Light beam frequency comb generator
Priatko, G.J.; Kaskey, J.A.
1992-11-24
A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics. 2 figs.
Light beam frequency comb generator
Priatko, Gordon J.; Kaskey, Jeffrey A.
1992-01-01
A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.
Frequency chirped light at large detuning with an injection-locked diode laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, K.; Disla, M.; Dellatto, J.
2015-04-15
We have developed a laser system to generate frequency-chirped light at rapid modulation speeds (∼100 MHz) with a large frequency offset. Light from an external cavity diode laser with its frequency locked to an atomic resonance is passed through a lithium niobate electro-optical phase modulator. The phase modulator is driven by a ∼6 GHz signal whose frequency is itself modulated with a RF MHz signal (<200 MHz). A second injection locked diode laser is used to filter out all of the light except the frequency-chirped ±1 order by more than 30 dB. Using this system, it is possible to generatemore » a 1 GHz frequency chirp in 5 ns.« less
FIBER AND INTEGRATED OPTICS: Radio-frequency electrooptic modulation in optical fibers
NASA Astrophysics Data System (ADS)
Bulyuk, A. N.
1992-10-01
The electrooptic interaction in single-mode optical fibers with both linear and circular birefringe is analyzed. In most cases, a large interaction length imposes a limit on the modulation frequency. A circular birefringence in an optical fiber may lead to an effective coupling of polarization normal modes if a phase-matching condition is satisfied. Through an appropriate choice of polarization states of the light at the entrance and exit of the device, one can achieve a polarization modulation or a frequency shift of the light. There are possible applications in rf polarization modulators, devices for shifting the frequency of light, and detectors of electromagnetic fields.
Feasibility study of microwave modulation DIAL system for global CO II monitoring
NASA Astrophysics Data System (ADS)
Hirano, Yoshihito; Kameyama, Shumpei; Ueno, Shinichi; Sugimoto, Nobuo; Kimura, Toshiyoshi
2006-12-01
A new concept of DIAL (DIfferential Absorption Lidar) system for global CO II monitoring using microwave modulation is introduced. This system uses quasi-CW lights which are intensity modulated in microwave region and receives a backscattered light from the ground. In this system, ON/OFF wavelength laser lights are modulated with microwave frequencies, and received lights of two wavelengths are able to be discriminated by modulation frequencies in electrical signal domain. Higher sensitivity optical detection can be realized compared with the conventional microwave modulation lidar by using direct down conversion of modulation frequency. The system also has the function of ranging by using pseudo-random coding in modulation. Fiber-based optical circuit using wavelength region of 1.6 micron is a candidate for the system configuration. After the explanation of this configuration, feasibility study of this system on the application to global CO II monitoring is introduced.
Acousto-optical modulation of light at a doubled sound frequency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotov, V M; Averin, S V; Shkerdin, G N
2016-02-28
A method of acousto-optical (AO) Bragg diffraction is proposed that provides the amplitude modulation of optical radiation at a doubled acoustic frequency. The method is based on the double transmission of the light through the AO modulator made of a gyrotropic crystal and is experimentally tested by the example of the modulation of light with a wavelength of 0.63 μm, controlled by the paratellurite AO cell. (acoustooptics)
High-frequency modulation of the four states of polarization of light with a single phase modulator
NASA Astrophysics Data System (ADS)
Compain, Eric; Drevillon, Bernard
1998-04-01
A method for light polarization modulation is described. It allows us to independently modulate, at a high frequency, the four components of the Stokes vector of light using a single phase modulator. It works in a double-pass configuration: the polarization of light is modulated a first time by the phase modulator, and is then modified by a coupling object before being modulated a second time by the same modulator. The coupling object consists of multiple glass plates, oriented at the Brewster angle, acting as a partial polarizer and in a right angle prism acting as a phase shifter and back reflector. Its polarimetric properties are obtained from refractive index contrast effects, which provides optimized and constant properties over a wide spectral range. The phase modulator can be either an electro-optic modulator providing a very high-frequency capability (up to 100 MHz) or a photoelastic modulator providing a wide spectral range capability. It is robust because there is no moving part and simple to implement because of the presence of one modulation. It displays a high level of sensitivity because all the components are high-frequency modulated. Two applications using this modulator in a polarimeter or in a polarization states generator are described. The four modulations, having the same fundamental frequency, are easily demodulated by numerical data processing. Optimized demodulation processing, adapted to the different kind of phase modulator is described. Its adaptation taking into account the bandwidth limitation and the variation of the sampling phase, are finally presented in the case of a photoelastic modulator.
Wang, Fei; Dong, Jianji; Xu, Enming; Zhang, Xinliang
2010-11-22
An all-optical UWB pulses generation and modulation scheme using cross phase modulation (XPM) effect of semiconductor optical amplifier (SOA) and DWDM-based multi-channel frequency discrimination is proposed and demonstrated, which has potential application in multiuser UWB-Over-Fiber communication systems. When a Gaussian pulse light and a wavelength-tunable CW probe light are together injected into the SOA, the probe light out from the SOA will have a temporal chirp due to SOA-XPM effect. When the chirped probe light is tuned to the slopes of single DWDM channel transmittance curve, the optical phase modulation to intensity modulation conversion is achieved at DWDM that serves as a multi-channel frequency discriminator, the inverted polarity Gaussian monocycle and doublet pulse is detected by a photodetector, respectively. If the probe lights are simultaneously aimed to different slopes of several DWDM channels, multi-channel or binary-phase-coded UWB signal generation can be acquired. Using proposed scheme, pulse amplitude modulation (PAM), pulse polarity modulation (PPM) and pulse shape modulation (PSM) to UWB pulses also can be conveniently realized.
Zhang, Shengzhao; Li, Gang; Wang, Jiexi; Wang, Donggen; Han, Ying; Cao, Hui; Lin, Ling; Diao, Chunhong
2017-10-01
When an optical chopper is used to modulate the light source, the rotating speed of the wheel may vary with time and subsequently cause jitter of the modulation frequency. The amplitude calculated from the modulated signal would be distorted when the frequency fluctuations occur. To precisely calculate the amplitude of the modulated light flux, we proposed a method to estimate the range of the frequency fluctuation in the measurement of the spectrum and then extract the amplitude based on the sum of power of the signal in the selected frequency range. Experiments were designed to test the feasibility of the proposed method and the results showed lower root means square error than the conventional way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawahara, Hajime, E-mail: kawahara@eps.s.u-tokyo.ac.jp; Research Center for the Early Universe, School of Science, The University of Tokyo, Tokyo 113-0033
2016-05-10
We consider the time–frequency analysis of a scattered light curve of a directly imaged exoplanet. We show that the geometric effect due to planetary obliquity and orbital inclination induce the frequency modulation of the apparent diurnal periodicity. We construct a model of the frequency modulation and compare it with the instantaneous frequency extracted from the pseudo-Wigner distribution of simulated light curves of a cloudless Earth. The model provides good agreement with the simulated modulation factor, even for the light curve with Gaussian noise comparable to the signal. Notably, the shape of the instantaneous frequency is sensitive to the difference betweenmore » the prograde, retrograde, and pole-on spin rotations. While our technique requires the albedo map to be static, it does not need to solve the albedo map of the planet. The time–frequency analysis is complementary to other methods which utilize the amplitude modulation. This paper demonstrates the importance of the frequency domain of the photometric variability for the characterization of directly imaged exoplanets in future research.« less
Rhodes-Mordov, Elisheva; Katz, Ben; Oberegelsbacher, Claudia; Yasin, Bushra; Tzadok, Hanan; Huber, Armin
2017-01-01
Drosophila photoreceptors respond to oscillating light of high frequency (∼100 Hz), while the detected maximal frequency is modulated by the light rearing conditions, thus enabling high sensitivity to light and high temporal resolution. However, the molecular basis for this adaptive process is unclear. Here, we report that dephosphorylation of the light-activated transient receptor potential (TRP) ion channel at S936 is a fast, graded, light-dependent, and Ca2+-dependent process that is partially modulated by the rhodopsin phosphatase retinal degeneration C (RDGC). Electroretinogram measurements of the frequency response to oscillating lights in vivo revealed that dark-reared flies expressing wild-type TRP exhibited a detection limit of oscillating light at relatively low frequencies, which was shifted to higher frequencies upon light adaptation. Strikingly, preventing phosphorylation of the S936-TRP site by alanine substitution in transgenic Drosophila (trpS936A) abolished the difference in frequency response between dark-adapted and light-adapted flies, resulting in high-frequency response also in dark-adapted flies. In contrast, inserting a phosphomimetic mutation by substituting the S936-TRP site to aspartic acid (trpS936D) set the frequency response of light-adapted flies to low frequencies typical of dark-adapted flies. Light-adapted rdgC mutant flies showed relatively high S936-TRP phosphorylation levels and light–dark phosphorylation dynamics. These findings suggest that RDGC is one but not the only phosphatase involved in pS936-TRP dephosphorylation. Together, this study indicates that TRP channel dephosphorylation is a regulatory process that affects the detection limit of oscillating light according to the light rearing condition, thus adjusting dynamic processing of visual information under varying light conditions. SIGNIFICANCE STATEMENT Drosophila photoreceptors exhibit high temporal resolution as manifested in frequency response to oscillating light of high frequency (≤∼100 Hz). Light rearing conditions modulate the maximal frequency detected by photoreceptors, thus enabling them to maintain high sensitivity to light and high temporal resolution. However, the precise mechanisms for this process are not fully understood. Here, we show by combination of biochemistry and in vivo electrophysiology that transient receptor potential (TRP) channel dephosphorylation at a specific site is a fast, light-activated and Ca2+-dependent regulatory process. TRP dephosphorylation affects the detection limit of oscillating light according to the adaptation state of the photoreceptor cells by shifting the detection limit to higher frequencies upon light adaptation. This novel mechanism thus adjusts dynamic processing of visual information under varying light conditions. PMID:28314815
Covert laser remote sensing and vibrometry
NASA Technical Reports Server (NTRS)
Maleki, Lutfollah (Inventor); Yu, Nan (Inventor); Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy (Inventor)
2012-01-01
Designs of single-beam laser vibrometry systems and methods. For example, a method for detecting vibrations of a target based on optical sensing is provided to include operating a laser to produce a laser probe beam at a laser frequency and modulated at a modulation frequency onto a target; collecting light at or near the laser to collect light from the target while the target is being illuminated by the laser probe beam through an optical receiver aperture; using a narrow-band optical filter centered at the laser frequency to filter light collected from the optical receiver aperture to transmit light at the laser frequency while blocking light at other frequencies; using an optical detector to convert filtered light from the narrow-band optical filter to produce a receiver electrical signal; using a lock-in amplifier to detect and amplify the receiver electrical signal at the modulation frequency while rejecting signal components at other frequencies to produce an amplified receiver electrical signal; processing the amplified receiver electrical signal to extract information on vibrations of the target carried by reflected laser probe beam in the collected light; and controlling optical power of the laser probe beam at the target to follow optical power of background illumination at the target.
Microscopy imaging system and method employing stimulated raman spectroscopy as a contrast mechanism
Xie, Xiaoliang Sunney [Lexington, MA; Freudiger, Christian [Boston, MA; Min, Wei [Cambridge, MA
2011-09-27
A microscopy imaging system includes a first light source for providing a first train of pulses at a first center optical frequency .omega..sub.1, a second light source for providing a second train of pulses at a second center optical frequency .omega..sub.2, a modulator system, an optical detector, and a processor. The modulator system is for modulating a beam property of the second train of pulses at a modulation frequency f of at least 100 kHz. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of the first train of pulses from the common focal volume by blocking the second train of pulses being modulated. The processor is for detecting, a modulation at the modulation frequency f, of the integrated intensity of the optical frequency components of the first train of pulses to provide a pixel of an image for the microscopy imaging system.
Thermal Images of Seeds Obtained at Different Depths by Photoacoustic Microscopy (PAM)
NASA Astrophysics Data System (ADS)
Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.
2015-06-01
The objective of the present study was to obtain thermal images of a broccoli seed ( Brassica oleracea) by photoacoustic microscopy, at different modulation frequencies of the incident light beam ((0.5, 1, 5, and 20) Hz). The thermal images obtained in the amplitude of the photoacoustic signal vary with each applied frequency. In the lowest light frequency modulation, there is greater thermal wave penetration in the sample. Likewise, the photoacoustic signal is modified according to the structural characteristics of the sample and the modulation frequency of the incident light. Different structural components could be seen by photothermal techniques, as shown in the present study.
NASA Astrophysics Data System (ADS)
Zhu, Lili; Wu, Jingping; Lin, Guimin; Hu, Liangjun; Li, Hui
2016-10-01
With high spatial resolution of ultrasonic location and high sensitivity of optical detection, ultrasound-modulated optical tomography (UOT) is a promising noninvasive biological tissue imaging technology. In biological tissue, the ultrasound-modulated light signals are very weak and are overwhelmed by the strong unmodulated light signals. It is a difficulty and key to efficiently pick out the weak modulated light from strong unmodulated light in UOT. Under the effect of an ultrasonic field, the scattering light intensity presents a periodic variation as the ultrasonic frequency changes. So the modulated light signals would be escape from the high unmodulated light signals, when the modulated light signals and the ultrasonic signal are processed cross correlation operation by a lock-in amplifier and without a chopper. Experimental results indicated that the signal-to-noise ratio of UOT is significantly improved by a lock-in amplifier, and the higher the repetition frequency of pulsed ultrasonic wave, the better the signal-to-noise ratio of UOT.
Tromberg, B.J.; Tsay, T.T.; Berns, M.W.; Svaasand, L.O.; Haskell, R.C.
1995-06-13
Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid. 14 figs.
Tromberg, Bruce J.; Tsay, Tsong T.; Berns, Michael W.; Svaasand, Lara O.; Haskell, Richard C.
1995-01-01
Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid.
Modulated Source Interferometry with Combined Amplitude and Frequency Modulation
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor)
1998-01-01
An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.
Stimulus-dependent modulation of spontaneous low-frequency oscillations in the rat visual cortex.
Huang, Liangming; Liu, Yadong; Gui, Jianjun; Li, Ming; Hu, Dewen
2014-08-06
Research on spontaneous low-frequency oscillations is important to reveal underlying regulatory mechanisms in the brain. The mechanism for the stimulus modulation of low-frequency oscillations is not known. Here, we used the intrinsic optical imaging technique to examine stimulus-modulated low-frequency oscillation signals in the rat visual cortex. The stimulation was presented monocularly as a flashing light with different frequencies and intensities. The phases of low-frequency oscillations in different regions tended to be synchronized and the rhythms typically accelerated within a 30-s period after stimulation. These phenomena were confined to visual stimuli with specific flashing frequencies (12.5-17.5 Hz) and intensities (5-10 mA). The acceleration and synchronization induced by the flashing frequency were more marked than those induced by the intensity. These results show that spontaneous low-frequency oscillations can be modulated by parameter-dependent flashing lights and indicate the potential utility of the visual stimulus paradigm in exploring the origin and function of low-frequency oscillations.
Second-harmonic generation of a dual-frequency laser in a MgO:PPLN crystal.
Kang, Ying; Yang, Suhui; Brunel, Marc; Cheng, Lijun; Zhao, Changming; Zhang, Haiyang
2017-04-10
A dual-frequency CW laser at a wavelength of 1.064 μm is frequency doubled in a MgO:PPLN nonlinear crystal. The fundamental dual-frequency laser has a tunable beat note from 125 MHz to 175 MHz. A laser-diode pumped fiber amplifier is used to amplify the dual-frequency fundamental output to a maximum power of 50 W before frequency doubling. The maximum output power of the green light is 1.75 W when the input fundamental power is 12 W, corresponding to a frequency doubling efficiency of 14.6%. After frequency doubling, green light with modulation frequencies in two bands from 125 MHz to 175 MHz and from 250 MHz to 350 MHz is achieved simultaneously. The relative intensities of the beat notes at the two bands can be adjusted by changing the relative intensities at different frequencies of the fundamental light. The spectral width and frequency stabilities of the beat notes in fundamental wave and green light are also measured, respectively. The modulated green light has potential applications in underwater ranging, communication, and imaging.
Characterization of Anisotropic Leaky Mode Modulators for Holovideo
Gneiting, Scott; Kimball, Jacob; Henrie, Andrew; McLaughlin, Stephen; DeGraw, Taylor; Smalley, Daniel
2016-01-01
Holovideo displays are based on light-bending spatial light modulators. One such spatial light modulator is the anisotropic leaky mode modulator. This modulator is particularly well suited for holographic video experimentation as it is relatively simple and inexpensive to fabricate1-3. Some additional advantages of leaky mode devices include: large aggregate bandwidth, polarization separation of signal light from noise, large angular deflection and frequency control of color1. In order to realize these advantages, it is necessary to be able to adequately characterize these devices as their operation is strongly dependent on waveguide and transducer parameters4. To characterize the modulators, the authors use a commercial prism coupler as well as a custom characterization apparatus to identify guided modes, calculate waveguide thickness and finally to map the device's frequency input and angular output of leaky mode modulators. This work gives a detailed description of the measurement and characterization of leaky mode modulators suitable for full-color holographic video. PMID:27023115
Microwave generation with photonic frequency octupling using a DPMZM in a Sagnac loop
NASA Astrophysics Data System (ADS)
Gao, Yongsheng; Wen, Aijun; Li, Ningning; Wu, Xiaohui; Zhang, Huixing
2015-09-01
A photonic microwave signal generation scheme with frequency octupling is proposed and experimentally demonstrated. The scheme is based on bi-directional use of a dual-parallel Mach-Zehnder modulator (DPMZM) in a Sagnac loop. The two sub-modulators in the DPMZM are driven by two low-frequency signals with a π/2 phase difference, and the dc biases of the modulator are all set at the maximum transmission points. Due to the velocity mismatch of the modulator, only the light wave along the clockwise direction is effectively modulated by the drive signals to generate an optical signal with a carrier and ±4th order sidebands, while the modulation of the light wave along the counterclockwise direction is far less effective and can be ignored. By properly adjusting the polarization of the light wave output from the Sagnac loop, the optical carrier can be significantly suppressed at a polarizer, and then an optical signal with only ±4th order sidebands is generated. In the experiment, a pure 24-GHz microwave signal without additional phase noise from the optical system is generated using a 3-GHz local oscillator signal. As no electrical or optical filter is used, the photonic frequency octupler is of good frequency tunability.
Light modulated switches and radio frequency emitters
Wilson, Mahlon T.; Tallerico, Paul J.
1982-01-01
The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.
NASA Astrophysics Data System (ADS)
Zolotov, Evgenii M.; Pelekhatyĭ, V. M.; Tavlykaev, R. F.
1990-05-01
A simultaneous increase in the frequency bandwidth and a reduction in the control (drive) power of integrated optical traveling-wave modulators can be achieved as a result of the electrooptic interaction in accordance with a linear frequency-modulated oscillatory law derived by inverse Fourier transformation of a rectangular amplitude-frequency characteristic and a quadratic phase-frequency characteristic of a modulator. This oscillatory law is realized using planar electrode structures with triangular or trapezoidal toothed edges. The tooth repetition frequency is governed by the linearly frequency-modulated oscillations and it rises on increase in the light modulation frequency.
High frequency modulation circuits based on photoconductive wide bandgap switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampayan, Stephen
Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP materialmore » conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.« less
Wang, Zhi-Bin; Zhang, Rui; Wang, Yao-Li; Huang, Yan-Fei; Chen, You-Hua; Wang, Li-Fu; Yang, Qiang
2014-02-01
As the existing photoelastic-modulator(PEM) modulating frequency in the tens of kHz to hundreds of kHz between, leading to frequency of modulated interference signal is higher, so ordinary array detector cannot effectively caprure interference signal..A new beat frequency modulation method based on dual-photoelastic-modulator (Dual-PEM) and Fourier-Bessel transform is proposed as an key component of dual-photoelastic-modulator-based imaging spectrometer (Dual-PEM-IS) combined with charge coupled device (CCD). The dual-PEM are operated as an electro-optic circular retardance modulator, Operating the PEMs at slightly different resonant frequencies w1 and w2 respectively, generates a differential signal at a much lower heterodyne frequency that modulates the incident light. This method not only retains the advantages of the existing PEM, but also the frequency of modulated photocurrent decreased by 2-3 orders of magnitude (10-500 Hz) and can be detected by common array detector, and the incident light spectra can be obtained by Fourier-Bessel transform of low frequency component in the modulated signal. The method makes the PEM has the dual capability of imaging and spectral measurement. The basic principle is introduced, the basic equations is derived, and the feasibility is verified through the corresponding numerical simulation and experiment. This method has' potential applications in imaging spectrometer technology, and analysis of the effect of deviation of the optical path difference. This work provides the necessary theoretical basis for remote sensing of new Dual-PEM-IS and for engineering implementation of spectra inversion.
A laser based frequency modulated NL-OSL phenomenon
NASA Astrophysics Data System (ADS)
Mishra, D. R.; Bishnoi, A. S.; Soni, Anuj; Rawat, N. S.; Bhatt, B. C.; Kulkarni, M. S.; Babu, D. A. R.
2015-01-01
The detailed theoretical and experimental approach to novel technique of pulse frequency modulated stimulation (PFMS) method has been described for NL-OSL phenomenon. This method involved pulsed frequency modulation with respect to time for fixed pulse width of 532 nm continuous wave (CW)-laser light. The linearly modulated (LM)-, non-linearly (NL)-stimulation profiles have been generated using fast electromagnetic optical shutter. The PFMS parameters have been determined for present experimental setup. The PFMS based LM-, NL-OSL studies have been carried out on dosimetry grade single crystal α-Al2O3:C. The photo ionization cross section of α-Al2O3:C has been found to be ∼9.97 × 10-19 cm2 for 532 nm laser light using PFMS LM-OSL studies under assumption of first order of kinetic. This method of PFMS is found to be a potential alternative to generate different stimulation profiles using CW-light sources.
NASA Astrophysics Data System (ADS)
Korenev, V. L.
2011-06-01
The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. The same physics underlie the frequency-locking effect for two-color and mode-locked excitations. However, the pulsed excitation with mode-locked laser brings about the multitudes of stable states in ENSS in a quantum dot. The resulting precession frequencies of the electron spin differ in these states by the multiple of the modulation frequency. Under such conditions ENSS represents a digital frequency converter with more than 100 stable channels.
Budker, Dmitry; Higbie, James; Corsini, Eric P.
2013-11-19
An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.
The physical basis for absorption of light. [effects on wave functions of gas molecules and atoms
NASA Technical Reports Server (NTRS)
Pickett, H. M.
1979-01-01
The effects of light absorption on the wave functions of gas-phase molecules and atoms are investigated by high resolution spectral measurements of radiation emerging from a sample. A Stark-modulated sample of methyl fluoride was irradiated at the 102 GHz rotational transition and the emergent radiation was resolved by means of a spectrum analyzer. For signal oscillator frequencies below or above the molecular resonance by one modulation frequency, the amplitudes of the upper and lower modulation sidebands are found to be of nonuniform intensity, which is inconsistent with amplitude modulation. Emission due to polarization is, however, calculated to be consistent with the results observed, indicating that light absorption should be considered as a subtractive stimulated emission.
NASA Astrophysics Data System (ADS)
Aketagawa, Masato; Kimura, Shohei; Yashiki, Takuya; Iwata, Hiroshi; Banh, Tuan Quoc; Hirata, Kenji
2011-02-01
In this paper, we discuss a method to measure the free spectral range (FSR) of a Fabry-Perot cavity (FP-cavity) using frequency modulation with one electric optical modulator (EOM) and the null method. A laser beam modulated by the EOM, to which a sine wave signal is supplied from a radio frequency (RF) oscillator, is incident on the FP-cavity. The transmitted or reflected light from the FP-cavity is observed and converted to an RF signal by a high-speed photodetector, and the RF signal is synchronously demodulated with a lock-in amplifier by referring to a cosine wave signal from the oscillator. We theoretically and experimentally demonstrate that the lock-in amplifier signal for the transmitted or reflected light becomes null with a steep slope when the modulation frequency is equal to the FSR under the condition that the carrier frequency of the laser is slightly detuned from the resonance of the FP-cavity. To reduce the measurement uncertainty for the FSR, we also discuss a selection method for laser power, a modulation index and the detuning shift of the carrier frequency, respectively.
Liquid-crystals electro-optic modulator based on electrohydrodynamic effects.
Muriel, M A; Martin-Pereda, J A
1980-11-01
A new method of light modulation is reported. This method is based on the electro-optical properties of nematic materials and on the use of a new wedge structure. The advantages of this structure are the possibility of modulating nonpolarized light and the improved signal-to-noise ratio. The highest modulating frequency obtained is 25 kHz.
Polarimetric Imaging using Two Photoelastic Modulators
NASA Technical Reports Server (NTRS)
Wang, Yu; Cunningham, Thomas; Diner, David; Davis, Edgar; Sun, Chao; Hancock, Bruce; Gutt, Gary; Zan, Jason; Raouf, Nasrat
2009-01-01
A method of polarimetric imaging, now undergoing development, involves the use of two photoelastic modulators in series, driven at equal amplitude but at different frequencies. The net effect on a beam of light is to cause (1) the direction of its polarization to rotate at the average of two excitation frequencies and (2) the amplitude of its polarization to be modulated at the beat frequency (the difference between the two excitation frequencies). The resulting modulated optical light beam is made to pass through a polarizing filter and is detected at the beat frequency, which can be chosen to equal the frame rate of an electronic camera or the rate of sampling the outputs of photodetectors in an array. The method was conceived to satisfy a need to perform highly accurate polarimetric imaging, without cross-talk between polarization channels, at frame rates of the order of tens of hertz. The use of electro-optical modulators is necessitated by a need to obtain accuracy greater than that attainable by use of static polarizing filters over separate fixed detectors. For imaging, photoelastic modulators are preferable to such other electrio-optical modulators as Kerr cells and Pockels cells in that photoelastic modulators operate at lower voltages, have greater angular acceptances, and are easier to use. Prior to the conception of the present method, polarimetric imaging at frame rates of tens of hertz using photoelastic modulators was not possible because the resonance frequencies of photoelastic modulators usually lie in the range from about 20 to about 100 kHz.
Investigation of the low-level modulated light action
NASA Astrophysics Data System (ADS)
Antonov, Sergei N.; Sotnikov, V. N.; Koreneva, L. G.
1994-07-01
Now there exists no clear complete knowledge about mechanisms and pathways by which low level laser bioactivation works. Modulated laser light action has been investigated two new ways: dynamical infrared thermography and computing image of living brain. These ways permit observation in real time laser action on peripheral blood flow, reflex reactions to functional probes, thermoregulation mechanisms as well as brain electrical activity changes of humans. We have designed a universal apparatus which produced all regimes of the output laser light. It has a built-in He-Ne laser with an acousto-optic modulator and an infrared GaAs laser. The device provided spatial combination of both the light beams and permitted us to irradiate an object both separately and simultaneously. This research shows that the most effective frequencies range from several to dozens of hertz. The duty factor and frequency scanning are also important. On the basis of these results in Russian clinics new treatment methods using modulated light are applied in practical neurology, gynecology, etc.
Heterodyne interferometer with angstrom-level periodic nonlinearity
Schmitz, Tony L.; Beckwith, John F.
2005-01-25
Displacement measuring interferometer systems and methods are disclosed. One or more acousto-optic modulators for receiving a laser light beam from a laser light source can be utilized to split the laser light beam into two or more laser light beams, while spatially separating frequencies thereof. One or more reflective mechanisms can be utilized to reflect one or more of the laser light beams back to the acousto-optic modulator. Interference of two or more of the laser light beams generally at the acousto-optic modulator can provide an interfered laser light beam thereof. A detector for receiving the interfered laser light beam can be utilized to provide interferometer measurement data.
Experimental simulation of ranging action using Si photonic crystal modulator and optical antenna
NASA Astrophysics Data System (ADS)
Furukado, Yuya; Abe, Hiroshi; Hinakura, Yosuke; Baba, Toshihiko
2018-02-01
Time of flight LiDARs are used for auto-driving of vehicles, while FMCW LiDARs potentially achieve a higher sensitivity. In this study, we fabricated and tested each component of a FMCW LiDAR based on Si photonics and experimentally simulated the ranging action. Here, we drove a Si photonic crystal slow light modulator with linearly frequency-chirped signal in the frequency band of 500-1000 MHz and a repetition frequency of 100 kHz, to generate FM-signal light from a narrow-linewidth laser source. Next, we branched the signal light into two paths. One was inserted into a fiber delay line of 20-320 m and its output was irradiated to a photonic crystal slow beam steering device acting as an optical antenna via the free-space transmission. When the irradiation angle was optimized so that the antenna gain took maximum for a set laser wavelength, light was efficiently coupled into the antenna. We mixed the light output from the antenna with reference light of the other path with no delay, and detected it by balanced photodiodes. We observed a beat signal whose frequency well agreed with the theoretical value predicted from the length of the delay line. Thus, we succeeded in the experimental simulation of the FMCW LiDAR. We also observed a spectral sequence around the beat spectrum, in which the inter-frequency spacing equals the repetition frequency and corresponds to a range resolution of 30 cm which will be improved by expanding the modulation bandwidth.
Singh, M Suheshkumar; Yalavarthy, Phaneendra K; Vasu, R M; Rajan, K
2010-07-01
To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms. A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model based numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations.
Separating monocular and binocular neural mechanisms mediating chromatic contextual interactions.
D'Antona, Anthony D; Christiansen, Jens H; Shevell, Steven K
2014-04-17
When seen in isolation, a light that varies in chromaticity over time is perceived to oscillate in color. Perception of that same time-varying light may be altered by a surrounding light that is also temporally varying in chromaticity. The neural mechanisms that mediate these contextual interactions are the focus of this article. Observers viewed a central test stimulus that varied in chromaticity over time within a larger surround that also varied in chromaticity at the same temporal frequency. Center and surround were presented either to the same eye (monocular condition) or to opposite eyes (dichoptic condition) at the same frequency (3.125, 6.25, or 9.375 Hz). Relative phase between center and surround modulation was varied. In both the monocular and dichoptic conditions, the perceived modulation depth of the central light depended on the relative phase of the surround. A simple model implementing a linear combination of center and surround modulation fit the measurements well. At the lowest temporal frequency (3.125 Hz), the surround's influence was virtually identical for monocular and dichoptic conditions, suggesting that at this frequency, the surround's influence is mediated primarily by a binocular neural mechanism. At higher frequencies, the surround's influence was greater for the monocular condition than for the dichoptic condition, and this difference increased with temporal frequency. Our findings show that two separate neural mechanisms mediate chromatic contextual interactions: one binocular and dominant at lower temporal frequencies and the other monocular and dominant at higher frequencies (6-10 Hz).
Characterization of modulated time-of-flight range image sensors
NASA Astrophysics Data System (ADS)
Payne, Andrew D.; Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.
2009-01-01
A number of full field image sensors have been developed that are capable of simultaneously measuring intensity and distance (range) for every pixel in a given scene using an indirect time-of-flight measurement technique. A light source is intensity modulated at a frequency between 10-100 MHz, and an image sensor is modulated at the same frequency, synchronously sampling light reflected from objects in the scene (homodyne detection). The time of flight is manifested as a phase shift in the illumination modulation envelope, which can be determined from the sampled data simultaneously for each pixel in the scene. This paper presents a method of characterizing the high frequency modulation response of these image sensors, using a pico-second laser pulser. The characterization results allow the optimal operating parameters, such as the modulation frequency, to be identified in order to maximize the range measurement precision for a given sensor. A number of potential sources of error exist when using these sensors, including deficiencies in the modulation waveform shape, duty cycle, or phase, resulting in contamination of the resultant range data. From the characterization data these parameters can be identified and compensated for by modifying the sensor hardware or through post processing of the acquired range measurements.
Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.
Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent
2015-11-02
Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.
Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei
2016-03-15
A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.
NASA Astrophysics Data System (ADS)
Qiu, Wei; Yang, Yujing; Gao, Yuan; Liu, Jianjun; Lv, Pin; Jiang, Qiuli
2018-04-01
Slow light is demonstrated in the cascade structure of an erbium-doped fiber with two forward propagation pumps. The results of the numerical simulation of the time delay and the optimum modulation frequency complement each other. The time delay and the optimum modulation frequency depend on the pump ratio G (G = {{P}1480}:{{P}980} ). The discussion results of this paper show that a larger time delay of slow light propagation can be obtained in the cascade structure of Er3+-doped optical fibers with dual-frequency laser pumping. Compared to previous research methods, the dual-frequency laser-pumped cascade structure of an Er3+-doped optical fiber is more controllable. Based on our discussion the pump ratio G should be selected in order to obtain a more appropriate time delay and the slowdown of group velocity.
Controlling the light shift of the CPT resonance by modulation technique
NASA Astrophysics Data System (ADS)
Tsygankov, E. A.; Petropavlovsky, S. V.; Vaskovskaya, M. I.; Zibrov, S. A.; Velichansky, V. L.; Yakovlev, V. P.
2017-12-01
Motivated by recent developments in atomic frequency standards employing the effect of coherent population trapping (CPT), we propose a theoretical framework for the frequency modulation spectroscopy of the CPT resonances. Under realistic assumptions we provide simple yet non-trivial analytical formulae for the major spectroscopic signals such as the CPT resonance line and the in-phase/quadrature responses. We discuss the influence of the light shift and, in particular, derive a simple expression for the displacement of the resonance as a function of modulation index. The performance of the model is checked against numerical simulations, the agreement is good to perfect. The obtained results can be used in more general models accounting for light absorption in the thick optical medium.
NASA Astrophysics Data System (ADS)
Veselovskaya, T. V.; Klochan, E. L.; Lariontsev, E. G.; Parfenov, S. V.; Shelaev, A. N.
1990-07-01
Theoretical and experimental investigations demonstrated that in real acoustooptic modulators the diffraction of light by a standing ultrasonic wave may give rise to both phase and amplitude nonreciprocities of counterpropagating light waves. Analytic expressions are derived for the dependences of these nonreciprocities on the parameters of the traveling component of an ultrasonic wave in a modulator. It is shown that when the angle of incidence of light on a modulator deviates from the Bragg angle, the phase nonreciprocity may be suppressed, but the amplitude nonreciprocity becomes maximal and its sign is governed by the law of deviation of the angle of incidence from the Bragg angle. A diffraction acoustooptic feedback makes it possible not only to achieve mode locking with an acoustooptic modulator utilizing a traveling ultrasonic wave, but also to control the magnitude and sign of amplitude-frequency nonreciprocities. It is reported that an acoustooptic feedback can be used to generate self-pumping waves in a solid-state mode-locked ring laser and thus stabilize bidirectional lasing in a wide range of the frequency offset between the counterpropagating waves.
Calibration of a spatial light modulator containing dual frequency liquid crystal
NASA Astrophysics Data System (ADS)
Gu, Dong-Feng; Winker, Bruce; Wen, Bing; Taber, Don; Brackley, Andrew; Wirth, Allan; Albanese, Marc; Landers, Frank
2005-08-01
Characterization and calibration process for a liquid crystal (LC) spatial light modulator (SLM) containing dual frequency liquid crystal is described. Special care was taken when dealing with LC cell gap non-uniformity and defect pixels. The calibration results were fed into a closed loop control algorithm to demonstrate correction of wavefront distortions. The performance characteristics of the device were reported. Substantial improvements were made in speed (bandwidth), resolution, power consumption and system weight/volume.
Yu, Yinan; Wang, Yicheng; Pratt, Jon R
2016-03-01
Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.
Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.
1991-09-10
In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.
Skupsky, Stanley; Kessler, Terrance J.; Short, Robert W.; Craxton, Stephen; Letzring, Samuel A.; Soures, John
1991-01-01
In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.
Interference Resilient Sigma Delta-Based Pulse Oximeter.
Shokouhian, Mohsen; Morling, Richard; Kale, Izzet
2016-06-01
Ambient light and optical interference can severely affect the performance of pulse oximeters. The deployment of a robust modulation technique to drive the pulse oximeter LEDs can reduce these unwanted effects and increases the resilient of the pulse oximeter against artificial ambient light. The time division modulation technique used in conventional pulse oximeters can not remove the effect of modulated light coming from surrounding environment and this may cause huge measurement error in pulse oximeter readings. This paper presents a novel cross-coupled sigma delta modulator which ensures that measurement accuracy will be more robust in comparison with conventional fixed-frequency oximeter modulation technique especially in the presence of pulsed artificial ambient light. Moreover, this novel modulator gives an extra control over the pulse oximeter power consumption leading to improved power management.
NASA Astrophysics Data System (ADS)
Jagodzinski, Jeremy James
2007-12-01
The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change in the velocity of the flow under investigation results in a change in the detected modulated absorption signal. This change in the detected signal provides a quantifiable measure of the Doppler frequency shift, and hence the velocity in the probe volume, provided that the laser source exhibits acceptable levels of frequency stability (determined by the magnitude of the velocities being measured). An extended cavity diode laser (ECDL) in the Littrow configuration provides frequency tunable, relatively narrow-linewidth lasing for the MFRS velocimeter. Frequency stabilization of the ECDL is provided by a proportional-integral-differential (PID) controller based on an error signal in the reference arm of the experiment. The optical power of the Littrow laser source is amplified by an antireflection coated (AR coated) broad stripe diode laser. The single-mode, frequency-modulatable, frequency-stable O(50 mW) of optical power provided by this extended cavity diode laser master oscillator power amplifier (ECDL-MOPA) system provided sufficient scattering signal from a condensing jet of CO2 to implement the MFRS technique in the frequency-locked mode of operation.
Improved Measurement of Dispersion in an Optical Fiber
NASA Technical Reports Server (NTRS)
Huang, Shouhua; Le, Thanh; Maleki, Lute
2004-01-01
An improved method of measuring chromatic dispersion in an optical fiber or other device affords a lower (relative to prior such methods) limit of measurable dispersion. This method is a modified version of the amplitude-modulation (AM) method, which is one of the prior methods. In comparison with the other prior methods, the AM method is less complex. However, the AM method is limited to dispersion levels . 160 ps/nm and cannot be used to measure the symbol of the dispersion. In contrast, the present modified version of the AM method can be used to measure the symbol of the symbol of the dispersion and affords a measurement range from about 2 ps/nm to several thousand ps/nm with a resolution of 0.27 ps/nm or finer. The figure schematically depicts the measurement apparatus. The source of light for the measurement is a laser, the wavelength of which is monitored by an optical spectrum analyzer. A light-component analyzer amplitude-modulates the light with a scanning radio-frequency signal. The modulated light is passed through a buffer (described below) and through the device under test (e.g., an optical fiber, the dispersion of which one seeks to measure), then back to the light-component analyzer for spectrum analysis. Dispersion in the device under test gives rise to phase shifts among the carrier and the upper and lower sideband components of the modulated signal. These phase shifts affect the modulation-frequency component of the output of a photodetector exposed to the signal that emerges from the device under test. One of the effects is that this component goes to zero periodically as the modulation frequency is varied.
Deterministic reshaping of single-photon spectra using cross-phase modulation.
Matsuda, Nobuyuki
2016-03-01
The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing.
Deterministic reshaping of single-photon spectra using cross-phase modulation
Matsuda, Nobuyuki
2016-01-01
The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing. PMID:27051862
NASA Astrophysics Data System (ADS)
O'Sullivan, Thomas D.; No, Keunsik; Matlock, Alex; Warren, Robert V.; Hill, Brian; Cerussi, Albert E.; Tromberg, Bruce J.
2017-10-01
Frequency-domain photon migration (FDPM) uses modulated laser light to measure the bulk optical properties of turbid media and is increasingly applied for noninvasive functional medical imaging in the near-infrared. Although semiconductor edge-emitting laser diodes have been traditionally used as miniature light sources for this application, we show that vertical-cavity surface-emitting lasers (VCSELs) exhibit output power and modulation performance characteristics suitable for FDPM measurements of tissue optical properties at modulation frequencies exceeding 1 GHz. We also show that an array of multiple VCSEL devices can be coherently modulated at frequencies suitable for FDPM and can improve optical power. In addition, their small size and simple packaging make them an attractive choice as components in wearable sensors and clinical FDPM-based optical spectroscopy systems. We demonstrate the benefits of VCSEL technology by fabricating and testing a unique, compact VCSEL-based optical probe with an integrated avalanche photodiode. We demonstrate sensitivity of the VCSEL-based probe to subcutaneous tissue hemodynamics that was induced during an arterial cuff occlusion of the upper arm in a human subject.
Sánchez-Castro, Noemi; Palomino-Ovando, Martha Alicia; Estrada-Wiese, Denise; Valladares, Nydia Xcaret; Del Río, Jesus Antonio; de la Mora, Maria Beatriz; Doti, Rafael; Faubert, Jocelyn; Lugo, Jesus Eduardo
2018-05-21
Photonic crystals have been an object of interest because of their properties to inhibit certain wavelengths and allow the transmission of others. Using these properties, we designed a photonic structure known as photodyne formed by two porous silicon one-dimensional photonic crystals with an air defect between them. When the photodyne is illuminated with appropriate light, it allows us to generate electromagnetic forces within the structure that can be maximized if the light becomes localized inside the defect region. These electromagnetic forces allow the microcavity to oscillate mechanically. In the experiment, a chopper was driven by a signal generator to modulate the laser light that was used. The driven frequency and the signal modulation waveform (rectangular, sinusoidal or triangular) were changed with the idea to find optimal conditions for the structure to oscillate. The microcavity displacement amplitude, velocity amplitude and Fourier spectrum of the latter and its frequency were measured by means of a vibrometer. The mechanical oscillations are modeled and compared with the experimental results and show good agreement. For external frequency values of 5 Hz and 10 Hz, the best option was a sinusoidal waveform, which gave higher photodyne displacements and velocity amplitudes. Nonetheless, for an external frequency of 15 Hz, the best option was the rectangular waveform.
Sánchez-Castro, Noemi; Palomino-Ovando, Martha Alicia; Estrada-Wiese, Denise; Valladares, Nydia Xcaret; del Río, Jesus Antonio; Doti, Rafael; Faubert, Jocelyn; Lugo, Jesus Eduardo
2018-01-01
Photonic crystals have been an object of interest because of their properties to inhibit certain wavelengths and allow the transmission of others. Using these properties, we designed a photonic structure known as photodyne formed by two porous silicon one-dimensional photonic crystals with an air defect between them. When the photodyne is illuminated with appropriate light, it allows us to generate electromagnetic forces within the structure that can be maximized if the light becomes localized inside the defect region. These electromagnetic forces allow the microcavity to oscillate mechanically. In the experiment, a chopper was driven by a signal generator to modulate the laser light that was used. The driven frequency and the signal modulation waveform (rectangular, sinusoidal or triangular) were changed with the idea to find optimal conditions for the structure to oscillate. The microcavity displacement amplitude, velocity amplitude and Fourier spectrum of the latter and its frequency were measured by means of a vibrometer. The mechanical oscillations are modeled and compared with the experimental results and show good agreement. For external frequency values of 5 Hz and 10 Hz, the best option was a sinusoidal waveform, which gave higher photodyne displacements and velocity amplitudes. Nonetheless, for an external frequency of 15 Hz, the best option was the rectangular waveform. PMID:29883393
Specific innovative semi-transparent solar cell for indoor and outdoor LiFi applications.
Bialic, Emilie; Maret, Luc; Kténas, Dimitri
2015-09-20
Research in light-fidelity (LiFi), also called visible light communication (VLC), has gained huge interest. In such a communication system, an optical sensor translates the received luminous modulation flux into an electrical signal which is decoded. To consider LiFi as an alternative solution for wireless communication, the receiver must be operational in indoor and outdoor configurations. Photovoltaic modules could appear as a solution to this issue. In this paper, we present signal-to-noise ratio (SNR) response in the frequency of two different kinds of photovoltaic modules. We characterize in detail the SNR by using an experimental setup which connects a software-based direct current optical (DCO)-orthogonal frequency division multiiplexing emitter and receiver to hardware optical front ends. We analyze LiFi performances under different lighting conditions. We prove that the available bandwidth depends drastically on ambient lighting configurations. Under specific lighting conditions, a bandwidth around 4 MHz corresponding a data rate around 8 Mbit/s could be achieved. We present the lighting saturation effects and we prove that the semi-transparent solar cell under study improves their performances (both bandwidth and data rate) in high ambient lighting environments.
FIBER OPTICS. ACOUSTOOPTICS: High-frequency magnetooptics of fiber waveguides
NASA Astrophysics Data System (ADS)
Antonov, S. N.; Bulyuk, A. N.; Vetoshko, P. M.; Shkerdin, G. N.
1990-07-01
An investigation is made of the hf distributed magnetooptic interaction in fiber waveguides associated with the Faraday effect observed under the conditions of both spatial and temporal phase matching between the normal modes of the waveguide and an external magentic field. Analytic expressions are obtained for the main relationships governing modulation of the state of polarization of light in a long fiber waveguide at high and ultrahigh frequencies. An analysis is made of several variants of hf magnetooptic modulators. It is shown that in the specific case when a 10-m long quartz fiber waveguide wound to form a cylindrical coil is placed inside the cavity of a coaxial microwave resonator and the microwave control power is 10 W, the efficiency of modulation of light should be 50%. The main theoretical predictions were supported by the reported experiments. These experiments showed that at a frequency of 80 MHz the modulation efficiency was 1% when the control power was 0.5 W.
6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors.
Li, Hua; Wan, Wen-Jian; Tan, Zhi-Yong; Fu, Zhang-Long; Wang, Hai-Xia; Zhou, Tao; Li, Zi-Ping; Wang, Chang; Guo, Xu-Guang; Cao, Jun-Cheng
2017-06-14
The fast detection of terahertz radiation is of great importance for various applications such as fast imaging, high speed communications, and spectroscopy. Most commercial products capable of sensitively responding the terahertz radiation are thermal detectors, i.e., pyroelectric sensors and bolometers. This class of terahertz detectors is normally characterized by low modulation frequency (dozens or hundreds of Hz). Here we demonstrate the first fast semiconductor-based terahertz quantum well photodetectors by carefully designing the device structure and microwave transmission line for high frequency signal extraction. Modulation response bandwidth of gigahertz level is obtained. As an example, the 6.2-GHz modulated terahertz light emitted from a Fabry-Pérot terahertz quantum cascade laser is successfully detected using the fast terahertz quantum well photodetector. In addition to the fast terahertz detection, the technique presented in this work can also be used for optically characterizing the frequency stability of terahertz quantum cascade lasers, heterodyne detections and photomixing applications.
NASA Astrophysics Data System (ADS)
Bahlmann, N.; Gerhardt, R.; Wallenhorst, M.; Dötsch, H.
1996-10-01
Magnetic garnet films of composition (A, Bi)3(Fe, B)5 O12 are grown by liquid phase epitaxy on [111] oriented substrates of Gd3 Ga5 O12, where A=yttrium or lutetium and B=aluminum or gallium. The ferrimagnetic resonance (FMR) of in-plane magnetized films is studied by analyzing the modulation of light, which passes the film parallel to the film normal. Modulation efficiencies up to 1.8% at 2.9 GHz are observed at a wavelength of 0.633 μm. From the measured modulation intensities the precession angles of the FMR are derived. The dependence of the precession cone on the excitation frequency or on the external induction shows a foldover effect which, however, is smaller than for the FMR of perpendicularly magnetized films. Maximum precession angles up to 14° are achieved and the experiments indicate that saturation occurs. Light modulation is also observed at the first harmonic frequency, but the intensity is about 300 times weaker than at the fundamental frequency.
Xu, P; Zhao, L N; Lv, X J; Lu, J; Yuan, Y; Zhao, G; Zhu, S N
2009-06-08
1W quasi-white-light source has been generated from a single lithium tantalate with cascaded domain modulation. The quasi-white-light is combined by proper proportion of the red, green and blue laser light. The red and the blue result from a compact self-sum frequency optical parametric oscillation when pumped by a single green laser. The efficiency of quasi-white-light from the green pump reaches 27%. This compact design can be employed not only as a stable and powerful RGB light source but also an effective blue laser generator.
NASA Astrophysics Data System (ADS)
Kondalkar, Vijay V.; Ryu, Geonhee; Lee, Yongbeom; Lee, Keekeun
2018-07-01
An acousto-optic (AO) based holographic display unit was developed using surface acoustic wave (SAW) with different wavelength to modulate the diffraction angles, intensities, and phases of light. The new configurations were employed to control two beams simultaneously by using a single chirp inter-digital transducer (IDT), and a micro-lens array was integrated at the end of the waveguide layer to focus the diffracted light on to the screen. Two incident light beams were simultaneously modulated by using different refractive grating periods generated from chirp IDT. A diffraction angle of about 5° was obtained by using a SAW with a frequency of 430 MHz. The increase in the SAW input power enhances the diffraction efficiency of the light beam at the exit. The obtained maximum diffraction efficiency is ~70% at a frequency of 430 MHz. The sloped shape of the waveguide entrance and a tall rounded Ni poles help in coupling the incident light to the waveguide layer. The diffracted beam was collected through the lens, which increased the intensity of light in the viewing plane. COMSOL multi-physics and coupling of mode (COM) modeling were performed to predict the device performance and compared with the experimental results.
Hansen, A K; Christensen, M; Noordegraaf, D; Heist, P; Papastathopoulos, E; Loyo-Maldonado, V; Jensen, O B; Skovgaard, P M W
2016-11-10
Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates 1.9 W of single-frequency light at 562.4 nm by cascaded single-pass frequency doubling of the 1124.8 nm emission from a distributed Bragg reflector (DBR) tapered laser diode. The absence of a free-space cavity makes the system stable over a base-plate temperature range of 30 K. At the same time, the use of a laser diode enables the modulation of the pump wavelength by controlling the drive current. This is utilized to achieve a power modulation depth above 90% for the second harmonic light, with a rise time below 40 μs.
NASA Astrophysics Data System (ADS)
Alonso, R.; Villuendas, F.; Borja, J.; Barragán, L. A.; Salinas, I.
2003-05-01
A versatile, low-cost, digital signal processor (DSP) based lock-in module with external reference is described. This module is used to implement an industrial spectrophotometer for measuring spectral transmission and reflection of automotive and architectonic coating glasses over the ultraviolet, visible and near-infrared wavelength range. The light beams are modulated with an optical chopper. A digital phase-locked loop (DPLL) is used to lock the lock-in to the chop frequency. The lock-in rejects the ambient radiation and permits the spectrophotometer to work in the presence of ambient light. The algorithm that implements the dual lock-in and the DPLL in the DSP56002 evaluation module from Motorola is described. The use of a DSP allows implementation of the lock-in and DPLL by software, which gives flexibility and programmability to the system. Lock-in module cost, under 300 euro, is an important parameter taking into account that two modules are used in the system. Besides, the algorithms implemented in this DSP can be directly implemented in the latest DSP generations. The DPLL performance and the spectrophotometer are characterized. Capture and lock DPLL ranges have been measured and checked to be greater than the chop frequency drifts. The lock-in measured frequency response shows that the lock-in performs as theoretically predicted.
Communication using VCSEL laser array
NASA Technical Reports Server (NTRS)
Goorjian, Peter M. (Inventor)
2008-01-01
Ultrafast directional beam switching, using coupled vertical cavity surface emitting lasers (VCSELs) is combined with a light modulator to provide information transfer at bit rates of tens of GHz. This approach is demonstrated to achieve beam switching frequencies of 32-50 GHz in some embodiments and directional beam switching with angular differences of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches. A Mach-Zehnder interferometer, a Fabry-Perot etalon, or a semiconductor-based electro-absorption transmission channel, among others, can be used as a light modulator.
Time-varying metamaterials based on graphene-wrapped microwires: Modeling and potential applications
NASA Astrophysics Data System (ADS)
Salary, Mohammad Mahdi; Jafar-Zanjani, Samad; Mosallaei, Hossein
2018-03-01
The successful realization of metamaterials and metasurfaces requires the judicious choice of constituent elements. In this paper, we demonstrate the implementation of time-varying metamaterials in the terahertz frequency regime by utilizing graphene-wrapped microwires as building blocks and modulation of graphene conductivity through exterior electrical gating. These elements enable enhancement of light-graphene interaction by utilizing optical resonances associated with Mie scattering, yielding a large tunability and modulation depth. We develop a semianalytical framework based on transition-matrix formulation for modeling and analysis of periodic and aperiodic arrays of such time-varying building blocks. The proposed method is validated against full-wave numerical results obtained using the finite-difference time-domain method. It provides an ideal tool for mathematical synthesis and analysis of space-time gradient metamaterials, eliminating the need for computationally expensive numerical models. Moreover, it allows for a wider exploration of exotic space-time scattering phenomena in time-modulated metamaterials. We apply the method to explore the role of modulation parameters in the generation of frequency harmonics and their emerging wavefronts. Several potential applications of such platforms are demonstrated, including frequency conversion, holographic generation of frequency harmonics, and spatiotemporal manipulation of light. The presented results provide key physical insights to design time-modulated functional metadevices using various building blocks and open up new directions in the emerging paradigm of time-modulated metamaterials.
Method for measuring retardation of infrared wave-plate by modulated-polarized visible light
NASA Astrophysics Data System (ADS)
Zhang, Ying; Song, Feijun
2012-11-01
A new method for precisely measuring the optical phase retardation of wave-plates in the infrared spectral region is presented by using modulated-polarized visible light. An electro-optic modulator is used to accurately determine the zero point by the frequency-doubled signal of the Modulated-polarized light. A Babinet-Soleil compensator is employed to make the phase delay compensation. Based on this method, an instrument is set up to measure the retardations of the infrared wave-plates with visible region laser. Measurement results with high accuracy and sound repetition are obtained by simple calculation. Its measurement precision is less than and repetitive precision is within 0.3%.
NASA Technical Reports Server (NTRS)
Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip
2010-01-01
Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for the Phase II effort, will require full integration and optimization of the waveguide components (SHG waveguide, splitters, and phase modulator) onto a single, monolithic device. The PLC will greatly reduce the size and weight, improve electrical- to-optical efficiency, and significantly reduce the cost of NASA Langley s current stabilized HSRL seed laser system built around a commercial off-the-shelf seed laser that is free-space coupled to a bulk doubler and bulk phase modulator.
Scannerless laser range imaging using loss modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandusky, John V
2011-08-09
A scannerless 3-D imaging apparatus is disclosed which utilizes an amplitude modulated cw light source to illuminate a field of view containing a target of interest. Backscattered light from the target is passed through one or more loss modulators which are modulated at the same frequency as the light source, but with a phase delay .delta. which can be fixed or variable. The backscattered light is demodulated by the loss modulator and detected with a CCD, CMOS or focal plane array (FPA) detector to construct a 3-D image of the target. The scannerless 3-D imaging apparatus, which can operate inmore » the eye-safe wavelength region 1.4-1.7 .mu.m and which can be constructed as a flash LADAR, has applications for vehicle collision avoidance, autonomous rendezvous and docking, robotic vision, industrial inspection and measurement, 3-D cameras, and facial recognition.« less
Scannerless laser range imaging using loss modulation
Sandusky, John V [Albuquerque, NM
2011-08-09
A scannerless 3-D imaging apparatus is disclosed which utilizes an amplitude modulated cw light source to illuminate a field of view containing a target of interest. Backscattered light from the target is passed through one or more loss modulators which are modulated at the same frequency as the light source, but with a phase delay .delta. which can be fixed or variable. The backscattered light is demodulated by the loss modulator and detected with a CCD, CMOS or focal plane array (FPA) detector to construct a 3-D image of the target. The scannerless 3-D imaging apparatus, which can operate in the eye-safe wavelength region 1.4-1.7 .mu.m and which can be constructed as a flash LADAR, has applications for vehicle collision avoidance, autonomous rendezvous and docking, robotic vision, industrial inspection and measurement, 3-D cameras, and facial recognition.
Jiao, Shuliang; Todorović, Milos; Stoica, George; Wang, Lihong V
2005-09-10
We report on a new configuration of fiber-based polarization-sensitive Mueller matrix optical coherence tomography that permits the acquisition of the round-trip Jones matrix of a biological sample using only one light source and a single depth scan. In this new configuration, a polarization modulator is used in the source arm to continuously modulate the incident polarization state for both the reference and the sample arms. The Jones matrix of the sample can be calculated from the two frequency terms in the two detection channels. The first term is modulated by the carrier frequency, which is determined by the longitudinal scanning mechanism, whereas the other term is modulated by the beat frequency between the carrier frequency and the second harmonic of the modulation frequency of the polarization modulator. One important feature of this system is that, for the first time to our knowledge, the Jones matrix of the sample can be calculated with a single detection channel and a single measurement when diattenuation is negligible. The system was successfully tested by imaging both standard polarization elements and biological samples.
A Near-Infrared Spectrometer Based on Novel Grating Light Modulators
Wei, Wei; Huang, Shanglian; Wang, Ning; Jin, Zhu; Zhang, Jie; Chen, Weimin
2009-01-01
A near-infrared spectrometer based on novel MOEMS grating light modulators is proposed. The spectrum detection method that combines a grating light modulator array with a single near-infrared detector has been applied. Firstly, optics theory has been used to analyze the essential principles of the proposed spectroscopic sensor. Secondly, the grating light modulators have been designed and fabricated by micro-machining technology. Finally, the principles of this spectroscopic sensor have been validated and its key parameters have been tested by experiments. The result shows that the spectral resolution is better than 10 nm, the wavelength deviation is less than 1 nm, the deviation of the intensity of peak wavelength is no more than 0.5%, the driving voltage of grating light modulators array device is below 25 V and the response frequency of it is about 5 kHz. With low cost, satisfactory precision, portability and other advantages, the spectrometer should find potential applications in food safety and quality monitoring, pharmaceutical identification and agriculture product quality classification. PMID:22574065
A near-infrared spectrometer based on novel grating light modulators.
Wei, Wei; Huang, Shanglian; Wang, Ning; Jin, Zhu; Zhang, Jie; Chen, Weimin
2009-01-01
A near-infrared spectrometer based on novel MOEMS grating light modulators is proposed. The spectrum detection method that combines a grating light modulator array with a single near-infrared detector has been applied. Firstly, optics theory has been used to analyze the essential principles of the proposed spectroscopic sensor. Secondly, the grating light modulators have been designed and fabricated by micro-machining technology. Finally, the principles of this spectroscopic sensor have been validated and its key parameters have been tested by experiments. The result shows that the spectral resolution is better than 10 nm, the wavelength deviation is less than 1 nm, the deviation of the intensity of peak wavelength is no more than 0.5%, the driving voltage of grating light modulators array device is below 25 V and the response frequency of it is about 5 kHz. With low cost, satisfactory precision, portability and other advantages, the spectrometer should find potential applications in food safety and quality monitoring, pharmaceutical identification and agriculture product quality classification.
Ultrasound modulation of bioluminescence generated inside a turbid medium
NASA Astrophysics Data System (ADS)
Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.
2017-03-01
In vivo bioluminescence imaging (BLI) has poor spatial resolution owing to strong light scattering by tissue, which also affects quantitative accuracy. This paper proposes a hybrid acousto-optic imaging platform that images bioluminescence modulated at ultrasound (US) frequency inside an optically scattering medium. This produces an US modulated light within the tissue that reduces the effects of light scattering and improves the spatial resolution. The system consists of a continuously excited 3.5 MHz US transducer applied to a tissue like phantom of known optical properties embedded with bio-or chemiluminescent sources that are used to mimic in vivo experiments. Scanning US over the turbid medium modulates the luminescent sources deep inside tissue at several US scan points. These modulated signals are recorded by a photomultiplier tube and lock-in detection to generate a 1D profile. Indeed, high frequency US enables small focal volume to improve spatial resolution, but this leads to lower signal-to-noise ratio. First experimental results show that US enables localization of a small luminescent source (around 2 mm wide) deep ( 20 mm) inside a tissue phantom having a scattering coefficient of 80 cm-1. Two sources separated by 10 mm could be resolved 20 mm inside a chicken breast.
Counter-evidence against multiple frequency nature of 0.75 mHz oscillation in V4743 Sgr
NASA Astrophysics Data System (ADS)
Dobrotka, A.; Ness, J.-U.
2017-06-01
All X-ray light curves of nova V4743 Sgr (2002), taken during and after outburst, contain a 0.75 mHz periodic signal that can most plausibly be interpreted as being excited by the rotation of the white dwarf in an intermediate polar system. This interpretation faces the challenge of an apparent multifrequency nature of this signal in the light curves taken days 180 and 196 after outburst. We show that the multisine fit method, based on a superposition of two sine functions, yields two inherently indistinguishable solutions, I.e. the presence of two close frequencies, or a single signal with constant frequency but variable modulation amplitude. Using a power spectrum time map, we show that on day 180, a reduction of the modulation amplitude of the signal coincides with a substantial overall flux decline, while on day 196, the signal is present only during the first half of the observation. Supported by simulations, we show that such variations in amplitude can lead to false beating, which manifests itself as a multiple signal if computing a periodogram over the full light curve. Therefore, the previously proposed double-frequency nature of both light curves was probably an artefact, while we consider a single signal with frequency equal to the white dwarf rotation as more plausible.
NASA Technical Reports Server (NTRS)
Harris, S. E.; Siegman, A. E.; Kuizenga, D. J.; Kung, A. H.; Young, J. F.; Bekkers, G. W.; Bloom, D. M.; Newton, J. H.; Phillion, D. W.
1975-01-01
The generation of tunable visible, infrared, and ultraviolet light is examined, along with the control of this light by means of novel mode-locking and modulation techniques. Transient mode-locking of the Nd:YAG laser and generation of short tunable pulses in the visible and the alkali metal inert gas excimer laser systems were investigated. Techniques for frequency conversion of high power and high energy laser radiation are discussed, along with high average power blue and UV laser light sources.
NASA Astrophysics Data System (ADS)
Li, Wei; Jin, Yuanbin; Yu, Xudong; Zhang, Jing
2017-08-01
We experimentally study a protocol of using the broadband high-frequency squeezed vacuum to detect the low-frequency signal. In this scheme, the lower sideband field of the squeezed light carries the low-frequency modulation signal, and the two strong coherent light fields are applied as the bichromatic local oscillator in the homodyne detection to measure the quantum entanglement of the upper and lower sideband for the broadband squeezed light. The power of one of the local oscillators for detecting the upper sideband can be adjusted to optimize the conditional variance in the low-frequency regime by subtracting the photocurrent of the upper sideband field of the squeezed light from that of the lower sideband field. By means of the quantum correlation of the upper and lower sideband for the broadband squeezed light, the low-frequency signal beyond the standard quantum limit is measured. This scheme is appropriate for enhancing the sensitivity of the low-frequency signal by the aid of the broad squeezed light, such as gravitational waves detection, and does not need to directly produce the low-frequency squeezing in an optical parametric process.
Method and system for controlling the position of a beam of light
Steinkraus, Jr., Robert F.; Johnson, Gary W [Livermore, CA; Ruggiero, Anthony J [Livermore, CA
2011-08-09
An method and system for laser beam tracking and pointing is based on a conventional position sensing detector (PSD) or quadrant cell but with the use of amplitude-modulated light. A combination of logarithmic automatic gain control, filtering, and synchronous detection offers high angular precision with exceptional dynamic range and sensitivity, while maintaining wide bandwidth. Use of modulated light enables the tracking of multiple beams simultaneously through the use of different modulation frequencies. It also makes the system resistant to interfering light sources such as ambient light. Beam pointing is accomplished by feeding back errors in the measured beam position to a beam steering element, such as a steering mirror. Closed-loop tracking performance is superior to existing methods, especially under conditions of atmospheric scintillation.
NASA Astrophysics Data System (ADS)
Yang, Xusan; Tang, Yuanhe; Liu, Kai; Liu, Hanchen; Gao, Haiyang; Li, Qing; Zhang, Ruixia; Ye, Na; Liang, Yuan; Zhao, Gaoxiang
2008-12-01
Based on the electro-optical properties of liquid crystal, we have designed a novel partial gating detector. Liquid crystal can be taken to change its own transmission according to the light intensity outside. Every single pixel of the image is real-time modulated by liquid crystal, thus the strong light is weakened and low light goes through the detector normally .The purpose of partial-gating strong light (>105lx) can be achieved by this detector. The modulation transfer function (MTF) equations of the main optical sub-systems are calculated in this paper, they are liquid crystal panels, linear fiber panel and CCD array detector. According to the relevant size, the MTF value of this system is fitted out. The result is MTF= 0.518 at Nyquist frequency.
Zhang, Peng; Tan, Yi-Dong; Liu, Ning; Wu, Yun; Zhang, Shu-Lian
2013-11-01
We present an experimental observation of the output responses of a Nd:YAG microchip laser with an anisotropic external cavity under weak optical feedback. The feedback mirror is stationary during the experiments. A pair of acousto-optic modulators is used to produce a frequency shift in the feedback light with respect to the initial light. The laser output is a beat signal with 40 kHz modulation frequency and is separated into two orthogonal directions by a Wollaston prism. Phase differences between the two intensity curves are observed as the laser works in two orthogonal modes, and vary with the external birefringence element and the pump power. Theoretical analyses are given, and the simulated results are consistent with the experimental phenomena.
Wavefront control with a spatial light modulator containing dual-frequency liquid crystal
NASA Astrophysics Data System (ADS)
Gu, Dong-Feng; Winker, Bruce; Wen, Bing; Taber, Don; Brackley, Andrew; Wirth, Allan; Albanese, Marc; Landers, Frank
2004-10-01
A versatile, scalable wavefront control approach based upon proven liquid crystal (LC) spatial light modulator (SLM) technology was extended for potential use in high-energy near-infrared laser applications. The reflective LC SLM module demonstrated has a two-inch diameter active aperture with 812 pixels. Using an ultra-low absorption transparent conductor in the LC SLM, a high laser damage threshold was demonstrated. Novel dual frequency liquid crystal materials and addressing schemes were implemented to achieve fast switching speed (<1ms at 1.31 microns). Combining this LCSLM with a novel wavefront sensing method, a closed loop wavefront controller is being demonstrated. Compared to conventional deformable mirrors, this non-mechanical wavefront control approach offers substantial improvements in speed (bandwidth), resolution, power consumption and system weight/volume.
Nakata, Toshihiko; Ninomiya, Takanori
2006-10-10
A general solution of undersampling frequency conversion and its optimization for parallel photodisplacement imaging is presented. Phase-modulated heterodyne interference light generated by a linear region of periodic displacement is captured by a charge-coupled device image sensor, in which the interference light is sampled at a sampling rate lower than the Nyquist frequency. The frequencies of the components of the light, such as the sideband and carrier (which include photodisplacement and topography information, respectively), are downconverted and sampled simultaneously based on the integration and sampling effects of the sensor. A general solution of frequency and amplitude in this downconversion is derived by Fourier analysis of the sampling procedure. The optimal frequency condition for the heterodyne beat signal, modulation signal, and sensor gate pulse is derived such that undesirable components are eliminated and each information component is converted into an orthogonal function, allowing each to be discretely reproduced from the Fourier coefficients. The optimal frequency parameters that maximize the sideband-to-carrier amplitude ratio are determined, theoretically demonstrating its high selectivity over 80 dB. Preliminary experiments demonstrate that this technique is capable of simultaneous imaging of reflectivity, topography, and photodisplacement for the detection of subsurface lattice defects at a speed corresponding to an acquisition time of only 0.26 s per 256 x 256 pixel area.
Chong, W. Y.; Lim, W. H.; Yap, Y. K.; Lai, C. K.; De La Rue, R. M.; Ahmad, H.
2016-01-01
Increased absorption of transverse-magnetic (TM) - polarised light by a graphene-oxide (GO) coated polymer waveguide has been observed in the presence of transverse-electric (TE) - polarised light. The GO-coated waveguide exhibits very strong photo-absorption of TE-polarised light - and acts as a TM-pass waveguide polariser. The absorbed TE-polarised light causes a significant temperature increase in the GO film and induces thermal reduction of the GO, resulting in an increase in optical-frequency conductivity and consequently increased optical propagation loss. This behaviour in a GO-coated waveguide gives the action of an inverted optical switch/modulator. By varying the incident TE-polarised light power, a maximum modulation efficiency of 72% was measured, with application of an incident optical power level of 57 mW. The GO-coated waveguide was able to respond clearly to modulated TE-polarised light with a pulse duration of as little as 100 μs. In addition, no wavelength dependence was observed in the response of either the modulation (TE-polarised light) or the signal (TM-polarised light). PMID:27034015
Lower light intensity reduces larval aggression in matrinxã, Brycon amazonicus.
Lopes, Ana Caroliny C; Villacorta-Correa, Marle Angélica; Carvalho, Thaís B
2018-06-01
Brycon amazonicus shows a high frequency of aggressive behavior, which can be a limiting factor in intensive farming systems. Environmental changes can modulate the social interactions of fish and reduce aggression during the different stages of production. Groups of three larvae at 12 h after hatching (HAH) were subjected to different levels of light intensity: low (17 ± 3 lx), intermediate (204 ± 12.17 lx) and high (1,613.33 ± 499.03 lx), with eight replicates for each level. The lower light intensity reduced the frequency of aggressive interactions and locomotor activity exhibited by the animals. Based on these results, light intensity modulates aggression in B. amazonicus larvae. Manipulation of this factor could improve the social conditions of this species during farming and contribute to the development of new production technologies. Copyright © 2018 Elsevier B.V. All rights reserved.
Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes
Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang
2015-04-21
A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.
Stable Optical Phase Modulation With Micromirrors
2012-01-27
Stable optical phase modulation with micromirrors Caleb Knoernschild, Taehyun Kim, Peter Maunz, Stephen G. Crain, and Jungsang Kim∗ Fitzpatrick...position stability of the micromirror is dominated by the thermal mechanical noise of the structure. With this level of stability, we utilize the... micromirror to realize an optical phase modulator by simply reflecting light off the mirror and modulating its position. The resonant frequency of the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kounavis, P., E-mail: pkounavis@upatras.gr
2016-06-28
Dual light beam photoresponse experiments are employed to explore the photoresponse under simultaneous extrinsic and intrinsic photoexcitation of organic semiconductors. The photoresponse of a red modulated light extrinsic photoexcitation is found that can be significantly enhanced under an additional blue bias-light intrinsic photoexcitation in two terminal pentacene films on glass substrates. From the frequency resolved photoresponse, it is deduced that the phenomenon of photoresponse enhancement can be attributed to an increase in the extrinsic photogeneration rate of the red modulated light and/or an improvement of the drift velocity of carriers under an additional blue light intrinsic photoexcitation. The possible predominantmore » extrinsic photogeneration mechanism, which can be compatible with the observed dependence of the photoresponse enhancement on the frequency and on the light intensities of the red and blue light excitation, is the singlet exciton dissociation through electron transfer to acceptor-like traps. Moreover, an improvement in the drift velocity of carriers traversing grain boundaries with potential energy barriers, which may be reduced by trapping of minority carriers created from the intrinsic photoexcitation, may partly contribute to the photoresponse enhancement.« less
Frequency-specific attentional modulation in human primary auditory cortex and midbrain.
Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Poser, Benedikt A; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina
2018-07-01
Paying selective attention to an audio frequency selectively enhances activity within primary auditory cortex (PAC) at the tonotopic site (frequency channel) representing that frequency. Animal PAC neurons achieve this 'frequency-specific attentional spotlight' by adapting their frequency tuning, yet comparable evidence in humans is scarce. Moreover, whether the spotlight operates in human midbrain is unknown. To address these issues, we studied the spectral tuning of frequency channels in human PAC and inferior colliculus (IC), using 7-T functional magnetic resonance imaging (FMRI) and frequency mapping, while participants focused on different frequency-specific sounds. We found that shifts in frequency-specific attention alter the response gain, but not tuning profile, of PAC frequency channels. The gain modulation was strongest in low-frequency channels and varied near-monotonically across the tonotopic axis, giving rise to the attentional spotlight. We observed less prominent, non-tonotopic spatial patterns of attentional modulation in IC. These results indicate that the frequency-specific attentional spotlight in human PAC as measured with FMRI arises primarily from tonotopic gain modulation, rather than adapted frequency tuning. Moreover, frequency-specific attentional modulation of afferent sound processing in human IC seems to be considerably weaker, suggesting that the spotlight diminishes toward this lower-order processing stage. Our study sheds light on how the human auditory pathway adapts to the different demands of selective hearing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Artifacts in time-resolved Kelvin probe force microscopy
Sadewasser, Sascha; Nicoara, Nicoleta; Solares, Santiago D.
2018-04-24
Kelvin probe force microscopy (KPFM) has been used for the characterization of metals, insulators, and semiconducting materials on the nanometer scale. Especially in semiconductors, the charge dynamics are of high interest. Recently, several techniques for time-resolved measurements with time resolution down to picoseconds have been developed, many times using a modulated excitation signal, e.g. light modulation or bias modulation that induces changes in the charge carrier distribution. For fast modulation frequencies, the KPFM controller measures an average surface potential, which contains information about the involved charge carrier dynamics. Here, we show that such measurements are prone to artifacts due tomore » frequency mixing, by performing numerical dynamics simulations of the cantilever oscillation in KPFM subjected to a bias-modulated signal. For square bias pulses, the resulting time-dependent electrostatic forces are very complex and result in intricate mixing of frequencies that may, in some cases, have a component at the detection frequency, leading to falsified KPFM measurements. Additionally, we performed fast Fourier transform (FFT) analyses that match the results of the numerical dynamics simulations. Small differences are observed that can be attributed to transients and higher-order Fourier components, as a consequence of the intricate nature of the cantilever driving forces. These results are corroborated by experimental measurements on a model system. In the experimental case, additional artifacts are observed due to constructive or destructive interference of the bias modulation with the cantilever oscillation. Also, in the case of light modulation, we demonstrate artifacts due to unwanted illumination of the photodetector of the beam deflection detection system. Lastly, guidelines for avoiding such artifacts are given.« less
Artifacts in time-resolved Kelvin probe force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadewasser, Sascha; Nicoara, Nicoleta; Solares, Santiago D.
Kelvin probe force microscopy (KPFM) has been used for the characterization of metals, insulators, and semiconducting materials on the nanometer scale. Especially in semiconductors, the charge dynamics are of high interest. Recently, several techniques for time-resolved measurements with time resolution down to picoseconds have been developed, many times using a modulated excitation signal, e.g. light modulation or bias modulation that induces changes in the charge carrier distribution. For fast modulation frequencies, the KPFM controller measures an average surface potential, which contains information about the involved charge carrier dynamics. Here, we show that such measurements are prone to artifacts due tomore » frequency mixing, by performing numerical dynamics simulations of the cantilever oscillation in KPFM subjected to a bias-modulated signal. For square bias pulses, the resulting time-dependent electrostatic forces are very complex and result in intricate mixing of frequencies that may, in some cases, have a component at the detection frequency, leading to falsified KPFM measurements. Additionally, we performed fast Fourier transform (FFT) analyses that match the results of the numerical dynamics simulations. Small differences are observed that can be attributed to transients and higher-order Fourier components, as a consequence of the intricate nature of the cantilever driving forces. These results are corroborated by experimental measurements on a model system. In the experimental case, additional artifacts are observed due to constructive or destructive interference of the bias modulation with the cantilever oscillation. Also, in the case of light modulation, we demonstrate artifacts due to unwanted illumination of the photodetector of the beam deflection detection system. Lastly, guidelines for avoiding such artifacts are given.« less
Optical Dependence of Electrically Detected Magnetic Resonance in Lightly Doped Si:P Devices
NASA Astrophysics Data System (ADS)
Zhu, Lihuang; van Schooten, Kipp J.; Guy, Mallory L.; Ramanathan, Chandrasekhar
2017-06-01
Using frequency-modulated electrically detected magnetic resonance (EDMR), we show that signals measured from lightly doped (1.2 - 5 ×1 015 cm-3 ) silicon devices vary significantly with the wavelength of the optical excitation used to generate the mobile carriers. We measure EDMR spectra at 4.2 K as a function of modulation frequency and applied microwave power using a 980-nm laser, a 405-nm laser, and a broadband white-light source. EDMR signals are observed from the phosphorus donor and two distinct defect species in all of the experiments. With near-infrared irradiation, we find that the EDMR signal primarily arises from donor-defect pairs, while, at higher photon energies, there are significant additional contributions from defect-defect pairs. The contribution of spins from different spatial regions to the EDMR signal is seen to vary as the optical penetration depth changes from about 120 nm at 405-nm illumination to 100 μ m at 980-nm illumination. The modulation frequency dependence of the EDMR signal shows that the energy of the optical excitation strongly modulates the kinetics of the underlying spin-dependent recombination (SDR) process. Careful tuning of the optical photon energy could therefore be used to control both the subset of spin pairs contributing to the EDMR signal and the dynamics of the SDR process.
NASA Astrophysics Data System (ADS)
Duong, Quang Anh; Vu, Thanh Tung; Higuchi, Masato; Wei, Dong; Aketagawa, Masato
2018-06-01
We propose a sinusoidal phase modulation method to achieve both the frequency stabilization of an external-cavity laser diode (ECLD) to an 127I2 saturated absorption transition near 633 nm and displacement measurement using a Mach–Zehnder interferometer. First, the frequency of the ECLD is stabilized to the b 21 hyperfine component of the P(33) 6-3 transition of 127I2 by combining sinusoidal phase modulation by an electro-optic modulator and frequency modulation spectroscopy by chopping the pump beam using an acousto-optic modulator. Even though a small modulation index of m = 3.768 rad is utilized, a relative frequency stability of 10‑11 order is obtained over a sampling time of 400 s. Secondly, the frequency-stabilized ECLD is applied as a light source to a Mach–Zehnder interferometer. From the two consecutive modulation harmonics (second and third orders) involved in the interferometer signal, the displacement of the moving mirror is determined for four optical path differences (L 0 = 100, 200, 500, and 1000 mm). The measured modulation indexes for the four optical path differences coincide with the designated value (3.768 rad) within 0.5%. Compared with the sinusoidal frequency modulation Michelson interferometer (Vu et al 2016 Meas. Sci. Technol. 27 105201) which was demonstrated by some of the same authors of this paper, the phase modulation Mach–Zhender interferometer could fix the modulation index to a constant value for the four optical path differences. In this report, we discuss the measurement principle, experimental system, and results.
The true Blazhko behaviour of DM Cyg
NASA Astrophysics Data System (ADS)
Hurta, Zs.
2009-03-01
We present preliminary results of our work on DM Cyg, an RRab star with steadily increasing pulsation period. The Blazhko modulation of the light curve of DM Cyg has not been undoubtedly confirmed yet. A reanalysis of the original data (Sódor & Jurcsik 2005) could not confirm the 26 d periodicity found by Lysova & Firmanyuk (1980) in the timings of maximum brightness data of visual observations. Neither the scarce photoelectric observations (Fitch 1966, Sturch 1966, Hipparcos 1997) nor the CCD data of the NSVS (Woźniak 2004) survey suggested a notable light curve modulation. In order to get a definite answer whether the light curve of DM Cyg is stable or it shows any kind of modulation it was observed in the course of the Konkoly Blazhko Survey in the 2007 and 2008 seasons. Using the automated 60 cm telescope of the Konkoly Observatory, Svábhegy, Budapest, equipped with a Wright 750 x 1100 CCD camera and BVI_C filters we obtained more than 3000 data points on about 80 nights in each band. Archive photoelectric and photographic observations obtained with the 60 cm telescope and a 16 cm astrograph of the Konkoly Observatory in 1978 and between 1934 and 1958 were also analyzed. The photoelectric and photographic photometry provided 75 B,V and 1031 pg data points from 4 and 40 nights, respectively. The CCD observations revealed that the light curve of DM Cyg is in fact modulated, but with very small amplitude. The maximum brightness variation hardly exceeds 0.05 mag in the V band, while no definite phase modulation of the light curve and/or maximum timings is evident. The amplitudes of the modulation frequencies that form equidistant triplets around the pulsation frequency and its harmonics are below 15 mmag. There is some indication of light curve modulation in the Konkoly photographic data as well. Our data confirm that DM Cyg shows Blazhko modulation but with significantly different period and character (amplitude/phase modulation) than it was found by Lysova & Firmanyuk (2000). A detailed analysis of our observations of DM Cyg with its true Blazhko period will be submitted to MNRAS in early 2009.
Method and apparatus for Doppler frequency modulation of radiation
NASA Technical Reports Server (NTRS)
Margolis, J. S.; Mccleese, D. J.; Shumate, M. S.; Seaman, C. H. (Inventor)
1980-01-01
A method and apparatus are described for frequency modulating radiation, such as from a laser, for optoacoustic detectors, interferometers, heterodyne spectrometers, and similar devices. Two oppositely reciprocating cats-eye retroreflectors are used to Doppler modulate the radiation. By reciprocally moving both retroreflectors, the center of mass is maintained constant to permit smooth operation at many Hertz. By slightly offsetting the axis of one retroreflector relative to the other, multiple passes of a light beam may be achieved for greater Doppler shifts with the same reciprocating motion of the retroreflectors.
Modular approach to achieving the next-generation X-ray light source
NASA Astrophysics Data System (ADS)
Biedron, S. G.; Milton, S. V.; Freund, H. P.
2001-12-01
A modular approach to the next-generation light source is described. The "modules" include photocathode, radio-frequency, electron guns and their associated drive-laser systems, linear accelerators, bunch-compression systems, seed laser systems, planar undulators, two-undulator harmonic generation schemes, high-gain harmonic generation systems, nonlinear higher harmonics, and wavelength shifting. These modules will be helpful in distributing the next-generation light source to many more laboratories than the current single-pass, high-gain free-electron laser designs permit, due to both monetary and/or physical space constraints.
Blue Light Protects Against Temporal Frequency Sensitive Refractive Changes.
Rucker, Frances; Britton, Stephanie; Spatcher, Molly; Hanowsky, Stephan
2015-09-01
Time spent outdoors is protective against myopia. The outdoors allows exposure to short-wavelength (blue light) rich sunlight, while indoor illuminants can be deficient at short-wavelengths. In the current experiment, we investigate the role of blue light, and temporal sensitivity, in the emmetropization response. Five-day-old chicks were exposed to sinusoidal luminance modulation of white light (with blue; N = 82) or yellow light (without blue; N = 83) at 80% contrast, at one of six temporal frequencies: 0, 0.2, 1, 2, 5, 10 Hz daily for 3 days. Mean illumination was 680 lux. Changes in ocular components and corneal curvature were measured. Refraction, eye length, and choroidal changes were dependent on the presence of blue light (P < 0.03, all) and on temporal frequency (P < 0.03, all). In the presence of blue light, refraction did not change across frequencies (mean change -0.24 [diopters] D), while in the absence of blue light, we observed a hyperopic shift (>1 D) at high frequencies, and a myopic shift (>-0.6 D) at low frequencies. With blue light there was little difference in eye growth across frequencies (77 μm), while in the absence of blue light, eyes grew more at low temporal frequencies and less at high temporal frequencies (10 vs. 0.2 Hz: 145 μm; P < 0.003). Overall, neonatal astigmatism was reduced with blue light. Illuminants rich in blue light can protect against myopic eye growth when the eye is exposed to slow changes in luminance contrast as might occur with near work.
Blue Light Protects Against Temporal Frequency Sensitive Refractive Changes
Rucker, Frances; Britton, Stephanie; Spatcher, Molly; Hanowsky, Stephan
2015-01-01
Purpose Time spent outdoors is protective against myopia. The outdoors allows exposure to short-wavelength (blue light) rich sunlight, while indoor illuminants can be deficient at short-wavelengths. In the current experiment, we investigate the role of blue light, and temporal sensitivity, in the emmetropization response. Methods Five-day-old chicks were exposed to sinusoidal luminance modulation of white light (with blue; N = 82) or yellow light (without blue; N = 83) at 80% contrast, at one of six temporal frequencies: 0, 0.2, 1, 2, 5, 10 Hz daily for 3 days. Mean illumination was 680 lux. Changes in ocular components and corneal curvature were measured. Results Refraction, eye length, and choroidal changes were dependent on the presence of blue light (P < 0.03, all) and on temporal frequency (P < 0.03, all). In the presence of blue light, refraction did not change across frequencies (mean change −0.24 [diopters] D), while in the absence of blue light, we observed a hyperopic shift (>1 D) at high frequencies, and a myopic shift (>−0.6 D) at low frequencies. With blue light there was little difference in eye growth across frequencies (77 μm), while in the absence of blue light, eyes grew more at low temporal frequencies and less at high temporal frequencies (10 vs. 0.2 Hz: 145 μm; P < 0.003). Overall, neonatal astigmatism was reduced with blue light. Conclusions Illuminants rich in blue light can protect against myopic eye growth when the eye is exposed to slow changes in luminance contrast as might occur with near work. PMID:26393671
NASA Astrophysics Data System (ADS)
Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Dayong, Zhang; Yongquan, Luo
2015-01-01
Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulation effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.
Wide-field high spatial frequency domain imaging of tissue microstructure
NASA Astrophysics Data System (ADS)
Lin, Weihao; Zeng, Bixin; Cao, Zili; Zhu, Danfeng; Xu, M.
2018-02-01
Wide-field tissue imaging is usually not capable of resolving tissue microstructure. We present High Spatial Frequency Domain Imaging (HSFDI) - a noncontact imaging modality that spatially maps the tissue microscopic scattering structures over a large field of view. Based on an analytical reflectance model of sub-diffusive light from forward-peaked highly scattering media, HSFDI quantifies the spatially-resolved parameters of the light scattering phase function from the reflectance of structured light modulated at high spatial frequencies. We have demonstrated with ex vivo cancerous tissue to validate the robustness of HSFDI in significant contrast and differentiation of the microstructutral parameters between different types and disease states of tissue.
Magnetometer Based on Optoelectronic Microwave Oscillator
NASA Technical Reports Server (NTRS)
Maleki, Lute; Strekalov, Dmitry; Matsko, Andrey
2005-01-01
proposed instrument, intended mainly for use as a magnetometer, would include an optoelectronic oscillator (OEO) stabilized by an atomic cell that could play the role of a magnetically tunable microwave filter. The microwave frequency would vary with the magnetic field in the cell, thereby providing an indication of the magnetic field. The proposed magnetometer would offer a combination of high accuracy and high sensitivity, characterized by flux densities of less than a picotesla. In comparison with prior magnetometers, the proposed magnetometer could, in principle, be constructed as a compact, lightweight instrument: It could fit into a package of about 10 by 10 by 10 cm and would have a mass <0.5 kg. As described in several prior NASA Tech Briefs articles, an OEO is a hybrid of photonic and electronic components that generates highly spectrally pure microwave radiation, and optical radiation modulated by the microwave radiation, through direct conversion between laser light and microwave radiation in an optoelectronic feedback loop. As used here, "atomic cell" signifies a cell containing a vapor, the constituent atoms of which can be made to undergo transitions between quantum states, denoted hyperfine levels, when excited by light in a suitable wavelength range. The laser light must be in this range. The energy difference between the hyperfine levels defines the microwave frequency. In the proposed instrument (see figure), light from a laser would be introduced into an electro-optical modulator (EOM). Amplitude-modulated light from the exit port of the EOM would pass through a fiber-optic splitter having two output branches. The light in one branch would be sent through an atomic cell to a photodiode. The light in the other branch would constitute the microwave-modulated optical output. Part of the light leaving the atomic cell could also be used to stabilize the laser at a frequency in the vicinity of the desired hyperfine or other quantum transition. The microwave signal from the output of the photodiode would be amplified (if necessary, as explained below) and fed back into the EOM. This system would oscillate if the amplification in the closed loop exceeded the linear absorption of the loop. The microwave amplifier may be unnecessary to sustain stable oscillations, depending on the power of the laser radiation at the photodetector and on particular features of the modulator and optical delay line.
Electro-optic-waveguide frequency translator in LiNbO(3) fabricated by proton exchange.
Wong, K K; De La Rue, R M; Wright, S
1982-11-01
An optical waveguide phase modulator has been fabricated on X-cut LiNbO(3) by using proton exchange in benzoic acid. The phase modulator was operated as a serrodyne optical-frequency translator with shifted-signal to imagesignal discrimination of 52 dB for a 4-MHz frequency shift. The amplitude of the sawtooth driving signal was 10 V peak to peak. Application of a de bias voltage of either polarity was found to cause a substantial reduction in transmitted-light intensity.
Rogers, Geoffrey
2018-06-01
The Yule-Nielsen effect is an influence on halftone color caused by the diffusion of light within the paper upon which the halftone ink is printed. The diffusion can be characterized by a point spread function. In this paper, a point spread function for paper is derived using the multiple-path model of reflection. This model treats the interaction of light with turbid media as a random walk. Using the multiple-path point spread function, a general expression is derived for the average reflectance of light from a frequency-modulated halftone, in which dot size is constant and the number of dots is varied, with the arrangement of dots random. It is also shown that the line spread function derived from the multiple-path model has the form of a Lorentzian function.
Light trapping and circularly polarization at a Dirac point in 2D plasma photonic crystals
NASA Astrophysics Data System (ADS)
Li, Qian; Hu, Lei; Mao, Qiuping; Jiang, Haiming; Hu, Zhijia; Xie, Kang; Wei, Zhang
2018-03-01
Light trapping at the Dirac point in 2D plasma photonic crystal has been obtained. The new localized mode, Dirac mode, is attributable to neither photonic bandgap nor total internal reflection. It exhibits a unique algebraic profile and possesses a high-Q factor resonator of about 105. The Dirac point could be modulated by tuning the filling factor, plasma frequency and plasma cyclotron frequency, respectively. When a magnetic field parallel to the wave vector is applied, Dirac modes for right circularly polarized and left circularly polarized waves could be obtained at different frequencies, and the Q factor could be tuned. This property will add more controllability and flexibility to the design and modulation of novel photonic devices. It is also valuable for the possibilities of Dirac modes in photonic crystal containing other kinds of metamaterials.
Real-time optical image processing techniques
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang
1988-01-01
Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.
NASA Astrophysics Data System (ADS)
Zhou, Yi; Tang, Yan; Deng, Qinyuan; Liu, Junbo; Wang, Jian; Zhao, Lixin
2017-08-01
Dimensional metrology for micro structure plays an important role in addressing quality issues and observing the performance of micro-fabricated products. In white light interferometry, the proposed method is expected to measure three-dimensional topography through modulation depth in spatial frequency domain. A normalized modulation depth is first obtained in the xy plane (image plane) for each CCD image individually. After that, the modulation depth of each pixel is analyzed along the scanning direction (z-axis) to reshape the topography of micro samples. Owing to the characteristics of modulation depth in broadband light interferometry, the method could effectively suppress the negative influences caused by light fluctuations and external irradiance disturbance. Both theory and experiments are elaborated in detail to verify that the modulation depth-based method can greatly level up the stability and sensitivity with satisfied precision in the measurement system. This technique can achieve an improved robustness in a complex measurement environment with the potential to be applied in online topography measurement such as chemistry and medical domains.
NASA Astrophysics Data System (ADS)
Aerts, C.; Bowman, D. M.; Símon-Díaz, S.; Buysschaert, B.; Johnston, C.; Moravveji, E.; Beck, P. G.; De Cat, P.; Triana, S.; Aigrain, S.; Castro, N.; Huber, D.; White, T.
2018-05-01
We present an 80-d long uninterrupted high-cadence K2 light curve of the B1Iab supergiant ρ Leo (HD 91316), deduced with the method of halo photometry. This light curve reveals a dominant frequency of frot = 0.0373 d-1 and its harmonics. This dominant frequency corresponds with a rotation period of 26.8 d and is subject to amplitude and phase modulation. The K2 photometry additionally reveals multiperiodic low-frequency variability (<1.5 d-1) and is in full agreement with low-cadence high-resolution spectroscopy assembled during 1800 d. The spectroscopy reveals rotational modulation by a dynamic aspherical wind with an amplitude of about 20 km s-1 in the H α line, as well as photospheric velocity variations of a few km s-1 at frequencies in the range 0.2-0.6 d-1 in the Si III 4567 Å line. Given the large macroturbulence needed to explain the spectral line broadening of the star, we interpret the detected photospheric velocity as due to travelling superinertial low-degree large-scale gravity waves with dominant tangential amplitudes and discuss why ρ Leo is an excellent target to study how the observed photospheric variability propagates into the wind.
Compensated vibrating optical fiber pressure measuring device
Fasching, George E.; Goff, David R.
1987-01-01
A microbending optical fiber is attached under tension to a diaphragm to se a differential pressure applied across the diaphragm which it causes it to deflect. The fiber is attached to the diaphragm so that one portion of the fiber, attached to a central portion of the diaphragm, undergoes a change in tension; proportional to the differential pressure applied to the diaphragm while a second portion attached at the periphery of the diaphragm remains at a reference tension. Both portions of the fiber are caused to vibrate at their natural frequencies. Light transmitted through the fiber is attenuated by both portions of the tensioned sections of the fiber by an amount which increases with the curvature of fiber bending so that the light signal is modulated by both portions of the fiber at separate frequencies. The modulated light signal is transduced into a electrical signal. The separate modulation signals are detected to generate separate signals having frequencies corresponding to the reference and measuring vibrating sections of the continuous fiber, respectively. A signal proportional to the difference between these signals is generated which is indicative of the measured pressure differential across the diaphragm. The reference portion of the fiber is used to compensate the pressure signal for zero and span changes resulting from ambient temperature and humidity effects upon the fiber and the transducer fixture.
A Pulse Code Modulated Fiber Optic Link Design for Quinault Under-Water Tracking Range.
1980-09-01
invented and patented a light-wave communications device, the Photophone . The light beam was acoustically modulated, transmitted through the atmosphere and...a load resistor or feedback resistor. This voltage can be cal- culated by multiplying the received power, the respcnsiv ity and the effective load...frequency is not real critical since the clock, in effect , is synchronized after every eight bits by the timing pulse. The more interesting part of the
NASA Astrophysics Data System (ADS)
Baldeck, P. L.; Ho, P. P.; Alfano, Robert R.
Self-phase modulation (SPM) is the principal mechanism responsible for the generation of picosecond and femtosecond white-light supercontinua. When an intense ultrashort pulse progagates through a medium, it distorts the atomic configuration of the material, which changes the refractive index. The pulse phase is time modulated, which causes the generation of new frequencies. This phase modulation originates from the pulse itself (self-phase modulation). It can also be generated by a copropagating pulse (cross-phase modulation).
Low-level therapy in ophthalmology
NASA Astrophysics Data System (ADS)
Pankov, O. P.
1999-07-01
Extremely slow introduction of low-level laser therapy into the practice of ophthalmologists is restricted by the lack of good methodological recommendation and modern equipment adopted to the needs of ophthalmology. The most perspective is considered to be further improvement of the methods and the elaboration of the medical equipment, working in several wave bands, combined with magnetotherapy and working with the use of various modes of the modulation of the intensity of the luminous flux. It may be asserted that unlike the mode of continuous radiation, in some cases, the effectiveness of the treatment increases when the modulated light with the frequency of one to a few tens HZ is used. Moreover, the methods are being elaborated, when the modulation frequency of laser light and the biorhythms of man physiologic parameters are synchronized. Very perspective seems the computerization of the treatment process with the simultaneous electrophysiological control of the condition of visual functions.
Directly Phase-Modulated Light Source
NASA Astrophysics Data System (ADS)
Yuan, Z. L.; Fröhlich, B.; Lucamarini, M.; Roberts, G. L.; Dynes, J. F.; Shields, A. J.
2016-07-01
The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost-effective method. However, the simultaneous changes in intensity, frequency, and phase have prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity-enhanced electro-optic effect enables the first example of subvolt half-wave phase modulation at high signal rates. The source is compact, stable, and versatile, and we show its potential to become the standard transmitter for future quantum communication networks based on attenuated laser pulses.
2012-09-27
onto a 2D array of N 2 micromirrors [33] that are each individually phase modulated at a single frequency (and phase) [34] and are finally focused on...beams that strike an N × N array of micromirrors each independently modulated, or a spatial light modulator. overhead to the design and fabrication of
NASA Technical Reports Server (NTRS)
Kosterev, Anatoliy (Inventor)
2010-01-01
A method for detecting a target fluid in a fluid sample comprising a first fluid and the target fluid using photoacoustic spectroscopy (PAS), comprises a) providing a light source configured to introduce an optical signal having at least one wavelength into the fluid sample; b) modulating the optical signal at a desired modulation frequency such that the optical signal generates an acoustic signal in the fluid sample; c) measuring the acoustic signal in a resonant acoustic detector; and d) using the phase of the acoustic signal to detect the presence of the target fluid.
Linear phase encoding for holographic data storage with a single phase-only spatial light modulator.
Nobukawa, Teruyoshi; Nomura, Takanori
2016-04-01
A linear phase encoding is presented for realizing a compact and simple holographic data storage system with a single spatial light modulator (SLM). This encoding method makes it possible to modulate a complex amplitude distribution with a single phase-only SLM in a holographic storage system. In addition, an undesired light due to the imperfection of an SLM can be removed by spatial frequency filtering with a Nyquist aperture. The linear phase encoding is introduced to coaxial holographic data storage. The generation of a signal beam using linear phase encoding is experimentally verified in an interferometer. In a coaxial holographic data storage system, single data recording, shift selectivity, and shift multiplexed recording are experimentally demonstrated.
Direct observation of frequency modulated transcription in single cells using light activation
Larson, Daniel R; Fritzsch, Christoph; Sun, Liang; Meng, Xiuhau; Lawrence, David S; Singer, Robert H
2013-01-01
Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single steroid-responsive gene and follow dynamic synthesis of RNA from the activated locus. DOI: http://dx.doi.org/10.7554/eLife.00750.001 PMID:24069527
Fluorescence enhancement and nonreciprocal transmission of light waves by nanomaterial interfaces
NASA Astrophysics Data System (ADS)
Nyman, M.; Shevchenko, A.; Kaivola, M.
2017-11-01
In an optically absorbing or amplifying linear medium, the energy flow density of interfering optical waves is in general periodically modulated in space. This makes the wave transmission through a material boundary, as described by the Fresnel transmission coefficients, nonreciprocal and apparently violating the energy conservation law. The modulation has been previously described in connection to ordinary homogeneous nonmagnetic materials. In this work, we extend the description to nanomaterials with designed structural units that can be magnetic at optical frequencies. We find that in such a "metamaterial" the modulation in energy flow can be used to enhance optical far-field emission in spite of the fact that the material is highly absorbing. We also demonstrate a nanomaterial design that absorbs light, but simultaneously eliminates the power flow modulation and returns the reciprocity, which is impossible to achieve with a nonmagnetic material. We anticipate that these unusual optical effects can be used to increase the efficiency of nanostructured light emitters and absorbers, such as light-emitting diodes and solar cells.
Frequency-Domain Optical Mammogram
2002-10-01
have performed the proposed analysis of frequency-domain optical mammograms for a clinical population of about 150 patients. This analysis has led to...model the propagation of light in tissue14-20 have led to new approaches to optical mammography. As The authors are with the Department of Electrical...Modulation Methods, and Signal Detection /406 7.2.1 Lasers and arc lamps / 407’ 7.2.2 Pulsed sources / 407 7.2.3 Laser diodes and light-emitting diodes ( LEDs
Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.
2018-01-01
In vivo imaging of self-illuminating bio-and chemiluminescent reporters is used to observe the physiology of small animals. However, strong light scattering by biological tissues results in poor spatial resolution of the optical imaging, which also degrades the quantitative accuracy. To overcome this challenging problem, focused ultrasound is used to modulate the light from the reporter at the ultrasound frequency. This produces an ultrasound switchable light ‘beacon’ that reduces the influence of light scattering in order to improve spatial resolution. The experimental results demonstrate that apart from light modulation at the ultrasound frequency (AC signal at 3.5 MHz), ultrasound also increases the DC intensity of the reporters. This is shown to be due to a temperature rise caused by insonification that was minimized to be within acceptable mammalian tissue safety thresholds by adjusting the duty cycle of the ultrasound. Line scans of bio-and chemiluminescent objects embedded within a scattering medium were obtained using ultrasound modulated (AC) and ultrasound enhanced (DC) signals. Lateral resolution is improved by a factor of 12 and 7 respectively, as compared to conventional CCD imaging. Two chemiluminescent sources separated by ~10 mm at ~20 mm deep inside a 50 mm thick chicken breast have been successfully resolved with an average signal-to-noise ratio of approximately 8-10 dB. PMID:29675309
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyushkov, B N; Pivtsov, V S; Koliada, N A
2015-05-31
A miniature intracavity KTP-based electro-optic phase modulator has been developed which can be used for effective stabilisation of an optical frequency comb of a femtosecond erbiumdoped fibre laser to an optical frequency standard. The use of such an electro-optic modulator (EOM) has made it possible to extend the working frequency band of a phase-locked loop system for laser stabilisation to several hundred kilohertz. We demonstrate that the KTP-based EOM is sufficiently sensitive even at a small optical length, which allows it to be readily integrated into cavities of femtosecond fibre lasers with high mode frequency spacings (over 100 MHz). (extrememore » light fields and their applications)« less
Flood, Michael Daniel; Moore-Dotson, Johnnie M; Eggers, Erika D
2018-05-30
Dopamine modulation of retinal signaling has been shown to be an important part of retinal adaptation to increased background light levels but the role of dopamine modulation of retinal inhibition is not clear. We previously showed that light adaptation causes a large reduction in inhibition to rod bipolar cells, potentially to match the decrease in excitation after rod saturation. In this study we determined how dopamine D1 receptors in the inner retina contribute to this modulation. We found that D1 receptor activation significantly decreased the magnitude of inhibitory light responses from rod bipolar cells, while D1 receptor blockade during light adaptation partially prevented this decline. To determine what mechanisms were involved in the modulation of inhibitory light responses, we measured the effect of D1 receptor activation on spontaneous currents and currents evoked from electrically stimulating amacrine cell inputs to rod bipolar cells. D1 receptor activation decreased the frequency of spontaneous inhibition with no change in event amplitudes, suggesting a presynaptic change in amacrine cell activity in agreement with previous reports that rod bipolar cells lack D1 receptors. Additionally, we found that D1 receptor activation reduced the amplitude of electrically-evoked responses, showing that D1 receptors can modulate amacrine cells directly. Our results suggest that D1 receptor activation can replicate a large portion, but not all of the effects of light adaptation, likely by modulating release from amacrine cells onto rod bipolar cells.
A Modular System of Interfacing Microcomputers.
ERIC Educational Resources Information Center
Martin, Peter
1983-01-01
Describes a system of interfacing allowing a range of signal conditioning and control modules to be connected to microcomputers, enabling execution of such experiments as: examining rate of cooling; control by light-activated switch; pH measurements; control frequency of signal generators; and making automated measurements of frequency response of…
Demonstrating ultrafast polarization dynamics in spin-VCSELs
NASA Astrophysics Data System (ADS)
Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Gerhardt, Nils C.; Hofmann, Martin R.
2018-02-01
Vertical-cavity surface-emitting lasers (VCSELs) are used for short-haul optical data transmission with increasing bit rates. The optimization involves both enhanced device designs and the use of higher-order modulation formats. In order to improve the modulation bandwidth substantially, the presented work employs spin-pumped VCSELs (spin-VCSELs) and their polarization dynamics instead of relying on intensity-modulated devices. In spin-VCSELs, the polarization state of the emitted light is controllable via spin injection. By optical spin pumping a single-mode VCSEL is forced to emit light composed of both orthogonal linearly polarized fundamental modes. The frequencies of these two modes differ slightly by a value determined by the cavity birefringence. As a result, the circular polarization degree oscillates with their beat frequency, i.e., with the birefringence-induced mode splitting. We used this phenomenon to show so-called polarization oscillations, which are generated by pulsed spin injection. Their frequency represents the polarization dynamics resonance frequency and can be tuned over a wide range via the birefringence, nearly independent from any other laser parameter. In previous work we demonstrated a maximum birefringence-induced mode splitting of more than 250 GHz. In this work, compared to previous publications, we show an almost doubled polarization oscillation frequency of more than 80 GHz. Furthermore, we discuss concepts to achieve even higher values far above 100 GHz.
Huang, Wenzhu; Zhang, Wentao; Li, Fang
2015-04-01
This Letter presents a static strain demodulation technique for FBG-FP sensors using a suppressed carrier LiNbO(3) (LN) optical single sideband (SSB-SC) modulator. A narrow-linewidth tunable laser source is generated by driving the modulator using a linear chirp signal. Then this tunable single-frequency laser is used to interrogate the FBG-FP sensors with the Pound-Drever-Hall (PDH) technique, which is beneficial to eliminate the influence of light intensity fluctuation of the modulator at different tuning frequencies. The static strain is demodulated by calculating the wavelength difference of the PDH signals between the sensing FBG-FP sensor and the reference FBG-FP sensor. As an experimental result using the modulator, the linearity (R2) of the time-frequency response increases from 0.989 to 0.997, and the frequency-swept range (dynamic range) increases from hundreds of MHz to several GHz compared with commercial PZT-tunable lasers. The high-linearity time-wavelength relationship of the modulator is beneficial for improving the strain measurement resolution, as it can solve the problem of the frequency-swept nonlinearity effectively. In the laboratory test, a 0.67 nanostrain static strain resolution, with a 6 GHz dynamic range, is demonstrated.
Differential pulse amplitude modulation for multiple-input single-output OWVLC
NASA Astrophysics Data System (ADS)
Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.
2015-01-01
White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.
High Speed Computational Ghost Imaging via Spatial Sweeping
NASA Astrophysics Data System (ADS)
Wang, Yuwang; Liu, Yang; Suo, Jinli; Situ, Guohai; Qiao, Chang; Dai, Qionghai
2017-03-01
Computational ghost imaging (CGI) achieves single-pixel imaging by using a Spatial Light Modulator (SLM) to generate structured illuminations for spatially resolved information encoding. The imaging speed of CGI is limited by the modulation frequency of available SLMs, and sets back its practical applications. This paper proposes to bypass this limitation by trading off SLM’s redundant spatial resolution for multiplication of the modulation frequency. Specifically, a pair of galvanic mirrors sweeping across the high resolution SLM multiply the modulation frequency within the spatial resolution gap between SLM and the final reconstruction. A proof-of-principle setup with two middle end galvanic mirrors achieves ghost imaging as fast as 42 Hz at 80 × 80-pixel resolution, 5 times faster than state-of-the-arts, and holds potential for one magnitude further multiplication by hardware upgrading. Our approach brings a significant improvement in the imaging speed of ghost imaging and pushes ghost imaging towards practical applications.
Araya, A; Telada, S; Tochikubo, K; Taniguchi, S; Takahashi, R; Kawabe, K; Tatsumi, D; Yamazaki, T; Kawamura, S; Miyoki, S; Moriwaki, S; Musha, M; Nagano, S; Fujimoto, M K; Horikoshi, K; Mio, N; Naito, Y; Takamori, A; Yamamoto, K
1999-05-01
A new method has been demonstrated for absolute-length measurements of a long-baseline Fabry-Perot cavity by use of phase-modulated light. This method is based on determination of a free spectral range (FSR) of the cavity from the frequency difference between a carrier and phase-modulation sidebands, both of which resonate in the cavity. Sensitive response of the Fabry-Perot cavity near resonant frequencies ensures accurate determination of the FSR and thus of the absolute length of the cavity. This method was applied to a 300-m Fabry-Perot cavity of the TAMA gravitational wave detector that is being developed at the National Astronomical Observatory, Tokyo. With a modulation frequency of approximately 12 MHz, we successfully determined the absolute cavity length with resolution of 1 microm (3 x 10(-9) in strain) and observed local ground strain variations of 6 x 10(-8).
NASA Technical Reports Server (NTRS)
Adamovsky, G.; Sherer, T. N.; Maitland, D. J.
1989-01-01
A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2004-05-01
In 1976, research in collaboration with Bob Apfel demonstrated that low-frequency shape oscillations of hydrocarbon drops levitated in water could be driven using modulated radiation pressure. While that response to modulated ultrasound was subsequently extended to a range of systems, the emphasis here is to recall the initial stages of development in Bob Apfel's laboratory leading to some publications [P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280-286 (1979); J. Acoust. Soc. Am. 67, 27-37 (1980)]. The levitation technology used at that time was such that it was helpful to develop a sensitive method for detecting weak oscillations using the interference pattern in laser light scattered by levitated drops. The initial experiments to verify this scattering method used shape oscillations induced by modulated electric fields within the acoustic levitator. Light scattering was subsequently used to detect shape oscillations induced by amplitude modulating a carrier having a high frequency (around 680 kHz) at a resonance of the transducer. Methods were also developed for quantitative measurements of the drop's response and with improved acoustic coupling drop fission was observed. The connection with research currently supported by NASA will also be noted.
Hinakura, Yosuke; Terada, Yosuke; Arai, Hiroyuki; Baba, Toshihiko
2018-04-30
We demonstrate a Si photonic crystal waveguide Mach-Zehnder modulator that incorporates meander-line electrodes to compensate for the phase mismatch between slow light and RF signals. We first employed commonized ground electrodes in the modulator to suppress undesired fluctuations in the electro-optic (EO) response due to coupled slot-line modes of RF signals. Then, we theoretically and experimentally investigated the effect of the phase mismatch on the EO response. We confirmed that meander-line electrodes improve the EO response, particularly in the absence of internal reflection of the RF signals. The cut-off frequency of this device can reach 27 GHz, which allows high-speed modulation up to 50 Gbps.
Flicker in a twisted nematic spatial light modulator
NASA Astrophysics Data System (ADS)
Calderón-Hermosillo, Yuliana; García-Márquez, Jorge; Espinosa-Luna, Rafael; Ochoa, Noé Alcalá; López, Víctor; Aguilar, Alberto; Noé-Arias, Enrique; Alayli, Yasser
2013-06-01
Liquid Crystal on Silicon (LCoS) Spatial Light Modulators (SLM) are widely used for their capability to control beams howbeit fluctuations in phase and amplitude. It is then necessary to understand the negative effects of these fluctuations, also known as flicker, and the means to mitigate them. The flicker is observed either as high frequency variations of polarization, attenuation or high phase fluctuations on the wave front modulated by the LCoS device. Here, we compare the flicker behavior in a twisted nematic (TN) LCoS-SLM for different polarization schemes and temperatures. The quantitative evaluation shows that flicker is effectively reduced only by chilling the LCoS panel to temperatures just below 0 °C but, the LCoS modulation capability is also affected.
NASA Astrophysics Data System (ADS)
George, Jonathan K.
2013-05-01
In the search for low-cost wide spectrum imagers it may become necessary to sacrifice the expense of the focal plane array and revert to a scanning methodology. In many cases the sensor may be too unwieldy to physically scan and mirrors may have adverse effects on particular frequency bands. In these cases, photonic masks can be devised to modulate the incoming light field with a code over time. This is in essence code-division multiplexing of the light field into a lower dimension channel. In this paper a simple method for modulating the light field with masks of the Archimedes' spiral is presented and a mathematical model of the two-dimensional mask set is developed.
Fast method of cross-talk effect reduction in biomedical imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Nowakowski, Maciej; Kolenderska, Sylwia M.; Borycki, Dawid; Wojtkowski, Maciej
2016-03-01
Optical imaging of biological samples or living tissue structures requires light delivery to a region of interest and then collection of scattered light or fluorescent light in order to reconstruct an image of the object. When the coherent illumination light enters bulky biological object, each of scattering center (single molecule, group of molecules or other sample feature) acts as a secondary light source. As a result, scattered spherical waves from these secondary sources interact with each other, generating cross-talk noise between optical channels (eigenmodes). The cross-talk effect have serious impact on the performance of the imaging systems. In particular it reduces an ability of optical system to transfer high spatial frequencies thereby reducing its resolution. In this work we present a fast method to eliminate all unwanted waves combination, that overlap at image plane, suppressing recovery of high spatial frequencies by using the spatio-temporal optical coherence manipulation (STOC, [1]). In this method a number of phase mask is introduced to illuminating beam by spatial light modulator in a time of single image acquisition. We use a digital mirror device (DMD) in order to rapid cross-talk noise reduction (up to 22kHz modulation frequency) when imaging living biological cells in vivo by using full-field microscopy setup with double pass arrangement. This, to our best knowledge, has never been shown before. [1] D. Borycki, M. Nowakowski, and M. Wojtkowski, Opt. Lett. 38, 4817 (2013).
An ultrawide-bandwidth single-sideband modulator for terahertz frequencies
NASA Astrophysics Data System (ADS)
Meijer, A. S.; Berden, G.; Arslanov, D. D.; Ozerov, M.; Jongma, R. T.; van der Zande, W. J.
2016-11-01
Wireless high-speed data communication using terahertz (THz) carrier frequencies is becoming reality with data rates beyond 100 Gbit s-1. Many of the mobile applications use internet access and require that THz wireless base stations are connected to a global network, such as the radio-over-fibre network. We present the realization of an ultrawide bandwidth THz optical single-sideband (OSSB) modulator for converting (free-space) THz signals to THz optical modulations with an increased spectral efficiency. THz OSSB will mitigate chromatic dispersion-induced propagation losses in optical fibres and support digital modulation schemes. We demonstrate THz OSSB for free-space radiation between 0.3 and 1.0 THz using a specially designed dichroic beamsplitter for signal and carrier, and a planar light-wave circuit with multimode interference structures. This arrangement of optical elements mimics the Hartley single-sideband modulator for electronics signals and accomplishes the required Hilbert transform without any frequency-dependent tuning element over an ultrawide THz spectrum.
NASA Astrophysics Data System (ADS)
Zhang, Jingdong; Zhu, Tao; Zheng, Hua; Kuang, Yang; Liu, Min; Huang, Wei
2017-04-01
The round trip time of the light pulse limits the maximum detectable frequency response range of vibration in phase-sensitive optical time domain reflectometry (φ-OTDR). We propose a method to break the frequency response range restriction of φ-OTDR system by modulating the light pulse interval randomly which enables a random sampling for every vibration point in a long sensing fiber. This sub-Nyquist randomized sampling method is suits for detecting sparse-wideband- frequency vibration signals. Up to MHz resonance vibration signal with over dozens of frequency components and 1.153MHz single frequency vibration signal are clearly identified for a sensing range of 9.6km with 10kHz maximum sampling rate.
Space-and-time current spectroscopy of nanostructured selenium in the chrysotile asbestos matrix
NASA Astrophysics Data System (ADS)
Bryushinin, M. A.; Kulikov, V. V.; Kumzerov, Yu. A.; Mokrushina, E. V.; Petrov, A. A.; Sokolov, I. A.
2014-08-01
The non-steady-state photoelectromotive force effect was experimentally studied in a semiconductor nanowire array, i.e., in a composite representing selenium in a chrysotile asbestos matrix. The sample was exposed to an oscillating interference pattern, and the material response was measured as an alternating electric current. The experiments were performed for two geometries in which the excited photocurrent was parallel or perpendicular to nanowires. The dependences of the signal amplitude on the phase modulation frequency, spatial frequency, light polarization, and temperature were obtained. The photoelectric parameters of the material were determined for the light wavelength λ = 633 nm. The effect was theoretically analyzed for the semiconductor model with shallow traps, which allowed the explanation of the observed increase in the signal amplitude in the presence of additional phase modulation.
Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems.
Li, Jianfeng; Huang, Zhitong; Liu, Xiaoshuang; Ji, Yuefeng
2015-01-12
A novel hybrid time-frequency domain equalization scheme is proposed and experimentally demonstrated to mitigate the white light emitting diode (LED) nonlinearity in visible light communication (VLC) systems based on orthogonal frequency division multiplexing (OFDM). We handle the linear and nonlinear distortion separately in a nonlinear OFDM system. The linear part is equalized in frequency domain and the nonlinear part is compensated by an adaptive nonlinear time domain equalizer (N-TDE). The experimental results show that with only a small number of parameters the nonlinear equalizer can efficiently mitigate the LED nonlinearity. With the N-TDE the modulation index (MI) and BER performance can be significantly enhanced.
Frequency-domain phase fluorometry in the presence of dark states: A numerical study
NASA Astrophysics Data System (ADS)
Zhu, Xinxin; Min, Wei
2011-11-01
Fluorescence anomalous phase advance (FAPA) is a newly discovered spectroscopy phenomenon: instead of lagging behind the modulated light, fluorescence signal can exhibit FAPA as if it precedes the excitation source in time. While FAPA offers a promising technique for probing dark state lifetime, the underlying mechanism is not fully elucidated. Herein we investigate frequency-domain phase fluorometry as a result of intricate interplay between a short-lived fluorescent state and a long-lived dark state. In particular, the quantitative dependence on modulation frequency, excitation intensity, nonradiative decay, intersystem crossing and dark-state lifetime are explored respectively. A comprehensive view of phase fluorometry emerges consequently.
Multipoint sensing with a low-coherence source using single-arm frequency-shifted interferometry
Zhang, Yiwei; Ye, Fei; Qi, Bing; ...
2016-07-12
We demonstrate that multiple-site sensing along an optical fiber can be done with incoherent continuous-wave light. Here, using a broadband low-coherence noise source, a slow detector, and an optical modulator, we construct a single-arm frequency-shifted interferometer (SA-FSI) capable of simultaneously sensing multiple weak-reflection sites distributed either in parallel or in series along fiber links. By scanning the driving frequency of an electro-optic amplitude modulator in the range of 2.7–3.2 GHz at steps of 41.7 KHz, we demonstrate a spatial resolution of 0.3 m and a measurement range of over 1 km.
Shi, Qing; Stell, William K.
2013-01-01
Background Through adaptation, animals can function visually under an extremely broad range of light intensities. Light adaptation starts in the retina, through shifts in photoreceptor sensitivity and kinetics plus modulation of visual processing in retinal circuits. Although considerable research has been conducted on retinal adaptation in nocturnal species with rod-dominated retinas, such as the mouse, little is known about how cone-dominated avian retinas adapt to changes in mean light intensity. Methodology/Principal Findings We used the optokinetic response to characterize contrast sensitivity (CS) in the chick retina as a function of spatial frequency and temporal frequency at different mean light intensities. We found that: 1) daytime, cone-driven CS was tuned to spatial frequency; 2) nighttime, presumably rod-driven CS was tuned to temporal frequency and spatial frequency; 3) daytime, presumably cone-driven CS at threshold intensity was invariant with temporal and spatial frequency; and 4) daytime photopic CS was invariant with clock time. Conclusion/Significance Light- and dark-adaptational changes in CS were investigated comprehensively for the first time in the cone-dominated retina of an avian, diurnal species. The chick retina, like the mouse retina, adapts by using a “day/night” or “cone/rod” switch in tuning preference during changes in lighting conditions. The chick optokinetic response is an attractive model for noninvasive, behavioral studies of adaptation in retinal circuitry in health and disease. PMID:24098693
Rout, Saroj; Sonkusale, Sameer
2016-06-27
The ever increasing demand for bandwidth in wireless communication systems will inevitably lead to the extension of operating frequencies toward the terahertz (THz) band known as the 'THz gap'. Towards closing this gap, we present a multi-level amplitude shift keying (ASK) terahertz wireless communication system using terahertz spatial light modulators (SLM) instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. The fundamental principle behind this higher efficiency is the conversion of a noisy voltage domain signal to a noise-free binary spatial pattern for effective amplitude modulation of a free-space THz carrier wave. Spatial modulation is achieved using an an active metamaterial array embedded with pseudomorphic high-electron mobility (pHEMT) designed in a consumer-grade galium-arsenide (GaAs) integrated circuit process which enables electronic control of its THz transmissivity. Each array is assembled as individually controllable tiles for transmissive terahertz spatial modulation. Using the experimental data from our metamaterial based modulator, we show that a four-level ASK digital communication system has two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR) using spatial light modulation compared to voltage controlled modulation.
“Beating speckles” via electrically-induced vibrations of Au nanorods embedded in sol-gel
Ritenberg, Margarita; Beilis, Edith; Ilovitsh, Asaf; Barkai, Zehava; Shahmoon, Asaf; Richter, Shachar; Zalevsky, Zeev; Jelinek, Raz
2014-01-01
Generation of macroscopic phenomena through manipulating nano-scale properties of materials is among the most fundamental goals of nanotechnology research. We demonstrate cooperative “speckle beats” induced through electric-field modulation of gold (Au) nanorods embedded in a transparent sol-gel host. Specifically, we show that placing the Au nanorod/sol-gel matrix in an alternating current (AC) field gives rise to dramatic modulation of incident light scattered from the material. The speckle light patterns take form of “beats”, for which the amplitude and frequency are directly correlated with the voltage and frequency, respectively, of the applied AC field. The data indicate that the speckle beats arise from localized vibrations of the gel-embedded Au nanorods, induced through the interactions between the AC field and the electrostatically-charged nanorods. This phenomenon opens the way for new means of investigating nanoparticles in constrained environments. Applications in electro-optical devices, such as optical modulators, movable lenses, and others are also envisaged. PMID:24413086
Chords and harmonies in mixed optical and acoustical stimuli
NASA Astrophysics Data System (ADS)
Hahlweg, Cornelius; Dannenberg, Florian; Dörfler, Joachim; Weber, Bernhard; Weyer, Cornelia; Gercke-Hahn, Harald; Freimuth, Steffen; Heucke, Sören; Gutzmann, Holger Ludwig
2014-09-01
The paper is a follow up of the work presented in last year's Optics and Music session on the perception of coherence between low frequency power modulated light and periodical acoustic stimuli. The composition of chords and harmonies from power modulated light sources and their effect as stand-alone stimulus and in conjunction with the equivalent acoustic signal is discussed. Of special interest here is the modulation near perceptible flicker frequency. The substitution of acoustical chord components by their optical counterpart and vice versa is investigated. Further, concepts of a training application for trombone players and other instrumentalists are presented: since the mean slide of the trombone does not have fixed positions, the note must be found and two players might influence each other. The possibility of helping them to synchronize by optical stimuli derived from their playing is investigated. Beside possible applications in emotional reinforcing multimedia oriented entertainment and training support for musicians, again implications for occupational medicine are discussed.
Laser System for Precise, Unambiguous Range Measurements
NASA Technical Reports Server (NTRS)
Dubovitsky, Serge; Lay, Oliver
2005-01-01
The Modulation Sideband Technology for Absolute Range (MSTAR) architecture is the basis of design of a proposed laser-based heterodyne interferometer that could measure a range (distance) as great as 100 km with a precision and resolution of the order of 1 nm. Simple optical interferometers can measure changes in range with nanometer resolution, but cannot measure range itself because interference is subject to the well-known integer-multiple-of-2 -radians phase ambiguity, which amounts to a range ambiguity of the order of 1 m at typical laser wavelengths. Existing rangefinders have a resolution of the order of 10 m and are therefore unable to resolve the ambiguity. The proposed MSTAR architecture bridges the gap, enabling nanometer resolution with an ambiguity range that can be extended to arbitrarily large distances. The MSTAR architecture combines the principle of the heterodyne interferometer with the principle of extending the ambiguity range of an interferometer by using light of two wavelengths. The use of two wavelengths for this purpose is well established in optical metrology, radar, and sonar. However, unlike in traditional two-color laser interferometry, light of two wavelengths would not be generated by two lasers. Instead, multiple wavelengths would be generated as sidebands of phase modulation of the light from a single frequency- stabilized laser. The phase modulation would be effected by applying sinusoidal signals of suitable frequencies (typically tens of gigahertz) to high-speed electro-optical phase modulators. Intensity modulation can also be used
NASA Astrophysics Data System (ADS)
Zhou, Yi; Tang, Yan; Deng, Qinyuan; Zhao, Lixin; Hu, Song
2017-08-01
Three-dimensional measurement and inspection is an area with growing needs and interests in many domains, such as integrated circuits (IC), medical cure, and chemistry. Among the methods, broadband light interferometry is widely utilized due to its large measurement range, noncontact and high precision. In this paper, we propose a spatial modulation depth-based method to retrieve the surface topography through analyzing the characteristics of both frequency and spatial domains in the interferogram. Due to the characteristics of spatial modulation depth, the technique could effectively suppress the negative influences caused by light fluctuations and external disturbance. Both theory and experiments are elaborated to confirm that the proposed method can greatly improve the measurement stability and sensitivity with high precision. This technique can achieve a superior robustness with the potential to be applied in online topography measurement.
NASA Astrophysics Data System (ADS)
Miyata, Tsuyoshi; Iwata, Tetsuo; Araki, Tsutomu
2006-01-01
We propose a reflection-type pulse oximeter, which employs two pairs of a light-emitting diode (LED) and a gated avalanche photodiode (APD). One LED is a red one with an emission wavelength λ = 635 nm and the other is a near-infrared one with that λ = 945 nm, which are both driven with a pulse mode at a frequency f (=10 kHz). Superposition of a transistor-transistor-logic (TTL) gate pulse on a direct-current (dc) bias, which is set so as not exceeding the breakdown voltage of each APD, makes the APD work in a gain-enhanced operation mode. Each APD is gated at a frequency 2f (=20 kHz) and its output signal is fed into a laboratory-made lock-in amplifier that works in synchronous with the pulse modulation signal of each LED at a frequency f (=10 kHz). A combination of the gated APD and the lock-in like signal detection scheme is useful for the reflection-type pulse oximeter thanks to the capability of detecting a weak signal against a large background (BG) light.
Ishikawa, Michio; Katsura, Makoto; Nakashima, Satoru; Aizawa, Kento; Inoue, Tsutomu; Okamura, Hidekazu; Ikemoto, Yuka
2011-06-20
In order to obtain broadband near-field infrared (IR) spectra, a Fourier-transform IR spectrometer (FT-IR) and a ceramic light source were used with a scattering-type scanning near-field optical microscope (s-SNOM). To suppress the background (far-field) scattering, the distance between the scattering probe and the sample was modulated with frequency Ω by a piezo-electric actuator, and the Ω component was extracted from the signal with a lock-in detection. With Ω=30 kHz, a peak-to-peak modulation amplitude of 198 nm, and a probe with smooth surface near the tip, broadband near-field IR spectra could be obtained in the 1200-2500 cm(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiangjie, Zhao, E-mail: zxjdouble@163.com, E-mail: zxjdouble@gmail.com; Cangli, Liu; Jiazhu, Duan
Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulationmore » effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.« less
Experiments and error analysis of laser ranging based on frequency-sweep polarization modulation
NASA Astrophysics Data System (ADS)
Gao, Shuyuan; Ji, Rongyi; Li, Yao; Cheng, Zhi; Zhou, Weihu
2016-11-01
Frequency-sweep polarization modulation ranging uses a polarization-modulated laser beam to determine the distance to the target, the modulation frequency is swept and frequency values are measured when transmitted and received signals are in phase, thus the distance can be calculated through these values. This method gets much higher theoretical measuring accuracy than phase difference method because of the prevention of phase measurement. However, actual accuracy of the system is limited since additional phase retardation occurs in the measuring optical path when optical elements are imperfectly processed and installed. In this paper, working principle of frequency sweep polarization modulation ranging method is analyzed, transmission model of polarization state in light path is built based on the theory of Jones Matrix, additional phase retardation of λ/4 wave plate and PBS, their impact on measuring performance is analyzed. Theoretical results show that wave plate's azimuth error dominates the limitation of ranging accuracy. According to the system design index, element tolerance and error correcting method of system is proposed, ranging system is built and ranging experiment is performed. Experiential results show that with proposed tolerance, the system can satisfy the accuracy requirement. The present work has a guide value for further research about system design and error distribution.
60-GHz integrated-circuit high data rate quadriphase shift keying exciter and modulator
NASA Technical Reports Server (NTRS)
Grote, A.; Chang, K.
1984-01-01
An integrated-circuit quadriphase shift keying (QPSK) exciter and modulator have demonstrated excellent performance directly modulating a carrier frequency of 60 GHz with an output phase error of less than 3 degrees and maximum amplitude error of 0.5 dB. The circuit consists of a 60-GHz Gunn VCO phase-locked to a low-frequency reference source, a 4th subharmonic mixer, and a QPSK modlator packaged into a small volume of 1.8 x 2.5 x 0.35 in. The use of microstrip has the advantages of small size, light-weight, and low-cost fabrication. The unit has the potential for multigigabit data rate applications.
High-speed optical coherence tomography using fiberoptic acousto-optic phase modulation
NASA Astrophysics Data System (ADS)
Xie, Tuqiang; Wang, Zhenguo; Pan, Yingtian
2003-12-01
We report a new rapid-scanning optical delay device suitable for high-speed optical coherence tomography (OCT) in which an acousto-optic modulator (AOM) is used to independently modulate the Doppler frequency shift of the reference light beam for optical heterodyne detection. Experimental results show that the fluctuation of the measured Doppler frequency shift is less than +/-0.2% over 95% duty cycle of OCT imaging, thus allowing for enhanced signal-to-noise ratio of optical heterodyne detection. The increased Doppler frequency shift by AOM also permits complete envelop demodulation without the compromise of reducing axial resolution; if used with a resonant rapid-scanning optical delay, it will permit high-performance real-time OCT imaging. Potentially, this new rapid-scanning optical delay device will improve the performance of high-speed Doppler OCT techniques.
20-Gbps optical LiFi transport system.
Ying, Cheng-Ling; Lu, Hai-Han; Li, Chung-Yi; Cheng, Chun-Jen; Peng, Peng-Chun; Ho, Wen-Jeng
2015-07-15
A 20-Gbps optical light-based WiFi (LiFi) transport system employing vertical-cavity surface-emitting laser (VCSEL) and external light injection technique with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. Good bit error rate (BER) performance and clear constellation map are achieved in our proposed optical LiFi transport systems. An optical LiFi transport system, delivering 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 20 Gbps, is successfully demonstrated. Such a 20-Gbps optical LiFi transport system provides the advantage of a free-space communication link for high data rates, which can accelerate the visible laser light communication (VLLC) deployment.
Accurate and cost-effective MTF measurement system for lens modules of digital cameras
NASA Astrophysics Data System (ADS)
Chang, Gao-Wei; Liao, Chia-Cheng; Yeh, Zong-Mu
2007-01-01
For many years, the widening use of digital imaging products, e.g., digital cameras, has given rise to much attention in the market of consumer electronics. However, it is important to measure and enhance the imaging performance of the digital ones, compared to that of conventional cameras (with photographic films). For example, the effect of diffraction arising from the miniaturization of the optical modules tends to decrease the image resolution. As a figure of merit, modulation transfer function (MTF) has been broadly employed to estimate the image quality. Therefore, the objective of this paper is to design and implement an accurate and cost-effective MTF measurement system for the digital camera. Once the MTF of the sensor array is provided, that of the optical module can be then obtained. In this approach, a spatial light modulator (SLM) is employed to modulate the spatial frequency of light emitted from the light-source. The modulated light going through the camera under test is consecutively detected by the sensors. The corresponding images formed from the camera are acquired by a computer and then, they are processed by an algorithm for computing the MTF. Finally, through the investigation on the measurement accuracy from various methods, such as from bar-target and spread-function methods, it appears that our approach gives quite satisfactory results.
Lightweight multi-carrier modulation for IoT
NASA Astrophysics Data System (ADS)
Hussein, Ahmed F.; Elgala, Hany
2018-01-01
Visible light communications (VLC) based on intensity-modulation with direct-detection (IM/DD) is a promising technology to offer broadband wireless Internet access. A VLC system based on the well-known multi-carrier orthogonal frequency-division multiplexing (OFDM) modulation has the potential to coexist with radio frequency (RF) technologies such as WiFi. Recently, the VLC technology is considered to enable wireless connectivity of resource limited devices, thus enabling the Internet-of-Things (IoT) vision. This paper presents a novel concept for modulating multiple light sources to realize a lightweight version of OFDM communication chain suitable for resource limited IoT devices. In such proposed system, different sinusoidal streams from an array of light sources are carrying the encoded OFDM time-domain samples, thus enabling the realization of the Fourier transformation in the optical domain. Accordingly, the fast Fourier transform (FFT) operation required for the demodulation at the receiver side is eliminated, which is crucial for resource limited IoT devices. In addition, the proposed concept, (1) offers the same spectral efficiency as the well-known asymmetrically clipped optical OFDM (ACO-OFDM), (2) reduces the bandwidth requirement from individual light sources, (3) reduces the peak-to-average power ratio (PAPR) of the signal formed and transmitted over the optical channel, and (4) supports simultaneous sensing applications using the different sinusoidal streams that are acting as unique beaconing signals. The proposed concept is numerically evaluated and compared with ACO-OFDM. The obtained results reveal a clear reduction in the PAPR with ˜ 5dB at a complementary cumulative distribution function (CCDF) of 10-2 and remarkable enhancement in bit-error performance.
Light-controlled resistive switching characteristics in ZnO/BiFeO3/ZnO thin film
NASA Astrophysics Data System (ADS)
Liang, Dandan; Li, Xiaoping; Wang, Junshuai; Wu, Liangchen; Chen, Peng
2018-07-01
ZnO/BiFeO3/ZnO multilayer was fabricated on silicon (Si) substrate by radio-frequency magnetron sputtering system. The resistive switching characteristics in ZnO/BiFeO3/ZnO devices are observed, and the resistive switching behavior can be modulated by white light.
NASA Astrophysics Data System (ADS)
Bhooplapur, Sharad; Akbulut, Mehmetkan; Quinlan, Franklyn; Delfyett, Peter J.
2010-04-01
A novel scheme for recognition of electronic bit-sequences is demonstrated. Two electronic bit-sequences that are to be compared are each mapped to a unique code from a set of Walsh-Hadamard codes. The codes are then encoded in parallel on the spectral phase of the frequency comb lines from a frequency-stabilized mode-locked semiconductor laser. Phase encoding is achieved by using two independent spatial light modulators based on liquid crystal arrays. Encoded pulses are compared using interferometric pulse detection and differential balanced photodetection. Orthogonal codes eight bits long are compared, and matched codes are successfully distinguished from mismatched codes with very low error rates, of around 10-18. This technique has potential for high-speed, high accuracy recognition of bit-sequences, with applications in keyword searches and internet protocol packet routing.
Suppression of vagal cardiac modulation by blue light in healthy subjects.
Yuda, Emi; Ogasawara, Hiroki; Yoshida, Yutaka; Hayano, Junichiro
2016-10-05
In the contemporary life environments, our body is increasingly exposed to various sources of colored light, which may affect our physiological functions as non-image-forming effects. We examined the impacts of colored lights on the autonomic functions by the analysis of heart rate variability (HRV). A lighting device consisting of four organic light-emitting diode (OLED) modules (55 × 55 mm 2 ) with adjustable red-green-blue color was secured 24 cm above the eyes of subject lying supine in a light-shielded laboratory. Following a 15-min supine rest, electrocardiogram and respiration were measured continuously during 3-min darkness, 6-min colored OLED illumination, and 3-min darkness under paced breathing (15 breath/min). The measurements were repeated at a 45-min interval for red, green, and blue lights with melanopsin-stimulating photon flux density (MSPFD) of 0.00, 0.10, and 0.20 μmol/m 2 /s, respectively, in 12 healthy subjects (23 ± 2 years, two females). Additionally, the effects of blue lights with 0.20, 0.10, and 0.04 μmol/m 2 /s MSPFD were examined in four healthy subjects (25-39 years, two females). HRV was analyzed for low-frequency (LF, 0.04-0.15 Hz) and high-frequency (HF, 0.20-0.30 Hz) power and LF-to-HF ratio (LF/HF). Compared to darkness before lighting, HF power decreased (P < 0.001) and LF/HF increased (P = 0.024) during lighting on average of all color lights, whereas HF power showed a greater decrease with blue light than with red and green lights (P < 0.05 for both). The decrease in HF power lasted even during darkness after lighting (P < 0.001). HF power decreased with blue light with 0.20 μmol/m 2 /s MSPFD (P < 0.001) but not with that with 0.10 or 0.04 μmol/m 2 /s (P = 0.1 and 0.9, respectively). Vagal cardiac modulation is suppressed by OLED blue light in healthy subjects most likely through melanopsin-dependent non-image-forming effect.
NASA Astrophysics Data System (ADS)
Weber, Stefan; Kothe, Gerd; Norris, James R.
1997-04-01
The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave radiation. Here, the laser pulse merely defines the beginning of the microwave-induced coherent time evolution. This second mechanism appears the most consistent with current experimental observations.
Gas sensing using wavelength modulation spectroscopy
NASA Astrophysics Data System (ADS)
Viveiros, D.; Ribeiro, J.; Flores, D.; Ferreira, J.; Frazao, O.; Santos, J. L.; Baptista, J. M.
2014-08-01
An experimental setup has been developed for different gas species sensing based on the Wavelength Modulation Spectroscopy (WMS) principle. The target is the measurement of ammonia, carbon dioxide and methane concentrations. The WMS is a rather sensitive technique for detecting atomic/molecular species presenting the advantage that it can be used in the near-infrared region using optical telecommunications technology. In this technique, the laser wavelength and intensity are modulated applying a sine wave signal through the injection current, which allows the shift of the detection bandwidth to higher frequencies where laser intensity noise is reduced. The wavelength modulated laser light is tuned to the absorption line of the target gas and the absorption information can be retrieved by means of synchronous detection using a lock-in amplifier, where the amplitude of the second harmonic of the laser modulation frequency is proportional to the gas concentration. The amplitude of the second harmonic is normalised by the average laser intensity and detector gain through a LabVIEW® application, where the main advantage of normalising is that the effects of laser output power fluctuations and any variations in laser transmission, or optical-electrical detector gain are eliminated. Two types of sensing heads based on free space light propagation with different optical path length were used, permitting redundancy operation and technology validation.
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.
2009-03-01
In practice, dynamic behavior of fiber-optic ring resonator (FORR) appears as a detrimental factor to influence the transmission response of the FORR. This paper presents dynamic response analysis of the FORR by considering phase modulation of the FORR loop and sinewave modulation of input signal applied to the FORR from a laser diode. The analysis investigates the influences of modulation frequency and amplitude modulation index of laser diode, loop delay time of the FORR, phase angle between FM and AM response of laser diode, and laser diode line-width on dynamic response of the FORR. The analysis shows that the transient response of the FORR strongly depends on the product of modulation frequency and loop delay time, coupling and transmission coefficients of the FORR. The analyses presented here may have applications in optical systems employing an FORR with a laser diode source.
Fundamental concepts of integrated and fiber optic sensors
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.
1995-01-01
This chapter discusses fiber optic and integrated optic sensor concepts. Unfortunately, there is no standard method to categorize these sensor concepts. Here, fiber optic and integrated optic sensor concepts will be categorized by the primary modulation technique. These modulation techniques have been classified as: intensity, phase, wavelength, polarization, and time/frequency modulation. All modulate the output light with respect to changes in the physical or chemical property to be measured. Each primary modulation technique is then divided into fiber optic and integrated optic sections which are treated independently. For each sensor concept, possible sensor applications are discussed. The sensors and references discussed are not exhaustive, but sufficient to give the reader an overview of sensor concepts developed to date. Sensor multiplexing techniques such as wavelength division, time division, and frequency division will not be discussed as they are beyond the scope of this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjichristov, Georgi B., E-mail: georgibh@issp.bas.bg; Marinov, Yordan G.; Petrov, Alexander G.
2016-03-25
We present a study on electrically- and spatially-controllable laser beam diffraction, electrooptic (EO) phase modulation, as well as amplitude-frequency EO modulation by single-layer microscale polymer-dispersed liquid crystal (PDLC) phase gratings (PDLC SLPGs) of interest for device applications. PDLC SLPGs were produced from nematic liquid crystal (LC) E7 in photo-curable NOA65 polymer. The wedge-formed PDLC SLPGs have a continuously variable thickness (2–25 µm). They contain LC droplets of diameters twice as the layer thickness, with a linear-gradient size distribution along the wedge. By applying alternating-current (AC) electric field, the PDLC SLPGs produce efficient: (i) diffraction splitting of transmitted laser beams; (ii)more » spatial redistribution of diffracted light intensity; (iii) optical phase modulation; (iv) amplitude-frequency modulation, all controllable by the driven AC field and the droplet size gradient.« less
Is colour modulation an independent factor in human visual photosensitivity?
Parra, Jaime; Lopes da Silva, Fernando H; Stroink, Hans; Kalitzin, Stiliyan
2007-06-01
Considering that the role of colour in photosensitive epilepsy (PSE) remains unclear, we designed a study to determine the potential of different colours, colour combinations and white light to trigger photoparoxysmal responses (PPRs) under stringent controlled conditions. After assessing their photosensitivity to stroboscopic white light and black and white patterns, we studied 43 consecutive PSE patients (mean age 19 years, 34 women), using a specially designed colour stimulator. Stimuli included: pulse trains between 10 and 30 Hz of white light and of all primary colours, and also isoluminant alternating time-sequences of colours. Illuminance was kept constant at 100 lux. A progressive stepwise increase of the modulation-depth (MD) of the stimuli was used to determine PPRs threshold. Whereas all the 43 patients were found to be sensitive during the stroboscopic and pattern protocol, only 25 showed PPRs (Waltz's score >2) at least in one session when studied with the colour stimulator. Coloured stimuli elicited PPRs in all these patients, whereas white light did so only in 17 patients. Of the primary colours, red elicited more PPRs (54 in 22 patients) and at a lower MD (max Z-score 0.93 at 10 Hz). Of the alternating sequences, the red-blue was the most provocative stimulus, especially below 30 Hz (100% of patients, max Z-score: 1.65 at 15 Hz). Blue-green was the least provocative stimulus, since it elicited only seven PPRs in seven (28%) patients (max Z-score 0.44 at 10 Hz). Sensitivity to alternating colours was not correlated to sensitivity to individual colours. We conclude that colour sensitivity follows two different mechanisms: one, dependent on colour modulation, plays a role at lower frequencies (<30 Hz). Another, dependent on single-colour light intensity modulation correlates to white light sensitivity and is activated at higher frequencies. Our results suggest that the prescription of spectacles with coloured lenses, tailored to the patient, can be an effective preventative measure against visually induced seizures.
NASA Astrophysics Data System (ADS)
Bai, Jiandong; Wang, Jieying; He, Jun; Wang, Junmin
2017-04-01
We demonstrate frequency stabilization of a tunable 318.6 nm ultraviolet (UV) laser system using electronic sideband locking. By indirectly changing the frequency of a broadband electro-optic phase modulator, the laser can be continuously tuned over 4 GHz, while a 637.2 nm laser is directly stabilized to a high-finesse ultra-stable optical cavity. The doubling cavity also remains locked to the 637.2 nm light. We show that the tuning range depends mainly on the gain-flattening region of the modulator and the piezo-tunable range of the seed laser. The frequency-stabilized tunable UV laser system is able to compensate for the offset between reference and target frequencies, and has potential applications in precision spectroscopy of cold atoms.
Frequency division multiplexed multi-color fluorescence microscope system
NASA Astrophysics Data System (ADS)
Le, Vu Nam; Yang, Huai Dong; Zhang, Si Chun; Zhang, Xin Rong; Jin, Guo Fan
2017-10-01
Grayscale camera can only obtain gray scale image of object, while the multicolor imaging technology can obtain the color information to distinguish the sample structures which have the same shapes but in different colors. In fluorescence microscopy, the current method of multicolor imaging are flawed. Problem of these method is affecting the efficiency of fluorescence imaging, reducing the sampling rate of CCD etc. In this paper, we propose a novel multiple color fluorescence microscopy imaging method which based on the Frequency division multiplexing (FDM) technology, by modulating the excitation lights and demodulating the fluorescence signal in frequency domain. This method uses periodic functions with different frequency to modulate amplitude of each excitation lights, and then combine these beams for illumination in a fluorescence microscopy imaging system. The imaging system will detect a multicolor fluorescence image by a grayscale camera. During the data processing, the signal obtained by each pixel of the camera will be processed with discrete Fourier transform, decomposed by color in the frequency domain and then used inverse discrete Fourier transform. After using this process for signals from all of the pixels, monochrome images of each color on the image plane can be obtained and multicolor image is also acquired. Based on this method, this paper has constructed and set up a two-color fluorescence microscope system with two excitation wavelengths of 488 nm and 639 nm. By using this system to observe the linearly movement of two kinds of fluorescent microspheres, after the data processing, we obtain a two-color fluorescence dynamic video which is consistent with the original image. This experiment shows that the dynamic phenomenon of multicolor fluorescent biological samples can be generally observed by this method. Compared with the current methods, this method can obtain the image signals of each color at the same time, and the color video's frame rate is consistent with the frame rate of the camera. The optical system is simpler and does not need extra color separation element. In addition, this method has a good filtering effect on the ambient light or other light signals which are not affected by the modulation process.
Optical Distance Measurement Device And Method Thereof
Bowers, Mark W.
2004-06-15
A system and method of efficiently obtaining distance measurements of a target by scanning the target. An optical beam is provided by a light source and modulated by a frequency source. The modulated optical beam is transmitted to an acousto-optical deflector capable of changing the angle of the optical beam in a predetermined manner to produce an output for scanning the target. In operation, reflected or diffused light from the target may be received by a detector and transmitted to a controller configured to calculate the distance to the target as well as the measurement uncertainty in calculating the distance to the target.
Two modulator generalized ellipsometer for complete mueller matrix measurement
Jellison, Jr., Gerald E.; Modine, Frank A.
1999-01-01
A two-modulator generalized ellipsometer (2-MGE) comprising two polarizer-photoelastic modulator (PEM) pairs, an optical light source, an optical detection system, and associated data processing and control electronics, where the PEMs are free-running. The input light passes through the first polarizer-PEM pair, reflects off the sample surface or passes through the sample, passes through the second PEM-polarizer pair, and is detected. Each PEM is free running and operates at a different resonant frequency, e.g., 50 and 60 kHz. The resulting time-dependent waveform of the light intensity is a complicated function of time, and depends upon the exact operating frequency and phase of each PEM, the sample, and the azimuthal angles of the polarizer-PEM pairs, but can be resolved into a dc component and eight periodic components. In one embodiment, the waveform is analyzed using a new spectral analysis technique that is similar to Fourier analysis to determine eight sample Mueller matrix elements (normalized to the m.sub.00 Mueller matrix element). The other seven normalized elements of the general 4.times.4 Mueller matrix can be determined by changing the azimuthal angles of the PEM-polarizer pairs with respect to the plane of incidence. Since this instrument can measure all elements of the sample Mueller matrix, it is much more powerful than standard ellipsometers.
Buican, T.N.
1993-05-04
Apparatus and method is described for measuring intensities at a plurality of wavelengths and lifetimes. A source of multiple-wavelength electromagnetic radiation is passed through a first interferometer modulated at a first frequency, the output thereof being directed into a sample to be investigated. The light emitted from the sample as a result of the interaction thereof with the excitation radiation is directed into a second interferometer modulated at a second frequency, and the output detected and analyzed. In this manner excitation, emission, and lifetime information may be obtained for a multiplicity of fluorochromes in the sample.
Synchronous optical pumping of quantum revival beats for atomic magnetometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seltzer, S. J.; Meares, P. J.; Romalis, M. V.
2007-05-15
We observe quantum beats with periodic revivals due to nonlinear spacing of Zeeman levels in the ground state of potassium atoms, and demonstrate their synchronous optical pumping by double modulation of the pumping light at the Larmor frequency and the revival frequency. We show that synchronous pumping increases the degree of spin polarization by a factor of 4. As a practical example, we explore the application of this double-modulation technique to atomic magnetometers operating in the geomagnetic field range, and find that it can increase the sensitivity and reduce magnetic-field-orientation-dependent measurement errors endemic to alkali-metal magnetometers.
Chandran, R Sriram; Roy, Debasish; Kanhirodan, Rajan; Vasu, Ram Mohan; Devi, C Usha
2011-11-07
We demonstrate a method to recover the Young's modulus (E) of a tissue-mimicking phantom from measurements of ultrasound modulated optical tomography (UMOT). The object is insonified by a dual-beam, confocal ultrasound transducer (US) oscillating at frequencies f₀ and f₀ + Δf and the variation of modulation depth (M) in the autocorrelation of light traversed through the focal region of the US transducer against Δf is measured. From the dominant peaks observed in the above variation, the natural frequencies of the insonified region associated with the vibration along the US transducer axis are deduced. A consequence of the above resonance is that the speckle fluctuation at the resonance frequency has a higher signal-to-noise to ratio (SNR). From these natural frequencies and the associated eigenspectrum of the oscillating object, Young's modulus (E) of the material in the focal region is recovered. The working of this method is confirmed by recovering E in the case of three tissue-mimicking phantoms of different elastic modulus values.
Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.
Wan, W J; Li, H; Zhou, T; Cao, J C
2017-03-08
Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.
Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation
Wan, W. J.; Li, H.; Zhou, T.; Cao, J. C.
2017-01-01
Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification. PMID:28272492
Graves, Steven W; Habbersett, Robert C
2013-10-22
A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.
Graves, Steven W.; Habbersett, Robert C.
2014-07-01
A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.
System and method for measuring particles in a sample stream of a flow cytometer or the like
Graves, Steven W.; Habberset, Robert C.
2010-11-16
A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.
Graves, Steven W.; Habbersett, Robert C.
2016-11-15
A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.
Polydyne displacement interferometer using frequency-modulated light
NASA Astrophysics Data System (ADS)
Arablu, Masoud; Smith, Stuart T.
2018-05-01
A radio-frequency Frequency-Modulated (FM) signal is used to diffract a He-Ne laser beam through an Acousto-Optic Modulator (AOM). Due to the modulation of the FM signal, the measured spectra of the diffracted beams comprise a series of phase-synchronized harmonics that have exact integer frequency separation. The first diffraction side-beam emerging from the AOM is selected by a slit to be used in a polydyne displacement interferometer in a Michelson interferometer topology. The displacement measurement is derived from the phase measurement of selected modulation harmonic pairs. Individual harmonic frequency amplitudes are measured using discrete Fourier transform applied to the signal from a single photodetector. Phase signals are derived from the changes in the amplitudes of different harmonic pairs (typically odd-even pairs) with the phase being extracted using a standard quadrature method. In this study, two different modulation frequencies of 5 and 10 kHz are used at different modulation depths. The measured displacements by different harmonic pairs are compared with a commercial heterodyne interferometer being used as a reference for these studies. Measurements obtained from five different harmonic pairs when the moving mirror of the interferometer is scanned over ranges up to 10 μm all show differences of less than 50 nm from the reference interferometer measurements. A drift test was also used to evaluate the differences between the polydyne interferometer and reference measurements that had different optical path lengths of approximately 25 mm and 50 mm, respectively. The drift test results indicate that about half of the differences can be attributed to temperature, pressure, and humidity variations. Other influences include Abbe and thermal expansion effects. Rough magnitude estimates using simple models for these two effects can account for remaining observed deviations.
Electro-optic modulation of a laser at microwave frequencies for interferometric purposes
NASA Astrophysics Data System (ADS)
Specht, Paul E.; Jilek, Brook A.
2017-02-01
A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.
Electro-optic modulation of a laser at microwave frequencies for interferometric purposes.
Specht, Paul E; Jilek, Brook A
2017-02-01
A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.
NASA Astrophysics Data System (ADS)
Suemasa, Aru; Shimo-oku, Ayumi; Nakagawa, Ken'ichi; Musha, Mitsuru
2017-12-01
In Japan, not only the ground-based gravitational wave (GW) detector mission KAGRA but also the space GW detector mission DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) and its milestone mission B-DECIGO have been promoted. The designed strain sensitivity of DECIGO and B-DECIGO are δL/ L < 10-23. Since the GW detector requires high power and highly-stable light source, we have developed the light source with high frequency and intensity stability for DECIGO and B-DECIGO. The frequency of the Yb-doped fiber DFB lasers are stabilized to the iodine saturated absorption at 515 nm, and the intensity of the laser at 1 Hz (observation band) is stabilized by controlling the pump source of an Yb-doped fiber amplifier. The intensity of the laser at 200 kHz (modulation band) is also stabilized using an acousto-optic modulator to improve the frequency stability of the laser. In the consequences, we obtain the frequency stability of δf = 0.4 Hz/√Hz (in-loop) at 1 Hz, and the intensity stability of δI/ I = 1.2 × 10-7/√Hz (out-of-loop) and δI/I = 1.5 × 10-7/√Hz (in-loop) at 1 Hz and 200 kHz, respectively.
Toward transparent and self-activated graphene harmonic transponder sensors
NASA Astrophysics Data System (ADS)
Huang, Haiyu Harry; Sakhdari, Maryam; Hajizadegan, Mehdi; Shahini, Ali; Akinwande, Deji; Chen, Pai-Yen
2016-04-01
We propose the concept and design of a transparent, flexible, and self-powered wireless sensor comprising a graphene-based sensor/frequency-modulator circuitry and a graphene antenna. In this all-graphene device, the multilayered-graphene antenna receives the fundamental tone at C band and retransmits the frequency-modulated sensed signal (harmonic tone) at X band. The frequency orthogonality between the received/re-transmitted signals may enable high-performance sensing in severe interference/clutter background. Here, a fully passive, quad-ring frequency multiplier is proposed using graphene field-effect transistors, of which the unique ambipolar charge transports render a frequency doubling effect with conversion gain being chemically sensitive to exposed gas/molecular/chemical/infectious agents. This transparent, light-weight, and self-powered system may potentially benefit a number of wireless sensing and diagnosis applications, particularly for smart contact lenses/glasses and microscope slides that require high optical transparency.
Coane, Jennifer H; Balota, David A
2010-12-01
Repetition priming, the facilitation observed when a target is preceded by an identity prime, is a robust phenomenon that occurs across a variety of conditions. Oliphant (1983), however, failed to observe repetition priming for targets embedded in the instructions to an experiment in a subsequent lexical decision task. In the present experiments, we examined the roles of priming context (list or instructions), target lexicality, and target frequency in both lexical decision and episodic recognition performance. Initial encoding context did not modulate priming in lexical decision or recognition memory for low-frequency targets or nonwords, whereas context strongly modulated episodic recognition for high-frequency targets. The results indicate that priming across contexts is sensitive to the distinctiveness of the trace and the reliance on episodic retrieval mechanisms. These results also shed light on the influence of event boundaries, such that priming occurs across different events for relatively distinct (low-frequency) items.
Coherent THz light source based on photo-mixing with a UTC-PD and ASE-free tunable diode laser
NASA Astrophysics Data System (ADS)
Fukuoka, D.; Muro, K.; Noda, K.
2016-02-01
A terahertz (THz) photo-mixing with a THz wave photo-mixer module using a uni-traveling-carrier photodiode (UTCPD) and home-built 1 μm-band ASE-free tunable external-cavity diode lasers (ECDLs) provides a narrow-band (40 MHz) wide range (up to 4.5 THz) coherent tunable THz light source system. Obtained THz-waves reach 100 nW at 0.9 THz and 100 pW at 4.0 THz. The difference frequency between mixing lights can be tuned over 20 THz, and the frequency tuning has a resettability and an accuracy corresponding to the estimation error of FSR 270 MHz hollow-core etalon as a frequency calibrator, around 1 MHz/THz. Some of dips in the frequency dependence of THz-waves caused by water vaper absorption reach a noise floor of this system, so the dynamic range of this system is demonstrated at least 40 dB in power ratio.
NASA Astrophysics Data System (ADS)
Gómez Colín, R.; García Juárez, A.; Zaldívar Huerta, I. E.; Marquina, A. Vera; García Delgado, L. A.; Leal Cruz, A. L.; Gómez Fuentes, R.
2016-03-01
In this paper we propose a photonic architecture as an alternative tool to distribute point to multipoint analog and digital information over a hybrid wireless visible optical communication system. The experimental set-up is composed of a red laser pointer, an acousto-optic modulator, a sinusoidal grating and a photo-detector array. By using a simple and variable interferometric system, diffraction gratings with different spatial frequencies are generated and recorded on a photoemulsion which is composed of vanilla with dichromate gelatin. Analog video and digital information are first transmitted and recovered over a wireless communication system using a microwave carrier at 4.52 GHz which is generated by distributed feedback lasers operating in the low laser threshold current region. Separately, the recovered video information and digital data are combined with a radio frequency signal of 80 MHz, obtaining a subcarrier of information that is imposed on the optical carrier of the pointer laser using an acousto-optic modulator which is operated with an angle of incident light that satisfies the Bragg condition. The modulated optical carrier is sent to a sinusoidal grating, the diffraction pattern is photo-detected using an array of PIN photo-detectors. The use of sinusoidal gratings with acousto-optic modulators allows that number of channels to be increased when both components are placed in cascade.
Enhanced photoelastic modulation in silica phononic crystal cavities
NASA Astrophysics Data System (ADS)
Kim, Ingi; Iwamoto, Satoshi; Arakawa, Yasuhiko
2018-04-01
The enhanced photoelastic modulation in quasi-one-dimensional (1D) phononic crystal (PnC) cavities made of fused silica is experimentally demonstrated. A confined acoustic wave in the cavity can induce a large birefringence through the photoelastic effect and enable larger optical modulation amplitude at the same acoustic power. We observe a phase retardation of ∼26 mrad of light passing through the cavity when the exciting acoustic frequency is tuned to the cavity mode resonance of ∼500 kHz at 2.5 V. In the present experiment, a 16-fold enhancement of retardation in the PnC cavity is demonstrated compared with that in a bar-shaped silica structure. Spatially resolved optical retardation measurement reveals that the large retardation is realized only around the cavity reflecting the localized nature of the acoustic cavity mode. The enhanced interactions between acoustic waves and light can be utilized to improve the performance of acousto-optic devices such as photoelastic modulators.
Enhancement of collective atomic recoil lasing due to pump phase modulation
NASA Astrophysics Data System (ADS)
Robb, G. R. M.; Burgess, R. T. L.; Firth, W. J.
2008-10-01
We investigate the effect of a phase-modulated pump beam on collective backscattering [also termed collective atomic recoil lasing (CARL)] by a cold, collisionless atomic gas. We show using a numerical analysis that different regimes can be identified in which the atomic dynamics evolves in a qualitatively different manner during the light-atom interaction, depending on the magnitude of the pump modulation frequency. Our results also demonstrate that phase-modulating the pump field can substantially enhance the backscattered field intensity relative to the case of a monochromatic pump which has been used in CARL experiments to date.
Effect of noise on modulation amplitude and phase in frequency-domain diffusive imaging
Kupinski, Matthew A.
2012-01-01
Abstract. We theoretically investigate the effect of noise on frequency-domain heterodyne and/or homodyne measurements of intensity-modulated beams propagating through diffusive media, such as a photon density wave. We assumed that the attenuated amplitude and delayed phase are estimated by taking the Fourier transform of the noisy, modulated output data. We show that the estimated amplitude and phase are biased when the number of output photons is small. We also show that the use of image intensifiers for photon amplification in heterodyne or homodyne measurements increases the amount of biases. Especially, it turns out that the biased estimation is independent of AC-dependent noise in sinusoidal heterodyne or homodyne outputs. Finally, the developed theory indicates that the previously known variance model of modulation amplitude and phase is not valid in low light situations. Monte-Carlo simulations with varied numbers of input photons verify our theoretical trends of the bias. PMID:22352660
Low-Light-Shift Cesium Fountain without Mechanical Shutters
NASA Technical Reports Server (NTRS)
Enzer, Daphna
2008-01-01
A new technique for reducing errors in a laser-cooled cesium fountain frequency standard provides for strong suppression of the light shift without need for mechanical shutters. Because mechanical shutters are typically susceptible to failure after operating times of the order of months, the elimination of mechanical shutters could contribute significantly to the reliability of frequency standards that are required to function continuously for longer time intervals. With respect to the operation of an atomic-fountain frequency standard, the term "light shift" denotes an undesired relative shift in the two energy levels of the atoms (in this case, cesium atoms) in the atomic fountain during interrogation by microwaves. The shift in energy levels translates to a frequency shift that reduces the precision and possibly accuracy of the frequency standard. For reasons too complex to describe within the space available for this article, the light shift is caused by any laser light that reaches the atoms during the microwave- interrogation period, but is strongest for near-resonance light. In the absence of any mitigating design feature, the light shift, expressed as a fraction of the standard fs frequency, could be as large as approx. 2 x 10(exp -11), the largest error in the standard. In a typical prior design, to suppress light shift, the intensity of laser light is reduced during the interrogation period by using a single-pass acoustooptic modulator to deflect the majority of light away from the main optical path. Mechanical shutters are used to block the remaining undeflected light to ensure complete attenuation. Without shutters, this remaining undeflected light could cause a light shift of as much as .10.15, which is unacceptably large in some applications. The new technique implemented here involves additionally shifting the laser wavelength off resonance by a relatively large amount (typically of the order of nanometers) during microwave interrogation. In this design, when microwave interrogation is not underway, the atoms are illuminated by a slave laser locked to the lasing frequency of a lower power master laser.
NASA Astrophysics Data System (ADS)
He, Jing; Shi, Jin; Deng, Rui; Chen, Lin
2017-08-01
Recently, visible light communication (VLC) based on light-emitting diodes (LEDs) is considered as a candidate technology for fifth-generation (5G) communications, VLC is free of electromagnetic interference and it can simplify the integration of VLC into heterogeneous wireless networks. Due to the data rates of VLC system limited by the low pumping efficiency, small output power and narrow modulation bandwidth, visible laser light communication (VLLC) system with laser diode (LD) has paid more attention. In addition, orthogonal frequency division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) is currently attracting attention in optical communications. Due to the non-requirement of cyclic prefix (CP) and time-frequency domain well-localized pulse shapes, it can achieve high spectral efficiency. Moreover, OFDM/OQAM has lower out-of-band power leakage so that it increases the system robustness against inter-carrier interference (ICI) and frequency offset. In this paper, a Discrete Fourier Transform (DFT)-based channel estimation scheme combined with the interference approximation method (IAM) is proposed and experimentally demonstrated for VLLC OFDM/OQAM system. The performance of VLLC OFDM/OQAM system with and without DFT-based channel estimation is investigated. Moreover, the proposed DFT-based channel estimation scheme and the intra-symbol frequency-domain averaging (ISFA)-based method are also compared for the VLLC OFDM/OQAM system. The experimental results show that, the performance of EVM using the DFT-based channel estimation scheme is improved about 3dB compared with the conventional IAM method. In addition, the DFT-based channel estimation scheme can resist the channel noise effectively than that of the ISFA-based method.
Laser dynamics: The system dynamics and network theory of optoelectronic integrated circuit design
NASA Astrophysics Data System (ADS)
Tarng, Tom Shinming-T. K.
Laser dynamics is the system dynamics, communication and network theory for the design of opto-electronic integrated circuit (OEIC). Combining the optical network theory and optical communication theory, the system analysis and design for the OEIC fundamental building blocks is considered. These building blocks include the direct current modulation, inject light modulation, wideband filter, super-gain optical amplifier, E/O and O/O optical bistability and current-controlled optical oscillator. Based on the rate equations, the phase diagram and phase portrait analysis is applied to the theoretical studies and numerical simulation. The OEIC system design methodologies are developed for the OEIC design. Stimulating-field-dependent rate equations are used to model the line-width narrowing/broadening mechanism for the CW mode and frequency chirp of semiconductor lasers. The momentary spectra are carrier-density-dependent. Furthermore, the phase portrait analysis and the nonlinear refractive index is used to simulate the single mode frequency chirp. The average spectra of chaos, period doubling, period pulsing, multi-loops and analog modulation are generated and analyzed. The bifurcation-chirp design chart with modulation depth and modulation frequency as parameters is provided for design purpose.
Rogers, III, C. E.; Gould, P. L.
2016-02-01
Here, we describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
Rogers, C E; Gould, P L
2016-02-08
We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
Transmitted spectral modulation of double-ring resonator using liquid crystals in terahertz range
NASA Astrophysics Data System (ADS)
Sun, Huijuan; Zhou, Qingli; Wang, Xiumin; Li, Chenyu; Wu, Ani; Zhang, Cunlin
2013-12-01
Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recent research on these artificial materials has been pushed forward to the terahertz region because of potential applications in biological fingerprinting, security imaging, remote sensing, and high frequency magnetic and electric resonant devices. Active control of their properties could further facilitate and open up new applications in terms of modulation and switching. Liquid crystals, which have been the subject of research for more than a century, have the unique properties for the development of many other optical components such as light valves, tunable filters and tunable lenses. In this paper, we investigated the transmitted spectral modulation in terahertz range by using liquid crystals (5CB and TEB300) covering on the fabricated double-ring resonators to realize the shift of the resonance frequency. Our obtained results indicate the low frequency resonance shows the obvious blue-shift, while the location of high frequency resonance is nearly unchanged. We believe this phenomenon is related to not only the refractive index of the covering liquid crystals but also the resonant mechanism of both resonances.
Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui
2014-09-20
This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.
An extraordinary tabletop speed of light apparatus
NASA Astrophysics Data System (ADS)
Pegna, Guido
2017-09-01
A compact, low-cost, pre-aligned apparatus of the modulation type is described. The apparatus allows accurate determination of the speed of light in free propagation with an accuracy on the order of one part in 104. Due to the 433.92 MHz radio frequency (rf) modulation of its laser diode, determination of the speed of light is possible within a sub-meter measuring base and in small volumes (some cm3) of transparent solids or liquids. No oscilloscope is necessary, while the required function generators, power supplies, and optical components are incorporated into the design of the apparatus and its receiver can slide along the optical bench while maintaining alignment with the laser beam. Measurement of the velocity factor of coaxial cables is also easily performed. The apparatus detects the phase difference between the rf modulation of the laser diode by further modulating the rf signal with an audio frequency signal; the phase difference between these signals is then observed as the loudness of the audio signal. In this way, the positions at which the minima of the audio signal are found determine where the rf signals are completely out of phase. This phase detection method yields a much increased sensitivity with respect to the display of coincidence of two signals of questionable arrival time and somewhat distorted shape on an oscilloscope. The displaying technique is also particularly suitable for large audiences as well as in unattended exhibits in museums and science centers. In addition, the apparatus can be set up in less than one minute.
Desantana, Josimari M; Santana-Filho, Valter J; Sluka, Kathleen A
2008-04-01
To investigate whether repeated administration of modulating frequency transcutaneous electric nerve stimulation (TENS) prevents development of analgesic tolerance. Knee joint inflammation (3% carrageenan and kaolin) was induced in rats. Either mixed or alternating frequency was administered daily (20min) for 2 weeks to the inflamed knee under light halothane anesthesia (1%-2%). Laboratory. Adult male Sprague-Dawley rats (N=36). Mixed- (4Hz and 100Hz) or alternating- (4Hz on 1 day; 100Hz on the next day) frequency TENS at sensory intensity and 100micros pulse duration. Paw and joint withdrawal thresholds to mechanical stimuli were assessed before induction of inflammation, and before and after daily application of TENS. The reduced paw and joint withdrawal thresholds that occur 24 hours after the induction of inflammation were significantly reversed by the first administration of TENS when compared with sham treatment or to the condition before TENS treatment, which was observed through day 9. By the tenth day, repeated daily administration of either mixed- or alternating-frequency TENS did not reverse the decreased paw and joint withdrawal thresholds. These data suggest that repeated administration of modulating frequency TENS leads to a development of opioid tolerance. However, this tolerance effect is delayed by approximately 5 days compared with administration of low- or high-frequency TENS independently. Clinically, we can infer that a treatment schedule of repeated daily TENS administration will result in a tolerance effect. Moreover, modulating low and high frequency TENS seems to produce a better analgesic effect and tolerance is slower to develop.
NASA Astrophysics Data System (ADS)
Turko, Nir A.; Isbach, Michael; Ketelhut, Steffi; Greve, Burkhard; Schnekenburger, Jürgen; Shaked, Natan T.; Kemper, Björn
2017-02-01
We explored photothermal quantitative phase imaging (PTQPI) of living cells with functionalized nanoparticles (NPs) utilizing a cost-efficient setup based on a cell culture microscope. The excitation light was modulated by a mechanical chopper wheel with low frequencies. Quantitative phase imaging (QPI) was performed with Michelson interferometer-based off-axis digital holographic microscopy and a standard industrial camera. We present results from PTQPI observations on breast cancer cells that were incubated with functionalized gold NPs binding to the epidermal growth factor receptor. Moreover, QPI was used to quantify the impact of the NPs and the low frequency light excitation on cell morphology and viability.
Tunable reflecting terahertz filter based on chirped metamaterial structure
Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei
2016-01-01
Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping. PMID:27941833
Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications
NASA Astrophysics Data System (ADS)
Qian, Xuewen; Deng, Honggui; He, Hailang
2017-10-01
Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.
Advanced light source master oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, C.C.; Taylor, B.; Baptiste, K.
1989-03-01
The Master Oscillator of the Advanced Light Source operates at a frequency of 499.654 MHz which is the 328th harmonic of the storage ring. The oscillator is capable of providing up to a maximum of {plus minus} 500 KHz frequency deviation for various experimental purposes. Provisions for external signal injection as well as using an external signal source have been designed into the unit. A power distribution system has also been included to provide signals for various parts of the ALS machine and user requirements. The Master Oscillator is made up with modules housed in a Euro chassis. 4 refs.,more » 7 figs.« less
Fischer, Andreas; Kupsch, Christian; Gürtler, Johannes; Czarske, Jürgen
2015-09-21
Non-intrusive fast 3d measurements of volumetric velocity fields are necessary for understanding complex flows. Using high-speed cameras and spectroscopic measurement principles, where the Doppler frequency of scattered light is evaluated within the illuminated plane, each pixel allows one measurement and, thus, planar measurements with high data rates are possible. While scanning is one standard technique to add the third dimension, the volumetric data is not acquired simultaneously. In order to overcome this drawback, a high-speed light field camera is proposed for obtaining volumetric data with each single frame. The high-speed light field camera approach is applied to a Doppler global velocimeter with sinusoidal laser frequency modulation. As a result, a frequency multiplexing technique is required in addition to the plenoptic refocusing for eliminating the crosstalk between the measurement planes. However, the plenoptic refocusing is still necessary in order to achieve a large refocusing range for a high numerical aperture that minimizes the measurement uncertainty. Finally, two spatially separated measurement planes with 25×25 pixels each are simultaneously acquired with a measurement rate of 0.5 kHz with a single high-speed camera.
Plasma optical modulators for intense lasers
Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie
2016-01-01
Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369
Modulated CMOS camera for fluorescence lifetime microscopy.
Chen, Hongtao; Holst, Gerhard; Gratton, Enrico
2015-12-01
Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. © 2015 Wiley Periodicals, Inc.
A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems
NASA Astrophysics Data System (ADS)
Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.
2017-08-01
This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.
Laboratory tools and e-learning elements in training of acousto-optics
NASA Astrophysics Data System (ADS)
Barócsi, Attila; Lenk, Sándor; Ujhelyi, Ferenc; Majoros, Tamás.; Maák, Paál.
2015-10-01
Due to the acousto-optic (AO) effect, the refractive index of an optical interaction medium is perturbed by an acoustic wave induced in the medium that builds up a phase grating that will diffract the incident light beam if the condition of constructive interference is satisfied. All parameters, such as magnitude, period or phase of the grating can be controlled that allows the construction of useful devices (modulators, switches, one or multi-dimensional deflectors, spectrum analyzers, tunable filters, frequency shifters, etc.) The research and training of acousto-optics have a long-term tradition at our department. In this presentation, we introduce the related laboratory exercises fitted into an e-learning frame. The BSc level exercise utilizes a laser source and an AO cell to demonstrate the effect and principal AO functions explaining signal processing terms such as amplitude or frequency modulation, modulation depth and Fourier transformation ending up in building a free space sound transmitting and demodulation system. The setup for MSc level utilizes an AO filter with mono- and polychromatic light sources to learn about spectral analysis and synthesis. Smart phones can be used to generate signal inputs or outputs for both setups as well as to help students' preparation and reporting.
Maximum likelihood sequence estimation for optical complex direct modulation.
Che, Di; Yuan, Feng; Shieh, William
2017-04-17
Semiconductor lasers are versatile optical transmitters in nature. Through the direct modulation (DM), the intensity modulation is realized by the linear mapping between the injection current and the light power, while various angle modulations are enabled by the frequency chirp. Limited by the direct detection, DM lasers used to be exploited only as 1-D (intensity or angle) transmitters by suppressing or simply ignoring the other modulation. Nevertheless, through the digital coherent detection, simultaneous intensity and angle modulations (namely, 2-D complex DM, CDM) can be realized by a single laser diode. The crucial technique of CDM is the joint demodulation of intensity and differential phase with the maximum likelihood sequence estimation (MLSE), supported by a closed-form discrete signal approximation of frequency chirp to characterize the MLSE transition probability. This paper proposes a statistical method for the transition probability to significantly enhance the accuracy of the chirp model. Using the statistical estimation, we demonstrate the first single-channel 100-Gb/s PAM-4 transmission over 1600-km fiber with only 10G-class DM lasers.
Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS.
Wang, Yuanquan; Huang, Xingxing; Zhang, Junwen; Wang, Yiguang; Chi, Nan
2014-06-30
In this paper, a novel hybrid time-frequency adaptive equalization algorithm based on a combination of frequency domain equalization (FDE) and decision-directed least mean square (DD-LMS) is proposed and experimentally demonstrated in a Nyquist single carrier visible light communication (VLC) system. Adopting this scheme, as well with 512-ary quadrature amplitude modulation (512-QAM) and wavelength multiplexing division (WDM), an aggregate data rate of 4.22-Gb/s is successfully achieved employing a single commercially available red-green-blue (RGB) light emitting diode (LED) with low bandwidth. The measured Q-factors for 3 wavelength channels are all above the Q-limit. To the best of our knowledge, this is the highest data rate ever achieved by employing a commercially available RGB-LED.
Signal coding in cockroach photoreceptors is tuned to dim environments.
Heimonen, K; Immonen, E-V; Frolov, R V; Salmela, I; Juusola, M; Vähäsöyrinki, M; Weckström, M
2012-11-01
In dim light, scarcity of photons typically leads to poor vision. Nonetheless, many animals show visually guided behavior with dim environments. We investigated the signaling properties of photoreceptors of the dark active cockroach (Periplaneta americana) using intracellular and whole-cell patch-clamp recordings to determine whether they show selective functional adaptations to dark. Expectedly, dark-adapted photoreceptors generated large and slow responses to single photons. However, when light adapted, responses of both phototransduction and the nontransductive membrane to white noise (WN)-modulated stimuli remained slow with corner frequencies ~20 Hz. This promotes temporal integration of light inputs and maintains high sensitivity of vision. Adaptive changes in dynamics were limited to dim conditions. Characteristically, both step and frequency responses stayed effectively unchanged for intensities >1,000 photons/s/photoreceptor. A signal-to-noise ratio (SNR) of the light responses was transiently higher at frequencies <5 Hz for ~5 s after light onset but deteriorated to a lower value upon longer stimulation. Naturalistic light stimuli, as opposed to WN, evoked markedly larger responses with higher SNRs at low frequencies. This allowed realistic estimates of information transfer rates, which saturated at ~100 bits/s at low-light intensities. We found, therefore, selective adaptations beneficial for vision in dim environments in cockroach photoreceptors: large amplitude of single-photon responses, constant high level of temporal integration of light inputs, saturation of response properties at low intensities, and only transiently efficient encoding of light contrasts. The results also suggest that the sources of the large functional variability among different photoreceptors reside mostly in phototransduction processes and not in the properties of the nontransductive membrane.
Active mode locking of lasers by piezoelectrically induced diffraction modulation
NASA Astrophysics Data System (ADS)
Krausz, F.; Turi, L.; Kuti, Cs.; Schmidt, A. J.
1990-04-01
A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 μm and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate of 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.
Input-dependent modulation of MEG gamma oscillations reflects gain control in the visual cortex.
Orekhova, Elena V; Sysoeva, Olga V; Schneiderman, Justin F; Lundström, Sebastian; Galuta, Ilia A; Goiaeva, Dzerasa E; Prokofyev, Andrey O; Riaz, Bushra; Keeler, Courtney; Hadjikhani, Nouchine; Gillberg, Christopher; Stroganova, Tatiana A
2018-05-31
Gamma-band oscillations arise from the interplay between neural excitation (E) and inhibition (I) and may provide a non-invasive window into the state of cortical circuitry. A bell-shaped modulation of gamma response power by increasing the intensity of sensory input was observed in animals and is thought to reflect neural gain control. Here we sought to find a similar input-output relationship in humans with MEG via modulating the intensity of a visual stimulation by changing the velocity/temporal-frequency of visual motion. In the first experiment, adult participants observed static and moving gratings. The frequency of the MEG gamma response monotonically increased with motion velocity whereas power followed a bell-shape. In the second experiment, on a large group of children and adults, we found that despite drastic developmental changes in frequency and power of gamma oscillations, the relative suppression at high motion velocities was scaled to the same range of values across the life-span. In light of animal and modeling studies, the modulation of gamma power and frequency at high stimulation intensities characterizes the capacity of inhibitory neurons to counterbalance increasing excitation in visual networks. Gamma suppression may thus provide a non-invasive measure of inhibitory-based gain control in the healthy and diseased brain.
Contrast computation methods for interferometric measurement of sensor modulation transfer function
NASA Astrophysics Data System (ADS)
Battula, Tharun; Georgiev, Todor; Gille, Jennifer; Goma, Sergio
2018-01-01
Accurate measurement of image-sensor frequency response over a wide range of spatial frequencies is very important for analyzing pixel array characteristics, such as modulation transfer function (MTF), crosstalk, and active pixel shape. Such analysis is especially significant in computational photography for the purposes of deconvolution, multi-image superresolution, and improved light-field capture. We use a lensless interferometric setup that produces high-quality fringes for measuring MTF over a wide range of frequencies (here, 37 to 434 line pairs per mm). We discuss the theoretical framework, involving Michelson and Fourier contrast measurement of the MTF, addressing phase alignment problems using a moiré pattern. We solidify the definition of Fourier contrast mathematically and compare it to Michelson contrast. Our interferometric measurement method shows high detail in the MTF, especially at high frequencies (above Nyquist frequency). We are able to estimate active pixel size and pixel pitch from measurements. We compare both simulation and experimental MTF results to a lens-free slanted-edge implementation using commercial software.
NASA Technical Reports Server (NTRS)
Harris, S. E.
1974-01-01
Projects aimed at the generation of tunable visible, infrared, and ultraviolet light, and on the control of this light by means of novel mode-locking and modulation techniques are discussed. During this period the following projects have been active: (1) studies of transient mode-locking of the Nd:YAG laser and the application of short optical pulses; (2) experimental investigations of the Na-Xe excimer laser system; (3) further development of techniques for vacuum ultraviolet holography; and (4) theoretical and initial experimental studies of a new device which should prove very useful for both infrared up-conversion and generation of tunable UV radiation - a two-photon resonantly pumped frequency converter.
NASA Astrophysics Data System (ADS)
Almpanis, Evangelos
2018-05-01
The coupling between spin waves and optical Mie resonances inside a dielectric magnetic spherical particle, which acts simultaneously as a photonic and magnonic (photomagnonic) cavity, is investigated by means of numerical calculations accurate to arbitrary order in the magnetooptical coupling coefficient. Isolated dielectric magnetic particles with diameters of just a few microns support high-Q optical Mie resonances at near-infrared frequencies and localized spin waves, providing an ultrasmall and compact platform in the emerging field of cavity optomagnonics. Our results predict the occurrence of strong interaction effects, beyond the linear-response approximation, which lead to enhanced modulation of near-infrared light by spin waves through multimagnon absorption and emission mechanisms.
Wang, Yajun; Laughner, Jacob I.; Efimov, Igor R.; Zhang, Song
2013-01-01
This paper presents a two-frequency binary phase-shifting technique to measure three-dimensional (3D) absolute shape of beating rabbit hearts. Due to the low contrast of the cardiac surface, the projector and the camera must remain focused, which poses challenges for any existing binary method where the measurement accuracy is low. To conquer this challenge, this paper proposes to utilize the optimal pulse width modulation (OPWM) technique to generate high-frequency fringe patterns, and the error-diffusion dithering technique to produce low-frequency fringe patterns. Furthermore, this paper will show that fringe patterns produced with blue light provide the best quality measurements compared to fringe patterns generated with red or green light; and the minimum data acquisition speed for high quality measurements is around 800 Hz for a rabbit heart beating at 180 beats per minute. PMID:23482151
Pulse transducer with artifact signal attenuator. [heart rate sensors
NASA Technical Reports Server (NTRS)
Cash, W. H., Jr.; Polhemus, J. T. (Inventor)
1980-01-01
An artifact signal attenuator for a pulse rate sensor is described. The circuit for attenuating background noise signals is connected with a pulse rate transducer which has a light source and a detector for light reflected from blood vessels of a living body. The heart signal provided consists of a modulated dc signal voltage indicative of pulse rate. The artifact signal resulting from light reflected from the skin of the body comprises both a constant dc signal voltage and a modulated dc signal voltage. The amplitude of the artifact signal is greater and the frequency less than that of the heart signal. The signal attenuator circuit includes an operational amplifier for canceling the artifact signal from the output signal of the transducer and has the capability of meeting packaging requirements for wrist-watch-size packages.
Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats.
Andino-Pavlovsky, Victoria; Souza, Annie C; Scheffer-Teixeira, Robson; Tort, Adriano B L; Etchenique, Roberto; Ribeiro, Sidarta
2017-01-01
Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC.
Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats
Andino-Pavlovsky, Victoria; Souza, Annie C.; Scheffer-Teixeira, Robson; Tort, Adriano B. L.; Etchenique, Roberto; Ribeiro, Sidarta
2017-01-01
Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC. PMID:28536507
Microwave Oscillators Based on Nonlinear WGM Resonators
NASA Technical Reports Server (NTRS)
Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry
2006-01-01
Optical oscillators that exploit resonantly enhanced four-wave mixing in nonlinear whispering-gallery-mode (WGM) resonators are under investigation for potential utility as low-power, ultra-miniature sources of stable, spectrally pure microwave signals. There are numerous potential uses for such oscillators in radar systems, communication systems, and scientific instrumentation. The resonator in an oscillator of this type is made of a crystalline material that exhibits cubic Kerr nonlinearity, which supports the four-photon parametric process also known as four-wave mixing. The oscillator can be characterized as all-optical in the sense that the entire process of generation of the microwave signal takes place within the WGM resonator. The resonantly enhanced four-wave mixing yields coherent, phase-modulated optical signals at frequencies governed by the resonator structure. The frequency of the phase-modulation signal, which is in the microwave range, equals the difference between the frequencies of the optical signals; hence, this frequency is also governed by the resonator structure. Hence, further, the microwave signal is stable and can be used as a reference signal. The figure schematically depicts the apparatus used in a proof-of-principle experiment. Linearly polarized pump light was generated by an yttrium aluminum garnet laser at a wavelength of 1.32 microns. By use of a 90:10 fiber-optic splitter and optical fibers, some of the laser light was sent into a delay line and some was transmitted to one face of glass coupling prism, that, in turn, coupled the laser light into a crystalline CaF2 WGM disk resonator that had a resonance quality factor (Q) of 6x10(exp 9). The output light of the resonator was collected via another face of the coupling prism and a single-mode optical fiber, which transmitted the light to a 50:50 fiber-optic splitter. One output of this splitter was sent to a slow photodiode to obtain a DC signal for locking the laser to a particular resonator mode. The other output of this splitter was combined with the delayed laser signal in another 50:50 fiber-optic splitter used as a combiner. The output.of the combiner was fed to a fast photodiode that demodulated light and generated microwave signal. In this optical configuration, the resonator was incorporated into one arm of a Mach-Zehnder interferometer, which was necessary for the following reasons: It was found that when the output of the resonator was sent directly to a fast photodiode, the output of the photodiode did not include a measurable microwave signal. However, when the resonator was placed in an arm of the interferometer and the delay in the other arm was set at the correct value, the microwave signal appeared. Such behavior is distinctly characteristic of phase-modulated light. The phase-modulation signal had a frequency of about 8 GHz, corresponding to the free spectral range of the resonator. The spectral width of this microwave signal was less than 200 Hz. The threshold pump power for generating the microwave signal was about 1 mW. It would be possible to reduce the threshold power by several orders of magnitude if resonators could be made from crystalline materials in dimensions comparable to those of micro-resonators heretofore made from fused silica.
Woskov, Paul P.; Hadidi, Kamal
2003-01-01
In embodiments, spectroscopic monitor monitors modulated light signals to detect low levels of contaminants and other compounds in the presence of background interference. The monitor uses a spectrometer that includes a transmissive modulator capable of causing different frequency ranges to move onto and off of the detector. The different ranges can include those with the desired signal and those selected to subtract background contributions from those with the desired signal. Embodiments of the system are particularly useful for monitoring metal concentrations in combustion effluent.
Modulated Sine Waves for Differential Absorption Measurements Using a CW Laser System
NASA Technical Reports Server (NTRS)
Campbell, Joel F. (Inventor); Lin, Bing (Inventor); Nehrir, Amin R. (Inventor)
2015-01-01
A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.
Liu, Chao; Pei, Li; Li, Zhuoxuan; Ning, Tigang; Yu, Shaowei; Kang, Zexin
2013-05-10
Fourier mode coupling theory was first employed in the spectral analysis of several nonuniform fiber Bragg grating (FBG)-based acousto-optic modulators (NU-FBG-AOMs) with the effects of Gaussian-apodization (GA), phase shift (PS), and linear chirp (LC). Because of the accuracy and simplicity of the algorithm applied in this model, the modulation performances of these modulators can be acquired effectively and efficiently. Based on the model, the reflected spectra of these modulators were simulated under various acoustic frequencies and acoustically induced strains. The simulation results of the GA-FBG-AOM and PS-FBG-AOM showed that the wavelength spacing between the primary reflection peak and the secondary reflection peak is proportional to the acoustic frequency, and the reflectivity of reflection peaks depends on the acoustically induced strains. But for the LC-FBG-AOM, the wavelength spacing between the neighboring reflection peaks increased linearly and inversely with the acoustic frequency, and the extinction ratio of each peak relates to the acoustically induced strain. These numerical analysis results, which were effectively used in the designs and fabrications of these NU-FBG-AOMs, can broaden the AOM-based application scope and shed light on the performance optimization of optical wavelength-division multiplex system.
Design of the PET-MR system for head imaging of the DREAM Project
NASA Astrophysics Data System (ADS)
González, A. J.; Conde, P.; Hernández, L.; Herrero, V.; Moliner, L.; Monzó, J. M.; Orero, A.; Peiró, A.; Rodríguez-Álvarez, M. J.; Ros, A.; Sánchez, F.; Soriano, A.; Vidal, L. F.; Benlloch, J. M.
2013-02-01
In this paper we describe the overall design of a PET-MR system for head imaging within the framework of the DREAM Project as well as the first detector module tests. The PET system design consists of 4 rings of 16 detector modules each and it is expected to be integrated in a head dedicated radio frequency coil of an MR scanner. The PET modules are based on monolithic LYSO crystals coupled by means of optical devices to an array of 256 Silicon Photomultipliers. These types of crystals allow to preserve the scintillation light distribution and, thus, to recover the exact photon impact position with the proper characterization of such a distribution. Every module contains 4 Application Specific Integrated Circuits (ASICs) which return detailed information of several light statistical momenta. The preliminary tests carried out on this design and controlled by means of ASICs have shown promising results towards the suitability of hybrid PET-MR systems.
DeSantana, Josimari M.; Santana-Filho, Valter J.; Sluka, Kathleen A.
2009-01-01
Objective To investigate whether repeated administration of modulating frequency transcutaneous electric nerve stimulation (TENS) prevents development of analgesic tolerance. Design Knee joint inflammation (3% carrageenan and kaolin) was induced in rats. Either mixed or alternating frequency was administered daily (20min) for 2 weeks to the inflamed knee under light halothane anesthesia (1%–2%). Setting Laboratory. Animals Adult male Sprague-Dawley rats (N=36). Intervention Mixed- (4Hz and 100Hz) or alternating- (4Hz on 1 day; 100Hz on the next day) frequency TENS at sensory intensity and 100μs pulse duration. Main Outcome Measures Paw and joint withdrawal thresholds to mechanical stimuli were assessed before induction of inflammation, and before and after daily application of TENS. Results The reduced paw and joint withdrawal thresholds that occur 24 hours after the induction of inflammation were significantly reversed by the first administration of TENS when compared with sham treatment or to the condition before TENS treatment, which was observed through day 9. By the tenth day, repeated daily administration of either mixed- or alternating-frequency TENS did not reverse the decreased paw and joint withdrawal thresholds. Conclusions These data suggest that repeated administration of modulating frequency TENS leads to a development of opioid tolerance. However, this tolerance effect is delayed by approximately 5 days compared with administration of low- or high-frequency TENS independently. Clinically, we can infer that a treatment schedule of repeated daily TENS administration will result in a tolerance effect. Moreover, modulating low and high frequency TENS seems to produce a better analgesic effect and tolerance is slower to develop. PMID:18374009
NASA Astrophysics Data System (ADS)
Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David
2018-03-01
Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.
THE PECULIAR LIGHT CURVE OF THE SYMBIOTIC STAR AX PER OF THE LAST 125 YEARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leibowitz, Elia M.; Formiggini, Liliana, E-mail: elia@wise.tau.ac.il
We analyze the optical light curve (LC) of the last 125 years of the symbiotic star AX Per through some remarkable correlations that we discovered in its power spectrum (PS). The data were assembled from the literature and from the American Association of Variable Stars Observers database. A series of six major outbursts dominate the LC. They are presented in the PS as 13 harmonics of the fundamental frequency f {sub a} = 1/P {sub a} = 1/23,172 day{sup –1}. We refer to them as the ''red'' frequencies. Oscillations with the binary periodicity of the system P {sub b} =more » 1/f {sub b} = 681.48 days are also seen in the LC, with particularly large amplitudes during outbursts. The f {sub b} peak in the PS is accompanied by 13 other peaks on each side, which we refer to as the ''blue'' frequencies. A distinct structure in the frequency distribution of the blue peaks, as well as in their peak power, is best interpreted as reflecting beating of the 13 ''red'' frequencies with the binary one. We suggest, following others, that the major outbursts of the system result from events of intense mass loss from the giant star. Mass accretion onto the hot component, partially through the L1 point of the system, took place in the last 125 years at a rate that oscillated with the 13 first harmonics of the f {sub a} frequency. The binary orbit is slightly eccentric and periastron passages induced modulation of the L1 accretion at the binary frequency. Hence the f {sub b} oscillations in the brightness of the star of an amplitude that is modulated by the ''red'' frequencies of the system.« less
NASA Astrophysics Data System (ADS)
Lu, En; Ran, Zengling; Peng, Fei; Liu, Zhiwei; Xu, Fuguo
2012-03-01
Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic Fabry-Perot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.
NASA Astrophysics Data System (ADS)
Ran, Zengling; Rao, Yunjiang; Liu, Zhiwei; Xu, Fuguo
2011-05-01
Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic fabry-periot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.
Monaco, Annalisa; Cattaneo, Ruggero; Mesin, Luca; Ortu, Eleonora; Giannoni, Mario; Pietropaoli, Davide
2015-01-01
Using computerized pupillometry, our previous research established that the autonomic nervous system (ANS) is dysregulated in patients suffering from temporomandibular disorders (TMDs), suggesting a potential role for ANS dysfunction in pain modulation and the etiology of TMD. However, pain modulation hypotheses for TMD are still lacking. The periaqueductal gray (PAG) is involved in the descending modulation of defensive behavior and pain through μ, κ, and δ opioid receptors. Transcutaneous electrical nerve stimulation (TENS) has been extensively used for pain relief, as low-frequency stimulation can activate µ receptors. Our aim was to use pupillometry to evaluate the effect of low-frequency TENS stimulation of μ receptors on opioid descending pathways in TMD patients. In accordance with the Research Diagnostic Criteria for TMD, 18 females with myogenous TMD and 18 matched-controls were enrolled. All subjects underwent subsequent pupillometric evaluations under dark and light conditions before, soon after (end of stimulation) and long after (recovery period) sensorial TENS. The overall statistics derived from the darkness condition revealed no significant differences in pupil size between cases and controls; indeed, TENS stimulation significantly reduced pupil size in both groups. Controls, but not TMD patients, displayed significant differences in pupil size before compared with after TENS. Under light conditions, TMD patients presented a smaller pupil size compared with controls; the pupil size was reduced only in the controls. Pupil size differences were found before and during TENS and before and after TENS in the controls only. Pupillometry revealed that stimulating the descending opioid pathway with low-frequency sensory TENS of the fifth and seventh pairs of cranial nerves affects the peripheral target. The TMD patients exhibited a different pattern of response to TENS stimulation compared with the controls, suggesting that impaired modulation of the descending pain system may be involved in TMD. PMID:25905862
Optical radiation emissions from compact fluorescent lamps.
Khazova, M; O'Hagan, J B
2008-01-01
There is a drive to energy efficiency to mitigate climate change. To meet this challenge, the UK Government has proposed phasing out incandescent lamps by the end of 2011 and replacing them with energy efficient fluorescent lighting, including compact fluorescent lamps (CFLs) with integrated ballasts. This paper presents a summary of an assessment conducted by the Health Protection Agency in March 2008 to evaluate the optical radiation emissions of CFLs currently available in the UK consumer market. The study concluded that the UV emissions from a significant percentage of the tested CFLs with single envelopes may result in foreseeable overexposure of the skin when these lamps are used in desk or task lighting applications. The optical output of all tested CFLs, in addition to high-frequency modulation, had a 100-Hz envelope with modulation in excess of 15%. This degree of modulation may be linked to a number of adverse effects.
Fast and low-cost structured light pattern sequence projection.
Wissmann, Patrick; Forster, Frank; Schmitt, Robert
2011-11-21
We present a high-speed and low-cost approach for structured light pattern sequence projection. Using a fast rotating binary spatial light modulator, our method is potentially capable of projection frequencies in the kHz domain, while enabling pattern rasterization as low as 2 μm pixel size and inherently linear grayscale reproduction quantized at 12 bits/pixel or better. Due to the circular arrangement of the projected fringe patterns, we extend the widely used ray-plane triangulation method to ray-cone triangulation and provide a detailed description of the optical calibration procedure. Using the proposed projection concept in conjunction with the recently published coded phase shift (CPS) pattern sequence, we demonstrate high accuracy 3-D measurement at 200 Hz projection frequency and 20 Hz 3-D reconstruction rate. © 2011 Optical Society of America
Active mode locking of lasers by piezoelectrically induced diffraction modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krausz, F.; Turi, L.; Kuti, C.
A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 {mu}m and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate ofmore » 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.« less
Complex metabolic oscillations in plants forced by harmonic irradiance.
Nedbal, Ladislav; Brezina, Vítezslav
2002-01-01
Plants exposed to harmonically modulated irradiance, approximately 1 + cos(omegat), exhibit a complex periodic pattern of chlorophyll fluorescence emission that can be deconvoluted into a steady-state component, a component that is modulated with the frequency of the irradiance (omega), and into at least two upper harmonic components (2omega and 3omega). A model is proposed that accounts for the upper harmonics in fluorescence emission by nonlinear negative feedback regulation of photosynthesis. In contrast to simpler linear models, the model predicts that the steady-state fluorescence component will depend on the frequency of light modulation, and that amplitudes of all fluorescence components will exhibit resonance peak(s) when the irradiance frequency is tuned to an internal frequency of a regulatory component. The experiments confirmed that the upper harmonic components appear and exhibit distinct resonant peaks. The frequency of autonomous oscillations observed earlier upon an abrupt increase in CO(2) concentration corresponds to the sharpest of the resonant peaks of the forced oscillations. We propose that the underlying principles are general for a wide spectrum of negative-feedback regulatory mechanisms. The analysis by forced harmonic oscillations will enable us to examine internal dynamics of regulatory processes that have not been accessible to noninvasive fluorescence monitoring to date. PMID:12324435
Graphene patterns supported terahertz tunable plasmon induced transparency.
He, Xiaoyong; Liu, Feng; Lin, Fangting; Shi, Wangzhou
2018-04-16
The tunable plasmonic induced transparency has been theoretically investigated based on graphene patterns/SiO 2 /Si/polymer multilayer structure in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that obvious Fano peak can be observed and efficiently modulated because of the strong coupling between incident light and graphene pattern structures. As Fermi level increases, the peak amplitude of Fano resonance increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 40% on condition that the Fermi level changes in the scope of 0.2-1.0 eV. With the distance between cut wire and double semi-circular patterns increases, the peak amplitude and figure of merit increases. The results are very helpful to develop novel graphene plasmonic devices (e.g. sensors, modulators, and antenna) and find potential applications in the fields of biomedical sensing and wireless communications.
NASA Astrophysics Data System (ADS)
Chang, Chia-Yuan; Chen, Shean-Jen
2017-02-01
Conventional temporal focusing-based multiphoton excitation microscopy (TFMPEM) can offer widefield optical sectioning with an axial excitation confinement (AEC) of a few microns. Herein, a developed TFMPEM with a digital micromirror device (DMD), acting as the blazed grating for light spatial dispersion and simultaneous patterned illumination, has been extended to implement spatially modulated illumination at structured frequency and orientation. By implementing the spatially modulated illumination, the beam coverage at the back-focal aperture of the objective lens can be increased. As a result, the AEC can be condensed from 3.0 μm to 1.5 μm in full width at half maximum for a 2-fold enhancement. Furthermore, by using HiLo microscopy with two structured illuminations at the same spatial frequency but different orientation, biotissue images according to the structured illumination with condensed AEC is obviously superior in contrast and scattering suppression.
Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods.
Tice, Daniel B; Li, Shi-Qiang; Tagliazucchi, Mario; Buchholz, D Bruce; Weiss, Emily A; Chang, Robert P H
2014-03-12
Light-matter interaction at the nanoscale is of particular interest for future photonic integrated circuits and devices with applications ranging from communication to sensing and imaging. In this Letter a combination of transient absorption (TA) and the use of third harmonic generation as a probe (THG-probe) has been adopted to investigate the response of the localized surface plasmon resonances (LSPRs) of vertically aligned indium tin oxide rods (ITORs) upon ultraviolet light (UV) excitation. TA experiments, which are sensitive to the extinction of the LSPR, show a fluence-dependent increase in the frequency and intensity of the LSPR. The THG-probe experiments show a fluence-dependent decrease of the LSPR-enhanced local electric field intensity within the rod, consistent with a shift of the LSPR to higher frequency. The kinetics from both TA and THG-probe experiments are found to be independent of the fluence of the pump. These results indicate that UV excitation modulates the plasma frequency of ITO on the ultrafast time scale by the injection of electrons into, and their subsequent decay from, the conduction band of the rods. Increases to the electron concentration in the conduction band of ∼13% were achieved in these experiments. Computer simulation and modeling have been used throughout the investigation to guide the design of the experiments and to map the electric field distribution around the rods for interpreting far-field measurement results.
Akselrod, Gleb M.; Weidman, Mark C.; Li, Ying; ...
2016-09-13
Infrared (IR) light sources with high modulation rates are critical components for on-chip optical communications. Lead-based colloidal quantum dots are promising nonepitaxial materials for use in IR light-emitting diodes, but their slow photoluminescence lifetime is a serious limitation. Here we demonstrate coupling of PbS quantum dots to colloidal plasmonic nanoantennas based on film-coupled metal nanocubes, resulting in a dramatic 1300-fold reduction in the emission lifetime from the microsecond to the nanosecond regime. This lifetime reduction is primarily due to a 1100-fold increase in the radiative decay rate owing to the high quantum yield (65%) of the antenna. The short emissionmore » lifetime is accompanied by high antenna quantum efficiency and directionality. Lastly, this nonepitaxial platform points toward GHz frequency, electrically modulated, telecommunication wavelength light-emitting diodes and single-photon sources.« less
A novel optogenetically tunable frequency modulating oscillator
2018-01-01
Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour. PMID:29389936
A novel optogenetically tunable frequency modulating oscillator.
Mahajan, Tarun; Rai, Kshitij
2018-01-01
Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.
Frequency domain fluorescent diffuse tomography of small animals with DsRed2-expressed tumors
NASA Astrophysics Data System (ADS)
Turchin, Ilya V.; Savitsky, Alexander P.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Orlova, Anna G.; Sergeeva, Ekaterina A.; Kleshnin, Mikhail S.; Shirmanova, Marina V.
2006-02-01
The main applications of fluorescent proteins (FPs) are monitoring tumor growth, angiogenesis, metastases formation and effects of new classes of drugs. Different types of tomography allow fluorescence imaging of tumors located deep in human or animal tissue. These techniques were used for investigation of the distribution of near-infrared fluorescent probes, but only a few works are devoted to fluorescence tomography in visible light. In this work, preliminary results of the frequency domain fluorescent diffuse tomography (FD FDT) method in application to DsRed2 protein as a fluorescent agent are presented. For the first step of our experiments we utilized second harmonic generation of Nd:YAG laser (532 nm) modulated by low frequency (1 kHz) in the experimental setup. The transilluminative planar configuration was used in the setup. A series of model experiments has been conducted and show good agreement between theoretical and experimental fluorescence intensity. Post mortem experiments with capsules containing DsRed2 and scattering solution introduced into esophagus of rats to simulate tumor formation have been conducted. The results of these experiments show that sensitivity of the setup is sufficient to detect DsRed2 in concentrations similar to those in FP-expressed tumor, but the contrast is not enough high to separate fluorescence of DsRed2 and surrounding tissues. The setup can be significantly improved by utilizing high-frequency modulation (110 MHz using acousto-optical modulator) of the excitation light and precise phase measurements due to difference in fluorescence life-time of FPs and surrounding tissues. An algorithm of processing a fluorescent image based on calculating zero of maximum curvature was employed for detection of fluorescent inclusions boundaries in the image.
Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication
Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He, Jr-Hau; Ooi, Boon; DenBaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru
2015-01-01
An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10−3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems. PMID:26687289
Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication
NASA Astrophysics Data System (ADS)
Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He-Hau, Jr.; Ooi, Boon; Denbaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru
2015-12-01
An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10-3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems.
Yeh, C H; Chow, C W; Chen, H Y; Chen, J; Liu, Y L
2014-04-21
We propose and experimentally demonstrate a white-light phosphor-LED visible light communication (VLC) system with an adaptive 84.44 to 190 Mbit/s 16 quadrature-amplitude-modulation (QAM) orthogonal-frequency-division-multiplexing (OFDM) signal utilizing bit-loading method. Here, the optimal analogy pre-equalization design is performed at LED transmitter (Tx) side and no blue filter is used at the Rx side. Hence, the ~1 MHz modulation bandwidth of phosphor-LED could be extended to 30 MHz. In addition, the measured bit error rates (BERs) of < 3.8 × 10(-3) [forward error correction (FEC) threshold] at different measured data rates can be achieved at practical transmission distances of 0.75 to 2 m.
Model-based review of Doppler global velocimetry techniques with laser frequency modulation
NASA Astrophysics Data System (ADS)
Fischer, Andreas
2017-06-01
Optical measurements of flow velocity fields are of crucial importance to understand the behavior of complex flow. One flow field measurement technique is Doppler global velocimetry (DGV). A large variety of different DGV approaches exist, e.g., applying different kinds of laser frequency modulation. In order to investigate the measurement capabilities especially of the newer DGV approaches with laser frequency modulation, a model-based review of all DGV measurement principles is performed. The DGV principles can be categorized by the respective number of required time steps. The systematic review of all DGV principle reveals drawbacks and benefits of the different measurement approaches with respect to the temporal resolution, the spatial resolution and the measurement range. Furthermore, the Cramér-Rao bound for photon shot is calculated and discussed, which represents a fundamental limit of the achievable measurement uncertainty. As a result, all DGV techniques provide similar minimal uncertainty limits. With Nphotons as the number of scattered photons, the minimal standard deviation of the flow velocity reads about 106 m / s /√{Nphotons } , which was calculated for a perpendicular arrangement of the illumination and observation direction and a laser wavelength of 895 nm. As a further result, the signal processing efficiencies are determined with a Monte-Carlo simulation. Except for the newest correlation-based DGV method, the signal processing algorithms are already optimal or near the optimum. Finally, the different DGV approaches are compared regarding errors due to temporal variations of the scattered light intensity and the flow velocity. The influence of a linear variation of the scattered light intensity can be reduced by maximizing the number of time steps, because this means to acquire more information for the correction of this systematic effect. However, more time steps can result in a flow velocity measurement with a lower temporal resolution, when operating at the maximal frame rate of the camera. DGV without laser frequency modulation then provides the highest temporal resolutions and is not sensitive with respect to temporal variations but with respect to spatial variations of the scattered light intensity. In contrast to this, all DGV variants suffer from velocity variations during the measurement. In summary, the experimental conditions and the measurement task finally decide about the ideal choice from the reviewed DGV methods.
Research on FBG-based longitudinal-acousto-optic modulator with Fourier mode coupling method.
Li, Zhuoxuan; Pei, Li; Liu, Chao; Ning, Tigang; Yu, Shaowei
2012-10-20
Fourier mode coupling model was first applied to achieve the spectra property of a fiber Bragg grating (FBG)-based longitudinal-acousto-optic modulator. Compared with traditional analysis algorithms, such as the transfer matrix method, the Fourier mode coupling model could improve the computing efficiency up to 100 times with a guarantee of accuracy. In this paper, based on the theoretical analysis of this model, the spectra characteristics of the modulator in different frequencies and acoustically induced strains were numerically simulated. In the experiment, a uniform FBG was modulated by acoustic wave (AW) at 12 different frequencies. In particular, the modulator responses at 563 and 885.5 KHz with three different lead zirconate titanate (PZT) loads applied were plotted for illustration, and the linear fitting of experimental data demonstrated a good match with the simulation result. The acoustic excitation of the longitudinal wave is obtained using a conic silica horn attached to the surface of a shear-mode PZT plate paralleled to the fiber axis. This way of generating longitudinal AW with a transversal PZT may shed light on the optimal structural design for the FBG-based longitudinal-acousto-optic modulator.
Opto-electronic microwave oscillator
NASA Astrophysics Data System (ADS)
Yao, X. Steve; Maleki, Lute
1996-12-01
Photonic applications are important in RF communication systems to enhance many functions including remote transfer of antenna signals, carrier frequency up or down conversion, antenna beam steering, and signal filtering. Many of these functions require reference frequency oscillators. However, traditional microwave oscillators cannot meet all the requirements of photonic communication systems that need high frequency and low phase noise signal generation. Because photonic systems involve signals in both optical and electrical domains, an ideal signal source should be able to provide electrical and optical signals. In addition, it should be possible to synchronize or control the signal source by both electrical and optical means. We present such a source1-2 that converts continuous light energy into stable and spectrally pure microwave signals. This Opto-Electronic Oscillator, OEO, consists of a pump laser and a feedback circuit including an intensity modulator, an optical fiber delay line, a photodetector, an amplifier, and a filter, as shown in Figure 1a. Its oscillation frequency, limited only by the speed of the modulator, can be up to 75 GHz.
Stroganova, Tatiana A; Butorina, Anna V; Sysoeva, Olga V; Prokofyev, Andrey O; Nikolaeva, Anastasia Yu; Tsetlin, Marina M; Orekhova, Elena V
2015-01-01
Recent studies link autism spectrum disorders (ASD) with an altered balance between excitation and inhibition (E/I balance) in cortical networks. The brain oscillations in high gamma-band (50-120 Hz) are sensitive to the E/I balance and may appear useful biomarkers of certain ASD subtypes. The frequency of gamma oscillations is mediated by level of excitation of the fast-spiking inhibitory basket cells recruited by increasing strength of excitatory input. Therefore, the experimental manipulations affecting gamma frequency may throw light on inhibitory networks dysfunction in ASD. Here, we used magnetoencephalography (MEG) to investigate modulation of visual gamma oscillation frequency by speed of drifting annular gratings (1.2, 3.6, 6.0 °/s) in 21 boys with ASD and 26 typically developing boys aged 7-15 years. Multitaper method was used for analysis of spectra of gamma power change upon stimulus presentation and permutation test was applied for statistical comparisons. We also assessed in our participants visual orientation discrimination thresholds, which are thought to depend on excitability of inhibitory networks in the visual cortex. Although frequency of the oscillatory gamma response increased with increasing velocity of visual motion in both groups of participants, the velocity effect was reduced in a substantial proportion of children with ASD. The range of velocity-related gamma frequency modulation correlated inversely with the ability to discriminate oblique line orientation in the ASD group, while no such correlation has been observed in the group of typically developing participants. Our findings suggest that abnormal velocity-related gamma frequency modulation in ASD may constitute a potential biomarker for reduced excitability of fast-spiking inhibitory neurons in a subset of children with ASD.
Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating
NASA Astrophysics Data System (ADS)
Heintzmann, Rainer; Cremer, Christoph G.
1999-01-01
High spatial frequencies in the illuminating light of microscopes lead to a shift of the object spatial frequencies detectable through the objective lens. If a suitable procedure is found for evaluation of the measured data, a microscopic image with a higher resolution than under flat illumination can be obtained. A simple method for generation of a laterally modulated illumination pattern is discussed here. A specially constructed diffraction grating was inserted in the illumination beam path at the conjugate object plane (position of the adjustable aperture) and projected through the objective into the object. Microscopic beads were imaged with this method and evaluated with an algorithm based on the structure of the Fourier space. The results indicate an improvement of resolution.
Intensity autocorrelation measurements of frequency combs in the terahertz range
NASA Astrophysics Data System (ADS)
Benea-Chelmus, Ileana-Cristina; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jérôme
2017-09-01
We report on direct measurements of the emission character of quantum cascade laser based frequency combs, using intensity autocorrelation. Our implementation is based on fast electro-optic sampling, with a detection spectral bandwidth matching the emission bandwidth of the comb laser, around 2.5 THz. We find the output of these frequency combs to be continuous even in the locked regime, but accompanied by a strong intensity modulation. Moreover, with our record temporal resolution of only few hundreds of femtoseconds, we can resolve correlated intensity modulation occurring on time scales as short as the gain recovery time, about 4 ps. By direct comparison with pulsed terahertz light originating from a photoconductive emitter, we demonstrate the peculiar emission pattern of these lasers. The measurement technique is self-referenced and ultrafast, and requires no reconstruction. It will be of significant importance in future measurements of ultrashort pulses from quantum cascade lasers.
NASA Astrophysics Data System (ADS)
Shu, Chang; Chen, Qing-Guo; Mei, Jin-Shuo; Yin, Jing-Hua
2018-03-01
In this paper, we numerically demonstrated a dynamically tunable implementation of electromagnetically induced transparency (EIT) response with two coupling graphene-nanostrips in terahertz region. Compared to the metal-based structures or separated graphene structures, the Fermi energies of proposed two coupling graphene-nanostrips can be independently tuned by changing bias voltage between the metallic pads and substrate, the EIT window which appears from the near-field coupling between two resonators can be dynamically tuned without reoptimizing and refabricating the structures. As a result, the EIT window has a significant tunable capacity which can realize a higher frequency modulation depth and control the amplitude of transmission peak at a fixed frequency; moreover, the group delay of transmission peak at a fixed frequency with the amplitude of over 0.95 could be dynamically tuned. These results would exhibit potential applications in modulators and tunable slow light devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Chin-Ping; Chou, Yi; Yang, Ting-Chang
2011-10-20
The high-mass X-ray binary SMC X-1 exhibits a superorbital modulation with a dramatically varying period ranging between {approx}40 days and {approx}60 days. This research studies the time-frequency properties of the superorbital modulation of SMC X-1 based on the observations made by the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE). We analyzed the entire ASM database collected since 1996. The Hilbert-Huang transform (HHT), developed for non-stationary and nonlinear time-series analysis, was adopted to derive the instantaneous superorbital frequency. The resultant Hilbert spectrum is consistent with the dynamic power spectrum as it shows more detailed information in both themore » time and frequency domains. The RXTE observations show that the superorbital modulation period was mostly between {approx}50 days and {approx}65 days, whereas it changed to {approx}45 days around MJD 50,800 and MJD 54,000. Our analysis further indicates that the instantaneous frequency changed to a timescale of hundreds of days between {approx}MJD 51,500 and {approx}MJD 53,500. Based on the instantaneous phase defined by HHT, we folded the ASM light curve to derive a superorbital profile, from which an asymmetric feature and a low state with barely any X-ray emissions (lasting for {approx}0.3 cycles) were observed. We also calculated the correlation between the mean period and the amplitude of the superorbital modulation. The result is similar to the recently discovered relationship between the superorbital cycle length and the mean X-ray flux for Her X-1.« less
Optical binding of two microparticles levitated in vacuum
NASA Astrophysics Data System (ADS)
Arita, Yoshihiko; Wright, Ewan M.; Dholakia, Kishan
2017-04-01
Optical binding refers to an optically mediated inter-particle interaction that creates new equilibrium positions for closely spaced particles [1-5]. Optical binding of mesoscopic particles levitated in vacuum can pave the way towards the realisation of a large scale quantum bound array in cavity-optomechanics [6-9]. Recently we have demonstrated trapping and rotation of two mesoscopic particles in vacuum using a spatial-light-modulator-based approach to trap more than one particle, induce controlled rotation of individual particles, and mediate interparticle separation [10]. By trapping and rotating two vaterite particles, we observe intensity modulation of the scattered light at the sum and difference frequencies with respect to the individual rotation rates. This first demonstration of optical interference between two microparticles in vacuum has lead to a platform to explore optical binding. Here we demonstrate for the first time optically bound two microparticles mediated by light scattering in vacuum. We investigate autocorrelations between the two normal modes of oscillation, which are determined by the centre-of-mass and the relative positions of the two-particle system. In situ determination of the optical restoring force acting on the bound particles are based on measurement of the oscillation frequencies of the autocorrelation functions of the two normal modes, thereby providing a powerful and original platform to explore multiparticle entanglement in cavity-optomechanics.
10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication.
Kong, Meiwei; Lv, Weichao; Ali, Tariq; Sarwar, Rohail; Yu, Chuying; Qiu, Yang; Qu, Fengzhong; Xu, Zhiwei; Han, Jun; Xu, Jing
2017-08-21
The availability of the underwater wireless optical communication (UWOC) based on red (R), green (G) and blue (B) lights makes the realization of the RGB wavelength division multiplexing (WDM) UWOC system possible. By properly mixing RGB lights to form white light, the WDM UWOC system has prominent potentiality for simultaneous underwater illumination and high-speed communication. In this work, for the first time, we experimentally demonstrate a 9.51-Gb/s WDM UWOC system using a red-emitting laser diode (LD), a single-mode pigtailed green-emitting LD and a multi-mode pigtailed blue-emitting LD. By employing 32-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) modulation in the demonstration, the red-light, the green-light and the blue-light LDs successfully transmit signals with the data rates of 4.17 Gb/s, 4.17 Gb/s and 1.17 Gb/s, respectively, over a 10-m underwater channel. The corresponding bit error rates (BERs) are 2.2 × 10 -3 , 2.0 × 10 -3 and 2.3 × 10 -3 , respectively, which are below the forward error correction (FEC) threshold of 3.8 × 10 -3 .
Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David
2017-11-10
Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.
NASA Astrophysics Data System (ADS)
Azim, Ali W.; Le Guennec, Yannis; Maury, Ghislaine
2018-05-01
Optical-orthogonal frequency division multiplexing (O-OFDM) is an effective scheme for visible light communications (VLC), offering a candid extension to multiple access (MA) scenarios, i.e., O-OFDMA. However, O-OFDMA exhibits high peak-to-average power ratio (PAPR), which exacerbates the non-linear distortions from the light emitting diode (LED). To overcome high PAPR while sustaining MA, optical-single-carrier frequency-division multiple access (O-SCFDMA) is used. For both O-OFDMA and O-SCFDMA, Hermitian symmetry (HS) constraint is imposed in frequency-domain (FD) to obtain a real-valued time-domain (TD) signal for intensity modulation-direct detection (IM-DD) implementation of VLC. Howbeit, HS results in an increase of PAPR for O-SCFDMA. In this regard, we propose HS free (HSF) O-SCFDMA (HSFO-SCFDMA). We compare HSFO-SCFDMA with several approaches in key parameters, such as, bit error rate (BER), optical power penalty, PAPR, quantization, electrical power efficiency and system complexity. BER performance and optical power penalty is evaluated considering multipath VLC channel and taking into account the bandwidth limitation of LED in combination with its optimized driver. It is illustrated that HSFO-SCFDMA outperforms other alternatives.
NASA Astrophysics Data System (ADS)
Li, Shilei; Ding, Yinxing; Jiao, Rongzhen; Duan, Gaoyan; Yu, Li
2018-03-01
Nanoscale pulsed light is highly desirable in nano-integrated optics. In this paper, we obtained femtosecond pulses with THz repetition frequency via the coupling between quantum emitters (QEs) and plasmonic resonators. Our structure consists of a V -groove (VG) plasmonic resonator and a nanowire embedded with two-level QEs. The influences of the incident light intensity and QE number density on the transmission response for this hybrid system are investigated through semiclassical theory and simulation. The results show that the transmission response can be modulated to the pulse form. And the repetition frequency and extinction ratio of the pulses can be controlled by the incident light intensity and QE number density. The reason is that the coupling causes the output power of nanowire to behave as an oscillating form, the oscillating output power in turn causes the field amplitude in the resonator to oscillate over time. A feedback system is formed between the plasmonic resonator and the QEs in the nanowire. This provides a method for generating narrow pulsed lasers with ultrahigh repetition frequencies in plasmonic systems using a continuous wave input, which has potential applications in generating optical clock signals at the nanoscale.
NASA Astrophysics Data System (ADS)
Wang, Yiguang; Chi, Nan
2016-10-01
Light emitting diodes (LEDs) based visible light communication (VLC) has been considered as a promising technology for indoor high-speed wireless access, due to its unique advantages, such as low cost, license free and high security. To achieve high-speed VLC transmission, carrierless amplitude and phase (CAP) modulation has been utilized for its lower complexity and high spectral efficiency. Moreover, to compensate the linear and nonlinear distortions such as frequency attenuation, sampling time offset, LED nonlinearity etc., series of pre- and post-equalization schemes should be employed in high-speed VLC systems. In this paper, we make an investigation on several advanced pre- and postequalization schemes for high-order CAP modulation based VLC systems. We propose to use a weighted preequalization technique to compensate the LED frequency attenuation. In post-equalization, a hybrid post equalizer is proposed, which consists of a linear equalizer, a Volterra series based nonlinear equalizer, and a decision-directed least mean square (DD-LMS) equalizer. Modified cascaded multi-modulus algorithm (M-CMMA) is employed to update the weights of the linear and the nonlinear equalizer, while DD-LMS can further improve the performance after the preconvergence. Based on high-order CAP modulation and these equalization schemes, we have experimentally demonstrated a 1.35-Gb/s, a 4.5-Gb/s and a 8-Gb/s high-speed indoor VLC transmission systems. The results show the benefit and feasibility of the proposed equalization schemes for high-speed VLC systems.
Electronic heterodyne recording of interference patterns
NASA Technical Reports Server (NTRS)
Merat, F. L.; Claspy, P. C.
1979-01-01
An electronic heterodyne technique is being investigated for video (i.e., television rate and format) recording of interference patterns. In the heterodyne technique electro-optic modulation is used to introduce a sinusoidal phase shift between the beams of an interferometer. For phase modulation frequencies between 0.1 and 15 MHz an image dissector camera may be used to scan the resulting temporally modulated interference pattern. Heterodyne detection of the camera output is used to selectively record the interference pattern. An advantage of such synchronous recording is that it permits recording of low-contrast fringes in high ambient light conditions. The application of this technique to the recording of holograms is discussed.
Investigating acoustic-induced deformations in a foam using multiple light scattering.
Erpelding, M; Guillermic, R M; Dollet, B; Saint-Jalmes, A; Crassous, J
2010-08-01
We have studied the effect of an external acoustic wave on bubble displacements inside an aqueous foam. The signature of the acoustic-induced bubble displacements is found using a multiple light scattering technique, and occurs as a modulation on the photon correlation curve. Measurements for various sound frequencies and amplitudes are compared to analytical predictions and numerical simulations. These comparisons finally allow us to elucidate the nontrivial acoustic displacement profile inside the foam; in particular, we find that the acoustic wave creates a localized shear in the vicinity of the solid walls holding the foam, as a consequence of inertial contributions. This study of how bubbles "dance" inside a foam as a response to sound turns out to provide new insights on foam acoustics and sound transmission into a foam, foam deformation at high frequencies, and analysis of light scattering data in samples undergoing nonhomogeneous deformations.
Optical techniques for time and frequency transfer
NASA Technical Reports Server (NTRS)
Baumont, Francoise; Gaignebet, Jean
1994-01-01
Light has been used as a means for time synchronization for a long time. The flight time was supposed to be negligible. The first scientific determination of the velocity of the light was done by measuring a round trip flight time on a given distance. The well known flying clock experiment leading to Einstein's General Relativity is another example. The advent of lasers, particularly short pulse and modulated ones, as well as the improvements of the timing equipments have led to new concepts for time and frequency transfer. We describe some experiments using different techniques and configurations which have been proposed and tested in this field since the beginning of the space age. Added to that, we set out advantages, drawbacks, and performances achieved in the different cases.
NASA Astrophysics Data System (ADS)
Javh, Jaka; Slavič, Janko; Boltežar, Miha
2018-02-01
Instantaneous full-field displacement fields can be measured using cameras. In fact, using high-speed cameras full-field spectral information up to a couple of kHz can be measured. The trouble is that high-speed cameras capable of measuring high-resolution fields-of-view at high frame rates prove to be very expensive (from tens to hundreds of thousands of euro per camera). This paper introduces a measurement set-up capable of measuring high-frequency vibrations using slow cameras such as DSLR, mirrorless and others. The high-frequency displacements are measured by harmonically blinking the lights at specified frequencies. This harmonic blinking of the lights modulates the intensity changes of the filmed scene and the camera-image acquisition makes the integration over time, thereby producing full-field Fourier coefficients of the filmed structure's displacements.
Scanning Tunneling Optical Resonance Microscopy
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave
2003-01-01
Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically < 10 Hz) that the feedback circuit could respond, then the voltage applied to the piezoelectric tip-height actuator could be measured by use of a lock-in amplifier locked to the modulation (chopping) signal. However, at a high modulation frequency (typically in the kilohertz range or higher), the feedback circuit would be unable to respond. In this case, the photoenhanced portion of the tunneling current could be measured directly. For this purpose, the tunneling current would be passed through a precise resistor and the voltage drop would be measured by use of the lock-in amplifier.
NASA Astrophysics Data System (ADS)
Yang, Qiang; Xu, Xiao; Lai, Puxiang; Sang, Xinzhu; Wang, Lihong V.
2014-03-01
Focusing light inside highly scattering media beyond the ballistic regime is a challenging task in biomedical optical imaging, manipulation, and therapy. This challenge can be overcome by time reversing ultrasonically encoded (TRUE) diffuse light to the ultrasonic focus inside a turbid medium. In TRUE optical focusing, a photorefractive crystal or polymer is used as the phase conjugate mirror for optical time reversal. Accordingly, a relatively long ultrasound burst, whose duration matches the response time of the photorefractive material, is used to encode the diffuse light. With this long ultrasound burst, the resolution of the TRUE focus along the acoustic axis is poor. In this work, we used two transducers, emitting two intersecting ultrasound beams at 3.4 MHz and 3.6 MHz respectively, to modulate the diffuse light within their intersection volume at the beat frequency. We show that light encoded at the beat frequency can be time-reversed and converge to the intersection volume. Experimentally, TRUE focusing with an acoustic axial resolution of ~1.1 mm was demonstrated inside turbid media, agreeing with the theoretical estimation.
On-chip microwave signal generation based on a silicon microring modulator.
Shao, Haifeng; Yu, Hui; Li, Xia; Li, Yan; Jiang, Jianfei; Wei, Huan; Wang, Gencheng; Dai, Tingge; Chen, Qimei; Yang, Jianyi; Jiang, Xiaoqing
2015-07-15
A photonic-assisted microwave signal generator based on a silicon microring modulator is demonstrated. The microring cavity incorporates an embedded PN junction that enables a microwave signal to modulate the lightwave circling inside. The DC component of the modulated light is trapped in the cavity, while the high-order sideband components are able to exit the cavity and then generate microwave signals at new frequencies in a photodetector. In our proof-of-concept experiment, a 10 GHz microwave signal is converted to a 20 GHz signal in the optical domain with an electrical harmonic suppression ratio of 22 dB. An analytic model is also established to explain the operation mechanism, which agrees well with the measured data.
Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.; ...
2016-08-15
Active control of light is important for photonic integrated circuits, optical switches,. and telecommunications. Coupling light with acoustic vibrations in nanoscale optical resonators offers optical modulation capabilities with high bandwidth and Small footprint Instead of using noble metals, here we introduce indium tin-oxide nanorod arrays (ITO-NRAs) as the operating media;and demonstrate optical modulation covering the visible spectral range (from 360 to 700 nm), with similar to 20 GHz bandwidth through the excitation of coherent acoustic vibrations in ITO-NRAs. This broadband modulation results from the collective optical diffraction by the dielectric ITO-NRAs, and a high differential transmission modulation up to 10%more » is achieved through efficient near-infrared, on-plasmon-resonance pumping. By combining the frequency signatures Of the vibrational modes with finite-element simulations, we,further determine the anisotropic elastic constants for single-crystalline ITO, which are not known-for the bulk phase. Furthermore, this technique to determine elastic constants using Coherent acoustic vibrations of uniform nanostructures can be generalized to the study of other inorganic materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.
Active control of light is important for photonic integrated circuits, optical switches,. and telecommunications. Coupling light with acoustic vibrations in nanoscale optical resonators offers optical modulation capabilities with high bandwidth and Small footprint Instead of using noble metals, here we introduce indium tin-oxide nanorod arrays (ITO-NRAs) as the operating media;and demonstrate optical modulation covering the visible spectral range (from 360 to 700 nm), with similar to 20 GHz bandwidth through the excitation of coherent acoustic vibrations in ITO-NRAs. This broadband modulation results from the collective optical diffraction by the dielectric ITO-NRAs, and a high differential transmission modulation up to 10%more » is achieved through efficient near-infrared, on-plasmon-resonance pumping. By combining the frequency signatures Of the vibrational modes with finite-element simulations, we,further determine the anisotropic elastic constants for single-crystalline ITO, which are not known-for the bulk phase. Furthermore, this technique to determine elastic constants using Coherent acoustic vibrations of uniform nanostructures can be generalized to the study of other inorganic materials.« less
Electro-optic modulation at 1.4 GHz using single-crystal film of DAST
NASA Astrophysics Data System (ADS)
Ahyi, Ayayi; Titus, Jitto; Thakur, Mrinal
2002-03-01
Electro-optic modulation at 4 kHz using single-crystal film of DAST has been recently reported.^1 The measurement was made in the transverse configuration with the light beam propagating perpendicular to the film while electric field was applied in the plane of the film - along the dipole axis. In this presentation, we will discuss results of electro-optic modulation in DAST single-crystal films at significantly higher speed (0.1 - 1.4 GHz). Single-crystal films of DAST with excellent optical quality were prepared by modified shear method. The electro-optic modulation was measured using the technique of field-induced birefringence and the signal was recorded by a spectrum analyzer. Light (λ = 750 nm) propagated perpendicular to the film (thickness ~ 3 μm). We have observed excellent signal-to-noise ratio at these high frequencies, along with a low insertion loss. The voltage we applied is only ~ 1 volt across a gap of 15 μm and the observed signal-to-noise ratio is comparable to that of guided-wave electro-optic modulators. 1. M. Thakur, J. Xu, A. Bhowmik and M. Thakur, Appl. Phys. Lett., 74 635
Efferent control of temporal response properties of the Limulus lateral eye
1990-01-01
The sensitivity of the Limulus lateral eye exhibits a pronounced circadian rhythm. At night a circadian oscillator in the brain activates efferent fibers in the optic nerve, inducing multiple changes in the physiological and anatomical characteristics of retinal cells. These changes increase the sensitivity of the retina by about five orders of magnitude. We investigated whether this increase in retinal sensitivity is accompanied by changes in the ability of the retina to process temporal information. We measured the frequency transfer characteristic (FTC) of single receptors (ommatidia) by recording the response of their optic nerve fibers to sinusoidally modulated light. We first measured the FTC in the less sensitive daytime state and then after converting the retina to the more sensitive nighttime state by electrical stimulation of the efferent fibers. The activation of these fibers shifted the peak of the FTC to lower frequencies and reduced the slope of the low-frequency limb. These changes reduce the eye's ability to detect rapid changes in light intensity but enhance its ability to detect dim flashes of light. Apparently Limulus sacrifices temporal resolution for increased visual sensitivity at night. PMID:2307958
Portable atomic frequency standard based on coherent population trapping
NASA Astrophysics Data System (ADS)
Shi, Fan; Yang, Renfu; Nian, Feng; Zhang, Zhenwei; Cui, Yongshun; Zhao, Huan; Wang, Nuanrang; Feng, Keming
2015-05-01
In this work, a portable atomic frequency standard based on coherent population trapping is designed and demonstrated. To achieve a portable prototype, in the system, a single transverse mode 795nm VCSEL modulated by a 3.4GHz RF source is used as a pump laser which generates coherent light fields. The pump beams pass through a vapor cell containing atom gas and buffer gas. This vapor cell is surrounded by a magnetic shield and placed inside a solenoid which applies a longitudinal magnetic field to lift the Zeeman energy levels' degeneracy and to separate the resonance signal, which has no first-order magnetic field dependence, from the field-dependent resonances. The electrical control system comprises two control loops. The first one locks the laser wavelength to the minimum of the absorption spectrum; the second one locks the modulation frequency and output standard frequency. Furthermore, we designed the micro physical package and realized the locking of a coherent population trapping atomic frequency standard portable prototype successfully. The short-term frequency stability of the whole system is measured to be 6×10-11 for averaging times of 1s, and reaches 5×10-12 at an averaging time of 1000s.
Practical system for the generation of pulsed quantum frequency combs.
Roztocki, Piotr; Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Sciara, Stefania; Zhang, Yanbing; Cino, Alfonso; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto
2017-08-07
The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.
N-terminus of Cardiac Myosin Essential Light Chain Modulates Myosin Step-Size
Wang, Yihua; Ajtai, Katalin; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Burghardt, Thomas P.
2016-01-01
Muscle myosin cyclically hydrolyzes ATP to translate actin. Ventricular cardiac myosin (βmys) moves actin with three distinct unitary step-sizes resulting from its lever-arm rotation and with step-frequencies that are modulated in a myosin regulation mechanism. The lever-arm associated essential light chain (vELC) binds actin by its 43 residue N-terminal extension. Unitary steps were proposed to involve the vELC N-terminal extension with the 8 nm step engaging the vELC/actin bond facilitating an extra ~19 degrees of lever-arm rotation while the predominant 5 nm step forgoes vELC/actin binding. A minor 3 nm step is the unlikely conversion of the completed 5 to the 8 nm step. This hypothesis was tested using a 17 residue N-terminal truncated vELC in porcine βmys (Δ17βmys) and a 43 residue N-terminal truncated human vELC expressed in transgenic mouse heart (Δ43αmys). Step-size and step-frequency were measured using the Qdot motility assay. Both Δ17βmys and Δ43αmys had significantly increased 5 nm step-frequency and coincident loss in the 8 nm step-frequency compared to native proteins suggesting the vELC/actin interaction drives step-size preference. Step-size and step-frequency probability densities depend on the relative fraction of truncated vELC and relate linearly to pure myosin species concentrations in a mixture containing native vELC homodimer, two truncated vELCs in the modified homodimer, and one native and one truncated vELC in the heterodimer. Step-size and step-frequency, measured for native homodimer and at two or more known relative fractions of truncated vELC, are surmised for each pure species by using a new analytical method. PMID:26671638
Arena, Alessandro; Lamanna, Jacopo; Gemma, Marco; Ripamonti, Maddalena; Ravasio, Giuliano; Zimarino, Vincenzo; De Vitis, Assunta; Beretta, Luigi; Malgaroli, Antonio
2017-01-01
The mechanisms of action of anaesthetics on the living brain are still poorly understood. In this respect, the analysis of the differential effects of anaesthetics on spontaneous and sensory-evoked cortical activity might provide important and novel cues. Here we show that the anaesthetic sevoflurane strongly silences the brain but potentiates in a dose- and frequency-dependent manner the cortical visual response. Such enhancement arises from a linear scaling by sevoflurane of the power-law relation between light intensity and the cortical response. The fingerprint of sevoflurane action suggests that circuit silencing can boost linearly synaptic responsiveness presumably by scaling the number of responding units and/or their correlation following a sensory stimulation. General anaesthetics, which are expected to silence brain activity, often spare sensory responses. To evaluate differential effects of anaesthetics on spontaneous and sensory-evoked cortical activity, we characterized their modulation by sevoflurane and propofol. Power spectra and the bust-suppression ratio from EEG data were used to evaluate anaesthesia depth. ON and OFF cortical responses were elicited by light pulses of variable intensity, duration and frequency, during light and deep states of anaesthesia. Both anaesthetics reduced spontaneous cortical activity but sevoflurane greatly enhanced while propofol diminished the ON visual response. Interestingly, the large potentiation of the ON visual response by sevoflurane was found to represent a linear scaling of the encoding mechanism for light intensity. To the contrary, the OFF cortical visual response was depressed by both anaesthetics. The selective depression of the OFF component by sevoflurane could be converted into a robust potentiation by the pharmacological blockade of the ON pathway, suggesting that the temporal order of ON and OFF responses leads to a depression of the latter. This hypothesis agrees with the finding that the enhancement of the ON response was converted into a depression by increasing the frequency of light-pulse stimulation from 0.1 to 1 Hz. Overall, our results support the view that inactivity-dependent modulation of cortical circuits produces an increase in their responsiveness. Among the implications of our findings, the silencing of cortical circuits can boost linearly the cortical responsiveness but with negative impact on their frequency transfer and with a loss of the information content of the sensory signal. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Fully digital programmable optical frequency comb generation and application.
Yan, Xianglei; Zou, Xihua; Pan, Wei; Yan, Lianshan; Azaña, José
2018-01-15
We propose a fully digital programmable optical frequency comb (OFC) generation scheme based on binary phase-sampling modulation, wherein an optimized bit sequence is applied to phase modulate a narrow-linewidth light wave. Programming the bit sequence enables us to tune both the comb spacing and comb-line number (i.e., number of comb lines). The programmable OFCs are also characterized by ultra-flat spectral envelope, uniform temporal envelope, and stable bias-free setup. Target OFCs are digitally programmed to have 19, 39, 61, 81, 101, or 201 comb lines and to have a 100, 50, 20, 10, 5, or 1 MHz comb spacing. As a demonstration, a scanning-free temperature sensing system using a proposed OFC with 1001 comb lines was also implemented with a sensitivity of 0.89°C/MHz.
High frequency optical communications; Proceedings of the Meeting, Cambridge, MA, Sept. 23, 24, 1986
NASA Astrophysics Data System (ADS)
Ramer, O. Glenn; Sierak, Paul
Topics discussed in this volume include systems and applications, detectors, sources, and coherent communications. Papers are presented on RF fiber optic links for avionics applications, fiber optics and optoelectronics for radar and electronic warfare applications, symmetric coplanar electrodes for high-speed Ti:LiNbO3 devices, and surface wave electrooptic modulator. Attention is given to X-band RF fiber-optic links, fiber-optic links for microwave signal transmission, GaAs monolithic receiver and laser driver for GHz transmission rates, and monolithically integrable high-speed photodetectors. Additional papers are on irregular and chaotic behavior of semiconductor lasers under modulation, high-frequency laser package for microwave optical communications, receiver modeling for coherent light wave communications, and polarization sensors and controllers for coherent optical communication systems.
A full-duplex CATV/wireless-over-fiber lightwave transmission system.
Li, Chung-Yi; Lu, Hai-Han; Ying, Cheng-Ling; Cheng, Chun-Jen; Lin, Che-Yu; Wan, Zhi-Wei; Chen, Jian-Hua
2015-04-06
A full-duplex CATV/wireless-over-fiber lightwave transmission system consisting of one broadband light source (BLS), two optical interleavers (ILs), one intensity modulator, and one phase modulator is proposed and experimentally demonstrated. The downstream light is optically promoted from 10Gbps/25GHz microwave (MW) data signal to 10Gbps/100GHz and 10Gbps/50GHz millimeter-wave (MMW) data signals in fiber-wireless convergence, and intensity-modulated with 50-550 MHz CATV signal. For up-link transmission, the downstream light is phase-remodulated with 10Gbps/25GHz MW data signal in fiber-wireless convergence. Over a 40-km single-mode fiber (SMF) and a 10-m radio frequency (RF) wireless transport, bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed to perform well in such full-duplex CATV/wireless-over-fiber lightwave transmission systems. This full-duplex 100-GHz/50-GHz/25-GHz/550-MHz lightwave transmission system is an attractive alternative. This transmission system not only presents its advancement in the integration of fiber backbone and CATV/wireless feeder networks, but also it provides the advantages of a communication channel for higher data rates and bandwidth.
Whispering gallery mode lithium niobate microresonators for photonics applications
NASA Astrophysics Data System (ADS)
Maleki, Lute; Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Matsko, Andrey B.
2003-07-01
We review various photonics applications of whispering gallery mode (WGM) dielectric resonators and focus on the capability of generating trains of short optical pulses using WGM lithium niobate cavities. We introduce schemes of optical frequency comb generators, actively mode-locked lasers, and coupled opto-electronic oscillators where WGM cavities are utilized for the light amplification and modulation.
Complex modulation using tandem polarization modulators
NASA Astrophysics Data System (ADS)
Hasan, Mehedi; Hall, Trevor
2017-11-01
A novel photonic technique for implementing frequency up-conversion or complex modulation is proposed. The proposed circuit consists of a sandwich of a quarter-wave plate between two polarization modulators, driven, respectively, by an in-phase and quadrature-phase signals. The operation of the circuit is modelled using a transmission matrix method. The theoretical prediction is then validated by simulation using an industry-standard software tool. The intrinsic conversion efficiency of the architecture is improved by 6 dB over a functionally equivalent design based on dual parallel Mach-Zehnder modulators. Non-ideal scenarios such as imperfect alignment of the optical components and power imbalances and phase errors in the electric drive signals are also analysed. As light travels, along one physical path, the proposed design can be implemented using discrete components with greater control of relative optical path length differences. The circuit can further be integrated in any material platform that offers electro-optic polarization modulators.
Design of a probe for two-dimensional small angle detection
NASA Astrophysics Data System (ADS)
He, Haixia; Wang, Xuanze; Zhong, Yuning; Yang, Liangen; Cao, Hongduan
2008-10-01
A novel two-dimensional small angle probe is introduced, which is based on principle of auto-collimation and utilizes quadrant Si-photoelectric detector (QPD) as detection device. AC modulation, AC magnification and absolute value demodulation are incorporated to restrain the DC excursion caused by background light and noise etc and to improve the sensitivity and stability of angle detection. To ensure that while the laser is shining, the current signal (converted into voltage signal) of QPD also is linear to the AC modulation voltage, this paper adopted AC modulation signal (5400Hz) with a DC offset. AC magnification circuit with reasonable parameters is designed to inhibit DC drift and the impact of industrial frequency noise and to ensure good amplification to signal frequency at the same time. A piezoelectric-driven micro-angle generator is designed to demarcate the angle. The calibration data are input to single chip, and the measurement of angles can be shown in SMC1602A.
Spectral analysis techniques for characterizing cadmium zinc telluride polarization modulators
NASA Astrophysics Data System (ADS)
FitzGerald, William R.; Taherion, Saeid; Kumar, F. Joseph; Giles, David; Hore, Dennis K.
2018-04-01
The low frequency electro-optic characteristics of cadmium zinc telluride are demonstrated in the mid-infrared, in the spectral range 2.5-11 μm. Conventional methods for characterizing the dynamic response by monitoring the amplitude of the time-varying light intensity do not account for spatial variation in material properties. In such cases, a more revealing method involves monitoring two distinct frequency components in order to characterize the dynamic and static contributions to the optical retardation. We demonstrate that, while this method works well for a ZnSe photo-elastic modulator, it does not fully capture the response of a cadmium zinc telluride electro-optic modulator. Ultimately, we show that acquiring the full waveform of the optical response enables a model to be created that accounts for inhomogeneity in the material that results in an asymmetric response with respect to the polarity of the driving voltage. This technique is applicable to broadband and fixed-wavelength applications in a variety of spectral ranges.
Musha, Mitsuru; Hong, Feng-Lei; Nakagawa, Ken'ichi; Ueda, Ken-ichi
2008-10-13
Optical frequency at 1542 nm was coherently transferred over a 120-km-long installed telecom fiber network between two cities (Tsukuba and Tokyo) in Japan separated by more than 50 km. The phase noise induced by the fiber length fluctuations was actively reduced by using a fiber stretcher and an acousto-optic modulator. The fractional frequency instability of the one-way transmitted light was reduced down to less than 8.0 x 10(-16) at an averaging time of 1s, which is limited by the theoretical limit deduced from the length and the intrinsic noise of the fiber.
Huang, Kuan-Chung; Hsiao, Yu-Cheng; Timofeev, Ivan V; Zyryanov, Victor Ya; Lee, Wei
2016-10-31
We report on the spectral properties of an optically switchable tristable chiral-tilted homeotropic nematic liquid crystal (LC) incorporated as a tunable defect layer in one-dimensional photonic crystal. By varying the polarization angle of the incident light and modulating the light intensity ratio between UV and green light, various transmission characteristics of the composite were obtained. The hybrid structure realizes photo-tunability in transmission of defect-mode peaks within the photonic bandgap in addition to optical switchability among three distinct sets of defect modes via photoinduced tristable state transitions. Because the fabrication process is easier and less critical in terms of cell parameters or sample preparation conditions and the LC layer itself possesses an extra stable state compared with the previously reported bistable counterpart operating on the basis of biased-voltage dual-frequency switching, it has much superior potential for photonic applications such as a low-power-consumption multichannel filter and an optically controllable intensity modulator.
NASA Astrophysics Data System (ADS)
Phanindra, V. Eswara; Agarwal, Piyush; Rana, D. S.
2018-01-01
The intertwined and competing energy scales of various interactions in rare-earth nickelates R Ni O3 (R =La to Lu) hold potential for a wide range of exotic ground states realized upon structural modulation. Using terahertz (THz) spectroscopy, the low-energy dynamics of a novel non-Fermi liquid (NFL) metallic phase induced in compressive PrNi O3 thin film was studied by evaluating the quasiparticle scattering rate in the light of two distinct models over a wide temperature range. First, evaluating THz conductivity in the framework of extended Drude model, the frequency-dependent scattering rate is found to deviate from the Landau Fermi liquid (LFL) behavior, thus, suggesting NFL-like phase at THz frequencies. Second, fitting THz conductivity to the multiband Drude-Lorentz model reveals the band-dependent scattering rates and provides microscopic interpretation of the carriers contributing to the Drude modes. This is first evidence of NFL-like behavior in nickelates at THz frequencies consistent with dc conductivity, which also suggests that THz technology is indispensable in understanding emerging electronic phases and associated phenomena. We further demonstrate that the metal-insulator transition in nickelates has the potential to design efficient THz modulators.
Kienle, A; Patterson, M S
1997-09-01
We investigate theoretically the errors in determining the reduced scattering and absorption coefficients of semi-infinite turbid media from frequency-domain reflectance measurements made at small distances between the source and the detector(s). The errors are due to the uncertainties in the measurement of the phase, the modulation and the steady-state reflectance as well as to the diffusion approximation which is used as a theoretical model to describe light propagation in tissue. Configurations using one and two detectors are examined for the measurement of the phase and the modulation and for the measurement of the phase and the steady-state reflectance. Three solutions of the diffusion equation are investigated. We show that measurements of the phase and the steady-state reflectance at two different distances are best suited for the determination of the optical properties close to the source. For this arrangement the errors in the absorption coefficient due to typical uncertainties in the measurement are greater than those resulting from the application of the diffusion approximation at a modulation frequency of 200 MHz. A Monte Carlo approach is also examined; this avoids the errors due to the diffusion approximation.
Bolnick, Daniel I; Hendrix, Kimberly; Jordan, Lyndon Alexander; Veen, Thor; Brock, Chad D
2016-08-01
Variation in male nuptial colour signals might be maintained by negative frequency-dependent selection. This can occur if males are more aggressive towards rivals with locally common colour phenotypes. To test this hypothesis, we introduced red or melanic three-dimensional printed-model males into the territories of nesting male stickleback from two optically distinct lakes with different coloured residents. Red-throated models were attacked more in the population with red males, while melanic models were attacked more in the melanic male lake. Aggression against red versus melanic models also varied across a depth gradient within each lake, implying that the local light environment also modulated the strength of negative frequency dependence acting on male nuptial colour. © 2016 The Author(s).
Magnetized SASI: its mechanism and possible connection to some QPOs in XRBs
NASA Astrophysics Data System (ADS)
Dhang, Prasun; Sharma, Prateek; Mukhopadhyay, Banibrata
2018-05-01
The presence of a surface at the inner boundary, such as in a neutron star or a white dwarf, allows the existence of a standing shock in steady spherical accretion. The standing shock can become unstable in 2D or 3D; this is called the standing accretion shock instability (SASI). Two mechanisms - advective-acoustic and purely acoustic - have been proposed to explain SASI. Using axisymmetric hydrodynamic and magnetohydrodynamic simulations, we find that the advective-acoustic mechanism better matches the observed oscillation time-scales in our simulations. The global shock oscillations present in the accretion flow can explain many observed high frequency (≳100 Hz) quasi-periodic oscillations (QPOs) in X-ray binaries. The presence of a moderately strong magnetic field adds more features to the shock oscillation pattern, giving rise to low frequency modulation in the computed light curve. This low frequency modulation can be responsible for ˜100 Hz QPOs (known as hHz QPOs). We propose that the appearance of hHz QPO determines the separation of twin peak QPOs of higher frequencies.
Modulation of frequency doubled DFB-tapered diode lasers for medical treatment
NASA Astrophysics Data System (ADS)
Christensen, Mathias; Hansen, Anders K.; Noordegraaf, Danny; Jensen, Ole B.; Skovgaard, Peter M. W.
2017-02-01
The use of visible lasers for medical treatments is on the rise, and together with this comes higher expectations for the laser systems. For many medical treatments, such as ophthalmology, doctors require pulse on demand operation together with a complete extinction of the light between pulses. We have demonstrated power modulation from 0.1 Hz to 10 kHz at 532 nm with a modulation depth above 97% by wavelength detuning of the laser diode. The laser diode is a 1064 nm monolithic device with a distributed feedback (DFB) laser as the master oscillator (MO), and a tapered power amplifier (PA). The MO and PA have separate electrical contacts and the modulation is achieved with wavelength tuning by adjusting the current through the MO 40 mA.
The partial coherence modulation transfer function in testing lithography lens
NASA Astrophysics Data System (ADS)
Huang, Jiun-Woei
2018-03-01
Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.
The formation of quantum images and their transformation and super-resolution reading
NASA Astrophysics Data System (ADS)
Balakin, D. A.; Belinsky, A. V.
2016-05-01
Images formed by light with suppressed photon fluctuations are interesting objects for studies with the aim of increasing their limiting information capacity and quality. This light in the sub-Poisson state can be prepared in a resonator filled with a medium with Kerr nonlinearity, in which self-phase modulation takes place. Spatially and temporally multimode light beams are studied and the production of spatial frequency spectra of suppressed photon fluctuations is described. The efficient operation regimes of the system are found. A particular schematic solution is described, which allows one to realize the potential possibilities laid in the formation of the squeezed states of light to a maximum degree during self-phase modulation in a resonator for the maximal suppression of amplitude quantum noises upon two-dimensional imaging. The efficiency of using light with suppressed quantum fluctuations for computer image processing is studied. An algorithm is described for interpreting measurements for increasing the resolution with respect to the geometrical resolution. A mathematical model that characterizes the measurement scheme is constructed and the problem of the image reconstruction is solved. The algorithm for the interpretation of images is verified. Conditions are found for the efficient application of sub-Poisson light for super-resolution imaging. It is found that the image should have a low contrast and be maximally transparent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakin, D. A.; Belinsky, A. V., E-mail: belinsky@inbox.ru
Images formed by light with suppressed photon fluctuations are interesting objects for studies with the aim of increasing their limiting information capacity and quality. This light in the sub-Poisson state can be prepared in a resonator filled with a medium with Kerr nonlinearity, in which self-phase modulation takes place. Spatially and temporally multimode light beams are studied and the production of spatial frequency spectra of suppressed photon fluctuations is described. The efficient operation regimes of the system are found. A particular schematic solution is described, which allows one to realize the potential possibilities laid in the formation of the squeezedmore » states of light to a maximum degree during self-phase modulation in a resonator for the maximal suppression of amplitude quantum noises upon two-dimensional imaging. The efficiency of using light with suppressed quantum fluctuations for computer image processing is studied. An algorithm is described for interpreting measurements for increasing the resolution with respect to the geometrical resolution. A mathematical model that characterizes the measurement scheme is constructed and the problem of the image reconstruction is solved. The algorithm for the interpretation of images is verified. Conditions are found for the efficient application of sub-Poisson light for super-resolution imaging. It is found that the image should have a low contrast and be maximally transparent.« less
Sweeney, Dylan; Mueller, Guido
2012-11-05
The Laser Interferometer Space Antenna (LISA) and other space based gravitational wave detector designs require a laser communication subsystem to, among other things, transfer clock signals between spacecraft (SC) in order to cancel clock noise in post-processing. The original LISA baseline design requires frequency synthesizers to convert each SC clock into a 2 GHz signal, and electro-optic modulators (EOMs) to modulate this 2 GHz clock signal onto the laser light. Both the frequency synthesizers and the EOMs must operate with a phase fidelity of 2×10(-4)cycles/√Hz. In this paper we present measurements of the phase fidelity of frequency synthesizers and EOMs. We found that both the frequency synthesizers and the EOMs meet the requirement when tested independently and together. We also performed an electronic test of the clock noise transfer using frequency synthesizers and the University of Florida LISA Interferometry (UFLIS) phasemeter. We found that by applying a time varying fractional delay filter we could suppress the clock noise to a level below our measurement limit, which is currently determined by timing jitter and is less than an order of magnitude above the LISA requirement for phase measurements.
Amplifiers dedicated for large area SiC photodiodes
NASA Astrophysics Data System (ADS)
Doroz, P.; Duk, M.; Korwin-Pawlowski, M. L.; Borecki, M.
2016-09-01
Large area SiC photodiodes find applications in optoelectronic sensors working at special conditions. These conditions include detection of UV radiation in harsh environment. Moreover, the mentioned sensors have to be selective and resistant to unwanted signals. For this purpose, the modulation of light at source unit and the rejection of constant current and low frequency component of signal at detector unit are used. The popular frequency used for modulation in such sensor is 1kHz. The large area photodiodes are characterized by a large capacitance and low shunt resistance that varies with polarization of the photodiode and can significantly modify the conditions of signal pre-amplification. In this paper two pre-amplifiers topology are analyzed: the transimpedance amplifier and the non-inverting voltage to voltage amplifier with negative feedback. The feedback loops of both pre-amplifiers are equipped with elements used for initial constant current and low frequency signals rejections. Both circuits are analyzed and compared using simulation and experimental approaches.
Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene.
Crosse, J A; Xu, Xiaodong; Sherwin, Mark S; Liu, R B
2014-09-24
In a semiconductor illuminated by a strong terahertz (THz) field, optically excited electron-hole pairs can recombine to emit light in a broad frequency comb evenly spaced by twice the THz frequency. Such high-order THz sideband generation is of interest both as an example of extreme nonlinear optics and also as a method for ultrafast electro-optical modulation. So far, this phenomenon has only been observed with large field strengths (~10 kV cm(-1)), an obstacle for technological applications. Here we predict that bi-layer graphene generates high-order sidebands at much weaker THz fields. We find that a THz field of strength 1 kV cm(-1) can produce a high-sideband spectrum of about 30 THz, 100 times broader than in GaAs. The sidebands are generated despite the absence of classical collisions, with the quantum coherence of the electron-hole pairs enabling recombination. These remarkable features lower the barrier to desktop electro-optical modulation at THz frequencies, facilitating ultrafast optical communications.
NASA Astrophysics Data System (ADS)
Yin, Guoyan; Zhang, Limin; Zhang, Yanqi; Liu, Han; Du, Wenwen; Ma, Wenjuan; Zhao, Huijuan; Gao, Feng
2018-02-01
Pharmacokinetic diffuse fluorescence tomography (DFT) can describe the metabolic processes of fluorescent agents in biomedical tissue and provide helpful information for tumor differentiation. In this paper, a dynamic DFT system was developed by employing digital lock-in-photon-counting with square wave modulation, which predominates in ultra-high sensitivity and measurement parallelism. In this system, 16 frequency-encoded laser diodes (LDs) driven by self-designed light source system were distributed evenly in the imaging plane and irradiated simultaneously. Meanwhile, 16 detection fibers collected emission light in parallel by the digital lock-in-photon-counting module. The fundamental performances of the proposed system were assessed with phantom experiments in terms of stability, linearity, anti-crosstalk as well as images reconstruction. The results validated the availability of the proposed dynamic DFT system.
Performance Evaluation of High Speed Multicarrier System for Optical Wireless Communication
NASA Astrophysics Data System (ADS)
Mathur, Harshita; Deepa, T.; Bartalwar, Sophiya
2018-04-01
Optical wireless communication (OWC) in the infrared and visible range is quite impressive solution, especially where radio communication face challenges. Visible light communication (VLC) uses visible light over a range of 400 and 800 THz and is a subdivision of OWC technologies. With an increasing demand for use of wireless communications, wireless access via Wi-Fi is facing many challenges especially in terms of capacity, availability, security and efficiency. VLC uses intensity modulation and direct detection (IM/DD) techniques and hence they require the signals to certainly be real valued positive sequences. These constraints pose limitation on digital modulation techniques. These limitations result in spectrum-efficiency or power-efficiency losses. In this paper, we investigate an amplitude shift keying (ASK) based orthogonal frequency division multiplexing (OFDM) signal transmission scheme using LabVIEW for VLC technology.
NASA Astrophysics Data System (ADS)
Krippner, Peter; Mohr, Juergen; Saile, Volker
1999-09-01
In recent years, microspectrometers made by the LIGA technology for the visible wavelength range have found their way into the market. Opening the wide field of spectral analysis in the infrared range, the concept of a highly transmissive hollow waveguide has been demonstrated successfully. In combination with linear detector arrays, hollow waveguide microspectrometers can be combined into handheld infrared spectrometer systems. The only obstacle to a miniaturized system is the lack of miniaturized light modulators. To solve this problem, a miniaturized light modulator has been developed. It consists of an oscillating stop driven by an electromagnetic actuator. It is made out of permalloy by means of LIGA micromechanics. Its outer dimensions of approx. 3.0 X 3.2 mm2 and a structure height of 280 micrometer allow it to be integrated into the plane of the entrance slit of the microspectrometer of about 20 mm to 30 mm size. The spectrometer has alignment structures to ensure positioning of the oscillating stop close to the entrance slit. This simplifies assembly. The actuator is excited by an hybrid integrated coil fixed by springs snapping into place during assembly. The maximum supply voltage of 5V allows the chopper to be used in low-voltage spectrometer systems, especially in handheld systems. The highest modulation frequency is more than 1 kHz, which is sufficient to work with the lead salt detectors commonly used. In this frequency range, detector noise is greatly attenuated compared to continuous-light operation. The paper contains an outline of the concept of the whole microspectrometer system. Experimental results are discussed to demonstrate the performance of the system.
Depth Profiles in Maize ( Zea mays L.) Seeds Studied by Photoacoustic Spectroscopy
NASA Astrophysics Data System (ADS)
Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Zepeda-Bautista, R.
2015-06-01
Photoacoustic spectroscopy (PAS) has been used to analyze agricultural seeds and can be applied to the study of seed depth profiles of these complex samples composed of different structures. The sample depth profile can be obtained through the photoacoustic (PA) signal, amplitude, and phase at different light modulation frequencies. The PA signal phase is more sensitive to changes of thermal properties in layered samples than the PA signal amplitude. Hence, the PA signal phase can also be used to characterize layers at different depths. Thus, the objective of the present study was to obtain the optical absorption spectra of maize seeds ( Zea mays L.) by means of PAS at different light modulation frequencies (17 Hz, 30 Hz, and 50 Hz) and comparing these spectra with the ones obtained from the phase-resolved method in order to separate the optical absorption spectra of seed pericarp and endosperm. The results suggest the possibility of using the phase-resolved method to obtain optical absorption spectra of different seed structures, at different depths, without damaging the seed. Thus, PAS could be a nondestructive method for characterization of agricultural seeds and thus improve quality control in the food industry.
Intramolecular co-action of two independent photosensory modules in the fern phytochrome 3.
Kanegae, Takeshi
2015-01-01
Fern phytochrome3/neochrome1 (phy3/neo1) is a chimeric photoreceptor composed of a phytochrome-chromophore binding domain and an almost full-length phototropin. phy3 thus contains two different light-sensing modules; a red/far-red light receptor phytochrome and a blue light receptor phototropin. phy3 induces both red light- and blue light-dependent phototropism in phototropin-deficient Arabidopsis thaliana (phot1 phot2) seedlings. The red-light response is dependent on the phytochrome module of phy3, and the blue-light response is dependent on the phototropin module. We recently showed that both the phototropin-sensing module and the phytochrome-sensing module mediate the blue light-dependent phototropic response. Particularly under low-light conditions, these two light-sensing modules cooperate to induce the blue light-dependent phototropic response. This intramolecular co-action of two independent light-sensing modules in phy3 enhances light sensitivity, and perhaps allowed ferns to adapt to the low-light canopy conditions present in angiosperm forests.
Modulated-alignment dual-axis (MAD) confocal microscopy for deep optical sectioning in tissues
Leigh, Steven Y.; Chen, Ye; Liu, Jonathan T.C.
2014-01-01
A strategy is presented to enable optical-sectioning microscopy with improved contrast and imaging depth using low-power (0.5 - 1 mW) diode laser illumination. This technology combines the inherent strengths of focal-modulation microscopy and dual-axis confocal (DAC) microscopy for rejecting out-of-focus and multiply scattered background light in tissues. The DAC architecture is unique in that it utilizes an intersecting pair of illumination and collection beams to improve the spatial-filtering and optical-sectioning performance of confocal microscopy while focal modulation selectively ‘labels’ in-focus signals via amplitude modulation. Simulations indicate that modulating the spatial alignment of dual-axis beams at a frequency f generates signals from the focal volume of the microscope that are modulated at 2f with minimal modulation of background signals, thus providing nearly an order-of-magnitude improvement in optical-sectioning contrast compared to DAC microscopy alone. Experiments show that 2f lock-in detection enhances contrast and imaging depth within scattering phantoms and fresh tissues. PMID:24940534
NASA Technical Reports Server (NTRS)
Corbet, Robin H. D.; Krimm, Hans A.
2013-01-01
We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418-4532, and IGR J16479-4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493-4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393-4643 (= AX J16390.4-4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1-6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.
NASA Astrophysics Data System (ADS)
Druart, Guillaume; Rommeluere, Sylvain; Viale, Thibault; Guerineau, Nicolas; Ribet-Mohamed, Isabelle; Crastes, Arnaud; Durand, Alain; Taboury, Jean
2014-05-01
Today, both military and civilian applications require miniaturized and cheap optical systems. One way to achieve this trend consists in decreasing the pixel pitch of focal plane arrays (FPA). In order to evaluate the performance of the overall optical systems, it is necessary to measure the modulation transfer function (MTF) of these pixels. However, small pixels lead to higher cut-off frequencies and therefore, original MTF measurements that are able to extract frequencies up to these high cut-off frequencies, are needed. In this paper, we will present a way to extract 1D MTF at high frequencies by projecting fringes on the FPA. The device uses a Lloyd mirror placed near and perpendicular to the focal plane array. Consequently, an interference pattern of fringes can be projected on the detector. By varying the angle of incidence of the light beam, we can tune the period of the interference fringes and, thus, explore a wide range of spatial frequencies, and mainly around the cut-off frequency of the pixel which is one of the most interesting area. Illustration of this method will be applied to a 640×480 microbolometer focal plane array with a pixel pitch of 17µm in the LWIR spectral region.
Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor.
Du, Yuhuan; Guo, Yingqing
2016-07-15
In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter.
NASA Astrophysics Data System (ADS)
Radtke, J.; Sponner, J.; Jakobi, C.; Schneider, J.; Sommer, M.; Teichmann, T.; Ullrich, W.; Henniger, J.; Kormoll, T.
2018-01-01
Single photon detection applied to optically stimulated luminescence (OSL) dosimetry is a promising approach due to the low level of luminescence light and the known statistical behavior of single photon events. Time resolved detection allows to apply a variety of different and independent data analysis methods. Furthermore, using amplitude modulated stimulation impresses time- and frequency information into the OSL light and therefore allows for additional means of analysis. Considering the impressed frequency information, data analysis by using Fourier transform algorithms or other digital filters can be used for separating the OSL signal from unwanted light or events generated by other phenomena. This potentially lowers the detection limits of low dose measurements and might improve the reproducibility and stability of obtained data. In this work, an OSL system based on a single photon detector, a fast and accurate stimulation unit and an FPGA is presented. Different analysis algorithms which are applied to the single photon data are discussed.
Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor
Du, Yuhuan; Guo, Yingqing
2016-01-01
In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter. PMID:27428976
A light-induced microwave oscillator
NASA Technical Reports Server (NTRS)
Yao, X. S.; Maleki, L.
1995-01-01
We describe a novel oscillator that converts continuous light energy into sta ble and spectrally pure microwave signals. This light-induced microwave oscillator (LIMO) consists of a pump laser and a feedback circuit, including an intensity modulator, an optical fiber delay line, a photodetector, an amplifier, and a filter. We develop a quasilinear theory and obtain expressions for the threshold condition, the amplitude, the frequency, the line width, and the spectral power density of the oscillation. We also present experimental data to compare with the theoretical results. Our findings indicate that the LIMO can generate ultrastable, spectrally pure microwave reference signals up to 75 GHz with a phase noise lower than -140 dBc/Hz at 10 kHz.
Study of Laser Reflectivity on Skin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oidor-Garcia, J. J. J.; Trevino-Palacios, C. G.
2008-08-11
The response to the light on the skin can be manifested as temperature increase or creation of biochemical byproducts, in which further studies are required to asset the light effect. This response changes the average response over time and can produce discrepancies between similar studies. In this work we present a Low Level Laser Therapy (LLLT) study with feedback. We study the time response reflectivity of a 980 nm laser diode of 25 mW modulated at frequencies close to 40 kHz and detect the reflected light on a silicon photodiode, finding no direct correlation between different test points or individuals,more » while finding reproducible responses within the same individual and test point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.
2011-01-04
We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency changemore » due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.« less
Demodulation RFI statistics for a 3-stage op amp LED circuit
NASA Astrophysics Data System (ADS)
Whalen, James J.
An experiment has been performed to demonstrate the feasibility of combining several methods of electromagnetic-compatibility analysis. The part of the experiment that demonstrates how RF signals cause interference in an audio-frequency (AF) circuit and how the interference can be suppressed is described. The circuit includes three operational amplifiers (op amps) and a light-emitting diode (LED). A 50 percent amplitude-modulated (AM) radio-frequency-interference (RFI) signal is used, varied over the range from 0.1 to 400 MHz. The AM frequency is 1 kHz. The RFI is injected into the inverting input of the first op amp, and the 1-kHz demodulation response of the amplifier is amplified by the second and third op amps and lights the LED to provide a visual display of the existence of RFI. An RFI suppression capacitor was added to reduce the RFI. The demodulation RFI results are presented as scatter plots for 35 741 op amps. Mean values and standard deviations are also shown.
Wang, Zhiye; Wang, Zi; Lin, Bangjiang; Hu, XueFu; Wei, YunFeng; Zhang, Cankun; An, Bing; Wang, Cheng; Lin, Wenbin
2017-10-11
A dye@metal-organic framework (MOF) hybrid was used as a fluorophore in a white-light-emitting diode (WLED) for fast visible-light communication (VLC). The white light was generated from a combination of blue emission of the 9,10-dibenzoate anthracene (DBA) linkers and yellow emission of the encapsulated Rhodamine B molecules. The MOF structure not only prevents dye molecules from aggregation-induced quenching but also efficiently transfers energy to the dye for dual emission. This light-emitting material shows emission lifetimes of 1.8 and 5.3 ns for the blue and yellow components, respectively, which are significantly shorter than the 200 ns lifetime of Y 3 Al 5 O 12 :Ce 3+ in commercial WLEDs. The MOF-WLED device exhibited a modulating frequency of 3.6 MHz for VLC, six times that of commercial WLEDs.
NASA Astrophysics Data System (ADS)
Yin, Yujian; Su, Ping; Ma, Jianshe
2018-01-01
A method to improve the radial resolution using special structured light is proposed in the field of digital holographic microscopy (DHM). A specimen is illuminated with circular symmetrical structured light that makes the spectrum have radial movement, so that high frequency components of the specimen are moved into the passband of the receiver to overcome the diffraction limit. In the DHM imaging system, Computer Generated Hologram (CGH) technology is used to generate the required structured light grating. Then the grating is loaded into a spatial light modulator (SLM) to obtain specific structured illumination. After recording the hologram, digital reconstruction, for the microstructure of a binary optical element that needs to observe radial distribution, the radial resolution of the specimen is improved experimentally compare it with the result of one-dimensional sinusoidal structured light imaging. And a method of designing structured light is presented.
Dual-Photoelastic-Modulator-Based Polarimetric Imaging Concept for Aerosol Remote Sensing
NASA Technical Reports Server (NTRS)
Diner, David J.; Davis, Ab; Hancock, Bruce; Gutt, Gary; Chipman, Russell A.; Cairns, Brian
2007-01-01
A dual-photoelastic-modulator- (PEM-) based spectropolarimetric camera concept is presented as an approach for global aerosol monitoring from space. The most challenging performance objective is to measure degree of linear polarization (DOLP) with an uncertainty of less than 0.5% in multiple spectral bands, at moderately high spatial resolution, over a wide field of view, and for the duration of a multiyear mission. To achieve this, the tandem PEMs are operated as an electro-optic circular retardance modulator within a high-performance reflective imaging system. Operating the PEMs at slightly different resonant frequencies generates a beat signal that modulates the polarized component of the incident light at a much lower heterodyne frequency. The Stokes parameter ratio q = Q/I is obtained from measurements acquired from each pixel during a single frame, providing insensitivity to pixel responsivity drift and minimizing polarization artifacts that conventionally arise when this quantity is derived from differences in the signals from separate detectors. Similarly, u = U/I is obtained from a different pixel; q and u are then combined to form the DOLP. A detailed accuracy and tolerance analysis for this polarimeter is presented.
Low-frequency variations of unknown origin in the Kepler δ Scuti star KIC 5988140 = HD 188774
NASA Astrophysics Data System (ADS)
Lampens, P.; Tkachenko, A.; Lehmann, H.; Debosscher, J.; Aerts, C.; Beck, P. G.; Bloemen, S.; Kochiashvili, N.; Derekas, A.; Smith, J. C.; Tenenbaum, P.; Twicken, J. D.
2013-01-01
Context. The NASA exoplanet search mission Kepler is currently providing a wealth of light curves of ultra-high quality from space. Aims: We used high-quality Kepler photometry and spectroscopic data to investigate the Kepler target and binary candidate KIC 5988140. We aim to interpret the observed variations of KIC 5988140 considering three possible scenarios: binarity, co-existence of δ Sct- and γ Dor-type oscillations, and rotational modulation caused by an asymmetric surface intensity distribution. Methods: We used the spectrum synthesis method to derive the fundamental parameters Teff, log g, [M/H], and v sin i from the newly obtained high-resolution, high S/N spectra. Frequency analyses of both the photometric and the spectroscopic data were performed. Results: The star has a spectral type of A7.5 IV-III and a metallicity slightly lower than that of the Sun. Both Fourier analyses reveal the same two dominant frequencies F1 = 2F2 = 0.688 and F2 = 0.344 d-1. We also detected in the photometry the signal of nine more, significant frequencies located in the typical range of δ Sct pulsation. The light and radial velocity curves follow a similar, stable double-wave pattern which are not exactly in anti-phase but show a relative phase shift of about 0.1 period between the moment of minimum velocity and that of maximum light. Conclusions: Such findings are incompatible with the star being a binary system. We next show that, for all possible (limit) configurations of a spotted surface, the predicted light-to-velocity amplitude ratio is almost two orders larger than the observed value, which pleads against rotational modulation. The same argument also invalidates the explanation in terms of pulsations of type γ Dor (i.e. hybrid pulsations). We confirm the occurrence of various independent δ Sct-type pressure modes in the Kepler light curve. With respect to the low-frequency content, however, we argue that the physical cause of the remaining light and radial velocity variations of this late A-type star remains unexplained by any of the presently considered scenarios. Based on data gathered with NASA's Discovery mission Kepler and with the Hermes spectrograph, installed at the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and with the 2-m Alfred-Jensch telescope of the Thüringer Landessternwarte Tautenburg.Reduced spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A104
A photoelastic modulator-based birefringence imaging microscope for measuring biological specimens
NASA Astrophysics Data System (ADS)
Freudenthal, John; Leadbetter, Andy; Wolf, Jacob; Wang, Baoliang; Segal, Solomon
2014-11-01
The photoelastic modulator (PEM) has been applied to a variety of polarimetric measurements. However, nearly all such applications use point-measurements where each point (spot) on the sample is measured one at a time. The main challenge for employing the PEM in a camera-based imaging instrument is that the PEM modulates too fast for typical cameras. The PEM modulates at tens of KHz. To capture the specific polarization information that is carried on the modulation frequency of the PEM, the camera needs to be at least ten times faster. However, the typical frame rates of common cameras are only in the tens or hundreds frames per second. In this paper, we report a PEM-camera birefringence imaging microscope. We use the so-called stroboscopic illumination method to overcome the incompatibility of the high frequency of the PEM to the relatively slow frame rate of a camera. We trigger the LED light source using a field-programmable gate array (FPGA) in synchrony with the modulation of the PEM. We show the measurement results of several standard birefringent samples as a part of the instrument calibration. Furthermore, we show results observed in two birefringent biological specimens, a human skin tissue that contains collagen and a slice of mouse brain that contains bundles of myelinated axonal fibers. Novel applications of this PEM-based birefringence imaging microscope to both research communities and industrial applications are being tested.
Spectral manipulation and complementary spectra with birefringence polarization control
NASA Astrophysics Data System (ADS)
Ding, Pan-Feng; Han, Pin
2017-03-01
A polarization control method using crystal birefringence is suggested to manipulate polychromatic light. This scheme can be used with narrower bandwidth to produce various spectral effects, such as a notch filter, a flat top, and triangle-type, nipple-type, and central-frequency-dominant distributions. A modulated spectrum with greater bandwidth can be used as an optical frequency ruler, and phenomena called complementary spectra are also proposed, where the two spectral distributions, produced by rotating the polarizer, complement each other in the sense that the peaks and valleys in one spectrum are the reverse in the other. These results benefit the controlling of the spectral shape and the measurement of an unknown optical frequency.
1W frequency-doubled VCSEL-pumped blue laser with high pulse energy
NASA Astrophysics Data System (ADS)
Van Leeuwen, Robert; Chen, Tong; Watkins, Laurence; Xu, Guoyang; Seurin, Jean-Francois; Wang, Qing; Zhou, Delai; Ghosh, Chuni
2015-02-01
We report on a Q-switched VCSEL side-pumped 946 nm Nd:YAG laser that produces high average power blue light with high pulse energy after frequency doubling in BBO. The gain medium was water cooled and symmetrically pumped by three 1 kW 808 nm VCSEL pump modules. More than 1 W blue output was achieved at 210 Hz with 4.9 mJ pulse energy and at 340 Hz with 3.2 mJ pulse energy, with 42% and 36% second harmonic conversion efficiency respectively. Higher pulse energy was obtained at lower repetition frequencies, up to 9.3 mJ at 70 Hz with 52% conversion efficiency.
NASA Astrophysics Data System (ADS)
Singh, Vinay Kumar; Dalal, U. D.
2017-10-01
In this research literature we present a unique optical OFDM system for Visible Light Communication (VLC) intended for indoor application which uses a non conventional transform-Fast Hartley Transform and an effective method to reduce the peak to average power ratio (PAPR) of the OFDM signal based on frequency modulation leading to a constant envelope (CE) signal. The proposed system is analyzed by a complete mathematical model and verified by the concurrent simulations results. The use of the non conventional transform makes the system computationally more desirable as it does not require the Hermitian symmetry constraint to yield real signals. The frequency modulation of the baseband signal converge random peaks into a CE signal. This leads to alleviation of the non linearity effects of the LED used in the link for electrical to optical conversion. The PAPR is reduced to 2 dB by this technique in this work. The impact of the modulation index on the performance of the system is also investigated. An optimum modulation depth of 30% gives better results. The additional phase discontinuity incurring on the demodulated signal at the receiver is also significantly reduced. A comparison of the improvement in phase discontinuity of the proposed technique of combating the PAPR with the previously known phase modulation technique is also presented in this work. Based on the channel metrics we evaluate the system performance and report an improvement of 1.2 dB at the FEC threshold. The proposed system is simple in design and computationally efficient and this can be incorporated into the present VLC system without much alteration thereby making it a cost effective solution.
Deep ultraviolet semiconductor light sources for sensing and security
NASA Astrophysics Data System (ADS)
Shatalov, Max; Bilenko, Yuri; Yang, Jinwei; Gaska, Remis
2009-09-01
III-Nitride based deep ultraviolet (DUV) light emitting diodes (LEDs) rapidly penetrate into sensing market owing to several advantages over traditional UV sources (i.e. mercury, xenon and deuterium lamps). Small size, a wide choice of peak emission wavelengths, lower power consumption and reduced cost offer flexibility to system integrators. Short emission wavelength offer advantages for gas detection and optical sensing systems based on UV induced fluorescence. Large modulation bandwidth for these devices makes them attractive for frequency-domain spectroscopy. We will review present status of DUV LED technology and discuss recent advances in short wavelength emitters and high power LED lamps.
Programmable 10 MHz optical fiducial system for hydrodiagnostic cameras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huen, T.
1987-07-01
A solid state light control system was designed and fabricated for use with hydrodiagnostic streak cameras of the electro-optic type. With its use, the film containing the streak images will have on it two time scales simultaneously exposed with the signal. This allows timing and cross timing. The latter is achieved with exposure modulation marking onto the time tick marks. The purpose of using two time scales will be discussed. The design is based on a microcomputer, resulting in a compact and easy to use instrument. The light source is a small red light emitting diode. Time marking can bemore » programmed in steps of 0.1 microseconds, with a range of 255 steps. The time accuracy is based on a precision 100 MHz quartz crystal, giving a divided down 10 MHz system frequency. The light is guided by two small 100 micron diameter optical fibers, which facilitates light coupling onto the input slit of an electro-optic streak camera. Three distinct groups of exposure modulation of the time tick marks can be independently set anywhere onto the streak duration. This system has been successfully used in Fabry-Perot laser velocimeters for over four years in our Laboratory. The microcomputer control section is also being used in providing optical fids to mechanical rotor cameras.« less
Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J.; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2012-01-01
A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system’s dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system’s good measurement performance and feasibility of the hybrid measurement method. PMID:22368463
Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2012-01-01
A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system's dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system's good measurement performance and feasibility of the hybrid measurement method.
Security-enhanced chaos communication with time-delay signature suppression and phase encryption.
Xue, Chenpeng; Jiang, Ning; Lv, Yunxin; Wang, Chao; Li, Guilan; Lin, Shuqing; Qiu, Kun
2016-08-15
A security-enhanced chaos communication scheme with time delay signature (TDS) suppression and phase-encrypted feedback light is proposed, in virtue of dual-loop feedback with independent high-speed phase modulation. We numerically investigate the property of TDS suppression in the intensity and phase space and quantitatively discuss security of the proposed system by calculating the bit error rate of eavesdroppers who try to crack the system by directly filtering the detected signal or by using a similar semiconductor laser to synchronize the link signal and extract the data. The results show that TDS embedded in the chaotic carrier can be well suppressed by properly setting the modulation frequency, which can keep the time delay a secret from the eavesdropper. Moreover, because the feedback light is encrypted, without the accurate time delay and key, the eavesdropper cannot reconstruct the symmetric operation conditions and decode the correct data.
Using PVDF to locate the debris cloud impact position
NASA Astrophysics Data System (ADS)
Pang, Baojun; Liu, Zhidong
2010-03-01
With the increase of space activities, space debris environment has deteriorated. Space debris impact shields of spacecraft creates debris cloud, the debris cloud is a threat to module wall. In order to conduct an assessment of spacecraft module wall damage impacted by debris cloud, the damage position must be known. In order to design a light weight location system, polyvinylidene fluoride (PVDF) has been studied. Hyper-velocity impact experiments were conducted using two-stage light gas gun, the experimental results indicate that: the virtual wave front location method can be extended to debris cloud impact location, PVDF can be used to locate the damage position effectively, the signals gathered by PVDF from debris cloud impact contain more high frequency components than the signals created by single projectile impact event. The results provide a reference for the development of the sensor systems to detect impacts on spacecraft.
Monolayer organic field effect phototransistors: photophysical characterization and modeling
NASA Astrophysics Data System (ADS)
Trukhanov, Vasily A.; Anisimov, Daniil S.; Bruevich, Vladimir V.; Agina, Elena V.; Borshchev, Oleg V.; Ponomarenko, Sergei; Zhang, Jiangbin; Bakulin, Artem A.; Paraschuk, Dmitri Yu.
2016-09-01
Organic field-effect transistors (OFET) can combine photodetection and light amplification and, for example, work as phototransistors. Such organic phototransistors can be used in light-controlled switches and amplifiers, detection circuits, and sensors of ultrasensitive images. In this work, we present photophysical characterization of well-defined ultrathin organic field-effect devices with a semiconductive channel based on Langmuir-Blodgett monolayer film. We observe clear generation of photocurrent under illumination with a modulated laser at 405 nm. The increase of photocurrent with the optical modulation frequency indicates the presence of defect states serving as traps for photogenerated carriers and/or the saturation of charge concentration in the thin active layer. We also propose a simple one-dimensional numerical model of a photosensitive OFET. The model is based on the Poisson, current continuity and drift-diffusion equations allows future evaluation of the photocurrent generation mechanism in the studied systems.
Khunderyakova, N V; Zakharchenko, A V; Zakharchenko, M V; Muller, H; Fedotcheva, I; Kondrashova, M N
2015-01-01
Biological effects of light near infrared radiation (850 nm), with modulation acoustic frequency of 101 Hz, was studied. The study was conducted on rats, the effect was recorded by succinate dehydrogenase activity in lymphocytes on the blood smear after administration of the activating dose of adrenaline, which simulates the state of the organism in the early stages of the pathogenic effects (stress). A pronounced regulating effect of infrared radiation on the activity of succinate dehydrogenase in animals activated by adrenaline was shown. Infrared radiation has a normalizing effect reducing the degree of inhibition or activation of the enzyme induced by adrenaline and had no effect on the control animals. Thus, by modulating the activity of succinate dehydrogenase infrared radiation regulates energy production in the mitochondria supported by the most powerful oxidation substrate--succinic acid, which is especially pronounced under stress.
OPO-based compact laser projection display
NASA Astrophysics Data System (ADS)
Lee, Dicky; Moulton, Peter F.; Bergstedt, Robert; Flint, Graham W.
2001-09-01
In this paper we discuss our red, green, and blue (RGB) optical parametric oscillator (OPO) based laser projection display. The complete project display consists of two subsystems, the RGB-OPO laser head and the light modulation unit. The RGB lights from rack-mounted laser head are fibers coupled to the projection unit for independent placement. The light source consists of a diode-pumped pump laser and a LBO-based OPO. Based on our Nd:YLF gain module design, the pump laser is frequency doubled to serve as the pump source for the OPO. The unconverted pump power is recycled as the green light for projection. The singly resonant, non- critically phase-matched (NCPM) OPO has, to date, generated 13 W of 898-nm signal power and an estimated 9.3 W of intra- cavity idler power at 1256 nm. With approximately 76% of pump depletion, the power of the residual green light for projection is about 5.8 W. We have extra-cavity doubled the signal to produce approximately 3.5 W of 449-nm blue light and intra-cavity doubled the idler to produce approximately 6 W of 628-nm red light. The OPO-based RGB source generates about 4000 lumens of D65-balanced white light. The overall electrical power on a commercially available JVC's three- panel D-ILA (reflective LCD) projector with the arc-lamp removed and extensive modifications. The projector has a native resolution of 1365 x 1024 and the expected on screen lumens from our laser display is about 1200 lumens.
NASA Astrophysics Data System (ADS)
Strömberg, Tomas; Saager, Rolf B.; Kennedy, Gordon T.; Fredriksson, Ingemar; Salerud, Göran; Durkin, Anthony J.; Larsson, Marcus
2018-02-01
Spatial frequency domain imaging (SFDI) utilizes a digital light processing (DLP) projector for illuminating turbid media with sinusoidal patterns. The tissue absorption (μa) and reduced scattering coefficient (μ,s) are calculated by analyzing the modulation transfer function for at least two spatial frequencies. We evaluated different illumination strategies with a red, green and blue light emitting diodes (LED) in the DLP, while imaging with a filter mosaic camera, XiSpec, with 16 different multi-wavelength sensitive pixels in the 470-630 nm wavelength range. Data were compared to SFDI by a multispectral camera setup (MSI) consisting of four cameras with bandpass filters centered at 475, 560, 580 and 650 nm. A pointwise system for comprehensive microcirculation analysis was used (EPOS) for comparison. A 5-min arterial occlusion and release protocol on the forearm of a Caucasian male with fair skin was analyzed by fitting the absorption spectra of the chromophores HbO2, Hb and melanin to the estimatedμa. The tissue fractions of red blood cells (fRBC), melanin (/mel) and the Hb oxygenation (S02 ) were calculated at baseline, end of occlusion, early after release and late after release. EPOS results showed a decrease in S02 during the occlusion and hyperemia during release (S02 = 40%, 5%, 80% and 51%). The fRBC showed an increase during occlusion and release phases. The best MSI resemblance to the EPOS was for green LED illumination (S02 = 53%, 9%, 82%, 65%). Several illumination and analysis strategies using the XiSpec gave un-physiological results (e.g. negative S02 ). XiSpec with green LED illumination gave the expected change in /RBC , while the dynamics in S02 were less than those for EPOS. These results may be explained by the calculation of modulation using an illumination and detector setup with a broad spectral transmission bandwidth, with considerable variation in μa of included chromophores. Approaches for either reducing the effective bandwidth of the XiSpec filters or by including their characteristic in a light transport model for SFDI modulation, are proposed.
Gioux, Sylvain; Lomnes, Stephen J.; Choi, Hak Soo; Frangioni, John V.
2010-01-01
Fluorescence lifetime imaging (FLi) could potentially improve exogenous near-infrared (NIR) fluorescence imaging, because it offers the capability of discriminating a signal of interest from background, provides real-time monitoring of a chemical environment, and permits the use of several different fluorescent dyes having the same emission wavelength. We present a high-power, LED-based, NIR light source for the clinical translation of wide-field (larger than 5 cm in diameter) FLi at frequencies up to 35 MHz. Lifetime imaging of indocyanine green (ICG), IRDye 800-CW, and 3,3′-diethylthiatricarbocyanine iodide (DTTCI) was performed over a large field of view (10 cm by 7.5 cm) using the LED light source. For comparison, a laser diode light source was employed as a gold standard. Experiments were performed both on the bench by diluting the fluorescent dyes in various chemical environments in Eppendorf tubes, and in vivo by injecting the fluorescent dyes mixed in Matrigel subcutaneously into CD-1 mice. Last, measured fluorescence lifetimes obtained using the LED and the laser diode sources were compared with those obtained using a state-of-the-art time-domain imaging system and with those previously described in the literature. On average, lifetime values obtained using the LED and the laser diode light sources were consistent, exhibiting a mean difference of 3% from the expected values and a coefficient of variation of 12%. Taken together, our study offers an alternative to laser diodes for clinical translation of FLi and explores the use of relatively low frequency modulation for in vivo imaging. PMID:20459250
Electromagnetic and magnetic vector potential bio-information and water.
Smith, Cyril William
2015-10-01
This work developed over the past 40 years starting from dielectric measurements on enzymes and the subsequent finding that the measurements were affected by electric, magnetic, electromagnetic fields and quantum fields. A request for help in the diagnosis and therapy of chemically sensitive patients who had become sensitive to their electromagnetic environment came in 1982. The same symptoms could be provoked by a chemical or a frequency challenge and this led to an appreciation of the synergy between chemical and frequency environmental sensitivities. Experimental cooperation with theoretical physicist Herbert Fröhlich FRS and others led to an understanding of the physics of coherent water in living systems and a mechanism for the memory of water for coherent frequencies. In a coherent system there are interacting frequencies proportionate to any velocity the system will support, in particular the velocity of light and the velocity of coherence diffusion. Thus, there can be biological interaction between the optical, microwave and ELF spectral regions. Frequency modulation of light scattered by bio-fields and its retention in recorded images is discussed. A 'nil-potent' frequency can erase a frequency signature and thence affect a biological system. Homeopathy is interpreted through the biological effects of coherent frequencies derived from the frequency signature of the 'Mother Tincture' and developed through dilution and succussion. A homeopathic potency has a frequency signature therefore it must be able to have a biological effect. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Quantum Cascade Lasers Modulation and Applications
NASA Astrophysics Data System (ADS)
Luzhansky, Edward
The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is introduced. The concept was realized and tested in the laboratory environment. The resilience to atmospheric impairments are analyzed with simulated turbulence. The performance compared to typical telecom based Short Wavelength Infra-Red transceiver.
Frequency combs with weakly lasing exciton-polariton condensates.
Rayanov, K; Altshuler, B L; Rubo, Y G; Flach, S
2015-05-15
We predict the spontaneous modulated emission from a pair of exciton-polariton condensates due to coherent (Josephson) and dissipative coupling. We show that strong polariton-polariton interaction generates complex dynamics in the weak-lasing domain way beyond Hopf bifurcations. As a result, the exciton-polariton condensates exhibit self-induced oscillations and emit an equidistant frequency comb light spectrum. A plethora of possible emission spectra with asymmetric peak distributions appears due to spontaneously broken time-reversal symmetry. The lasing dynamics is affected by the shot noise arising from the influx of polaritons. That results in a complex inhomogeneous line broadening.
Dynamical Casimir effect in a Josephson metamaterial
Lähteenmäki, Pasi; Paraoanu, G. S.; Hassel, Juha; Hakonen, Pertti J.
2013-01-01
The zero-point energy stored in the modes of an electromagnetic cavity has experimentally detectable effects, giving rise to an attractive interaction between the opposite walls, the static Casimir effect. A dynamical version of this effect was predicted to occur when the vacuum energy is changed either by moving the walls of the cavity or by changing the index of refraction, resulting in the conversion of vacuum fluctuations into real photons. Here, we demonstrate the dynamical Casimir effect using a Josephson metamaterial embedded in a microwave cavity at 5.4 GHz. We modulate the effective length of the cavity by flux-biasing the metamaterial based on superconducting quantum interference devices (SQUIDs), which results in variation of a few percentage points in the speed of light. We extract the full 4 × 4 covariance matrix of the emitted microwave radiation, demonstrating that photons at frequencies symmetrical with respect to half of the modulation frequency are generated in pairs. At large detunings of the cavity from half of the modulation frequency, we find power spectra that clearly show the theoretically predicted hallmark of the Casimir effect: a bimodal, “sparrow-tail” structure. The observed substantial photon flux cannot be assigned to parametric amplification of thermal fluctuations; its creation is a direct consequence of the noncommutativity structure of quantum field theory.
NASA Astrophysics Data System (ADS)
Jeon, Raymond J.; Mandelis, Andreas; Abrams, Stephen H.
2003-01-01
Simultaneous measurements from human teeth of photothermal radiometric (PTR) and luminescence (LM) signals induced by an intensity modulated laser have been performed to assess the feasibility of detecting deep lesions and near-surface cracks, to examine the effects of varying enamel thicknesses, the presence of fillings, and stains on the surface of teeth. A commercial dc luminescence monitoring instrument (DIAGNOdent by KaVo) was also used to examine a set of teeth for comparison purposes with PTR and LM. PTR amplitude signals from carious regions and from thin enamel were higher than those from healthy regions and thicker enamel. A crack produces a peak in the PTR amplitude scan, as well as a sudden change in the luminescence amplitude at the corresponding point. At low frequencies (5 Hz), the PTR amplitude showed high sensitivity to a deep (about 2 mm) lesion, while at high frequencies (700 Hz) it was more sensitive to surface cracks. It was concluded that by selecting proper modulation frequencies of the laser, measurements of PTR and LM signals could be used as a dental diagnostic technique with a small, inexpensive, low-power (<30 mW) semiconductor laser as a light source emitting in the optical window range of hard tissue (650-1000 nm).
Heterodyne method for high specificity gas detection.
NASA Technical Reports Server (NTRS)
Dimeff, J.; Donaldson, R. W.; Gunter, W. D., Jr.; Jaynes, D. N.; Margozzi, A. P.; Deboo, G. J.; Mcclatchie, E. A.; Williams, K. G.
1971-01-01
This paper describes a new technique for measuring trace quantities of gases. The technique involves the use of a reference cell (containing a known amount of the gas being sought) and a sample cell (containing an unknown amount of the same gas) wherein the gas densities are modulated. Light passing through the two cells in sequence is modulated in intensity at the vibrational-rotational lines characteristic of the absorption spectrum for the gas of interest. Since the absorption process is nonlinear, modulating the two absorption cells at two different frequencies gives rise to a heterodyning effect, which in turn introduces sum and difference frequencies in the detected signal. Measuring the ratio of the difference frequency signal for example, to the signal introduced by the reference cell provides a normalized measure of the amount of the gas in the sample cell. The readings produced are thereby independent of source intensity, window transparency, and detector sensitivity. Experimental evaluation of the technique suggests that it should be applicable to a wide range of gases, that it should be able to reject spurious signals due to unwanted gases, and that it should be sensitive to concentrations of the order of 10 to the minus 8th power when used with a sample cell of only 20 cm length.
NASA Astrophysics Data System (ADS)
Inochkin, F. M.; Pozzi, P.; Bezzubik, V. V.; Belashenkov, N. R.
2017-06-01
Superresolution image reconstruction method based on the structured illumination microscopy (SIM) principle with reduced and simplified pattern set is presented. The method described needs only 2 sinusoidal patterns shifted by half a period for each spatial direction of reconstruction, instead of the minimum of 3 for the previously known methods. The method is based on estimating redundant frequency components in the acquired set of modulated images. Digital processing is based on linear operations. When applied to several spatial orientations, the image set can be further reduced to a single pattern for each spatial orientation, complemented by a single non-modulated image for all the orientations. By utilizing this method for the case of two spatial orientations, the total input image set is reduced up to 3 images, providing up to 2-fold improvement in data acquisition time compared to the conventional 3-pattern SIM method. Using the simplified pattern design, the field of view can be doubled with the same number of spatial light modulator raster elements, resulting in a total 4-fold increase in the space-time product. The method requires precise knowledge of the optical transfer function (OTF). The key limitation is the thickness of object layer that scatters or emits light, which requires to be sufficiently small relatively to the lens depth of field. Numerical simulations and experimental results are presented. Experimental results are obtained on the SIM setup with the spatial light modulator based on the 1920x1080 digital micromirror device.
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Junyan; Mohummad, Oliullah; Wang, Yang
2018-06-01
In this paper, thermal-wave radar imaging (TWRI) is introduced to detect debonding defects in SiC-coated Ni-based superalloy plates. Linear frequency modulation signal (chirp) is used as the excitation signal which has a large time-bandwidth product. Artificial debonding defects in SiC coating are excited by the laser beam with the light intensity modulated by a chirp signal. Cross-correlation algorithm and chirp lock-in algorithm are introduced to extract the thermal-wave signal characteristic. The comparative experiment between TWRI reflection mode and transmission mode was carried out. Experiments are conducted to investigate the influence of laser power density, chirp period, and excitation frequency. Experimental results illustrate that chirp lock-in phase has a better detection capability than other characteristic parameters. TWRI can effectively detect simulated debonding defects of SiC-coated Ni-based superalloy plates.
Lasing from active optomechanical resonators
Czerniuk, T.; Brüggemann, C.; Tepper, J.; Brodbeck, S.; Schneider, C.; Kamp, M.; Höfling, S.; Glavin, B. A.; Yakovlev, D. R.; Akimov, A. V.; Bayer, M.
2014-01-01
Planar microcavities with distributed Bragg reflectors (DBRs) host, besides confined optical modes, also mechanical resonances due to stop bands in the phonon dispersion relation of the DBRs. These resonances have frequencies in the 10- to 100-GHz range, depending on the resonator’s optical wavelength, with quality factors exceeding 1,000. The interaction of photons and phonons in such optomechanical systems can be drastically enhanced, opening a new route towards the manipulation of light. Here we implemented active semiconducting layers into the microcavity to obtain a vertical-cavity surface-emitting laser (VCSEL). Thereby, three resonant excitations—photons, phonons and electrons—can interact strongly with each other providing modulation of the VCSEL laser emission: a picosecond strain pulse injected into the VCSEL excites long-living mechanical resonances therein. As a result, modulation of the lasing intensity at frequencies up to 40 GHz is observed. From these findings, prospective applications of active optomechanical resonators integrated into nanophotonic circuits may emerge. PMID:25008784
Pan, Jui-Wen; Tu, Sheng-Han
2012-05-20
A cost-effective, high-throughput, and high-yield method for the efficiency enhancement of an optical mouse lighting module is proposed. We integrated imprinting technology and free-form surface design to obtain a lighting module with high illumination efficiency and uniform intensity distribution. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution of light-emitting diodes. A modulated light source was utilized to add a compact free-form surface element to create a lighting module with 95% uniformity and 80% optical efficiency.
Guo, Xiao-Zhi; Luo, Yan-Hong; Zhang, Yi-Duo; Huang, Xiao-Chun; Li, Dong-Mei; Meng, Qing-Bo
2010-10-01
An experimental setup is built for the measurement of monochromatic incident photon-to-electron conversion efficiency (IPCE) of solar cells. With this setup, three kinds of IPCE measuring methods as well as the convenient switching between them are achieved. The setup can also measure the response time and waveform of the short-circuit current of solar cell. Using this setup, IPCE results of dye-sensitized solar cells (DSCs) are determined and compared under different illumination conditions with each method. It is found that the IPCE values measured by AC method involving the lock-in technique are sincerely influenced by modulation frequency and bias illumination. Measurements of the response time and waveform of short-circuit current have revealed that this effect can be explained by the slow response of DSCs. To get accurate IPCE values by this method, the measurement should be carried out with a low modulation frequency and under bias illumination. The IPCE values measured by DC method under the bias light illumination will be disturbed since the short-circuit current increased with time continuously due to the temperature rise of DSC. Therefore, temperature control of DSC is considered necessary for IPCE measurement especially in DC method with bias light illumination. Additionally, high bias light intensity (>2 sun) is found to decrease the IPCE values due to the ion transport limitation of the electrolyte.
NASA Astrophysics Data System (ADS)
Nowak-Lovato, K.
2014-12-01
Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.
Liu, Jun; Wang, Jian
2015-07-06
We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure. We experimentally demonstrate polarization-insensitive spatial light modulations for incident linearly polarized beams with different polarization states and polarization-multiplexed beams. Polarization-insensitive spatial light modulations generating orbital angular momentum (OAM) beams are demonstrated in the experiment. The designed polarization-insensitive configuration may find promising applications in spatial light modulations accommodating diverse incident polarizations.
Chang, Chia-Yuan; Lin, Cheng-Han; Lin, Chun-Yu; Sie, Yong-Da; Hu, Yvonne Yuling; Tsai, Sheng-Feng; Chen, Shean-Jen
2018-01-01
A developed temporal focusing-based multiphoton excitation microscope (TFMPEM) has a digital micromirror device (DMD) which is adopted not only as a blazed grating for light spatial dispersion but also for patterned illumination simultaneously. Herein, the TFMPEM has been extended to implement spatially modulated illumination at structured frequency and orientation to increase the beam coverage at the back-focal aperture of the objective lens. The axial excitation confinement (AEC) of TFMPEM can be condensed from 3.0 μm to 1.5 μm for a 50 % improvement. By using the TFMPEM with HiLo technique as two structured illuminations at the same spatial frequency but different orientation, reconstructed biotissue images according to the condensed AEC structured illumination are shown obviously superior in contrast and better scattering suppression. Picture: TPEF images of the eosin-stained mouse cerebellar cortex by conventional TFMPEM (left), and the TFMPEM with HiLo technique as 1.09 μm -1 spatially modulated illumination at 90° (center) and 0° (right) orientations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biological applications of an LCoS-based programmable array microscope (PAM)
NASA Astrophysics Data System (ADS)
Hagen, Guy M.; Caarls, Wouter; Thomas, Martin; Hill, Andrew; Lidke, Keith A.; Rieger, Bernd; Fritsch, Cornelia; van Geest, Bert; Jovin, Thomas M.; Arndt-Jovin, Donna J.
2007-02-01
We report on a new generation, commercial prototype of a programmable array optical sectioning fluorescence microscope (PAM) for rapid, light efficient 3D imaging of living specimens. The stand-alone module, including light source(s) and detector(s), features an innovative optical design and a ferroelectric liquid-crystal-on-silicon (LCoS) spatial light modulator (SLM) instead of the DMD used in the original PAM design. The LCoS PAM (developed in collaboration with Cairn Research, Ltd.) can be attached to a port of a(ny) unmodified fluorescence microscope. The prototype system currently operated at the Max Planck Institute incorporates a 6-position high-intensity LED illuminator, modulated laser and lamp light sources, and an Andor iXon emCCD camera. The module is mounted on an Olympus IX71 inverted microscope with 60-150X objectives with a Prior Scientific x,y, and z high resolution scanning stages. Further enhancements recently include: (i) point- and line-wise spectral resolution and (ii) lifetime imaging (FLIM) in the frequency domain. Multiphoton operation and other nonlinear techniques should be feasible. The capabilities of the PAM are illustrated by several examples demonstrating single molecule as well as lifetime imaging in live cells, and the unique capability to perform photoconversion with arbitrary patterns and high spatial resolution. Using quantum dot coupled ligands we show real-time binding and subsequent trafficking of individual ligand-growth factor receptor complexes on and in live cells with a temporal resolution and sensitivity exceeding those of conventional CLSM systems. The combined use of a blue laser and parallel LED or visible laser sources permits photoactivation and rapid kinetic analysis of cellular processes probed by photoswitchable visible fluorescent proteins such as DRONPA.
Influence of modulation frequency in rubidium cell frequency standards
NASA Technical Reports Server (NTRS)
Audoin, C.; Viennet, J.; Cyr, N.; Vanier, J.
1983-01-01
The error signal which is used to control the frequency of the quartz crystal oscillator of a passive rubidium cell frequency standard is considered. The value of the slope of this signal, for an interrogation frequency close to the atomic transition frequency is calculated and measured for various phase (or frequency) modulation waveforms, and for several values of the modulation frequency. A theoretical analysis is made using a model which applies to a system in which the optical pumping rate, the relaxation rates and the RF field are homogeneous. Results are given for sine-wave phase modulation, square-wave frequency modulation and square-wave phase modulation. The influence of the modulation frequency on the slope of the error signal is specified. It is shown that the modulation frequency can be chosen as large as twice the non-saturated full-width at half-maximum without a drastic loss of the sensitivity to an offset of the interrogation frequency from center line, provided that the power saturation factor and the amplitude of modulation are properly adjusted.
Temporal photonic crystals with modulations of both permittivity and permeability
NASA Astrophysics Data System (ADS)
Martínez-Romero, Juan Sabino; Becerra-Fuentes, O. M.; Halevi, P.
2016-06-01
We present an in-depth study of electromagnetic wave propagation in a temporal photonic crystal, namely, a nonconducting medium whose permittivity ɛ (t ) and/or permeability μ (t ) are modulated periodically by unspecified agents (these modulations not necessarily being in phase). Maxwell's equations lead to an eigenvalue problem whose solution provides the dispersion relation ω (k ) for the waves that can propagate in such a dynamic medium. This is a generalization of previous work [J. R. Zurita-Sánchez and P. Halevi, Phys. Rev. A 81, 053834 (2010)], 10.1103/PhysRevA.81.053834 that was restricted to the electric modulation ɛ (t ) . For our numerical work (only) we assumed the harmonic modulations ɛ (t ) =ɛ ¯[1 +mɛsin(Ω t ) ] and μ (t ) =μ ¯[1 +mμsin(Ω t +θ ) ] , where Ω is the circular modulation frequency; mɛ and mμ are, respectively, the strengths of the electric and magnetic modulations; and θ is the phase difference between these modulations. An analytic calculation for weak modulations (mɛ≪1 ,mμ≪1 ) leads to two k bands, k1(ω ) and k2(ω ) , that are separated by a k gap. If the modulations are in phase (θ =0 ) , this gap is proportional to | mɛ-mμ| , while the gap is proportional to (mɛ+mμ) if the modulations are out of phase (θ =π ) . The gap thus disappears for equal, in-phase, modulations (mɛ=mμ) . An exact solution of the eigenvalue equation confirms that these approximations hold reasonably well even for moderate modulations. In fact, there are no k gaps for equal modulations even if these are very strong (mɛ ,μ≲1 ) . The photonic band structure k (ω ) is periodic in ω , with period Ω , and there is an infinite number of bands k1(ω ) , k2(ω ) ,... Further, by allowing ɛ (t ) and μ (t ) to have imaginary parts, we examined the effects of damping [Im k (ω )] on the k bands. We also determined the optical response of a temporal photonic crystal slab, applying the above harmonic model for ɛ (t ) and μ (t ) . The reflected and transmitted light represent a frequency comb of frequencies ω , |ω ±Ω | , |ω ±2 Ω |,... The transmission coefficients Tn(ω ) for these harmonics n Ω of the modulation frequency strongly depend on the parameters mɛ, mμ, and θ , as well as on the thickness of the slab. Moreover, they can much exceed unity, as a result of energy transfer from the source of modulation. In a particularly interesting case, Tn(ω ) exhibits oscillations with peaks that resemble parametric resonances, rather than the usual Fabry-Perot resonances.
Characteristics of inertial currents observed in offshore wave records
NASA Astrophysics Data System (ADS)
Gemmrich, J.; Garrett, C.
2012-04-01
It is well known that ambient currents can change the amplitude, direction and frequency of ocean surface waves. Regions with persistent strong currents, such as the Agulhas current off the east coast of South Africa, are known as areas of extreme waves, and wave height modulations of up to 50% observed in the shallow North Sea have been linked to tidal currents. In the open ocean, inertial currents, while intermittent, are typically the most energetic currents with speeds up to 0.5 m/s, and can interact with the surface wave field to create wave modulation, though this has not previously been reported. We use long records of significant wave heights from buoy observations in the northeast Pacific and show evidence of significant modulation at frequencies that are slightly higher than the local inertial frequency. Quite apart from the relevance to surface waves, this result can provide a consistent and independent measurement, over a wide range of latitudes, of the frequency blue-shift, the strength and intermittency of ocean surface inertial currents. Near-inertial waves constitute the most energetic portion of the internal wave band and play a significant role in deep ocean mixing. So far, observational data on near-surface inertial currents has tended to come from short records that do not permit the reliable determination of the frequency blue-shift, though this is an important factor affecting the energy flux from the surface into deeper waters. Long records from routine wave height observations are widely available and could help to shed new light globally on the blue-shift and on the characteristics of inertial currents.
Sahatiya, Parikshit; Shinde, Akash; Badhulika, Sushmee
2018-08-10
Even though 2D ZnO has been utilized for enhanced self-powered sensing by strain modulation due to its piezoelectric property, study on utilizing the pyroelectric property of ZnO remains unexplored. The piezoelectric property of 2D ZnO works on mechanical strain, which disrupts the structure of ZnO leading to the failure of the device. For a pyroelectric nanogenerator, the temperature difference can be triggered by an external light source, which does not disrupt the ZnO structure and also avoids the need for physical bending/pressing, as in the case of a piezoelectric nanogenerator. This work represents the first demonstration of the fabrication of a flexible 2D ZnO/Gr pyro-phototronic diode where the pyro-potential generated in the 2D ZnO due to the near infrared (NIR) illumination adds to or subtracts from the built-in electric field of the heterojunction and modulates the depletion region of the heterojunction thereby enabling bias-free operation. Furthermore, the variation in the depletion width of the heterojunction was utilized as a variable capacitor in the frequency modulator, wherein, with the increasing intensity, the frequency of oscillations increased from 9.8 to 10.42 MHz. The work presented provides an alternative approach for a self-powered NIR photodetector and the utilization of the same at circuit level, having potential applications in the fields of optothermal detection, electronic tuning circuits, etc.
Engineering quadratic nonlinear photonic crystals for frequency conversion of lasers
NASA Astrophysics Data System (ADS)
Chen, Baoqin; Hong, Lihong; Hu, Chenyang; Zhang, Chao; Liu, Rongjuan; Li, Zhiyuan
2018-03-01
Nonlinear frequency conversion offers an effective way to extend the laser wavelength range. Quadratic nonlinear photonic crystals (NPCs) are artificial materials composed of domain-inversion structures whose sign of nonlinear coefficients are modulated with desire to implement quasi-phase matching (QPM) required for nonlinear frequency conversion. These structures can offer various reciprocal lattice vectors (RLVs) to compensate the phase-mismatching during the quadratic nonlinear optical processes, including second-harmonic generation (SHG), sum-frequency generation and the cascaded third-harmonic generation (THG). The modulation pattern of the nonlinear coefficients is flexible, which can be one-dimensional or two-dimensional (2D), be periodic, quasi-periodic, aperiodic, chirped, or super-periodic. As a result, these NPCs offer very flexible QPM scheme to satisfy various nonlinear optics and laser frequency conversion problems via design of the modulation patterns and RLV spectra. In particular, we introduce the electric poling technique for fabricating QPM structures, a simple effective nonlinear coefficient model for efficiently and precisely evaluating the performance of QPM structures, the concept of super-QPM and super-periodically poled lithium niobate for finely tuning nonlinear optical interactions, the design of 2D ellipse QPM NPC structures enabling continuous tunability of SHG in a broad bandwidth by simply changing the transport direction of pump light, and chirped QPM structures that exhibit broadband RLVs and allow for simultaneous radiation of broadband SHG, THG, HHG and thus coherent white laser from a single crystal. All these technical, theoretical, and physical studies on QPM NPCs can help to gain a deeper insight on the mechanisms, approaches, and routes for flexibly controlling the interaction of lasers with various QPM NPCs for high-efficiency frequency conversion and creation of novel lasers.
Increased Anatomical Specificity of Neuromodulation via Modulated Focused Ultrasound
Mehić, Edin; Xu, Julia M.; Caler, Connor J.; Coulson, Nathaniel K.; Moritz, Chet T.; Mourad, Pierre D.
2014-01-01
Transcranial ultrasound can alter brain function transiently and nondestructively, offering a new tool to study brain function now and inform future therapies. Previous research on neuromodulation implemented pulsed low-frequency (250–700 kHz) ultrasound with spatial peak temporal average intensities (ISPTA) of 0.1–10 W/cm2. That work used transducers that either insonified relatively large volumes of mouse brain (several mL) with relatively low-frequency ultrasound and produced bilateral motor responses, or relatively small volumes of brain (on the order of 0.06 mL) with relatively high-frequency ultrasound that produced unilateral motor responses. This study seeks to increase anatomical specificity to neuromodulation with modulated focused ultrasound (mFU). Here, ‘modulated’ means modifying a focused 2-MHz carrier signal dynamically with a 500-kHz signal as in vibro-acoustography, thereby creating a low-frequency but small volume (approximately 0.015 mL) source of neuromodulation. Application of transcranial mFU to lightly anesthetized mice produced various motor movements with high spatial selectivity (on the order of 1 mm) that scaled with the temporal average ultrasound intensity. Alone, mFU and focused ultrasound (FUS) each induced motor activity, including unilateral motions, though anatomical location and type of motion varied. Future work should include larger animal models to determine the relative efficacy of mFU versus FUS. Other studies should determine the biophysical processes through which they act. Also of interest is exploration of the potential research and clinical applications for targeted, transcranial neuromodulation created by modulated focused ultrasound, especially mFU’s ability to produce compact sources of ultrasound at the very low frequencies (10–100s of Hertz) that are commensurate with the natural frequencies of the brain. PMID:24504255
[EMD Time-Frequency Analysis of Raman Spectrum and NIR].
Zhao, Xiao-yu; Fang, Yi-ming; Tan, Feng; Tong, Liang; Zhai, Zhe
2016-02-01
This paper analyzes the Raman spectrum and Near Infrared Spectrum (NIR) with time-frequency method. The empirical mode decomposition spectrum becomes intrinsic mode functions, which the proportion calculation reveals the Raman spectral energy is uniform distributed in each component, while the NIR's low order intrinsic mode functions only undertakes fewer primary spectroscopic effective information. Both the real spectrum and numerical experiments show that the empirical mode decomposition (EMD) regard Raman spectrum as the amplitude-modulated signal, which possessed with high frequency adsorption property; and EMD regards NIR as the frequency-modulated signal, which could be preferably realized high frequency narrow-band demodulation during first-order intrinsic mode functions. The first-order intrinsic mode functions Hilbert transform reveals that during the period of empirical mode decomposes Raman spectrum, modal aliasing happened. Through further analysis of corn leaf's NIR in time-frequency domain, after EMD, the first and second orders components of low energy are cut off, and reconstruct spectral signal by using the remaining intrinsic mode functions, the root-mean-square error is 1.001 1, and the correlation coefficient is 0.981 3, both of these two indexes indicated higher accuracy in re-construction; the decomposition trend term indicates the absorbency is ascending along with the decreasing to wave length in the near-infrared light wave band; and the Hilbert transform of characteristic modal component displays, 657 cm⁻¹ is the specific frequency by the corn leaf stress spectrum, which could be regarded as characteristic frequency for identification.
Estimation of the center frequency of the highest modulation filter.
Moore, Brian C J; Füllgrabe, Christian; Sek, Aleksander
2009-02-01
For high-frequency sinusoidal carriers, the threshold for detecting sinusoidal amplitude modulation increases when the signal modulation frequency increases above about 120 Hz. Using the concept of a modulation filter bank, this effect might be explained by (1) a decreasing sensitivity or greater internal noise for modulation filters with center frequencies above 120 Hz; and (2) a limited span of center frequencies of the modulation filters, the top filter being tuned to about 120 Hz. The second possibility was tested by measuring modulation masking in forward masking using an 8 kHz sinusoidal carrier. The signal modulation frequency was 80, 120, or 180 Hz and the masker modulation frequencies covered a range above and below each signal frequency. Four highly trained listeners were tested. For the 80-Hz signal, the signal threshold was usually maximal when the masker frequency equaled the signal frequency. For the 180-Hz signal, the signal threshold was maximal when the masker frequency was below the signal frequency. For the 120-Hz signal, two listeners showed the former pattern, and two showed the latter pattern. The results support the idea that the highest modulation filter has a center frequency in the range 100-120 Hz.
EGR distribution and fluctuation probe based on CO.sub.2 measurements
Parks, II, James E; Partridge, Jr., William P; Yoo, Ji Hyung
2015-04-07
A diagnostic system having a single-port EGR probe and a method for using the same. The system includes a light source, an EGR probe, a detector and a processor. The light source may provide a combined light beam composed of light from a mid-infrared signal source and a mid-infrared reference source. The signal source may be centered at 4.2 .mu.m and the reference source may be centered at 3.8 .mu.m. The EGR probe may be a single-port probe with internal optics and a sampling chamber with two flow cells arranged along the light path in series. The optics may include a lens for focusing the light beam and a mirror for reflecting the light beam received from a pitch optical cable to a catch optical cable. The signal and reference sources are modulated at different frequencies, thereby allowing them to be separated and the signal normalized by the processor.
Liu, Jun; Wang, Jian
2015-01-01
We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure. We experimentally demonstrate polarization-insensitive spatial light modulations for incident linearly polarized beams with different polarization states and polarization-multiplexed beams. Polarization-insensitive spatial light modulations generating orbital angular momentum (OAM) beams are demonstrated in the experiment. The designed polarization-insensitive configuration may find promising applications in spatial light modulations accommodating diverse incident polarizations. PMID:26146032
Prospective for graphene based thermal mid-infrared light emitting devices
NASA Astrophysics Data System (ADS)
Lawton, L. M.; Mahlmeister, N. H.; Luxmoore, I. J.; Nash, G. R.
2014-08-01
We have investigated the spatial and spectral characteristics of mid-infrared thermal emission from large area Chemical Vapor Deposition (CVD) graphene, transferred onto SiO2/Si, and show that the emission is broadly that of a grey-body emitter, with emissivity values of approximately 2% and 6% for mono- and multilayer graphene. For the currents used, which could be sustained for over one hundred hours, the emission peaked at a wavelength of around 4 μm and covered the characteristic absorption of many important gases. A measurable modulation of thermal emission was obtained even when the drive current was modulated at frequencies up to 100 kHz.
High power high repetition rate VCSEL array side-pumped pulsed blue laser
NASA Astrophysics Data System (ADS)
van Leeuwen, Robert; Zhao, Pu; Chen, Tong; Xu, Bing; Watkins, Laurence; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander; Wang, Qing; Ghosh, Chuni
2013-03-01
High power, kW-class, 808 nm pump modules based on the vertical-cavity surface-emitting laser (VCSEL) technology were developed for side-pumping of solid-state lasers. Two 1.2 kW VCSEL pump modules were implemented in a dual side-pumped Q-switched Nd:YAG laser operating at 946 nm. The laser output was frequency doubled in a BBO crystal to produce pulsed blue light. With 125 μs pump pulses at a 300 Hz repetition rate 6.1 W QCW 946 nm laser power was produced. The laser power was limited by thermal lensing in the Nd:YAG rod.
Modulation transfer function measurement technique for small-pixel detectors
NASA Technical Reports Server (NTRS)
Marchywka, Mike; Socker, Dennis G.
1992-01-01
A modulation transfer function (MTF) measurement technique suitable for large-format, small-pixel detector characterization has been investigated. A volume interference grating is used as a test image instead of the bar or sine wave target images normally used. This technique permits a high-contrast, large-area, sinusoidal intensity distribution to illuminate the device being tested, avoiding the need to deconvolve raw data with imaging system characteristics. A high-confidence MTF result at spatial frequencies near 200 cycles/mm is obtained. We present results at several visible light wavelengths with a 6.8-micron-pixel CCD. Pixel response functions are derived from the MTF results.
Modulation of high frequency noise by engine tones of small boats.
Pollara, Alexander; Sutin, Alexander; Salloum, Hady
2017-07-01
The effect of modulation of high frequency ship noise by propeller rotation frequencies is well known. This modulation is observed with the Detection of Envelope Modulation on Noise (DEMON) algorithm. Analysis of the DEMON spectrum allows the revolutions per minute and number of blades of the propeller to be determined. This work shows that the high frequency noise of a small boat can also be modulated by engine frequencies. Prior studies have not reported high frequency noise amplitude modulated at engine frequencies. This modulation is likely produced by bubbles from the engine exhaust system.
NASA Astrophysics Data System (ADS)
Koehler, J. R.; Noskov, R. E.; Sukhorukov, A. A.; Novoa, D.; Russell, P. St. J.
2017-12-01
Coherent control of the resonant response in spatially extended optomechanical structures is complicated by the fact that the optical drive is affected by the backaction from the generated phonons. Here we report an approach to coherent control based on stimulated Raman-like scattering, in which the optical pressure can remain unaffected by the induced vibrations even in the regime of strong optomechanical interactions. We demonstrate experimentally coherent control of flexural vibrations simultaneously along the whole length of a dual-nanoweb fiber, by imprinting steps in the relative phase between the components of a two-frequency pump signal, the beat frequency being chosen to match a flexural resonance. Furthermore, sequential switching of the relative phase at time intervals shorter than the lifetime of the vibrations reduces their amplitude to a constant value that is fully adjustable by tuning the phase modulation depth and switching rate. The results may trigger new developments in silicon photonics, since such coherent control uniquely decouples the amplitude of optomechanical oscillations from power-dependent thermal effects and nonlinear optical loss.
Laurencon, A.; Gay, F.; Ducau, J.; Bregliano, J. C.
1997-01-01
We previously reported evidence that the so-called reactivity level, a peculiar cellular state of oocytes that regulates the frequency of transposition of I factor, a LINE element-like retrotransposon, might be one manifestation of a DNA repair system. In this article, we report data showing that the reactivity level is correlated with the frequency of crossing over, at least on the X chromosome and on the pericentromeric region of the third chromosome. Moreover, a check for X-chromosome losses and recessive lethals produced after gamma irradiation in flies with different reactivity levels, but common genetic backgrounds, brings more precise evidence for the relationship between reactivity levels and DNA repair. Those results support the existence of a repair-recombination system whose efficiency is modulated by endogenous and environmental factors. The implications of this biological system in connecting genomic variability and environment may shed new lights on adaptative mechanisms. We propose to call it VAMOS for variability modulation system. PMID:9258678
Sheikhaleh, Arash; Abedi, Kambiz; Jafari, Kian; Gholamzadeh, Reza
2016-11-10
In this paper, we propose what we believe is a novel sensitive micro-optoelectromechanical systems (MOEMS) accelerometer based on intensity modulation by using a one-dimensional photonic crystal. The optical sensing system of the proposed structure includes an air-dielectric multilayer photonic bandgap material, a laser diode (LD) light source, a typical photodiode (1550 nm) and a set of integrated optical waveguides. The proposed sensor provides several advantages, such as a relatively wide measurement range, good linearity in the whole measurement range, integration capability, negligible cross-axis sensitivity, high reliability, and low air-damping coefficient, which results in a wider frequency bandwidth for a fixed resonance frequency. Simulation results show that the functional characteristics of the sensor are as follows: a mechanical sensitivity of 119.21 nm/g, a linear measurement range of ±38g and a resonance frequency of 1444 Hz. Thanks to the above-mentioned characteristics, the proposed MOEMS accelerometer is suitable for a wide spectrum of applications, ranging from consumer electronics to aerospace and inertial navigation.
Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene
Crosse, J. A.; Xu, Xiaodong; Sherwin, Mark S.; Liu, R. B.
2014-01-01
In a semiconductor illuminated by a strong terahertz (THz) field, optically excited electron–hole pairs can recombine to emit light in a broad frequency comb evenly spaced by twice the THz frequency. Such high-order THz sideband generation is of interest both as an example of extreme nonlinear optics and also as a method for ultrafast electro-optical modulation. So far, this phenomenon has only been observed with large field strengths (~10 kV cm−1), an obstacle for technological applications. Here we predict that bi-layer graphene generates high-order sidebands at much weaker THz fields. We find that a THz field of strength 1 kV cm−1 can produce a high-sideband spectrum of about 30 THz, 100 times broader than in GaAs. The sidebands are generated despite the absence of classical collisions, with the quantum coherence of the electron–hole pairs enabling recombination. These remarkable features lower the barrier to desktop electro-optical modulation at THz frequencies, facilitating ultrafast optical communications. PMID:25249245
NASA Astrophysics Data System (ADS)
Xie, Zhengyang; Zheng, Xiaoping; Li, Shangyuan; Yan, Haozhe; Xiao, Xuedi; Xue, Xiaoxiao
2018-06-01
We propose an injection-locked optoelectronic oscillator (OEO) based wide-band frequency doubler, which is free from phase noise deterioration in electrical doubler, by using a dual-parallel Mach-Zehnder modulator (DPMZM). Through adjusting the optical phase shifts in different arms of the DPMZM, the doubling signal oscillates in the OEO loop while the fundamental signal takes on phase modulation over the light and vanishes at photo-detector (PD) output. By controlling power of fundamental signal the restriction of phase-noise deterioration rule in electrical doubler is totally canceled. Experimental results show that the doubler output has a better phase noise value of, for example, -117 dBc/Hz @ 10 kHz at 6 GHz with an improvement more than 17 dB and 23 dB compared with that of fundamental input and electrical doubler, respectively. Besides, the stability of this doubler output can reach to 1 . 5 × 10-14 at 1000 s averaging time. The frequency range of doubling signal is limited by the bandwidth of electrical amplifier in OEO loop.
Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy
NASA Astrophysics Data System (ADS)
Fimpel, P.; Riek, C.; Ebner, L.; Leitenstorfer, A.; Brida, D.; Zumbusch, A.
2018-04-01
Stimulated Raman scattering (SRS) microscopy is an important non-linear optical technique for the investigation of unlabeled samples. The SRS signal manifests itself as a small intensity exchange between the laser pulses involved in coherent excitation of Raman modes. Usually, high-frequency modulation is applied in one pulse train, and the signal is then detected on the other pulse train via lock-in amplification. While allowing shot-noise limited detection sensitivity, lock-in detection, which corresponds to filtering the signal in the frequency domain, is not the most efficient way of using the excitation light. In this manuscript, we show that boxcar averaging, which is equivalent to temporal filtering, is better suited for the detection of low-duty-cycle signals as encountered in SRS microscopy. We demonstrate that by employing suitable gating windows, the signal-to-noise ratios achievable with lock-in detection can be realized in shorter time with boxcar averaging. Therefore, high-quality images are recorded at a faster rate and lower irradiance which is an important factor, e.g., for minimizing degradation of biological samples.
Compact atom interferometer using single laser
NASA Astrophysics Data System (ADS)
Chiow, Sheng-wey; Yu, Nan
2018-06-01
A typical atom interferometer requires vastly different laser frequencies at different stages of operation, e.g., near resonant light for laser cooling and far detuned light for atom optics, such that multiple lasers are typically employed. The number of laser units constrains the achievable minimum size and power in practical devices for resource critical environments such as space. We demonstrate a compact atom interferometer accelerometer operated by a single diode laser. This is achieved by dynamically changing the laser output frequency in GHz range while maintaining spectroscopic reference to an atomic transition via a sideband generated by phase modulation. At the same time, a beam path sharing configuration is also demonstrated for a compact sensor head design, in which atom interferometer beams share the same path as that of the cooling beam. This beam path sharing also significantly simplifies three-axis atomic accelerometry in microgravity using single sensor head.
Quasi-light storage for optical data packets.
Schneider, Thomas; Preußler, Stefan
2014-02-06
Today's telecommunication is based on optical packets which transmit the information in optical fiber networks around the world. Currently, the processing of the signals is done in the electrical domain. Direct storage in the optical domain would avoid the transfer of the packets to the electrical and back to the optical domain in every network node and, therefore, increase the speed and possibly reduce the energy consumption of telecommunications. However, light consists of photons which propagate with the speed of light in vacuum. Thus, the storage of light is a big challenge. There exist some methods to slow down the speed of the light, or to store it in excitations of a medium. However, these methods cannot be used for the storage of optical data packets used in telecommunications networks. Here we show how the time-frequency-coherence, which holds for every signal and therefore for optical packets as well, can be exploited to build an optical memory. We will review the background and show in detail and through examples, how a frequency comb can be used for the copying of an optical packet which enters the memory. One of these time domain copies is then extracted from the memory by a time domain switch. We will show this method for intensity as well as for phase modulated signals.
On-axis programmable microscope using liquid crystal spatial light modulator
NASA Astrophysics Data System (ADS)
García-Martínez, Pascuala; Martínez, José Luís.; Moreno, Ignacio
2017-06-01
Spatial light modulators (SLM) are currently used in many applications in optical microscopy and imaging. One of the most promising methods is the use of liquid crystal displays (LCD) as programmable phase diffractive optical elements (DOE) placed in the Fourier plane giving access to the spatial frequencies which can be phased shifted individually, allowing to emulate a wealth of contrast enhancing methods for both amplitude and phase samples. We use phase and polarization modulation of LCD to implement an on-axis microscope optical system. The LCD used are Hamamatsu liquid crystal on silicon (LCOS) SLM free of flicker, thus showing a full profit of the SLM space bandwidth, as opposed to optical systems in the literature forced to work off-axis due to the strong zero-order component. Taking benefits of the phase modulation of the LCOS we have implemented different microscopic imaging operations, such as high-pass and low-pass filtering in parallel using programmable blazed gratings. Moreover, we are able to control polarization modulation to display two orthogonal linear state of polarization images than can be subtracted or added by changing the period of the blazed grating. In that sense, Differential Interference Contrast (DIC) microscopy can be easily done by generating two images exploiting the polarization splitting properties when a blazed grating is displayed in the SLM. Biological microscopy samples are also used.
Small-signal modulation characteristics of a polariton laser
Zunaid Baten, Md; Frost, Thomas; Iorsh, Ivan; Deshpande, Saniya; Kavokin, Alexey; Bhattacharya, Pallab
2015-01-01
Use of large bandgap materials together with electrical injection makes the polariton laser an attractive low-power coherent light source for medical and biomedical applications or short distance plastic fiber communication at short wavelengths (violet and ultra-violet), where a conventional laser is difficult to realize. The dynamic properties of a polariton laser have not been investigated experimentally. We have measured, for the first time, the small signal modulation characteristics of a GaN-based electrically pumped polariton laser operating at room temperature. A maximum −3 dB modulation bandwidth of 1.18 GHz is measured. The experimental results have been analyzed with a theoretical model based on the Boltzmann kinetic equations and the agreement is very good. We have also investigated frequency chirping during such modulation. Gain compression phenomenon in a polariton laser is interpreted and a value is obtained for the gain compression factor. PMID:26154681
Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC.
Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Liu, Yen-Liang
2015-01-26
To increase the traffic rate in phosphor-LED visible light communication (VLC), a multi-band orthogonal frequency division multiplexed (OFDM) modulation is first proposed and demonstrated. In the measurement, we do not utilize optical blue filter to increase modulation bandwidth of phosphor-LED in the VLC system. In this proposed scheme, different bands of OFDM signals are applied to different LED chips in a LED lamp, this can avoid the power fading and nonlinearity issue by applying the same OFDM signal to all the LED chips in a LED lamp. Here, the maximum increase percentages of traffic rates are 41.1%, 17.8% and 17.8% under received illuminations of 200, 500 and 1000 Lux, respectively, when the proposed three-band OFDM modulation is used in the VLC system. In addition, the analysis and verification by experiments are also performed.
ERIC Educational Resources Information Center
Gagne, Jean-Pierre; Laplante-Levesque, Ariane; Labelle, Maude; Doucet, Katrine; Potvin, Marie-Christine
2006-01-01
A program designed to evaluate the benefits of an audiovisual-frequency modulated (FM) system led to some questions concerning the effects of illumination level and a talker's skin color on speech-reading performance. To address those issues, the speech of a Caucasian female was videotaped under 2 conditions: a light skin color condition and a…
Liu, Sheng; Keeler, Gordon A.; Reno, John L.; ...
2016-06-10
We demonstrate 2D and multilayer dielectric metamaterials made from III–V semiconductors using a monolithic fabrication process. The resulting structures could be used to recompress chirped femtosecond optical pulses and in a variety of other optical applications requiring low loss. Moreover, these III–V all-dielectric metamaterials could enable novel active applications such as efficient nonlinear frequency converters, light emitters, detectors, and modulators.
Nonlinear Optical Interactions in Semiconductors.
1985-12-10
Physique du Solide et Energie Solaire We had on-going interaction with Dr. Christian Verie on the growth of high quality narrow-gap semiconductor crystals...The band gap energy of the semiconductor decreases with increasing temperature. Consequently, the absorption of light in the energy region of the...gas and, more importantly, will modulate the electron energy at the difference frequency, wI - 02" Under ordinary circumstances such an energy (or
Stacked Device of Polymer Light-Emitting Diode Driven by Metal-Base Organic Transistor
NASA Astrophysics Data System (ADS)
Yoneda, Kazuhiro; Nakayama, Ken-ichi; Yokoyama, Masaaki
2008-02-01
We fabricated a new light-emitting device that combined a polymer light-emitting diode (PLED) and a vertical-type metal-base organic transistor (MBOT) through a floating electrode. By employing a layered floating electrode of Mg:Ag/Au, the MBOT on the PLED was operated successfully and a current amplification factor of approximately 20 was observed. The PLED luminescence exceeding 100 cd/m2 can be modulated using the MBOT with a low base voltage (2.8 V) and VCC (8 V). The emission contrast (on/off ratio) was improved with insertion of an insulating layer under the base, and the cut-off frequency was estimated to be 8 kHz. This device is expected to be a promising driving system of organic light-emitting diode (OLED), realizing low voltage and high numerical aperture.
Sudo, S; Ohtomo, T; Otsuka, K
2015-08-01
We achieved a highly sensitive method for observing the motion of colloidal particles in a flowing suspension using a self-mixing laser Doppler velocimeter (LDV) comprising a laser-diode-pumped thin-slice solid-state laser and a simple photodiode. We describe the measurement method and the optical system of the self-mixing LDV for real-time measurements of the motion of colloidal particles. For a condensed solution, when the light scattered from the particles is reinjected into the solid-state laser, the laser output is modulated in intensity by the reinjected laser light. Thus, we can capture the motion of colloidal particles from the spectrum of the modulated laser output. For a diluted solution, when the relaxation oscillation frequency coincides with the Doppler shift frequency, fd, which is related to the average velocity of the particles, the spectrum reflecting the motion of the colloidal particles is enhanced by the resonant excitation of relaxation oscillations. Then, the spectral peak reflecting the motion of colloidal particles appears at 2×fd. The spectrum reflecting the motion of colloidal particles in a flowing diluted solution can be measured with high sensitivity, owing to the enhancement of the spectrum by the thin-slice solid-state laser.
A cost-efficient frequency-domain photoacoustic imaging system
LeBoulluec, Peter; Liu, Hanli; Yuan, Baohong
2013-01-01
Photoacoustic (PA) imaging techniques have recently attracted much attention and can be used for noninvasive imaging of biological tissues. Most PA imaging systems in research laboratories use the time domain method with expensive nanosecond pulsed lasers that are not affordable for most educational laboratories. Using an intensity modulated light source to excite PA signals is an alternative technique, known as the frequency domain method, with a much lower cost. In this paper, we describe a simple frequency domain PA system and demonstrate its imaging capability. The system provides opportunities not only to observe PA signals in tissue phantoms, but also to acquire hands-on skills in PA signal detection. It also provides opportunities to explore the underlying mechanisms of the PA effect. PMID:24659823
A cost-efficient frequency-domain photoacoustic imaging system.
Leboulluec, Peter; Liu, Hanli; Yuan, Baohong
2013-09-01
Photoacoustic (PA) imaging techniques have recently attracted much attention and can be used for noninvasive imaging of biological tissues. Most PA imaging systems in research laboratories use the time domain method with expensive nanosecond pulsed lasers that are not affordable for most educational laboratories. Using an intensity modulated light source to excite PA signals is an alternative technique, known as the frequency domain method, with a much lower cost. In this paper, we describe a simple frequency domain PA system and demonstrate its imaging capability. The system provides opportunities not only to observe PA signals in tissue phantoms, but also to acquire hands-on skills in PA signal detection. It also provides opportunities to explore the underlying mechanisms of the PA effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varniere, Peggy; Vincent, Frederic H., E-mail: varniere@apc.univ-paris7.fr
While it has been observed that the parameters intrinsic to the type C low-frequency quasi-periodic oscillations are related in a nonlinear manner among themselves, there has been, up to now, no model to explain or reproduce how the frequency, the FWHM, and the rms amplitude of the type C low-frequency quasi-periodic oscillations behave with respect to one another. Here we are using a simple toy model representing the emission from a standard disk and a spiral such as that caused by the accretion–ejection instability to reproduce the overall observed behavior and shed some light on its origin. This allows usmore » to prove the ability of such a spiral structure to be at the origin of flux modulation over more than an order of magnitude in frequency.« less
NASA Technical Reports Server (NTRS)
Livas, Jeffrey (Inventor); Thorpe, James I. (Inventor); Numata, Kenji (Inventor)
2011-01-01
A method and system for stabilizing a laser to a frequency reference with an adjustable offset. The method locks a sideband signal generated by passing an incoming laser beam through the phase modulator to a frequency reference, and adjusts a carrier frequency relative to the locked sideband signal by changing a phase modulation frequency input to the phase modulator. The sideband signal can be a single sideband (SSB), dual sideband (DSB), or an electronic sideband (ESB) signal. Two separate electro-optic modulators can produce the DSB signal. The two electro-optic modulators can be a broadband modulator and a resonant modulator. With a DSB signal, the method can introduce two sinusoidal phase modulations at the phase modulator. With ESB signals, the method can further drive the optical phase modulator with an electrical signal with nominal frequency OMEGA(sub 1) that is phase modulated at a frequency OMEGA(sub 2)
Titlow, Josh S.; Johnson, Bruce R.; Pulver, Stefan R.
2015-01-01
The neural networks that control escape from predators often show very clear relationships between defined sensory inputs and stereotyped motor outputs. This feature provides unique opportunities for researchers, but it also provides novel opportunities for neuroscience educators. Here we introduce new teaching modules using adult Drosophila that have been engineered to express csChrimson, a red-light sensitive channelrhodopsin, in specific sets of neurons and muscles mediating visually guided escape behaviors. This lab module consists of both behavior and electrophysiology experiments that explore the neural basis of flight escape. Three preparations are described that demonstrate photo-activation of the giant fiber circuit and how to quantify these behaviors. One of the preparations is then used to acquire intracellular electrophysiology recordings from different flight muscles. The diversity of action potential waveforms and firing frequencies observed in the flight muscles make this a rich preparation to study the ionic basic of cellular excitability. By activating different cells within the giant fiber pathway we also demonstrate principles of synaptic transmission and neural circuits. Beyond conveying core neurobiological concepts it is also expected that using these cutting edge techniques will enhance student motivation and attitudes towards biological research. Data collected from students and educators who have been involved in development of the module are presented to support this notion. PMID:26240526
NASA Astrophysics Data System (ADS)
Haellstig, Emil J.; Martin, Torleif; Stigwall, Johan; Sjoqvist, Lars; Lindgren, Mikael
2004-02-01
A commercial linear one-dimensional, 1x4096 pixels, zero-twist nematic liquid crystal spatial light modulator (SLM), giving more than 2π phase modulation at λ = 850 nm, was evaluated for beam steering applications. The large ratio (7:1) between the liquid crystal layer thickness and pixel width gives rise to voltage leakage and fringing fields between pixels. Due to the fringing fields the ideal calculated phase patterns cannot be perfectly realized by the device. Losses in high frequency components in the phase patterns were found to limit the maximum deflection angle. The inhomogeneous optical anisotropy of the SLM was determined by modelling of the liquid crystal director distribution within the electrode-pixel structure. The effects of the fringing fields on the amplitude and phase modulation were studied by full vector finite-difference time-domain simulations. It was found that the fringing fields also resulted in coupling into an unwanted polarization mode. Measurements of how this mode coupling affects the beam steering quality were carried out and the results compared with calculated results. A method to compensate for the fringing field effects is discussed and it is shown how the usable steering range of the SLM can be extended to +/- 2 degrees.
NASA Astrophysics Data System (ADS)
Girouard, Peter D.
The microwave, optical, and electro-optic properties of epitaxial barium titanate thin films grown on (100) MgO substrates and photonic crystal electro-optic modulators fabricated on these films were investigated to demonstrate the applicability of these devices for telecommunication and data networks. The electrical and electro-optical properties were characterized up to modulation frequencies of 50 GHz, and the optical properties of photonic crystal waveguides were determined for wavelengths spanning the optical C band between 1500 and 1580 nm. Microwave scattering parameters were measured on coplanar stripline devices with electrode gap spacings between 5 and 12 mum on barium titanate films with thicknesses between 230 and 680 nm. The microwave index and device characteristic impedance were obtained from the measurements. Larger (lower) microwave indices (impedances) were obtained for devices with narrower electrode gap spacings and on thicker films. Thinner film devices have both lower index mismatch between the co-propagating microwave and optical signals and lower impedance mismatch to a 50O system, resulting in a larger predicted electro-optical 3 dB bandwidth. This was experimentally verified with electro-optical frequency response measurements. These observations were applied to demonstrate a record high 28 GHz electro-optic bandwidth measured for a BaTiO3 conventional ridge waveguide modulator having 1mm long electrodes and 12 mum gap spacing on a 260nm thick film. The half-wave voltage and electro-optic coefficients of barium titanate modulators were measured for films having thicknesses between 260 and 500 nm. The half-wave voltage was directly measured at low frequencies using a polarizer-sample-compensator-analyzer setup by over-driving waveguide integrated modulators beyond their linear response regime. Effective in-device electro-optic coefficients were obtained from the measured half-wave voltages. The effective electro-optic coefficients were found to increase with both applied electrical dc bias and with film thickness. A record low 0.39V ˙ cm (0.45V ˙ cm) voltage-length product was measured for barium titanate modulators operating at telecommunication wavelengths on a device with 5 ?m electrode gap spacing on a 500nm thick film modulated at a frequency of 100 Hz (1 MHz). This measured voltage-length product is more than a factor of 5 lower than that reported for state-of-the-art silicon conventional waveguide modulators. The electro-optical characterization of BaTiO3 films revealed a trade-off that exists for traveling wave BaTiO3 modulators: lower voltages are obtained in thicker film devices with narrow electrode gap spacing while larger bandwidths are obtained in thinner film devices with wider electrode gap spacing. These findings were supported by calculations of the film thickness dependent half-wave voltage and electro-optic bandwidth. In order to demonstrate modulators having simultaneously low voltage operation and high electro-optic bandwidth, photonic crystal waveguide modulators with large group index were investigated through theory and experiment. The theory for slow light phase delay in linear optical materials was extended for second order nonlinear optical materials. This theory was incorporated into a detailed model for predicting photonic crystal modulator performance in terms of voltage-length product and electro-optic bandwidth. Modeling shows that barium titanate photonic crystal modulators with sub-millimeter length, sub-volt operation, and greater than 40 GHz electro-optic bandwidth are achievable in a single device. Two types of photonic crystal waveguides (PC) on BaTiO3 films were designed, fabricated, and characterized: waveguides with hexagonal lattice symmetry and waveguides with hexagonal symmetry having a line defect oriented in the direction of light propagation. Excellent agreement was obtained between the simulated and measured transmission for hexagonal lattice PC waveguides. An extinction of 20 dB was measured across a 9.9 nm stop band edge, yielding a record large band edge sharpness of 2 dB/nm for all photonic crystal waveguides on ferroelectric films. A 12-fold enhancement of the electro-optic coefficient was measured via optical spectral analysis in a line defect BaTiO3 modulator, yielding an effective electro-optic coefficient of 900 pm/V in the photonic crystal region at a modulation frequency of 10 GHz. This enhancement was demonstrated over a 48 nm range, demonstrating the wideband operation of these devices.
Encoding of frequency-modulation (FM) rates in human auditory cortex.
Okamoto, Hidehiko; Kakigi, Ryusuke
2015-12-14
Frequency-modulated sounds play an important role in our daily social life. However, it currently remains unclear whether frequency modulation rates affect neural activity in the human auditory cortex. In the present study, using magnetoencephalography, we investigated the auditory evoked N1m and sustained field responses elicited by temporally repeated and superimposed frequency-modulated sweeps that were matched in the spectral domain, but differed in frequency modulation rates (1, 4, 16, and 64 octaves per sec). The results obtained demonstrated that the higher rate frequency-modulated sweeps elicited the smaller N1m and the larger sustained field responses. Frequency modulation rate had a significant impact on the human brain responses, thereby providing a key for disentangling a series of natural frequency-modulated sounds such as speech and music.
Wide-band analog frequency modulation of optic signals using indirect techniques
NASA Technical Reports Server (NTRS)
Fitzmartin, D. J.; Balboni, E. J.; Gels, R. G.
1991-01-01
The wideband frequency modulation (FM) of an optical carrier by a radio frequency (RF) or microwave signal can be accomplished independent of laser type when indirect modulation is employed. Indirect modulators exploit the integral relation of phase to frequency so that phase modulators can be used to impress frequency modulation on an optical carrier. The use of integrated optics phase modulators, which are highly linear, enables the generation of optical wideband FM signals with very low intermodulation distortion. This modulator can be used as part of an optical wideband FM link for RF and microwave signals. Experimental results from the test of an indirect frequency modulator for an optical carrier are discussed.
Applications of Space-Time Duality
NASA Astrophysics Data System (ADS)
Plansinis, Brent W.
The concept of space-time duality is based on a mathematical analogy between paraxial diffraction and narrowband dispersion, and has led to the development of temporal imaging systems. The first part of this thesis focuses on the development of a temporal imaging system for the Laboratory for Laser Energetics. Using an electro-optic phase modulator as a time lens, a time-to-frequency converter is constructed capable of imaging pulses between 3 and 12 ps. Numerical simulations show how this system can be improved to image the 1-30 ps range used in OMEGA-EP. By adjusting the timing between the pulse and the sinusoidal clock of the phase modulator, the pulse spectrum can be selectively narrowed, broadened, or shifted. An experimental demonstration of this effect achieved spectral narrowing and broadening by a factor of 2. Numerical simulations show narrowing by a factor of 8 is possible with modern phase modulators. The second part of this thesis explores the space-time analog of reflection and refraction from a moving refractive index boundary. From a physics perspective, a temporal boundary breaks translational symmetry in time, requiring the momentum of the photon to remain unchanged while its energy may change. This leads to a shifting and splitting of the pulse spectrum as the boundary is crossed. Equations for the reflected and transmitted frequencies and a condition for total internal reflection are found. Two of these boundaries form a temporal waveguide, which confines the pulse to a narrow temporal window. These waveguides have a finite number of modes, which do not change during propagation. A single-mode waveguide can be created, allowing only a single pulse shape to form within the waveguide. Temporal reflection and refraction produce a frequency dependent phase shift on the incident pulse, leading to interference fringes between the incident light and the reflected light. In a waveguide, this leads to self-imaging, where the pulse shape reforms periodically at finite propagation lengths. Numerical simulations are performed for the specific case where the moving boundary is produced through cross-phase modulation. In this case, the Kerr nonlinearity causes the boundary to change during propagation, leading to unique temporal and spectral behavior.
A Nonlinear Model for Transient Responses from Light-Adapted Wolf Spider Eyes
DeVoe, Robert D.
1967-01-01
A quantitative model is proposed to test the hypothesis that the dynamics of nonlinearities in retinal action potentials from light-adapted wolf spider eyes may be due to delayed asymmetries in responses of the visual cells. For purposes of calculation, these delayed asymmetries are generated in an analogue by a time-variant resistance. It is first shown that for small incremental stimuli, the linear behavior of such a resistance describes peaking and low frequency phase lead in frequency responses of the eye to sinusoidal modulations of background illumination. It also describes the overshoots in linear step responses. It is next shown that the analogue accounts for nonlinear transient and short term DC responses to large positive and negative step stimuli and for the variations in these responses with changes in degree of light adaptation. Finally, a physiological model is proposed in which the delayed asymmetries in response are attributed to delayed rectification by the visual cell membrane. In this model, cascaded chemical reactions may serve to transduce visual stimuli into membrane resistance changes. PMID:6056011
An accurate surface topography restoration algorithm for white light interferometry
NASA Astrophysics Data System (ADS)
Yuan, He; Zhang, Xiangchao; Xu, Min
2017-10-01
As an important measuring technique, white light interferometry can realize fast and non-contact measurement, thus it is now widely used in the field of ultra-precision engineering. However, the traditional recovery algorithms of surface topographies have flaws and limits. In this paper, we propose a new algorithm to solve these problems. It is a combination of Fourier transform and improved polynomial fitting method. Because the white light interference signal is usually expressed as a cosine signal whose amplitude is modulated by a Gaussian function, its fringe visibility is not constant and varies with different scanning positions. The interference signal is processed first by Fourier transform, then the positive frequency part is selected and moved back to the center of the amplitude-frequency curve. In order to restore the surface morphology, a polynomial fitting method is used to fit the amplitude curve after inverse Fourier transform and obtain the corresponding topography information. The new method is then compared to the traditional algorithms. It is proved that the aforementioned drawbacks can be effectively overcome. The relative error is less than 0.8%.
Local Positioning System Using Flickering Infrared LEDs
Raharijaona, Thibaut; Mawonou, Rodolphe; Nguyen, Thanh Vu; Colonnier, Fabien; Boyron, Marc; Diperi, Julien; Viollet, Stéphane
2017-01-01
A minimalistic optical sensing device for the indoor localization is proposed to estimate the relative position between the sensor and active markers using amplitude modulated infrared light. The innovative insect-based sensor can measure azimuth and elevation angles with respect to two small and cheap active infrared light emitting diodes (LEDs) flickering at two different frequencies. In comparison to a previous lensless visual sensor that we proposed for proximal localization (less than 30 cm), we implemented: (i) a minimalistic sensor in terms of small size (10 cm3), light weight (6 g) and low power consumption (0.4 W); (ii) an Arduino-compatible demodulator for fast analog signal processing requiring low computational resources; and (iii) an indoor positioning system for a mobile robotic application. Our results confirmed that the proposed sensor was able to estimate the position at a distance of 2 m with an accuracy as small as 2-cm at a sampling frequency of 100 Hz. Our sensor can be also suitable to be implemented in a position feedback loop for indoor robotic applications in GPS-denied environment. PMID:29099743
Nonlinear Focal Modulation Microscopy.
Zhao, Guangyuan; Zheng, Cheng; Kuang, Cuifang; Zhou, Renjie; Kabir, Mohammad M; Toussaint, Kimani C; Wang, Wensheng; Xu, Liang; Li, Haifeng; Xiu, Peng; Liu, Xu
2018-05-11
We demonstrate nonlinear focal modulation microscopy (NFOMM) to achieve superresolution imaging. Traditional approaches to superresolution that utilize point scanning often rely on spatially reducing the size of the emission pattern by directly narrowing (e.g., through minimizing the detection pinhole in Airyscan, Zeiss) or indirectly peeling its outer profiles [e.g., through depleting the outer emission region in stimulated emission depletion (STED) microscopy]. We show that an alternative conceptualization that focuses on maximizing the optical system's frequency shifting ability offers advantages in further improving resolution while reducing system complexity. In NFOMM, a spatial light modulator and a suitably intense laser illumination are used to implement nonlinear focal-field modulation to achieve a transverse spatial resolution of ∼60 nm (∼λ/10). We show that NFOMM is comparable with STED microscopy and suitable for fundamental biology studies, as evidenced in imaging nuclear pore complexes, tubulin and vimentin in Vero cells. Since NFOMM is readily implemented as an add-on module to a laser-scanning microscope, we anticipate wide utility of this new imaging technique.
Nonlinear Focal Modulation Microscopy
NASA Astrophysics Data System (ADS)
Zhao, Guangyuan; Zheng, Cheng; Kuang, Cuifang; Zhou, Renjie; Kabir, Mohammad M.; Toussaint, Kimani C.; Wang, Wensheng; Xu, Liang; Li, Haifeng; Xiu, Peng; Liu, Xu
2018-05-01
We demonstrate nonlinear focal modulation microscopy (NFOMM) to achieve superresolution imaging. Traditional approaches to superresolution that utilize point scanning often rely on spatially reducing the size of the emission pattern by directly narrowing (e.g., through minimizing the detection pinhole in Airyscan, Zeiss) or indirectly peeling its outer profiles [e.g., through depleting the outer emission region in stimulated emission depletion (STED) microscopy]. We show that an alternative conceptualization that focuses on maximizing the optical system's frequency shifting ability offers advantages in further improving resolution while reducing system complexity. In NFOMM, a spatial light modulator and a suitably intense laser illumination are used to implement nonlinear focal-field modulation to achieve a transverse spatial resolution of ˜60 nm (˜λ /10 ). We show that NFOMM is comparable with STED microscopy and suitable for fundamental biology studies, as evidenced in imaging nuclear pore complexes, tubulin and vimentin in Vero cells. Since NFOMM is readily implemented as an add-on module to a laser-scanning microscope, we anticipate wide utility of this new imaging technique.
NASA Astrophysics Data System (ADS)
Shi, Nuannuan; Hao, Tengfei; Li, Wei; Zhu, Ninghua; Li, Ming
2018-01-01
We propose a photonic scheme to realize a reconfigurable microwave photonic filter (MPF) with flexible tunability using a multi-wavelength laser (MWL) and a multi-channel phase-shifted fiber Bragg grating (PS-FBG). The proposed MPF is capable of performing reconfigurability including single bandpass filter, two independently bandpass filter and a flat-top bandpass filter. The performance such as the central frequency and the bandwidth of passband is tuned by controlling the wavelengths of the MWL. In the MPF, The light waves from a MWL are sent to a phase modulator (PM) to generate the phase-modulated optical signals. By applying a multi-channel PS-FBG, which has a series of narrow notches in the reflection spectrum with the free spectral range (FSR) of 0.8 nm, the +1st sidebands are removed in the notches and the phased-modulated signals are converted to the intensity-modulated signals without beating signals generation between each two optical carriers. The proposed MPF is also experimentally verified. The 3-dB bandwidth of the MPF is broadened from 35 MHz to 135 MHz and the magnitude deviation of the top from the MPF is less than 0.2 dB within the frequency tunable range from 1 GHz to 5 GHz.
Salzman, Gary C.; Mullaney, Paul F.
1976-01-01
The disclosure relates to a system incorporating an ellipsoidal flow chamber having light reflective walls for low level light detection in practicing cellular analysis. The system increases signal-to-noise ratio by a factor of ten over prior art systems. In operation, laser light passes through the primary focus of the ellipsoid. A controlled flow of cells simultaneously passes through this focus so that the laser light impinges on the cells and is modulated by the cells. The reflective walls of the ellipsoid reflect the cell-modulated light to the secondary focus of the ellipsoid. A tapered light guide at the secondary focus picks up a substantial portion of modulated reflective light and directs it onto a light detector to produce a signal. The signal is processed to obtain the intensity distribution of the modulated light and hence sought after characteristics of the cells. In addition, cells may be dyed so as to fluoresce in response to the laser light and their fluorescence may be processed as cell-modulated light above described. A light discriminating filter would be used to distinguish reflected modulated laser light from reflected fluorescent light.
NASA Astrophysics Data System (ADS)
Takaya, Masaaki; Honda, Hiroyasu; Narita, Yoshihiro; Yamamoto, Fumihiko; Arakawa, Koji
2006-04-01
We report on a newly developed in-service measurement technique that can be used from a central office to find and identify any filter in front of an ONU on an optical fiber access network. Using this system, in-service tests can be performed because the test lights are modulated at a high frequency. Moreover, by using the equipment we developed, this confirmation operation can be performed continuously and automatically with existing automatic fiber testing systems. The developed technique is effective for constructing a fiber line testing system with an optical time domain reflectometer.
NASA Astrophysics Data System (ADS)
Qi Shen, Jian; He, Sailing
2006-12-01
A three-level EIT (electromagnetically induced transparency) vapor is used to manipulate the transparency and absorption properties of the probe light in a waveguide. The most remarkable feature of the present scheme is such that the optical responses resulting from both electromagnetically induced transparency and large spontaneous emission enhancement are very sensitive to the frequency detunings of the probe light as well as to the small changes of the waveguide dimension. The potential applications of the dimension- and dispersion-sensitive EIT responses are discussed, and the sensitivity limits of some waveguide-based sensors, including electric absorption modulator, optical switch, wavelength sensor, and sensitive magnetometer, are analyzed.
Integration of frequency modulated constant envelope technique with ADO-OFDM to impede PAPR in VLC
NASA Astrophysics Data System (ADS)
Singh, Vinay Kumar; Dalal, U. D.
2018-07-01
A novel technique of combating the effects of high peak to average power ratio (PAPR) arising due to the non-linearity of the LED in a typical optical-OFDM (O-OFDM) for visible light communication (VLC) systems used in optical wireless channel (OWC) is proposed in this research work. The concept of constant envelope (CE) using frequency modulation (FM) for a composite O-OFDM system formed by uniting Asymmetrically Clipped Optical OFDM (ACO-OFDM) and Direct Current biased Optical OFDM (DCO-OFDM) termed as ADO-OFDM is mathematically presented with its numerical simulation results. The proposed system FM-CE-ADO-OFDM shows improvement in the PAPR with narrowing down to the least possible 0 dB theoretically. The analysis is extended to be compared with the phase modulation (PM) technique of CE-OFDM. The magnitude of phase discontinuity in the two systems is evaluated in the form of metrics yielding favorable results for the proposed system. This system is as spectrally efficient as the DCO-OFDM and as power efficient as the ACO-OFDM with the added advantage of major reduction in the effects due to PAPR arising as a result of the nonlinearity of the LED . The so formed FM-CE-ADO-OFDM is fed to the LED biased in the linear most region of its operation for simulation purpose. We also evaluate the depth of modulation required to obtain least bit error rate (BER). The frequency modulation at 30% depth has been observed to give suitable performance. The entire system is evaluated for an OWC length of 2m resembling the indoor illumination scenario. The receiver sensitivity shows an improvement of 1.2 dB at the FEC threshold for the proposed system.
NASA Astrophysics Data System (ADS)
Kumar Singh, Vinay; Dalal, U. D.
2017-06-01
To inhibit the effect of non-linearity of the LEDs leading to a significant increase in the peak to average power ratio (PAPR) of the OFDM signals in the Visible light communication (VLC) we propose a frequency modulated constant envelope OFDM (FM CE-OFDM) technique. The abrupt amplitude variations in the OFDM signal are frequency modulated before being applied to the LED for electro-optical conversion resulting in a constant envelope signal. The LED is maintained in the linear region of operation by this constant envelope signal at sufficient DC bias. The proposed technique reduces the PAPR to the least possible value ≈0 dB. We theoretically analyze and perform numerical simulations to assess the enhancement of the proposed system. The optimal modulation index is found to be 0.3. The metrics pertaining to the evaluation of the phase discontinuity is derived and is found to be lesser for the FM CE-OFDM as compared to the phase modulated (PM) CE-OFDM. The receiver sensitivity is improved by 1.6 dB for a transmission distance of 2 m for the FM CE-OFDM as compared to the PM CE-OFDM at the FEC threshold. We compare the BER performance of the ideal OFDM (without the non linearity of LED), power back-off OFDM, PM CE-OFDM and FM CE-OFDM in an optical wireless channel (OWC) scenario. The FM CE-OFDM has an improvement of 2.1 dB SNR at the FEC threshold as compared to the PM CE-OFDM. It also shows an improvement of 11 dB when compared with the power back-off technique used in the VLC systems for 10 dB power back-off.
NASA Astrophysics Data System (ADS)
Wang, Anqi; Meng, Zhixin; Feng, Yanying
2017-10-01
We design a fiber electro-optic modulator (FEOM)-based laser frequency-offset locking system using frequency modulation spectroscopy (FMS) with the 3F modulation. The modulation signal and the frequency-offset control signal are simultaneously loaded on the FEOM by a mixer in order to suppress the frequency and power jitter caused by internal modulation on the current or piezoelectric ceramic transducer (PZT). It is expected to accomplish a fast locking, a widely tunable frequency-offset, a sensitive and rapid detection of narrow spectral features with the 3F modulation. The laser frequency fluctuation is limited to +/-1MHz and its overlapping Allan deviation is around 10-12 in twenty minutes, which successfully meets the requirements of the cold atom interferometer.
Method and Apparatus for Improved Spatial Light Modulation
NASA Technical Reports Server (NTRS)
Soutar, Colin (Inventor); Juday, Richard D. (Inventor)
2000-01-01
A method and apparatus for modulating a light beam in an optical processing system is described. Preferably, an electrically-controlled polarizer unit and/or an analyzer unit are utilized in combination with a spatial light modulator and a controller. Preferably, the spatial light modulator comprises a pixelated birefringent medium such as a liquid crystal video display. The combination of the electrically controlled polarizer unit and analyzer unit make it simple and fast to reconfigure the modulation described by the Jones matrix of the spatial light modulator. A particular optical processing objective is provided to the controller. The controller performs calculations and supplies control signals to the polarizer unit, the analyzer unit, and the spatial light modulator in order to obtain the optical processing objective.
Method and Apparatus for Improved Spatial Light Modulation
NASA Technical Reports Server (NTRS)
Colin, Soutar (Inventor); Juday, Richard D. (Inventor)
1999-01-01
A method and apparatus for modulating a light beam in an optical processing system is described. Preferably, an electrically-controlled polarizer unit and/or an analyzer unit are utilized in combination with a spatial light modulator and a controller. Preferably, the spatial light modulator comprises a pixelated birefringent medium such as a liquid crystal video display. The combination of the electrically controlled polarizer unit and analyzer unit make it simple and fast to reconfigure the modulation described by the Jones matrix of the spatial light modulator. A particular optical processing objective is provided to the controller. The controller performs calculations and supplies control signals to the polarizer unit, the analyzer unit, and the spatial light modulator in order to obtain die optical processing objective.
Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF
Lindsay, Lucas R.
2016-11-08
Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance viamore » modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where values of isotopically pure systems ( 6LiH, 7Li 2H and 6LiF) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This work provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.« less
VLC-beacon detection with an under-sampled ambient light sensor
NASA Astrophysics Data System (ADS)
Green, Jacob; Pérez-Olivas, Huetzin; Martínez-Díaz, Saúl; García-Márquez, Jorge; Domínguez-González, Carlos; Santiago-Montero, Raúl; Guan, Hongyu; Rozenblat, Marc; Topsu, Suat
2017-08-01
LEDs will replace in a near future the current worldwide lighting mainly due to their low production-cost and energy-saving assets. Visible light communications (VLC) will turn gradually the existing lighting network into a communication network. Nowadays VLC transceivers can be found in some commercial centres in Europe; some of them broadcast continuously an identification tag that contains its coordinate position. In such a case, the transceiver acts as a geolocation beacon. Nevertheless, mobile transceivers represent a challenge in the VLC communication chain, as smartphones have not integrated yet a VLC customized detection stage. In order to make current smartphones capable to detect VLC broadcasted signals, their Ambient Light Sensor (ALS) is adapted as a VLC detector. For this to be achieved, lighting transceivers need to adapt their modulation scheme. For instance, frequencies representing start bit, 1, and 0 logic values can be set to avoid flicker from illumination and to permit detecting the under-sampled signal. Decoding the signal requires a multiple steps real-time signal processing as shown here.
Scanned Image Projection System Employing Intermediate Image Plane
NASA Technical Reports Server (NTRS)
DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)
2014-01-01
In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.
Resonant tunneling diode oscillators for optical communications
NASA Astrophysics Data System (ADS)
Watson, Scott; Zhang, Weikang; Wang, Jue; Al-Khalidi, Abdullah; Cantu, Horacio; Figueiredo, Jose; Wasige, Edward; Kelly, Anthony E.
2017-08-01
The ability to use resonant tunneling diodes (RTDs) as both transmitters and receivers is an emerging topic, especially with regards to wireless communications. Successful data transmission has been achieved using electronic RTDs with carrier frequencies exceeding 0.3 THz. Specific optical-based RTDs, which act as photodetectors, have been developed by adjusting the device structure to include a light absorption layer and small optical windows on top of the device to allow direct optical access. This also allows the optical signal to directly modulate the RTD oscillation. Both types of RTD oscillators will allow for seamless integration of high frequency radio and optical fiber networks.
A comparative study of optical concentrators for visible light communications
NASA Astrophysics Data System (ADS)
Mulyawan, Rahmat; Gomez, Ariel; Chun, Hyunchae; Rajbhandari, Sujan; Manousiadis, Pavlos P.; Vithanage, Dimali A.; Faulkner, Grahame; Turnbull, Graham A.; Samuel, Ifor D. W.; Collins, Stephen; O'Brien, Dominic
2017-01-01
Given the imminent radio frequency spectrum crunch, Visible Light Communication (VLC) is being proposed as an alternative wireless technology allowing for scalable connectivity to potentially millions of mobile and Internet-of- Things (IoT) devices. A VLC system uses a photo-detector (PD) receiver that converts the optically modulated light from a light source into a modulated electrical signal. The corresponding receiver electrical bandwidth is typically inversely proportional to the PD active area. Consequently, to construct a high-speed VLC link, the PD active area is often substantially reduced and an optical concentrator is used to enhance the receiver collection area. However, to achieve high concentrating factor, the link field-of-view (FOV) needs to be narrow due to the étendue conservation in linear passive optical systems. This paper studies a Fluorescent Concentrator (FC) that breaks this étendue conservation. The FC is not only based on reflective and refractive principles but also makes use of fluorescence process. A comparison between the FC and conventional optical concentrators, namely Compound Parabolic Concentrator (CPC) is also investigated. The trade-off between received signal strength and incoming link angle is demonstrated over 60° coverage. Experimental results show that performance degradation as the link angle increases using FC-based receivers is significantly lower than for conventional CPC.
47 CFR 80.213 - Modulation requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... must be maintained between 75 and 100 percent; (2) When phase or frequency modulation is used in the 156-162 MHz band the peak modulation must be maintained between 75 and 100 percent. A frequency... installed between the modulation limiter and the modulated radio frequency stage. At frequencies between 3 k...
NASA Astrophysics Data System (ADS)
Zong, Weikai; Charpinet, Stéphane; Fu, Jian-Ning; Vauclair, Gérard; Niu, Jia-Shu; Su, Jie
2018-02-01
We present the first results of an ensemble and systematic survey of oscillation mode variability in pulsating hot B subdwarf (sdB) and white dwarf stars observed with the original Kepler mission. The satellite provides uninterrupted high-quality photometric data with a time baseline that can reach up to 4 yr collected on pulsating stars. This is a unique opportunity to characterize long-term behaviors of oscillation modes. A mode modulation in amplitude and frequency can be independently inferred by its fine structure in the Fourier spectrum, from the sLSP, or with prewhitening methods applied to various parts of the light curve. We apply all these techniques to the sdB star KIC 3527751, a long-period-dominated hybrid pulsator. We find that all the detected modes with sufficiently large amplitudes to be thoroughly studied show amplitude and/or frequency variations. Components of three identified quintuplets around 92, 114, and 253 μHz show signatures that can be linked to nonlinear interactions according to the resonant mode coupling theory. This interpretation is further supported by the fact that many oscillation modes are found to have amplitudes and frequencies showing correlated or anticorrelated variations, a behavior that can be linked to the amplitude equation formalism, where nonlinear frequency corrections are determined by their amplitude variations. Our results suggest that oscillation modes varying with diverse patterns are a very common phenomenon in pulsating sdB stars. Close structures around main frequencies therefore need to be carefully interpreted in light of this finding to secure a robust identification of real eigenfrequencies, which is crucial for seismic modeling. The various modulation patterns uncovered should encourage further developments in the field of nonlinear stellar oscillation theory. It also raises a warning to any long-term project aiming at measuring the rate of period change of pulsations caused by stellar evolution, or at discovering stellar (planetary) companions around pulsating stars using timing methods, as both require very stable pulsation modes.
Frequency Domain Fluorimetry Using a Mercury Vapor Lamp
2009-04-07
independence from light scatter and excitation/emission intensity variations in order to extract the sample’s fluorescent lifetime. Mercury vapor lamps ...the modulation amplitude of the lamp , An, via: max 0 1 ( ) sin(2 ) n fluorescence n n n I t B nf tπ θ = ∝ +∑ (8... lamp is estimated by assuming the lamp is emitting as a point source of uniform intensity into the lower hemisphere and has a reflector collecting
Active Metamaterials for Terahertz Communication and Imaging
NASA Astrophysics Data System (ADS)
Rout, Saroj
In recent years there has been significant interest in terahertz (THz) systems mostly due to their unique applications in communication and imaging. One of the primary reason for this resurgence is the use of metamaterials to design THz devices due to lack of natural materials that can respond to this electromagnetic spectrum, the so-called ''THz gap''. Even after years of intense research, THz systems are complex and expensive, unsuitable for mainstream applications. This work focuses on bridging this gap by building all solid-state THz devices for imaging and communication applications in a commercial integrated circuit (IC) technology. One such canonical device is a THz wave modulator that can be used in THz wireless communication devices and as spatial light modulator (SLM) for THz imaging systems. The key contribution of this thesis is a metamaterial based THz wave modulator fabricated in a commercial gallium arsenide (GaAs) process resonant at 0.46 THz using a novel approach of embedding pseudomorphic high electron mobility transistors (pHEMTs) in metamaterial and demonstrate modulation values over 30%, and THz modulation at frequencies up to 10 MHz. Using the THz wave modulator, we fabricated and experimentally demonstrated an all solid-state metamaterial based THz spatial light modulator (SLM) as a 2x2 pixel array operating around 0.46 THz, by raster scanning an occluded metal object in polystyrene using a single-pixel imaging setup. This was an important step towards building an low-voltage (1V), low power, on-chip integrable THz imaging device. Using the characterization result from the THz SLM, we computationally demonstrated a multi-level amplitude shift keying (ASK) terahertz wireless communication system using spatial light modulation instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. We show two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR). We have computationally demonstrated a novel pictorial modulation technique showing N/log2(N) improvement in bandwidth using a N-tile SLM compared to standard spatial modulation using a single-pixel detector. Finally, we demonstrate a path to realize a terahertz focal plane array (FPA) using a commercial 0.18 mum CMOS foundry process. Through EM simulation and circuit simulation we have demonstrated a metamaterial based THz detectors at 230-325 GHz that can be used in a focal plane array.
A broadband ASE light source-based full-duplex FTTX/ROF transport system.
Chang, Ching-Hung; Lu, Hai-Han; Su, Heng-Sheng; Shih, Chien-Liang; Chen, Kai-Jen
2009-11-23
A full-duplex fiber-to-the-X (FTTX)/radio-over-fiber (ROF) transport system based on a broadband amplified spontaneous emission (ASE) light source is proposed and demonstrated for rural wide-spread villages. Combining the concepts of long-transmission transmission and ring topology, a long-haul single-mode fiber (SMF) trunk is sharing with multiple rural villages. Externally modulated baseband (BB) (1.25 Gbps) and radio-frequency (RF) (622 Mbps/10 GHz) signals are successfully transmitted simultaneously. Good bit error rate (BER) performance was achieved to demonstrate the practice of providing wire/wireless connections for long-haul wide-spread rural villages. Since our proposed system uses only a broadband ASE light source to achieve multi-wavelengths transmissions, it also reveals an outstanding one with simpler and more economic advantages.
Chen, Chih-Chung; Johnson, Mark I
2009-10-01
Frequency-modulated transcutaneous electrical nerve stimulation (TENS) delivers currents that fluctuate between preset boundaries over a fixed period of time. This study compared the effects of constant-frequency TENS and frequency-modulated TENS on blunt pressure pain in healthy human volunteers. Thirty-six participants received constant-frequency TENS (80 pps), frequency-modulated TENS (20 to 100 pps), and placebo (no current) TENS at a strong nonpainful intensity in a randomized cross-over manner. Pain threshold was taken from the forearm using pressure algometry. There were no statistical differences between constant-frequency TENS and frequency-modulated TENS after 20 minutes (OR = 1.54; CI, 0.29, 8.23, P = 1.0). Both constant-frequency TENS and frequency-modulated TENS were superior to placebo TENS (OR = 59.5, P < .001 and OR = 38.5, P < .001, respectively). Frequency-modulated TENS does not influence hypoalgesia to any greater extent than constant-frequency TENS when currents generate a strong nonpainful paraesthesia at the site of pain. The finding that frequency-modulated TENS and constant-frequency TENS were superior to placebo TENS provides further evidence that a strong yet nonpainful TENS intensity is a prerequisite for hypoalgesia. This study provides evidence that TENS, delivered at a strong nonpainful intensity, increases pain threshold to pressure algometry in healthy participants over and above that seen with placebo (no current) TENS. Frequency-modulated TENS does not increase hypoalgesia to any appreciable extent to that seen with constant-frequency TENS.
Spatial Light Modulator Would Serve As Electronic Iris
NASA Technical Reports Server (NTRS)
Gutow, David A.
1991-01-01
In proposed technique for controlling brightness of image formed by lens, spatial light modulator serves as segmented, electronically variable aperture. Offers several advantages: spatial light modulator controlled remotely and responds faster than motorized iris or other remotely controlled mechanical iris. Unlike iris, modulator also configured so as not to vary depth of field appreciably. Unlike lead lanthanum zirconate titanate crystal, spatial light modulator does not require high voltage.
Munn, Robert G K; Tyree, Susan M; McNaughton, Neil; Bilkey, David K
2015-01-01
The hippocampal formation plays a critical role in the generation of episodic memory. While the encoding of the spatial and contextual components of memory have been extensively studied, how the hippocampus encodes temporal information, especially at long time intervals, is less well understood. The activity of place cells in hippocampus has previously been shown to be modulated at a circadian time-scale, entrained by a behavioral stimulus, but not entrained by light. The experimental procedures used in the previous study of this phenomenon, however, necessarily conflated two alternative entraining stimuli, the exposure to the recording environment and the availability of food, making it impossible to distinguish between these possibilities. Here we demonstrate that the frequency of theta-band hippocampal EEG varies with a circadian period in freely moving animals and that this periodicity mirrors changes in the firing rate of hippocampal neurons. Theta activity serves, therefore, as a proxy of circadian-modulated hippocampal neuronal activity. We then demonstrate that the frequency of hippocampal theta driven by stimulation of the reticular formation also varies with a circadian period. Because this effect can be observed without having to feed the animal to encourage movement we were able to identify what stimulus entrains the circadian oscillation. We show that with reticular-activated recordings started at various times of the day the frequency of theta varies quasi-sinusoidally with a 25 h period and phase-aligned when referenced to the animal's regular feeding time, but not the recording start time. Furthermore, we show that theta frequency consistently varied with a circadian period when the data obtained from repeated recordings started at various times of the day were referenced to the start of food availability in the recording chamber. This pattern did not occur when data were referenced to the start of the recording session or to the actual time of day when this was not also related to feeding time. This double dissociation demonstrates that hippocampal theta is modulated with a circadian timescale, and that this modulation is strongly entrained by food. One interpretation of this finding is that the hippocampus is responsive to a food entrainable oscillator (FEO) that might modulate foraging behavior over circadian periods.
Spectro-temporal modulation masking patterns reveal frequency selectivity.
Oetjen, Arne; Verhey, Jesko L
2015-02-01
The present study investigated the possibility that the human auditory system demonstrates frequency selectivity to spectro-temporal amplitude modulations. Threshold modulation depth for detecting sinusoidal spectro-temporal modulations was measured using a generalized masked threshold pattern paradigm with narrowband masker modulations. Four target spectro-temporal modulations were examined, differing in their temporal and spectral modulation frequencies: a temporal modulation of -8, 8, or 16 Hz combined with a spectral modulation of 1 cycle/octave and a temporal modulation of 4 Hz combined with a spectral modulation of 0.5 cycles/octave. The temporal center frequencies of the masker modulation ranged from 0.25 to 4 times the target temporal modulation. The spectral masker-modulation center-frequencies were 0, 0.5, 1, 1.5, and 2 times the target spectral modulation. For all target modulations, the pattern of average thresholds for the eight normal-hearing listeners was consistent with the hypothesis of a spectro-temporal modulation filter. Such a pattern of modulation-frequency sensitivity was predicted on the basis of psychoacoustical data for purely temporal amplitude modulations and purely spectral amplitude modulations. An analysis of separability indicates that, for the present data set, selectivity in the spectro-temporal modulation domain can be described by a combination of a purely spectral and a purely temporal modulation filter function.
NASA Astrophysics Data System (ADS)
Whyte, Refael; Streeter, Lee; Cree, Michael J.; Dorrington, Adrian A.
2015-11-01
Time of flight (ToF) range cameras illuminate the scene with an amplitude-modulated continuous wave light source and measure the returning modulation envelopes: phase and amplitude. The phase change of the modulation envelope encodes the distance travelled. This technology suffers from measurement errors caused by multiple propagation paths from the light source to the receiving pixel. The multiple paths can be represented as the summation of a direct return, which is the return from the shortest path length, and a global return, which includes all other returns. We develop the use of a sinusoidal pattern from which a closed form solution for the direct and global returns can be computed in nine frames with the constraint that the global return is a spatially lower frequency than the illuminated pattern. In a demonstration on a scene constructed to have strong multipath interference, we find the direct return is not significantly different from the ground truth in 33/136 pixels tested; where for the full-field measurement, it is significantly different for every pixel tested. The variance in the estimated direct phase and amplitude increases by a factor of eight compared with the standard time of flight range camera technique.
Polarization selective phase-change nanomodulator
Appavoo, Kannatassen; Haglund Jr., Richard F.
2014-01-01
Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume of only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. This architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements. PMID:25346427
Polarization selective phase-change nanomodulator
Appavoo, Kannatassen; Haglund Jr., Richard F.
2014-10-27
Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume ofmore » only 0.002 µm 3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. Lastly, this architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements.« less
Velocity changes, long runs, and reversals in the Chromatium minus swimming response.
Mitchell, J G; Martinez-Alonso, M; Lalucat, J; Esteve, I; Brown, S
1991-01-01
The velocity, run time, path curvature, and reorientation angle of Chromatium minus were measured as a function of light intensity, temperature, viscosity, osmotic pressure, and hydrogen sulfide concentration. C. minus changed both velocity and run time. Velocity decreased with increasing light intensity in sulfide-depleted cultures and increased in sulfide-replete cultures. The addition of sulfide to cultures grown at low light intensity (10 microeinsteins m-2 s-1) caused mean run times to increase from 10.5 to 20.6 s. The addition of sulfide to cultures grown at high light intensity (100 microeinsteins m-2 s-1) caused mean run times to decrease from 15.3 to 7.7 s. These changes were maintained for up to an hour and indicate that at least some members of the family Chromatiaceae simultaneously modulate velocity and turning frequency for extended periods as part of normal taxis. Images PMID:1991736
Edge states and phase diagram for graphene under polarized light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi -Xiang; Li, Fuxiang
2016-03-22
In this paper, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, themore » number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.« less
NASA Astrophysics Data System (ADS)
Masian, Y.; Sivak, A.; Sevostianov, D.; Vassiliev, V.; Velichansky, V.
The paper shows the presents results of studies of small-size rubidium cells with argon and neon buffer gases, produced by a patent pended technique of laser welding [Fishman et al. (2014)]. Cells were designed for miniature frequency standard. Temperature dependence of the frequency of the coherent population trapping (CPT) resonance was measured and used to optimize the ratio of partial pressures of buffer gases. The influence of duration and regime of annealing on the CPT-resonance frequency drift was investigated. The parameters of the FM modulation of laser current for two cases which correspond to the highest amplitude of CPT resonance and to the smallest light shifts of the resonance frequency were determined. The temperature dependences of the CPT resonance frequency were found to be surprisingly different in the two cases. A non-linear dependence of CPT resonance frequency on the temperature of the cell with the two extremes was revealed for one of these cases.
Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip.
Wang, Jian; Shen, Hao; Fan, Li; Wu, Rui; Niu, Ben; Varghese, Leo T; Xuan, Yi; Leaird, Daniel E; Wang, Xi; Gan, Fuwan; Weiner, Andrew M; Qi, Minghao
2015-01-12
Photonic methods of radio-frequency waveform generation and processing can provide performance advantages and flexibility over electronic methods due to the ultrawide bandwidth offered by the optical carriers. However, bulk optics implementations suffer from the lack of integration and slow reconfiguration speed. Here we propose an architecture of integrated photonic radio-frequency generation and processing and implement it on a silicon chip fabricated in a semiconductor manufacturing foundry. Our device can generate programmable radio-frequency bursts or continuous waveforms with only the light source, electrical drives/controls and detectors being off-chip. It modulates an individual pulse in a radio-frequency burst within 4 ns, achieving a reconfiguration speed three orders of magnitude faster than thermal tuning. The on-chip optical delay elements offer an integrated approach to accurately manipulating individual radio-frequency waveform features without constraints set by the speed and timing jitter of electronics, and should find applications ranging from high-speed wireless to defence electronics.
Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip
Wang, Jian; Shen, Hao; Fan, Li; Wu, Rui; Niu, Ben; Varghese, Leo T.; Xuan, Yi; Leaird, Daniel E.; Wang, Xi; Gan, Fuwan; Weiner, Andrew M.; Qi, Minghao
2015-01-01
Photonic methods of radio-frequency waveform generation and processing can provide performance advantages and flexibility over electronic methods due to the ultrawide bandwidth offered by the optical carriers. However, bulk optics implementations suffer from the lack of integration and slow reconfiguration speed. Here we propose an architecture of integrated photonic radio-frequency generation and processing and implement it on a silicon chip fabricated in a semiconductor manufacturing foundry. Our device can generate programmable radio-frequency bursts or continuous waveforms with only the light source, electrical drives/controls and detectors being off-chip. It modulates an individual pulse in a radio-frequency burst within 4 ns, achieving a reconfiguration speed three orders of magnitude faster than thermal tuning. The on-chip optical delay elements offer an integrated approach to accurately manipulating individual radio-frequency waveform features without constraints set by the speed and timing jitter of electronics, and should find applications ranging from high-speed wireless to defence electronics. PMID:25581847
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homan, Jeroen; Remillard, Ronald A.; Fridriksson, Joel K., E-mail: jeroen@space.mit.edu
2015-10-10
We report on a detailed analysis of the so-called ∼1 Hz quasi-periodic oscillation (QPO) in the eclipsing and dipping neutron-star low-mass X-ray binary EXO 0748–676. This type of QPO has previously been shown to have a geometric origin. Our study focuses on the evolution of the QPO as the source moves through the color–color diagram in which it traces out an atoll-source-like track. The QPO frequency increases from ∼0.4 Hz in the hard state to ∼25 Hz as the source approaches the soft state. Combining power spectra based on QPO frequency reveals additional features that strongly resemble those seen inmore » non-dipping/eclipsing atoll sources. We show that the low-frequency QPOs in atoll sources and the ∼1 Hz QPO in EXO 0748–676 follow similar relations with respect to the noise components in their power spectra. We conclude that the frequencies of both types of QPOs are likely set by (the same) precession of a misaligned inner accretion disk. For high-inclination systems like EXO 0748–676 this results in modulations of the neutron-star emission due to obscuration or scattering, while for lower-inclination systems the modulations likely arise from relativistic Doppler-boosting and light-bending effects.« less
Longitudinal bunch dynamics study with coherent synchrotron radiation
NASA Astrophysics Data System (ADS)
Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; May, T. E.; Vogt, J. M.; Wurtz, W. A.
2016-02-01
An electron bunch circulating in a storage ring constitutes a dynamical system with both longitudinal and transverse degrees of freedom. Through a self-interaction with the wakefields created by the bunch, certain of these degrees may get excited, defining a set of eigenmodes analogous to a spectroscopic series. The present study focuses on the longitudinal modes of a single bunch. The excitation of a mode appears as an amplitude modulation at the mode frequency of the coherent synchrotron radiation (CSR) emitted by the bunch. The modulations are superimposed on a much larger continuum from CSR emission in the continuous mode. A given eigenmode is classified by the integer m which is the ratio of the mode frequency to the synchrotron frequency. The present measurements extend up to m =8 and focus on the region near the instability thresholds. At threshold the modes are excited sequentially, resembling a staircase when the mode frequencies are plotted as a function of bunch length or synchrotron frequency. Adjacent modes are observed to coexist at the boundaries between the modes. An energy-independent correlation is observed between the threshold current for an instability and the corresponding zero-current bunch length. Measurements were made at five beam energies between 1.0 and 2.9 GeV at the Canadian Light Source. The CSR was measured in the time domain using an unbiased Schottky diode spanning 50-75 GHz.
NASA Astrophysics Data System (ADS)
Torjesen, Alyssa; Istfan, Raeef; Roblyer, Darren
2017-03-01
Frequency-domain diffuse optical spectroscopy (FD-DOS) utilizes intensity-modulated light to characterize optical scattering and absorption in thick tissue. Previous FD-DOS systems have been limited by large device footprints, complex electronics, high costs, and limited acquisition speeds, all of which complicate access to patients in the clinical setting. We have developed a new digital DOS (dDOS) system, which is relatively compact and inexpensive, allowing for simplified clinical use, while providing unprecedented measurement speeds. The dDOS system utilizes hardware-integrated custom board-level direct digital synthesizers and an analog-to-digital converter to generate frequency sweeps and directly measure signals utilizing undersampling at six wavelengths modulated at discrete frequencies from 50 to 400 MHz. Wavelength multiplexing is utilized to achieve broadband frequency sweep measurements acquired at over 97 Hz. When compared to a gold-standard DOS system, the accuracy of optical properties recovered with the dDOS system was within 5.3% and 5.5% for absorption and reduced scattering coefficient extractions, respectively. When tested in vivo, the dDOS system was able to detect physiological changes throughout the cardiac cycle. The new FD-dDOS system is fast, inexpensive, and compact without compromising measurement quality.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2017-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2014-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
Three axis vector atomic magnetometer utilizing polarimetric technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com
2016-09-15
The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity fieldmore » gradient measurement as required for biomedical application.« less
Graphene metamaterial spatial light modulator for infrared single pixel imaging.
Fan, Kebin; Suen, Jonathan Y; Padilla, Willie J
2017-10-16
High-resolution and hyperspectral imaging has long been a goal for multi-dimensional data fusion sensing applications - of interest for autonomous vehicles and environmental monitoring. In the long wave infrared regime this quest has been impeded by size, weight, power, and cost issues, especially as focal-plane array detector sizes increase. Here we propose and experimentally demonstrated a new approach based on a metamaterial graphene spatial light modulator (GSLM) for infrared single pixel imaging. A frequency-division multiplexing (FDM) imaging technique is designed and implemented, and relies entirely on the electronic reconfigurability of the GSLM. We compare our approach to the more common raster-scan method and directly show FDM image frame rates can be 64 times faster with no degradation of image quality. Our device and related imaging architecture are not restricted to the infrared regime, and may be scaled to other bands of the electromagnetic spectrum. The study presented here opens a new approach for fast and efficient single pixel imaging utilizing graphene metamaterials with novel acquisition strategies.
Laser Spot Welding of Copper-aluminum Joints Using a Pulsed Dual Wavelength Laser at 532 and 1064 nm
NASA Astrophysics Data System (ADS)
Stritt, Peter; Hagenlocher, Christian; Kizler, Christine; Weber, Rudolf; Rüttimann, Christoph; Graf, Thomas
A modulated pulsed laser source emitting green and infrared laser light is used to join the dissimilar metals copper and aluminum. The resultant dynamic welding process is analyzed using the back reflected laser light and high speed video observations of the interaction zone. Different pulse shapes are applied to influence the melt pool dynamics and thereby the forming grain structure and intermetallic phases. The results of high-speed images and back-reflections prove that a modulation of the pulse shape is transferred to oscillations of the melt pool at the applied frequency. The outcome of the melt pool oscillation is shown by the metallurgically prepared cross-section, which indicates different solidification lines and grain shapes. An energy-dispersivex-ray analysis shows the mixture and the resultant distribution of the two metals, copper and aluminum, within the spot weld. It can be seen that the mixture is homogenized the observed melt pool oscillations.
Quasi-periodic Pulse Amplitude Modulation in the Accreting Millisecond Pulsar IGR J00291+5934
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bult, Peter; Doesburgh, Marieke van; Klis, Michiel van der
We introduce a new method for analyzing the aperiodic variability of coherent pulsations in accreting millisecond X-ray pulsars (AMXPs). Our method involves applying a complex frequency correction to the time-domain light curve, allowing for the aperiodic modulation of the pulse amplitude to be robustly extracted in the frequency domain. We discuss the statistical properties of the resulting modulation spectrum and show how it can be correlated with the non-pulsed emission to determine if the periodic and aperiodic variability are coupled processes. Using this method, we study the 598.88 Hz coherent pulsations of the AMXP IGR J00291+5934 as observed with themore » Rossi X-ray Timing Explorer and XMM-Newton . We demonstrate that our method easily confirms the known coupling between the pulsations and a strong 8 mHz quasi-periodic oscillation (QPO) in XMM-Newton observations. Applying our method to the RXTE observations, we further show, for the first time, that the much weaker 20 mHz QPO and its harmonic are also coupled with the pulsations. We discuss the implications of this coupling and indicate how it may be used to extract new information on the underlying accretion process.« less
Bingham, Stephen J; Wolverson, Daniel; Thomson, Andrew J
2008-12-01
The simultaneous excitation of paramagnetic molecules with optical (laser) and microwave radiation in the presence of a magnetic field can cause an amplitude, or phase, modulation of the transmitted light at the microwave frequency. The detection of this modulation indicates the presence of coupled optical and ESR transitions. The phenomenon can be viewed as a coherent Raman effect or, in most cases, as a microwave frequency modulation of the magnetic circular dichroism by the precessing magnetization. By allowing the optical and magnetic properties of a transition metal ion centre to be correlated, it becomes possible to deconvolute the overlapping optical or ESR spectra of multiple centres in a protein or of multiple chemical forms of a particular centre. The same correlation capability also allows the relative orientation of the magnetic and optical anisotropies of each species to be measured, even when the species cannot be obtained in a crystalline form. Such measurements provide constraints on electronic structure calculations. The capabilities of the method are illustrated by data from the dimeric mixed-valence Cu(A) centre of nitrous oxide reductase (N(2)OR) from Paracoccus pantotrophus.
Sensitivity to Envelope Interaural Time Differences at High Modulation Rates
Bleeck, Stefan; McAlpine, David
2015-01-01
Sensitivity to interaural time differences (ITDs) conveyed in the temporal fine structure of low-frequency tones and the modulated envelopes of high-frequency sounds are considered comparable, particularly for envelopes shaped to transmit similar fidelity of temporal information normally present for low-frequency sounds. Nevertheless, discrimination performance for envelope modulation rates above a few hundred Hertz is reported to be poor—to the point of discrimination thresholds being unattainable—compared with the much higher (>1,000 Hz) limit for low-frequency ITD sensitivity, suggesting the presence of a low-pass filter in the envelope domain. Further, performance for identical modulation rates appears to decline with increasing carrier frequency, supporting the view that the low-pass characteristics observed for envelope ITD processing is carrier-frequency dependent. Here, we assessed listeners’ sensitivity to ITDs conveyed in pure tones and in the modulated envelopes of high-frequency tones. ITD discrimination for the modulated high-frequency tones was measured as a function of both modulation rate and carrier frequency. Some well-trained listeners appear able to discriminate ITDs extremely well, even at modulation rates well beyond 500 Hz, for 4-kHz carriers. For one listener, thresholds were even obtained for a modulation rate of 800 Hz. The highest modulation rate for which thresholds could be obtained declined with increasing carrier frequency for all listeners. At 10 kHz, the highest modulation rate at which thresholds could be obtained was 600 Hz. The upper limit of sensitivity to ITDs conveyed in the envelope of high-frequency modulated sounds appears to be higher than previously considered. PMID:26721926
White-Light Whispering-Gallery-Mode Optical Resonators
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute
2006-01-01
Whispering-gallery-mode (WGM) optical resonators can be designed to exhibit continuous spectra over wide wavelength bands (in effect, white-light spectra), with ultrahigh values of the resonance quality factor (Q) that are nearly independent of frequency. White-light WGM resonators have potential as superior alternatives to (1) larger, conventional optical resonators in ring-down spectroscopy, and (2) optical-resonator/electro-optical-modulator structures used in coupling of microwave and optical signals in atomic clocks. In these and other potential applications, the use of white-light WGM resonators makes it possible to relax the requirement of high-frequency stability of lasers, thereby enabling the use of cheaper lasers. In designing a white-light WGM resonator, one exploits the fact that the density of the mode spectrum increases predictably with the thickness of the resonator disk. By making the resonator disk sufficiently thick, one can make the frequency differences between adjacent modes significantly less than the spectral width of a single mode, so that the spectral peaks of adjacent modes overlap, making the resonator spectrum essentially continuous. Moreover, inasmuch as the Q values of the various modes are determined primarily by surface Rayleigh scattering that does not depend on mode numbers, all the modes have nearly equal Q. By use of a proper coupling technique, one can ensure excitation of a majority of the modes. For an experimental demonstration of a white-light WGM resonator, a resonator disk 0.5-mm thick and 5 mm in diameter was made from CaF2. The shape of the resonator and the fiberoptic coupling arrangement were as shown in Figure 1. The resonator was excited with laser light having a wavelength of 1,320 nm and a spectral width of 4 kHz. The coupling efficiency exceeded 80 percent at any frequency to which the laser could be set in its tuning range, which was >100-GHz wide. The resonator response was characterized by means of ring-down tests in which the excitation was interrupted by a shutter having a rise and a fall time of 5 ns. The ring-down time of photodiodes and associated circuitry used to measure the interrupted excitation and the resonator output was <1 ns. Figure 2 shows the shapes of representative input and output light pulses. The average ring-down time was found to be 120 ns, corresponding to Q=2x10(exp 8). The variations of Q with the laser carrier frequency were found to be <5 percent. Hence, the resonator was shown to have the desired white light properties.
Pseudo-Random Modulation of a Laser Diode for Generating Ultrasonic Longitudinal Waves
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Anatasi, Robert F.
2004-01-01
Laser generated ultrasound systems have historically been more complicated and expensive than conventional piezoelectric based systems, and this fact has relegated the acceptance of laser based systems to niche applications for which piezoelectric based systems are less suitable. Lowering system costs, while improving throughput, increasing ultrasound signal levels, and improving signal-to-noise are goals which will help increase the general acceptance of laser based ultrasound. One current limitation with conventional laser generated ultrasound is a material s damage threshold limit. Increasing the optical power to generate more signal eventually damages the material being tested due to rapid, high heating. Generation limitations for laser based ultrasound suggests the use of pulse modulation techniques as an alternate generation method. Pulse modulation techniques can spread the laser energy over time or space, thus reducing laser power densities and minimizing damage. Previous experiments by various organizations using spatial or temporal pulse modulation have been shown to generate detectable surface, plate, and bulk ultrasonic waves with narrow frequency bandwidths . Using narrow frequency bandwidths improved signal detectability, but required the use of expensive and powerful lasers and opto-electronic systems. The use of a laser diode to generate ultrasound is attractive because of its low cost, small size, light weight, simple optics and modulation capability. The use of pulse compression techniques should allow certain types of laser diodes to produce usable ultrasonic signals. The method also does not need to be limited to narrow frequency bandwidths. The method demonstrated here uses a low power laser diode (approximately 150 mW) that is modulated by controlling the diode s drive current and the resulting signal is recovered by cross correlation. A potential application for this system which is briefly demonstrated is in detecting signals in thick composite materials where attenuation is high and signal amplitude and bandwidth are at a premium.
Macular pigment optical density measured by heterochromatic modulation photometry.
Huchzermeyer, Cord; Schlomberg, Juliane; Welge-Lüssen, Ulrich; Berendschot, Tos T J M; Pokorny, Joel; Kremers, Jan
2014-01-01
To psychophysically determine macular pigment optical density (MPOD) employing the heterochromatic modulation photometry (HMP) paradigm by estimating 460 nm absorption at central and peripheral retinal locations. For the HMP measurements, two lights (B: 460 nm and R: 660 nm) were presented in a test field and were modulated in counterphase at medium or high frequencies. The contrasts of the two lights were varied in tandem to determine flicker detection thresholds. Detection thresholds were measured for different R:B modulation ratios. The modulation ratio with minimal sensitivity (maximal threshold) is the point of equiluminance. Measurements were performed in 25 normal subjects (11 male, 14 female; age: 30 ± 11 years, mean ± sd) using an eight channel LED stimulator with Maxwellian view optics. The results were compared with those from two published techniques - one based on heterochromatic flicker photometry (Macular Densitometer) and the other on fundus reflectometry (MPR). We were able to estimate MPOD with HMP using a modified theoretical model that was fitted to the HMP data. The resultant MPODHMP values correlated significantly with the MPODMPR values and with the MPODHFP values obtained at 0.25° and 0.5° retinal eccentricity. HMP is a flicker-based method with measurements taken at a constant mean chromaticity and luminance. The data can be well fit by a model that allows all data points to contribute to the photometric equality estimate. Therefore, we think that HMP may be a useful method for MPOD measurements, in basic and clinical vision experiments.
140 GHz pulsed Fourier transform microwave spectrometer
Kolbe, W.F.; Leskovar, B.
1985-07-29
A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and sway from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch.
140 GHz pulsed Fourier transform microwave spectrometer
Kolbe, W.F.; Leskovar, B.
1987-10-27
A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal is disclosed. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch. 5 figs.
Temporally flickering nanoparticles for compound cellular imaging and super resolution
NASA Astrophysics Data System (ADS)
Ilovitsh, Tali; Danan, Yossef; Meir, Rinat; Meiri, Amihai; Zalevsky, Zeev
2016-03-01
This work presents the use of flickering nanoparticles for imaging biological samples. The method has high noise immunity, and it enables the detection of overlapping types of GNPs, at significantly sub-diffraction distances, making it attractive for super resolving localization microscopy techniques. The method utilizes a lock-in technique at which the imaging of the sample is done using a time-modulated laser beam that match the number of the types of gold nanoparticles (GNPs) that label a given sample, and resulting in the excitation of the temporal flickering of the scattered light at known temporal frequencies. The final image where the GNPs are spatially separated is obtained using post processing where the proper spectral components corresponding to the different modulation frequencies are extracted. This allows the simultaneous super resolved imaging of multiple types of GNPs that label targets of interest within biological samples. Additionally applying the post-processing algorithm of the K-factor image decomposition algorithm can further improve the performance of the proposed approach.
NASA Astrophysics Data System (ADS)
Holá, Miroslava; Lazar, Josef; Čížek, Martin; Hucl, Václav; Řeřucha, Šimon; Číp, Ondřej
2016-11-01
We report on a design of an interferometric position measuring system for control of a sample stage in an e-beam writer with reproducibility of the position on nanometer level and resolution below nanometer. We introduced differential configuration of the interferometer where the position is measured with respect to a central reference point to eliminate deformations caused by thermal and pressure effects on the vacuum chamber. The reference is here the electron gun of the writer. The interferometer is designed to operate at infrared, telecommunication wavelength due to the risk of interference of stray light with sensitive photodetectors in the chamber. The laser source is here a narrow-linewidth DFB laser diode with electronics of our own design offering precision and stability of temperature and current, low-noise, protection from rf interference, and high-frequency modulation. Detection of the interferometric signal relies on a novel derivative technique utilizing hf frequency modulation and phase-sensitive detection.
Khatavkar, Sanchit; Muniappan, Kulasekaran; Kannan, Chinna V.; ...
2017-11-10
Excess carrier lifetime plays a crucial role in determining the efficiency of solar cells. In this paper, we use the frequency dependence of inphase and quadrature components of modulated electroluminescence (MEL) to measure the relaxation time (decay) of excess carriers. The advantage of the MEL technique is that the relaxation time is obtained directly from the angular frequency at which the quadrature component peaks. It does not need knowledge of the material parameters like mobility, etc., and can be used for any finished solar cells which have detectable light emission. The experiment is easy to perform with standard electrical equipment.more » For silicon solar cells, the relaxation time is dominated by recombination and hence, the relaxation time is indeed the excess carrier lifetime. In contrast, for the CIGS solar cells investigated here, the relaxation time is dominated by trapping and emission from shallow minority carrier traps.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khatavkar, Sanchit; Muniappan, Kulasekaran; Kannan, Chinna V.
Excess carrier lifetime plays a crucial role in determining the efficiency of solar cells. In this paper, we use the frequency dependence of inphase and quadrature components of modulated electroluminescence (MEL) to measure the relaxation time (decay) of excess carriers. The advantage of the MEL technique is that the relaxation time is obtained directly from the angular frequency at which the quadrature component peaks. It does not need knowledge of the material parameters like mobility, etc., and can be used for any finished solar cells which have detectable light emission. The experiment is easy to perform with standard electrical equipment.more » For silicon solar cells, the relaxation time is dominated by recombination and hence, the relaxation time is indeed the excess carrier lifetime. In contrast, for the CIGS solar cells investigated here, the relaxation time is dominated by trapping and emission from shallow minority carrier traps.« less
Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins.
Nussinovitch, Udi; Shinnawi, Rami; Gepstein, Lior
2014-04-01
Optogenetics approaches, utilizing light-sensitive proteins, have emerged as unique experimental paradigms to modulate neuronal excitability. We aimed to evaluate whether a similar strategy could be used to control cardiac-tissue excitability. A combined cell and gene therapy strategy was developed in which fibroblasts were transfected to express the light-activated depolarizing channel Channelrhodopsin-2 (ChR2). Patch-clamp studies confirmed the development of a robust inward current in the engineered fibroblasts following monochromatic blue-light exposure. The engineered cells were co-cultured with neonatal rat cardiomyocytes (or human embryonic stem cell-derived cardiomyocytes) and studied using a multielectrode array mapping technique. These studies revealed the ability of the ChR2-fibroblasts to electrically couple and pace the cardiomyocyte cultures at varying frequencies in response to blue-light flashes. Activation mapping pinpointed the source of this electrical activity to the engineered cells. Similarly, diffuse seeding of the ChR2-fibroblasts allowed multisite optogenetics pacing of the co-cultures, significantly shortening their electrical activation time and synchronizing contraction. Next, optogenetics pacing in an in vitro model of conduction block allowed the resynchronization of the tissue's electrical activity. Finally, the ChR2-fibroblasts were transfected to also express the light-sensitive hyperpolarizing proton pump Archaerhodopsin-T (Arch-T). Seeding of the ChR2/ArchT-fibroblasts allowed to either optogentically pace the cultures (in response to blue-light flashes) or completely suppress the cultures' electrical activity (following continuous illumination with 624 nm monochromatic light, activating ArchT). The results of this proof-of-concept study highlight the unique potential of optogenetics for future biological pacemaking and resynchronization therapy applications and for the development of novel anti-arrhythmic strategies.
Digital Data Acquisition for Laser Radar for Vibration Analysis
1998-06-01
and the resulting signal is a function of the relative phase of the two waves , which changes as the target vibrates. The relative phase is inversely...light crosses the medium in a direction perpendicular to the acoustic waves , a modulated optical wave front will result. A standing acoustic wave in the...mean that the frequency can be up or down-shifted, depending on the orientation of the AOM, or the direction of the traveling acoustic waves . An
First discovery of a magnetic field in a main-sequence δ Scuti star: the Kepler star HD 188774
NASA Astrophysics Data System (ADS)
Neiner, C.; Lampens, P.
2015-11-01
The Kepler space mission provided a wealth of δ Sct-γ Dor hybrid candidates. While some may be genuine hybrids, others might be misclassified due to the presence of a binary companion or to rotational modulation caused by magnetism and related surface inhomogeneities. In particular, the Kepler δ Sct-γ Dor hybrid candidate HD 188774 shows a few low frequencies in its light and radial velocity curves, whose origin is unclear. In this work, we check for the presence of a magnetic field in HD 188774. We obtained two spectropolarimetric measurements with an Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) at Canada-France-Hawaii Telescope. The data were analysed with the least-squares deconvolution (LSD) method. We detected a clear magnetic signature in the Stokes V LSD profiles. The origin of the low frequencies detected in HD 188774 is therefore most probably the rotational modulation of surface spots possibly related to the presence of a magnetic field. Consequently, HD 188774 is not a genuine hybrid δ Sct-γ Dor star, but the first known magnetic main-sequence δ Sct star. This makes it a prime target for future asteroseismic and spot modelling. This result casts new light on the interpretation of the Kepler results for other δ Sct-γ Dor hybrid candidates.
Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory.
Pogue, B W; Patterson, M S
1994-07-01
The goal of frequency-domain optical absorption spectroscopy is the non-invasive determination of the absorption coefficient of a specific tissue volume. Since this allows the concentration of endogenous and exogenous chromophores to be calculated, there is considerable potential for clinical application. The technique relies on the measurement of the phase and modulation of light, which is diffusely reflected or transmitted by the tissue when it is illuminated by an intensity-modulated source. A model of light propagation must then be used to deduce the absorption coefficient. For simplicity, it is usual to assume the tissue is either infinite in extent (for transmission measurements) or semi-infinite (for reflectance measurements). The goal of this paper is to examine the errors introduced by these assumptions when measurements are actually performed on finite volumes. Diffusion-theory calculations and experimental measurements were performed for slabs, cylinders and spheres with optical properties characteristic of soft tissues in the near infrared. The error in absorption coefficient is presented as a function of object size as a guideline to when the simple models may be used. For transmission measurements, the error is almost independent of the true absorption coefficient, which allows absolute changes in absorption to be measured accurately. The implications of these errors in absorption coefficient for two clinical problems--quantitation of an exogenous photosensitizer and measurement of haemoglobin oxygenation--are presented and discussed.
Liquid crystal television spatial light modulators
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang; Chao, Tien-Hsin
1989-01-01
The spatial light modulation characteristics and capabilities of the liquid crystal television (LCTV) spatial light modulators (SLMs) are discussed. A comparison of Radio Shack, Epson, and Citizen LCTV SLMs is made.
Hybrid metasurface for ultra-broadband terahertz modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heyes, Jane E.; Withayachumnankul, Withawat; Grady, Nathaniel K.
2014-11-05
We demonstrate an ultra-broadband free-space terahertz modulator based on a semiconductor-integrated metasurface. The modulator is made of a planar array of metal cut-wires on a silicon-on-sapphire substrate, where the silicon layer functions as photoconductive switches. Without external excitation, the cut-wire array exhibits a Lorentzian resonant response with a transmission passband spanning dc up to the fundamental dipole resonance above 2 THz. Under photoexcitation with 1.55 eV near-infrared light, the silicon regions in the cut-wire gaps become highly conductive, causing a transition of the resonant metasurface to a wire grating with a Drude response. In effect, the low-frequency passband below 2more » THz evolves into a stopband for the incident terahertz waves. Experimental validations confirm a bandwidth of at least 100%, spanning 0.5 to 1.5 THz with -10 dB modulation depth. This modulation depth is far superior to -5 dB achievable from a plain silicon-on-sapphire substrate with effectively 25 times higher pumping energy. The proposed concept of ultra-broadband metasurface modulator can be readily extended to electrically controlled terahertz wave modulation.« less
Dynamic near-field optical interaction between oscillating nanomechanical structures
Ahn, Phillip; Chen, Xiang; Zhang, Zhen; ...
2015-05-27
Near-field optical techniques exploit light-matter interactions at small length scales for mechanical sensing and actuation of nanomechanical structures. Here, we study the optical interaction between two mechanical oscillators—a plasmonic nanofocusing probe-tip supported by a low frequency cantilever, and a high frequency nanomechanical resonator—and leverage their interaction for local detection of mechanical vibrations. The plasmonic nanofocusing probe provides a confined optical source to enhance the interaction between the two oscillators. Dynamic perturbation of the optical cavity between the probe-tip and the resonator leads to nonlinear modulation of the scattered light intensity at the sum and difference of their frequencies. This double-frequencymore » demodulation scheme is explored to suppress unwanted background and to detect mechanical vibrations with a minimum detectable displacement sensitivity of 0.45pm/Hz 1/2, which is limited by shot noise and electrical noise. We explore the demodulation scheme for imaging the bending vibration mode shape of the resonator with a lateral spatial resolution of 20nm. We also demonstrate the time-resolved aspect of the local optical interaction by recording the ring-down vibrations of the resonator at frequencies of up to 129MHz. The near-field optical technique is promising for studying dynamic mechanical processes in individual nanostructures.« less
Lin, Yu-Chih; Tu, Han-Yen; Wu, Xin-Ru; Lai, Xin-Ji; Cheng, Chau-Jern
2018-05-14
This paper proposes one-shot synthetic aperture digital holographic microscopy using a combination of angular-multiplexing and coherence gating. The proposed angular-multiplexing technique uses multiple noncoplanar incident beams into the synthetic aperture to create tight packed passbands so as to extend spatial frequency spectrum. Coherence gating is performed to prevent the self-interference among the multiple beams. Based on the design guideline proposed herein, a phase-only spatial light modulator is employed as an adjustable blazed grating to split multiple noncoplanar beams and perform angular-multiplexing, and then using coherence gating based on low-coherence-light, superresolution imaging is achieved after one-shot acquisition.
Systems and methods for pressure and temperature measurement
Challener, William Albert; Airey, Li
2016-12-06
A measurement system in one embodiment includes an acquisition module and a determination module. The acquisition module is configured to acquire resonant frequency information corresponding to a sensor disposed in a remote location from the acquisition module. The resonant frequency information includes first resonant frequency information for a first resonant frequency of the sensor corresponding to environmental conditions of the remote location, and also includes second resonant frequency information for a different, second resonant frequency of the sensor corresponding to the environmental conditions of the remote location. The determination module is configured to use the first resonant frequency information and the second resonant frequency information to determine the temperature and the pressure at the remote location.
140 GHz pulsed fourier transform microwave spectrometer
Kolbe, William F.; Leskovar, Branko
1987-01-01
A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer (10), including means (11, 19) for generating a high frequency carrier signal, and means (12) for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator (20) and the modulating signal is fed through a pulse switch (23) to the modulator. When the pulse switch (23) is on, the modulator (20) will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device (31) is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device (31) is controlled by the pulse switch (23).
Synchronous Oscillations in Van Der Pol Generator with Modulated Natural Frequency
NASA Astrophysics Data System (ADS)
Nimets, A. Yu.; Vavriv, D. M.
2015-12-01
The synchronous operation of Van Der Pole generator with the low-frequency modulated natural frequency has been investigated. The presence of low-frequency modulation is shown to lead to formation of additional synchronization regions. The appearance of such regions is found to be caused by threefrequency resonances resulted from the interaction between oscillations of the generator natural frequency, modulation frequency and synchronized signal frequency. Characteristics of synchronous oscillations due to the below mentioned three-frequency interaction are obtained and comparison with the case of synchronization of oscillator on the main mode made.
Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liqiu, Wei, E-mail: weiliqiu@gmail.com, E-mail: weiliqiu@hit.edu.cn; Liang, Han; Ziyi, Yang
2015-02-07
It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.
Real-time FPGA-based radar imaging for smart mobility systems
NASA Astrophysics Data System (ADS)
Saponara, Sergio; Neri, Bruno
2016-04-01
The paper presents an X-band FMCW (Frequency Modulated Continuous Wave) Radar Imaging system, called X-FRI, for surveillance in smart mobility applications. X-FRI allows for detecting the presence of targets (e.g. obstacles in a railway crossing or urban road crossing, or ships in a small harbor), as well as their speed and their position. With respect to alternative solutions based on LIDAR or camera systems, X-FRI operates in real-time also in bad lighting and weather conditions, night and day. The radio-frequency transceiver is realized through COTS (Commercial Off The Shelf) components on a single-board. An FPGA-based baseband platform allows for real-time Radar image processing.
Heterodyne interferometer with subatomic periodic nonlinearity.
Wu, C M; Lawall, J; Deslattes, R D
1999-07-01
A new, to our knowledge, heterodyne interferometer for differential displacement measurements is presented. It is, in principle, free of periodic nonlinearity. A pair of spatially separated light beams with different frequencies is produced by two acousto-optic modulators, avoiding the main source of periodic nonlinearity in traditional heterodyne interferometers that are based on a Zeeman split laser. In addition, laser beams of the same frequency are used in the measurement and the reference arms, giving the interferometer theoretically perfect immunity from common-mode displacement. We experimentally demonstrated a residual level of periodic nonlinearity of less than 20 pm in amplitude. The remaining periodic error is attributed to unbalanced ghost reflections that drift slowly with time.
Rabi oscillations produced by adiabatic pulse due to initial atomic coherence.
Svidzinsky, Anatoly A; Eleuch, Hichem; Scully, Marlan O
2017-01-01
If an electromagnetic pulse is detuned from atomic transition frequency by amount Δ>1/τ, where τ is the turn-on time of the pulse, then atomic population adiabatically follows the pulse intensity without causing Rabi oscillations. Here we show that, if initially, the atom has nonzero coherence, then the adiabatic pulse yields Rabi oscillations of atomic population ρaa(t), and we obtain analytical solutions for ρaa(t). Our findings can be useful for achieving generation of coherent light in the backward direction in the QASER scheme in which modulation of the coupling between light and atoms is produced by Rabi oscillations. Initial coherence can be created by sending a short resonant pulse into the medium followed by a long adiabatic pulse, which leads to the light amplification in the backward direction.
Amplitude modulation detection with concurrent frequency modulation.
Nagaraj, Naveen K
2016-09-01
Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.
Frequency modulation detection in cochlear implant subjects
NASA Astrophysics Data System (ADS)
Chen, Hongbin; Zeng, Fan-Gang
2004-10-01
Frequency modulation (FM) detection was investigated in acoustic and electric hearing to characterize cochlear-implant subjects' ability to detect dynamic frequency changes and to assess the relative contributions of temporal and spectral cues to frequency processing. Difference limens were measured for frequency upward sweeps, downward sweeps, and sinusoidal FM as a function of standard frequency and modulation rate. In electric hearing, factors including electrode position and stimulation level were also studied. Electric hearing data showed that the difference limen increased monotonically as a function of standard frequency regardless of the modulation type, the modulation rate, the electrode position, and the stimulation level. In contrast, acoustic hearing data showed that the difference limen was nearly a constant as a function of standard frequency. This difference was interpreted to mean that temporal cues are used only at low standard frequencies and at low modulation rates. At higher standard frequencies and modulation rates, the reliance on the place cue is increased, accounting for the better performance in acoustic hearing than for electric hearing with single-electrode stimulation. The present data suggest a speech processing strategy that encodes slow frequency changes using lower stimulation rates than those typically employed by contemporary cochlear-implant speech processors. .
NASA Astrophysics Data System (ADS)
Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John
2011-03-01
We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.
Pitel, Ira J.
1987-02-03
The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage.
Pitel, I.J.
1987-02-03
The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage. 19 figs.
Highly Automated Module Production Incorporating Advanced Light Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perelli-Minetti, Michael; Roof, Kyle
2015-08-11
The objective was to enable a high volume, cost effective solution for increasing the amount of light captured by PV modules through utilization of an advanced Light Re-directing Film and to follow a phased approach to develop and implement this new technology in order to achieve an expected power gain of up to 12 watts per module. Full size PV modules were manufactured using a new Light Redirecting Film (LRF) material applied to two different areas of PV modules in order to increase the amount of light captured by the modules. One configuration involved applying thin strips of LRF filmmore » over the tabbing ribbon on the cells in order to redirect the light that is normally absorbed by the tabbing ribbon to the active areas of the cells. A second configuration involved applying thin strips of LRF film over the white spaces between cells within a module in order to capture some of the light that is normally reflected from the white areas back through the front glass of the modules. Significant power increases of 1.4% (3.9 watts) and 1.0% (3.2 watts), respectively, compared to standard PV modules were measured under standard test conditions. The performance of PV modules with LRF applied to the tabbing ribbon was modeled. The results showed that the power increase provided by LRF depended greatly on the angle of incident light with the optimum performance only occurring when the light was within a narrow range of being perpendicular to the solar module. The modeling showed that most of the performance gain would be lost when the angle of incident light was greater than 28 degrees off axis. This effect made the orientation of modules with LRF applied to tabbing ribbons very important as modules mounted in “portrait” mode were predicted to provide little to no power gain from LRF under real world conditions. Based on these results, modules with LRF on tabbing ribbons would have to be mounted in “landscape” mode to realize a performance advantage. In addition, modeling showed that under diffuse lighting conditions such as when the sky is overcast, there would be no significant performance advantage for modules with LRF. Modules were sent to an outside contractor to measure the power performance under different angles of incident light in order to validate the modeling results. The measured data agreed very well with the modeling predictions and showed that the power gain for modules with LRF applied to tabbing ribbons was completely lost at an angle of 25 degrees off of perpendicular. At even larger angles, the power was lower than standard modules. From 35 degrees to 55 degrees off axis, the power loss was about 1.4% or equal to the power gain at the optimum condition of perfectly on-axis light.« less
NASA Astrophysics Data System (ADS)
Kestell, John D.; Mudiyanselage, Kumudu; Ye, Xinyi; Nam, Chang-Yong; Stacchiola, Dario; Sadowski, Jerzy; Boscoboinik, J. Anibal
2017-10-01
This paper describes the design and construction of a compact, "user-friendly" polarization-modulation infrared reflection absorption spectroscopy (PM-IRRAS) instrument at the Center for Functional Nanomaterials (CFN) of Brookhaven National Laboratory, which allows studying surfaces at pressures ranging from ultra-high vacuum to 100 Torr. Surface infrared spectroscopy is ideally suited for studying these processes as the vibrational frequencies of the IR chromophores are sensitive to the nature of the bonding environment on the surface. Relying on the surface selection rules, by modulating the polarization of incident light, it is possible to separate the contributions from the isotropic gas or solution phase, from the surface bound species. A spectral frequency range between 1000 cm-1 and 4000 cm-1 can be acquired. While typical spectra with a good signal to noise ratio can be obtained at elevated pressures of gases in ˜2 min at 4 cm-1 resolution, we have also acquired higher resolution spectra at 0.25 cm-1 with longer acquisition times. By way of verification, CO uptake on a heavily oxidized Ru(0001) sample was studied. As part of this test study, the presence of CO adsorbed on Ru bridge sites was confirmed, in agreement with previous ambient pressure X ray photoelectron spectroscopy studies. In terms of instrument performance, it was also determined that the gas phase contribution from CO could be completely removed even up to pressures close to 100 Torr. A second test study demonstrated the use of the technique for studying morphological properties of a spin coated polymer on a conductive surface. Note that this is a novel application of this technique. In this experiment, the polarization of incident light was modulated manually (vs. through a photoelastic modulator). It was demonstrated, in good agreement with the literature, that the polymer chains preferentially lie parallel with the surface. This PM-IRRAS system is small, modular, and easily reconfigurable. It also features a "vacuum suitcase" that allows for the integration of the PM-IRRAS system with the rest of the suite of instrumentation at our laboratory available to external users through the CFN user proposal system.
Active terahertz metamaterials based on liquid-crystal induced transparency and absorption
NASA Astrophysics Data System (ADS)
Yang, Lei; Fan, Fei; Chen, Meng; Zhang, Xuanzhou; Chang, Sheng-Jiang
2017-01-01
An active terahertz (THz) liquid crystal (LC) metamaterial has been experimentally investigated for THz wave modulation. Some interesting phenomena of resonance shifting, tunable electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) have been observed in the same device structure under different DC bias directions and different incident wave polarization directions by the THz time domain spectroscopy. Further theoretical studies indicate that these effects originate from interference and coupling between bright and dark mode components of elliptically polarized modes in the LC metamaterial, which are induced by the optical activity of LC alignment controllable by the electric field as well as the changes of LC refractive index. The LC layer is indeed a phase retarder and polarization converter that is controlled by the DC bias. The THz modulation depth of the analogs of EIT and EIA effects are 18.3 dB and 10.5 dB in their frequency band, respectively. Electrical control, large modulation depth and feasible integration of this LC device make it an ideal candidate for THz tunable filter, intensity modulator and spatial light modulator.
New application of superconductors: High sensitivity cryogenic light detectors
NASA Astrophysics Data System (ADS)
Cardani, L.; Bellini, F.; Casali, N.; Castellano, M. G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.
2017-02-01
In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.
Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models.
Song, Hui; Yuan, Xiaoyong; Tang, Xin
2016-01-11
In this study, the effects of intraocular lenses (IOLs) with different diopters (D) on chromatic aberration were investigated in human eye models, and the influences of the central thickness of IOLs on chromatic aberration were compared. A Liou-Brennan-based IOL eye model was constructed using ZEMAX optical design software. Spherical IOLs with different diopters (AR40e, AMO Company, USA) were implanted; modulation transfer function (MTF) values at 3 mm of pupil diameter and from 0 to out-of-focus blur were collected and graphed. MTF values, measured at 555 nm of monochromatic light under each spatial frequency, were significantly higher than the values measured at 470 to 650 nm of polychromatic light. The influences of chromatic aberration on MTF values decreased with the increase in IOL diopter when the spatial frequency was ≤12 c/d, while increased effects were observed when the spatial frequency was ≥15 c/d. The MTF values of each IOL eye model were significantly lower than the MTF values of the Liou-Brennan eye models when measured at 555 nm of monochromatic light and at 470 to 650 nm of polychromatic light. The MTF values were also found to be increased with the increase in IOL diopter. With higher diopters of IOLs, the central thickness increased accordingly, which could have created increased chromatic aberration and decreased the retinal image quality. To improve the postoperative visual quality, IOLs with lower chromatic aberration should be selected for patients with short axial lengths.
Photocapacitive image converter
NASA Technical Reports Server (NTRS)
Miller, W. E.; Sher, A.; Tsuo, Y. H. (Inventor)
1982-01-01
An apparatus for converting a radiant energy image into corresponding electrical signals including an image converter is described. The image converter includes a substrate of semiconductor material, an insulating layer on the front surface of the substrate, and an electrical contact on the back surface of the substrate. A first series of parallel transparent conductive stripes is on the insulating layer with a processing circuit connected to each of the conductive stripes for detecting the modulated voltages generated thereon. In a first embodiment of the invention, a modulated light stripe perpendicular to the conductive stripes scans the image converter. In a second embodiment a second insulating layer is deposited over the conductive stripes and a second series of parallel transparent conductive stripes perpendicular to the first series is on the second insulating layer. A different frequency current signal is applied to each of the second series of conductive stripes and a modulated image is applied to the image converter.
Illumination Modulation for Improved Propagation-Based Phase Imaging
NASA Astrophysics Data System (ADS)
Chakraborty, Tonmoy
Propagation-based phase imaging enables the quantitative reconstruction of a light beam's phase from measurements of its intensity. Because the intensity depends on the time-averaged square of the field the relationship between intensity and phase is, in general, nonlinear. The transport of intensity equation (TIE), is a linear equation relating phase and propagated intensity that arises from restricting the propagation distance to be small. However, the TIE limits the spatial frequencies that can be reliably reconstructed to those below some cutoff, which limits the accuracy of reconstruction of fine features in phase. On the other hand, the low frequency components suffer from poor signal to noise ratio (SNR) unless the propagation distance is sufficiently large, which leads to low frequency artifacts that obscure the reconstruction. In this research, I will consider the use of incoherent primary sources of illumination, in a Kohler illumination setup, to enhance the low-frequency performance of the TIE. The necessary steps required to design and build a table-top imaging setup which is capable of capturing intensity at any defocused position while modulating the source will be explained. In addition, it will be shown how by employing such illumination, the steps required for computationally recovering the phase, i.e. Fourier transforms and frequency-domain filtering, may be performed in the optical system. While these methods can address the low-frequency performance of the TIE, they do not extend its high-frequency cutoff. To avoid this cutoff, for objects with slowly varying phase, the contrast transfer function (CTF) model, an alternative to the TIE, can be used to recover phase. By allowing the combination of longer propagation distances and incoherent sources, it will be shown how CTF can improve performance at both high and low frequencies.
Multiple Spatial Frequencies Pyramid WaveFront Sensing
NASA Astrophysics Data System (ADS)
Ragazzoni, Roberto; Vassallo, Daniele; Dima, Marco; Portaluri, Elisa; Bergomi, Maria; Greggio, Davide; Viotto, Valentina; Gullieuszik, Marco; Biondi, Federico; Carolo, Elena; Chinellato, Simonetta; Farinato, Jacopo; Magrin, Demetrio; Marafatto, Luca
2017-11-01
A modification of the pyramid wavefront sensor is described. In this conceptually new class of devices, the perturbations are split at the level of the focal plane depending upon their spatial frequencies, and then measured separately. The aim of this approach is to increase the accuracy in the determination of some range of spatial frequency perturbations, or a certain classes of modes, disentangling them from the noise associated to the Poissonian fluctuations of the light coming from the perturbations outside of the range of interest or from the background in the pupil planes; the latter case specifically when the pyramid wavefront sensor is used with a large modulation. While the limits and the effectiveness of this approach should be further investigated, a number of variations on the concept are shown, including a generalization of the spatial filtering in the point-diffraction wavefront sensor. The simplest application, a generalization to the pyramid of the well-known spatially filtering in wavefront sensing, is showing promise as a significant limiting magnitude advance. Applications are further speculated in the area of extreme adaptive optics and when serving spectroscopic instrumentation where “light in the bucket” rather than Strehl performance is required.
Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong
2015-10-15
A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.
NASA Astrophysics Data System (ADS)
Lee, Dicky; Moulton, Peter F.
2001-03-01
In this paper we discuss our red, green, and blue (RGB) optical parametric oscillator (OPO) light source for projection display applications. Our source consists of a diode-pumped pump laser and a LBO-based OPO. Based on our Nd:YLF gain-module design, the pump laser is frequency doubled to serve as the pump source for the OPO. The unconverted pump power is recycled as the green light for projection. The singly resonant, non-critically phase- matched OPO has, to date, generated 13 W of 898-nm signal power and an estimated 9.3 W of intra-cavity idler power at 1256 nm. With approximately 76% of pump depletion, the power of the residual green light for projection is about 5.8 W. We have extra-cavity doubled the signal to produce approximately 3.5 W of 449-nm blue light and intra-cavity doubled the idler to produce approximately 6 W of 628-nm red light. The OPO-based RGB source generates about 4000 lumens of D65-balanced white light. The overall electrical power luminous efficiency (diodes only) is about 14.6 lumens/Watt.
NASA Astrophysics Data System (ADS)
Yang, Jiamiao; Shen, Yuecheng; Liu, Yan; Hemphill, Ashton S.; Wang, Lihong V.
2017-11-01
Optical scattering prevents light from being focused through thick biological tissue at depths greater than ˜1 mm. To break this optical diffusion limit, digital optical phase conjugation (DOPC) based wavefront shaping techniques are being actively developed. Previous DOPC systems employed spatial light modulators that modulated either the phase or the amplitude of the conjugate light field. Here, we achieve optical focusing through scattering media by using polarization modulation based generalized DOPC. First, we describe an algorithm to extract the polarization map from the measured scattered field. Then, we validate the algorithm through numerical simulations and find that the focusing contrast achieved by polarization modulation is similar to that achieved by phase modulation. Finally, we build a system using an inexpensive twisted nematic liquid crystal based spatial light modulator (SLM) and experimentally demonstrate light focusing through 3-mm thick chicken breast tissue. Since the polarization modulation based SLMs are widely used in displays and are having more and more pixel counts with the prevalence of 4 K displays, these SLMs are inexpensive and valuable devices for wavefront shaping.
Visual responses of ganglion cells of a New-World primate, the capuchin monkey, Cebus apella.
Lee, B B; Silveira, L C; Yamada, E S; Hunt, D M; Kremers, J; Martin, P R; Troy, J B; da Silva-Filho, M
2000-11-01
1. The genetic basis of colour vision in New-World primates differs from that in humans and other Old-World primates. Most New-World primate species show a polymorphism; all males are dichromats and most females trichromats. 2. In the retina of Old-World primates such as the macaque, the physiological correlates of trichromacy are well established. Comparison of the retinae in New- and Old-World species may help constrain hypotheses as to the evolution of colour vision and the pathways associated with it. 3. Ganglion cell behaviour was recorded from trichromatic and dichromatic members of a New-World species (the capuchin monkey, Cebus apella) and compared with macaque data. Despite some differences in quantitative detail (such as a temporal response extended to higher frequencies), results from trichromatic animals strongly resembled those from the macaque. 4. In particular, cells of the parvocellular (PC) pathway showed characteristic frequency-dependent changes in responsivity to luminance and chromatic modulation, cells of the magnocellular (MC) pathway showed frequency-doubled responses to chromatic modulation, and the surround of MC cells received a chromatic input revealed on changing the phase of heterochromatically modulated lights. 5. Ganglion cells of dichromats were colour-blind versions of those of trichromats. 6. This strong physiological homology is consistent with a common origin of trichromacy in New- and Old-World monkeys; in the New-World primate the presence of two pigments in the middle-to-long wavelength range permits full expression of the retinal mechanisms of trichromatic vision.
Advanced capability RFID system
Gilbert, Ronald W.; Steele, Kerry D.; Anderson, Gordon A.
2007-09-25
A radio-frequency transponder device having an antenna circuit configured to receive radio-frequency signals and to return modulated radio-frequency signals via continuous wave backscatter, a modulation circuit coupled to the antenna circuit for generating the modulated radio-frequency signals, and a microprocessor coupled to the antenna circuit and the modulation circuit and configured to receive and extract operating power from the received radio-frequency signals and to monitor inputs on at least one input pin and to generate responsive signals to the modulation circuit for modulating the radio-frequency signals. The microprocessor can be configured to generate output signals on output pins to associated devices for controlling the operation thereof. Electrical energy can be extracted and stored in an optional electrical power storage device.
Tunable sub-gap radiation detection with superconducting resonators
NASA Astrophysics Data System (ADS)
Dupré, O.; Benoît, A.; Calvo, M.; Catalano, A.; Goupy, J.; Hoarau, C.; Klein, T.; Le Calvez, K.; Sacépé, B.; Monfardini, A.; Levy-Bertrand, F.
2017-04-01
We have fabricated planar amorphous indium oxide superconducting resonators ({T}{{c}}˜ 2.8 K) that are sensitive to frequency-selective radiation in the range of 7-10 GHz. Those values lay far below twice the superconducting gap that is worth about 200 GHz. The photon detection consists in a shift of the fundamental resonance frequency. We show that the detected frequency can be adjusted by modulating the total length of the superconducting resonator. We attribute those observations to the excitation of higher-order resonance modes. The coupling between the fundamental lumped and the higher order distributed resonance is due to the kinetic inductance nonlinearity with current. These devices, that we have called sub-gap kinetic inductance detectors, are to be distinguished from the standard kinetic inductance detectors in which quasi-particles are generated when incident light breaks down Cooper pairs.
Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling
NASA Astrophysics Data System (ADS)
Zhang, Jingdong; Zheng, Hua; Zhu, Tao; Yin, Guolu; Liu, Min; Bai, Yongzhong; Qu, Dingrong; Qiu, Feng; Huang, Xianbing
2018-05-01
The round trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry ({\\phi}-OTDR). Unlike the uniform laser pulse interval in conventional {\\phi}-OTDR, we randomly modulate the pulse interval, so that an equivalent sub-Nyquist additive random sampling (sNARS) is realized for every sensing point of the long interrogation fiber. For an {\\phi}-OTDR system with 10 km sensing length, the sNARS method is optimized by theoretical analysis and Monte Carlo simulation, and the experimental results verify that a wide-band spars signal can be identified and reconstructed. Such a method can broaden the vibration frequency response range of {\\phi}-OTDR, which is of great significance in sparse-wideband-frequency vibration signal detection, such as rail track monitoring and metal defect detection.
Gapeyev, Andrew B; Mikhailik, Elena N; Chemeris, Nikolay K
2009-09-01
Using a model of acute zymosan-induced paw edema in NMRI mice, we test the hypothesis that anti-inflammatory effects of extremely high-frequency electromagnetic radiation (EHF EMR) can be essentially modified by application of pulse modulation with certain frequencies. It has been revealed that a single exposure of animals to continuous EHF EMR for 20 min reduced the exudative edema of inflamed paw on average by 19% at intensities of 0.1-0.7 mW/cm(2) and frequencies from the range of 42.2-42.6 GHz. At fixed effective carrier frequency of 42.2 GHz, the anti-inflammatory effect of EHF EMR did not depend on modulation frequencies, that is, application of different modulation frequencies from the range of 0.03-100 Hz did not lead to considerable changes in the effect level. On the contrary, at "ineffective" carrier frequencies of 43.0 and 61.22 GHz, the use of modulation frequencies of 0.07-0.1 and 20-30 Hz has allowed us to restore the effect up to a maximal level. The results obtained show the critical dependence of anti-inflammatory action of low-intensity EHF EMR on carrier and modulation frequencies. Within the framework of this study, the possibility of changing the level of expected biological effect of modulated EMR by a special selection of combination of carrier and modulation frequencies is confirmed.
The effect of sildenafil citrate (Viagra) on visual sensitivity.
Stockman, Andrew; Sharpe, Lindsay T; Tufail, Adnan; Kell, Philip D; Ripamonti, Caterina; Jeffery, Glen
2007-06-08
The erectile dysfunction medicine sildenafil citrate (Viagra) inhibits phosphodiesterase type 6 (PDE6), an essential enzyme involved in the activation and modulation of the phototransduction cascade. Although Viagra might thus be expected to impair visual performance, reports of deficits following its ingestion have so far been largely inconclusive or anecdotal. Here, we adopt tests sensitive to the slowing of the visual response likely to result from the inhibition of PDE6. We measured temporal acuity (critical fusion frequency) and modulation sensitivity in four subjects before and after the ingestion of a 100-mg dose of Viagra under conditions chosen to isolate the responses of either their short-wavelength-sensitive (S-) cone photoreceptors or their long- and middle-wavelength-sensitive (L- and M-) cones. When vision was mediated by S-cones, all subjects exhibited some statistically significant losses in sensitivity, which varied from mild to moderate. The two individuals who showed the largest S-cone sensitivity losses also showed comparable losses when their vision was mediated by the L- and M-cones. Some of the losses appear to increase with frequency, which is broadly consistent with Viagra interfering with the ability of PDE6 to shorten the time over which the visual system integrates signals as the light level increases. However, others appear to represent a roughly frequency-independent attenuation of the visual signal, which might also be consistent with Viagra lengthening the integration time (because it has the effect of increasing the effectiveness of steady background lights), but such changes are also open to other interpretations. Even for the more affected observers, however, Viagra is unlikely to impair common visual tasks, except under conditions of reduced visibility when objects are already near visual threshold.
[A review of mixed gas detection system based on infrared spectroscopic technique].
Dang, Jing-Min; Fu, Li; Yan, Zi-Hui; Zheng, Chuan-Tao; Chang, Yu-Chun; Chen, Chen; Wang, Yi-Din
2014-10-01
In order to provide the experiences and references to the researchers who are working on infrared (IR) mixed gas detection field. The proposed manuscript reviews two sections of the aforementioned field, including optical multiplexing structure and detection method. At present, the coherent light sources whose representative are quantum cascade laser (QCL) and inter-band cascade laser(ICL) become the mainstream light source in IR mixed gas detection, which replace the traditional non-coherent light source, such as IR radiation source and IR light emitting diode. In addition, the photon detector which has a super high detectivity and very short response time is gradually beyond thermal infrared detector, dominant in the field of infrared detector. The optical multiplexing structure is the key factor of IR mixed gas detection system, which consists of single light source multi-plexing detection structure and multi light source multiplexing detection structure. Particularly, single light source multiplexing detection structure is advantages of small volume and high integration, which make it a plausible candidate for the portable mixed gas detection system; Meanwhile, multi light source multiplexing detection structure is embodiment of time division multiplex, frequency division multiplexing and wavelength division multiplexing, and become the leading structure of the mixed gas detection system because of its wider spectral range, higher spectral resolution, etc. The detection method applied to IR mixed gas detection includes non-dispersive infrared (NDIR) spectroscopy, wavelength and frequency-modulation spectroscopy, cavity-enhanced spectroscopy and photoacoustic spectroscopy, etc. The IR mixed gas detection system designed by researchers after recognizing the whole sections of the proposed system, which play a significant role in industrial and agricultural production, environmental monitoring, and life science, etc.
2009-03-01
acousto - optic effect will be used to only modulate light (at the ultrasound frequency) which propagates through a small ultrasound focal zone. This...DOD Idea Development Award is concerned with the development of a novel acousto - optic detection idea based on quadrature measurements with a gain...perform acousto - optic molecular imaging of prostate cancer with incoherent photons using endogenous contrast, e.g. hypoxia, and with fluorescent probes and microbubbles for increased specificity and signal enhancement.
Design of a K-Band Transmit Phased Array For Low Earth Orbit Satellite Communications
NASA Technical Reports Server (NTRS)
Watson, Thomas; Miller, Stephen; Kershner, Dennis; Anzic, Godfrey
2000-01-01
The design of a light weight, low cost phased array antenna is presented. Multilayer printed wiring board (PWB) technology is utilized for Radio Frequencies (RF) and DC/Logic manifold distribution. Transmit modules are soldered on one side and patch antenna elements are on the other, allowing the use of automated assembly processes. The 19 GHz antenna has two independently steerable beams, each capable of transferring data at 622 Mbps. A passive, self-contained phase change thermal management system is also presented.
Noncoherent Combination Of Optical-Heterodyne Outputs
NASA Technical Reports Server (NTRS)
Chen, Chien-Chung; Lesh, James R.
1990-01-01
In proposed scheme for reception of amplitude- or frequency-modulated signals transmitted optically through atmosphere, main receiver aperture divided into subapertures equipped with receivers, and outputs of receivers combined noncoherently. Multiple subaperture receivers used instead of attempting to focus all light from single large aperture onto one receiver. Outputs of receivers combined after demodulation. System will not perform as well as fully coherent system, but surpasses single-large-aperture system in presence of atmospheric turbulence. Offers superior performance in presence of distorted wavefront and/or imperfect receiver optics.
Tuning of Human Modulation Filters Is Carrier-Frequency Dependent
Simpson, Andrew J. R.; Reiss, Joshua D.; McAlpine, David
2013-01-01
Recent studies employing speech stimuli to investigate ‘cocktail-party’ listening have focused on entrainment of cortical activity to modulations at syllabic (5 Hz) and phonemic (20 Hz) rates. The data suggest that cortical modulation filters (CMFs) are dependent on the sound-frequency channel in which modulations are conveyed, potentially underpinning a strategy for separating speech from background noise. Here, we characterize modulation filters in human listeners using a novel behavioral method. Within an ‘inverted’ adaptive forced-choice increment detection task, listening level was varied whilst contrast was held constant for ramped increments with effective modulation rates between 0.5 and 33 Hz. Our data suggest that modulation filters are tonotopically organized (i.e., vary along the primary, frequency-organized, dimension). This suggests that the human auditory system is optimized to track rapid (phonemic) modulations at high sound-frequencies and slow (prosodic/syllabic) modulations at low frequencies. PMID:24009759
Macular Pigment Optical Density Measured by Heterochromatic Modulation Photometry
Huchzermeyer, Cord; Schlomberg, Juliane; Welge-Lüssen, Ulrich; Berendschot, Tos T. J. M.; Pokorny, Joel; Kremers, Jan
2014-01-01
Purpose To psychophysically determine macular pigment optical density (MPOD) employing the heterochromatic modulation photometry (HMP) paradigm by estimating 460 nm absorption at central and peripheral retinal locations. Methods For the HMP measurements, two lights (B: 460 nm and R: 660 nm) were presented in a test field and were modulated in counterphase at medium or high frequencies. The contrasts of the two lights were varied in tandem to determine flicker detection thresholds. Detection thresholds were measured for different R:B modulation ratios. The modulation ratio with minimal sensitivity (maximal threshold) is the point of equiluminance. Measurements were performed in 25 normal subjects (11 male, 14 female; age: 30±11 years, mean ± sd) using an eight channel LED stimulator with Maxwellian view optics. The results were compared with those from two published techniques – one based on heterochromatic flicker photometry (Macular Densitometer) and the other on fundus reflectometry (MPR). Results We were able to estimate MPOD with HMP using a modified theoretical model that was fitted to the HMP data. The resultant MPODHMP values correlated significantly with the MPODMPR values and with the MPODHFP values obtained at 0.25° and 0.5° retinal eccentricity. Conclusions HMP is a flicker-based method with measurements taken at a constant mean chromaticity and luminance. The data can be well fit by a model that allows all data points to contribute to the photometric equality estimate. Therefore, we think that HMP may be a useful method for MPOD measurements, in basic and clinical vision experiments. PMID:25354049
Frequency modulation spectroscopy with a THz quantum-cascade laser.
Eichholz, R; Richter, H; Wienold, M; Schrottke, L; Hey, R; Grahn, H T; Hübers, H-W
2013-12-30
We report on a terahertz spectrometer for high-resolution molecular spectroscopy based on a quantum-cascade laser. High-frequency modulation (up to 50 MHz) of the laser driving current produces a simultaneous modulation of the frequency and amplitude of the laser output. The modulation generates sidebands, which are symmetrically positioned with respect to the laser carrier frequency. The molecular transition is probed by scanning the sidebands across it. In this way, the absorption and the dispersion caused by the molecular transition are measured. The signals are modeled by taking into account the simultaneous modulation of the frequency and amplitude of the laser emission. This allows for the determination of the strength of the frequency as well as amplitude modulation of the laser and of molecular parameters such as pressure broadening.
47 CFR 101.811 - Modulation requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... signaling on frequencies below 500 MHz is not authorized. (b) When amplitude modulation is used, the... frequency modulation is used for single channel radiotelephony on frequencies below 500 MHz, the deviation... 47 Telecommunication 5 2010-10-01 2010-10-01 false Modulation requirements. 101.811 Section 101...
The cervical cancer detection system based on an endoscopic rotary probe
NASA Astrophysics Data System (ADS)
Yang, Yanshuang; Hou, Qiang; Zhao, Huijuan; Qin, Zhuanping; Gao, Feng
2012-03-01
To acquire the optical diffuse tomographic image of the cervix, a novel endoscopic rotary probe is designed and the frequency domain measurement system is developed. The finite element method and Gauss-Newton method are proposed to reconstruct the image of the phantom. In the optical diffuse tomographic imaging of the cervix, an endoscopic probe is needed and the detection of light at different separation to the irradiation spot is necessary. To simplify the system, only two optical fibers are adopted for light irradiation and collection, respectively. Two small stepper motors are employed to control the rotation of the incident fiber and the detection fiber, respectively. For one position of source fiber, the position of the detection fiber is changed from -61.875° to -50.625° and 50.625° to 61.875° to the source fiber, respectively. Then, the position of the source fiber is changed to another preconcerted position, which deviates the precious source position in an angle of 11.25°, and the detection fiber rotates within the above angles. To acquire the efficient irradiation and collection of the light, a gradient-index (GRIN) lens is connected at the head of the optical fiber. The other end of the GRIN lens is cut to 45°. With this design, light from optical fiber is reflected to the cervix wall, which is perpendicular to the optical fiber or vice versa. Considering the cervical size, the external diameter of the endoscopic probe is made to 20mm. A frequency domain (FD) near-infrared diffuse system is developed aiming at the detection of early cervical cancer, which modulates the light intensity in radio frequency and measures the amplitude attenuation and the phase delay of the diffused light using heterodyne detection. Phantom experiment results demonstrate that the endoscopic rotary scan probe and the system perform well in the endoscopic measurement.
Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong
2015-06-15
An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.
Characteristics of spectro-temporal modulation frequency selectivity in humans.
Oetjen, Arne; Verhey, Jesko L
2017-03-01
There is increasing evidence that the auditory system shows frequency selectivity for spectro-temporal modulations. A recent study of the authors has shown spectro-temporal modulation masking patterns that were in agreement with the hypothesis of spectro-temporal modulation filters in the human auditory system [Oetjen and Verhey (2015). J. Acoust. Soc. Am. 137(2), 714-723]. In the present study, that experimental data and additional data were used to model this spectro-temporal frequency selectivity. The additional data were collected to investigate to what extent the spectro-temporal modulation-frequency selectivity results from a combination of a purely temporal amplitude-modulation filter and a purely spectral amplitude-modulation filter. In contrast to the previous study, thresholds were measured for masker and target modulations with opposite directions, i.e., an upward pointing target modulation and a downward pointing masker modulation. The comparison of this data set with previous corresponding data with the same direction from target and masker modulations indicate that a specific spectro-temporal modulation filter is required to simulate all aspects of spectro-temporal modulation frequency selectivity. A model using a modified Gabor filter with a purely temporal and a purely spectral filter predicts the spectro-temporal modulation masking data.
NASA Astrophysics Data System (ADS)
Fernandes, Mariana S.; Correia, José H.; Mendes, Paulo M.
2011-05-01
Wearable devices are used to record several physiological signals, providing unobtrusive and continuous monitoring. A main challenge in these systems is to develop new recording sensors, specially envisioning bioelectric activity detection. Available devices are difficult to integrate, mainly due to the amount of electrical wires and components needed. This work proposes a fiber-optic based device, which basis of operation relies on the electro-optic effect. A Lithium Niobate (LiBnO3) Mach-Zehnder Interferometer (MZI) modulator is used as the core sensing component, followed by a signal conversion and processing stage. Tests were performed in order to validate the proposed acquisition system in terms of signal amplification and quality, stability and frequency response. A light source with a wavelength operation of 1530- 1565 nm was used. The modulated intensity is amplified and converted to an output voltage with a high transimpedance gain. The filtering and electric amplification included a 50Hz notch filter, a bandpass filter with a -3 dB bandwidth from 0.50 to 35 Hz. The obtained system performance on key elements such as sensitivity, frequency content, and signal quality, have shown that the proposed acquisition system allows the development of new wearable bioelectric monitoring solutions based on optical technologies.
Rompolas, Panteleimon; Patel-King, Ramila S.; King, Stephen M.
2012-01-01
The cytoplasmic dynein regulatory factor Lis1, which induces a persistent tight binding to microtubules and allows for transport of cargoes under high-load conditions, is also present in motile cilia/flagella. We observed that Lis1 levels in flagella of Chlamydomonas strains that exhibit defective motility due to mutation of various axonemal substructures were greatly enhanced compared with wild type; this increase was absolutely dependent on the presence within the flagellum of the outer arm dynein α heavy chain/light chain 5 thioredoxin unit. To assess whether cells might interpret defective motility as a “high-load environment,” we reduced the flagellar beat frequency of wild-type cells through enhanced viscous load and by reductive stress; both treatments resulted in increased levels of flagellar Lis1, which altered the intrinsic beat frequency of the trans flagellum. Differential extraction of Lis1 from wild-type and mutant axonemes suggests that the affinity of outer arm dynein for Lis1 is directly modulated. In cytoplasm, Lis1 localized to two punctate structures, one of which was located near the base of the flagella. These data reveal that the cell actively monitors motility and dynamically modulates flagellar levels of the dynein regulatory factor Lis1 in response to imposed alterations in beat parameters. PMID:22855525
Yuda, Emi; Ogasawara, Hiroki; Yoshida, Yutaka; Hayano, Junichiro
2017-01-31
Blue light containing rich melanopsin-stimulating (melanopic) component has been reported to enhance arousal level, but it is unclear whether the determinant of the effects is the absolute or relative content of melanopic component. We compared the autonomic and psychomotor arousal effects of melanopic-enriched blue light of organic light-emitting diode (OLED) with those of OLED lights with lesser absolute amount of melanopic component (green light) and with greater absolute but lesser relative content (white light). Using a ceiling light consisting of 120 panels (55 × 55 mm square) of OLED modules with adjustable color and brightness, we examined the effects of blue, green, and white lights (melanopic photon flux densities, 0.23, 0.14, and 0.38 μmol/m 2 /s and its relative content ratios, 72, 17, and 14%, respectively) on heart rate variability (HRV) during exposures and on the performance of psychomotor vigilance test (PVT) after exposures in ten healthy subjects with normal color vision. For each of the three colors, five consecutive 10-min sessions of light exposures were performed in the supine position, interleaved by four 10-min intervals during which 5-min PVT was performed under usual fluorescent light in sitting position. Low-frequency (LF, 0.04-0.15 Hz) and high-frequency (HF, 0.15-0.40 Hz) power and LF-to-HF ratio (LF/HF) of HRV during light exposures and reaction time (RT) and minor lapse (RT >500 ms) of PVT were analyzed. Heart rate was higher and the HF power reflecting autonomic resting was lower during exposures to the blue light than the green and white lights, while LF/HF did not differ significantly. Also, the number of minor lapse and the variation of reaction time reflecting decreased vigilance were lower after exposures to the blue light than the green light. The effects of blue OLED light for maintaining autonomic and psychomotor arousal levels depend on both absolute and relative contents of melanopic component in the light.
Optoelectronic associative memory
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor)
1993-01-01
An associative optical memory including an input spatial light modulator (SLM) in the form of an edge enhanced liquid crystal light valve (LCLV) and a pair of memory SLM's in the form of liquid crystal televisions (LCTV's) forms a matrix array of an input image which is cross correlated with a matrix array of stored images. The correlation product is detected and nonlinearly amplified to illuminate a replica of the stored image array to select the stored image correlating with the input image. The LCLV is edge enhanced by reducing the bias frequency and voltage and rotating its orientation. The edge enhancement and nonlinearity of the photodetection improves the orthogonality of the stored image. The illumination of the replicate stored image provides a clean stored image, uncontaminated by the image comparison process.
NASA Technical Reports Server (NTRS)
Katzberg, S. J.; Kelly, W. L., IV; Rowland, C. W.; Burcher, E. E.
1973-01-01
The facsimile camera is an optical-mechanical scanning device which has become an attractive candidate as an imaging system for planetary landers and rovers. This paper presents electronic techniques which permit the acquisition and reconstruction of high quality images with this device, even under varying lighting conditions. These techniques include a control for low frequency noise and drift, an automatic gain control, a pulse-duration light modulation scheme, and a relative spectral gain control. Taken together, these techniques allow the reconstruction of radiometrically accurate and properly balanced color images from facsimile camera video data. These techniques have been incorporated into a facsimile camera and reproduction system, and experimental results are presented for each technique and for the complete system.
Ultrashort polarization-tailored bichromatic fields from a CEP-stable white light supercontinuum.
Kerbstadt, Stefanie; Timmer, Daniel; Englert, Lars; Bayer, Tim; Wollenhaupt, Matthias
2017-05-29
We apply ultrafast polarization shaping to an ultrabroadband carrier envelope phase (CEP) stable white light supercontinuum to generate polarization-tailored bichromatic laser fields of low-order frequency ratio. The generation of orthogonal linearly and counter-rotating circularly polarized bichromatic fields is achieved by introducing a composite polarizer in the Fourier plane of a 4 f polarization shaper. The resulting Lissajous- and propeller-type polarization profiles are characterized experimentally by cross-correlation trajectories. The scheme provides full control over all bichromatic parameters and allows for individual spectral phase modulation of both colors. Shaper-based CEP control and the generation of tailored bichromatic fields is demonstrated. These bichromatic CEP-stable polarization-shaped ultrashort laser pulses provide a versatile class of waveforms for coherent control experiments.
Müller, Gabriela L.; Tuttobene, Marisel; Altilio, Matías; Martínez Amezaga, Maitena; Nguyen, Meaghan; Cribb, Pamela; Cybulski, Larisa E.; Ramírez, María Soledad; Altabe, Silvia
2017-01-01
ABSTRACT Light sensing in chemotrophic bacteria has been relatively recently ascertained. In the human pathogen Acinetobacter baumannii, light modulates motility, biofilm formation, and virulence through the blue-light-sensing-using flavin (BLUF) photoreceptor BlsA. In addition, light can induce a reduction in susceptibility to certain antibiotics, such as minocycline and tigecycline, in a photoreceptor-independent manner. In this work, we identified new traits whose expression levels are modulated by light in this pathogen, which comprise not only important determinants related to pathogenicity and antibiotic resistance but also metabolic pathways, which represents a novel concept for chemotrophic bacteria. Indeed, the phenylacetic acid catabolic pathway and trehalose biosynthesis were modulated by light, responses that completely depend on BlsA. We further show that tolerance to some antibiotics and modulation of antioxidant enzyme levels are also influenced by light, likely contributing to bacterial persistence in adverse environments. Also, we present evidence indicating that surfactant production is modulated by light. Finally, the expression of whole pathways and gene clusters, such as genes involved in lipid metabolism and genes encoding components of the type VI secretion system, as well as efflux pumps related to antibiotic resistance, was differentially induced by light. Overall, our results indicate that light modulates global features of the A. baumannii lifestyle. IMPORTANCE The discovery that nonphototrophic bacteria respond to light constituted a novel concept in microbiology. In this context, we demonstrated that light could modulate aspects related to bacterial virulence, persistence, and resistance to antibiotics in the human pathogen Acinetobacter baumannii. In this work, we present the novel finding that light directly regulates metabolism in this chemotrophic bacterium. Insights into the mechanism show the involvement of the photoreceptor BlsA. In addition, tolerance to antibiotics and catalase levels are also influenced by light, likely contributing to bacterial persistence in adverse environments, as is the expression of the type VI secretion system and efflux pumps. Overall, a profound influence of light on the lifestyle of A. baumannii is suggested to occur. PMID:28289081
Müller, Gabriela L; Tuttobene, Marisel; Altilio, Matías; Martínez Amezaga, Maitena; Nguyen, Meaghan; Cribb, Pamela; Cybulski, Larisa E; Ramírez, María Soledad; Altabe, Silvia; Mussi, María Alejandra
2017-05-15
Light sensing in chemotrophic bacteria has been relatively recently ascertained. In the human pathogen Acinetobacter baumannii , light modulates motility, biofilm formation, and virulence through the blue-light-sensing-using flavin (BLUF) photoreceptor BlsA. In addition, light can induce a reduction in susceptibility to certain antibiotics, such as minocycline and tigecycline, in a photoreceptor-independent manner. In this work, we identified new traits whose expression levels are modulated by light in this pathogen, which comprise not only important determinants related to pathogenicity and antibiotic resistance but also metabolic pathways, which represents a novel concept for chemotrophic bacteria. Indeed, the phenylacetic acid catabolic pathway and trehalose biosynthesis were modulated by light, responses that completely depend on BlsA. We further show that tolerance to some antibiotics and modulation of antioxidant enzyme levels are also influenced by light, likely contributing to bacterial persistence in adverse environments. Also, we present evidence indicating that surfactant production is modulated by light. Finally, the expression of whole pathways and gene clusters, such as genes involved in lipid metabolism and genes encoding components of the type VI secretion system, as well as efflux pumps related to antibiotic resistance, was differentially induced by light. Overall, our results indicate that light modulates global features of the A. baumannii lifestyle. IMPORTANCE The discovery that nonphototrophic bacteria respond to light constituted a novel concept in microbiology. In this context, we demonstrated that light could modulate aspects related to bacterial virulence, persistence, and resistance to antibiotics in the human pathogen Acinetobacter baumannii In this work, we present the novel finding that light directly regulates metabolism in this chemotrophic bacterium. Insights into the mechanism show the involvement of the photoreceptor BlsA. In addition, tolerance to antibiotics and catalase levels are also influenced by light, likely contributing to bacterial persistence in adverse environments, as is the expression of the type VI secretion system and efflux pumps. Overall, a profound influence of light on the lifestyle of A. baumannii is suggested to occur. Copyright © 2017 American Society for Microbiology.
A new OTDR based on probe frequency multiplexing
NASA Astrophysics Data System (ADS)
Lu, Lidong; Liang, Yun; Li, Binglin; Guo, Jinghong; Zhang, Xuping
2013-12-01
Two signal multiplexing methods are proposed and experimentally demonstrated in optical time domain reflectometry (OTDR) for fault location of optical fiber transmission line to obtain high measurement efficiency. Probe signal multiplexing is individually obtained by phase modulation for generation of multi-frequency and time sequential frequency probe pulses. The backscattered Rayleigh light of the multiplexing probe signals is transferred to corresponding heterodyne intermediate frequency (IF) through heterodyning with the single frequency local oscillator (LO). Then the IFs are simultaneously acquired by use of a data acquisition card (DAQ) with sampling rate of 100Msps, and the obtained data are processed by digital band pass filtering (BPF), digital down conversion (DDC) and digital low pass filtering (BPF) procedure. For each probe frequency of the detected signals, the extraction of the time domain reflecting signal power is performed by parallel computing method. For a comprehensive performance comparison with conventional coherent OTDR on the probe frequency multiplexing methods, the potential for enhancement of dynamic range, spatial resolution and measurement time are analyzed and discussed. Experimental results show that by use of the probe frequency multiplexing method, the measurement efficiency of coherent OTDR can be enhanced by nearly 40 times.
Study on real-time images compounded using spatial light modulator
NASA Astrophysics Data System (ADS)
Xu, Jin; Chen, Zhebo; Ni, Xuxiang; Lu, Zukang
2007-01-01
Image compounded technology is often used on film and its facture. In common, image compounded use image processing arithmetic, get useful object, details, background or some other things from the images firstly, then compounding all these information into one image. When using this method, the film system needs a powerful processor, for the process function is very complex, we get the compounded image for a few time delay. In this paper, we introduce a new method of image real-time compounded, use this method, we can do image composite at the same time with movie shot. The whole system is made up of two camera-lens, spatial light modulator array and image sensor. In system, the spatial light modulator could be liquid crystal display (LCD), liquid crystal on silicon (LCoS), thin film transistor liquid crystal display (TFTLCD), Deformable Micro-mirror Device (DMD), and so on. Firstly, one camera-lens images the object on the spatial light modulator's panel, we call this camera-lens as first image lens. Secondly, we output an image to the panel of spatial light modulator. Then, the image of the object and image that output by spatial light modulator will be spatial compounded on the panel of spatial light modulator. Thirdly, the other camera-lens images the compounded image to the image sensor, and we call this camera-lens as second image lens. After these three steps, we will gain the compound images by image sensor. For the spatial light modulator could output the image continuously, then the image will be compounding continuously too, and the compounding procedure is completed in real-time. When using this method to compounding image, if we will put real object into invented background, we can output the invented background scene on the spatial light modulator, and the real object will be imaged by first image lens. Then, we get the compounded images by image sensor in real time. The same way, if we will put real background to an invented object, we can output the invented object on the spatial light modulator and the real background will be imaged by first image lens. Then, we can also get the compounded images by image sensor real time. Commonly, most spatial light modulator only can do modulate light intensity, so we can only do compounding BW images if use only one panel which without color filter. If we will get colorful compounded image, we need use the system like three spatial light modulator panel projection. In the paper, the system's optical system framework we will give out. In all experiment, the spatial light modulator used liquid crystal on silicon (LCoS). At the end of the paper, some original pictures and compounded pictures will be given on it. Although the system has a few shortcomings, we can conclude that, using this system to compounding images has no delay to do mathematic compounding process, it is a really real time images compounding system.
Coordinated control strategy for improving the two drops of the wind storage combined system
NASA Astrophysics Data System (ADS)
Qian, Zhou; Chenggen, Wang; Jing, Bu
2018-05-01
In the power system with high permeability wind power, due to wind power fluctuation, the operation of large-scale wind power grid connected to the system brings challenges to the frequency stability of the system. When the doubly fed wind power generation unit does not reserve spare capacity to participate in the system frequency regulation, the system frequency will produce two drops in different degrees when the wind power exits frequency modulation and enters the speed recovery stage. To solve this problem, based on the complementary advantages of wind turbines and energy storage systems in power transmission and frequency modulation, a wind storage combined frequency modulation strategy based on sectional control is proposed in this paper. Based on the TOP wind power frequency modulation strategy, the wind power output reference value is determined according to the linear relationship between the output and the speed of the wind turbine, and the auxiliary wind power load reduction is controlled when the wind power exits frequency modulation into the speed recovery stage, so that the wind turbine is recovered to run at the optimal speed. Then, according to the system frequency and the wind turbine operation state, set the energy storage system frequency modulation output. Energy storage output active support is triggered during wind speed recovery. And then when the system frequency to return to the normal operating frequency range, reduce energy storage output or to exit frequency modulation. The simulation results verify the effectiveness of the proposed method.
Karbowski, Lukasz M; Saroka, Kevin S; Murugan, Nirosha J; Persinger, Michael A
2015-10-01
An array of eight cloistered (completely covered) 470-nm LEDs was attached to the right caudal scalp of subjects while each sat blindfolded within a darkened chamber. The LEDs were activated by a computer-generated complex (frequency-modulated) temporal pattern that, when applied as weak magnetic fields, has elicited sensed presences and changes in LORETA (low-resolution electromagnetic tomography) configurations. Serial 5-min on to 5-min off presentations of the blue light (10,000lx) resulted in suppression of gamma activity within the right cuneus (including the extrastriate area), beta activity within the left angular and right superior temporal regions, and alpha power within the right parahippocampal region. The effect required about 5min to emerge followed by a transient asymptote for about 15 to 20min when diminished current source density was evident even during no light conditions. Subjective experiences, as measured by our standard exit questionnaire, reflected sensations similar to those reported when the pattern was presented as a weak magnetic field. Given previous evidence that photon flux density of this magnitude can penetrate the skull, these results suggest that properly configured LEDs that generate physiologically patterned light sequences might be employed as noninvasive methods to explore the dynamic characteristics of cerebral activity in epileptic and nonepileptic brains. Copyright © 2015 Elsevier Inc. All rights reserved.
Method and apparatus for two-dimensional spectroscopy
DeCamp, Matthew F.; Tokmakoff, Andrei
2010-10-12
Preferred embodiments of the invention provide for methods and systems of 2D spectroscopy using ultrafast, first light and second light beams and a CCD array detector. A cylindrically-focused second light beam interrogates a target that is optically interactive with a frequency-dispersed excitation (first light) pulse, whereupon the second light beam is frequency-dispersed at right angle orientation to its line of focus, so that the horizontal dimension encodes the spatial location of the second light pulse and the first light frequency, while the vertical dimension encodes the second light frequency. Differential spectra of the first and second light pulses result in a 2D frequency-frequency surface equivalent to double-resonance spectroscopy. Because the first light frequency is spatially encoded in the sample, an entire surface can be acquired in a single interaction of the first and second light pulses.
Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits
NASA Astrophysics Data System (ADS)
Sohn, Donggyu B.; Kim, Seunghwi; Bahl, Gaurav
2018-02-01
Achieving non-reciprocal light propagation via stimuli that break time-reversal symmetry, without magneto-optics, remains a major challenge for integrated nanophotonic devices. Recently, optomechanical microsystems in which light and vibrational modes are coupled through ponderomotive forces have demonstrated strong non-reciprocal effects through a variety of techniques, but always using optical pumping. None of these approaches has demonstrated bandwidth exceeding that of the mechanical system, and all of them require optical power; these are both fundamental and practical issues. Here, we resolve both challenges by breaking time-reversal symmetry using a two-dimensional acoustic pump that simultaneously provides a non-zero overlap integral for light-sound interaction and also satisfies the necessary phase-matching. We use this technique to produce a non-reciprocal modulator (a frequency shifting isolator) by means of indirect interband scattering. We demonstrate mode conversion asymmetry up to 15 dB and efficiency as high as 17% over a bandwidth exceeding 1 GHz.
NASA Astrophysics Data System (ADS)
Yeh, C. H.; Chen, H. Y.; Liu, Y. L.; Chow, C. W.
2015-01-01
We propose and experimentally demonstrate a 380 (2×190) Mbps phosphor-light-emitting-diode (LED) based visible light communication (VLC) system by using 2×2 polarization-multiplexing design for in-building access applications. To the best of our knowledge, this is the first time of employing polarization-multiplexing to achieve a high VLC transmission capacity by using phosphor-based white-LED without optical blue filter. Besides, utilizing the optimum resistor-inductor-capacity (RLC) bias-tee design, it can not only perform the function of combining the direct-current (DC) and the electrical data signal, but also act as a simple LED-Tx circuit. No optical blue filter and complicated post-equalization are required at the Rx. Here, the orthogonal-frequency-division-multiplexing (OFDM) quadrature-amplitude-modulation (QAM) with bit-loading is employed to enhance the transmission data rate.
KIC 9451096: Magnetic Activity, Flares and Differential Rotation
NASA Astrophysics Data System (ADS)
Özdarcan, O.; Yoldaş, E.; Dal, H. A.
2018-04-01
We present a spectroscopic and photometric analysis of KIC 9451096. The combined spectroscopic and photometric modelling shows that the system is a detached eclipsing binary in a circular orbit and composed of F5V + K2V components. Subtracting the best-fitting light curve model from the whole long cadence data reveals additional low (mmag) amplitude light variations in time and occasional flares, suggesting a low, but still remarkable level of magnetic spot activity on the K2V component. Analyzing the rotational modulation of the light curve residuals enables us to estimate the differential rotation coefficient of the K2V component as k = 0.069 ± 0.008, which is 3 times weaker compared with the solar value of k = 0.19, assuming a solar type differential rotation. We find the stellar flare activity frequency for the K2V component as 0.000368411 h-1 indicating a low magnetic activity level.
A study on a portable fluorescence imaging system
NASA Astrophysics Data System (ADS)
Chang, Han-Chao; Wu, Wen-Hong; Chang, Chun-Li; Huang, Kuo-Cheng; Chang, Chung-Hsing; Chiu, Shang-Chen
2011-09-01
The fluorescent reaction is that an organism or dye, excited by UV light (200-405 nm), emits a specific frequency of light; the light is usually a visible or near infrared light (405-900 nm). During the UV light irradiation, the photosensitive agent will be induced to start the photochemical reaction. In addition, the fluorescence image can be used for fluorescence diagnosis and then photodynamic therapy can be given to dental diseases and skin cancer, which has become a useful tool to provide scientific evidence in many biomedical researches. However, most of the methods on acquiring fluorescence biology traces are still stay in primitive stage, catching by naked eyes and researcher's subjective judgment. This article presents a portable camera to obtain the fluorescence image and to make up a deficit from observer competence and subjective judgment. Furthermore, the portable camera offers the 375nm UV-LED exciting light source for user to record fluorescence image and makes the recorded image become persuasive scientific evidence. In addition, when the raising the rate between signal and noise, the signal processing module will not only amplify the fluorescence signal up to 70 %, but also decrease the noise significantly from environmental light on bill and nude mouse testing.