostate tissue samples and whole organs have shed light on a number of clinical imaging mysteries and may enable more effective development of new clinical imaging methods.
Learning a cost function for microscope image segmentation.
Nilufar, Sharmin; Perkins, Theodore J
2014-01-01
Quantitative analysis of microscopy images is increasingly important in clinical researchers' efforts to unravel the cellular and molecular determinants of disease, and for pathological analysis of tissue samples. Yet, manual segmentation and measurement of cells or other features in images remains the norm in many fields. We report on a new system that aims for robust and accurate semi-automated analysis of microscope images. A user interactively outlines one or more examples of a target object in a training image. We then learn a cost function for detecting more objects of the same type, either in the same or different images. The cost function is incorporated into an active contour model, which can efficiently determine optimal boundaries by dynamic programming. We validate our approach and compare it to some standard alternatives on three different types of microscopic images: light microscopy of blood cells, light microscopy of muscle tissue sections, and electron microscopy cross-sections of axons and their myelin sheaths.
Click-electron microscopy for imaging metabolically tagged non-protein biomolecules
Ngo, John T.; Adams, Stephen R.; Deerinck, Thomas J.; Boassa, Daniela; Rodriguez-Rivera, Frances; Palida, Sakina F.; Bertozzi, Carolyn R.; Ellisman, Mark H.; Tsien, Roger Y.
2016-01-01
Electron microscopy (EM) has long been the main technique to image cell structures with nanometer resolution, but has lagged behind light microscopy in the crucial ability to make specific molecules stand out. Here we introduce “Click-EM,” a labeling technique for correlative light microscopy and EM imaging of non-protein biomolecules. In this approach, metabolic labeling substrates containing bioorthogonal functional groups are provided to cells for incorporation into biopolymers by endogenous biosynthetic machinery. The unique chemical functionality of these analogs is exploited for selective attachment of singlet oxygen-generating fluorescent dyes via bioorthogonal “click chemistry” ligations. Illumination of dye-labeled structures generates singlet oxygen to locally catalyze the polymerization of diaminobenzidine into an osmiophilic reaction product that is readily imaged by EM. We describe the application of Click-EM in imaging metabolically tagged DNA, RNA, and lipids in cultured cells and neurons, and highlight its use in tracking peptidoglycan synthesis in the Gram-positive bacterium Listeria monocytogenes. PMID:27110681
Measurement of replication structures at the nanometer scale using super-resolution light microscopy
Baddeley, D.; Chagin, V. O.; Schermelleh, L.; Martin, S.; Pombo, A.; Carlton, P. M.; Gahl, A.; Domaing, P.; Birk, U.; Leonhardt, H.; Cremer, C.; Cardoso, M. C.
2010-01-01
DNA replication, similar to other cellular processes, occurs within dynamic macromolecular structures. Any comprehensive understanding ultimately requires quantitative data to establish and test models of genome duplication. We used two different super-resolution light microscopy techniques to directly measure and compare the size and numbers of replication foci in mammalian cells. This analysis showed that replication foci vary in size from 210 nm down to 40 nm. Remarkably, spatially modulated illumination (SMI) and 3D-structured illumination microscopy (3D-SIM) both showed an average size of 125 nm that was conserved throughout S-phase and independent of the labeling method, suggesting a basic unit of genome duplication. Interestingly, the improved optical 3D resolution identified 3- to 5-fold more distinct replication foci than previously reported. These results show that optical nanoscopy techniques enable accurate measurements of cellular structures at a level previously achieved only by electron microscopy and highlight the possibility of high-throughput, multispectral 3D analyses. PMID:19864256
Pozzi, P; Wilding, D; Soloviev, O; Verstraete, H; Bliek, L; Vdovin, G; Verhaegen, M
2017-01-23
The quality of fluorescence microscopy images is often impaired by the presence of sample induced optical aberrations. Adaptive optical elements such as deformable mirrors or spatial light modulators can be used to correct aberrations. However, previously reported techniques either require special sample preparation, or time consuming optimization procedures for the correction of static aberrations. This paper reports a technique for optical sectioning fluorescence microscopy capable of correcting dynamic aberrations in any fluorescent sample during the acquisition. This is achieved by implementing adaptive optics in a non conventional confocal microscopy setup, with multiple programmable confocal apertures, in which out of focus light can be separately detected, and used to optimize the correction performance with a sampling frequency an order of magnitude faster than the imaging rate of the system. The paper reports results comparing the correction performances to traditional image optimization algorithms, and demonstrates how the system can compensate for dynamic changes in the aberrations, such as those introduced during a focal stack acquisition though a thick sample.
NASA Technical Reports Server (NTRS)
McNelis, Anne M.; Motil, Susan M.
2003-01-01
A Light Microscopy Module (LMM) is being engineered, designed, and developed at the NASA Glenn Research Center. The LMM is planned as a remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and control of physical science and biological science experiments within Glenn s Fluids Integrated Rack on the International Space Station. The LMM concept is a modified commercial research imaging light microscope with powerful laser-diagnostic hardware and interfaces, creating a one-of-a-kind, state-of-the-art microscopic research facility. The microscope will house several different objectives, corresponding to magnifications of 10, 40, 50, 63, and 100. Features of the LMM include high-resolution color video microscopy, brightfield, darkfield, phase contrast, differential interference contrast, spectrophotometry, and confocal microscopy combined in a single configuration. Also, laser tweezers are integrated with the diagnostics as a sample manipulation technique. As part of the development phase of the LMM, it was necessary to quantify the microgravity disturbances generated by the control box fan. Isolating the fan was deemed necessary to reduce the fan speed harmonic amplitudes and to eliminate any broadband disturbances across the 60- to 70-Hz and 160- to 170-Hz frequency ranges. The accelerations generated by a control box fan component of the LMM were measured in the Microgravity Emissions Laboratory (MEL). The MEL is a low-frequency measurement system developed to simulate and verify the on-orbit International Space Station (ISS) microgravity environment. The accelerations generated by various operating components of the ISS, if too large, could hinder the science performed onboard by disturbing the microgravity environment. The MEL facility gives customers a test-verified way of measuring their compliance with ISS limitations on vibratory disturbance levels. The facility is unique in that inertial forces in 6 degrees of freedom can be characterized simultaneously for an operating test article. Vibratory disturbance levels are measured for engineering or flight-level hardware following development from component to subassembly through the rack-level configuration. The MEL can measure accelerations as small as 10-7g, the accuracy needed to confirm compliance with ISS requirements.
Hananta, I Putu Yuda; van Dam, Alje P; Bruisten, Sylvia Maria; van der Loeff, Maarten Franciscus Schim; Soebono, Hardyanto; Christiaan de Vries, Henry John
2017-08-11
Gonorrhoea is a common sexually transmitted disease caused by Neisseria gonorrhoeae (Ng) infection. Light microscopy of urogenital smears is used as a simple tool to diagnose urogenital gonorrhoea in many resource-limited settings. We aimed to evaluate the accuracy of light microscopy to diagnose urogenital gonorrhoea as compared with a PCR-based test. In 2014, we examined 632 male urethral and 360 endocervical smears in clinic-based and outreach settings in Jakarta, Yogyakarta and Denpasar, Indonesia. Using the detection of Ng DNA by a validated PCR as reference test, we evaluated the accuracy of two light microscopic criteria to diagnose urogenital gonorrhoea in genital smears: (1) the presence of intracellular Gram-negative diplococci (IGND) and (2) ≥5 polymorphonuclear leucocytes (PMNL)/oil-immersion field (oif) in urethral or ≥20 PMNL/oif in endocervical smears. In male urethral smears, IGND testing had a sensitivity (95% CI), specificity (95% CI) and kappa±SE of 59.0% (50.1 to 67.4), 89.4% (86.3 to 91.9) and 0.49±0.04, respectively. For PMNL count, these were 59.0% (50.1 to 67.4), 83.7% (80.2 to 86.9) and 0.40±0.04, respectively. The accuracy of IGND in the clinic-based settings (72.0% (57.5 to 83.3), 95.2% (91.8 to 97.5) and 0.68±0.06, respectively) was better than in the outreach settings (51.2% (40.0 to 62.3), 83.4% (78.2 to 87.8) and 0.35±0.06, respectively). In endocervical smears, light microscopy performed poorly regardless of the setting or symptomatology, with kappas ranging from -0.09 to 0.24. Light microscopy using IGND and PMNL criteria can be an option with moderate accuracy to diagnose urethral gonorrhoea among males in a clinic-based setting. The poor accuracy in detecting endocervical infections indicates an urgent need to implement advanced methods, such as PCR. Further investigations are needed to identify the poor diagnostic outcome in outreach services. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
USDA-ARS?s Scientific Manuscript database
Altering chloroplast size changes the way light propagates through a leaf by altering light reflectance and transmission as well as absorption by chlorophyll. Thus changing chloroplast size can used to manipulate leaf optical properties to optimize photosynthetic efficiency with the ultimate goal of...
Sub-diffraction limit resolution in microscopy
NASA Technical Reports Server (NTRS)
Cheng, Ming (Inventor); Chen, Weinong (Inventor)
2007-01-01
A method and apparatus for visualizing sub-micron size particles employs a polarizing microscope wherein a focused beam of polarized light is projected onto a target, and a portion of the illuminating light is blocked from reaching the specimen, whereby to produce a shadow region, and projecting diffracted light from the target onto the shadow region.
Imaging bacterial spores by soft-x-ray microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stead, A.D.; Ford, T.W.; Judge, J.
1997-04-01
Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores bymore » soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.« less
NASA Astrophysics Data System (ADS)
Cisek, Richard
Physical and functional properties of advanced nano-composite materials and biological structures are determined by self-organized atoms and molecules into nanostructures and in turn by microscopic organization of the nanostructures into assemblies of higher structural complexity. Therefore, microscopes are indispensable tools for structural investigations at various levels of organization. In this work, novel nonlinear optical microscopy methods were developed to non-invasively study structural organization at the nanoscopic and microscopic levels. Atomic organization of semiconductor nanowires, molecular organization of amylose biocrystallites in starch granules, and microscopic organization of several photosynthetic organisms was elucidated. The structure of ZnSe nanowires, key components in many modern nanodevices, was investigated using polarization harmonic generation microscopy. Based on nonlinear optical properties of the different crystal lattices, zinc blende and wurtzite nanowires were differentiated, and the three-dimensional orientation of the zinc blende nanowires could be found. The structure of starch granules, a model biocrystal, important in food as well as health sciences, was also investigated using polarization harmonic microscopy. The study was combined with ab initio calculations using the crystal structures of amylose A and B, revealing that second harmonic signals originate from the hydroxide and hydrogen bonds in the starch granules. Visualization of several photosynthetic organisms including the green algae, Chlamydomonas reinhardtii, two species of cyanobacteria, Leptolyngbya sp. and Anabaena sp., aggregates of light-harvesting pigment-protein complexes as well as chloroplasts from green plants were also explored, revealing that future nonlinear microscopy applications could include structural studies of cell walls, the Chlamydomonas eyespot, and photosynthetic membranes. In this study, several nonlinear optical microscopy modalities were developed for quantitative structural investigations of nano and micro-sized architectures. Non-invasive extraction of crystallographic information in microscopic samples will have a number of potential benefits, for example, in clinical applications, allowing observations of disease states inside tissues without the need for biopsy. Industrial nanotechnology will benefit from fast determination of nanostructures with nonlinear microscopy that will improve quality of nanodevices.
Pb-Induced Avoidance-Like Chloroplast Movements in Fronds of Lemna trisulca L.
Samardakiewicz, Sławomir; Krzeszowiec-Jeleń, Weronika; Bednarski, Waldemar; Jankowski, Artur; Suski, Szymon; Gabryś, Halina; Woźny, Adam
2015-01-01
Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic effect of lead on chloroplasts can include disturbances in their movement and distribution pattern. PMID:25646776
Calcium neuroimaging in behaving zebrafish larvae using a turn-key light field camera
NASA Astrophysics Data System (ADS)
Cruz Perez, Carlos; Lauri, Antonella; Symvoulidis, Panagiotis; Cappetta, Michele; Erdmann, Arne; Westmeyer, Gil Gregor
2015-09-01
Reconstructing a three-dimensional scene from multiple simultaneously acquired perspectives (the light field) is an elegant scanless imaging concept that can exceed the temporal resolution of currently available scanning-based imaging methods for capturing fast cellular processes. We tested the performance of commercially available light field cameras on a fluorescent microscopy setup for monitoring calcium activity in the brain of awake and behaving reporter zebrafish larvae. The plenoptic imaging system could volumetrically resolve diverse neuronal response profiles throughout the zebrafish brain upon stimulation with an aversive odorant. Behavioral responses of the reporter fish could be captured simultaneously together with depth-resolved neuronal activity. Overall, our assessment showed that with some optimizations for fluorescence microscopy applications, commercial light field cameras have the potential of becoming an attractive alternative to custom-built systems to accelerate molecular imaging research on cellular dynamics.
Calcium neuroimaging in behaving zebrafish larvae using a turn-key light field camera.
Perez, Carlos Cruz; Lauri, Antonella; Symvoulidis, Panagiotis; Cappetta, Michele; Erdmann, Arne; Westmeyer, Gil Gregor
2015-09-01
Reconstructing a three-dimensional scene from multiple simultaneously acquired perspectives (the light field) is an elegant scanless imaging concept that can exceed the temporal resolution of currently available scanning-based imaging methods for capturing fast cellular processes. We tested the performance of commercially available light field cameras on a fluorescent microscopy setup for monitoring calcium activity in the brain of awake and behaving reporter zebrafish larvae. The plenoptic imaging system could volumetrically resolve diverse neuronal response profiles throughout the zebrafish brain upon stimulation with an aversive odorant. Behavioral responses of the reporter fish could be captured simultaneously together with depth-resolved neuronal activity. Overall, our assessment showed that with some optimizations for fluorescence microscopy applications, commercial light field cameras have the potential of becoming an attractive alternative to custom-built systems to accelerate molecular imaging research on cellular dynamics.
Light sensitive polymer obtained by dispersion of azo-functionalized POSS nanoparticles
NASA Astrophysics Data System (ADS)
Miniewicz, A.; Tomkowicz, M.; Karpinski, P.; Sznitko, L.; Mossety-Leszczak, B.; Dutkiewicz, M.
2015-07-01
Hybrid inorganic-organic nanoparticles based on cubic siloxane cage (RSiO3/2)8, known as polyhedral oligosilsesquioxane (POSS), have been functionalized by eight groups of azo-benzene mesogens and dispersed in poly(methyl methacrylate) PMMA matrix. Presence of azo-benzene units adds an important light-driven functionality to the system due to their photoisomerization resulting in refractive index and/or absorption changes of the whole system. The polymer films containing various concentrations of azo-POSS nanoparticles show remarkable changes of surface morphology being either transparent (at low POSS concentration) or highly scattering (at high POSS concentration) for visible light. Surface structures were examined by optical microscopy as well as by atomic force microscopy (AFM). Results of photoinduced alignment are discussed in the framework of light-induced modification of the aliphatic chains containing azo-benzene photoisomerizing moieties and self-organization process.
STM-induced light emission enhanced by weakly coupled organic ad-layers
NASA Astrophysics Data System (ADS)
Cottin, M. C.; Ekici, E.; Bobisch, C. A.
2018-03-01
We analyze the light emission induced by the tunneling current flowing in a scanning tunneling microscopy experiment. In particular, we study the influence of organic ad-layers on the light emission on the initial monolayer of bismuth (Bi) on Cu(111) in comparison to the well-known case of organic ad-layers on Ag(111). On the Bi/Cu(111)-surface, we find that the scanning tunneling microscopy-induced light emission is considerably enhanced if an organic layer, e.g., the fullerene C60 or the perylene derivate perylene-tetracarboxylic-dianhydride, is introduced into the tip-sample junction. The enhancement can be correlated with a peculiarly weak interaction between the adsorbed molecules and the underlying Bi/Cu(111) substrate as compared to the Ag(111) substrate. This allows us to efficiently enhance and tune the coupling of the tunneling current to localized excitations of the tip-sample junction, which in turn couple to radiative decay channels.
Light-sheet enhanced resolution of light field microscopy for rapid imaging of large volumes
NASA Astrophysics Data System (ADS)
Madrid Wolff, Jorge; Castro, Diego; Arbeláez, Pablo; Forero-Shelton, Manu
2018-02-01
Whole-brain imaging is challenging because it demands microscopes with high temporal and spatial resolution, which are often at odds, especially in the context of large fields of view. We have designed and built a light-sheet microscope with digital micromirror illumination and light-field detection. On the one hand, light sheets provide high resolution optical sectioning on live samples without compromising their viability. On the other hand, light field imaging makes it possible to reconstruct full volumes of relatively large fields of view from a single camera exposure; however, its enhanced temporal resolution comes at the expense of spatial resolution, limiting its applicability. We present an approach to increase the resolution of light field images using DMD-based light sheet illumination. To that end, we develop a method to produce synthetic resolution targets for light field microscopy and a procedure to correct the depth at which planes are refocused with rendering software. We measured the axial resolution as a function of depth and show a three-fold potential improvement with structured illumination, albeit by sacrificing some temporal resolution, also three-fold. This results in an imaging system that may be adjusted to specific needs without having to reassemble and realign it. This approach could be used to image relatively large samples at high rates.
Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy
Cha, Jae Won; Ballesta, Jerome; So, Peter T.C.
2010-01-01
The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration. PMID:20799824
Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy.
Cha, Jae Won; Ballesta, Jerome; So, Peter T C
2010-01-01
The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration.
Diagnostic pitfalls in newborns and babies with blisters and erosions.
Nischler, Elke; Klausegger, Alfred; Hüttner, Clemens; Pohla-Gubo, Gabriele; Diem, Anja; Bauer, Johann W; Hintner, Helmut
2009-01-01
Establishing the correct diagnosis in newborns presenting with blisters and erosions is not always a straightforward process. Many different disease entities including acquired (i.e., infectious, immunobullous, traumatic) and inherited disorders have to be taken into consideration. Similarities in clinical appearance, colonization and/or superinfections of preexisting skin lesions, as well as the absence of late changes in the neonate often pose significant diagnostic challenges. In this paper we discuss by giving examples the process of making an accurate diagnosis of blistering skin diseases in the neonatal period on the basis of a diagnostic algorithm. In addition, we provide an overview of the rational use and the limitations of laboratory procedures such as microbial testing, routine light microscopy, immunofluorescence antigen mapping, transmission electron microscopy, and molecular genetic analysis.
Modelling of Microstructure Changes in Hot Deformed Materials Using Cellular Automata
NASA Astrophysics Data System (ADS)
Kuc, Dariusz; Gawąd, Jerzy
2011-01-01
The paper is focused on application of multi-scale 2D method. Model approach consists of Cellular Automata (CA) model of microstructure development and the finite element code to solve thermo-mechanical problem. Dynamic recrystallization phenomenon is taken into account in 2D CA model which takes advantage of explicit representation of microstructure, including individual grains and grain boundaries. Flow stress is the main material parameter in mechanical part of FE and is calculated on the basis of average dislocation density obtained from CA model. The results attained from the model were validated with the experimental data. In the present study, austenitic steel X3CrNi18-10 was investigated. The examination of microstructure for the initial and final microstructures was carried out, using light microscopy and transmission electron microscopy.
Production of radially and azimuthally polarized polychromatic beams
NASA Astrophysics Data System (ADS)
Shoham, A.; Vander, R.; Lipson, S. G.
2006-12-01
We describe a system that efficiently provides radially or azimuthally polarized radiation from a randomly polarized source. It is constructed from two conical reflectors and a cylindrical sheet of polarizing film. Envisaged applications include a microscope illuminator for high-resolution surface plasmon resonance microscopy, illumination for high-resolution microlithography, and efficient coupling of a laser source to hollow optical fibers. The angular coherence function of light polarized by the device was measured to evaluate its usefulness for these applications.
Absorption characterization of immersion medium for multiphoton microscopy at the 1700nm window
NASA Astrophysics Data System (ADS)
Wen, Wenhui; Qiu, Ping
2017-02-01
Larger imaging depth is the quest of almost all the imaging modalities, including multiphoton microscopy (MPM). Recently, it has been domonstrated that excitation at the 1700-nm helps extending imaging depth in MPM, optical coherence tomography, as well as photoacoustic imaging compared with excitation at other wavelengths. In MPM, immersion objective lenses with high numerical aperture (NA) are typically used to achieve better signal resolution, higer signal collection efficiency, and stronger signal generation. Although physically short ( mm), this extra optical path length traversed by the excitation light inevitably introduces absorption of the excitation light, and as a result leads to a decrease in the signal generation. Here we demonstrate experimental characterization of absorption spectrum of various immersion media at the 1700-nm window, including water (H2O), deuterium oxide (D2O), and several brands of immersion oil. Our results identify either the best immersion medium for a specific wavelength, or the best wavelength for a specific immersion medium at the 1700-nm window. Furthermore, through quantitative MPM experiments comparing different immersion media, we show that the MPM signal levels can be enhanced by more than ten fold simply by selecting the proper immersion medium, in good agreement with theoretical expectation based on the absorption measurement. Our results will offer guidelines for signal optimization in MPM at the 1700-nm window.
Martone, Maryann E.; Tran, Joshua; Wong, Willy W.; Sargis, Joy; Fong, Lisa; Larson, Stephen; Lamont, Stephan P.; Gupta, Amarnath; Ellisman, Mark H.
2008-01-01
Databases have become integral parts of data management, dissemination and mining in biology. At the Second Annual Conference on Electron Tomography, held in Amsterdam in 2001, we proposed that electron tomography data should be shared in a manner analogous to structural data at the protein and sequence scales. At that time, we outlined our progress in creating a database to bring together cell level imaging data across scales, The Cell Centered Database (CCDB). The CCDB was formally launched in 2002 as an on-line repository of high-resolution 3D light and electron microscopic reconstructions of cells and subcellular structures. It contains 2D, 3D and 4D structural and protein distribution information from confocal, multiphoton and electron microscopy, including correlated light and electron microscopy. Many of the data sets are derived from electron tomography of cells and tissues. In the five years since its debut, we have moved the CCDB from a prototype to a stable resource and expanded the scope of the project to include data management and knowledge engineering. Here we provide an update on the CCDB and how it is used by the scientific community. We also describe our work in developing additional knowledge tools, e.g., ontologies, for annotation and query of electron microscopic data. PMID:18054501
Unconventional methods of imaging: computational microscopy and compact implementations
NASA Astrophysics Data System (ADS)
McLeod, Euan; Ozcan, Aydogan
2016-07-01
In the past two decades or so, there has been a renaissance of optical microscopy research and development. Much work has been done in an effort to improve the resolution and sensitivity of microscopes, while at the same time to introduce new imaging modalities, and make existing imaging systems more efficient and more accessible. In this review, we look at two particular aspects of this renaissance: computational imaging techniques and compact imaging platforms. In many cases, these aspects go hand-in-hand because the use of computational techniques can simplify the demands placed on optical hardware in obtaining a desired imaging performance. In the first main section, we cover lens-based computational imaging, in particular, light-field microscopy, structured illumination, synthetic aperture, Fourier ptychography, and compressive imaging. In the second main section, we review lensfree holographic on-chip imaging, including how images are reconstructed, phase recovery techniques, and integration with smart substrates for more advanced imaging tasks. In the third main section we describe how these and other microscopy modalities have been implemented in compact and field-portable devices, often based around smartphones. Finally, we conclude with some comments about opportunities and demand for better results, and where we believe the field is heading.
NASA Astrophysics Data System (ADS)
Kogan, Lori R.; Dowers, Kristy L.; Cerda, Jacey R.; Schoenfeld-Tacher, Regina M.; Stewart, Sherry M.
2014-12-01
Veterinary schools, similar to many professional health programs, face a myriad of evolving challenges in delivering their professional curricula including expansion of class size, costs to maintain expensive laboratories, and increased demands on veterinary educators to use curricular time efficiently and creatively. Additionally, exponential expansion of the knowledge base through ongoing biomedical research, educational goals to increase student engagement and clinical reasoning earlier in the curriculum, and students' desire to access course materials and enhance their educational experience through the use of technology all support the need to reassess traditional microscope laboratories within Professional Veterinary Medical (PVM) educational programs. While there is clear justification for teaching veterinary students how to use a microscope for clinical evaluation of cytological preparations (i.e., complete blood count, urinalysis, fecal analysis, fine needle aspirates, etc.), virtual microscopy may be a viable alternative to using light microscopy for teaching and learning fundamental histological concepts. This article discusses results of a survey given to assess Professional Veterinary Medical students' perceptions of using virtual microscope for learning basic histology/microscopic anatomy and implications of these results for using virtual microscopy as a pedagogical tool in teaching first-year Professional Veterinary Medical students' basic histology.
Hybrid-coded 3D structured illumination imaging with Bayesian estimation (Conference Presentation)
NASA Astrophysics Data System (ADS)
Chen, Hsi-Hsun; Luo, Yuan; Singh, Vijay R.
2016-03-01
Light induced fluorescent microscopy has long been developed to observe and understand the object at microscale, such as cellular sample. However, the transfer function of lense-based imaging system limits the resolution so that the fine and detailed structure of sample cannot be identified clearly. The techniques of resolution enhancement are fascinated to break the limit of resolution for objective given. In the past decades, the resolution enhancement imaging has been investigated through variety of strategies, including photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), stimulated emission depletion (STED), and structure illuminated microscopy (SIM). In those methods, only SIM can intrinsically improve the resolution limit for a system without taking the structure properties of object into account. In this paper, we develop a SIM associated with Bayesian estimation, furthermore, with optical sectioning capability rendered from HiLo processing, resulting the high resolution through 3D volume. This 3D SIM can provide the optical sectioning and resolution enhancement performance, and be robust to noise owing to the Data driven Bayesian estimation reconstruction proposed. For validating the 3D SIM, we show our simulation result of algorithm, and the experimental result demonstrating the 3D resolution enhancement.
Multiple speckle illumination for optical-resolution photoacoustic imaging
NASA Astrophysics Data System (ADS)
Poisson, Florian; Stasio, Nicolino; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel
2017-03-01
Optical-resolution photoacoustic microscopy offers exquisite and specific contrast to optical absorption. Conventional approaches generally involves raster scanning a focused spot over the sample. Here, we demonstrate that a full-field illumination approach with multiple speckle illumination can also provide diffraction-limited optical-resolution photoacoustic images. Two different proof-of-concepts are demonstrated with micro-structured test samples. The first approach follows the principle of correlation/ghost imaging,1, 2 and is based on cross-correlating photoacoustic signals under multiple speckle illumination with known speckle patterns measured during a calibration step. The second approach is a speckle scanning microscopy technique, which adapts the technique proposed in fluorescence microscopy by Bertolotti and al.:3 in our work, spatially unresolved photoacoustic measurements are performed for various translations of unknown speckle patterns. A phase-retrieval algorithm is used to reconstruct the object from the knowledge of the modulus of its Fourier Transform yielded by the measurements. Because speckle patterns naturally appear in many various situations, including propagation through biological tissue or multi-mode fibers (for which focusing light is either very demanding if not impossible), speckle-illumination-based photoacoustic microscopy provides a powerful framework for the development of novel reconstruction approaches, well-suited to compressed sensing approaches.2
NASA Astrophysics Data System (ADS)
Kiekens, Kelli C.; Talarico, Olivia; Barton, Jennifer K.
2018-02-01
A multimodality endoscope system has been designed for early detection of ovarian cancer. Multiple illumination and detection systems must be integrated in a compact, stable, transportable configuration to meet the requirements of a clinical setting. The proximal configuration presented here supports visible light navigation with a large field of view and low resolution, high resolution multiphoton microscopy (MPM), and high resolution optical coherence microscopy (OCM). All modalities are integrated into a single optical system in the endoscope. The system requires two light sources: a green laser for visible light navigation and a compact fiber based femtosecond laser for MPM and OCM. Using an inline wavelength division multiplexer, the two sources are combined into a single mode fiber. To accomplish OCM, a fiber coupler is used to separate the femtosecond laser into a reference arm and signal arm. The reflected reference arm and the signal from the sample are interfered and wavelength separated by a reflection grating and detected using a linear array. The MPM signal is collimated and goes through a series of filters to separate the 2nd and 3rd harmonics as well as twophoton excitation florescence (2PEF) and 3PEF. Each signal is independently detected on a photo multiplier tube and amplified. The visible light is collected by multiple high numerical aperture fibers at the endoscope tip which are bundled into one SMA adapter at the proximal end and connected to a photodetector. This integrated system design is compact, efficient and meets both optical and mechanical requirements for clinical applications.
van Der Laak, J A; Pahlplatz, M M; Hanselaar, A G; de Wilde, P C
2000-04-01
Transmitted light microscopy is used in pathology to examine stained tissues. Digital image analysis is gaining importance as a means to quantify alterations in tissues. A prerequisite for accurate and reproducible quantification is the possibility to recognise stains in a standardised manner, independently of variations in the staining density. The usefulness of three colour models was studied using data from computer simulations and experimental data from an immuno-doublestained tissue section. Direct use of the three intensities obtained by a colour camera results in the red-green-blue (RGB) model. By decoupling the intensity from the RGB data, the hue-saturation-intensity (HSI) model is obtained. However, the major part of the variation in perceived intensities in transmitted light microscopy is caused by variations in staining density. Therefore, the hue-saturation-density (HSD) transform was defined as the RGB to HSI transform, applied to optical density values rather than intensities for the individual RGB channels. In the RGB model, the mixture of chromatic and intensity information hampers standardisation of stain recognition. In the HSI model, mixtures of stains that could be distinguished from other stains in the RGB model could not be separated. The HSD model enabled all possible distinctions in a two-dimensional, standardised data space. In the RGB model, standardised recognition is only possible by using complex and time-consuming algorithms. The HSI model is not suitable for stain recognition in transmitted light microscopy. The newly derived HSD model was found superior to the existing models for this purpose. Copyright 2000 Wiley-Liss, Inc.
Keller, A; Danner, N; Grimmer, G; Ankenbrand, M; von der Ohe, K; von der Ohe, W; Rost, S; Härtel, S; Steffan-Dewenter, I
2015-03-01
The identification of pollen plays an important role in ecology, palaeo-climatology, honey quality control and other areas. Currently, expert knowledge and reference collections are essential to identify pollen origin through light microscopy. Pollen identification through molecular sequencing and DNA barcoding has been proposed as an alternative approach, but the assessment of mixed pollen samples originating from multiple plant species is still a tedious and error-prone task. Next-generation sequencing has been proposed to avoid this hindrance. In this study we assessed mixed pollen probes through next-generation sequencing of amplicons from the highly variable, species-specific internal transcribed spacer 2 region of nuclear ribosomal DNA. Further, we developed a bioinformatic workflow to analyse these high-throughput data with a newly created reference database. To evaluate the feasibility, we compared results from classical identification based on light microscopy from the same samples with our sequencing results. We assessed in total 16 mixed pollen samples, 14 originated from honeybee colonies and two from solitary bee nests. The sequencing technique resulted in higher taxon richness (deeper assignments and more identified taxa) compared to light microscopy. Abundance estimations from sequencing data were significantly correlated with counted abundances through light microscopy. Simulation analyses of taxon specificity and sensitivity indicate that 96% of taxa present in the database are correctly identifiable at the genus level and 70% at the species level. Next-generation sequencing thus presents a useful and efficient workflow to identify pollen at the genus and species level without requiring specialised palynological expert knowledge. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Diagnostic electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickersin, G.R.
1988-01-01
In this book the author presents a comprehensive reference text on diagnostic electron microscopy. Throughout the book he illustrates how ultrastructural identification can be helpful for the recognition of cell type and the identification of mechanisms of pathogenesis in various diseases. In addition to electron microscopy photographs, there are also numerous light microscopy photographs for comparison. This text presents the classification of neoplasms in the order and arrangement most familiar to the pathologist. Contents: Introduction; Diagram of a Normal Cell; Normal Cell Function; Embryology; Neoplasms; Infectious Agents; Metabolic Diseases; Renal Diseases; Skeletal Muscle and Peripheral Nerve Diseases; Index.
Vainchenker, W; Villeval, J L; Tabilio, A; Matamis, H; Karianakis, G; Guichard, J; Henri, A; Vernant, J P; Rochant, H; Breton-Gorius, J
1988-05-01
Forty-three cases of undifferentiated leukemias by light microscopy examination were diagnosed as acute myeloblastic leukemias by ultrastructural revelation of peroxidase and were subsequently studied by immunological markers. In 41 of these cases, blasts were labeled by at least one of the antimyeloid MoAbs (My 7, My 9, and 80H5). An antimyeloperoxidase polyclonal antibody was used in 23 cases and was clearly positive in 11 of them, while cytochemistry by light microscopy was negative. These myeloblasts were frequently mixed with a minority of blasts from other lineages especially promegakaryoblasts. It is noteworthy that in 6 cases myeloid and lymphoid markers (E rosette receptor, common acute lymphoblastic leukemia antigen (cALLA), CD 9, CD 19 antigens (anti-B4 MoAb] were detected on a fraction of blast cells, suggesting a bilineage leukemia. However, in double labeling experiments, blasts with myeloperoxidase coexpressed lymphoid and myeloid markers including cALLA and CD 19 antigen. In one case, blasts had a typical non-B, non-T acute lymphoblastic leukemia phenotype (HLA-DR, CD 9, CD 19, cALLA positive) without staining by any of the antimyeloid MoAbs. However, 70% of the blasts were labeled by the antimyeloperoxidase antibody and expressed peroxidase-positive granules at ultrastructural level. In conclusion, most of the AML undiagnosed by optical cytochemistry are identified by antimyeloid antibodies. Some of these cases are also stained by some antilymphoid MoAbs. Use of antibodies against myeloperoxidase may improve the diagnosis of difficult cases of acute myeloblastic leukemia.
Wang, Ruijuan; Tian, Maozhang; Wang, Yilin
2014-03-21
Coacervation in an aqueous solution of cationic ammonium gemini surfactant hexamethylene-1,6-bis(dodecyldimethylammonium bromide) (C12C6C12Br2) with sodium benzoate (NaBz) has been investigated at 25 °C by turbidity titration, light microscopy, dynamic light scattering, cryogenic temperature transmission electron microscopy (Cryo-TEM), scanning electron microscopy (SEM), isothermal titration calorimetry, ζ potential and (1)H NMR measurements. There is a critical NaBz concentration of 0.10 M, only above which coacervation can take place. However, if the NaBz concentration is too large, coacervation also becomes difficult. Coacervation takes place at a very low concentration of C12C6C12Br2 and exists in a very wide concentration region of C12C6C12Br2. The phase behavior in the NaBz concentration from 0.15 to 0.50 M includes spherical micelles, threadlike micelles, coacervation, and precipitation. With increasing NaBz concentration, the phase boundaries of coacervation shift to higher C12C6C12Br2 concentration. Moreover, the C12C6C12Br2-NaBz aggregates in the coacervate are found to be close to charge neutralized. The Cryo-TEM and SEM images of the coacervate shows a layer-layer stacking structure consisting of a three-dimensional network formed by the assembly of threadlike micelles. Long, dense and almost uncharged threadlike micelles are the precursors of coacervation in the system.
Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei
2016-03-15
A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.
Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu
2013-01-01
Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50-60 nm on a time scale of 2.3 s. Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level.
Ateş, Utku; Baka, Meral; Turgut, Mehmet; Uyanikgil, Yiğit; Ulker, Sibel; Yilmaz, Ozlem; Tavmergen, Erol; Yurtseven, Mine
2007-04-01
To evaluate structural alterations in rat endometrium at preimplantation following treatment with aspirin beginning from proestrus by light microscopy, electron microscopy and immunohistochemical techniques. Twenty rats were divided into control (n = 10) and experimental (n = 10) groups. Experimental rats were treated with low-dose aspirin daily (2 mg/kg/day) during estrus, beginning from the proestrus phase, mated at end of cycle and treated with aspirin. Untreated pregnant rats were the control group. Rats in both groups were sacrificed at the 84th pregnancy hour; the uterus was rapidly removed and dissected free of surrounding adipose tissue. Uteri specimens from nonpregnant rats were transferred into fixative solution and processed for light, electron microscopic and immunohistochemical study. Light and electron microscopy of endometrium from control rats conformed to mid-diestrus phase; endometrial histology of the aspirin-treated group conformed to late diestrus phase. The endometrial layer was significantly thicker in the aspirin-treated group compared to the untreated control group (p <0.001). No significant difference was found in vessel number between groups. Staining with alphaV integrin was more dense in the aspirin-treated group. Based on histologic findings, we suggest low-dose aspirin has positive effects on preparing endometrium before implantation.
Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu
2016-01-01
Background Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. Results We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50–60 nm on a time scale of 2.3 s. Conclusion Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level. PMID:27795878
NASA Astrophysics Data System (ADS)
Takanabe, Akifumi; Tanaka, Masahito; Taniguchi, Atsuo; Yamanaka, Hisashi; Asahi, Toru
2014-07-01
To improve our ability to identify single crystals causing arthritis, we have developed a practical measurement system of polarized light microscopy called advanced compensated polarized light microscopy (A-CPLM). The A-CPLM system is constructed by employing a conventional phase retardation plate, an optical fibre and a charge-coupled device spectrometer in a polarized light microscope. We applied the A-CPLM system to measure linear birefringence (LB) in the visible region, which is an optical anisotropic property, for tiny single crystals causing arthritis, i.e. monosodium urate monohydrate (MSUM) and calcium pyrophosphate dihydrate (CPPD). The A-CPLM system performance was evaluated by comparing the obtained experimental data using the A-CPLM system with (i) literature data for a standard sample, MgF2, and (ii) experimental data obtained using an established optical method, high-accuracy universal polarimeter, for the MSUM. The A-CPLM system was found to be applicable for measuring the LB spectra of the single crystals of MSUM and CPPD, which cause arthritis, in the visible regions. We quantitatively reveal the large difference in LB between MSUM and CPPD crystals. These results demonstrate the usefulness of the A-CPLM system for distinguishing the crystals causing arthritis.
NASA Astrophysics Data System (ADS)
Candeo, Alessia; Sana, Ilenia; Ferrari, Eleonora; Maiuri, Luigi; D'Andrea, Cosimo; Valentini, Gianluca; Bassi, Andrea
2016-05-01
Light sheet fluorescence microscopy has proven to be a powerful tool to image fixed and chemically cleared samples, providing in depth and high resolution reconstructions of intact mouse organs. We applied light sheet microscopy to image the mouse intestine. We found that large portions of the sample can be readily visualized, assessing the organ status and highlighting the presence of regions with impaired morphology. Yet, three-dimensional (3-D) sectioning of the intestine leads to a large dataset that produces unnecessary storage and processing overload. We developed a routine that extracts the relevant information from a large image stack and provides quantitative analysis of the intestine morphology. This result was achieved by a three step procedure consisting of: (1) virtually unfold the 3-D reconstruction of the intestine; (2) observe it layer-by-layer; and (3) identify distinct villi and statistically analyze multiple samples belonging to different intestinal regions. Even if the procedure has been developed for the murine intestine, most of the underlying concepts have a general applicability.
Extreme alien light allows survival of terrestrial bacteria
NASA Astrophysics Data System (ADS)
Johnson, Neil; Zhao, Guannan; Caycedo, Felipe; Manrique, Pedro; Qi, Hong; Rodriguez, Ferney; Quiroga, Luis
2013-07-01
Photosynthetic organisms provide a crucial coupling between the Sun's energy and metabolic processes supporting life on Earth. Searches for extraterrestrial life focus on seeking planets with similar incident light intensities and environments. However the impact of abnormal photon arrival times has not been considered. Here we present the counterintuitive result that broad classes of extreme alien light could support terrestrial bacterial life whereas sources more similar to our Sun might not. Our detailed microscopic model uses state-of-the-art empirical inputs including Atomic Force Microscopy (AFM) images. It predicts a highly nonlinear survivability for the basic lifeform Rsp. Photometricum whereby toxic photon feeds get converted into a benign metabolic energy supply by an interplay between the membrane's spatial structure and temporal excitation processes. More generally, our work suggests a new handle for manipulating terrestrial photosynthesis using currently-available extreme value statistics photon sources.
Applications of Blue Light-curing Acrylic Resin to Forensic Sample Preparation and Microtomy.
Groves, Ethan; Palenik, Christopher S
2016-03-01
This study discusses the results of an evaluation of a one-part blue light-curing acrylic resin for embedding trace evidence prior to the preparation of thin sections with a microtome. Through a comparison to several epoxy resins, the physical properties relevant to both trace evidence examination and analytical microscopy in general, including as viscosity, clarity, color, hardness, and cure speed, were explored. Finally, thin sections from paint samples embedded in this acrylic resin were evaluated to determine if, through smearing or impregnation, the resin contributed to the infrared spectra. The results of this study show that blue light-curing acrylic resins provide the desired properties of an embedding medium, generate high-quality thin sections, and can significantly simplify the preparation of paint chips, fibers and a multitude of other types of microscopic samples in the forensic trace evidence laboratory. © 2015 American Academy of Forensic Sciences.
Surface potential on gold nanodisc arrays fabricated on silicon under light irradiation
NASA Astrophysics Data System (ADS)
Ezaki, Tomotarou; Matsutani, Akihiro; Nishioka, Kunio; Shoji, Dai; Sato, Mina; Okamoto, Takayuki; Isobe, Toshihiro; Nakajima, Akira; Matsushita, Sachiko
2018-06-01
This paper proposes Kelvin probe force microscopy (KFM) as a new measurement method of plasmon phenomenon. The surface potential of two arrays, namely, a monomeric array and a tetrameric array, of gold nanodiscs (600 nm diameter) on a silicon substrate fabricated by electron beam lithography was investigated by KFM with the view point of irradiation light wavelength change. In terms of the value of the surface potential, contrasting behaviour, a negative shift in the monomeric disc array and a positive shift in the tetrameric disc array, was observed by light irradiation. This interesting behaviour is thought to be related to a difference in localised plasmons caused by the disc arrangement and was investigated from various viewpoints, including Rayleigh anomalies. Finally, this paper reveals that KFM is powerful not only to investigate the plasmonic behaviour but also to predict the electron transportation.
Light, Imaging, Vision: An interdisciplinary undergraduate course
NASA Astrophysics Data System (ADS)
Nelson, Philip
2015-03-01
The vertebrate eye is fantastically sensitive instrument, capable of registering the absorption of a single photon, and yet generating very low noise. Using eyes as a common thread helps motivate undergraduates to learn a lot of physics, both fundamental and applied to scientific imaging and neuroscience. I'll describe an undergraduate course, for students in several science and engineering majors, that takes students from the rudiments of probability theory to the quantum character of light, including modern experimental methods like fluorescence imaging and Förster resonance energy transfer. After a digression into color vision, we then see how the Feynman principle explains the apparently wavelike phenomena associated to light, including applications like diffraction, subdiffraction imaging, total internal reflection and TIRF microscopy. Then we see how scientists documented the single-quantum sensitivity of the eye seven decades earlier than ``ought'' to have been possible, and finally close with the remarkable signaling cascade that delivers such outstanding performance. Parts of this story are now embodied in a new textbook (WH Freeman and Co, 1/2015); additional course materials are available upon request. Work supported by NSF Grants EF-0928048 and DMR-0832802.