Sample records for light nuclei 12c

  1. Proportional Counter Calibration and Analysis for 12C + p Resonance Scattering

    NASA Astrophysics Data System (ADS)

    Nelson, Austin; Rogachev, Grigory; Uberseder, Ethan; Hooker, Josh; Koshchiy, Yevgen

    2014-09-01

    Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Funded by DOE and NSF-REU Program; Grant No. PHY-1263281.

  2. Enhancement of fusion at near-barrier energies for neutron-rich light nuclei: 19O +12 C

    NASA Astrophysics Data System (ADS)

    Singh, Varinderjit; Vadas, J.; Steinbach, T. K.; Wiggins, B. B.; Hudan, S.; Desouza, R. T.; Baby, L. T.; Kuvin, S. A.; Tripathi, Vandana; Wiedenhover, I.; Umar, A. S.

    2017-01-01

    Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a sensitive test of a microscopic description of fusion. To investigate the theoretically predicted fusion enhancement for neutron-rich light nuclei, an experiment was performed to measure the fusion excitation functions for 19 O +12 C and 18 O +12 C . Using the 18O(d,p) reaction and the RESOLUT mass spectrometer at Florida State University, a beam of 19O was produced with an intensity of 2-4 x 103 p/s. This beam bombarded a 100 μg/cm2 carbon target. Using an approach optimized for the measurement of fusion with a low-intensity beam, evaporation residues (ERs) resulting from the de-excitation of the fusion product were measured. The ERs were identified by measuring their energy and time-of-flight. At near-barrier energies, an enhancement of fusion by a factor of three has been observed for 19 O +12 C in comparison to 18 O +12 C . Comparison of the experimental results with the predictions of a density constrained time-dependent Hartree-Fock (DC-TDHF) model provide evidence for the importance of pairing in the fusion process. Supported by the US DOE under Grant No. DEFG02-88ER-40404.

  3. Clustering in light nuclei and their effects on fusion and pre - equilibrium processes.

    NASA Astrophysics Data System (ADS)

    Gramegna, Fabiana; Cicerchia, Magda; Fabris, Daniela; Marchi, Tommaso; Cinausero, Marco; Degerlier, Meltem; Mabiala, Justin; Mantovani, Giorgia; Morelli, Luca; D'Agostino, Michela; Bruno, Mauro; Barlini, Sandro; Bini, Maurizio; Pasquali, Gabriele; Piantelli, Silvia; Casini, Giovanni; Pastore, Giuseppe; Gruyer, Diego; Ottanelli, Pietro; Valdré, Simone; Gelli, Nicla; Olmi, Alessandro; Poggi, Giacomo; Vardaci, Emanuele; Lombardo, Ivano; Dell'Aquila, Daniele; Leoni, Silvia; Cieplicka-Orynczak, Natalya; Fornal, Bogdan; Mengoni, Daniele; Collazuol, Gianmaria; Caciolli, Antonio; Colonna, Maria; Ono, Akira; Baiocco, Giorgio

    2017-11-01

    The study of nuclear cluster states bound by valence neutrons is a field of recent large interest. In particular, it is important to study the pre-formation of α-clusters in α-conjugate nuclei and the dynamical condensation of clusters during nuclear reactions [1-5]. The NUCL-EX collaboration has recently initiated an experimental campaign of exclusive measurements of fusion-evaporation reactions with light nuclei as interacting partners. In collisions involving light systems, the low expected multiplicity of fragments increases the probability of achieving a quasi-complete reconstruction of the event. In particular the formation and decay modes of an excited 24Mg system have been studied through two different reactions, 12C (95 MeV)+ 12C and 14N (80.7 MeV)+ 10B, which have been used to produce fused systems with nearly the same mass and excitation energy ( 60 MeV). In particular, even the de-excitation of the Hoyle state in 12C have been studied, both in peripheral (projectiles de-excitation) and in central collisions (six α-particles channel). Moreover, a research campaign studying pre-equilibrium emission of light charged particles and cluster properties of light and medium-mass nuclei has been carried out. For this purpose, a comparative study of the three nuclear systems 18O+28Si, 16O+30Si and 19F+27Al has been recently studied using the GARFIELD+RCo 4π setup [6]. The experimental data are compared with the predictions of simulated events generated with the statistical models (GEMINI++ and HFl) and through dynamical models like Stochastic Mean Field (SMF) and Antisymmetrized Molecular Dynamics (AMD) and filtered with a software replica of our apparatus in order to take into account the experimental conditions.

  4. Over half a century of studying carbon-12

    NASA Astrophysics Data System (ADS)

    Kokalova Wheldon, Tzany

    2015-09-01

    Carbon-12 is one of the most studied light nuclei yet it continues to surprise and provide a rigorous testing ground for a wide range of physics, from nucleosynthesis models to theories of symmetries. This paper discusses the background motivating the investigations of 12C and summarises the recent results, with an emphasis on collective excitations and the high-energy structure together with possible future directions for this most intriguing of nuclei.

  5. Systematic shell-model study on spectroscopic properties from light to heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yuan, Cenxi

    2018-05-01

    A systematic shell-model study is performed to study the spectroscopic properties from light to heavy nuclei, such as binding energies, energy levels, electromagnetic properties, and β decays. The importance of cross-shell excitation is shown in the spectroscopic properties of neutron-rich boron, carbon, nitrogen, and oxygen isotopes. A special case is presented for low-lying structure of 14C. The weakly bound effect of proton 1s1/2 orbit is necessary for the description of the mirror energy difference in the nuclei around A=20. Some possible isomers are predicted in the nuclei in the southeast region of 132Sn based on a newly suggested Hamiltonian. A preliminary study on the nuclei around 208Pb are given to show the ability of the shell model in the heavy nuclei.

  6. Cluster correlation and fragment emission in 12C+12C at 95 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Tian, G.; Chen, Z.; Han, R.; Shi, F.; Luo, F.; Sun, Q.; Song, L.; Zhang, X.; Xiao, G. Q.; Wada, R.; Ono, A.

    2018-03-01

    The impact of cluster correlations has been studied in the intermediate mass fragment (IMF) emission in 12C+12C at 95 MeV/nucleon, using antisymmetrized molecular dynamics (AMD) model simulations. In AMD, the cluster correlation is introduced as a process to form light clusters with A ≤4 in the final states of a collision induced by the nucleon-nucleon residual interaction. Correlations between light clusters are also considered to form light nuclei with A ≤9 . This version of AMD, combined with GEMINI to calculate the decay of primary fragments, reproduces the experimental energy spectra of IMFs well overall with reasonable reproduction of light charged particles when we carefully analyze the excitation energies of primary fragments produced by AMD and their secondary decays. The results indicate that the cluster correlation plays a crucial role for producing fragments at relatively low excitation energies in the intermediate-energy heavy-ion collisions.

  7. Signatures of α clustering in ultrarelativistic collisions with light nuclei

    NASA Astrophysics Data System (ADS)

    Rybczyński, Maciej; Piotrowska, Milena; Broniowski, Wojciech

    2018-03-01

    We explore possible observable signatures of α clustering of light nuclei in ultrarelativistic nuclear collisions involving Be,97, 12C, and 16O. The clustering leads to specific spatial correlations of the nucleon distributions in the ground state, which are manifest in the earliest stage of the ultrahigh energy reaction. The formed initial state of the fireball is sensitive to these correlations, and the effect influences, after the collective evolution of the system, the hadron production in the final stage. Specifically, we study effects on the harmonic flow in collisions of light clustered nuclei with a heavy target (208Pb), showing that measures of the elliptic flow are sensitive to clusterization in Be,97, whereas triangular flow is sensitive to clusterization in 12C and 16O. Specific predictions are made for model collisions at energies available at the CERN Super Proton Synchrotron. In another exploratory development we also examine proton-beryllium collisions, where the 3 /2- ground state of Be,97 nuclei is polarized by an external magnetic field. Clusterization leads to multiplicity distributions of participant nucleons which depend on the orientation of the polarization with respect to the collision axis, as well as on the magnetic number of the state. The obtained effects on multiplicities reach a factor of a few for collisions with a large number of participant nucleons.

  8. Similarity-transformed chiral NN + 3N interactions for the ab initio description of 12C and 16O.

    PubMed

    Roth, Robert; Langhammer, Joachim; Calci, Angelo; Binder, Sven; Navrátil, Petr

    2011-08-12

    We present first ab initio no-core shell model (NCSM) calculations using similarity renormalization group (SRG) transformed chiral two-nucleon (NN) plus three-nucleon (3N) interactions for nuclei throughout the p-shell, particularly (12)C and (16)O. By introducing an adaptive importance truncation for the NCSM model space and an efficient JT-coupling scheme for the 3N matrix elements, we are able to surpass previous NCSM studies including 3N interactions. We present ground and excited states in (12)C and (16)O for model spaces up to N(max) = 12 including full 3N interactions. We analyze the contributions of induced and initial 3N interactions and probe induced 4N terms through the sensitivity of the energies on the SRG flow parameter. Unlike for light p-shell nuclei, SRG-induced 4N contributions originating from the long-range two-pion terms of the chiral 3N interaction are sizable in (12)C and (16)O.

  9. Exposure of nuclear track emulsion to a mixed beam of relativistic {sup 12}N, {sup 10}C, and {sup 7}Be nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kattabekov, R. R.; Mamatkulov, K. Z.; Artemenkov, D. A.

    2010-12-15

    A nuclear track emulsion was exposed to a mixed beam of relativistic {sup 12}N, {sup 10}C, and {sup 7}Be nuclei having a momentum of 2 GeV/c per nucleon. The beam was formed upon charge exchange processes involving {sup 12}C primary nuclei and their fragmentation. An analysis indicates that {sup 10}C nuclei are dominant in the beam and that {sup 12}N nuclei are present in it. The charge topology of relativistic fragments in the coherent dissociation of these nuclei is presented.

  10. Cluster structure of light nuclei

    NASA Astrophysics Data System (ADS)

    Iachello, Francesco

    2018-02-01

    Matter and charge densities of kα structures with k=2 (8Be), k=3 (12C) and k=4 (16O) calculated within the framework of the algebraic cluster model (ACM) are briefly reviewed and explicitly displayed. Their parameters are determined from a comparison with electron scattering data.

  11. Study of resonances produced in light nuclei through two and multi particle correlations

    NASA Astrophysics Data System (ADS)

    Quattrocchi, L.; Acosta, L.; Amorini, F.; Anzalone, A.; Auditore, L.; Berceanu, I.; Cardella, G.; Chbihi, A.; De Filippo, E.; De Luca, S.; Dell' Aquila, D.; Francalanza, L.; Gnoffo, B.; Grzeszczuk, A.; Lanzalone, G.; Lombardo, I.; Martel, I.; Martorana, N. S.; Minniti, T.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Rosato, E.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Veselsky, M.; Vigilante, M.

    2017-06-01

    CORRELATION experiment has been performed at INFN-LNS of Catania, using the 4π multi-detector CHIMERA, with the aim of exploring correlations between two and multi light particle produced in 12C+24Mg collisions at 35 AMeV. Particular attention has been paid to the decay mechanisms of Hoyle state, an excited resonant state of 12C produced via the triple-α process and characterized by a pronounced molecular like structure with three α particles. The study of the Hoyle state is essential for nucleosynthesis, but it also represents a clearly isolated state that can be studied as a three-α cluster system.

  12. Interference effect between neutron direct and resonance capture reactions for neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Minato, Futoshi; Fukui, Tokuro

    2017-11-01

    Interference effect of neutron capture cross section between the compound and direct processes is investigated. The compound process is calculated by resonance parameters and the direct process by the potential model. The interference effect is tested for neutron-rich 82Ge and 134Sn nuclei relevant to r-process and light nucleus 13C which is neutron poison in the s-process and produces long-lived radioactive nucleus 14C (T1/2 = 5700 y). The interference effects in those nuclei are significant around resonances, and low energy region if s-wave neutron direct capture is possible. Maxwellian averaged cross sections at kT = 30 and 300 keV are also calculated, and the interference effect changes the Maxwellian averaged capture cross section largely depending on resonance position.

  13. Nuclear states with anomalously large radius (size isomers)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogloblin, A. A.; Demyanova, A. S., E-mail: a.s.demyanova@bk.ru; Danilov, A. N.

    2016-07-15

    Methods of determination of the nuclear excited state radii are discussed together with the recently obtained data on the states of some light nuclei having abnormally large radii (size isomers). It is shown that such states include excited neutron-halo states in {sup 9}Be, {sup 11}Be, and {sup 13}C and some alpha-cluster states in {sup 12}C, {sup 11}B, and {sup 13}C. Among the latter ones, there is the well-known Hoyle state in {sup 12}C—the structure of this state exhibit rudimentary features of alpha-particle states.

  14. Statistical theory of light nucleus reactions with 1p-shell light nuclei

    NASA Astrophysics Data System (ADS)

    Xiaojun, Sun; Jingshang, Zhang

    2017-09-01

    The 1p-shell light elements (Li, Be, B, C, N, and O) had long been selected as the most important materials for improving neutron economy in thermal and fast fission reactors and in the design of accelerator-driven spallation neutron sources. A statistical theory of light nucleus reactions (STLN) is proposed to describe the double-differential cross sections for both neutron and light charged particle induced nuclear reactions with 1p-shell light nuclei. The dynamics of STLN is described by the unified Hauser-Feshbach and exciton model, in which the angular momentum and parity conservations are strictly considered in equilibrium and pre-equilibrium processes. The Coulomb barriers of the incoming and outgoing charged particles, which significantly influence the open channels of the reaction, can be reasonably considered in incident channel and different outgoing channels. In kinematics, the recoiling effects in various emission processes are strictly taken into account. The analytical energy and angular spectra of the reaction products in sequential and simultaneous emission processes are obtained in terms of the new integral formula proposed in our recent paper. Taking 12C(n, xn), 9Be(n, xn), 16O(n, xn), and 9Be(p,xn) reactions as examples, we had calculated the double-differential cross sections of outgoing neutrons and compared with the experimental data. In addition, we had also calculated the partition and total kerma coefficients for 12C(n, xn) and 16O(n, xn) reactions, respectively. The existing experimental data can be remarkably well reproduced by STLN, which had been used to set up file-6 in CENDL database.

  15. Measurement of elliptic flow of light nuclei at √{sN N}=200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, X.; Li, Y.; Li, W.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, G. L.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X. M.; Sun, Z.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, Y.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, F.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, H.; Xu, Z.; Xu, J.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Yang, Y.; Yang, S.; Yang, C.; Yang, Y.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J.; Zhang, Y.; Zhang, X. P.; Zhang, Z.; Zhang, J. B.; Zhang, S.; Zhang, S.; Zhang, J.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-09-01

    We present measurements of second-order azimuthal anisotropy (v2) at midrapidity (|y |<1.0 ) for light nuclei d ,t ,3He (for √{sN N}=200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV) and antinuclei d ¯ (√{sN N}=200 , 62.4, 39, 27, and 19.6 GeV) and ¯3He (√{sN N}=200 GeV) in the STAR (Solenoidal Tracker at RHIC) experiment. The v2 for these light nuclei produced in heavy-ion collisions is compared with those for p and p ¯. We observe mass ordering in nuclei v2(pT) at low transverse momenta (pT<2.0 GeV/c ). We also find a centrality dependence of v2 for d and d ¯. The magnitude of v2 for t and 3He agree within statistical errors. Light-nuclei v2 are compared with predictions from a blast-wave model. Atomic mass number (A ) scaling of light-nuclei v2(pT) seems to hold for pT/A <1.5 GeV /c . Results on light-nuclei v2 from a transport-plus-coalescence model are consistent with the experimental measurements.

  16. Measurement of elliptic flow of light nuclei at s N N = 200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at the BNL Relativistic Heavy Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.

    Here we present measurements of second-order azimuthal anisotropy ( v 2 ) at midrapidity ( |y| < 1.0 ) for light nuclei d , t , 3He (formore » $$\\sqrt{s}$$$_{NN}$$ = 200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV) and antinuclei$$\\bar{d}$$ ( $$\\sqrt{s}$$$_{NN}$$ = 200 , 62.4, 39, 27, and 19.6 GeV) and 3 ¯¯¯¯¯ He ( $$\\sqrt{s}$$$_{NN}$$ = 200 GeV) in the STAR (Solenoidal Tracker at RHIC) experiment. The v 2 for these light nuclei produced in heavy-ion collisions is compared with those for p and $$\\bar{p}$$. We observe mass ordering in nuclei v 2 ( p T) at low transverse momenta ( p T < 2.0 GeV/c). We also find a centrality dependence of v 2 for d and $$\\bar{d}$$ . The magnitude of v 2 for t and 3He agree within statistical errors. Light-nuclei v 2 are compared with predictions from a blast-wave model. Atomic mass number ( A ) scaling of light-nuclei v 2 (p T) seems to hold for p T / A < 1.5 GeV/c . Results on light-nuclei v 2 from a transport-plus-coalescence model are consistent with the experimental measurements.« less

  17. Measurement of elliptic flow of light nuclei at s N N = 200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at the BNL Relativistic Heavy Ion Collider

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2016-09-23

    Here we present measurements of second-order azimuthal anisotropy ( v 2 ) at midrapidity ( |y| < 1.0 ) for light nuclei d , t , 3He (formore » $$\\sqrt{s}$$$_{NN}$$ = 200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV) and antinuclei$$\\bar{d}$$ ( $$\\sqrt{s}$$$_{NN}$$ = 200 , 62.4, 39, 27, and 19.6 GeV) and 3 ¯¯¯¯¯ He ( $$\\sqrt{s}$$$_{NN}$$ = 200 GeV) in the STAR (Solenoidal Tracker at RHIC) experiment. The v 2 for these light nuclei produced in heavy-ion collisions is compared with those for p and $$\\bar{p}$$. We observe mass ordering in nuclei v 2 ( p T) at low transverse momenta ( p T < 2.0 GeV/c). We also find a centrality dependence of v 2 for d and $$\\bar{d}$$ . The magnitude of v 2 for t and 3He agree within statistical errors. Light-nuclei v 2 are compared with predictions from a blast-wave model. Atomic mass number ( A ) scaling of light-nuclei v 2 (p T) seems to hold for p T / A < 1.5 GeV/c . Results on light-nuclei v 2 from a transport-plus-coalescence model are consistent with the experimental measurements.« less

  18. Nilsson diagrams for light neutron-rich nuclei with weakly-bound neutrons

    NASA Astrophysics Data System (ADS)

    Hamamoto, Ikuko

    2007-11-01

    Using Woods-Saxon potentials and the eigenphase formalism for one-particle resonances, one-particle bound and resonant levels for neutrons as a function of quadrupole deformation are presented, which are supposed to be useful for the interpretation of spectroscopic properties of some light neutron-rich nuclei with weakly bound neutrons. Compared with Nilsson diagrams in textbooks that are constructed using modified oscillator potentials, we point out a systematic change of the shell structure in connection with both weakly bound and resonant one-particle levels related to small orbital angular momenta ℓ. Then, it is seen that weakly bound neutrons in nuclei such as C15-19 and Mg33-37 may prefer being deformed as a result of the Jahn-Teller effect, due to the near degeneracy of the 1d5/2-2s1/2 levels and the 1f7/2-2p3/2 levels in the spherical potential, respectively. Furthermore, the absence of some one-particle resonant levels compared with the Nilsson diagrams in textbooks is illustrated.

  19. Charge topology of the coherent dissociation of relativistic 11C and 12N nuclei

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.; Kattabekov, R. R.; Kornegrutsa, N. K.; Mamatkulov, K. Z.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.

    2015-09-01

    The charge topology of coherent-dissociation events is presented for 11С and 12N nuclei of energy 1.2 GeV per nucleon bombarding nuclear track emulsions. This topology is compared with respective data for 7Be, 8,10B, 9,10C, and 14N nuclei.

  20. Light Nuclei and Isotope Abundances in Cosmic Rays. Results from AMS-01

    NASA Astrophysics Data System (ADS)

    Tomassetti, N.

    2011-06-01

    Observations of the chemical and isotopic composition of light cosmic-ray nuclei can be used to constrain the propagation models. Nearly 200,000 light nuclei (Z > 2) have been observed by AMS-01 during the 10-day flight STS-91 in June 1998. Using these data, we have measured Li, Be, B and C in the kinetic energy range 0.35 - 45 GeV/nucleon. In this proceeding, our charge and isotopic composition results are presented and discussed.

  1. Neutrinoless Double Beta Decay Matrix Elements in Light Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastore, S.; Carlson, J.; Cirigliano, V.

    We present the first ab initio calculations of neutrinoless double-β decay matrix elements in A=6-12 nuclei using variational Monte Carlo wave functions obtained from the Argonne v 18 two-nucleon potential and Illinois-7 three-nucleon interaction. We study both light Majorana neutrino exchange and potentials arising from a large class of multi-TeV mechanisms of lepton-number violation. Our results provide benchmarks to be used in testing many-body methods that can be extended to the heavy nuclei of experimental interest. In light nuclei we also study the impact of two-body short-range correlations and the use of different forms for the transition operators, such asmore » those corresponding to different orders in chiral effective theory.« less

  2. Light regulation of the abundance of mRNA encoding a nucleolin-like protein localized in the nucleoli of pea nuclei.

    PubMed Central

    Tong, C G; Reichler, S; Blumenthal, S; Balk, J; Hsieh, H L; Roux, S J

    1997-01-01

    A cDNA encoding a nucleolar protein was selected from a pea (Pisum sativum) plumule library, cloned, and sequenced. The translated sequence of the cDNA has significant percent identity to Xenopus laevis nucleolin (31%), the alfalfa (Medicago sativa) nucleolin homolog (66%), and the yeast (Saccharomyces cerevisiae) nucleolin homolog (NSR1) (28%). It also has sequence patterns in its primary structure that are characteristic of all nucleolins, including an N-terminal acidic motif, RNA recognition motifs, and a C-terminal Gly- and Arg-rich domain. By immunoblot analysis, the polyclonal antibodies used to select the cDNA bind selectively to a 90-kD protein in purified pea nuclei and nucleoli and to an 88-kD protein in extracts of Escherichia coli expressing the cDNA. In immunolocalization assays of pea plumule cells, the antibodies stained primarily a region surrounding the fibrillar center of nucleoli, where animal nucleolins are typically found. Southern analysis indicated that the pea nucleolin-like protein is encoded by a single gene, and northern analysis showed that the labeled cDNA binds to a single band of RNA, approximately the same size and the cDNA. After irradiation of etiolated pea seedlings by red light, the mRNA level in plumules decreased during the 1st hour and then increased to a peak of six times the 0-h level at 12 h. Far-red light reversed this effect of red light, and the mRNA accumulation from red/far-red light irradiation was equal to that found in the dark control. This indicates that phytochrome may regulate the expression of this gene. PMID:9193096

  3. Elastic neutron scattering studies at 96 MeV for transmutation.

    PubMed

    Osterlund, M; Blomgren, J; Hayashi, M; Mermod, P; Nilsson, L; Pomp, S; Ohrn, A; Prokofiev, A V; Tippawan, U

    2007-01-01

    Elastic neutron scattering from (12)C, (14)N, (16)O, (28)Si, (40)Ca, (56)Fe, (89)Y and (208)Pb has been studied at 96 MeV in the10-70 degrees interval, using the SCANDAL (SCAttered Nucleon Detection AssembLy) facility. The results for (12)C and (208)Pb have recently been published, while the data on the other nuclei are under analysis. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. A novel method for normalisation of the absolute scale of the cross section has been used. The estimated normalisation uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. Elastic neutron scattering is of utmost importance for a vast number of applications. Besides its fundamental importance as a laboratory for tests of isospin dependence in the nucleon-nucleon, and nucleon-nucleus, interaction, knowledge of the optical potentials derived from elastic scattering come into play in virtually every application where a detailed understanding of nuclear processes is important. Applications for these measurements are dose effects due to fast neutrons, including fast neutron therapy, as well as nuclear waste incineration and single event upsets in electronics. The results at light nuclei of medical relevance ((12)C, (14)N and (16)O) are presented separately. In the present contribution, results on the heavier nuclei are presented, among which several are of relevance to shielding of fast neutrons.

  4. Coherent fragmentation of 12C nuclei of momentum 4.5 GeV/ c per nucleon through the 8Beg.s.+4He channel in a nuclear photoemulsion containing lead nuclei

    NASA Astrophysics Data System (ADS)

    Belaga, V. V.; Gerasimov, S. G.; Dronov, V. A.; Peresadko, N. G.; Pisetskaya, A. V.; Rusakova, V. V.; Fetisov, V. N.; Kharlamov, S. P.; Shesterkina, L. N.

    2017-07-01

    A two-particle channel in which an unbound nucleus of 8Be in the ground state (8Beg.s.) was one of the fragments was selected among events where 12C nuclei of momentum 4.5 GeV/c per nucleon undergo coherent dissociation into three alpha particles. The events in question were detected in a track nuclear photoemulsion containing lead nuclei, which was irradiated at the synchrophasotron of the Laboratory of High Energies at the Joint Institute for Nuclear Research (JINR, Dubna). The average transverse momentum of alpha particles produced upon the decay of 8Beg.s. nuclei was 87±6 MeV/ c, while that for "single" alpha (αs) particles was 123±15 MeV/ c. The average value of the transverse-momentum transfer in the reaction being considered, Pt(12C), was 223 ± 20 MeV/ c. The average value of the cross section for this channel involving Ag and Br target nuclei was 13 ± 4 mb, while the cross section for the reaction on the Pb nucleus was 40 ± 15 mb. The Coulomb dissociation contribution evaluated on the basis of the number of events where the momentum P t(12C) did not exceed 0.1 GeV/c saturated about 20%. In nine events, the measured total transverse energy of the fragments in the reference frame comoving with the decaying carbon nucleus did not exceed 0.45 MeV, which did not contradict the excitation of the participant 12C nucleus to the level at 7.65 MeV. The average value of the transverse momentum in those events was 234 ± 25 MeV/ c.

  5. Determination of 13C/12C Isotope Ratio in Alcohols of Different Origin by 1н Nuclei NMR-Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dzhimak, S. S.; Basov, A. A.; Buzko, V. Yu.; Kopytov, G. F.; Kashaev, D. V.; Shashkov, D. I.; Shlapakov, M. S.; Baryshev, M. G.

    2017-02-01

    A new express method of indirect assessment of 13C/12C isotope ratio on 1H nuclei is developed to verify the authenticity of ethanol origin in alcohol-water-based fluids and assess the facts of various alcoholic beverages falsification. It is established that in water-based alcohol-containing systems, side satellites for the signals of ethanol methyl and methylene protons in the NMR spectra on 1H nuclei, correspond to the protons associated with 13C nuclei. There is a direct correlation between the intensities of the signals of ethanol methyl and methylene protons' 1H- NMR and their side satellites, therefore, the data obtained can be used to assess 13C/12C isotope ratio in water-based alcohol-containing systems. The analysis of integrated intensities of main and satellite signals of methyl and methylene protons of ethanol obtained by NMR on 1H nuclei makes it possible to differentiate between ethanol of synthetic and natural origin. Furthermore, the method proposed made it possible to differentiate between wheat and corn ethanol.

  6. New symmetry of the cluster model

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2015-10-01

    A new approach to clustering in the frame of the Algebraic Cluster Model (ACM) has been developed. It predicts rotation-vibration structure with rotational band of an oblate equilateral triangular spinning top with a 𝒟3h symmetry characterized by the sequence of states: 0+, 2+, 3-, 4±, 5- with almost degenerate 4+ and 4- (parity doublet) states. Our measurement of the new 22+ and the measured of the new 5- state in 12C fit very well to the predicted (ground state) rotational band structure with the sequence of states: 0+, 2+, 3-, 4±, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a 𝒟3h symmetry was observed in triatomic molecules, and it is observed in 12C for the first time in nuclear physics. We discuss a classification of other rotation-vibration bands in 12C such as the (0+) Hoyle band and the (1-) bending mode band and suggest measurements in search of the predicted ("missing") states that may shed new light on clustering in 12C and light nuclei. In particular, the observation (or non observation) of the predicted ("missing") states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha particles composing the Hoyle state at 7.654 MeV in 12C.

  7. Circadian rhythmicity and light sensitivity of the zebrafish brain.

    PubMed

    Moore, Helen A; Whitmore, David

    2014-01-01

    Traditionally, circadian clocks have been thought of as a neurobiological phenomenon. This view changed somewhat over recent years with the discovery of peripheral tissue circadian oscillators. In mammals, however, the suprachiasmatic nucleus (SCN) in the hypothalamus still retains the critical role of a central synchronizer of biological timing. Zebrafish, in contrast, have always reflected a more highly decentralized level of clock organization, as individual cells and tissues contain directly light responsive circadian pacemakers. As a consequence, clock function in the zebrafish brain has remained largely unexplored, and the precise organization of rhythmic and light-sensitive neurons within the brain is unknown. To address this issue, we used the period3 (per3)-luciferase transgenic zebrafish to confirm that multiple brain regions contain endogenous circadian oscillators that are directly light responsive. In addition, in situ hybridization revealed localised neural expression of several rhythmic and light responsive clock genes, including per3, cryptochrome1a (cry1a) and per2. Adult brain nuclei showing significant clock gene expression include the teleost equivalent of the SCN, as well as numerous hypothalamic nuclei, the periventricular grey zone (PGZ) of the optic tectum, and granular cells of the rhombencephalon. To further investigate the light sensitive properties of neurons, expression of c-fos, a marker for neuronal activity, was examined. c-fos mRNA was upregulated in response to changing light conditions in different nuclei within the zebrafish brain. Furthermore, under constant dark (DD) conditions, c-fos shows a significant circadian oscillation. Taken together, these results show that there are numerous areas of the zebrafish central nervous system, which contain deep brain photoreceptors and directly light-entrainable circadian pacemakers. However, there are also multiple brain nuclei, which possess neither, demonstrating a degree of pacemaker complexity that was not previously appreciated.

  8. Circadian Rhythmicity and Light Sensitivity of the Zebrafish Brain

    PubMed Central

    Moore, Helen A.; Whitmore, David

    2014-01-01

    Traditionally, circadian clocks have been thought of as a neurobiological phenomenon. This view changed somewhat over recent years with the discovery of peripheral tissue circadian oscillators. In mammals, however, the suprachiasmatic nucleus (SCN) in the hypothalamus still retains the critical role of a central synchronizer of biological timing. Zebrafish, in contrast, have always reflected a more highly decentralized level of clock organization, as individual cells and tissues contain directly light responsive circadian pacemakers. As a consequence, clock function in the zebrafish brain has remained largely unexplored, and the precise organization of rhythmic and light-sensitive neurons within the brain is unknown. To address this issue, we used the period3 (per3)-luciferase transgenic zebrafish to confirm that multiple brain regions contain endogenous circadian oscillators that are directly light responsive. In addition, in situ hybridization revealed localised neural expression of several rhythmic and light responsive clock genes, including per3, cryptochrome1a (cry1a) and per2. Adult brain nuclei showing significant clock gene expression include the teleost equivalent of the SCN, as well as numerous hypothalamic nuclei, the periventricular grey zone (PGZ) of the optic tectum, and granular cells of the rhombencephalon. To further investigate the light sensitive properties of neurons, expression of c-fos, a marker for neuronal activity, was examined. c-fos mRNA was upregulated in response to changing light conditions in different nuclei within the zebrafish brain. Furthermore, under constant dark (DD) conditions, c-fos shows a significant circadian oscillation. Taken together, these results show that there are numerous areas of the zebrafish central nervous system, which contain deep brain photoreceptors and directly light-entrainable circadian pacemakers. However, there are also multiple brain nuclei, which possess neither, demonstrating a degree of pacemaker complexity that was not previously appreciated. PMID:24465943

  9. Light Collection Efficiency in Thin Strip Plastic Scintillator for the Study of ISGMR in Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Shafer, Jacob

    2011-10-01

    The compressibility of nuclear matter (KA) is one of the constituent of the equation of state for nuclear matter which is important in the study Neutron Stars and Super Novae. The KA is proportional to the Giant Monopole Resonance (GMR) energy and is related by the equation EGMR = (h2/mr2) 1/2 *(AKA)1/2 , where ``m'' is the mass of a nucleon and ``r'' is the radius of the nucleus. The GMR in unstable nuclei is important because the KA is related to the ratio of protons to neutrons. For this reason, it is desirable to study unstable nuclei as well as stable nuclei. The study of the GMR in unstable nuclei will be done using inverse kinematics on a target of Lithium (6Li). A detector composed of two layers of thin strip scintillators and one layer of large block scintillators has been designed and constructed to give adequate energy and angular distribution over a large portion of the solid angle where decay particles from the ISGMR can be found. Attenuation of the light signal in the strip scintillators was measured using an Americium (241Am) alpha source. Gains in light collection efficiency due to various wrapping techniques were also measured. The thin strip scintillators are connected to the photomultiplier tube (PMT) via bundles of optical fiber. Losses in light calculation efficiency due to fiber bundles were measured as well. Funded by DOE and NSF-REU.

  10. Development of the (d,n) Proton-transfer Reaction in Inverse Kinematics for Structure Studies

    NASA Astrophysics Data System (ADS)

    Jones, K. L.; Thornsberry, C.; Allen, J.; Atencio, A.; Bardayan, D. W.; Blankstein, D.; Burcher, S.; Carter, A. B.; Chipps, K. A.; Cizewski, J. A.; Cox, I.; Elledge, Z.; Febbraro, M.; Fijałkowska, A.; Grzywacz, R.; Hall, M. R.; King, T. T.; Lepailleur, A.; Madurga, M.; Marley, S. T.; O'Malley, P. D.; Paulauskas, S. V.; Pain, S. D.; Peters, W. A.; Reingold, C.; Smith, K.; Taylor, S.; Tan, W.; Vostinar, M.; Walter, D.

    Transfer reactions have provided exciting opportunities to study the structure of exotic nuclei and are often used to inform studies relating to nucleosynthesis and applications. In order to benefit from these reactions and their application to rare ion beams (RIBs) it is necessary to develop the tools and techniques to perform and analyze the data from reactions performed in inverse kinematics, that is with targets of light nuclei and heavier beams. We are continuing to expand the transfer reaction toolbox in preparation for the next generation of facilities, such as the Facility for Rare Ion Beams (FRIB), which is scheduled for completion in 2022. An important step in this process is to perform the (d,n) reaction in inverse kinematics, with analyses that include Q-value spectra and differential cross sections. In this way, proton-transfer reactions can be placed on the same level as the more commonly used neutron-transfer reactions, such as (d,p), (9Be,8Be), and (13C,12C). Here we present an overview of the techniques used in (d,p) and (d,n), and some recent data from (d,n) reactions in inverse kinematics using stable beams of 12C and 16O.

  11. Extracting nuclear sizes of medium to heavy nuclei from total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.

    2016-04-01

    Background: Proton and neutron radii are fundamental quantities of atomic nuclei. To study the sizes of short-lived unstable nuclei, there is a need for an alternative to electron scattering. Purpose: The recent paper by Horiuchi et al. [Phys. Rev. C 89, 011601(R) (2014)], 10.1103/PhysRevC.89.011601 proposed a possible way of extracting the matter and neutron-skin thickness of light- to medium-mass nuclei using total reaction cross section, σR. The analysis is extended to medium to heavy nuclei up to lead isotopes with due attention to Coulomb breakup contributions as well as density distributions improved by paring correlation. Methods: We formulate a quantitative calculation of σR based on the Glauber model including the Coulomb breakup. To substantiate the treatment of the Coulomb breakup, we also evaluate the Coulomb breakup cross section due to the electric dipole field in a canonical-basis-time-dependent-Hartree-Fock-Bogoliubov theory in the three-dimensional coordinate space. Results: We analyze σR's of 103 nuclei with Z =20 , 28, 40, 50, 70, and 82 incident on light targets, H,21, 4He, and 12C. Three kinds of Skyrme interactions are tested to generate those wave functions. To discuss possible uncertainty due to the Coulomb breakup, we examine its dependence on the target, the incident energy, and the Skyrme interaction. The proton is a most promising target for extracting the nuclear sizes as the Coulomb excitation can safely be neglected. We find that the so-called reaction radius, aR=√{σR/π } , for the proton target is very well approximated by a linear function of two variables, the matter radius and the skin thickness, in which three constants depend only on the incident energy. We quantify the accuracy of σR measurements needed to extract the nuclear sizes. Conclusions: The proton is the best target because, once the incident energy is set, its aR is very accurately determined by only the matter radius and neutron-skin thickness. If σR's at different incident energies are measured, one can determine both the proton and neutron radii for unstable nuclei as well. The total reaction cross sections calculated in this paper are given as Supplemental Material for the sake of future measurements.

  12. Recent results on the cluster structure of light nuclei

    NASA Astrophysics Data System (ADS)

    Iachello, F.

    2017-06-01

    A recently developed model (ACM) is introduced and applied to the study of kα structures with k=2 (8Be ), k=3 (12C) and k=4 (16O). Evidence for Z2 (k=2), D3 (k=3) and Td (k=4) symmetry is presented. An extension (ACFM) of the model to kα+x(neutrons, protons) structures is briefly mentioned and applied to the study of9Be (k=2,x=1).

  13. Properties of Nuclei up to A = 16 using Local Chiral Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonardoni, Diego; Carlson, Joseph; Gandolfi, Stefano

    Here, we report accurate quantum Monte Carlo calculations of nuclei up to A = 16 based on local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We examine the theoretical uncertainties associated with the chiral expansion and the cutoff in the theory, as well as the associated operator choices in the three-nucleon interactions. While in light nuclei the cutoff variation and systematic uncertainties are rather small, in 16O these can be significant for large coordinate-space cutoffs. Overall, we show that chiral interactions constructed to reproduce properties of very light systems and nucleon-nucleon scattering give an excellent description of bindingmore » energies, charge radii, and form factors for all these nuclei, including open-shell systems in A = 6 and 12.« less

  14. Properties of Nuclei up to A = 16 using Local Chiral Interactions

    DOE PAGES

    Lonardoni, Diego; Carlson, Joseph; Gandolfi, Stefano; ...

    2018-03-22

    Here, we report accurate quantum Monte Carlo calculations of nuclei up to A = 16 based on local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We examine the theoretical uncertainties associated with the chiral expansion and the cutoff in the theory, as well as the associated operator choices in the three-nucleon interactions. While in light nuclei the cutoff variation and systematic uncertainties are rather small, in 16O these can be significant for large coordinate-space cutoffs. Overall, we show that chiral interactions constructed to reproduce properties of very light systems and nucleon-nucleon scattering give an excellent description of bindingmore » energies, charge radii, and form factors for all these nuclei, including open-shell systems in A = 6 and 12.« less

  15. EMC effect for light nuclei: New results from Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji Daniel

    High energy lepton scattering has been the primary tool for mapping out the quark distributions of nucleons and nuclei. Measurements of deep inelastic scattering in nuclei show that the quark distributions in heavy nuclei are not simply the sum of the quark distributions of the constituent proton and neutron, as one might expect for a weakly bound system. This modification of the quark distributions in nuclei is known as the EMC effect. I will discuss the results from Jefferson Lab (JLab) experiment E03-103, a precise measurement of the EMC effect in few-body nuclei with emphasis on the large x region.more » Data from the light nuclei suggests that the nuclear dependence of the high x quark distribution may depend on the nucleon's local environment, rather than being a purely bulk effect. In addition, I will also discuss about a future experiment at the upgraded 12 GeV Jefferson Lab facility which will further investigate the role of the local nuclear environment and the influence of detailed nuclear structure to the modification of quark distributions.« less

  16. Relative Composition and Energy Spectra of Light Nuclei in Cosmic Rays: Results from AMS-01

    NASA Astrophysics Data System (ADS)

    Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; Azzarello, P.; Basile, M.; Barao, F.; Barreira, G.; Bartoloni, A.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bindi, V.; Boella, G.; Boschini, M.; Bourquin, M.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cernuda, I.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Choi, Y. Y.; Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Crespo, D.; Cristinziani, M.; Dai, T. S.; dela Guia, C.; Delgado, C.; Di Falco, S.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Duranti, M.; Engelberg, J.; Eppling, F. J.; Eronen, T.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P. H.; Flügge, G.; Fouque, N.; Galaktionov, Y.; Gervasi, M.; Giovacchini, F.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W. Q.; Haino, S.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Hungerford, W.; Ionica, M.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kirn, T.; Klimentov, A.; Kossakowski, R.; Kounine, A.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.; Lin, C. H.; Liu, H. T.; Lu, G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti, A.; Mayet, F.; McNeil, R. R.; Menichelli, M.; Mihul, A.; Mujunen, A.; Oliva, A.; Palmonari, F.; Park, H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Pereira, R.; Perrin, E.; Pevsner, A.; Pilo, F.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Produit, N.; Quadrani, L.; Rancoita, P. G.; Rapin, D.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser, U.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shin, J. W.; Shoumilov, E.; Shoutko, V.; Siedenburg, T.; Siedling, R.; Son, D.; Song, T.; Spada, F. R.; Spinella, F.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.; Vandenhirtz, J.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; Von Gunten, H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, J. Z.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Xu, S.; Xu, Z. Z.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhou, F.; Zhou, Y.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P.

    2010-11-01

    Measurement of the chemical and isotopic composition of cosmic rays is essential for the precise understanding of their propagation in the galaxy. While the model parameters are mainly determined using the B/C ratio, the study of extended sets of ratios can provide stronger constraints on the propagation models. In this paper, the relative abundances of light-nuclei lithium, beryllium, boron, and carbon are presented. The secondary-to-primary ratios Li/C, Be/C, and B/C have been measured in the kinetic energy range 0.35-45 GeV nucleon-1. The isotopic ratio 7Li/6Li is also determined in the magnetic rigidity interval 2.5-6.3 GV. The secondary-to-secondary ratios Li/Be, Li/B, and Be/B are also reported. These measurements are based on the data collected by the Alpha Magnetic Spectrometer AMS-01 during the STS-91 space shuttle flight in 1998 June. Our experimental results are in substantial agreement with other measurements, where they exist. We describe our light-nuclei data with a diffusive-reacceleration model. A 10%-15% overproduction of Be is found in the model predictions and can be attributed to uncertainties in the production cross-section data.

  17. Analyzing power measurements of (d,/sup 2/He) reactions on light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motobayashi, T.; Sakai, H.; Matsuoka, N.

    1986-12-01

    Spin-flip charge-exchange (d,/sup 2/He) reactions on /sup 12/C, /sup 13/C, and /sup 14/N were measured at E/sub d/ = 70 MeV. At forward angles, negative vector analyzing powers of -0.2 to -0.6 were observed for ..delta..L = 0 transitions for all targets studied, whereas a positive value was obtained for the transition to the 4.4 MeV excited state of /sup 12/B in the /sup 12/C(d,/sup 2/He) reaction for which ..delta..L = 1 is the main component. Distorted-wave Born-approximation calculations reproduce this ..delta..L dependence of the analyzing power. The fits to the data for ..delta..L = 0 transitions are improved ifmore » the two-step processes via d-p-/sup 2/He and d-/sup 3/He-/sup 2/He channels are taken into account.« less

  18. Diurnal rhythm of melatonin binding in the rat suprachiasmatic nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laitinen, J.T.; Castren, E.; Vakkuri, O.

    1989-03-01

    We used quantitative in vitro autoradiography to localize and characterize 2-/sup 125/I-melatonin binding sites in the rat suprachiasmatic nuclei in relation to pineal melatonin production. In a light:dark cycle of 12:12 h, binding density exhibited significant diurnal variation with a peak at the dark-light transition and a trough 12 hours later. Saturation studies suggested that the decreased binding at light-dark transition might be due to a shift of the putative melatonin receptor to a low affinity state.

  19. Current and Future Tests of the Algebraic Cluster Model of12C

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2017-07-01

    A new theoretical approach to clustering in the frame of the Algebraic Cluster Model (ACM) has been developed. It predicts, in12C, rotation-vibration structure with rotational bands of an oblate equilateral triangular symmetric spinning top with a D 3h symmetry characterized by the sequence of states: 0+, 2+, 3-, 4±, 5- with a degenerate 4+ and 4- (parity doublet) states. Our newly measured {2}2+ state in12C allows the first study of rotation-vibration structure in12C. The newly measured 5- state and 4- states fit very well the predicted ground state rotational band structure with the predicted sequence of states: 0+, 2+, 3-, 4±, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a D 3h symmetry is characteristic of triatomic molecules, but it is observed in the ground state rotational band of12C for the first time in a nucleus. We discuss predictions of the ACM of other rotation-vibration bands in12C such as the (0+) Hoyle band and the (1-) bending mode with prediction of (“missing 3- and 4-”) states that may shed new light on clustering in12C and light nuclei. In particular, the observation (or non observation) of the predicted (“missing”) states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha particles composing the Hoyle state at 7.6542 MeV in12C. We discuss proposed research programs at the Darmstadt S- DALINAC and at the newly constructed ELI-NP facility near Bucharest to test the predictions of the ACM in isotopes of carbon.

  20. Quadrupole deformation ({beta},{gamma}) of light {Lambda} hypernuclei in a constrained relativistic mean field model: Shape evolution and shape polarization effect of the {Lambda} hyperon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Bingnan; Zhao Enguang; Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000

    2011-07-15

    The shapes of light normal nuclei and {Lambda} hypernuclei are investigated in the ({beta},{gamma}) deformation plane by using a newly developed constrained relativistic mean field (RMF) model. As examples, the results of some C, Mg, and Si nuclei are presented and discussed in details. We found that for normal nuclei the present RMF calculations and previous Skyrme-Hartree-Fock models predict similar trends of the shape evolution with the neutron number increasing. But some quantitative aspects from these two approaches, such as the depth of the minimum and the softness in the {gamma} direction, differ a lot for several nuclei. For {Lambda}more » hypernuclei, in most cases, the addition of a {Lambda} hyperon alters slightly the location of the ground state minimum toward the direction of smaller {beta} and softer {gamma} in the potential energy surface E{approx}({beta},{gamma}). There are three exceptions, namely, {sub {Lambda}}{sup 13}C, {sub {Lambda}}{sup 23}C, and {sub {Lambda}}{sup 31}Si in which the polarization effect of the additional {Lambda} is so strong that the shapes of these three hypernuclei are drastically different from their corresponding core nuclei.« less

  1. THE RADIATIVE NEUTRON CAPTURE ON 2H, 6Li, 7Li, 12C AND 13C AT ASTROPHYSICAL ENERGIES

    NASA Astrophysics Data System (ADS)

    Dubovichenko, Sergey; Dzhazairov-Kakhramanov, Albert; Burkova, Natalia

    2013-05-01

    The continued interest in the study of radiative neutron capture on atomic nuclei is due, on the one hand, to the important role played by this process in the analysis of many fundamental properties of nuclei and nuclear reactions, and, on the other hand, to the wide use of the capture cross-section data in the various applications of nuclear physics and nuclear astrophysics, and, also, to the importance of the analysis of primordial nucleosynthesis in the Universe. This paper is devoted to the description of results for the processes of the radiative neutron capture on certain light atomic nuclei at thermal and astrophysical energies. The consideration of these processes is done within the framework of the potential cluster model (PCM), general description of which was given earlier. The methods of usage of the results obtained, based on the phase shift analysis intercluster potentials, are demonstrated in calculations of the radiative capture characteristics. The considered capture reactions are not part of stellar thermonuclear cycles, but involve in the basic reaction chain of primordial nucleosynthesis in the course of the Universe formation.

  2. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  3. Three- α particle correlations in quasi-projectile decay in 12C + 24Mg collisions at 35A MeV

    NASA Astrophysics Data System (ADS)

    Quattrocchi, L.; Acosta, L.; Amorini, F.; Anzalone, A.; Auditore, L.; Berceanu, I.; Cardella, G.; Chbihi, A.; De Filippo, E.; De Luca, S.; Dell'Aquila, D.; Francalanza, L.; Gnoffo, B.; Grzeszczuk, A.; Lanzalone, G.; Lombardo, I.; Martel, I.; Martorana, N. S.; Minniti, T.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Rosato, E.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Veselsky, M.; Vigilante, M.

    2017-11-01

    Two and multi particle correlations have been studied in peripheral 12C + 24Mg collisions at 35A MeV with CHIMERA 4 π multi detector, in order to explore resonances produced in light nuclei. Correlations techniques have become a tool to explore nuclear structure properties but also to evaluate the competition between simultaneous and sequential channels in decay of light isotopes. The exploration of features such as branching ratios with respect to different decay channels (sequential vs. simultaneous) could provide information on in-medium effects on nuclear structure properties, an important perspective for research on the nuclear interaction. The performed experiment is preliminary to further studies to be performed by coupling of CHIMERA to FARCOS (Femtoscope ARray for COrrelations and Spectroscopy, FARCOS TDR available at https://drive.google.com/file/d/0B5CgGWz8LpOOc3pGTWdOcDBoWFE) array devoted to measurements of two and multi particle correlations with high energy and angular resolutions.

  4. Interactions of 2.1 GeV/n He-4, C-12, N-14 and O-16 nuclei in emulsion

    NASA Technical Reports Server (NTRS)

    Heckman, H. H.; Greiner, D. E.; Lindstrom, P. J.; Shwe, H.

    1975-01-01

    The interaction mean-free-path lengths for He-4, C-12, N-14 and O-16 nuclei at 2.1 GeV/n have been measured in nuclear emulsion detectors. The angular distributions of Z equals 1 and 2 secondaries from the interactions of C, N and O beams are determined, and the topology of projectile fragmentation of these ions is examined.

  5. Tests of Predictions of the Algebraic Cluster Model: the Triangular D 3h Symmetry of 12C

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2016-07-01

    A new theoretical approach to clustering in the frame of the Algebraic Cluster Model (ACM) has been developed. It predicts rotation-vibration structure with rotational band of an oblate equilateral triangular symmetric spinning top with a D 3h symmetry characterized by the sequence of states: 0+, 2+, 3-, 4±, 5- with a degenerate 4+ and 4- (parity doublet) states. Our measured new 2+ 2 in 12C allows the first study of rotation-vibration structure in 12C. The newly measured 5- state and 4- states fit very well the predicted ground state rotational band structure with the predicted sequence of states: 0+, 2+, 3-, 4±, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a D 3h symmetry is characteristic of triatomic molecules, but it is observed in the ground state rotational band of 12C for the first time in a nucleus. We discuss predictions of the ACM of other rotation-vibration bands in 12 C such as the (0+) Hoyle band and the (1-) bending mode with prediction of (“missing 3- and 4-”) states that may shed new light on clustering in 12C and light nuclei. In particular, the observation (or non observation) of the predicted (“missing”) states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha particles composing the Hoyle state at 7.6542 MeV in 12C. We discuss proposed research programs at the Darmstadt S-DALINAC and at the newly constructed ELI-NP facility near Bucharest to test the predictions of the ACM in isotopes of carbon.

  6. Accelerated re-entrainment to advanced light cycles in BALB/cJ mice.

    PubMed

    Legates, Tara A; Dunn, Danielle; Weber, E Todd

    2009-10-19

    Circadian rhythms in mammals are coordinated by the suprachiasmatic nuclei (SCN) of the hypothalamus, which are most potently synchronized to environmental light-dark cycles. Large advances in the light-dark cycle typically yield gradual advances in activity rhythms on the order of 1-2h per day until re-entrainment is complete due to limitations on the circadian system which are not yet understood. In humans, this delay until re-entrainment is accomplished is experienced as jetlag, with accompanying symptoms of malaise, decreased cognitive performance, sleep problems and gastrointestinal distress. In these experiments, locomotor rhythms of BALB/cJ mice monitored by running wheels were shown to re-entrain to large 6- or 8-hour shifts of the light-dark cycle within 1-2 days, as opposed to the 5-7 days required for C57BL/6J mice. A single-day 6-hour advance of the LD cycle followed by release to constant darkness yielded similar phase shifts, demonstrating that exaggerated re-entrainment is not explained by masking of activity by the light-dark cycle. Responses in BALB/cJ mice were similar when monitored instead by motion detectors, indicating that wheel-running exercise does not influence the magnitude of responses. Neither brief (15 min) light exposure late during subjective nighttime nor 6-hour delays of the light-dark cycle produced exaggerated locomotor phase shifts, indicating that BALB/cJ mice do not merely experience enhanced sensitivity to light. Fos protein was expressed in cells of the SCN following acute light exposure at ZT10 of their previous light-dark cycle, a normally non-responsive time in the circadian cycle, but only in BALB/cJ (and not C57BL/6J) mice that had been subjected two days earlier to a single-day 6-hour advance of the light-dark cycle, indicating that their SCN had been advanced by that treatment. BALB/cJ mice may thus serve as a useful comparative model for studying molecular and physiological processes that limit responsiveness of circadian clocks to photic input.

  7. Cross sections for the production of fragments with Z greater than or equal to 8 by fragmentation of Z greater than or equal to 9 and less than or equal to 26 nuclei

    NASA Technical Reports Server (NTRS)

    Heinrich, W.; Drechsel, H.; Brechtmann, C.; Beer, J.

    1985-01-01

    Charge changing nuclear collisions in plastic nuclear track detectors were studied using a new experimental technique of automatic track measurement for etched tracks in plastic detectors. Partial cross sections for the production of fragments of charge Z approximately 8 were measured for projectile nuclei of charge 9 approximately Z approximately 26 in the detector material CR39 and in silver. for this purpose three independent experiments were performed using Bevalac beams. The first one was an exposure of a stack of CR39 plastic plates to 1.8 GeV/nucl. Ar-40 nuclei. The second one was an exposure of another CR39 stack of 1.7 GeV/nucl. Fe-56 projectiles. In the third experiment a mixed stack of CR39 plates and silver foils was irradiated with 1.7 GeV/nucl. Fe-56 nuclei. Thus the measurement of nuclear cross sections in a light target (CR39 = C12H18O7) and as well in a heavy target (silver) was possible.

  8. Dissociation of {sup 10}C nuclei in a track nuclear emulsion at an energy of 1.2 GeV per nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamatkulov, K. Z.; Kattabekov, R. R.; Alikulov, S. S.

    2013-10-15

    The charge topology in the fragmentation of {sup 10}C nuclei in a track nuclear emulsion at an energy of 1.2 GeV per nucleon is studied. In the coherent dissociation of {sup 10}C nuclei, about 82% of events are associated with the channel {sup 10}C {yields} 2{alpha}+ 2p. The angular distributions and correlations of product fragments are presented for this channel. It is found that among {sup 10}C {yields} 2{alpha}+ 2p events, about 30% are associated with the process in which dissociation through the ground state of the unstable {sup 9}Be{sub g.s.} nucleus is followed by {sup 8}Be{sub g.s.} + pmore » decays.« less

  9. High Spin States in ^24Mg

    NASA Astrophysics Data System (ADS)

    Schwartz, J.; Lister, C. J.; Wuosmaa, A.; Betts, R. R.; Blumenthal, D.; Carpenter, M. P.; Davids, C. N.; Fischer, S. M.; Hackman, G.; Janssens, R. V. F.

    1996-05-01

    The ^12C(^16O,α)^24Mg reaction was used at 51.5MeV to populate high angular momentum states in ^24Mg. Gamma-rays de-exciting high spin states were detected in a 20 detector spectrometer (the AYE-ball) triggered by the ANL Fragment Mass Analyser (FMA). Channel selection, through detection of ^24Mg nuclei with the appropriate time of flight, was excellent. All the known decays from high spin states were seen in a few hours, with the exception of the 5.04 MeV γ-decay of the J^π=9^- state at 16.904 MeV footnote A.E.Smith et al., Phys. Lett. \\underlineB176, (1986)292. which could not be confirmed. The potential of the technique for studying the radiative decay of states with very high spin in light nuclei will be discussed.

  10. Giant Dipole Resonance in light and heavy nuclei beyond selfconsistent mean field theory

    NASA Astrophysics Data System (ADS)

    Krewald, Siegfried; Lyutorovich, Nikolay; Tselyaev, Victor; Speth, Josef; Gruemmer, Frank; Reinhard, Paul-Gerhard

    2012-10-01

    While bulk properties of stable nuclei are successfully reproduced by mean-field theories employing effective interactions, the dependence of the centroid energy of the electric giant dipole resonance on the nucleon number A is not. This problem is cured by considering many-particle correlations beyond mean-field theory, which we do within a selfconsistent generalization of the Quasiparticle Time Blocking Approximation [1,2]. The electric giant dipole resonances in ^16O, ^40Ca, and ^208Pb are calculated using two new Skyrme interactions. Perspectives for an extension to effective field theories[3] are discussed.[4pt] [1] V. Tselyaev et al., Phys.Rev.C75, 014315(2007).[0pt] [2] N. Lyutorovich et al., submitted to Phys.Rev.Lett.[0pt] [3] S. Krewald et al., Prog.Part.Nucl.Phys.67, 322(2012).

  11. Light-Nuclei Spectra from Chiral Dynamics

    NASA Astrophysics Data System (ADS)

    Piarulli, M.; Baroni, A.; Girlanda, L.; Kievsky, A.; Lovato, A.; Lusk, Ewing; Marcucci, L. E.; Pieper, Steven C.; Schiavilla, R.; Viviani, M.; Wiringa, R. B.

    2018-02-01

    In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. In this Letter, we present Green's function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levels and level ordering of nuclei in the mass range A =4 - 12 , accurate to ≤2 % of the binding energy, in very satisfactory agreement with experimental data.

  12. Investigating 3-body Decays of Cluster States with the PAT-TPC

    NASA Astrophysics Data System (ADS)

    Carpenter, Lisa; Ayyad Limonge, Y.; Bazin, D.; Beceiro-Novo, S.; Bradt, J.; Cortesi, M.; Mittig, W.; Ahn, T.; Kolata, J. J.; Meisel, Z.; Bechetti, F. D.; Fritsch, A.; Howard, A.

    2016-03-01

    Recent model calculations with most advanced methods for cluster states have shown the need of experimental data to probe the structure of light exotic nuclei, including those with α-clustering, such as 14C. The Prototype Active Target Time Projection Chamber (PAT-TPC) allows us to investigate these types of structures, giving access to the full excitation function with a single beam energy. This type of experiment measures resonances in 14C that can be compared to the models. With an improved Micromegas pad plane with a circular backgammon design we are able to investigate 3-body decays in addition to 2-body scattering. The measurements were carried out by resonant alpha-scattering on 10Be beam delivered by the TwinSol facility at the University of Notre Dame. We also observed the 3-body decay of the Hoyle State in 12C from a 12N or 12B beam with the same device. Preliminary results will be presented. This work is supported by the National Science Foundation.

  13. Study of Light Neutron-Rich Nuclei Using a Multilayer Semiconductor Setup

    NASA Astrophysics Data System (ADS)

    Gurov, Yu. B.; Lapushkin, S. V.; Sandukovsky, V. G.; Chernyshev, B. A.

    2017-12-01

    The characteristics of two modifications of the semiconductor (s.c.d.) setup consisting of telescopes on the basis of silicon detectors are presented. These settings allow performing a precision measurement of energy in a large dynamic range (from a few to hundreds of MeV) and particle identification in a wide range of masses. The issues of measurement of the characteristics of s.c.d. telescopes and their impact on the quality of the obtained experimental data are considered. Considerable attention is paid to the use of created semiconductor devices for the search for and spectroscopy of light exotic nuclei on the accelerators of PNPI (Gatchina) and LANL (Los Alamos).

  14. Ground-state properties of light kaonic nuclei signaling symmetry energy at high densities

    NASA Astrophysics Data System (ADS)

    Yang, Rongyao; Wei, Sina; Jiang, Weizhou

    2018-01-01

    A sensitive correlation between the ground-state properties of light kaonic nuclei and the symmetry energy at high densities is constructed under the framework of relativistic mean-field theory. Taking oxygen isotopes as an example, we see that a high-density core is produced in kaonic oxygen nuclei, due to the strongly attractive antikaon-nucleon interaction. It is found that the 1{S}1/2 state energy in the high-density core of kaonic nuclei can directly probe the variation of the symmetry energy at supranormal nuclear density, and a sensitive correlation between the neutron skin thickness and the symmetry energy at supranormal density is established directly. Meanwhile, the sensitivity of the neutron skin thickness to the low-density slope of the symmetry energy is greatly increased in the corresponding kaonic nuclei. These sensitive relationships are established upon the fact that the isovector potential in the central region of kaonic nuclei becomes very sensitive to the variation of the symmetry energy. These findings might provide another perspective to constrain high-density symmetry energy, and await experimental verification in the future. Supported by National Natural Science Foundation of China (11775049, 11275048) and the China Jiangsu Provincial Natural Science Foundation (BK20131286)

  15. cGMP-Phosphodiesterase Inhibition Enhances Photic Responses and Synchronization of the Biological Circadian Clock in Rodents

    PubMed Central

    Plano, Santiago A.; Agostino, Patricia V.; de la Iglesia, Horacio O.; Golombek, Diego A.

    2012-01-01

    The master circadian clock in mammals is located in the hypothalamic suprachiasmatic nuclei (SCN) and is synchronized by several environmental stimuli, mainly the light-dark (LD) cycle. Light pulses in the late subjective night induce phase advances in locomotor circadian rhythms and the expression of clock genes (such as Per1-2). The mechanism responsible for light-induced phase advances involves the activation of guanylyl cyclase (GC), cGMP and its related protein kinase (PKG). Pharmacological manipulation of cGMP by phosphodiesterase (PDE) inhibition (e.g., sildenafil) increases low-intensity light-induced circadian responses, which could reflect the ability of the cGMP-dependent pathway to directly affect the photic sensitivity of the master circadian clock within the SCN. Indeed, sildenafil is also able to increase the phase-shifting effect of saturating (1200 lux) light pulses leading to phase advances of about 9 hours, as well as in C57 a mouse strain that shows reduced phase advances. In addition, sildenafil was effective in both male and female hamsters, as well as after oral administration. Other PDE inhibitors (such as vardenafil and tadalafil) also increased light-induced phase advances of locomotor activity rhythms and accelerated reentrainment after a phase advance in the LD cycle. Pharmacological inhibition of the main downstream target of cGMP, PKG, blocked light-induced expression of Per1. Our results indicate that the cGMP-dependent pathway can directly modulate the light-induced expression of clock-genes within the SCN and the magnitude of light-induced phase advances of overt rhythms, and provide promising tools to design treatments for human circadian disruptions. PMID:22590651

  16. Monte Carlo studies on neutron interactions in radiobiological experiments

    PubMed Central

    Shahmohammadi Beni, Mehrdad; Hau, Tak Cheong; Krstic, D.; Nikezic, D.

    2017-01-01

    Monte Carlo method was used to study the characteristics of neutron interactions with cells underneath a water medium layer with varying thickness. The following results were obtained. (1) The fractions of neutron interaction with 1H, 12C, 14N and 16O nuclei in the cell layer were studied. The fraction with 1H increased with increasing medium thickness, while decreased for 12C, 14N and 16O nuclei. The bulges in the interaction fractions with 12C, 14N and 16O nuclei were explained by the resonance spikes in the interaction cross-section data. The interaction fraction decreased in the order: 1H > 16O > 12C > 14N. (2) In general, as the medium thickness increased, the number of “interacting neutrons” which exited the medium and then further interacted with the cell layer increased. (3) The area under the angular distributions for “interacting neutrons” decreased with increasing incident neutron energy. Such results would be useful for deciphering the reasons behind discrepancies among existing results in the literature. PMID:28704557

  17. Light-Nuclei Spectra from Chiral Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piarulli, M.; Baroni, A.; Girlanda, L.

    In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. Here in this Letter, we present Green’s function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levelsmore » and level ordering of nuclei in the mass range A=4–12, accurate to ≤2% of the binding energy, in very satisfactory agreement with experimental data.« less

  18. Light-Nuclei Spectra from Chiral Dynamics

    DOE PAGES

    Piarulli, M.; Baroni, A.; Girlanda, L.; ...

    2018-02-01

    In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. Here in this Letter, we present Green’s function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levelsmore » and level ordering of nuclei in the mass range A=4–12, accurate to ≤2% of the binding energy, in very satisfactory agreement with experimental data.« less

  19. Disintegration of 12C nuclei by 700-1500 MeV photons

    NASA Astrophysics Data System (ADS)

    Nedorezov, V.; D'Angelo, A.; Bartalini, O.; Bellini, V.; Capogni, M.; Casano, L. E.; Castoldi, M.; Curciarello, F.; De Leo, V.; Didelez, J.-P.; Di Salvo, R.; Fantini, A.; Franco, D.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Giusa, A.; Lapik, A.; Levi Sandri, P.; Mammoliti, F.; Mandaglio, G.; Manganaro, M.; Moricciani, D.; Mushkarenkov, A.; Pshenichnov, I.; Randieri, C.; Rudnev, N.; Russo, G.; Schaerf, C.; Sperduto, M.-L.; Sutera, M.-C.; Turinge, A.; Vegna, V.; Zonta, I.

    2015-08-01

    Disintegration of 12C nuclei by tagged photons of 700-1500 MeV energy at the GRAAL facility has been studied by means of the LAGRANγE detector with a wide angular acceptance. The energy and momentum distributions of produced neutrons and protons as well as their multiplicity distributions were measured and compared with corresponding distributions calculated with the RELDIS model based on the intranuclear cascade and Fermi break-up models. It was found that eight fragments are created on average once per about 100 disintegration events, while a complete fragmentation of 12C into 12 nucleons is observed typically only once per 2000 events. Measured multiplicity distributions of produced fragments are well described by the model. The measured total photoabsorption cross section on 12C in the same energy range is also reported.

  20. Precision measurement of the mass difference between light nuclei and anti-nuclei

    NASA Astrophysics Data System (ADS)

    Alice Collaboration; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmed, I.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, S.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. Mohisin; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, Mimae.; Kim, Minwoo; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kour, M.; Kouzinopoulos, C.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seeder, K. S.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yano, S.; Yasnopolskiy, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2015-10-01

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (), and 3He and nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).

  1. Structure effects in polarization and cross sections for A(p, p’)X inelastic reactions on {sup 40}Ca and {sup 12}C nuclei at 1 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miklukho, O. V., E-mail: miklukho-ov@pnpi.rncki.ru; Kisselev, A. Yu., E-mail: kisselev@mail.desy.de; Amalsky, G. M.

    2017-03-15

    The polarization of secondary protons in the (p, p’) inelastic reactions on {sup 40}Ca and {sup 12}C nuclei at the initial proton energy of 1 GeV was measured over a wide range of scattered-proton momenta at a laboratory angle of Θ = 21°. The reaction cross sections were also measured. Scattered protons were detected by means of magnetic spectrometer equipped with a polarimeter based on multiwire-proportional chambers. A structure in the polarization and cross-section data, which is probably related to scattering off nucleon correlations in the nuclei involved, was observed.

  2. Reorientation-effect measurement of the first 2+ state in 12C: Confirmation of oblate deformation

    NASA Astrophysics Data System (ADS)

    Kumar Raju, M.; Orce, J. N.; Navrátil, P.; Ball, G. C.; Drake, T. E.; Triambak, S.; Hackman, G.; Pearson, C. J.; Abrahams, K. J.; Akakpo, E. H.; Al Falou, H.; Churchman, R.; Cross, D. S.; Djongolov, M. K.; Erasmus, N.; Finlay, P.; Garnsworthy, A. B.; Garrett, P. E.; Jenkins, D. G.; Kshetri, R.; Leach, K. G.; Masango, S.; Mavela, D. L.; Mehl, C. V.; Mokgolobotho, M. J.; Ngwetsheni, C.; O'Neill, G. G.; Rand, E. T.; Sjue, S. K. L.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Williams, S. J.; Wong, J.

    2018-02-01

    A Coulomb-excitation reorientation-effect measurement using the TIGRESS γ-ray spectrometer at the TRIUMF/ISAC II facility has permitted the determination of the 〈 21+ ‖ E 2 ˆ ‖21+ 〉 diagonal matrix element in 12C from particle-γ coincidence data and state-of-the-art no-core shell model calculations of the nuclear polarizability. The nuclear polarizability for the ground and first-excited (21+) states in 12C have been calculated using chiral NN N4LO500 and NN+3NF350 interactions, which show convergence and agreement with photo-absorption cross-section data. Predictions show a change in the nuclear polarizability with a substantial increase between the ground state and first excited 21+ state at 4.439 MeV. The polarizability of the 21+ state is introduced into the current and previous Coulomb-excitation reorientation-effect analyses of 12C. Spectroscopic quadrupole moments of QS (21+) = + 0.053 (44) eb and QS (21+) = + 0.08 (3) eb are determined, respectively, yielding a weighted average of QS (21+) = + 0.071 (25) eb, in agreement with recent ab initio calculations. The present measurement confirms that the 21+ state of 12C is oblate and emphasizes the important role played by the nuclear polarizability in Coulomb-excitation studies of light nuclei.

  3. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Li-juan, E-mail: lijuan.fu@oulu.fi, E-mail: juha.vaara@iki.fi; Vaara, Juha, E-mail: lijuan.fu@oulu.fi, E-mail: juha.vaara@iki.fi

    Nuclear magneto-optic effects could make important contributions to novel, high-sensitivity, and high-resolution spectroscopic and imaging methods that provide nuclear site-specific structural and dynamic information on molecular and materials systems. Here we present a first-principles electronic structure formulation of nuclear quadrupole moment-induced Cotton-Mouton effect in terms of response theory, as well as ab initio and density-functional theory calculations of this phenomenon for a series of molecular liquids: H{sub 2}O, CH{sub 3}NO{sub 2}, CH{sub 3}CH{sub 2}OH, C{sub 6}H{sub 6}, C{sub 6}H{sub 12} (cyclohexane), HI, XeF{sub 2}, WF{sub 5}Cl, and Pt(C{sub 2}dtp){sub 2}. The roles of basis-set convergence, electron correlation, and relativistic effectsmore » are discussed. The estimated order of magnitude of the overall ellipticities induced to linearly polarized light is 10{sup −3}–10{sup −7} rad/(M cm) for fully spin polarized nuclei. The cases with the largest presently obtained ellipticities should be detectable with modern instrumentation in the Voigt magneto-optic setup, particularly for the heavy nuclei.« less

  4. Muon capture on light isotopes in Double Chooz

    NASA Astrophysics Data System (ADS)

    Strait, M.; Double Chooz Collaboration

    2017-09-01

    Using the Double Chooz reactor neutrino detector, we have measured the products of µ - capture on 12C, 13C, 14N and 16O. Over a period of 490 days, we collected 2.3 × 106 stopping cosmic µ -, of which 1.8 × 105 captured on these nuclei in the inner detector. The resulting isotopes were tagged using prompt neutron emission (when applicable), the subsequent beta decays, and, in some cases, β-delayed neutrons. Production of these βn isotopes, primarily 9Li, which are {{{ν _e}} \\over {{ν _μ }}} backgrounds, was found at a significance of 5.5σ. The probability of 9Li production per capture on natC is (2.4 ± 0.9(stat) ± 0.1(syst)) × 10-4. We have made the most precise measurement of the rate of 12C(µ -, ν)12B to date, 6.57 - 0.21 + 0.11 × {10^3}{{ }}{{{s}} - 1},{{ or }}≤ft( {17.35 - 0.59 + 0.35} \\right)% of nuclear captures. By tagging excited states emitting gammas, the ground state transition rate to 12B is found to be 5.68 - 0.23 + 0.14 × {10^3}{{ }}{{{s}} - 1}.

  5. Direct observation of light focusing by single photoreceptor cell nuclei.

    PubMed

    Błaszczak, Zuzanna; Kreysing, Moritz; Guck, Jochen

    2014-05-05

    The vertebrate retina is inverted with respect to its optical function, which requires light to pass through the entire tissue prior to detection. The last significant barrier for photons to overcome is the outer nuclear layer formed by photoreceptor cell (PRC) nuclei. Here we experimentally characterise the optical properties of PRC nuclei using bright-field defocusing microscopy to capture near-field intensity distributions behind individual nuclei. We find that some nuclei efficiently focus incident light confirming earlier predictions based on comparative studies of chromatin organisation in nocturnal and diurnal mammals. The emergence of light focusing during the development of mouse nuclei highlights the acquired nature of the observed lens-like behaviour. Optical characterisation of these nuclei is an important first step towards an improved understanding of how light transmission through the retina is influenced by its constituents.

  6. Production of cumulative particles and light nuclear fragments at high p T values beyond the fragmentation region of nuclei in pA collisions at a proton energy of 50 GeV

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Viktorov, V. A.; Gapienko, V. A.; Gapienko, G. S.; Gres', V. N.; Ilyushin, M. A.; Korotkov, V. A.; Mysnik, A. I.; Prudkoglyad, A. F.; Semak, A. A.; Terekhov, V. I.; Uglekov, V. Ya.; Ukhanov, M. N.; Chuiko, B. V.; Shimanskii, S. S.

    2015-05-01

    The first data on the production of cumulative π+, p, and light nuclear fragments d and t emitted from a nucleus with a high transverse momentum at an angle of 35° in the laboratory system have been reported. The data have been obtained at the SPIN setup at the interaction of a 50-GeV proton beam extracted from the U-70 accelerator (IHEP, Protvino) with C, Al, Cu, and W nuclei.

  7. Covalent Binding with Neutrons on the Femto-scale

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Kanada-En'yo, Y.; Kimura, M.

    2017-06-01

    In light nuclei we have well defined clusters, nuclei with closed shells, which serve as centers for binary molecules with covalent binding by valence neutrons. Single neutron orbitals in light neutron-excess nuclei have well defined shell model quantum numbers. With the combination of two clusters and their neutron valence states, molecular two-center orbitals are defined; in the two-center shell model we can place valence neutrons in a large variety of molecular two-center states, and the formation of Dimers becomes possible. The corresponding rotational bands point with their large moments of inertia and the Coriolis decoupling effect (for K = 1/2 bands) to the internal molecular orbital structure in these states. On the basis of these the neutron rich isotopes allow the formation of a large variety molecular structures on the nuclear scale. An extended Ikeda diagram can be drawn for these cases. Molecular bands in Be and Ne-isotopes are discussed as text-book examples.

  8. Sensitivity of the halo nuclei-12C elastic scattering at incident nucleon energy 800 MeV to the halo density distribution

    NASA Astrophysics Data System (ADS)

    Hassan, M. A. M.; Nour El-Din, M. S. M.; Ellithi, A.; Hosny, H.; Salama, T. N. E.

    2017-10-01

    In the framework of Glauber optical limit approximation where Coulomb effect is taken into account, the elastic scattering differential cross section for halo nuclei with {}^{12}{C} at 800 MeV/N has been calculated. Its sensitivity to the halo densities and the root mean square of the core and halo is the main goal of the current study. The projectile nuclei are taken to be one-neutron and two-neutron halo. The calculations are carried out for Gaussian-Gaussian, Gaussian-Oscillator and Gaussian-2 s phenomenological densities for each considered projectile in the mass number range 6-29. Also included a comparison between the obtained results of phenomenological densities and the results within the microscopic densities LSSM of {}6{He} and {}^{11}{Li} and microscopic densities GCM of {}^{11}{Be} where the density of the target nucleus {}^{12}{C} obtained from electron-{}^{12}{C} scattering is used. The zero range approximation is considered in the calculations. We found that the sensitivity of elastic scattering differential cross section to the halo density is clear if the nucleus appears as two clear different clusters, core and halo.

  9. Precision measurement of the mass difference between light nuclei and anti-nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, J.

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. Also, this force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (more » $$-\\atop{d}$$), and 3He and 3$$-\\atop{He}$$nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).« less

  10. Precision measurement of the mass difference between light nuclei and anti-nuclei

    DOE PAGES

    Adam, J.

    2015-08-17

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. Also, this force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (more » $$-\\atop{d}$$), and 3He and 3$$-\\atop{He}$$nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).« less

  11. Difference in light-induced increase in ploidy level and cell size between adaxial and abaxial epidermal pavement cells of Phaseolus vulgaris primary leaves.

    PubMed

    Kinoshita, Isao; Sanbe, Akiko; Yokomura, E-iti

    2008-01-01

    Changes in nuclear DNA content and cell size of adaxial and abaxial epidermal pavement cells were investigated using bright light-induced leaf expansion of Phaseolus vulgaris plants. In primary leaves of bean plants grown under high (sunlight) or moderate (ML; photon flux density, 163 micromol m(-2) s(-1)) light, most adaxial epidermal pavement cells had a nucleus with the 4C amount of DNA, whereas most abaxial pavement cells had a 2C nucleus. In contrast, plants grown under low intensity white light (LL; 15 micromol m(-2) s(-1)) for 13 d, when cell proliferation of epidermal pavement cells had already finished, had a 2C nuclear DNA content in most adaxial pavement cells. When these LL-grown plants were transferred to ML, the increase in irradiance raised the frequency of 4C nuclei in adaxial but not in abaxial pavement cells within 4 d. On the other hand, the size of abaxial pavement cells increased by 53% within 4 d of transfer to ML and remained unchanged thereafter, whereas adaxial pavement cells continuously enlarged for 12 d. This suggests that the increase in adaxial cell size after 4 d is supported by the nuclear DNA doubling. The different responses between adaxial and abaxial epidermal cells were not induced by the different light intensity at both surfaces. It was shown that adaxial epidermal cells have a different property than abaxial ones.

  12. Systematics of the low-energy pionic double charge exchange in nuclei

    NASA Astrophysics Data System (ADS)

    Draeger, J.; Bilger, R.; Clement, H.; Cröni, M.; Denz, H.; Gräter, J.; Meier, R.; Pätzold, J.; Schapler, D.; Wagner, G. J.; Wilhelm, O.; Föhl, K.; Schepkin, M.

    2000-12-01

    The experimental results for the (π+,π-) reaction on nuclei obtained in recent years reveal clear systematic features of this reaction. New data on 7Li, 12C, 16O, and 56Fe supplementing the existing data base are presented. The data on 12C are partly at variance with previous results. The dependence of the cross sections on incident energy, scattering angle, and on the target mass is discussed for transitions leading to the ground state of the final nucleus or to the double isobaric analog state.

  13. Oscillatory patterns in the light curves of five long-term monitored type 1 active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Kovačević, Andjelka B.; Pérez-Hernández, Ernesto; Popović, Luka Č.; Shapovalova, Alla I.; Kollatschny, Wolfram; Ilić, Dragana

    2018-04-01

    New combined data of five well-known type 1 active galactic nuclei (AGNs) are probed with a novel hybrid method in a search for oscillatory behaviour. Additional analysis of artificial light curves obtained from the coupled oscillatory models gives confirmation for detected periods that could have a physical background. We find periodic variations in the long-term light curves of 3C 390.3, NGC 4151 and NGC 5548, and E1821 + 643, with correlation coefficients larger than 0.6. We show that the oscillatory patterns of two binary black hole candidates, NGC 5548 and E1821 + 643, correspond to qualitatively different dynamical regimes of chaos and stability, respectively. We demonstrate that the absence of oscillatory patterns in Arp 102B could be the result of a weak coupling between oscillatory mechanisms. This is the first good evidence that 3C 390.3 and Arp 102B, categorized as double-peaked Balmer line objects, have qualitative different dynamics. Our analysis shows a novelty in the oscillatory dynamical patterns of the light curves of these type 1 AGNs.

  14. Sensibility of grey particle production system to energy and centrality in 60A and 200A GeV 16O-Nucleus interactions

    NASA Astrophysics Data System (ADS)

    Abdelsalam, A.; El–Nagdy, M. S.; Badawy, B. M.; Osman, W.; Fayed, M.

    2016-06-01

    The grey particle production following 60 A and 200A GeV 16O interactions with emulsion nuclei is investigated at different centralities. The evaporated target fragment multiplicity is voted as a centrality parameter. The target size effect is examined over a wide range, where the C, N and O nuclei present the light target group while the Br and Ag nuclei are the heavy group. In the framework of the nuclear limiting fragmentation hypothesis, the grey particle multiplicity characteristics depend only on the target size and centrality while the projectile size and energy are not effective. The grey particle is suggested to be a multisource production system. The emission direction in the 4π space depends upon the production source. Either the exponential decay or the Poisson’s peaking curves are the usual characteristic shapes of the grey particle multiplicity distributions. The decay shape is suggested to be a characteristic feature of the source singularity while the peaking shape is a multisource super-position. The sensibility to the centrality varies from a source to other. The distribution shape is identified at each centrality region according to the associated source contribution. In general, the multiplicity characteristics seem to be limited w.r.t. the collision system centrality using light target nuclei. The selection of the black particle multiplicity as a centrality parameter is successful through the collision with the heavy target nuclei. In the collision with the light target nuclei it may be qualitatively better to vote another centrality parameter.

  15. Cluster formation in precompound nuclei in the time-dependent framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuetrumpf, B.; Nazarewicz, W.

    Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N = Z . Furthermore, we study reactions with oxygen and carbonmore » ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O, 40Ca + 16O, 40Ca + 40Ca , and 16,18O + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12 C - 12 C- α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of 16,18O + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. Finally, the localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.« less

  16. Cluster formation in precompound nuclei in the time-dependent framework

    DOE PAGES

    Schuetrumpf, B.; Nazarewicz, W.

    2017-12-15

    Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N = Z . Furthermore, we study reactions with oxygen and carbonmore » ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O, 40Ca + 16O, 40Ca + 40Ca , and 16,18O + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12 C - 12 C- α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of 16,18O + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. Finally, the localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.« less

  17. Cluster formation in precompound nuclei in the time-dependent framework

    NASA Astrophysics Data System (ADS)

    Schuetrumpf, B.; Nazarewicz, W.

    2017-12-01

    Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N =Z . Furthermore, we study reactions with oxygen and carbon ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O,40Ca + 16O, 40Ca + 40Ca, and O,1816 + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12C - 12C-α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of O,1816 + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. The localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.

  18. On the existence of Rydberg nuclear molecules

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.; Frederico, T.; Hussein, M. S.

    2017-11-01

    Present nuclear detection techniques prevents us from determining if the analogue of a Rydberg molecule exists for the nuclear case. But nothing in nature disallows their existence. As in the atomic case, Rydberg nuclear molecules would be a laboratory for new aspects and applications of nuclear physics. We propose that Rydberg nuclear molecules, which represent the exotic, halo nuclei version, such as 11Be +11Be, of the well known quasimolecules observed in stable nuclei such as 12C +12C, might be common structures that could manifest their existence along the dripline. A study of possible candidates and the expected structure of such exotic clustering of two halo nuclei: the Rydberg nuclear molecules, is made on the basis of three different methods. It is shown that such cluster structures might be stable and unexpectedly common.

  19. PET monitoring of cancer therapy with 3He and 12C beams: a study with the GEANT4 toolkit.

    PubMed

    Pshenichnov, Igor; Larionov, Alexei; Mishustin, Igor; Greiner, Walter

    2007-12-21

    We study the spatial distributions of beta(+)-activity produced by therapeutic beams of (3)He and (12)C ions in various tissue-like materials. The calculations were performed within a Monte Carlo model for heavy-ion therapy (MCHIT) based on the GEANT4 toolkit. The contributions from positron-emitting nuclei with T(1/2) > 10 s, namely (10,11)C, (13)N, (14,15)O, (17,18)F and (30)P, were calculated and compared with experimental data obtained during and after irradiation, where available. Positron-emitting nuclei are created by a (12)C beam in fragmentation reactions of projectile and target nuclei. This leads to a beta(+)-activity profile characterized by a noticeable peak located close to the Bragg peak in the corresponding depth-dose distribution. This can be used for dose monitoring in carbon-ion therapy of cancer. In contrast, as most of the positron-emitting nuclei are produced by a (3)He beam in target fragmentation reactions, the calculated total beta(+)-activity during or soon after the irradiation period is evenly distributed within the projectile range. However, we predict also the presence of (13)N, (14)O, (17,18)F created in charge-transfer reactions by low-energy (3)He ions close to the end of their range in several tissue-like media. The time evolution of beta(+)-activity profiles was investigated for both kinds of beams. We found that due to the production of (18)F nuclides the beta(+)-activity profile measured 2 or 3 h after irradiation with (3)He ions will have a distinct peak correlated with the maximum of depth-dose distribution. We also found certain advantages of low-energy (3)He beams over low-energy proton beams for reliable PET monitoring during particle therapy of shallow-located tumours. In this case the distal edge of beta(+)-activity distribution from (17)F nuclei clearly marks the range of (3)He in tissues.

  20. Probing Neutron-Skin Thickness of Unstable Nuclei with Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, Wataru; Suzuki, Yasuyuki; Inakura, Tsunenori

    We present our recent analysis of the total reaction cross sections, σR, of unstable nuclei and discuss their sensitivity to the neutron-skin thickness. The σR is calculated with the Glauber model using projectile densities obtained with the Skyrme-Hartree-Fock method on the three-dimensional coordinate space. We cover 91 nuclei of O, Ne, Mg, Si, S, Ca, and Ni isotopes. Defining a reaction radius, aR = √{σ R/π } , to characterize the nuclear size and target (proton or 12C) dependence, we see the 12C target probes the matter radius while the proton target is sensitive to the skin-thickness. We find an empirical formula for expressing aR with the point matter radius and the skin thickness, which can be used to determine the skin thickness.

  1. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gai, Moshe

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC)more » will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.« less

  2. {ITALIC AB INITIO} Large-Basis no-Core Shell Model and its Application to Light Nuclei

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Navratil, Petr; Ormand, W. E.; Vary, James P.

    2002-01-01

    We discuss the {ITALIC ab initio} No-Core Shell Model (NCSM). In this method the effective Hamiltonians are derived microscopically from realistic nucleon-nucleon (NN) potentials, such as the CD-Bonn and the Argonne AV18 NN potentials, as a function of the finite Harmonic Oscillator (HO) basis space. We present converged results, i.e. , up to 50 Ω and 18 Ω HO excitations, respectively, for the A=3 and 4 nucleon systems. Our results for these light systems are in agreement with results obtained by other exact methods. We also calculate properties of 6Li and 6He in model spaces up to 10 Ω and of 12C up to 6 Ω. Binding energies, rms radii, excitation spectra and electromagnetic properties are discussed. The favorable comparison with available data is a consequence of the underlying NN interaction rather than a phenomenological fit.

  3. Two-proton decay from Isobaric Analog States of light nuclei

    NASA Astrophysics Data System (ADS)

    Brown, Kyle

    2014-03-01

    Recent experiments at the National Superconducting Cyclotron Laboratory at Michigan State University using the charged-particle array HiRA and the gamma-ray array CAESAR have shed light on a new class of two-proton emitters associated with Isobaric Analog States (IAS). The two-proton decay is to the Isobaric Analog state of the daughter, which then gamma decays. These isospin-allowed transitions occur when one-proton decays are forbidden by either energy or isospin conservation, and when two-proton decay to the ground state is isospin forbidden. Three possible examples of this decay path will be discussed (8BIAS, 12NIAS, and 16FIAS) . The known IAS of 8C in 8B was confirmed to decay by two-proton emission to the 3.56 MeV IAS in 6Li. While the IAS in 8B was previously known, it was measured in this experiment with unbiased statistics and in coincidence with the 3.56 MeV gamma-ray. The IAS in 16F was investigated for the first time in this experiment and is still under investigation. Previous work on the IAS of 12O in 12N at the Cyclotron Institute at Texas A&M will also be presented.

  4. Age-related retention of fiber cell nuclei and nuclear fragments in the lens cortices of multiple species

    PubMed Central

    Pendergrass, William; Zitnik, Galynn; Urfer, Silvan R.

    2011-01-01

    Purpose To determine the differences between species in the retention of lens fiber cell nuclei and nuclear fragments in the aging lens cortex and the relationship of nuclear retention to lens opacity. For this purpose old human, monkey, dog, and rat lenses were compared to those of three strains of mouse. We also investigated possible mechanisms leading to nuclear retention. Methods Fixed specimens of the species referred to above were obtained from immediate on site sacrifice of mice and rats, or from recently fixed lenses of other species, dogs, monkeys, and humans, obtained from collaborators. The retention of undegraded nuclei and nuclear fragments was graded 1–4 from histologic observation. All species lenses were examined microscopically in fixed sections stained with hematoxylin and eosin (H&E) or 4',6-diamidino-2-phenylindole (DAPI). Slit lamp observations were made only on the mice and rats before sacrifice and lens fixation. Values of 0 to 4 (clear lens to cataract) were given to degree of opacity. MRNA content in young versus old C57BL/6 mouse lenses was determined by quantitative PCR (qPCR) for DNase II-like acid DNase (DLAD) and other proteins. DLAD protein was determined by immunofluorescence of fixed eye sections. Results In old C57BL/6 and DBA mice and, to a lesser degree, in old CBA mice and old Brown Norway (BN) rats lenses were seen to contain a greatly expanded pool of unresolved whole nuclei or fragments of nuclei in differentiating lens fiber cells. This generally correlated with increased slit lamp opacities in these mice. Most old dog lenses also had an increase in retained cortical nuclei, as did a few old humans. However, a second rat strain, BNF1, in which opacity was quite high had no increase in retained nuclei with age nor did any of the old monkeys, indicating that retained nuclei could not be a cause of opacity in these animals. The nuclei and nuclear fragments were located at all levels in the outer cortex extending inward from the lens equator and were observable by the DAPI. These nuclei and nuclear fragments were seen from 12 months onward in all C57BL/6 and DBA/2 mice and to a lesser degree in the CBA, increasing in number and in space occupancy with increasing age. Preliminary results suggest that retention of nuclei in the C57BL/6 mouse is correlated with an age-related loss of DLAD from old lenses. Conclusions A very marked apparently light refractive condition caused by retained cortical nuclei and nuclear fragments is present in the lens cortices, increasing with age in the three strains of mice examined and in one of two strains of rats (BN). This condition was also seen in some old dogs and a few old humans. It may be caused by an age-related loss of DLAD, which is essential for nuclear DNA degradation in the lens. However, this condition does not develop in old BNF1 rats, or old monkeys and is only seen sporadically in humans. Thus, it can not be a universal cause for age related lens opacity or cataract presence, although it develops concurrently with opacity in mice. This phenomenon should be considered when using the old mouse as a model for human age-related cataract. PMID:22065920

  5. High-energy γ rays resulting from low-energy nuclear reactions in light nuclei

    NASA Astrophysics Data System (ADS)

    Rose, Paul B.; Erickson, Anna S.

    2018-06-01

    Products resulting from 3.02 MeV deuterons incident on a natural boron target have been investigated by way of γ -ray spectroscopy and activation analysis. This study uses observed γ rays and cascades to deduce the populated states from the reaction products. Die-away measurements are included to investigate the built-up activation from the target and compared with tabulated half-lives to further understand the plethora of reactions taking place. Many of the observed γ rays, such as 15.1 MeV, result from the formation of excited states of 12C, while others are secondary and tertiary processes from α breakup resulting in 8Be.

  6. Fundamental Physics with Electroweak Probes of Nuclei

    NASA Astrophysics Data System (ADS)

    Pastore, Saori

    2018-02-01

    The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.

  7. Effect of Daytime Blue-enriched LED Light on the Nighttime Circadian Melatonin Inhibition of Hepatoma 7288CTC Warburg Effect and Progression.

    PubMed

    Dauchy, Robert T; Wren-Dail, Melissa A; Dupepe, Lynell M; Hill, Steven M; Xiang, Shulin; Anbalagan, Muralidharan; Belancio, Victoria P; Dauchy, Erin M; Blask, David E

    2018-06-06

    Liver cancer is the second leading cause of cancer death worldwide. Metabolic pathways within the liver and liver cancersare highly regulated by the central circadian clock in the suprachiasmatic nuclei (SCN). Daily light and dark cycles regulate the SCN-driven pineal production of the circadian anticancer hormone melatonin and temporally coordinate circadianrhythms of metabolism and physiology in mammals. In previous studies, we demonstrated that melatonin suppresses linoleicacid metabolism and the Warburg effect (aerobic glycolysis)in human breast cancer xenografts and that blue-enriched light(465-485 nm) from light-emitting diode lighting at daytime (bLAD) amplifies nighttime circadian melatonin levels in ratsby 7-fold over cool white fluorescent (CWF) lighting. Here we tested the hypothesis that daytime exposure of tissue-isolatedMorris hepatoma 7288CTC-bearing male rats to bLAD amplifies the nighttime melatonin signal to enhance the inhibition oftumor growth. Compared with rats housed under a 12:12-h light:dark cycle in CWF light, rats in bLAD light evinced a 7-fold higher peak plasma melatonin level at the mid-dark phase; in addition, high melatonin levels were prolonged until 4 h intothe light phase. After implantation of tissue-isolated hepatoma 7288CTC xenografts, tumor growth rates were markedly delayed,and tumor cAMP levels, LA metabolism, the Warburg effect, and growth signaling activities were decreased in rats inbLAD compared with CWF daytime lighting. These data show that the increased nighttime circadian melatonin levels dueto bLAD exposure decreases hepatoma metabolic, signaling, and proliferative activities beyond what occurs after normalmelatonin signaling under CWF light.

  8. Electromagnetic and neutral-weak response functions of 4He and 12C

    NASA Astrophysics Data System (ADS)

    Lovato, A.; Gandolfi, S.; Carlson, J.; Pieper, Steven C.; Schiavilla, R.

    2015-06-01

    Background: A major goal of nuclear theory is to understand the strong interaction in nuclei as it manifests itself in terms of two- and many-body forces among the nuclear constituents, the protons and neutrons, and the interactions of these constituents with external electroweak probes via one- and many-body currents. Purpose: The objective of the present work is to calculate the quasielastic electroweak response functions in light nuclei within the realistic dynamical framework outlined above. These response functions determine the inclusive cross section as function of the lepton momentum and energy transfers. Methods: Their ab initio calculation is a very challenging quantum many-body problem, since it requires summation over the entire excitation spectrum of the nucleus and inclusion in the electroweak currents of one- and many-body terms. Green's functions Monte Carlo methods allow one to circumvent both difficulties by computing the response in imaginary time (the so-called Euclidean response) and hence summing implicitly over the bound and continuum states of the nucleus, and by implementing specific algorithms designed to deal with the complicated spin-isospin structure of nuclear many-body operators. Results: Theoretical predictions for 4He and 12C, confirmed by experiment in the electromagnetic case, show that two-body currents generate excess transverse strength from threshold to the quasielastic to the dip region and beyond. Conclusions: These results challenge the conventional picture of quasielastic inclusive scattering as being largely dominated by single-nucleon knockout processes.

  9. Electromagnetic and neutral-weak response functions of 4He and 12C

    DOE PAGES

    Lovato, A.; Gandolfi, Stefano; Carlson, Joseph Allen; ...

    2015-06-04

    A major goal of nuclear theory is to understand the strong interaction in nuclei as it manifests itself in terms of two- and many-body forces among the nuclear constituents, the protons and neutrons, and the interactions of these constituents with external electroweak probes via one- and many-body currents. The objective of the present work is to calculate the quasielastic electroweak response functions in light nuclei within the realistic dynamical framework outlined above. These response functions determine the inclusive cross section as function of the lepton momentum and energy transfers. Their ab initio calculation is a very challenging quantum many-body problem,more » since it requires summation over the entire excitation spectrum of the nucleus and inclusion in the electroweak currents of one- and many-body terms. Green's functions Monte Carlo methods allow one to circumvent both difficulties by computing the response in imaginary time (the so-called Euclidean response) and hence summing implicitly over the bound and continuum states of the nucleus, and by implementing specific algorithms designed to deal with the complicated spin-isospin structure of nuclear many-body operators. Theoretical predictions for 4He and 12C, confirmed by experiment in the electromagnetic case, show that two-body currents generate excess transverse strength from threshold to the quasielastic to the dip region and beyond. In conclusion, these results challenge the conventional picture of quasielastic inclusive scattering as being largely dominated by single-nucleon knockout processes.« less

  10. Understanding the fusion cross section among light nuclei around the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Del Zoppo, Antonio; La Cognata, Marco

    2017-11-01

    In this work we investigate fusion induced by a radioactive 8Li projectile on a 4He gas target, at center-of-mass energies between 0.6 and 5 MeV. The main result is the tendency of the dimensionless fusion cross section to form well visible plateaus alternated to steep rises. This is likely to be the most genuine consequence of the discrete nature of the intervening angular momenta observed so far in fusion reactions right above the Coulomb barrier. A partial-wave analysis, exclusively based on a pure quantal penetration fusion model, identifies a remarkably low-height barrier. Indeed, these plateaus allow enhanced experimental sensitivity to the fusion barrier given that the most barrier-sensitive lowest partial waves are well separated. We expect that the present results for 8Li+4He will promote further investigations of the fusion reaction mechanism between very light ions at energies much below the interaction barrier. For the moment, we believe that understanding the plateau origin in the cross section above the barrier will almost certainly be useful to corroborate the extrapolation to the important astrophysical region below the Coulomb barrier, not only in the case of the 8Li+4He fusion but also for other systems, such as the 12C+12C.

  11. Direct Mass Measurements in the Light Neutron-Rich Region Using a Combined Energy and Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Pillai, C.; Swenson, L. W.; Vieira, D. J.; Butler, G. W.; Wouters, J. M.; Rokni, S. H.; Vaziri, K.; Remsberg, L. P.

    This experiment has demonstrated that direct mass measurements can be performed (albeit of low precision in this first attempt) using the M proportional to ET(2) method. This technique has the advantage that many particle-bound nuclei, produced in fragmentation reactions can be measured simultaneously, independent of their N or Z. The main disadvantage of this approach is that both energy and time-of-flight must be measured precisely on an absolute scale. Although some mass walk with N and Z was observed in this experiment, these uncertainties were largely removed by extrapolating the smooth dependence observed for known nuclei which lie closer to the valley of (BETA)-stability. Mass measurements for several neutron-rich light nuclei ranging from C-17 to NE-26 have been performed. In all cases these measurements agree with the latest mass compilation of Wapstra and Audi. The masses of N-20 N and F-24 have been determined for the first time.

  12. Origin Of The Light Neutral Boson Observed In Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    El-Nagdy, M. S.; Abdelsalam, A.; Badawy, B. M.

    2007-02-01

    We report the results of (e+ e- pairs) produced during the interactions of 200A GeV 32S with emulsion nuclei. The results for the electron pairs suggest that they originate from light neutral bosons emitted during the collision. The origin of such neutral bosons could be due to de-excitation of the produced fragments 4He, 8Be and 12C resulting in 32S fragmentation. The masses of the neutral bosons were estimated from electron kinematics and found to be equal 1.51±0.14 and 9.88±2.85 MeV/c2 and life time of orders 10-16 - 10-15 s. The data and results obtained could explain and put conclusion to the puzzles which were going on during the last 50 years around the anomalous mean free path of α-particles produced during high energy particle collisions. The depression of average shower particle multiplicities produced in the collisions of secondary helium fragments as compared to those of primary helium at similar energy signs the possibility of formation of the neutral boson.

  13. Missing-mass spectroscopy of the 12C(p ,d ) reaction near the η'-meson production threshold

    NASA Astrophysics Data System (ADS)

    Tanaka, Y. K.; Itahashi, K.; Fujioka, H.; Ayyad, Y.; Benlliure, J.; Brinkmann, K.-T.; Friedrich, S.; Geissel, H.; Gellanki, J.; Guo, C.; Gutz, E.; Haettner, E.; Harakeh, M. N.; Hayano, R. S.; Higashi, Y.; Hirenzaki, S.; Hornung, C.; Igarashi, Y.; Ikeno, N.; Iwasaki, M.; Jido, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knöbel, R.; Kurz, N.; Metag, V.; Mukha, I.; Nagae, T.; Nagahiro, H.; Nanova, M.; Nishi, T.; Ong, H. J.; Pietri, S.; Prochazka, A.; Rappold, C.; Reiter, M. P.; Rodríguez-Sánchez, J. L.; Scheidenberger, C.; Simon, H.; Sitar, B.; Strmen, P.; Sun, B.; Suzuki, K.; Szarka, I.; Takechi, M.; Tanihata, I.; Terashima, S.; Watanabe, Y. N.; Weick, H.; Widmann, E.; Winfield, J. S.; Xu, X.; Yamakami, H.; Zhao, J.; η-PRiME/Super-FRS Collaboration

    2018-01-01

    Excitation-energy spectra of 11C nuclei near the η'-meson production threshold have been measured by missing-mass spectroscopy using the 12C(p ,d ) reaction. A carbon target has been irradiated with a 2.5 GeV proton beam supplied by the synchrotron SIS-18 at GSI to produce η'-meson bound states in 11C nuclei. Deuterons emitted at 0∘ in the reaction have been momentum analyzed by the fragment separator (FRS), used as a high-resolution spectrometer. No distinct structure due to the formation of η'-mesic states is observed although a high statistical sensitivity is achieved in the experimental spectra. Upper limits on the formation cross sections of η'-mesic states are determined, and thereby a constraint imposed on the η'-nucleus interaction is discussed.

  14. Octupole deformation in neutron-rich actinides and superheavy nuclei and the role of nodal structure of single-particle wavefunctions in extremely deformed structures of light nuclei

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Abusara, H.; Agbemava, S. E.

    2018-03-01

    Octupole deformed shapes in neutron-rich actinides and superheavy nuclei as well as extremely deformed shapes of the N∼ Z light nuclei have been investigated within the framework of covariant density functional theory. We confirmed the presence of new region of octupole deformation in neutron-rich actinides with the center around Z∼ 96,N∼ 196 but our calculations do not predict octupole deformation in the ground states of superheavy Z≥slant 108 nuclei. As exemplified by the study of 36Ar, the nodal structure of the wavefunction of occupied single-particle orbitals in extremely deformed structures allows to understand the formation of the α-clusters in very light nuclei, the suppression of the α-clusterization with the increase of mass number, the formation of ellipsoidal mean-field type structures and nuclear molecules.

  15. Status of the R-matrix Code AMUR toward a consistent cross-section evaluation and covariance analysis for the light nuclei

    NASA Astrophysics Data System (ADS)

    Kunieda, Satoshi

    2017-09-01

    We report the status of the R-matrix code AMUR toward consistent cross-section evaluation and covariance analysis for the light-mass nuclei. The applicable limit of the code is extended by including computational capability for the charged-particle elastic scattering cross-sections and the neutron capture cross-sections as example results are shown in the main texts. A simultaneous analysis is performed on the 17O compound system including the 16O(n,tot) and 13C(α,n)16O reactions together with the 16O(n,n) and 13C(α,α) scattering cross-sections. It is found that a large theoretical background is required for each reaction process to obtain a simultaneous fit with all the experimental cross-sections we analyzed. Also, the hard-sphere radii should be assumed to be different from the channel radii. Although these are technical approaches, we could learn roles and sources of the theoretical background in the standard R-matrix.

  16. Photodisintegration reactions for nuclear astrophysics studies at ELI-NP

    NASA Astrophysics Data System (ADS)

    Matei, C.; Balabanski, D.; Filipescu, D. M.; Tesileanu, O.

    2018-01-01

    Extreme Light Infrastructure - Nuclear Physics facility will come online in Bucharest-Magurele, Romania, in 2018 and will deliver high intensity laser and brilliant gamma beams. We present the physics cases and instruments proposed at ELI-NP to measure capture reactions by means of the inverse photodisintegration reaction. We propose to study the 16O(γ, α)12C reaction using a Time Projection Chamber detector with electronic readout. Several other reactions, such as 24Mg(γ, α)20Ne and reactions on heavy nuclei relevant in the p-process, are central to stellar evolution and will be investigated with a proposed Silicon Strip Detector array and a 4π neutron detector. The status of the experimental facilities and first-day experiments will be presented in detail.

  17. Nuclear parton density functions from dijet photoproduction at the EIC

    NASA Astrophysics Data System (ADS)

    Klasen, M.; Kovařík, K.

    2018-06-01

    We study the potential of dijet photoproduction measurements at a future electron-ion collider (EIC) to better constrain our present knowledge of the nuclear parton distribution functions. Based on theoretical calculations at next-to-leading order and approximate next-to-next-to-leading order of perturbative QCD, we establish the kinematic reaches for three different EIC designs, the size of the parton density function modifications for four different light and heavy nuclei from He-4 over C-12 and Fe-56 to Pb-208 with respect to the free proton, and the improvement of EIC measurements with respect to current determinations from deep-inelastic scattering and Drell-Yan data alone as well as when also considering data from existing hadron colliders.

  18. The Research Program at RIBRAS (Radioactive Ion Beams in Brasil)-III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtenthaeler, R.; Lepine-Szily, A.; Guimaraes, V.

    A part of the research program developed in the RIBRAS facility over the last four years is presented. Experiments using radioactive secondary beams of light exotic nuclei such as {sup 6}He, {sup 7}Be, {sup 8}Li on several targets have been performed. Elastic angular distributions have been analysed by the Optical Model and four body Continuous Discretized Coupled Channels Calculations (4b-CDCC) and the total reaction cross sections have been obtained. A comparison between the reaction cross sections of {sup 6}He and other stable projectiles with medium-heavy targets was performed. Measurements of the proton transfer reaction {sup 12}C({sup 8}Li,{sup 9}Be){sup 11}B aremore » also presented.« less

  19. Exotic Light Nuclei

    ERIC Educational Resources Information Center

    Cerny, Joseph; Poskanzer, Arthur M.

    1978-01-01

    Among the light elements, nuclei with unequal numbers of protons and neutrons are highly unstable. Some survive just long enough to be detected and exhibit unusual regimes of radioactive decay. ( Autor/MA)

  20. Properties of true quaternary fission of nuclei with allowance for its multistep and sequential character

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Titova, L. V.; Bulychev, A. O.

    An analysis of basicmechanisms of binary and ternary fission of nuclei led to the conclusion that true ternary and quaternary fission of nuclei has a sequential two-step (three-step) character, where, at the first step, a fissile nucleus emits a third light particle (third and fourth light particles) under shakeup effects associated with a nonadiabatic character of its collective deformation motion, whereupon the residual nucleus undergoes fission to two fission fragments. Owing to this, the formulas derived earlier for the widths with respect to sequential two- and three-step decays of nuclei in constructing the theory of two-step twoproton decays and multistepmore » decays in chains of genetically related nuclei could be used to describe the relative yields and angular and energy distributions of third and fourth light particles emitted in (α, α), (t, t), and (α, t) pairs upon the true quaternary spontaneous fission of {sup 252}Cf and thermal-neutron-induced fission of {sup 235}U and {sup 233}U target nuclei. Mechanisms that explain a sharp decrease in the yield of particles appearing second in time and entering into the composition of light-particle pairs that originate from true quaternary fission of nuclei in relation to the yields of analogous particles in true ternary fission of nuclei are proposed.« less

  1. Vertical Profiles of Cloud Condensation Nuclei, Condensation Nuclei, Optical Aerosol, Aerosol Optical Properties, and Aerosol Volatility Measured from Balloons

    NASA Technical Reports Server (NTRS)

    Deshler, T.; Snider, J. R.; Vali, G.

    1998-01-01

    Under the support of this grant a balloon-borne gondola containing a variety of aerosol instruments was developed and flown from Laramie, Wyoming, (41 deg N, 105 deg W) and from Lauder, New Zealand (45 deg S, 170 deg E). The gondola includes instruments to measure the concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), optically detectable aerosol (OA.) (r greater than or equal to 0.15 - 2.0 microns), and optical scattering properties using a nephelometer (lambda = 530 microns). All instruments sampled from a common inlet which was heated to 40 C on ascent and to 160 C on descent. Flights with the CN counter, OA counter, and nephelometer began in July 1994. The CCN counter was added in November 1994, and the engineering problems were solved by June 1995. Since then the flights have included all four instruments, and were completed in January 1998. Altogether there were 20 flights from Laramie, approximately 5 per year, and 2 from Lauder. Of these there were one or more engineering problems on 6 of the flights from Laramie, hence the data are somewhat limited on those 6 flights, while a complete data set was obtained from the other 14 flights. Good CCN data are available from 12 of the Laramie flights. The two flights from Lauder in January 1998 were successful for all measurements. The results from these flights, and the development of the balloon-bome CCN counter have formed the basis for five conference presentations. The heated and unheated CN and OA measurements have been used to estimate the mass fraction of the aerosol volatile, while comparisons of the nephelometer measurements were used to estimate the light scattering, associated with the volatile aerosol. These estimates were calculated for 0.5 km averages of the ascent and descent data between 2.5 km and the tropopause, near 11.5 km.

  2. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Savage, M.; Beane, S.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Shanahan, P.; Tiburzi, B.; Wagman, M.; Winter, F.; Nplqcd Collaboration

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.

  3. N3LO NN interaction adjusted to light nuclei in ab exitu approach

    DOE PAGES

    Shirokov, A. M.; Shin, I. J.; Kim, Y.; ...

    2016-08-09

    Here, we use phase-equivalent transformations to adjust off-shell properties of similarity renormalization group evolved chiral effective field theory NN interaction (Idaho N3LO) to fit selected binding energies and spectra of light nuclei in an ab exitu approach. Then, we test the transformed interaction on a set of additional observables in light nuclei to verify that it provides reasonable descriptions of these observables with an apparent reduced need for three- and many-nucleon interactions.

  4. Light scattering properties of kidney epithelial cells and nuclei

    NASA Astrophysics Data System (ADS)

    Vitol, Elina A.; Kurzweg, Timothy P.; Nabet, Bahram

    2006-02-01

    Enlargement of mammalian cells nuclei due to the cancerous inflammation can be detected early through noninvasive optical techniques. We report on the results of cellular experiments, aimed towards the development of a fiber optic endoscopic probe used for precancerous detection of Barrett's esophagus. We previously presented white light scattering results from tissue phantoms (polystyrene polybead microspheres). In this paper, we discuss light scattering properties of epithelial MDCK (Madine-Darby Canine Kidney) cells and cell nuclei suspensions. A bifurcated optical fiber is used for experimental illumination and signal detection. The resulting scattering spectra from the cells do not exhibit the predicted Mie theory oscillatory behavior inherent to ideally spherical scatterers, such as polystyrene microspheres. However, we are able to demonstrate that the Fourier transform spectra of the cell suspensions are well correlated with the Fourier transform spectra of cell nuclei, concluding that the dominate scatterer in the backscattering region is the nucleus. This correlation experimentally illustrates that in the backscattering region, the cell nuclei are the main scatterer in the cells of the incident light.

  5. Structure of exotic light nuclei: Z = 2, 3, 4

    NASA Astrophysics Data System (ADS)

    Fortune, H. T.

    2018-03-01

    I examine the history and current state of knowledge of the structure of so-called "exotic" light nuclei with Z=2-4, from 7He to 16Be . I review the available experimental information and the models that have been applied to these nuclei. I pay particular attention to the interplay among energies, widths (or strengths), and microscopic structure. Throughout the presentation, I focus on a unified description of these nuclei. I point out contradictions within the data, and I suggest experiments that are still needed.

  6. 16O resonances near the 4α threshold through the 12C(6Li,d) reaction

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. R. D.; Borello-Lewin, T.; Miyake, H.; Duarte, J. L. M.; Rodrigues, C. L.; Souza, M. A.; Horodynski-Matsushigue, L. B.; Ukita, G. M.; Cappuzzello, F.; Cunsolo, A.; Cavallaro, M.; Agodi, C.; Foti, A.

    2014-02-01

    Background: Resonances around xα thresholds in light nuclei are recognized to be important in basic aspects of nuclear structure. However, there is scarce experimental information associated with them. Purpose: We study the α-clustering phenomenon in resonant states around the 4α threshold (14.44 MeV) in the 16O nucleus. Method: The 12C(6Li,d )16O reaction was investigated with an unprecedented resolution at a bombarding energy of 25.5 MeV by employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion technique. Results: Several narrow resonances were populated and the energy resolution of 15 keV allows for the separation of doublet states that were not resolved previously. The upper limits for the resonance widths in this region were extracted. The angular distributions of the absolute differential cross section associated with four natural parity quasibound states are presented and compared to distorted wave Born approximation predictions. Conclusions: Narrow resonances not previously reported in the literature were observed. This indicates that the α-cluster structure information in this region should be revised.

  7. Pionic Fusion of 4He +12 C

    NASA Astrophysics Data System (ADS)

    Zarrella, Andrew; Yennello, Sherry

    2017-09-01

    Pionic fusion is the process by which two nuclei fuse and then deexcite by the exclusive emission of a pion. These reactions represent the most extreme examples of deep subthreshold pion production and provide evidence for an unknown, collective mechanism for pion production. An experiment was performed at the Texas A&M University Cyclotron Institute to measure the cross section of the 4He +12 C -> 16N +π+ reaction. The Momentum Achromat Recoil Spectrometer (MARS) was used to separate and identify the 16N fusion residues and the newly constructed Partial Truncated Icosahedron (ParTI) phoswich array was used to identify charged pions. The detector responses for each phoswich unit were recorded using fast-sampling ADCs which allow all light charged particles in the ParTI phoswiches to be identified using ``fast vs. slow'' pulse shape discrimination. By writing the waveform responses, pions can also be identified by the presence of a characteristic muon decay pulse. The combination of the residue-pion coincidence and the two independent pion identification techniques represent a highly sensitive experimental design for studying pionic fusion reactions.

  8. Direct mass measurements in the light neutron-rich region using a combined energy and time-of-flight technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, C.; Swenson, L.W.; Vieira, D.J.

    This experiment has demonstrated that direct mass measurements can be performed (albeit of low precision in this first attempt) using the M proportional to ET/sup 2/ method. This technique has the advantage that many particle-bound nuclei, produced in fragmentation reactions can be measured simultaneously, independent of their N or Z. The main disadvantage of this approach is that both energy and time-of-flight must be measured precisely on an absolute scale. Although some mass walk with N and Z was observed in this experiment, these uncertainties were largely removed by extrapolating the smooth dependence observed for known nuclei which lie closermore » to the valley of ..beta..-stability. Mass measurements for several neutron-rich light nuclei ranging from /sup 17/C to /sup 26/Ne have been performed. In all cases these measurements agree with the latest mass compilation of Wapstra and Audi. The masses of /sup 20/N and /sup 24/F have been determined for the first time.« less

  9. Circadian rhythm of mechanically mediated differentiation of osteoblasts

    NASA Technical Reports Server (NTRS)

    Roberts, W. E.; Mozsary, P. G.; Klingler, E.

    1984-01-01

    The differential of osteoblasts in response to orthodontic pressure in the periodontal ligament of the maxillary-first-molar periodontal ligaments of 12-h-light/dark-entrained 7-wk-old male Simonsen outbred rats is measured by (H-3)-Thymidine nuclear-volume morphometry (Roberts et al., 1983) at hourly intervals throughout the circadian cycle. The results are presented in graphs and discussed. Preosteoblast large nuclei (D-cells) are found to synthesize DNA mainly in light and to divide in the following dark period, while small-nucleus osteoprogenitors (A-cells) synthesize in darkness and divide in light. These findings are seen as consistent with a model in which the sequence of proliferation and differentiation requires at least 60 h (five 12-h periods) and the shift from A to D cells lasts about 19 h.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Zhihong

    The experiment, E08-014, in Hall-A at Jefferson Lab aims to study the short-range correlations (SRC) which are necessary to explain the nuclear strength absent in the mean field theory. The cross sections for 2H, 3He, 4He, 12C, 40Ca and 48Ca, were measured via inclusive quasi-elastic electron scattering from these nuclei in a Q2 range between 0.8 and 2.8 (GeV/c) 2 for x>1. The cross section ratios of heavy nuclei to 2H were extracted to study two-nucleon SRC for 1

  11. [Morpho-functional parameters of nucleoli in polyploid mucous and albumen cells of salivary gland in the snail Succinea lauta].

    PubMed

    Anisimova, A A; Anisimov, A P

    2005-01-01

    Variation of some characteristics of nucleoli of polyploid mucous and albumen cells was examined in salivary glands of the snail Succinea lauta. The number, total area and Ag-protein content of nucleoli, and DNA content in each nucleus were estimated on squashed preparations incubated with AgNO3, decolorized and then Feulgen stained. The ultrastructure of nucleoli was studied by electron microscopy. Differentiated mucous cells had 4c-8c-16c-32c nuclei; albumen cells had 8c-16c-32c-64c-128c nuclei. The ultrastructure of nucleoli of the two cell types was essentially the same. Normally, a large fibrous to granular zone was observed in the nucleoli, without a clear distinction between fibrous and granular components. At the same time, aggregations of granular matter could be discerned at the periphery of nucleoli. No fibrous centers were observed. Occassionally, nucleolonema-like structures occurred. Normally each nucleolus contacted several chromosomes. On squashed preparations, the least size of nucleoli was 2-3 microm, and the largest size amounted to 14 microm in mucous cells, and to 50-80 microm in albumen cells. The number of nucleoli rose from 1-2 in tetraploid nuclei to 2-3 in 32c-nuclei, and to 5-7 in 128c-nuclei. The disparity between the ploidy levels of nuclei and the numbers of nucleoli may be due, presumably, to aggregation of chromosome NORs. The Ag-protein content in the nucleoli, and the total nucleolar area displayed a strong mutual correlation. Both parameters differed significantly by 1.5-2.2 times in mucous and albumen cells of the same ploidy level. Thus, in albumen and mucous cells the total Ag-protein content in octaploid nuclei was 3.3 and 2.2 relative units (r. u.), respectively. In 16c- and 32c-nuclei of albumen cells, it was 7.6 and 15.1 r. u.; and in the same nuclei of mucous cells--3.8 and 6.8 r. u., respectively. On the whole, in albumen cells, in the course of 4 endocycles (4c-128c), the total Ag-protein content increased by 17 times. Therefore, the mean multiplication factor for this parameter was found to be 2.05 per endocycle. In mucous cells, in the course of 3 endocycles (4c-32c), the total Ag-protein content increased by 5.2 times against 8 times expected, with the mean multiplication factor equal to 1.75 per endocycle. Thus, in the course of polyploidization of albumen and mucous cell nuclei, the gene dosage effect was fully pronounced in the former, and only partly in the latter. This differtence is due obviously to peculiarities of differentiation of the two cell types, in particular, to differences in the number of activated ribosomal genes.

  12. Quasifree (p ,p N ) scattering of light neutron-rich nuclei near N =14

    NASA Astrophysics Data System (ADS)

    Díaz Fernández, P.; Alvarez-Pol, H.; Crespo, R.; Cravo, E.; Atar, L.; Deltuva, A.; Aumann, T.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Cabanelas, P.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkäll, J.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Datta Pramanik, U.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estradé, A.; Farinon, F.; Fernández-Domínguez, B.; Fraile, L. M.; Freer, M.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Holl, M.; Hufnagel, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Jurčiukonis, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec, J.; Moro, A. M.; Movsesyan, A.; Nacher, E.; Najafi, A.; Nikolskii, E.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Perea, A.; Petri, M.; Pietras, B.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Rossi, D.; Röder, M.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Vandebrouck, M.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Wheldon, C.; Wilson, G.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration

    2018-02-01

    Background: For many years, quasifree scattering reactions in direct kinematics have been extensively used to study the structure of stable nuclei, demonstrating the potential of this approach. The R 3B collaboration has performed a pilot experiment to study quasifree scattering reactions in inverse kinematics for a stable 12C beam. The results from that experiment constitute the first quasifree scattering results in inverse and complete kinematics. This technique has lately been extended to exotic beams to investigate the evolution of shell structure, which has attracted much interest due to changes in shell structure if the number of protons or neutrons is varied. Purpose: In this work we investigate for the first time the quasifree scattering reactions (p ,p n ) and (p ,2 p ) simultaneously for the same projectile in inverse and complete kinematics for radioactive beams with the aim to study the evolution of single-particle properties from N =14 to N =15 . Method: The structure of the projectiles 23O, 22O, and 21N has been studied simultaneously via (p ,p n ) and (p ,2 p ) quasifree knockout reactions in complete inverse kinematics, allowing the investigation of proton and neutron structure at the same time. The experimental data were collected at the R3B -LAND setup at GSI at beam energies of around 400 MeV/u. Two key observables have been studied to shed light on the structure of those nuclei: the inclusive cross sections and the corresponding momentum distributions. Conclusions: The knockout reactions (p ,p n ) and (p ,2 p ) with radioactive beams in inverse kinematics have provided important and complementary information for the study of shell evolution and structure. For the (p ,p n ) channels, indications of a change in the structure of these nuclei moving from N =14 to N =15 have been observed, i.e., from the 0 d5 /2 shell to the 1 s1 /2 . This supports previous observations of a subshell closure at N =14 for neutron-rich oxygen isotopes and its weakening for the nitrogen isotopes.

  13. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Martin; Shanahan, Phiala E.; Tiburzi, Brian C.

    2016-12-01

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections andmore » $$\\beta\\beta$$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $$g_A$$ that is required in nuclear many-body calculations.« less

  14. Comparison of Muon Capture in Light and in Heavy Nuclei

    NASA Astrophysics Data System (ADS)

    Measday, David F.; Stocki, Trevor J.

    2007-10-01

    We have recently completed an experimental study at TRIUMF of muon capture in the following elements, N, Al, Si, Ca, Fe, Ni, I, Au, and Bi. We detected the nuclear gamma rays emitted by the product nuclei after muon capture. The energy of the gamma ray identifies the source nuclide, and thus the reaction which has occurred. Our data are of better quality, and more comprehensive than any other data set in the literature. The (μ-,νn) reaction is always dominant. In light nuclei, reactions such as (μ-,νp) and (μ-,νpn) can occur, but not for heavy nuclei. However the reverse is true for reactions such as (μ-,ν3n) and (μ-,ν4n), which are very rare in light nuclei, but easily detected in heavy elements. We shall discuss how such information can be useful in calculations of neutrino-nucleus interactions, and of electron-capture in supernovae.

  15. 1H, 13C and 19F NMR studies on fluorinated ethers

    NASA Astrophysics Data System (ADS)

    Balonga, P. E.; Kowalewski, V. J.; Contreras, R. H.

    The enflurane and ethoxyflurane 1H, 13C and 19F NMR spectra are examined—including sign determination of FF and FH couplings—and considered in the light of previously reported results for methoxyflurane. Conformational differences between methoxyflurane and the former two molecules are indicated by through space FH coupling constants and by the nonequivalence of geminal fluorine nuclei. Populations of conformers about the CC bond are estimated.

  16. Generation of high-energy neutron beam by fragmentation of relativistic heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yurevich, Vladimir

    2016-09-01

    The phenomenon of multiple production of neutrons in reactions with heavy nuclei induced by high-energy protons and light nuclei is analyzed using a Moving Source Model. The Lorentz transformation of the obtained neutron distributions is used to study the neutron characteristics in the inverse kinematics where relativistic heavy nuclei bombard a light-mass target. The neutron beam generated at 0∘has a Gaussian shape with a maximum at the energy of the projectile nucleons and an energy resolution σE/E < 4% above 6 GeV.

  17. KEWPIE2: A cascade code for the study of dynamical decay of excited nuclei

    NASA Astrophysics Data System (ADS)

    Lü, Hongliang; Marchix, Anthony; Abe, Yasuhisa; Boilley, David

    2016-03-01

    KEWPIE-a cascade code devoted to investigating the dynamical decay of excited nuclei, specially designed for treating very low probability events related to the synthesis of super-heavy nuclei formed in fusion-evaporation reactions-has been improved and rewritten in C++ programming language to become KEWPIE2. The current version of the code comprises various nuclear models concerning the light-particle emission, fission process and statistical properties of excited nuclei. General features of the code, such as the numerical scheme and the main physical ingredients, are described in detail. Some typical calculations having been performed in the present paper clearly show that theoretical predictions are generally in accordance with experimental data. Furthermore, since the values of some input parameters cannot be determined neither theoretically nor experimentally, a sensibility analysis is presented. To this end, we systematically investigate the effects of using different parameter values and reaction models on the final results. As expected, in the case of heavy nuclei, the fission process has the most crucial role to play in theoretical predictions. This work would be essential for numerical modeling of fusion-evaporation reactions.

  18. Investigations of Nuclear Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarantites, Demetrios; Reviol, W.

    The proposal addresses studies of nuclear structure at low-energies and development of instrumentation for that purpose. The structure studies deal with features of neutron-rich nuclei with unexplored shapes (football- or pear-shaped nuclei). The regions of interest are: neutron rich nuclei like 132-138Sn, or 48-54Ca, and the Zr, Mo, and Ru isotopes. The tools used can be grouped as follows: either Gammasphere or Gretina multi-gamma detector arrays and auxiliary detectors (Microball, Neutron Shell, and the newly completed Phoswich Wall).The neutron-rich nuclei are accessed by radioactive-beam binary reactions or by 252Cf spontaneous fission. The experiments with heavy radioactive beams aim at excitingmore » the beam nuclei by pick-up or transfer a neutron or a proton from a light target like 13C, 9Be, 11B or 14N .For these binary-reaction studies the Phoswich Wall detector system is essential. It is based on four multi-anode photomultiplier tubes on which CsI and thin fast-timing plastic scintillators are attached. Their signals are digitized with a high density microchip system.« less

  19. Direct stimulation of the retina by the method of virtual-quanta for heavy cosmic-ray nuclei

    NASA Technical Reports Server (NTRS)

    Mcnulty, P. J.; Madey, R.

    1972-01-01

    The contribution to the frequency of visual sensations induced in the dark-adapted eye by the virtual photon field was calculated, this field is associated with the heavy nuclei that exist in space beyond the geomagnetic field. In order to determine the probability that the virtual photon field induces a light flash, only the portion of the virtual photon spectrum that corresponds to the known frequency dependence of the sensitivity of human rods to visible light was utilized. The results can be expressed as a curve of the mean frequency of light flashes induced by the absorption of at least R virtual photons versus the threshold number R. The contribution to the light flash frequency from the virtual photon field of heavy cosmic ray nuclei is smaller than that from Cerenkov photons. The flux and energy spectra of galactic cosmic ray nuclei helium to iron were used.

  20. Investigation of the structure of light exotic nuclei by proton elastic scattering in inverse kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alkhazov, G. D.; Vorobyov, A. A.; Dobrovolsky, A. V., E-mail: dobrov@pnpi.spb.ru

    2015-05-15

    In order to study the spatial structure of exotic nuclei, it was proposed at the Petersburg Nuclear Physics Institute (PNPI) to measure the differential cross section for small-angle proton elastic scattering in inverse kinematics. Several experiments in beams of 0.7-GeV/nucleon exotic nuclei were performed at the heavy-ion accelerator facility of GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) by using the IKAR ionization spectrometer developed at PNPI. The IKAR ionization chamber filled with hydrogen at a pressure of 10 bar served simultaneously as a target and as a recoil-proton detector, which measured the recoil-proton energy. The beam-particle scattering angle was also measured.more » The results obtained for the cross sections in question were analyzed on the basis of the Glauber-Sitenko theory using phenomenological nuclear-density distributions with two free parameters. Nuclear-matter distributions and root-mean-square radii were found for the nuclei under investigation. The size of the halo in the {sup 6}He, {sup 8}He, {sup 11}Li, and {sup 14}Be nuclei was determined among other things. Information about neutron distributions in nuclei was deduced by combining the data obtained here with the known values of the radii of proton distributions. A sizable neutron skin was revealed in the {sup 8}Li, {sup 9}Li, and {sup 12}Be nuclei.« less

  1. Quantum Monte Carlo methods for nuclear physics

    DOE PAGES

    Carlson, J.; Gandolfi, S.; Pederiva, F.; ...

    2015-09-09

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  2. Quantum Monte Carlo methods for nuclear physics

    DOE PAGES

    Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; ...

    2014-10-19

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  3. Structure and Formation of Comets: Updates from Post-Rosetta Solid Fraction Analyses

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A. C.; Bentley, M. S.; Kofman, W. W.; Brouet, Y.; Ciarletti, V.; Hadamcik, E.; Herique, A.; Lasue, J.; Mannel, T.; Schmied, R.

    2016-12-01

    The combination of investigations of 67P/C-G by Rosetta, theoretical and experimental studies, and remote observations allowed unprecedented insight into the structure and formation of comets. Rosetta mission has provided ground-truth for the low-density and high porosity of the nucleus, without heterogeneities larger than a few meters in its small lobe [1,2]. Further studies related to CONSERT experiment now suggest that the porosity increases inside the nucleus [3,4]. Rosetta has also provided ground-truth for the aggregated structure of dust particles within a wide range of sizes in the inner coma [e.g. 5-7]. Such discoveries confirm previous interpretations of remote observations of solar light scattered by dust in cometary comae. Differences in structure between the two parts of the nucleus, strongly suspected from previous high-resolution images of the surface [8] and possibly suggested from some remote observations in fragmenting sub-nuclei [9], might be pointed out from data obtained shortly before Rosetta controlled descent in September 2016. Further analyses by MIDAS of dust particles morphology at submicron-sizes [7,10], as well as compilations of remote observations of solar light scattered by 67P/C-G [11], are presently taking place. We will discuss how such results could lead to a better understanding of dust growth processes during the formation, specifically of 67P/C-G, and more generally, thanks to the link now provided between structural properties of dust and remote polarimetric observations, of comet's nuclei in the early Solar System. References. 1 Kofman et al. Science 2015. 2 Pätzold et al. Nature 2016. 3 Ciarletti et al. A&A 2015. 4 Brouet et al. MNRAS 2016 (under revision). 5. Rotundi et al. Science 2015. 6 Langevin et al. Icarus 2016. 7 Bentley et al. Nature 2016. 8 Massironi et al. Nature 2016. 9 Hadamcik et al. A&A 2016. 10. Mannel et al. Leiden symposium 2016. 11 Hadamcik et al. Leiden symposium 2016.

  4. New Equations of State Based on the Liquid Drop Model of Heavy Nuclei and Quantum Approach to Light Nuclei for Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ~1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  5. Investigation of Laser-Induced Retinal Damage: Wavelength and Pulsewidth Dependent Mechanisms

    DTIC Science & Technology

    1994-06-30

    Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1991;1072:129-57. 2. Artuc M, Ramshad M, Kappus H. Studies...M, Reinhold C, Kappus H. DNA damage caused by laser light activated hematoporphyrin derivatives in isolated nuclei of human melanoma cells. Arch

  6. Proton-decaying, light nuclei accessed via the invariant-mass method

    NASA Astrophysics Data System (ADS)

    Brown, Kyle

    2017-01-01

    Two-nucleon decay is the most recently discovered nuclear decay mode. For proton-rich nuclei, the majority of multi-proton decays occur via sequential steps of one-proton emission. Direct two-proton (2p) decay was believed to occur only in even-Z nuclei beyond the proton drip line where one-proton decay is energy forbidden. This has been observed for the ground states of around a dozen nuclei including 6Be, the lightest case, and 54Zn, the heaviest case. Direct 2p decay has also recently been observed for isobaric analog states where all possible 1p intermediates are either isospin allowed and energy forbidden, or energy-allowed and isospin forbidden. For light proton emitters, the lifetimes are short enough that the invariant-mass technique is ideal for measuring the decay energy, intrinsic width and, for multi-proton decays, the momentum correlations between the fragments. I will describe recent measurements of proton emitters using the invariant-mass technique with the High Resolution Array (HiRA). I will present a new, high-statistics measurement on the sequential 2p decay of excited states in 17Ne. Measuring the momentum correlations between the decay fragments allow us to determine the 1p intermediate state through which the decay proceeds. I will present data on the isobaric-analog pair 8C and 8BIAS, which highlight the two known types of direct 2p decay. I will also present the first observation of 17Na, which is unbound with respect to three-proton emission. Finally I will present a new measurement on the width of the first-excited state of 9C and compare to recent theoretical calculations.

  7. A study of the nucleus-nucleus total reaction cross section of stable systems at intermediate energies: An application to 12C

    NASA Astrophysics Data System (ADS)

    Hu, Liyuan; Song, Yushou; Hou, Yingwei; Liu, Huilan; Li, Hui

    2018-07-01

    A semi-microscopic analytical expression of the nucleus-nucleus total reaction cross section (σR) was proposed based on the strong absorption model. It is suitable for stable nuclei at intermediate energies. The matter density distributions of nuclei and the nucleon-nucleon total cross section were both considered. Particularly, the Fermi motion effect of the nucleons in a nucleus was also taken into account. The parametrization of σR was applied to the colliding systems including 12C. The experimental data at energies from 30 to 1000 MeV/nucleon were well reproduced, according to which an approach of deriving σR without adjustable parameters was developed. The necessity of considering the Fermi motion effect in the parametrization was discussed.

  8. Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogli, G. L.; Rotunno, A. M.; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari

    2009-07-01

    Half-life estimates for neutrinoless double beta decay depend on particle physics models for lepton-flavor violation, as well as on nuclear physics models for the structure and transitions of candidate nuclei. Different models considered in the literature can be contrasted - via prospective data - with a 'standard' scenario characterized by light Majorana neutrino exchange and by the quasiparticle random phase approximation, for which the theoretical covariance matrix has been recently estimated. We show that, assuming future half-life data in four promising nuclei ({sup 76}Ge, {sup 82}Se, {sup 130}Te, and {sup 136}Xe), the standard scenario can be distinguished from a fewmore » nonstandard physics models, while being compatible with alternative state-of-the-art nuclear calculations (at 95% C.L.). Future signals in different nuclei may thus help to discriminate at least some decay mechanisms, without being spoiled by current nuclear uncertainties. Prospects for possible improvements are also discussed.« less

  9. Fusion enhancement at near and sub-barrier energies in 19O + 12C

    DOE PAGES

    Singh, Varinderjit; Vadas, J.; Steinbach, T. K.; ...

    2016-12-12

    Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a stringent test of a microscopic description of fusion. We report the first measurement of the fusion excitation function at near-barrier energies for the 19O+ 12C system. The measured excitation function is compared with the fusion excitation function of 18O+ 12C. A significant enhancement in the fusion probability of 19O ions with a 12C target as compared to 18O ions is observed. As a result, the experimental cross-sections observed at near-barrier energies are compared with a state-of-the-art microscopic model.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anticic, T.; Baatar, B.; Bartke, J.

    Production of d, t, and 3He nuclei in central Pb + Pb interactions was studied at five collision energies (more » $$\\sqrt{s}$$$_ {NN}$$= 6.3, 7.6, 8.8, 12.3, and 17.3 GeV) with the NA49 detector at the CERN Super Proton Synchrotron.Transverse momentum spectra, rapidity distributions, and particle ratios were measured. Yields are compared to predictions of statistical models. Phase-space distributions of light nuclei are discussed and compared to those of protons in the context of a coalescence approach. Finally, the coalescence parameters B 2 and B 3, as well as coalescence radii for d and 3He were determined as a function of transverse mass at all energies.« less

  11. Light nuclei of even mass number in the Skyrme model

    NASA Astrophysics Data System (ADS)

    Battye, R. A.; Manton, N. S.; Sutcliffe, P. M.; Wood, S. W.

    2009-09-01

    We consider the semiclassical rigid-body quantization of Skyrmion solutions of mass numbers B=4,6,8,10, and 12. We determine the allowed quantum states for each Skyrmion and find that they often match the observed states of nuclei. The spin and isospin inertia tensors of these Skyrmions are accurately calculated for the first time and are used to determine the excitation energies of the quantum states. We calculate the energy level splittings, using a suitably chosen parameter set for each mass number. We find good qualitative and encouraging quantitative agreement with experiment. In particular, the rotational bands of beryllium-8 and carbon-12, along with isospin 1 triplets and isospin 2 quintets, are especially well reproduced. We also predict the existence of states that have not yet been observed and make predictions for the unknown quantum numbers of some observed states.

  12. Experimental results on multi-nucleonic K- absorptions in light nuclei

    NASA Astrophysics Data System (ADS)

    Vázquez Doce, O.; Cargnelli, M.; Curceanu, C.; Del Grande, R.; Fabbietti, L.; Marton, J.; Piscicchia, K.; Scordo, A.; Sirghi, D.; Tucakovic, I.; Wycech, S.; Zmeskal, J.; Anastasi, A.; Curciarello, F.; Czerwinski, E.; Krzemien, W.; Mandaglio, G.; Martini, M.; Moskal, P.; Patera, V.; Perez del Rio, E.; Silarski, M.

    2017-03-01

    The AMADEUS collaboration studied the K- absorptions at low momentum in light nuclei leading to Σ0p final state. Those events were recorded by the KLOE detector, used as an active target, installed in the the DAΦNE collider. The results show that it is possible to isolate the process where the K- is absorbed by two nucleons and the decay products are emitted without any further final state interactions among other contributions involving more than two nucleons. Further, the possible contribution of a ppK- bound state was investigated. The best fit gives space to a yield of ppK-/Kstop- = (0.044 ± 0.009 stat-0.005+0.004) × 10-2 corresponding to a binding energy and a width of 45 and 30 MeV/c2, respectively. A statistical analysis of this result shows although that its significance is only at the level of 1σ.

  13. Brueckner-AMD Study of Light Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Kiyoshi; Yamamoto, Yuhei; Togashi, Tomoaki

    2011-06-28

    We applied the Brueckner theory to the Antisymmetrized Molecular Dynamics (AMD) and examined the reliability of the AMD calculations based on realistic nuclear interactions. In this method, the Bethe-Goldstone equation in the Brueckner theory is solved for every nucleon pair described by wave packets of AMD, and the G-matrix is calculated with single-particle orbits in AMD self-consistently. We apply this framework to not only {alpha}-nuclei but also N{ne}Z nuclei with A{approx}10. It is confirmed that these results present the description of reasonable cluster structures and energy-level schemes comparable with the experimental ones in light nuclei.

  14. Physics of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru

    2008-04-01

    Studies at the RIKEN RI beam factory / T. Motobayashi -- Dilute nuclear states / M. Freer -- Studies of exotic systems using transfer reactions at GANIL / D. Beaumel et al. -- First results from the Magnex large-acceptance spectrometer / A. Cunsolo et al. -- The ICHOR project and spin-isospin physics with unstable beams / H. Sakai -- Structure and low-lying states of the [symbol]He exotic nucleus via direct reactions on proton / V. Lapoux et al. -- Shell gap below [symbol]Sn based on the excited states in [symbol]Cd and [symbol]In / M. Górska -- Heavy neutron-rich nuclei produced in the fragmentation of a [symbol]Pb beam / Zs. Podolyák et al. -- Breakup and incomplete fusion in reactions of weakly-bound nuclei / D.J. Hinde et al. -- Excited states of [symbol]B and [symbol]He and their cluster aspect / Y. Kanada-En'yo et al. -- Nuclear reactions with weakly-bound systems: the treatment of the continuum / C. H. Dasso, A. Vitturi -- Dynamic evolution of three-body decaying resonances / A. S. Jensen et al. -- Prerainbow oscillations in [symbol]He scattering from the Hoyle state of [symbol]C and alpha particle condensation / S. Ohkubo, Y. Hirabayashi -- Angular dispersion behavior in heavy ion elastic scattering / Q. Wang et al. -- Microscopic optical potential in relativistic approach / Z.Yu. Ma et al. -- Exotic nuclei studied in direct reactions at low momentum transfer - recent results and future perspectives at fair / P. Egelhof -- Isotopic temperatures and symmetry energy in spectator fragmentation / M. De Napoli et al. -- Multi-channel algebraic scattering theory and the structure of exotic compound nuclei / K. Amos et al. -- Results for the first feasibility study for the EXL project at the experimental storage ring at GSI / N. Kalantar-Nayestanaki et al. -- Coulomb excitation of ISOLDE neutron-rich beams along the Z = 28 chain / P. Van Duppen -- The gamma decay of the pygmy resonance far from stability and the GDR at finite temperature / G. Benzoni et al. -- Thermal pairing in nuclei / N. D. Dang -- Molecular-orbital and di-nuclei states in Ne and F isotopes / M. Kimura -- Low-momentum interactions for nuclei / A. Schwenk -- Nonrelativistic nuclear energy functionals including the tensor force / G. Colo et al. -- New aspects on dynamics in nuclei described by covariant density functional theory / P. Ring, D. Pena -- Theoretical studies on ground-state properties of superheavy nuclei / Z. Z. Ren et al. -- New results in the study of superfluid nuclei: many-body effects, spectroscopic factors / P. F. Bortignon et al. -- New Effective nucleon-nucleon interaction for the mean-field approximation / V. K. Au et al. -- Linear response calculations with the time-dependent Skyrme density functional / T. Nakatsukasa et al. -- Dissipative dynamics with exotic beams / M. Di Toro et al. -- Exploring the symmetry energy of asymmetric nuclear matter with heavy ion reactions / M. B. Tsang -- Invariant mass spectroscopy of halo nuclei / T. Nakamura et al. -- Core [symbol] structures in [symbol]C, [symbol]C and [symbol]C up to high excitation energies / H. G. Bohlen et al. -- Light neutron-rich nuclei studied by alpha-induced reactions / S. Shimoura -- Fusion and direct reactions around the Coulomb barrier for the system [symbol]He + [symbol]Zn / V. Scuderi et al. -- Analyzing power measurement for proton elastic scattering on [symbol]He / S. Sakaguchi et al. -- Knockout reaction spectroscopy of exotic nuclei / J. A. Tostevin -- Exotic nuclei, quantum phase transitions, and the evolution of structure / R. F. Casten -- Structure of exotic nuclei in the medium mass region / T. Otsuka -- Pairing correlations in halo nuclei / H. Sagawa, K. Hagino -- Experimental approach to high-temperature Stellar reactions with low-energy RI beams / S. Kubono et al. -- Transition to quark matter in neutron stars / G. X. Peng et al. -- Research at VATLY: main themes and recent results / P. N. Diep et al. -- Study of the astrophysical reaction [symbol]C([symbol], n)[symbol]O by the transfer reaction [symbol]C([symbol]Li, t)[symbol]O / F. Hammache et al. -- SPIRAL2 at GANIL: a world of leading ISOL facility for the physics of exotic nuclei / S. Gales -- Magnetic properties of light neutron-rich nuclei and shell evolution / T. Suzuki, T. Otsuka -- Multiple scattering effects in elastic and quasi free proton scattering from halo nuclei / R. Crespo et al. -- The dipole response of neutron halos and skins / T. Aumann -- Giant and pygmy resonances within axially-symmetric-deformed QRPA with the Gogny force / S. Péru, H. Goutte -- Soft K[symbol] = O+ modes unique to deformed neutron-rich unstable nuclei / K. Yoshida et al. -- Synthesis, decay properties, and identification of superheavy nuclei produced in [symbol]Ca-induced reactions / Yu. Ts. Oganessian et al. -- Highlights of the Brazilian RIB facility and its first results and hindrance of fusion cross section induced by [symbol]He / P. R. S. Gomes et al. -- Search for long fission times of super-heavy elements with Z = 114 / M. Morjean et al. -- Microscopic dynamics of shape coexistence phenomena around [symbol]Se and [symbol]Kr / N. Hinohara et al. -- [symbol]-cluster states and 4[symbol]-particle condensation in [symbol]O / Y. Funaki et al. -- Evolution of the N = 28 shell closure far from stability / O. Sorlin et al. -- Continuum QRPA approach and the surface di-neutron modes in nuclei near the neutron drip-line / M. Matsuo et al. -- Deformed relativistic Hartree-Bogoliubov model for exotic nuclei / S. G. Zhou et al. -- Two- and three-body correlations in three-body resonances and continuum states / K. Katō, K. Ikeda -- Pion- and Rho-Meson effects in relativistic Hartree-Fock and RPA / N. V. Giai et al. -- Study of the structure of neutron rich nuclei by using [symbol]-delayed neutron and gamma emission method / Y. Ye et al. -- Production of secondary radioactive [symbol] Na beam for the study of [symbol]Na([symbol], p)[symbol]Mg stellar reaction / D. N. Binh et al. -- Asymmetric nuclear matter properties within the Brueckner theory / W. Zuo et al. -- Study of giant dipole resonance in continuum relativistic random phase approximation / D. Yang et al. -- Chiral bands for quasi-proton and quasi-neutron coupling with a triaxial rotor / B. Qi et al. -- Continuum properties of the Hartree-Fock mean field with finite-range interactions / H. S. Than et al. -- A study of pairing interaction in a separable form / Y. Tian et al. -- Microscopic study of the inelastic [symbol]+[symbol]C scattering / D. C. Cuong, D. T. Khoa -- Probing the high density behavior of the symmetry energy / F. Zhang et al. -- Microscopic calculations based on a Skyrme functional plus the pairing contribution / J. Li et al. -- In-medium cross sections in Dirac-Brueckner-Hartree-Fock approach / L. Peiyan et al. -- The effect of the tensor force on single-particle states and on the isotope shift / W. Zou et al. -- [symbol]Ne excited states two-proton decay / M. De Napoli et al. -- The isomeric ratio and angular momentum of fragment [symbol]Xe in photofission of heavy nuclei / T. D. Thiep et al. -- Search for correlated two-nucleon systems in [symbol]Li and [symbol]He nuclei via one-nucleon exchange reaction / N. T. Khai et al. -- Summary talk of ISPUN07 / N. Alamanos.

  15. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming

    Based on the coalescence model for light nuclei production, we show that the yield ratio O p-d-t = N3HNp/Nmore » $$2\\atop{d}$$ of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn = $$\\langle$$(δn) 2 $$\\rangle$$/ $$\\langle$$n$$\\rangle$$ at kinetic freeze-out. From recent experimental data in central Pb + Pb collisions at $$\\sqrt{s}$$$_ {NN}$$ =6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS), we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at $$\\sqrt{s}$$$_ {NN}$$ 8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ~ 144 MeV and baryon chemical potential of ~385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.« less

  16. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions

    DOE PAGES

    Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming; ...

    2017-09-22

    Based on the coalescence model for light nuclei production, we show that the yield ratio O p-d-t = N3HNp/Nmore » $$2\\atop{d}$$ of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn = $$\\langle$$(δn) 2 $$\\rangle$$/ $$\\langle$$n$$\\rangle$$ at kinetic freeze-out. From recent experimental data in central Pb + Pb collisions at $$\\sqrt{s}$$$_ {NN}$$ =6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS), we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at $$\\sqrt{s}$$$_ {NN}$$ 8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ~ 144 MeV and baryon chemical potential of ~385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.« less

  17. Nuclear weak interactions, supernova nucleosynthesis and neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, Toshitaka

    2013-07-01

    We study the nuclear weak response in light-to-heavy mass nuclei and calculate neutrino-nucleus cross sections. We apply these cross sections to the explosive nucleosynthesis in core-collapse supernovae and find that several isotopes of rare elements 7Li, 11B, 138La, 180Ta and several others are predominantly produced by the neutrino-process nucleosynthesis. We discuss how to determine the suitable neutrino spectra of three different flavors and their anti-particles in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. Light-mass nuclei like 7Li and 11B, which are produced in outer He-layer, are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect, while heavy-mass nuclei like 138La, 180Ta and r-process elements, which are produced in the inner O-Ne-Mg layer or the atmosphere of proto-neutron star, are likely to be free from the MSW effect. Using such a different nature of the neutrino-process nucleosynthesis, we study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process 11B and 7Li encapsulated in the grains. Combining the recent experimental constraints on θ13, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  18. Arbitrary amplitude nucleus-acoustic solitons in multi-ion quantum plasmas with relativistically degenerate electrons

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Schlickeiser, R.

    2018-02-01

    A three component degenerate relativistic quantum plasma (consisting of relativistically degenerate electrons, nondegenerate inertial light nuclei, and stationary heavy nuclei) is considered to model the linear wave and also the electrostatic solitary waves in the light nuclei-scale length. A well-known normal mode analysis is employed to investigate the linear wave properties. A mechanical-motion analog (Sagdeev-type) pseudo-potential approach, which reveals the existence of large amplitude solitary excitations, is adopted to study the nonlinear wave properties. Only the positive potential solitary excitations are found to exist in the plasma medium under consideration. The basic properties of the arbitrary amplitude electrostatic acoustic modes in the light nuclei-scale length and their existence domain in terms of soliton speed (Mach number) are examined. The modifications of solitary wave characteristics and their existence domain with the variation of different key plasma configuration parameters (e.g., electrons degeneracy parameter, inertial light nuclei number density, and degenerate electron number density) are also analyzed. Our results, which may be helpful to explain the basic features of the nonlinear wave propagation in multi-component degenerate quantum plasmas, in connection with astrophysical compact objects (e.g., white dwarfs) are briefly discussed.

  19. Nucleus-acoustic shock waves in white dwarfs

    NASA Astrophysics Data System (ADS)

    Jannat, S.; Mamun, A. A.

    2018-04-01

    The nucleus-acoustic shock waves (NASWs) propagating in a white dwarf plasma system, which contain non-relativistically or ultrarelativistically degenerate electrons, non-relativistically degenerate, viscous fluid of light nuclei, and immobile nuclei of heavy elements, have been theoretically investigated. We have used the reductive perturbation method, which is valid for small but finite-amplitude NASWs to derive the Burgers equation. The NASWs are, in fact, associated with the nucleus-acoustic (NA) waves in which the inertia is provided by the light nuclei, and restoring force is provided by the degenerate pressure of electrons. On the other hand, the stationary heavy nuclei participate only in maintaining the background charge neutrality condition at equilibrium. It is found that the viscous force acting in the fluid of light nuclei is a source of dissipation, and is responsible for the formation of NASWs. It is also observed that the basic features (polarity, amplitude, width, etc.) of the NASWs are significantly modified by the presence of heavy nuclei, and that NASWs are formed with either positive or negative potential depending on the values of the charge density of the heavy nuclei. The basic properties are also found to be significantly modified by the effects of ultrarelativistically degenerate electrons. The implications of our results in white dwarfs are briefly discussed.

  20. Calculation of primordial abundances of light nuclei including a heavy sterile neutrino

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosquera, M.E.; Civitarese, O., E-mail: mmosquera@fcaglp.unlp.edu.ar, E-mail: osvaldo.civitarese@fisica.unlp.edu.ar

    2015-08-01

    We include the coupling of a heavy sterile neutrino with active neutrinos in the calculation of primordial abundances of light-nuclei. We calculate neutrino distribution functions and primordial abundances, as functions depending on a renormalization of the sterile neutrino distribution function (a), the sterile neutrino mass (m{sub s}) and the mixing angle (φ). Using the observable data, we set constrains on these parameters, which have the values 0a < 0.4, sin{sup 2} φ ≈ 0.12−0.39 and 0m{sub s} < 7 keV at 1σ level, for a fixed value of the baryon to photon ratio. When the baryon to photon ratio is allowed to vary, its extracted value ismore » in agreement with the values constrained by Planck observations and by the Wilkinson Microwave Anisotropy Probe (WMAP). It is found that the anomaly in the abundance of {sup 7}Li persists, in spite of the inclusion of a heavy sterile neutrino.« less

  1. Investigating the spectral characteristics of backscattering from heterogeneous spherical nuclei using broadband finite-difference time-domain simulations

    NASA Astrophysics Data System (ADS)

    Chao, Guo-Shan; Sung, Kung-Bin

    2010-01-01

    Reflectance spectra measured from epithelial tissue have been used to extract size distribution and refractive index of cell nuclei for noninvasive detection of precancerous changes. Despite many in vitro and in vivo experimental results, the underlying mechanism of sizing nuclei based on modeling nuclei as homogeneous spheres and fitting the measured data with Mie theory has not been fully explored. We describe the implementation of a three-dimensional finite-difference time-domain (FDTD) simulation tool using a Gaussian pulse as the light source to investigate the wavelength-dependent characteristics of backscattered light from a nuclear model consisting of a nucleolus and clumps of chromatin embedded in homogeneous nucleoplasm. The results show that small-sized heterogeneities within the nuclei generate about five times higher backscattering than homogeneous spheres. More interestingly, backscattering spectra from heterogeneous spherical nuclei show periodic oscillations similar to those from homogeneous spheres, leading to high accuracy of estimating the nuclear diameter by comparison with Mie theory. In addition to the application in light scattering spectroscopy, the reported FDTD method could be adapted to study the relations between measured spectral data and nuclear structures in other optical imaging and spectroscopic techniques for in vivo diagnosis.

  2. Concentration and variability of ice nuclei in the subtropical maritime boundary layer

    NASA Astrophysics Data System (ADS)

    Welti, André; Müller, Konrad; Fleming, Zoë L.; Stratmann, Frank

    2018-04-01

    Measurements of the concentration and variability of ice nucleating particles in the subtropical maritime boundary layer are reported. Filter samples collected in Cabo Verde over the period 2009-2013 are analyzed with a drop freezing experiment with sensitivity to detect the few rare ice nuclei active at low supercooling. The data set is augmented with continuous flow diffusion chamber measurements at temperatures below -24 °C from a 2-month field campaign in Cabo Verde in 2016. The data set is used to address the following questions: what are typical concentrations of ice nucleating particles active at a certain temperature? What affects their concentration and where are their sources? Concentration of ice nucleating particles is found to increase exponentially by 7 orders of magnitude from -5 to -38 °C. Sample-to-sample variation in the steepness of the increase indicates that particles of different origin, with different ice nucleation properties (size, composition), contribute to the ice nuclei concentration at different temperatures. The concentration of ice nuclei active at a specific temperature varies over a range of up to 4 orders of magnitude. The frequency with which a certain ice nuclei concentration is measured within this range is found to follow a lognormal distribution, which can be explained by random dilution during transport. To investigate the geographic origin of ice nuclei, source attribution of air masses from dispersion modeling is used to classify the data into seven typical conditions. While no source could be attributed to the ice nuclei active at temperatures higher than -12 °C, concentrations at lower temperatures tend to be elevated in air masses originating from the Sahara.

  3. Depressive disorder may be associated with raphe nuclei lesions in patients with brainstem infarction.

    PubMed

    Numasawa, Yoshiyuki; Hattori, Takaaki; Ishiai, Sumio; Kobayashi, Zen; Kamata, Tomoyuki; Kotera, Minoru; Ishibashi, Satoru; Sanjo, Nobuo; Mizusawa, Hidehiro; Yokota, Takanori

    2017-04-15

    Depression is a common symptom after stroke, but its neural substrates remain unclear. The ascending serotonergic system originates from the raphe nuclei in the brainstem. We hypothesized that depressive disorder due to brainstem infarction is associated with damage to the raphe nuclei. We prospectively enrolled 19 patients who had the first-ever acute isolated brainstem infarction in an observational cross-sectional study. All patients were evaluated by using the Montgomery Åsberg Depression Rating Scale (MADRS), the clinician-rated version of Apathy Evaluation Scale (AES-C) and Mini-Mental State Examination (MMSE). Depressive disorder was diagnosed according to DSM-5 and MADRS score of 12 or greater. Diffusion tensor imaging and proton density-weighted images were used to identify damage in the raphe nuclei. Accordingly, patients were classified into either the raphe-nuclei-damaged or intact group. Prevalence of depressive disorder and the MADRS, AES-C, and MMSE scores were compared between the two groups. Depressive disorder was more frequent in the damaged group (n=6) than in the intact group (n=13) (83% vs. 15%; P=0.01). MADRS scores were higher in the damaged group than in the intact group (mean±1 SD, 17.5±7.9 vs. 7.0±4.4; P=0.002), whereas the AES-C and MMSE scores did not differ between groups. We did not assess the damage to the ascending projection fibers from the raphe nuclei. Our results suggest that damage to the raphe nuclei underlies depressive disorder due to brainstem infarction, possibly via serotonergic denervation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Low-energy antikaon-nuclei interactions studies by AMADEUS: from QCD with strangeness to neutron stars

    NASA Astrophysics Data System (ADS)

    Piscicchia, K.; Curceanu, C.; Cargnelli, M.; Del Grande, R.; Fabbietti, L.; Marton, J.; Scordo, A.; Sirghi, D.; Tucakovic, I.; Vazquez Doce, O.; Wycech, S.; Zmeskal, J.; Mandaglio, G.; Martini, M.; Moskal, P.

    2018-01-01

    The AMADEUS collaboration aims to provide unique quality results from K- hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the Λ(1405) state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon K- absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters and to the role of strangeness in neutron stars. AMADEUS takes advantage of the DAΦNE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for K- nuclear capture on H, 4He, 9Be and 12C, both at-rest and in-flight.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Varinderjit; Vadas, J.; Steinbach, T. K.

    Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a stringent test of a microscopic description of fusion. We report the first measurement of the fusion excitation function at near-barrier energies for the 19O+ 12C system. The measured excitation function is compared with the fusion excitation function of 18O+ 12C. A significant enhancement in the fusion probability of 19O ions with a 12C target as compared to 18O ions is observed. As a result, the experimental cross-sections observed at near-barrier energies are compared with a state-of-the-art microscopic model.

  6. Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govindarajan, A.G.; Lindow, S.E.

    1988-03-01

    Four bacterial species are known to catalyze ice formation at temperatures just below 0/sup 0/C. To better understand the relationship between the molecular structure of bacterial ice-nucleation site(s) and the quantitative and qualitative features of the ice-nucleation-active phenotype, the authors determined by ..gamma..-radiation analysis the in situ size of ice-nucleation sites in strains of Pseudomonas syringae and Erwinia herbicola and in Escherichia coli HB101 carrying the plasmid pICE1.1. Lyophilized cells of each bacterial strain were irradiated with a flux of ..gamma.. radiation from 0 to 10.2 Mrad. Differential concentrations of active ice nuclei decreased as a first-order function of radiationmore » dose in all strains as temperature was decreased from -2/sup 0/C to -14/sup 0/C in 1/sup 0/C intervals. Sizes of ice nuclei were calculated from the /sup +/-radiation flux at which 37% of initial ice nuclei active within each 1/sup 0/C temperature interval remained. The minimum mass of a functional ice nucleus was about 150 kDa for all strains. The size of ice nuclei increased logarithmically with increasing temperature from -12/sup 0/CC to -2/sup 0/C, where the estimated nucleant mass was 19,000 kDa. The ice nucleant in these three bacterial species may represent an oligomeric structure, composed at least in part of an ice gene product that can self-associate to assume many possible sizes.« less

  7. (Multi-)strange hadron and light (anti-)nuclei production with ALICE at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lea, Ramona

    Thanks to its excellent tracking performance and particle identification capabilities, the ALICE detector allows for the identification of light (anti-)(hyper)nuclei and for the measurement of (multi-)strange particles over a wide range of transverse momentum. Deuterons, {sup 3}He and {sup 4}He and their corresponding anti-nuclei are identified via their specific energy loss in the Time Projection Chamber and the velocity measurement provided by the Time-Of-Flight detector. Strange and multi-strange baryons and mesons as well as (anti-)hypertritons are reconstructed via their topological decays. Detailed measurements of (multi-)strange hadron production in pp, p–Pb and Pb–Pb collision and of light (anti-)nuclei and (anti-)hypertritons inmore » Pb–Pb collisions with ALICE at the LHC are presented. The experimental results will be compared with the predictions of both statistical hadronization and coalescence models.« less

  8. Circadian rhythms in heart rate, motility, and body temperature of wild-type C57 and eNOS knock-out mice under light-dark, free-run, and after time zone transition.

    PubMed

    Arraj, M; Lemmer, B

    2006-01-01

    The nitric oxide (NO) system is involved in the regulation of the cardiovascular system in controlling central and peripheral vascular tone and cardiac functions. It was the aim of this study to investigate in wild-type C57BL/6 and endothelial nitric oxide synthase (eNOS) knock-out mice (eNOS-/-) the contribution of NO on the circadian rhythms in heart rate (HR), motility (motor activity [MA]), and body temperature (BT) under various environmental conditions. Experiments were performed in 12:12 h of a light:dark cycle (LD), under free-run in total darkness (DD), and after a phase delay shift of the LD cycle by -6 h (i.e., under simulation of a westward time zone transition). All parameters were monitored by radiotelemetry in freely moving mice. In LD, no significant differences in the rhythms of HR and MA were observed between the two strains of mice. BT, however, was significantly lower during the light phase in eNOS-/- mice, resulting in a significantly greater amplitude. The period of the free-running rhythm in DD was slightly shorter for all variables, though not significant. In general, rhythmicity was greater in eNOS-/- than in C57 mice both in LD and DD. After a delay shift of the LD cycle, HR and BT were resynchronized to the new LD schedule within 5-6 days, and resynchronization of MA occurred within 2-3 days. The results in telemetrically instrumented mice show that complete knock-out of the endothelial NO system--though expressed in the suprachiasmatic nuclei and in peripheral tissues--did not affect the circadian organization of heart rate and motility. The circadian regulation of the body temperature was slightly affected in eNOS-/- mice.

  9. Measurement of activation of rhodopsine with heavy ions irradiation in the ALTEA program: a possible mechanism responsible for light flash perceptions in space

    NASA Astrophysics Data System (ADS)

    Narici, Livio; Rinaldi, Adele; Sannita, Walter, , Prof; Paci, Maurizio; Brunetti, Valentina; de Martino, Angelo; Picozza, Piergiorgio

    Since late 60s astronauts in space have reported seeing flashes of light, more frequently when dark adapted. Experiments have been performed to characterize these phenomena, and to suggest possible mechanisms. High Z ions have been shown to be the most likely cause of these perceptions: when ionizing radiation hits the eye there is a high probability of a light flash perception. However the mechanisms behind this phenomenon are not fully understood yet. We show that one of these mechanisms is the activation of the rhodopsin (bleaching) by heavy ions. Rhodopsin is at the start of the photo-electronic cascade in the process of vision. It is one of the best molecular transducer to convert a visible photon into an electric signal. In this work we show that rhodopsine can also be activated by irradiation with 12C nuclei. In the frame of ALTEA program, aimed at studying the effects of cosmic radiation on brain functions, an investigation on the interaction between heavy ions and rhodopsin has been performed. Intact Rod Outer Segment (ROS) containing rhodopsin were isolated from bovine retina. Suspended rods were irradiated with 12C (200 MeV/n, well below the Cherenkov threshold) at GSI (Darmstadt FRG) with doses ranging from few mrem to several rem. Spectrophotometric measurements investigated the presence of non activated and activated rhodopsin. The functionality of the purified rods were checked by previous light irradiation and subsequent regeneration by the addition of external 11-cis-retinal, to confirm the reversibility of the process in vitro. We can show effective and reversible bleaching also following irradiation, thus proving that the rhodopsin was not damaged by radiation. Works are in progress to model this interaction. Latest analysis results and considerations about the underlying mechanism will be presented.

  10. The Mirror Nuclei 3H and 3He Program at JLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Javier

    2017-02-28

    Jefferson Lab plans to carry out in the near future a group of four experiments involving the mirror nuclei 3H and 3He, using electron beam energies of up to 11 GeV. Our experiments aim to, (A) extract the deep inelastic neutron to proton structure function ratio Fmore » $$n\\atop{2}$$F$$p\\atop{2}$$ (and u / d quark distributions) for 0.2 ≤ x ≤ 0.9 , (B) study the isospin structure of two-nucleon and search for three-nucleon Short Range Correlations (SRC) for x < 3 , (C) measure the proton momentum distribution of both nuclei at $x = 1.2$ to further our understanding of SRCs in the few-body and (D) extract the charge radii of both nuclei at Q 2 ≤ 0.1 GeV 2.« less

  11. TESTING THE ROLE OF SNe Ia FOR GALACTIC CHEMICAL EVOLUTION OF p-NUCLEI WITH TWO-DIMENSIONAL MODELS AND WITH s-PROCESS SEEDS AT DIFFERENT METALLICITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travaglio, C.; Gallino, R.; Rauscher, T.

    2015-01-20

    The bulk of p isotopes is created in the ''gamma processes'' mainly by sequences of photodisintegrations and beta decays in explosive conditions in Type Ia supernovae (SNIa) or in core collapse supernovae (ccSN). The contribution of different stellar sources to the observed distribution of p-nuclei in the solar system is still under debate. We explore single degenerate Type Ia supernovae in the framework of two-dimensional SNIa delayed-detonation explosion models. Travaglio et al. discussed the sensitivity of p-nuclei production to different SNIa models, i.e., delayed detonations of different strength, deflagrations, and the dependence on selected s-process seed distributions. Here we present amore » detailed study of p-process nucleosynthesis occurring in SNIa with s-process seeds at different metallicities. Based on the delayed-detonation model DDT-a of TRV11, we analyze the dependence of p-nucleosynthesis on the s-seed distribution obtained from different strengths of the {sup 13}C pocket. We also demonstrate that {sup 208}Pb seed alone changes the p-nuclei production considerably. The heavy-s seeds (140 ≤A < 208) contribute with about 30%-40% to the total light-p nuclei production up to {sup 132}Ba (with the exception of {sup 94}Mo and {sup 130}Ba, to which the heavy-s seeds contribute with about 15% only). Using a Galactic chemical evolution code from Travaglio et al., we study the contribution of SNIa to the solar stable p-nuclei. We find that explosions of Chandrasekhar-mass single degenerate systems produce a large amount of p-nuclei in our Galaxy, both in the range of light (A ≤ 120) and heavy p-nuclei, at almost flat average production factors (within a factor of about three). We discussed in details p-isotopes such as {sup 94}Mo with a behavior diverging from the average, which we attribute to uncertainties in the nuclear data or in SNIa modeling. Li et al. find that about 70% of all SNeIa are normal events. If these are explained in the framework of explosions of Chandrasekhar-mass white dwarfs resulting from the single-degenerate progenitor channel, we find that they are responsible for at least 50% of the p-nuclei abundances in the solar system.« less

  12. Local chiral potentials with Δ -intermediate states and the structure of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piarulli, M.; Girlanda, L.; Schiavilla, R.

    We present fully local versions of the minimally non-local nucleon-nucleon potentials constructed in a previous paper [M. Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical-harmonics and quantum Monte Carlo calculations of ground and excited states of 3H, 3He, 4He, 6He, and 6Li nuclei. The long-range part of these local potentials includes oneand two-pion exchange contributions without and with Δ isobars in the intermediate states up to order Q3 (Q denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order Q4. The low-energy constantsmore » multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0–125 MeV or 0–200 MeV, and to the deuteron binding energy and nn singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, RL and RS respectively, ranging from (RL,RS) = (1.2, 0.8) fm down to (0.8, 0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  13. Measurement of Two- and Three-Nucleon Short-Range Correlation Probabilities in Nuclei

    NASA Astrophysics Data System (ADS)

    Egiyan, K. S.; Dashyan, N. B.; Sargsian, M. M.; Strikman, M. I.; Weinstein, L. B.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Avakian, H.; Baghdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Bultuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Coltharp, P.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Sanctis, E. De; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Gavalian, G.; Gevorgyan, N. G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hardie, J.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A.; Klusman, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Livingston, K.; Maximon, L. C.; McAleer, S.; McKinnon, B.; McNabb, J. W.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morrow, S. A.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Peterson, C.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Suleiman, R.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.

    2006-03-01

    The ratios of inclusive electron scattering cross sections of 4He, 12C, and 56Fe to 3He have been measured at 11.4 GeV2, the ratios exhibit two separate plateaus, at 1.52.25. This pattern is predicted by models that include 2- and 3-nucleon short-range correlations (SRC). Relative to A=3, the per-nucleon probabilities of 3-nucleon SRC are 2.3, 3.1, and 4.4 times larger for A=4, 12, and 56. This is the first measurement of 3-nucleon SRC probabilities in nuclei.

  14. Constant Light Desynchronizes Olfactory versus Object and Visuospatial Recognition Memory Performance

    PubMed Central

    Tam, Shu K.E.; Hasan, Sibah; Brown, Laurence A.; Jagannath, Aarti; Hankins, Mark W.; Foster, Russell G.; Vyazovskiy, Vladyslav V.

    2017-01-01

    Circadian rhythms optimize physiology and behavior to the varying demands of the 24 h day. The master circadian clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and it regulates circadian oscillators in tissues throughout the body to prevent internal desynchrony. Here, we demonstrate for the first time that, under standard 12 h:12 h light/dark (LD) cycles, object, visuospatial, and olfactory recognition performance in C57BL/6J mice is consistently better at midday relative to midnight. However, under repeated exposure to constant light (rLL), recognition performance becomes desynchronized, with object and visuospatial performance better at subjective midday and olfactory performance better at subjective midnight. This desynchrony in behavioral performance is mirrored by changes in expression of the canonical clock genes Period1 and Period2 (Per1 and Per2), as well as the immediate-early gene Fos in the SCN, dorsal hippocampus, and olfactory bulb. Under rLL, rhythmic Per1 and Fos expression is attenuated in the SCN. In contrast, hippocampal gene expression remains rhythmic, mirroring object and visuospatial performance. Strikingly, Per1 and Fos expression in the olfactory bulb is reversed, mirroring the inverted olfactory performance. Temporal desynchrony among these regions does not result in arrhythmicity because core body temperature and exploratory activity rhythms persist under rLL. Our data provide the first demonstration that abnormal lighting conditions can give rise to temporal desynchrony between autonomous circadian oscillators in different regions, with different consequences for performance across different sensory domains. Such a dispersed network of dissociable circadian oscillators may provide greater flexibility when faced with conflicting environmental signals. SIGNIFICANCE STATEMENT A master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus regulates physiology and behavior across the 24 h day by synchronizing peripheral clocks throughout the brain and body. Without the SCN, these peripheral clocks rapidly become desynchronized. Here, we provide a unique demonstration that, under lighting conditions in which the central clock in the SCN is dampened, peripheral oscillators in the hippocampus and olfactory bulb become desynchronized, along with the behavioral processes mediated by these clocks. Multiple clocks that adopt different phase relationships may enable processes occurring in different brain regions to be optimized to specific phases of the 24 h day. Moreover, such a dispersed network of dissociable circadian clocks may provide greater flexibility when faced with conflicting environmental signals (e.g., seasonal changes in photoperiod). PMID:28264977

  15. X-ray variability in active galaxy nuclei and quasars in less than one day

    NASA Technical Reports Server (NTRS)

    Elvis, M.; Feigelson, E.; Griffiths, R. E.; Henry, J. P.; Tananbaum, H.

    1980-01-01

    Data obtained from the Einstein Observatory demonstrating variations in X-ray emission from the nuclei of active galaxies and quasars on time scales of hours rather than previously observed days or years is presented. Light curves obtained from the Einstein imaging proportional counter for the Seyfert 1 galaxy NGC 6814 and from the High Resolution Imager for the quasars OX 169 and 3C 273 are illustrated, and variations by factors greater than two on time scales less than 20,000 sec for the first two objects and by a factor of 10% on a time scale over 50,000 sec for 3C 273 are pointed out. The measurements are also used to determine that thermal bremsstrahlung cannot be the cause of the intensity decay in OX 169, and that, in the absence of relativistic effects, the efficiency for energy release in the matter involved in the emission of 3C 273 is at least 0.1.

  16. Hyperspectral microscopic analysis of normal, benign and carcinoma microarray tissue sections

    NASA Astrophysics Data System (ADS)

    Maggioni, Mauro; Davis, Gustave L.; Warner, Frederick J.; Geshwind, Frank B.; Coppi, Andreas C.; DeVerse, Richard A.; Coifman, Ronald R.

    2006-02-01

    We apply a unique micro-optoelectromechanical tuned light source and new algorithms to the hyper-spectral microscopic analysis of human colon biopsies. The tuned light prototype (Plain Sight Systems Inc.) transmits any combination of light frequencies, range 440nm 700nm, trans-illuminating H and E stained tissue sections of normal (N), benign adenoma (B) and malignant carcinoma (M) colon biopsies, through a Nikon Biophot microscope. Hyper-spectral photomicrographs, randomly collected 400X magnication, are obtained with a CCD camera (Sensovation) from 59 different patient biopsies (20 N, 19 B, 20 M) mounted as a microarray on a single glass slide. The spectra of each pixel are normalized and analyzed to discriminate among tissue features: gland nuclei, gland cytoplasm and lamina propria/lumens. Spectral features permit the automatic extraction of 3298 nuclei with classification as N, B or M. When nuclei are extracted from each of the 59 biopsies the average classification among N, B and M nuclei is 97.1%; classification of the biopsies, based on the average nuclei classification, is 100%. However, when the nuclei are extracted from a subset of biopsies, and the prediction is made on nuclei in the remaining biopsies, there is a marked decrement in performance to 60% across the 3 classes. Similarly the biopsy classification drops to 54%. In spite of these classification differences, which we believe are due to instrument and biopsy normalization issues, hyper-spectral analysis has the potential to achieve diagnostic efficiency needed for objective microscopic diagnosis.

  17. Using white-light spectroscopy for size determination of tissue phantoms

    NASA Astrophysics Data System (ADS)

    Vitol, Elina A.; Kurzweg, Timothy P.; Nabet, Bahram

    2005-09-01

    Along with breast and cervical cancer, esophageal adenocarcinoma is one of the most common types of cancers. The characteristic features of pre-cancerous tissues are the increase in cell proliferation rate and cell nuclei enlargement, which both take place in the epithelium of human body surfaces. However, in the early stages of cancer these changes are very small and difficult to detect, even for expert pathologists. The aim of our research is to develop an optical probe for in vivo detection of nuclear size changes using white light scattering from cell nuclei. The probe will be employed through an endoscope and will be used for the medical examination of the esophagus. The proposed method of examination will be noninvasive, cheap, and specific, compared to a biopsy. Before the construction of this probe, we have developed theory to determine the nuclei size from the reflection data. In this first stage of our research, we compare experimental and theoretical scattered light intensities. Our theoretical model includes the values of scatterer size from which we can extract the nuclei size value. We first performed the study of polystyrene microspheres, acting as a tissue phantom. Spectral and angular distributions of scattered white light from tissue phantoms were studied. Experimental results show significant differences between the spectra of microspheres of different sizes and demonstrate almost linear relation between the number of spectral oscillations and the size of microspheres. Best results were achieved when the scattered light spectrum was collected at 30° to the normal of the sample surface. We present these research results in this paper. In ongoing work, normal and cancerous mammalian cell studies are being performed in order to determine cell nuclei size correlation with the size of microspheres through the light scattering spectrum observation.

  18. Myogenic potential of mesenchymal stem cells isolated from porcine adipose tissue.

    PubMed

    Milner, Derek J; Bionaz, Massimo; Monaco, Elisa; Cameron, Jo Ann; Wheeler, Matthew B

    2018-06-01

    Advances in stem cell biology and materials science have provided a basis for developing tissue engineering methods to repair muscle injury. Among stem cell populations with potential to aid muscle repair, adipose-derived mesenchymal stem cells (ASC) hold great promise. To evaluate the possibility of using porcine ASC for muscle regeneration studies, we co-cultured porcine ASC with murine C 2 C 12 myoblasts. These experiments demonstrated that porcine ASC display significant myogenic potential. Co-culture of ASC expressing green fluorescent protein (GFP) with C 2 C 12 cells resulted in GFP + myotube formation, indicating fusion of ASC with myoblasts to form myotubes. The presence of porcine lamin A/C positive nuclei in myotubes and RTqPCR analysis of porcine myogenin and desmin expression confirmed that myotube nuclei derived from ASC contribute to muscle gene expression. Co-culturing GFP + ASC with porcine satellite cells demonstrated enhanced myogenic capability of ASC, as the percentage of labeled myotubes increased compared to mouse co-cultures. Enhancing myogenic potential of ASC through soluble factor treatment or expansion of ASC with innate myogenic capacity should allow for their therapeutic use to regenerate muscle tissue lost to disease or injury.

  19. In situ transmission electron microscopy study on the epitaxial growth of CoSi2 on Si(111) at temperatures below 150 C

    NASA Technical Reports Server (NTRS)

    Nieh, C. W.; Lin, T. L.

    1989-01-01

    This paper reports an in situ transmission electron microscopy study on the epitaxial growth of CoSi2 on Si(111) from a 10-nm-thick amorphous mixture of Co and Si in the ratio 1:2, which was formed by codeposition of Co and Si near room temperature. Nuclei of CoSi2 are observed in the as-deposited film. These nuclei are epitaxial and extend through the whole film thickness. Upon annealing, these columnar epitaxial CoSi2 grains grow laterally at temperatures as low as 50 C. The kinetics of this lateral epitaxial growth was studied at temperatures between 50 and 150 C. The activation energy of the growth process is 0.8 + or - 0.1 eV.

  20. Isobar analog states (IAS), double isobar analog states (DIAS), configuration states (CS), and double configuration states (DCS) in halo nuclei. Halo isomers

    NASA Astrophysics Data System (ADS)

    Izosimov, I. N.

    2015-10-01

    It has been shown that IAS, DIAS, CS, and DCS can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in 6,7,8Li, 8,9,10Be, 8,10,11B, 10,11,12,13,14C, 13,14,15,16,17N, 15,16,17,19O, and 17F are analyzed. Special attention is given to nuclei whose ground state does not exhibit halo structure but the excited state may have one.

  1. Nuclear longitudinal form factors for axially deformed charge distributions expanded by nonorthogonal basis functions

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Zhang, Jinjuan; Xu, Chang; Ren, Zhongzhou

    2017-05-01

    In this paper, the nuclear longitudinal form factors are systematically studied from the intrinsic charge multipoles. For axially deformed nuclei, two different types of density profiles are used to describe their charge distributions. For the same charge distributions expanded with different basis functions, the corresponding longitudinal form factors are derived and compared with each other. Results show the multipoles Cλ of longitudinal form factors are independent of the basis functions of charge distributions. Further numerical calculations of longitudinal form factors of 12C indicates that the C 0 multipole reflects the contributions of spherical components of all nonorthogonal basis functions. For deformed nuclei, their charge RMS radii can also be determined accurately by the C 0 measurement. The studies in this paper examine the model-independent properties of electron scattering, which are useful for interpreting electron scattering experiments on exotic deformed nuclei. Supported by National Natural Science Foundation of China (11505292, 11175085, 11575082, 11235001, 11275138, and 11447226), by Shandong Provincial Natural Science Foundation, China (BS2014SF007), Fundamental Research Funds for Central Universities (15CX02072A).

  2. Sleep Deprivation and Caffeine Treatment Potentiate Photic Resetting of the Master Circadian Clock in a Diurnal Rodent.

    PubMed

    Jha, Pawan Kumar; Bouâouda, Hanan; Gourmelen, Sylviane; Dumont, Stephanie; Fuchs, Fanny; Goumon, Yannick; Bourgin, Patrice; Kalsbeek, Andries; Challet, Etienne

    2017-04-19

    Circadian rhythms in nocturnal and diurnal mammals are primarily synchronized to local time by the light/dark cycle. However, nonphotic factors, such as behavioral arousal and metabolic cues, can also phase shift the master clock in the suprachiasmatic nuclei (SCNs) and/or reduce the synchronizing effects of light in nocturnal rodents. In diurnal rodents, the role of arousal or insufficient sleep in these functions is still poorly understood. In the present study, diurnal Sudanian grass rats, Arvicanthis ansorgei , were aroused at night by sleep deprivation (gentle handling) or caffeine treatment that both prevented sleep. Phase shifts of locomotor activity were analyzed in grass rats transferred from a light/dark cycle to constant darkness and aroused in early night or late night. Early night, but not late night, sleep deprivation induced a significant phase shift. Caffeine on its own induced no phase shifts. Both sleep deprivation and caffeine treatment potentiated light-induced phase delays and phase advances in response to a 30 min light pulse, respectively. Sleep deprivation in early night, but not late night, potentiated light-induced c-Fos expression in the ventral SCN. Caffeine treatment in midnight triggered c-Fos expression in dorsal SCN. Both sleep deprivation and caffeine treatment potentiated light-induced c-Fos expression in calbindin-containing cells of the ventral SCN in early and late night. These findings indicate that, in contrast to nocturnal rodents, behavioral arousal induced either by sleep deprivation or caffeine during the sleeping period potentiates light resetting of the master circadian clock in diurnal rodents, and activation of calbindin-containing suprachiasmatic cells may be involved in this effect. SIGNIFICANCE STATEMENT Arousing stimuli have the ability to regulate circadian rhythms in mammals. Behavioral arousal in the sleeping period phase shifts the master clock in the suprachiasmatic nuclei and/or slows down the photic entrainment in nocturnal animals. How these stimuli act in diurnal species remains to be established. Our study in a diurnal rodent, the Grass rat, indicates that sleep deprivation in the early rest period induces phase delays of circadian locomotor activity rhythm. Contrary to nocturnal rodents, both sleep deprivation and caffeine-induced arousal potentiate the photic entrainment in a diurnal rodent. Such enhanced light-induced circadian responses could be relevant for developing chronotherapeutic strategies. Copyright © 2017 the authors 0270-6474/17/374343-16$15.00/0.

  3. Comparison between sensitivity of a viscometric method and sensitivity of the alkaline elution assay for the determination of DNA damage induced by dimethylsulfate in vitro.

    PubMed

    Parodi, S; Balbi, C; Taningher, M; Abelmoschi, M L; Pala, M; Parodi, G; Santi, L

    1982-03-01

    DNA damage induced by dimethylsulfate (DMS) was measured with a new oscillating crucible viscometer, having a U-shaped circular channel. Rat liver nuclei were treated in vitro. Viscosity was measured by lysing nuclei in an aklaline lysing solution (pH 12.5; 25 degrees C). Nuclei were lysed immediately in the viscometer and released DNA started to uncoil. In control samples the viscosity increased very slowly with time, reaching a maximum only after about 8 h. A progressively more rapid increase in viscosity was seen with increasing concentrations of DMS. The time of DNA disentanglement was sensitive to about 30 times less breaks than the alkaline elution assay.

  4. Study of resonances produced in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Quattrocchi, L.; Acosta, L.; Auditore, L.; Cardella, G.; Chbihi, A.; De Filippo, E.; Favela, F.; Gnoffo, B.; Lanzalone, G.; Martel, I.; Martorana, N. S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Veselsky, M.

    2018-05-01

    At Laboratori Nazionali del Sud of Catania an experiment has been carried out in order to investigate the correlations between particles produced in 12C+24Mg reaction at 35 AMeV incident energy. Two α correlation has been explored because provide information about temperature of 8Be nuclei produced in the reaction, while three α correaltion has been studied in order to evaluate the competition between sequential and direct decay mode of resonances produced in 12C quasi-projectiles.

  5. Reaction Studies With Light, Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Ernst Rehm, K.

    2006-10-01

    The availability of beams of exotic nuclei allows us for the first time to study in a terrestrial laboratory reactions, which occur in stellar explosions, such as Novae, Supernovae or X-ray bursts. In this talk I will present results from recent experiments performed with beams of light, unstable nuclei, which are produced via the in-flight technique at the ATLAs accelerator at Argonne. This work was supported by the US Department of Energy, Nuclear Physics Division, under contract No. W-31-109-ENG-38 and by the NSF Grant No. PHY-02-16783 (Joint Institute for Nuclear Astrophysics).

  6. Leptin-sensitive neurons in the arcuate nuclei contribute to endogenous feeding rhythms

    PubMed Central

    Wiater, Michael F.; Oostrom, Marjolein T.; Smith, Bethany R.; Wang, Qing; Dinh, Thu T.; Roberts, Brandon L.; Jansen, Heiko T.; Ritter, Sue

    2012-01-01

    Neural sites that interact with the suprachiasmatic nuclei (SCN) to generate rhythms of unrestricted feeding remain unknown. We used the targeted toxin, leptin conjugated to saporin (Lep-SAP), to examine the importance of leptin receptor-B (LepR-B)-expressing neurons in the arcuate nucleus (Arc) for generation of circadian feeding rhythms. Rats given Arc Lep-SAP injections were initially hyperphagic and rapidly became obese (the “dynamic phase” of weight gain). During this phase, Lep-SAP rats were arrhythmic under 12:12-h light-dark (LD) conditions, consuming 59% of their total daily intake during the daytime, compared with 36% in blank-SAP (B-SAP) controls. Lep-SAP rats were also arrhythmic in continuous dark (DD), while significant circadian feeding rhythms were detected in all B-SAP controls. Approximately 8 wk after injection, Lep-SAP rats remained obese but transitioned into a “static phase” of weight gain marked by attenuation of their hyperphagia and rate of weight gain. In this phase, Arc Lep-SAP rats exhibited circadian feeding rhythms under LD conditions, but were arrhythmic in continuous light (LL) and DD. Lep-SAP injections into the ventromedial hypothalamic nucleus did not cause hyperphagia, obesity, or arrhythmic feeding in either LD or DD. Electrolytic lesion of the SCN produced feeding arrhythmia in DD but not hyperphagia or obesity. Results suggest that both Arc Lep-SAP neurons and SCN are required for generation of feeding rhythms entrained to photic cues, while also revealing an essential role for the Arc in maintaining circadian rhythms of ad libitum feeding independent of light entrainment. PMID:22492818

  7. CACA-TOCSY with alternate 13C-12C labeling: a 13Calpha direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification.

    PubMed

    Takeuchi, Koh; Frueh, Dominique P; Sun, Zhen-Yu J; Hiller, Sebastian; Wagner, Gerhard

    2010-05-01

    We present a (13)C direct detection CACA-TOCSY experiment for samples with alternate (13)C-(12)C labeling. It provides inter-residue correlations between (13)C(alpha) resonances of residue i and adjacent C(alpha)s at positions i - 1 and i + 1. Furthermore, longer mixing times yield correlations to C(alpha) nuclei separated by more than one residue. The experiment also provides C(alpha)-to-sidechain correlations, some amino acid type identifications and estimates for psi dihedral angles. The power of the experiment derives from the alternate (13)C-(12)C labeling with [1,3-(13)C] glycerol or [2-(13)C] glycerol, which allows utilizing the small scalar (3)J(CC) couplings that are masked by strong (1)J(CC) couplings in uniformly (13)C labeled samples.

  8. SLOW $pi$$sup +$-MESON CAPTURE BY LIGHT NUCLEI IN THE CORRELATIONAL NUCLEAR MODEL (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shklyarevskii, G.M.

    Absorption of slow pi /sup +/-mesons by light nuclei in the pi /sup +/ + A yields A' + 2p reaction is considered. It is shown that an investigation of the proton spectra permits one to study small range pair correlation between nuclear nucleons. Conditions in which the corresponding experiments should be carried out are indicated. (auth)

  9. Electric dipole moments of light nuclei from {chi}EFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, Renato

    I present recent calculations of EDMs of light nuclei using chiral effective field theory techniques. At leading-order, we argue that they can be expressed in terms of six CP-violating low-energy constants. With our expressions, eventual non-zero measurements of EDMs of deuteron, helion, and triton can be combined to disentangle the different sources of CP-violation.

  10. Electric dipole moments of light nuclei from χEFT

    NASA Astrophysics Data System (ADS)

    Higa, Renato

    2013-03-01

    I present recent calculations of EDMs of light nuclei using chiral effective field theory techniques. At leading-order, we argue that they can be expressed in terms of six CP-violating low-energy constants. With our expressions, eventual non-zero measurements of EDMs of deuteron, helion, and triton can be combined to disentangle the different sources of CP-violation.

  11. Functional neuroanatomy of the central noradrenergic system.

    PubMed

    Szabadi, Elemer

    2013-08-01

    The central noradrenergic neurone, like the peripheral sympathetic neurone, is characterized by a diffusely arborizing terminal axonal network. The central neurones aggregate in distinct brainstem nuclei, of which the locus coeruleus (LC) is the most prominent. LC neurones project widely to most areas of the neuraxis, where they mediate dual effects: neuronal excitation by α₁-adrenoceptors and inhibition by α₂-adrenoceptors. The LC plays an important role in physiological regulatory networks. In the sleep/arousal network the LC promotes wakefulness, via excitatory projections to the cerebral cortex and other wakefulness-promoting nuclei, and inhibitory projections to sleep-promoting nuclei. The LC, together with other pontine noradrenergic nuclei, modulates autonomic functions by excitatory projections to preganglionic sympathetic, and inhibitory projections to preganglionic parasympathetic neurones. The LC also modulates the acute effects of light on physiological functions ('photomodulation'): stimulation of arousal and sympathetic activity by light via the LC opposes the inhibitory effects of light mediated by the ventrolateral preoptic nucleus on arousal and by the paraventricular nucleus on sympathetic activity. Photostimulation of arousal by light via the LC may enable diurnal animals to function during daytime. LC neurones degenerate early and progressively in Parkinson's disease and Alzheimer's disease, leading to cognitive impairment, depression and sleep disturbance.

  12. Glass-wool study of laser-induced spin currents en route to hyperpolarized Cs salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Kiyoshi

    2011-07-15

    The nuclear spin polarization of optically pumped Cs atoms flows to the surface of Cs hydride in a vapor cell. A fine glass wool lightly coated with the salt helps greatly increase the surface area in contact with the pumped atoms and enhance the spin polarization of the salt nuclei. Even though the glass wool randomly scatters the pump light, the atomic vapor can be polarized with unpolarized light in a magnetic field. The measured enhancement in the salt enables study of the polarizations of light and atomic nuclei very near the salt surface.

  13. Effect of channel coupling on the elastic scattering of lithium isotopes

    NASA Astrophysics Data System (ADS)

    Furumoto, T.; Suhara, T.; Itagaki, N.

    2018-04-01

    Herein, we investigated the channel coupling (CC) effect on the elastic scatterings of lithium (Li) isotopes (A =6 -9) for 12C and 28Si targets at E /A =50 -60 MeV. The wave functions of the Li isotopes were obtained using the stochastic multi-configuration mixing method based on the microscopic-cluster model. The proton radii of the 7Li, 8Li, and 9Li nuclei became smaller as the number of valence neutrons increased. The valence neutrons in the 8Li and 9Li nuclei exhibited a glue-like behavior, thereby attracting the α and t clusters. Based on the transition densities derived from these microscopic wave functions, the elastic-scattering cross section was calculated using a microscopic coupled-channel method with a complex G -matrix interaction. The existing experimental data for the elastic scatterings of the Li isotopes and 10Be nuclei were well reproduced. The Li isotope elastic cross sections were demonstrated for the 12C and 28Si targets at E /A =53 MeV. The glue-like effect of the valence neutrons on the Li isotope was clearly demonstrated by the CC effect on elastic scattering. Finally, we realize that the valence neutrons stabilized the bindings of the core parts and the CC effect related to core excitation was indeed reduced.

  14. Differences Between a Single- and a Double-Folding Nucleus-^{9}Be Optical Potential

    NASA Astrophysics Data System (ADS)

    Bonaccorso, A.; Carstoiu, F.; Charity, R. J.; Kumar, R.; Salvioni, G.

    2016-05-01

    We have recently constructed two very successful n-^9Be optical potentials (Bonaccorso and Charity in Phys Rev C89:024619, 2014). One by the Dispersive Optical Model (DOM) method and the other (AB) fully phenomenological. The two potentials have strong surface terms in common for both the real and the imaginary parts. This feature makes them particularly suitable to build a single-folded (light-) nucleus-^9Be optical potential by using ab-initio projectile densities such as those obtained with the VMC method (Wiringa http://www.phy.anl.gov/theory/research/density/). On the other hand, a VMC density together with experimental nucleon-nucleon cross-sections can be used also to obtain a neutron and/or proton-^9Be imaginary folding potential. We will use here an ab-initio VMC density (Wiringa http://www.phy.anl.gov/theory/research/density/) to obtain both a n-^9Be single-folded potential and a nucleus-nucleus double-folded potential. In this work we report on the cases of ^8B, ^8Li and ^8C projectiles. Our approach could be the basis for a systematic study of optical potentials for light exotic nuclei scattering on such light targets. Some of the projectiles studied are cores of other exotic nuclei for which neutron knockout has been used to extract spectroscopic information. For those cases, our study will serve to make a quantitative assessment of the core-target part of the reaction description, in particular its localization.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ent, Rolf

    With two options studied at Brookhaven National Lab and Jefferson Laboratory the U.S., an Electron-Ion Collider (EIC) of energy √s=20-100 GeV was under design. Furthermore, the recent 2015 US Nuclear Science Long-Range Planning effort included a future EIC as a recommendation for future construction. The EIC will be unique in colliding polarised electrons off polarised protons and light nuclei, providing the spin degrees of freedom essential to pursue its physics program driven by spin structure, multi-dimensional tomographic images of protons and nuclei, and discovery of the role of collective effects of gluons in nuclei. The foreseen luminosity of the EIC,more » coupled with its energy variability and reach, will allow unprecedented three-dimensional imaging of the gluon and sea quark distributions, via both TMDs and GPDs, and to explore correlations amongst them. Its hermetic detection capability of correlated fragments promises to similar allow for precise tomographic images of the quark-gluon landscape in nuclei, transcending from light few-body nuclei to the heaviest nuclei, and could uncover how the TMD and GPD landscape changes when gluons display an anticipated collective behavior at the higher energies.« less

  16. Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Masumi, E-mail: masumi.eto@jefferson.edu; Kirkbride, Jason A.; Chugh, Rishika

    2013-04-26

    Highlights: •Non-canonical roles of the myosin phosphatase inhibitor (CPI-17) were studied. •CPI-17 is localized in the nucleus of hyperplastic cancer and smooth muscle cells. •CPI-17 Ser12 phosphorylation may regulate the nuclear import. •CPI-17 regulates histone H3 phosphorylation and cell proliferation. •The nuclear CPI-17-PP1 axis plays a proliferative role in cells. -- Abstract: CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17 kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentratedmore » in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear import. CPI-17 phosphorylated at Ser12 was not localized at nuclei, suggesting a suppressive role of Ser12 phosphorylation in the nuclear import. Activated CPI-17 bound to all three isoforms of PP1 catalytic subunit in Panc1 nuclear extracts. CPI-17 knockdown in Panc1 resulted in dephosphorylation of histone H3 at Thr3, Ser10 and Thr11, whereas it had no effects on the phosphorylation of myosin light chain and merlin, the known targets of MLCP. In parallel, CPI-17 knockdown suppressed Panc1 proliferation. We propose that CPI-17 accumulated in the nucleus through the N-terminal tail targets multiple PP1 signaling pathways regulating cell proliferation.« less

  17. Synthesis reactions and radioactive properties of transactinoid elements

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.

    1994-10-01

    It is well known that the heaviest elements of the periodic table have been synthesized in the cold fusion of magic nuclei of Pb with Z less than 26 ions. Because of dynamic limitations for fusion under strong Coulomb interaction of nuclei, the cross-sections of cold fusion reactions diminish exponentially with growing compound nucleus atomic number. For element Z = 110 produced in the reaction Pb-208(Ni-62,n)(sub 271)110, the expected cross-section is 10(exp -36) sq cm. In still more asymmetric reactions, when isotopes of actinoid elements irradiated with relatively light ions (Z less than or equal 12) are used as the target material, the compound nuclei possess an excitation energy of approx. 50 MeV. At this energy the nuclear shell effects are strongly suppressed and, as a result, in the case of hot compound nuclei of transactinoid elements the fission barrier is practically absent. The transition of these nuclei into the ground state depends strongly on the dynamic properties of the system with respect to the fission degree of freedom. Experimental studies were going on in two directions: (1) determination of the fission time by measuring the prefission neutrons (of Cf-Fm nuclei) in a wide interval of excitation energies; (2) direct synthesis of known nuclides with Z = 102-105 in reactions with ions of Ne-22, Mg-26, Al-27 and P-31 when final nuclei are produced in the ground state after the evaporation of five or six neutrons from the excited compound nuclei (E(sub x) = 50-60 MeV). The dependence of the reaction cross-section (HI, 5-6n) on the atomic number of the compound nucleus in different target-ion combinations points to the possibility of synthesizing new elements in hot fusion reactions. The advantage of these reactions arises from the use of neutron-rich nuclei like Cm-248 and Cf-249 which allows us to synthesize nuclei close to the deformed shell N = 162, for which a considerable growth of stability against spontaneous fission is predicted. Experimental set-ups and methods of detecting rare events of formation and decay of transactinide nuclei are described.

  18. Nuclei and the Unitary Limit

    NASA Astrophysics Data System (ADS)

    Hammer, H.-W.

    2018-07-01

    Few-body systems with large scattering length display universal properties which are independent of the details of short-distance dynamics. These features include universal correlations between few-body observables and a geometric spectrum of three- and higher-body bound states. They can be observed in a wide range of systems from ultracold atoms to hadrons and nuclei. In this contribution, we review universality in nuclei dominated by few-body physics. In particular, we discuss halo nuclei and the description of light nuclei in a strict expansion around the unitary limit of infinite scattering length.

  19. [Myofibroma/myofibromatosis: a clinicopathologic analysis of 9 cases].

    PubMed

    Fu, Y; Guan, W Y; Wu, H Y; Wu, H Y; Fan, Z W; Ye, Q; Meng, F Q

    2018-01-08

    Objective: To investigate the clinical and histological features, diagnosis and differential diagnosis of myofibroma/myofibromatosis. Methods: The clinical data and pathology features of nine cases of myofibroma/myofibromatosis were collected from August 2011 to November 2016 in Affiliated Drum Tower Hospital, Nanjing University Medical School and Children's Hospital of Nanjing Medical University. Immunohistochemistry(IHC), PDGFRB molecular analysis and ETV6-NTRK3 gene fusion were performed and relevant literature reviewed. Results: There were 7 males and 2 females, with age ranging from 3 days to 18 years (mean 5 years). The tumors were located in head and neck (eight cases) and trunk (one case). Clinically, the tumors presented as freely movable nodules. Microscopically, they appeared biphasic with alternating light- and dark-staining areas. The light-staining area consisted mainly of plump myoid spindle cells with eosinophilic cytoplasm arranged in nodules, short fascicles, or whorls.The dark-staining area was composed of round or polygonal cells with slightly hyperchromatic nuclei or small spindle cells arranged around a distinct hemangiopericytoma-like vascular pattern. IHC showed the tumor cells in the light-staining area were strongly positive for vimentin and SMA, while cells in dark-staining area were strongly positive for vimentin, and weakly for SMA. Tumor cells were negative for desmin, S-100 protein, h-Caldesmon, CD34 and STAT6. Analysis of PDGFRB mutations was performed in seven cases. Two cases showed 12 exon point mutation c. 1681 c>T(p.R561C), one case showed 14 exon point mutation c. 1998C>G (p.N666K). ETV6-NTRK3 gene fusion was not detected by fluorescence in situ hybridization in four patients under three years old. All cases were followed for 6 to 68 months, with two recurrences. Conclusions: Myofibroma/myofibromatosis is an uncommon benign myofibroblastic tumor of infancy and childhood. The tumor can appear biphasic, and may show PDGFRB point mutation which is of potential diagnostic value.

  20. Nuclear Reaction Rates and the Production of Light P-Process Isotopes in Fast Expansions of Proton-Rich Matter

    NASA Astrophysics Data System (ADS)

    Jordan, G. C., IV; Meyer, B. S.

    2004-09-01

    We study nucleosynthesis in rapid expansions of proton-rich matter such as might occur in winds from newly-born neutron stars. For rapid enough expansion, the system fails to maintain an equilibrium between neutrons and protons and the abundant 4He nuclei. This leads to production of quite heavy nuclei early in the expansion. As the temperature falls, the system attempts to re-establish the equilibrium between free nucleons and 4He. This causes the abundance of free neutrons to drop and the heavy nuclei to disintegrate. If the disintegration flows quench before the nuclei reach the iron group, a distribution of p-process nuclei remains. We briefly discuss the possibility of this process as the mechanism of production of light p-process isotopes (specifically 92Mo, 94Mo, 96Ru, and 98Ru), and we provide a qualitative assessment of the impact of nuclear reaction rates of heavy, proton rich isotopes on the production of these astrophysically important nuclides.

  1. Tuning the emission of aqueous Cu:ZnSe quantum dots to yellow light window

    NASA Astrophysics Data System (ADS)

    Wang, Chunlei; Hu, Zhiyang; Xu, Shuhong; Wang, Yanbin; Zhao, Zengxia; Wang, Zhuyuan; Cui, Yiping

    2015-07-01

    Synthesis of internally doped Cu:ZnSe QDs in an aqueous solution still suffers from narrow tunable emissions from the blue to green light window. In this work, we extended the emission window of aqueous Cu:ZnSe QDs to the yellow light window. Our results show that high solution pH, multiple injections of Zn precursors, and nucleation doping strategy are three key factors for preparing yellow emitted Cu:ZnSe QDs. All these factors can depress the reactivity of CuSe nuclei and Zn monomers, promoting ZnSe growth outside CuSe nuclei rather than form ZnSe nuclei separately. With increased ZnSe QD size, the conduction band and nearby trap state energy levels shift to higher energy sites, causing Cu:ZnSe QDs to have a much longer emission.

  2. Precision measurement of longitudinal and transverse response functions of quasi-elastic electron scattering in the momentum transfer range 0.55GeV/c lte math| lte 0.9GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huan Yao, Jefferson Lab Hall A Collaboration, E05-110 Collaboration

    2012-04-01

    In order to test the Coulomb sum rule in nuclei, a precision measurement of inclusive electron scattering cross sections in the quasi-elastic region was performed at Jefferson Lab. Incident electrons of energies ranging from 0.4 GeV/c to 4 GeV/c scattered off {sup 4}He, {sup 12}C, {sup 56}Fe and {sup 208}Pb nuclei at four scattering angles (15deg., 60deg., 90deg., 120deg.) and scattered energies ranging from 0.1 GeV/c to 4 GeV/c. The Rosenbluth method with proper Coulomb corrections is used to extract the transverse and longitudinal response functions at three-momentum transfers 0.55 GeV/c {le} |q{yields}| {le} 1.0 GeV/c. The Coulomb Sum ismore » determined in the same |q{yields}| range as mentioned above and will be compared to predictions. Analysis progress and preliminary results will be presented.« less

  3. New Measurements of High-Momentum Nucleons and Short-Range Structures in Nuclei

    DOE PAGES

    Fomin, N.; Arrington, J.; Asaturyan, R.; ...

    2012-02-01

    We present new, high-Q 2 measurements of inclusive electron scattering from high-momentum nucleons in nuclei. This yields an improved extraction of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data extend to the kinematic regime where three-nucleon correlations are expected to dominate and we observe significantly greater strength in this region than previous measurements.

  4. Nuclei of dwarf spheroidal galaxies KKs 3 and ESO 269-66 and their counterparts in our Galaxy

    NASA Astrophysics Data System (ADS)

    Sharina, M. E.; Shimansky, V. V.; Kniazev, A. Y.

    2017-10-01

    We present the analysis of medium-resolution spectra obtained at the Southern African Large Telescope for nuclear globular clusters (GCs) in two dwarf spheroidal galaxies (dSphs). The galaxies have similar star formation histories, but they are situated in completely different environments. ESO 269-66 is a close neighbour of the giant S0 NGC 5128. KKs 3 is one of the few truly isolated dSphs within 10 Mpc. We estimate the helium abundance Y = 0.3, age = 12.6 ± 1 Gyr, [Fe/H] = -1.5, -1.55 ± 0.2 dex, and abundances of C, N, Mg, Ca, Ti, and Cr for the nuclei of ESO 269-66 and KKs 3. Our surface photometry results using Hubble Space Telescope images yield the half-light radius of the cluster in KKs 3, rh = 4.8 ± 0.2 pc. We demonstrate the similarities of medium-resolution spectra, ages, chemical compositions, and structure for GCs in ESO 269-66 and KKs 3 and for several massive Galactic GCs with [Fe/H] ∼ -1.6 dex. All Galactic GCs posses Extended Blue Horizontal Branches and multiple stellar populations. Five of the selected Galactic objects are iron-complex GCs. Our results indicate that the sample GCs observed now in different environments had similar conditions of their formation ∼1 Gyr after the Big Bang.

  5. Toroidal high-spin isomers in light nuclei with N ≠ Z

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Wong, Cheuk-Yin

    2015-11-01

    The combined considerations of both the bulk liquid-drop-type behavior and the quantized aligned rotation with cranked Skyrme-Hartree-Fock approach revealed previously (Staszczak and Wong 2014 Phys. Lett. B 738 401) that even-even, N = Z, toroidal high-spin isomeric states have general occurrences for light nuclei with 28≤slant A≤slant 52. We find that in this mass region there are in addition N\

  6. Balancing photosynthetic light-harvesting and light-utilization capacities in potato leaf tissue during acclimation to different growth temperatures

    NASA Technical Reports Server (NTRS)

    Steffen, K. L.; Wheeler, R. M.; Arora, R.; Palta, J. P.; Tibbitts, T. W.

    1995-01-01

    We investigated the effect of temperature during growth and development on the relationship between light-harvesting capacity, indicated by chlorophyll concentration, and light-utilization potential, indicated by light- and bicarbonate-saturated photosynthetic oxygen evolution, in Solanum tuberosum L. cv. Norland. Clonal plantlets were transplanted and grown at 20 degrees C for 2 weeks before transfer to 12, 16, 20, 24 and 28 degrees C for 6 weeks. After 4 weeks of the temperature treatments, leaf tissue fresh weights per area were one-third higher in plants grown at 12 degrees C vs those grown at 28 degrees C. Conversely, chlorophyll content per area in tissue grown at 12 degrees C was less than one-half of that of tissue grown at 28 degrees C at 4 weeks. Photosynthetic capacity measured at a common temperature of 20 degrees C and expressed on a chlorophyll basis was inversely proportional to growth temperature. Leaf tissue from plants grown at 12 degrees C for 4 weeks had photosynthetic rates that were 3-fold higher on a chlorophyll basis than comparable tissue from plants grown at 28 degrees C. These results suggest that the relationship between light-harvesting capacity and light-utilization potential varies 3-fold in response to the growth temperatures examined. The role of this response in avoidance of photoinhibition is discussed.

  7. Elastic scattering of spin-polarized electrons and positrons from 23Na nuclei

    NASA Astrophysics Data System (ADS)

    Jakubassa-Amundsen, D. H.

    2018-07-01

    Differential cross sections and polarization correlations for the scattering of relativistic spin-polarized leptons from unpolarized ground-state sodium nuclei are calculated within the distorted-wave Born approximation (DWBA). Various nuclear ground-state charge distributions are probed. Besides potential scattering, also electric C2 and magnetic M1 and M3 transitions are taken into account. It is shown that even for a light nucleus such as 23Na there are considerable electron-positron differences at high collision energies and large scattering angles. In particular, the symmetry of the Sherman function with respect to a global sign change, as predicted by the second-order Born approximation when replacing electrons by positrons, is broken whenever the diffraction structures come into play beyond 100 MeV.

  8. Isobar analog states (IAS), double isobar analog states (DIAS), configuration states (CS), and double configuration states (DCS) in halo nuclei. Halo isomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izosimov, I. N., E-mail: izosimov@jinr.ru

    2015-10-15

    It has been shown that IAS, DIAS, CS, and DCS can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in {sup 6,7,8}Li, {sup 8,9,10}Be, {sup 8,10,11}B, {sup 10,11,12,13,14}C, {sup 13,14,15,16,17}N, {sup 15,16,17,19}O, and {sup 17}F are analyzed. Specialmore » attention is given to nuclei whose ground state does not exhibit halo structure but the excited state may have one.« less

  9. A Novel Quantitative Trait Locus on Mouse Chromosome 18, “era1,” Modifies the Entrainment of Circadian Rhythms

    PubMed Central

    Wisor, Jonathan P.; Striz, Martin; DeVoss, Jason; Murphy, Greer M.; Edgar, Dale M.; O'Hara, Bruce F.

    2007-01-01

    Study Objectives: The mammalian circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus conveys 24-h rhythmicity to sleep-wake cycles, locomotor activity, and other behavioral and physiological processes. The timing of rhythms relative to the light/dark (LD12:12) cycle is influenced in part by the endogenous circadian period and the time of day specific sensitivity of the clock to light. We now describe a novel circadian rhythm phenotype, and a locus influencing that phenotype, in a segregating population of mice. Methods: By crossbreeding 2 genetically distinct nocturnal strains of mice (Cast/Ei and C57BL/6J) and backcrossing the resulting progeny to Cast/Ei, we have produced a novel circadian phenotype, called early runner mice. Results: Early runner mice entrain to a light/dark cycle at an advanced phase, up to 9 hours before dark onset. This phenotype is not significantly correlated with circadian period in constant darkness and is not associated with disruption of molecular circadian rhythms in the SCN, as assessed by analysis of period gene expression. We have identified a genomic region that regulates this phenotype—a major quantitative trait locus on chromosome 18 (near D18Mit184) that we have named era1 for Early Runner Activity locus one. Phase delays caused by light exposure early in the subjective night were of smaller magnitude in backcross offspring that were homozygous Cast/Ei at D18Mit184 than in those that were heterozygous at this locus. Conclusion: Genetic variability in the circadian response to light may, in part, explain the variance in phase angle of entrainment in this segregating mouse population. Citation: Wisor JP; Striz M; DeVoss J; Murphy GM; Edgar DM; O'Hara BF. A novel quantitative trait locus on mouse chromosome 18, “era1,” modifies the entrainment of circadian rhythms. SLEEP 2007;30(10):1255-1263. PMID:17969459

  10. Current Issues in Cosmology

    NASA Astrophysics Data System (ADS)

    Pecker, Jean-Claude; Narlikar, Jayant

    2011-09-01

    Part I. Observational Facts Relating to Discrete Sources: 1. The state of cosmology G. Burbidge; 2. The redshifts of galaxies and QSOs E. M. Burbidge and G. Burbidge; 3. Accretion discs in quasars J. Sulentic; Part II. Observational Facts Relating to Background Radiation: 4. CMB observations and consequences F. Bouchet; 5. Abundances of light nuclei K. Olive; 6. Evidence for an accelerating universe or lack of A. Blanchard; Part III. Standard Cosmology: 7. Cosmology, an overview of the standard model F. Bernardeau; 8. What are the building blocks of our universe? K. C. Wali; Part IV. Large-Scale Structure: 9. Observations of large-scale structure V. de Lapparent; 10. Reconstruction of large-scale peculiar velocity fields R. Mohayaee, B. Tully and U. Frisch; Part V. Alternative Cosmologies: 11. The quasi-steady state cosmology J. V. Narlikar; 12. Evidence for iron whiskers in the universe N. C. Wickramasinghe; 13. Alternatives to dark matter: MOND + Mach D. Roscoe; 14. Anthropic principle in cosmology B. Carter; Part VI. Evidence for Anomalous Redshifts: 15. Anomalous redshifts H. C. Arp; 16. Redshifts of galaxies and QSOs: the problem of redshift periodicities G. Burbidge; 17. Statistics of redshift periodicities W. Napier; 18. Local abnormal redshifts J.-C. Pecker; 19. Gravitational lensing and anomalous redshifts J. Surdej, J.-F. Claeskens and D. Sluse; Panel discussion; General discussion; Concluding remarks.

  11. TMDs and GPDs at a future Electron-Ion Collider

    DOE PAGES

    Ent, Rolf

    2016-06-21

    With two options studied at Brookhaven National Lab and Jefferson Laboratory the U.S., an Electron-Ion Collider (EIC) of energy √s=20-100 GeV was under design. Furthermore, the recent 2015 US Nuclear Science Long-Range Planning effort included a future EIC as a recommendation for future construction. The EIC will be unique in colliding polarised electrons off polarised protons and light nuclei, providing the spin degrees of freedom essential to pursue its physics program driven by spin structure, multi-dimensional tomographic images of protons and nuclei, and discovery of the role of collective effects of gluons in nuclei. The foreseen luminosity of the EIC,more » coupled with its energy variability and reach, will allow unprecedented three-dimensional imaging of the gluon and sea quark distributions, via both TMDs and GPDs, and to explore correlations amongst them. Its hermetic detection capability of correlated fragments promises to similar allow for precise tomographic images of the quark-gluon landscape in nuclei, transcending from light few-body nuclei to the heaviest nuclei, and could uncover how the TMD and GPD landscape changes when gluons display an anticipated collective behavior at the higher energies.« less

  12. Electron tomography of the microtubule cytoskeleton in multinucleated hyphae of Ashbya gossypii.

    PubMed

    Gibeaux, Romain; Lang, Claudia; Politi, Antonio Z; Jaspersen, Sue L; Philippsen, Peter; Antony, Claude

    2012-12-01

    We report the mechanistic basis guiding the migration pattern of multiple nuclei in hyphae of Ashbya gossypii. Using electron tomography, we reconstructed the cytoplasmic microtubule (cMT) cytoskeleton in three tip regions with a total of 13 nuclei and also the spindle microtubules of four mitotic nuclei. Each spindle pole body (SPB) nucleates three cMTs and most cMTs above a certain length grow according to their plus-end structure. Long cMTs closely align for several microns along the cortex, presumably marking regions where dynein generates pulling forces on nuclei. Close proximity between cMTs emanating from adjacent nuclei was not observed. The majority of nuclei carry duplicated side-by-side SPBs, which together emanate an average of six cMTs, in most cases in opposite orientation with respect to the hyphal growth axis. Such cMT arrays explain why many nuclei undergo short-range back and forth movements. Only occasionally do all six cMTs orient in one direction, a precondition for long-range nuclear bypassing. Following mitosis, daughter nuclei carry a single SPB with three cMTs. The increased probability that all three cMTs orient in one direction explains the high rate of nuclear bypassing observed in these nuclei. The A. gossypii mitotic spindle was found to be structurally similar to that of Saccharomyces cerevisiae in terms of nuclear microtubule (nMT) number, length distribution and three-dimensional organization even though the two organisms differ significantly in chromosome number. Our results suggest that two nMTs attach to each kinetochore in A. gossypii and not only one nMT like in S. cerevisiae.

  13. In vivo imaging of cell nuclei by photoacoustic microscopy without staining

    NASA Astrophysics Data System (ADS)

    Yao, Da-Kang; Chen, Ruimin; Maslov, Konstantin; Zhou, Qifa; Wang, Lihong V.

    2012-02-01

    Ultraviolet photoacoustic microscopy (UVPAM) can image cell nuclei in vivo with high contrast and resolution noninvasively without staining. Here, we used UV light at wavelengths of 210-310 nm for excitation of DNA and RNA to produce photoacoustic waves. We applied the UVPAM to in vivo imaging of cell nuclei in mouse skin, and obtained UVPAM images of the unstained cell nuclei at wavelengths of 245-282 nm as ultrasound gel was used for acoustic coupling. The largest ratio of contrast to noise was found for the images of cell nuclei at a 250 nm wavelength.

  14. Pattern of distribution of serotonergic fibers to the amygdala and extended amygdala in the rat.

    PubMed

    Linley, Stephanie B; Olucha-Bordonau, Francisco; Vertes, Robert P

    2017-01-01

    As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the forebrain, including the amygdala. Although a few reports have examined the 5-HT innervation of select nuclei of the amygdala in the rat, no previous report has described overall 5-HT projections to the amygdala in the rat. Using immunostaining for the serotonin transporter, SERT, we describe the complete pattern of distribution of 5-HT fibers to the amygdala (proper) and to the extended amygdala in the rat. Based on its ontogenetic origins, the amygdala was subdivided into two major parts, pallial and subpallial components, with the pallial component further divided into superficial and deep nuclei (Olucha-Bordonau et al. 2015). SERT + fibers were shown to distributed moderately to densely to the deep and cortical pallial nuclei, but, by contrast, lightly to the subpallial nuclei. Specifically, 1) of the deep pallial nuclei, the lateral, basolateral, and basomedial nuclei contained a very dense concentration of 5-HT fibers; 2) of the cortical pallial nuclei, the anterior cortical and amygdala-cortical transition zone rostrally and the posteromedial and posterolateral nuclei caudally contained a moderate concentration of 5-HT fibers; and 3) of the subpallial nuclei, the anterior nuclei and the rostral part of the medial (Me) nuclei contained a moderate concentration of 5-HT fibers, whereas caudal regions of Me as well as the central nuclei and the intercalated nuclei contained a sparse/light concentration of 5-HT fibers. With regard to the extended amygdala (primarily the bed nucleus of stria terminalis; BST), on the whole, the BST contained moderate numbers of 5-HT fibers, spread fairly uniformly throughout BST. The findings are discussed with respect to a critical serotonergic influence on the amygdala, particularly on the basal complex, and on the extended amygdala in the control of states of fear and anxiety. J. Comp. Neurol. 525:116-139, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. CACA-TOCSY with alternate 13C–12C labeling: a 13Cα direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification

    PubMed Central

    Takeuchi, Koh; Frueh, Dominique P.; Sun, Zhen-Yu J.; Hiller, Sebastian

    2010-01-01

    We present a 13C direct detection CACA-TOCSY experiment for samples with alternate 13C–12C labeling. It provides inter-residue correlations between 13Cα resonances of residue i and adjacent Cαs at positions i − 1 and i + 1. Furthermore, longer mixing times yield correlations to Cα nuclei separated by more than one residue. The experiment also provides Cα-to-sidechain correlations, some amino acid type identifications and estimates for ψ dihedral angles. The power of the experiment derives from the alternate 13C–12C labeling with [1,3-13C] glycerol or [2-13C] glycerol, which allows utilizing the small scalar 3JCC couplings that are masked by strong 1JCC couplings in uniformly 13C labeled samples. PMID:20383561

  16. The Effects of Light and Temperature on Biotin Synthesis in Pea Sprouts.

    PubMed

    Kamiyama, Shin; Ohnuki, Risa; Moriki, Aoi; Abe, Megumi; Ishiguro, Mariko; Sone, Hideyuki

    2016-01-01

    Biotin is an essential micronutrient, and is a cofactor for several carboxylases that are involved in the metabolism of glucose, fatty acids, and amino acids. Because plant cells can synthesize their own biotin, a wide variety of plant-based foods contains significant amounts of biotin; however, the influence of environmental conditions on the biotin content in plants remains largely unclear. In the present study, we investigated the effects of different cultivation conditions on the biotin content and biotin synthesis in pea sprouts (Pisum sativum). In the experiment, the pea sprouts were removed from their cotyledons and cultivated by hydroponics under five different lighting and temperature conditions (control [25ºC, 12-h light/12-h dark cycle], low light [25ºC, 4-h light/20-h dark cycle], dark [25ºC, 24 h dark], low temperature [12ºC, 12-h light/12-h dark cycle], and cold [6ºC, 12-h light/12-h dark cycle]) for 10 d. Compared to the biotin content of pea sprouts under the control conditions, the biotin contents of pea sprouts under the low-light, dark, and cold conditions had significantly decreased. The dark group showed the lowest biotin content among the groups. Expression of the biotin synthase gene (bio2) was also significantly decreased under the dark and cold conditions compared to the control condition, in a manner similar to that observed for the biotin content. No significant differences in the adenosine triphosphate content were observed among the groups. These results indicate that environmental conditions such as light and temperature modulate the biotin content of pea plant tissues by regulating the expression of biotin synthase.

  17. Nuclear Structure Near the N=Z Line in the A=80 Region

    NASA Astrophysics Data System (ADS)

    Gross, Carl J.

    1996-11-01

    Self-conjugate nuclei are unique laboratory systems which allow specific facets of nuclear structure to be explored. Shell gaps present in the single-particle spectra are reinforced by both proton and neutron Fermi levels. As a result of this localized occupation, proton-neutron correlations can contribute to the overall pairing energy resulting in a more stable system. Through the use of large germanium detector arrays and recoil separators, these nuclei, which are produced with extremely small fusion-evaporation cross-sections, have been observed using in-beam spectroscopic techniques only within the past decade. Typically, only the first two or three transitions have been observed. Now that even more efficient germanium arrays and recoil mass spectrometers are being coupled together, more detailed spectroscopic information may be obtained. Data will be presented for the self-conjugate odd-odd nucleus ^74Rb (D. Rudolph, et al. al.), Phys. Rev. Lett. 76, 376 (1996) whose energy level spacings are more like the even-even isotone ^74Kr than its nearest odd-odd neighbor ^76Rb. The Tz = +1/2 nuclei ^75Rb and ^77Sr (C. J. Gross, et al. al.), Phys. Rev. C 49, R580 (1994) reveal possible evidence for neutron-proton correlations at moderate spins and these data will also be presented. In addition, a systematic study of the Tz = 1 nuclei ^74Kr, ^78Sr, ^82Zr, and ^86Mo (D. Rudolph, et al. al.), Phys. Rev. C 54, 117 (1996) has been undertaken. These nuclei, reveal how the collectivity changes throughout the region. This work was supported by the U. S. Department of Energy under contracts DE-AC05-76OR00033 and DE-AC05-96OR22464.

  18. Elastic light single-scattering spectroscopy for detection of dysplastic tissues

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkçeken, Tuba; Akman, Ayşe.; Alpsoy, Erkan; Tuncer, Recai; Akyüz, Mahmut; Baykara, Mehmet; Yücel, Selçuk; Başsorgun, Ibrahim; ćiftçioǧlu, M. Akif; Gökhan, Güzide Ayşe.; Gürer, ElifInanç; Peştereli, Elif; Karaveli, Šeyda

    2013-11-01

    Elastic light single-scattering spectroscopy (ELSSS) system has been developed and tested in diagnosis of cancerous tissues of different organs. ELSSS system consists of a miniature visible light spectrometer, a single fiber optical probe, a halogen tungsten light source and a laptop. Measurements were performed on excised brain, skin, cervix and prostate tumor specimens and surrounding normal tissues. Single fiber optical probe with a core diameter of 100 μm was used to deliver white light to and from tissue. Single optical fiber probe mostly detects singly scattered light from tissue rather than diffused light. Therefore, measured spectra are sensitive to size of scatters in tissue such as cells, nuclei, mitochondria and other organelles of cells. Usually, nuclei of tumor cells are larger than nuclei of normal cells. Therefore, spectrum of singly scattered light of tumor tissue is different than normal tissue. The spectral slopes were shown to be positive for normal brain, skin and prostate and cervix tissues and negative for the tumors of the same tissues. Signs of the spectral slopes were used as a discrimination parameter to differentiate tumor from normal tissues for the three organ tissues. Sensitivity and specificity of the system in differentiation between tumors from normal tissues were 93% and %100 for brain, 87% and 85% for skin, 93.7% and 46.1% for cervix and 98% and 100% for prostate.

  19. Intermediate-energy inverse-kinematics one-proton pickup reactions on neutron-deficient fp-shell nuclei

    NASA Astrophysics Data System (ADS)

    McDaniel, S.; Gade, A.; Tostevin, J. A.; Baugher, T.; Bazin, D.; Brown, B. A.; Cook, J. M.; Glasmacher, T.; Grinyer, G. F.; Ratkiewicz, A.; Weisshaar, D.

    2012-01-01

    Background: Thick-target-induced nucleon-adding transfer reactions onto energetic rare-isotope beams are an emerging spectroscopic tool. Their sensitivity to single-particle structure complements one-nucleon removal reaction capabilities in the quest to reveal the evolution of nuclear shell structure in very exotic nuclei. Purpose: Our purpose is to add intermediate-energy, carbon-target-induced one-proton pickup reactions to the arsenal of γ-ray-tagged direct reactions applicable in the regime of low beam intensities and to apply these for the first time to fp-shell nuclei. Methods: Inclusive and partial cross sections were measured for the 12C(48Cr,49Mn+γ)X and 12C(50Fe,51Co+γ)X proton pickup reactions at 56.7 and 61.2 MeV/nucleon, respectively, using coincident particle-γ spectroscopy at the National Superconducting Cyclotron Laboratory. The results are compared to reaction theory calculations using fp-shell-model nuclear structure input. For comparison with our previous work, the same reactions were measured on 9Be targets. Results: The measured partial cross sections confirm the specific population pattern predicted by theory, with pickup into high-ℓ orbitals being strongly favored, driven by linear and angular momentum matching. Conclusion: Carbon-target-induced pickup reactions are well suited, in the regime of modest beam intensity, to study the evolution of nuclear structure, with specific sensitivities that are well described by theory.

  20. Recent applications of nuclear track emulsion technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarubin, P. I., E-mail: zarubin@lhe.jinr.ru

    A survey of recent results obtained using the nuclear track emulsion (NTE) technique in low energy applications is given. NTE irradiation with 60 MeV {sup 8}He nuclei provides identification of their decays at stopping, evaluation of the possibility of α range spectrometry, and observation of drift of thermalized {sup 8}He atoms. Correlations of α particles studied in {sup 12}C → 3α splitting induced by 14.1 MeV neutrons indicate the presence of a superposition of 0{sup +} and 2{sup +} states of the {sup 8}Be nucleus in the ground state of {sup 12}C. Angular correlations of fragments are studied in boron-enrichedmore » NTE, and the prospects of NTE application in radioactivity and nuclear fission research are discussed. It is proposed to use an automated microscope to search for collinear tripartition of heavy nuclei implanted in NTE. Surface irradiation of NTE by a {sup 252}Cf source is started. Planar events containing fragment pairs and long range α particles, as well as fragment triples, are studied. NTE samples are calibrated using Kr and Xe ions with an energy of 1.2 and 3 A MeV.« less

  1. Magnetic Moment of Proton Drip-Line Nucleus (9)C

    NASA Technical Reports Server (NTRS)

    Matsuta, K.; Fukuda, M.; Tanigaki, M.; Minamisono, T.; Nojiri, Y.; Mihara, M.; Onishi, T.; Yamaguchi, T.; Harada, A.; Sasaki, M.

    1994-01-01

    The magnetic moment of the proton drip-line nucleus C-9(I(sup (pi)) = 3/2, T(sub 1/2) = 126 ms) has been measured for the first time, using the beta-NMR detection technique with polarized radioactive beams. The measure value for the magnetic moment is 1mu(C-9)! = 1.3914 +/- 0.0005 (mu)N. The deduced spin expectation value of 1.44 is unusually larger than any other ones of even-odd nuclei.

  2. C-terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation

    PubMed Central

    Matsui, Toshiyasu; Hongo, Yu; Haizuka, Yoshinori; Kaida, Kenichi; Matsumura, George; Martin, Donna M.; Kobayashi, Yasushi

    2013-01-01

    Large cholinergic synaptic boutons called "C-terminals" contact motoneurons and regulate their excitability. C-terminals in the spinal somatic motor nuclei originate from cholinergic interneurons in laminae VII and X that express a transcription factor Pitx2. Cranial motor nuclei contain another type of motoneuron: branchiomotor neurons. Although branchiomotor neurons receive abundant C-terminal projections, the neural source of these C-terminals remains unknown. In the present study, we first examined whether cholinergic neurons express Pitx2 in the reticular formation of the adult mouse brainstem, as in the spinal cord. Although Pitx2-positive cholinergic neurons were observed in the magnocellular reticular formation and region around the central canal in the caudal medulla, none was present more rostrally in the brainstem tegmentum. We next explored the origin of C-terminals in the branchiomotor nuclei by using biotinylated dextran amine (BDA). BDA injections into the magnocellular reticular formation of the medulla and pons resulted in the labeling of numerous C-terminals in the branchiomotor nuclei: the ambiguous, facial, and trigeminal motor nuclei. Our results revealed that the origins of C-terminals in the branchiomotor nuclei are cholinergic neurons in the magnocellular reticular formation not only in the caudal medulla, but also at more rostral levels of the brainstem, which lacks Pitx2-positive neurons. PMID:23756176

  3. Description of nuclear systems with a self-consistent configuration-mixing approach. II. Application to structure and reactions in even-even s d -shell nuclei

    NASA Astrophysics Data System (ADS)

    Robin, C.; Pillet, N.; Dupuis, M.; Le Bloas, J.; Peña Arteaga, D.; Berger, J.-F.

    2017-04-01

    Background: The variational multiparticle-multihole configuration mixing approach to nuclei has been proposed about a decade ago. While the first applications followed rapidly, the implementation of the full formalism of this method has only been recently completed and applied in C. Robin, N. Pillet, D. Peña Arteaga, and J.-F. Berger, [Phys. Rev. C 93, 024302 (2016)], 10.1103/PhysRevC.93.024302 to 12C as a test-case. Purpose: The main objective of the present paper is to carry on the study that was initiated in that reference, in order to put the variational multiparticle-multihole configuration mixing method to more stringent tests. To that aim we perform a systematic study of even-even s d -shell nuclei. Method: The wave function of these nuclei is taken as a configuration mixing built on orbitals of the s d -shell, and both the mixing coefficients of the nuclear state and the single-particle wave functions are determined consistently from the same variational principle. As in the previous works, the calculations are done using the D1S Gogny force. Results: Various ground-state properties are analyzed. In particular, the correlation content and composition of the wave function as well as the single-particle orbitals and energies are examined. Binding energies and charge radii are also calculated and compared to experiment. The description of the first excited state is also examined and the corresponding transition densities are used as input for the calculation of reaction processes such as inelastic electron and proton scattering. Special attention is paid to the effect of the optimization of the single-particle states consistently with the correlations of the system. Conclusions: The variational multiparticle-multihole configuration mixing approach is systematically applied to the description of even-even s d -shell nuclei. Globally, the results are satisfying and encouraging. In particular, charge radii and excitation energies are nicely reproduced. However, the chosen valence-space truncation scheme precludes achieving maximum collectivity in the studied nuclei. Further refinement of the method and a better-suited interaction are necessary to remedy this situation.

  4. Alpha particle emission in the interaction of 12C with 59Co and 93Nb at incident energies of 300 and 400 MeV

    NASA Astrophysics Data System (ADS)

    Gadioli, E.; Cavinato, M.; Fabrici, E.; Gadioli Erba, E.; Birattari, C.; Mica, I.; Solia, S.; Steyn, G. F.; Förtsch, S. V.; Lawrie, J. J.; Nortier, F. M.; Stevens, T. G.; Connell, S. H.; Sellschop, J. P. F.; Cowley, A. A.

    1999-08-01

    The results of measured inclusive double differential cross section of α particles emitted in the interaction of 12C ions with 59Co and 93Nb at incident energies of 300 and 400 MeV are presented. The analysis of these data allows us to isolate the contributions of the different reaction mechanisms, thereby confirming previous conclusions of a comprehensive analysis of a large number of excitation function, forward recoil ranges and angular distributions of residues produced in the interaction of 12C with a target nucleus in the same mass range. In particular, the probabilities associated with α-particle reemission following incomplete fussion processes have been reaffirmed. Several refinements to the theoretical model proposed in earlier studies of the interaction of 12C with nuclei are presented.

  5. Investigation of the Hoyle state in12C with a new hodoscope detector

    NASA Astrophysics Data System (ADS)

    Dell'Aquila, D.; Lombardo, I.; Vigilante, M.; De Luca, M.; Acosta, L.; Agodi, C.; Cappuzzello, F.; Carbone, D.; Cavallaro, M.; Cherubini, S.; Cvetinovic, A.; D'Agata, G.; Francalanza, L.; Guardo, G. L.; Gulino, M.; Indelicato, I.; La Cognata, M.; Lamia, L.; Ordine, A.; Pizzone, R.; Puglia, S.; Rapisarda, G.; Romano, S.; Santagati, G.; Spartà, R.; Spitaleri, C.; Tumino, A.; Verde, G.

    2017-07-01

    The {0}2+ state in12C (7.654MeV, the Hoyle state) is important for the understanding of clustering phenomena in nuclei. The pronounced cluster nature of this state allows the triple-α process in stars with a reaction rate regulated by its structure properties. To precisely estimate the direct component in the 3α decay mechanism of the Hoyle state, we developed a new experiment using the14N(d,α)12C reaction at 10.5MeV. An anti-coincidence telescope was used to identify the α ejectiles leading the residual12C in the Hoyle state, while its decays in 3α were studied by means of a new hodoscope of silicon detectors, superOSCAR, placed in kinematical coincidence to fully reconstruct the events. Details of the experiment and preliminary results are discussed in the text.

  6. Production of deuterium, tritium, and He 3 in central Pb + Pb collisions at 20 A , 30 A , 40 A , 80 A , and 158 A  GeV at the CERN Super Proton Synchrotron

    DOE PAGES

    Anticic, T.; Baatar, B.; Bartke, J.; ...

    2016-10-13

    Production of d, t, and 3He nuclei in central Pb + Pb interactions was studied at five collision energies (more » $$\\sqrt{s}$$$_ {NN}$$= 6.3, 7.6, 8.8, 12.3, and 17.3 GeV) with the NA49 detector at the CERN Super Proton Synchrotron.Transverse momentum spectra, rapidity distributions, and particle ratios were measured. Yields are compared to predictions of statistical models. Phase-space distributions of light nuclei are discussed and compared to those of protons in the context of a coalescence approach. Finally, the coalescence parameters B 2 and B 3, as well as coalescence radii for d and 3He were determined as a function of transverse mass at all energies.« less

  7. Cytotoxicity and DNA cleavage with core-shell nanocomposites functionalized by a KH domain DNA binding peptide

    NASA Astrophysics Data System (ADS)

    Bazak, Remon; Ressl, Jan; Raha, Sumita; Doty, Caroline; Liu, William; Wanzer, Beau; Salam, Seddik Abdel; Elwany, Samy; Paunesku, Tatjana; Woloschak, Gayle E.

    2013-11-01

    A nanoconjugate was composed of metal oxide nanoparticles decorated with peptides and fluorescent dye and tested for DNA cleavage following UV light activation. The peptide design was based on a DNA binding domain, the so called KH domain of the hnRNPK protein. This ``KH peptide'' enabled cellular uptake of nanoconjugates and their entry into cell nuclei. The control nanoconjugate carried no peptide; it consisted only of the metal oxide nanoparticle prepared as Fe3O4@TiO2 nanocomposite and the fluorescent dye alizarin red S. These components of either construct are responsible for nanoconjugate activation by UV light and the resultant production of reactive oxygen species (ROS). Production of ROS at different subcellular locations causes damage to different components of cells: only nanoconjugates inside cell nuclei can be expected to cause DNA cleavage. Degradation of cellular DNA with KH peptide decorated nanoconjugates exceeded the DNA damage obtained from control, no-peptide nanoconjugate counterparts. Moreover, caspase activation and cell death were more extensive in the same cells.A nanoconjugate was composed of metal oxide nanoparticles decorated with peptides and fluorescent dye and tested for DNA cleavage following UV light activation. The peptide design was based on a DNA binding domain, the so called KH domain of the hnRNPK protein. This ``KH peptide'' enabled cellular uptake of nanoconjugates and their entry into cell nuclei. The control nanoconjugate carried no peptide; it consisted only of the metal oxide nanoparticle prepared as Fe3O4@TiO2 nanocomposite and the fluorescent dye alizarin red S. These components of either construct are responsible for nanoconjugate activation by UV light and the resultant production of reactive oxygen species (ROS). Production of ROS at different subcellular locations causes damage to different components of cells: only nanoconjugates inside cell nuclei can be expected to cause DNA cleavage. Degradation of cellular DNA with KH peptide decorated nanoconjugates exceeded the DNA damage obtained from control, no-peptide nanoconjugate counterparts. Moreover, caspase activation and cell death were more extensive in the same cells. Electronic supplementary information (ESI) available: http://janus.northwestern.edu/wololab/auxiliary/supplementary_data_2013.docx. See DOI: 10.1039/c3nr02203j

  8. Contribution of pollen to atmospheric ice nuclei concentrations

    NASA Astrophysics Data System (ADS)

    Hader, J. D.; Wright, T. P.; Petters, M. D.

    2014-06-01

    Recent studies have suggested that the ice-nucleating ability of some types of pollen is derived from non-proteinaceous macromolecules. These macromolecules may become dispersed by the rupturing of the pollen grain during wetting and drying cycles in the atmosphere. If true, this mechanism might prove to be a significant source of ice nuclei (IN) concentrations when pollen is present. Here we test this hypothesis by measuring ambient IN concentrations from the beginning to the end of the 2013 pollen season in Raleigh, North Carolina, USA. Air samples were collected using a swirling aerosol collector twice per week and the solutions were analysed for ice nuclei activity using a droplet freezing assay. Rainwater samples were collected at times when pollen grain number concentrations were near their maximum value and analysed with the drop-freezing assay to compare the potentially enhanced IN concentrations measured near the ground with IN concentrations found aloft. Ambient ice nuclei spectra, defined as the number of ice nuclei per volume of air as a function of temperature, are inferred from the aerosol collector solutions. No general trend was observed between ambient pollen grain counts and observed IN concentrations, suggesting that ice nuclei multiplication via pollen grain rupturing and subsequent release of macromolecules was not prevalent for the pollen types and meteorological conditions typically encountered in the southeastern US. A serendipitously sampled collection after a downpour provided evidence for a rain-induced IN burst with an observed IN concentration of approximately 30 per litre, a 30-fold increase over background concentrations at -20 °C. The onset temperature of freezing for these particles was approximately -12 °C, suggesting that the ice-nucleating particles were biological in origin.

  9. Electric Dipole Moments of Light Nuclei From Chiral Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Higa, R.

    2013-08-01

    Recent calculations of EDMs of light nuclei in the framework of chiral effective field theory are presented. We argue that they can be written in terms of the leading six low-energy constants encoding CP-violating physics. EDMs of the deuteron, triton, and helion are explicitly given in order to corroborate our claim. An eventual non-zero measurement of these EDMs can be used to disentangle the different sources and strengths of CP-violation.

  10. Screening effects on 12C+12C fusion reaction

    NASA Astrophysics Data System (ADS)

    Koyuncu, F.; Soylu, A.

    2018-05-01

    One of the important reactions for nucleosynthesis in the carbon burning phase in high-mass stars is the 12C+12C fusion reaction. In this study, we investigate the influences of the nuclear potentials and screening effect on astrophysically interesting 12C+12C fusion reaction observables at sub-barrier energies by using the microscopic α–α double folding cluster (DFC) potential and the proximity potential. In order to model the screening effects on the experimental data, a more general exponential cosine screened Coulomb (MGECSC) potential including Debye and quantum plasma cases has been considered in the calculations for the 12C+12C fusion reaction. In the calculations of the reaction observables, the semi-classical Wentzel-Kramers-Brillouin (WKB) approach and coupled channel (CC) formalism have been used. Moreover, in order to investigate how the potentials between 12C nuclei produce molecular cluster states of 24Mg, the normalized resonant energy states of 24Mg cluster bands have been calculated for the DFC potential. By analyzing the results produced from the fusion of 12C+12C, it is found that taking into account the screening effects in terms of MGECSC is important for explaining the 12C+12C fusion data, and the microscopic DFC potential is better than the proximity potential in explaining the experimental data, also considering that clustering is dominant for the structure of the 24Mg nucleus. Supported by the Turkish Science and Research Council (TÜBİTAK) with (117R015)

  11. Probable alpha and 14C cluster emission from hyper Ac nuclei

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.

    2013-10-01

    A systematic study on the probability for the emission of 4He and 14C cluster from hyper {Λ/207-234}Ac and non-strange normal 207-234Ac nuclei are performed for the first time using our fission model, the Coulomb and proximity potential model (CPPM). The predicted half lives show that hyper {Λ/207-234}Ac nuclei are unstable against 4He emission and 14C emission from hyper {Λ/217-228}Ac are favorable for measurement. Our study also show that hyper {Λ/207-234}Ac are stable against hyper {Λ/4}He and {Λ/14}C emission. The role of neutron shell closure ( N = 126) in hyper {Λ/214}Fr daughter and role of proton/neutron shell closure ( Z ≈ 82, N = 126) in hyper {Λ/210}Bi daughter are also revealed. As hyper-nuclei decays to normal nuclei by mesonic/non-mesonic decay and since most of the predicted half lives for 4He and 14C emission from normal Ac nuclei are favourable for measurement, we presume that alpha and 14C cluster emission from hyper Ac nuclei can be detected in laboratory in a cascade (two-step) process.

  12. A study of ultraviolet absorption lines through the complete Galactic halo by the analysis of HST faint object spectrograph spectra of active Galactic nuclei, 1

    NASA Technical Reports Server (NTRS)

    Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck

    1994-01-01

    The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.

  13. Physical insight into light scattering by photoreceptor cell nuclei.

    PubMed

    Kreysing, Moritz; Boyde, Lars; Guck, Jochen; Chalut, Kevin J

    2010-08-01

    A recent study showed that the rod photoreceptor cell nuclei in the retina of nocturnal and diurnal mammals differ considerably in architecture: the location of euchromatin and heterochromatin in the nucleus is interchanged. This inversion has significant implications for the refractive index distribution and the light scattering properties of the nucleus. Here, we extend previous two-dimensional analysis to three dimensions (3D) by using both a numerical finite-difference time-domain and an analytic Mie theory approach. We find that the specific arrangement of the chromatin phases in the nuclear core-shell models employed have little impact on the far-field scattering cross section. However, scattering in the near field, which is the relevant regime inside the retina, shows a significant difference between the two architectures. The "inverted" photoreceptor cell nuclei of nocturnal mammals act as collection lenses, with the lensing effect being much more pronounced in 3D than in two dimensions. This lensing helps to deliver light efficiently to the light-sensing outer segments of the rod photoreceptor cells and thereby improve night vision.

  14. Polyphenol-enriched Vaccinium uliginosum L. fractions reduce retinal damage induced by blue light in A2E-laden ARPE19 cell cultures and mice.

    PubMed

    Lee, Bom-Lee; Kang, Jung-Hwan; Kim, Hye-Mi; Jeong, Se-Hee; Jang, Dae-Sik; Jang, Young-Pyo; Choung, Se-Young

    2016-12-01

    Polyphenols exert beneficial effects on vision. We hypothesized that polyphenol components of Vaccinium uliginosum L. (V.U.) extract protect retinal pigment epithelial (RPE) cells against blue light-induced damage. Our aim was to test extracts containing polyphenol components to ascertain effects to reduce damage against blue light in RPEs. We measured the activity in fractions eluted from water, ethanol, and HP20 resin (FH), and found that the FH fraction had the highest beneficial activity. We isolated the individual active compounds from the FH fraction using chromatographic techniques, and found that FH contained flavonoids, anthocyanins, phenyl propanoids, and iridoids. Cell cultures of A2E-laden ARPE-19 exposed to blue light after treatment with V.U. extract fractions and their individual constituents indicated improvement. V uliginosum L extract fractions and constituent compounds significantly reduced A2E photo-oxidation-induced RPE cell death and inhibited intracellular A2E accumulation. Furthermore, Balb/c male mice were exposed to blue light at 10000 lux for 1 h/d for 2 weeks to induce retinal damage. One week after the final blue light exposure, retinal damage evaluated revealed that the outer nuclear layer thickness and nuclei count were improved. Histologic examination of murine photoreceptor cells demonstrated that FH, rich in polyphenols, inhibited the loss of outer nuclear layer thickness and nuclei. Our findings suggest that V.U. extract and eluted fractions are a potential source of bioactive compounds that potentially serve a therapeutic approach for age-related macular degeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. An algebraic cluster model based on the harmonic oscillator basis

    NASA Technical Reports Server (NTRS)

    Levai, Geza; Cseh, J.

    1995-01-01

    We discuss the semimicroscopic algebraic cluster model introduced recently, in which the internal structure of the nuclear clusters is described by the harmonic oscillator shell model, while their relative motion is accounted for by the Vibron model. The algebraic formulation of the model makes extensive use of techniques associated with harmonic oscillators and their symmetry group, SU(3). The model is applied to some cluster systems and is found to reproduce important characteristics of nuclei in the sd-shell region. An approximate SU(3) dynamical symmetry is also found to hold for the C-12 + C-12 system.

  16. C-terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation.

    PubMed

    Matsui, Toshiyasu; Hongo, Yu; Haizuka, Yoshinori; Kaida, Kenichi; Matsumura, George; Martin, Donna M; Kobayashi, Yasushi

    2013-08-26

    Large cholinergic synaptic boutons called "C-terminals" contact motoneurons and regulate their excitability. C-terminals in the spinal somatic motor nuclei originate from cholinergic interneurons in laminae VII and X that express a transcription factor Pitx2. Cranial motor nuclei contain another type of motoneuron: branchiomotor neurons. Although branchiomotor neurons receive abundant C-terminal projections, the neural source of these C-terminals remains unknown. In the present study, we first examined whether cholinergic neurons express Pitx2 in the reticular formation of the adult mouse brainstem, as in the spinal cord. Although Pitx2-positive cholinergic neurons were observed in the magnocellular reticular formation and region around the central canal in the caudal medulla, none was present more rostrally in the brainstem tegmentum. We next explored the origin of C-terminals in the branchiomotor nuclei by using biotinylated dextran amine (BDA). BDA injections into the magnocellular reticular formation of the medulla and pons resulted in the labeling of numerous C-terminals in the branchiomotor nuclei: the ambiguous, facial, and trigeminal motor nuclei. Our results revealed that the origins of C-terminals in the branchiomotor nuclei are cholinergic neurons in the magnocellular reticular formation not only in the caudal medulla, but also at more rostral levels of the brainstem, which lacks Pitx2-positive neurons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Ultrastructure and Pathology of Microsporidium phytoseiuli n. sp. Infecting the Predatory Mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae)

    PubMed

    Bjørnson; Steiner; Keddie

    1996-11-01

    Ultrastructure and pathology of Microsporidium phytoseiuli n. sp. infecting the predatory mite Phytoseiulus persimilis Athias-Henriot is described using light and transmission electron microscopy. Infected mites showed no gross, external symptoms. All observed stages of the parasite had unpaired nuclei. Schizonts were commonly observed within nuclei of digestive cells of the ventriculus and within the cytoplasm of cells lining the cecal wall and in muscle tissue underlying it. Sporoblasts and spores occurred in the nuclei and cytoplasm of digestive cells within the ventriculus, in cortical regions of the sub- and supraesophageal ganglia, within the cecal wall and muscle tissue, and in parenchyma cells underlying the cuticle. Mature spores were also observed in developing eggs within gravid females. These were broad- to elongate-ovoid, measured 4.33 ± 0.35 x 1.27 ± 0.15 &mgr;m (electron micrographs), 5.37 ± 0.46 x 2.22 ± 0.17 &mgr;m (fixed and stained), and 5.88 ± 0.34 x 2.22 ± 0.19 &mgr;m (fresh) and had an isolfilar polar filament coiled 12 to 15 times within the posterior two-thirds. Within cells, individual spores appeared to be in direct contact with host cytoplasm, while groups of spores were infrequently observed within interfacial envelopes. Groups of 4, 8, to more than 16 spores were observed by light microscopy, while 8 was the maximum observed by electron microscopy. No spores were observed in Tetranychus urticae, a mite used as food during this study.

  18. Relativistic Coulomb Fission

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  19. Effect of track structure and radioprotectors on the induction of oncogenic transformation in murine fibroblasts by heavy ions

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Martin, S. G.; Hanson, W. R.; Marino, S. A.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)

    1998-01-01

    The oncogenic potential of high-energy 56Fe particles (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at the Brookhaven National Laboratory was examined utilizing the mouse C3H 10T1/2 cell model. The dose-averaged LET for high-energy 56Fe is estimated to be 143 keV/micrometer with the exposure conditions used in this study. For 56Fe ions, the maximum relative biological effectiveness (RBEmax) values for cell survival and oncogenic transformation were 7.71 and 16.5 respectively. Compared to 150 keV/micrometer 4He nuclei, high-energy 56Fe nuclei were significantly less effective in cell killing and oncogenic induction. The prostaglandin E1 analog misoprostol, an effective oncoprotector of C3H 10T1/2 cells exposed to X rays, was evaluated for its potential as a radioprotector of oncogenic transformation with high-energy 56Fe. Exposure of cells to misoprostol did not alter 56Fe cytotoxicity or the rate of 56Fe-induced oncogenic transformation.

  20. (12)CO (3-2) & (1-0) emission line observations of nearby starburst galaxy nuclei

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas; Taniguchi, Yoshiaki; Sanders, D. B.; Nakai, N.; Young, J. S.

    1994-01-01

    New measurements of the (12)CO (1-0) and (12)CO (3-2) line emission are presented for the nuclei of seven nearby starburst galaxies selected from a complete sample of 21 nearby starburst galaxies for which the nuclear star formation rates are measured to be comparable to the archetype starburst galaxies M82 and NGC 253. The new observations capitalize on the coincidence between the beam size of the 45 m Nobeyama telescope at 115 GHz and that of the 15 m James Clerk Maxwell Telescope at 345 GHz to measure the value of the (12)CO (3-2)/(1-0) emission line ratio in a 15 sec (less than or equal to 2.5 kpc) diameter region centered on the nuclear starburst. In principle, the (12)CO (3-2)/(1-0) emission line ratio provides a measure of temperature and optical depth for the (12)CO gas. The error weighted mean value of the (12)CO (3-2)/(1-0) emission line ratio measured for the seven starburst galaxy nuclei is -0.64 +/- 0.06. The (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is significantly higher than the average value measured for molecular gas in the disk of the Galaxy, implying warmer temperatures for the molecular gas in starburst galaxy nuclei. On the other hand, the (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is not as high as would be expected if the molecular gas were hot, greater than 20 K, and optically thin, tau much less than 1. The total mass of molecular gas contained within the central 1.2-2.8 kpc diameter region of the starburst galaxy nuclei ranges from 10(exp 8) to 10(exp 9) solar mass. While substantial, the molecular gas mass represents only a small percentage, approximately 9%-16%, of the dynamical mass in the same region.

  1. Infrared emission and mass loss from evolved stars in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Knapp, G. R.; Gunn, J. E.; Wynn-Williams, C. G.

    1992-01-01

    Small aperture 10.2-micron measurements of normal elliptical galaxies show that for almost all of these galaxies the 12-micron emission seen by IRAS is extended on the scale of the galaxy. NGC 1052 and NGC 3998 are exceptions to this; much of their 10-12-micron emission comes from the inner regions of the galaxies and may be associated with their active nuclei, as is the case for many radio galaxies. The distribution of the IR light and the IR colors of elliptical galaxies suggest that the most plausible source of the 12-micron emission is photospheric and circumstellear emission from cool evolved red giant stars. The 12-micron emission is well in excess of that expected from photospheric emission alone; about 40 percent of it probably comes from circumstellar dust.

  2. Radiation-induced association of beta-glucuronidase with purified nuclei from irradiated MOLT-4 and HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClain, D.E.; Kalinich, J.F.; Poplack, J.K.

    1989-02-01

    Beta-glucuronidase, a lysosomal marker enzyme, associates with purified nuclei from HeLa and MOLT-4 cell lines in a radiation dose-dependent manner, up to 300 cGy in MOLT-4 cells, and 1000 cGy in HeLa cells. In MOLT-4 cells (200-cGy exposure), there is a significant increase in beta-glucuronidase activity detected in the nuclear fraction 24 h postirradiation with a maximum association occurring at 72 h. In HeLa cells (1000-cGy exposure), a significant association is first detected 24 h postirradiation with a maximum association at 48 h. The association is not the result of nonspecific contamination occurring during nuclei purification since nuclei from irradiatedmore » cells show no greater levels of plasma membrane marker and mitochondrial marker than controls. The nature of the association remains unclear, but activity is not removed by detergents used in the nuclei isolation procedure, and incubation of the nuclei with EDTA reverses the association only modestly. Exposure of nuclei from irradiated cells to anisotonic buffers also results in only a small decrease in beta-glucuronidase activity associated with the nuclei. These observations suggest that lysosomal hydrolases become intimately associated with the nuclei of irradiated cells.« less

  3. Ordering of the 0 d 5 / 2 and 1 s 1 / 2 proton levels in light nuclei

    DOE PAGES

    Hoffman, C. R.; Kay, B. P.; Schiffer, J. P.

    2016-08-22

    We completed a survey of the available single-proton data in A ≤ 17 nucleid. These data, along with calculations using a Woods-Saxon potential, show that the ordering of the 0d 5/2 and 1s 1/2 proton orbitals are determined primarily by the proximity of the s-state proton energy to the Coulomb barrier. We found this analogous to the dependence of the corresponding neutron orbitals in proximity to the neutron threshold, that was previously discussed.

  4. Model for bremsstrahlung emission accompanying interactions between protons and nuclei from low energies up to intermediate energies: Role of magnetic emission

    NASA Astrophysics Data System (ADS)

    Maydanyuk, Sergei P.

    2012-07-01

    A model of the bremsstrahlung emission which accompanies proton decay and collisions of protons off nuclei in the low- to intermediate-energy region has been developed. This model includes spin formalism, a potential approach for describing the interaction between protons and nuclei, and an emission that includes a component of the magnetic emission (defined on the basis of the Pauli equation). For the problem of bremsstrahlung during proton decay the role of magnetic emission is studied by using such a model. For the 146Tm nucleus the following has been studied: (1) How much does the magnetic emission change the full bremsstrahlung spectrum? (2) At which angle is the magnetic emission the most intensive relative to the electric emission? (3) Is there some spatial region where the magnetic emission increases strongly relative to the electric emission? (4) How intensive is the magnetic emission in the tunneling region? (5) Which is the maximal probability? Which value does it equal to at the zero-energy limit of the emitted photons? It is demonstrated that the model is able to describe well enough experimental data of bremsstrahlung emission which accompanies collisions of protons off 9C, 64Cu, and 107Ag nuclei at an incident energy of Tlab=72 MeV (at a photon energy up to 60 MeV) and off 9Be, 12C, and 208Pb nuclei at an incident energy of Tlab=140 MeV (at a photon energy up to 120 MeV).

  5. Growth and Development Temperature Influences Level of Tolerance to High Light Stress 1

    PubMed Central

    Steffen, Kenneth L.; Palta, Jiwan P.

    1989-01-01

    The influence of growth and development temperature on the relative tolerance of photosynthetic tissue to high light stress at chilling temperatures was investigated. Two tuber-bearing potato species, Solanum tuberosum L. cv Red Pontiac and Solanum commersonii were grown for 4 weeks, at either 12 or 24°C with 12 hours of about 375 micromoles per second per square meter of photosynthetically active radiation. Paired leaf discs were cut from directly across the midvein of leaflets of comparable developmental stage and light environment from each species at each growth temperature treatment. One disc of each pair was exposed to 1°C and about 1000 micromoles per second per square meter photosynthetically active radiation for 4 hours, and the other disc was held at 1°C in total darkness for the same duration. Photosynthetic tissue of S. tuberosum, developed at 12°C, was much more tolerant to high light and low temperature stress than tissue developed under 24°C conditions. Following the high light treatment, 24°C-grown S. tuberosum tissue demonstrated light-limited and light-saturated rates that were approximately 50% of their paired dark controls. In contrast, the 12°C-grown tissue from S. tuberosum that was subjected to the light stress showed only a 18 and 6% reduction in light-limited and light-saturated rates of photosynthetic oxygen evolution, respectively. Tissue from 24°C-grown S. commersonii was much less sensitive to the light stress than was tissue from S. tuberosum grown under the same conditions. The results presented here demonstrate that: (a) acclimation of S. tuberosum to lower temperature growth conditions with a constant light environment, results in the increased capacity of photosynthetic tissue to tolerate high light stress at chilling temperature and (b) following growth and development at relatively high temperatures S. commersonii, a frost- and heat-tolerant wild species, has a much greater tolerance to the high light stress at chilling temperature than does S. tuberosum cv Red Pontiac, a frost-sensitive cultivated species. PMID:16667216

  6. Light clusters in nuclear matter: Excluded volume versus quantum many-body approaches

    NASA Astrophysics Data System (ADS)

    Hempel, Matthias; Schaffner-Bielich, Jürgen; Typel, Stefan; Röpke, Gerd

    2011-11-01

    The formation of clusters in nuclear matter is investigated, which occurs, e.g., in low-energy heavy-ion collisions or core-collapse supernovae. In astrophysical applications, the excluded volume concept is commonly used for the description of light clusters. Here we compare a phenomenological excluded volume approach to two quantum many-body models, the quantum statistical model and the generalized relativistic mean-field model. All three models contain bound states of nuclei with mass number A≤4. It is explored to which extent the complex medium effects can be mimicked by the simpler excluded volume model, regarding the chemical composition and thermodynamic variables. Furthermore, the role of heavy nuclei and excited states is investigated by use of the excluded volume model. At temperatures of a few MeV the excluded volume model gives a poor description of the medium effects on the light clusters, but there the composition is actually dominated by heavy nuclei. At larger temperatures there is a rather good agreement, whereas some smaller differences and model dependencies remain.

  7. Shape coexistence and shape transition in light nuclei

    NASA Astrophysics Data System (ADS)

    Saxena, G.; Kumawat, M.; Singh, U. K.; Kaushik, M.; Jain, S. K.

    2018-05-01

    A systematic study has been performed to investigate the shape coexistence and shape transition for even-even nuclei between Z = 10-20 by employing Relativistic Mean-Filed plus BCS (RMF+BCS) approach. We calculate ground state properties viz. binding energy, deformation etc. for even-even nuclei to find the shape coexistence and shape transition. These results are found in agreement of recent experiments and consistent with other parameters of RMF and other theories.

  8. Nuclear Structure Research at Richmond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beausang, Cornelius W.

    The goals for the final year were; (1) to continue ongoing efforts to develop and enhance GRETINA and work towards GRETA; (2) to investigate the structure of non-yrast states in shape transitional Sm and Gd nuclei; (3) to investigate the structure of selected light Cd nuclei; (4) to exploit the surrogate reaction technique to extract (n,f) cross sections for actinide nuclei, particularly the first measurement of the 236Pu and 237Pu(n,f) cross sections.

  9. Final-state interactions in two-nucleon knockout reactions

    NASA Astrophysics Data System (ADS)

    Colle, Camille; Cosyn, Wim; Ryckebusch, Jan

    2016-03-01

    Background: Exclusive two-nucleon knockout after electroexcitation of nuclei [A (e ,e'N N ) in brief] is considered to be a primary source of information about short-range correlations (SRCs) in nuclei. For a proper interpretation of the data, final-state interactions (FSIs) need to be theoretically controlled. Purpose: Our goal is to quantify the role of FSI effects in exclusive A (e ,e'p N ) reactions for four target nuclei representative of the whole mass region. Our focus is on processes that are SRC driven. We investigate the role of FSIs for two characteristic detector setups corresponding to "small" and "large" coverage of the available phase space. Method: Use is made of a factorized expression for the A (e ,e'p N ) cross section that is proportional to the two-body center-of-mass (c.m.) momentum distribution of close-proximity pairs. The A (e ,e'p p ) and A (e ,e'p n ) reactions for the target nuclei 12C,27Al,56Fe, and 208Pb are investigated. The elastic attenuation mechanisms in the FSIs are included using the relativistic multiple-scattering Glauber approximation (RMSGA). Single-charge exchange (SCX) reactions are also included. We introduce the nuclear transparency TAp N, defined as the ratio of exclusive (e ,e'p N ) cross sections on nuclei to those on "free" nucleon pairs, as a measure for the aggregated effect of FSIs in p N knockout reactions from nucleus A . A toy model is introduced in order to gain a better understanding of the A dependence of TAp N. Results: The transparency TAp N drops from 0.2 -0.3 for 12C to 0.04 -0.07 for 208Pb. For all considered kinematics, the mass dependence of TAp N can be captured by the power law TAp N∝A-λ with 0.4 ≲λ ≲0.5 . Apart from an overall reduction factor, we find that FSIs only modestly affect the distinct features of SRC-driven A (e ,e'p N ) which are dictated by the c.m. distribution of close-proximity pairs. Conclusion: The SCX mechanisms represent a relatively small (order of a few percent) contribution of SRC-driven A (e ,e'p N ) processes. The mass dependence of FSI effects in exclusive A (e ,e'p N ) can be captured in a robust power law and is in agreement with the predictions obtained in a toy model.

  10. Effect of nuclear-reaction mechanisms on the population of excited nuclear states and isomeric ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skobelev, N. K., E-mail: skobelev@jinr.ru

    2016-07-15

    Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable ({sup 6}Li) and radioactive ({sup 6}He) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and {sup 3}He beams of the U-120M cyclotron at themore » Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei ({sup 6}Li and {sup 3}He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.« less

  11. Fermi-LAT high-z active galactic nuclei and the extragalactic background light

    NASA Astrophysics Data System (ADS)

    Armstrong, Thomas; Brown, Anthony M.; Chadwick, Paula M.

    2017-10-01

    Observations of distant gamma-ray sources are hindered by the presence of the extragalactic background light (EBL). In order to understand the physical processes that result in the observed spectrum of sources, it is imperative that a good understanding of the EBL is included. In this work, an investigation into the imprint of the EBL on the observed spectra of high-redshift Fermi-LAT active galactic nuclei is presented. By fitting the spectrum below ˜10 GeV, an estimation of the unabsorbed intrinsic source spectrum is obtained; by applying this spectrum to data up to 300 GeV, it is then possible to derive a scaling factor for different EBL models. A second approach uses five sources (PKS 0426-380, 4C +55.17, Ton 116, PG 1246+586 and RBS 1432) that were found to exhibit very high energy (VHE) emission (Eγ > 100 GeV). Through Monte Carlo simulations, it is shown that the observation of VHE photons, despite the large distances of these objects, is consistent with current EBL models. Many of these sources would be observable with the upcoming ground-based observatory, the Cherenkov Telescope Array, leading to a better understanding of the EBL.

  12. The effect of temperature and light on embryogenesis and post-embryogenesis of the spider Eratigena atrica (Araneae, Agelenidae).

    PubMed

    Napiórkowska, Teresa; Kobak, Jarosław; Napiórkowski, Paweł; Templin, Julita

    2018-02-01

    Embryogenesis and post-embryogenesis of spiders depend on several environmental factors including light and temperature. This study was aimed at evaluating the impact of different thermal and lighting conditions on embryonic and early post-embryonic development of Eratigena atrica. Embryos, larvae, nymphs I and II were incubated at constant temperatures of 12, 22, 25 and 32°C under three different light regimes: light, dark, light/dark. Extreme temperatures (12 and 32°C) significantly increased mortality of embryos (to 100%) and nymphs II, whereas larvae and nymphs I suffered reduced survival only at the lowest temperature. Moreover, the lowest temperature reduced the development rate of all stages. The impact of light conditions was less pronounced and more variable: constant light reduced the survival of nymphs I at lower temperatures, but increased that of larvae. Moreover, light increased the time of embryonic development and duration of nymphal stages, particularly at lower temperatures (12-22°C). Thus, the most optimal locations for spiders seem to be dark (though except larval stage) and warm (25°C) sites, where their development is fastest and mortality lowest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  14. Characterization of 12CaO x 7Al2O3 doped indium tin oxide films for transparent cathode in top-emission organic light-emitting diodes.

    PubMed

    Jung, Chul Ho; Hwang, In Rok; Park, Bae Ho; Yoon, Dae Ho

    2013-11-01

    12CaO x 7Al2O3, insulator (C12A7) doped indium tin oxide (ITO) (ITO:C12A7) films were fabricated using a radio frequency magnetron co-sputtering system with ITO and C12A7 targets. The qualitative and quantitative properties of ITO:C12A7 films, as a function of C12A7 concentration, were examined via X-ray photoemission spectroscopy and synchrotron X-ray scattering as well as by conducting atomic force microscopy. The work function of ITO:C12A7 (1.3%) films of approximately 2.8 eV obtained by high resolution photoemission spectroscopy measurements make them a reasonable cathode for top-emission organic light-emitting diodes.

  15. Measurements of cloud condensation nuclei spectra within maritime cumulus cloud droplets: Implications for mixing processes

    NASA Technical Reports Server (NTRS)

    Twohy, Cynthia H.; Hudson, James G.

    1995-01-01

    In a cloud formed during adiabatic expansion, the droplet size distribution will be systematically related to the critical supersaturation of the cloud condensation nuclei (CNN), but this relationship can be complicated in entraining clouds. Useful information about cloud processes, such as mixing, can be obtained from direct measurements of the CNN involved in droplet nucleation. This was accomplished by interfacing two instruments for a series of flights in maritime cumulus clouds. One instrument, the counterflow virtual impactor, collected cloud droplets, and the nonvolatile residual nuclei of the droplets was then passed to a CCN spectrometer, which measured the critical supersaturation (S(sub c)) spectrum of the droplet nuclei. The measured S(sub c) spectra of the droplet nuclei were compared with the S(sub c) spectra of ambient aerosol particles in order to identify which CCN were actually incorporated into droplets and to determine when mixing processes were active at different cloud levels. The droplet nuclei nearly always exhibited lower median S(sub c)'s than the ambient aerosol, as expected since droplets nucleate perferentially on particles with lower critical supersaturations. Critical supersaturation spectra from nuclei of droplets near cloud base were similar to those predicted for cloud regions formed adiabatically, but spectra of droplet nuclei from middle cloud levels showed some evidence that mixing had occurred. Near cloud top, the greatest variation in the spectra of the droplet nuclei was observed, and nuclei with high S(sub c)'s were sometimes present even within relatively large droplets. This suggests that the extent of mixing increases with height in cumulus clouds and that inhomogeneous mixing may be important near cloud top. These promising initial results suggest improvements to the experimental technique that will permit more quantitative results in future experiments.

  16. Cooling Timescale of Dust Tori in Dying Active Galactic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichikawa, Kohei; Tazaki, Ryo, E-mail: k.ichikawa@astro.columbia.edu

    We estimate the dust torus cooling timescale once the active galactic nucleus (AGN) is quenched. In a clumpy torus system, once the incoming photons are suppressed, the cooling timescale of one clump from T {sub dust} = 1000 K to several 10 K is less than 10 years, indicating that the dust torus cooling time is mainly governed by the light crossing time of the torus from the central engine. After considering the light crossing time of the torus, the AGN torus emission at 12 μ m becomes over two orders of magnitude fainter within 100 years after the quenching.more » We also propose that those “dying” AGNs could be found using the AGN indicators with a different physical scale R such as 12 μ m band luminosity tracing AGN torus ( R ∼ 10 pc) and the optical [O iii] λ 5007 emission line tracing narrow line regions ( R = 10{sup 2–4} pc).« less

  17. Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos.

    PubMed

    Giurumescu, Claudiu A; Kang, Sukryool; Planchon, Thomas A; Betzig, Eric; Bloomekatz, Joshua; Yelon, Deborah; Cosman, Pamela; Chisholm, Andrew D

    2012-11-01

    A quantitative understanding of tissue morphogenesis requires description of the movements of individual cells in space and over time. In transparent embryos, such as C. elegans, fluorescently labeled nuclei can be imaged in three-dimensional time-lapse (4D) movies and automatically tracked through early cleavage divisions up to ~350 nuclei. A similar analysis of later stages of C. elegans development has been challenging owing to the increased error rates of automated tracking of large numbers of densely packed nuclei. We present Nucleitracker4D, a freely available software solution for tracking nuclei in complex embryos that integrates automated tracking of nuclei in local searches with manual curation. Using these methods, we have been able to track >99% of all nuclei generated in the C. elegans embryo. Our analysis reveals that ventral enclosure of the epidermis is accompanied by complex coordinated migration of the neuronal substrate. We can efficiently track large numbers of migrating nuclei in 4D movies of zebrafish cardiac morphogenesis, suggesting that this approach is generally useful in situations in which the number, packing or dynamics of nuclei present challenges for automated tracking.

  18. X-ray light curves of active galactic nuclei are phase incoherent

    NASA Technical Reports Server (NTRS)

    Krolik, Julian; Done, Chris; Madejski, Grzegorz

    1993-01-01

    We compute the Fourier phase spectra for the light curves of five low-luminosity active galactic nuclei observed by EXOSAT. There is no statistically significant phase coherence in any of them. This statement is equivalent, subject to a technical caveat, to a demonstration that their fluctuation statistics are Gaussian. Models in which the X-ray output is controlled wholly by a unitary process undergoing a nonlinear limit cycle are therefore ruled out, while models with either a large number of randomly excited independent oscillation modes or nonlinearly interacting spatially dependent oscillations are favored. We also demonstrate how the degree of phase coherence in light curve fluctuations influences the application of causality bounds on internal length scales.

  19. Chiral electroweak currents in nuclei

    DOE PAGES

    Riska, D. O.; Schiavilla, R.

    2017-01-10

    Here, the development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown’s role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  20. Statistical error propagation in ab initio no-core full configuration calculations of light nuclei

    DOE PAGES

    Navarro Pérez, R.; Amaro, J. E.; Ruiz Arriola, E.; ...

    2015-12-28

    We propagate the statistical uncertainty of experimental N N scattering data into the binding energy of 3H and 4He. Here, we also study the sensitivity of the magnetic moment and proton radius of the 3 H to changes in the N N interaction. The calculations are made with the no-core full configuration method in a sufficiently large harmonic oscillator basis. For those light nuclei we obtain Δ E stat (3H) = 0.015 MeV and Δ E stat ( 4He) = 0.055 MeV .

  1. Relationship between Endopolyploidy and Cell Size in Epidermal Tissue of Arabidopsis.

    PubMed Central

    Melaragno, JE; Mehrotra, B; Coleman, AW

    1993-01-01

    Relative quantities of DNA in individual nuclei of stem and leaf epidermal cells of Arabidopsis were measured microspectrofluorometrically using epidermal peels. The relative ploidy level in each nucleus was assessed by comparison to root tip mitotic nuclei. A clear pattern of regular endopolyploidy is evident in epidermal cells. Guard cell nuclei contain levels of DNA comparable to dividing root cells, the 2C level (i.e., one unreplicated copy of the nuclear DNA). Leaf trichome nuclei had elevated ploidy levels of 4C, 8C, 16C, 32C, and 64C, and their cytology suggested that the polyploidy represents a form of polyteny. The nuclei of epidermal pavement cells were 2C, 4C, and 8C in stem epidermis, and 2C, 4C, 8C, and 16C in leaf epidermis. Morphometry of epidermal pavement cells revealed a direct proportionality between nuclear DNA level and cell size. A consideration of the development process suggests that the cells of highest ploidy level are developmentally oldest; consequently, the developmental pattern of epidermal tissues can be read from the ploidy pattern of the cells. This observation is relevant to theories of stomate spacing and offers opportunities for genetic analysis of the endopolyploidy/polyteny phenomenon. PMID:12271050

  2. Nuclear planetology: understanding planetary mantle and crust formation in the light of nuclear and particle physics

    NASA Astrophysics Data System (ADS)

    Roller, Goetz

    2017-04-01

    The Hertzsprung-Russell (HR) diagram is one of the most important diagrams in astronomy. In a HR diagram, the luminosity of stars and/or stellar remnants (white dwarf stars, WD's), relative to the luminosity of the sun, is plotted versus their surface temperatures (Teff). The Earth shows a striking similarity in size (radius ≈ 6.371 km) and Teff of its outer core surface (Teff ≈ 3800 K at the core-mantle-boundary) with old WD's (radius ≈ 6.300 km) like WD0346+246 (Teff ≈ 3820 K after ≈ 12.7 Ga [1]), which plot in the HR diagram close to the low-mass extension of the stellar population or main sequence. In the light of nuclear planetology [2], Earth-like planets are regarded as old, down-cooled and differentiated black dwarfs (Fe-C BLD's) after massive decompression, the most important nuclear reactions involved being 56Fe(γ,α)52Cr (etc.), possibly responsible for extreme terrestrial glaciations events ("snowball" Earth), together with (γ,n), (γ,p) and fusion reactions like 12C(α,γ)16O. The latter reaction might have caused oxidation of the planet from inside out. Nuclear planetology is a new research field, tightly constrained by a coupled 187Re-232Th-238U systematics [3-5]. By means of nuclear/quantum physics and taking the theory of relativity into account, it aims at understanding the thermal and chemical evolution of Fe-C BLD's after gravitational contraction (e.g. Mercury) or Fermi-pressure controlled collapse (e.g. Earth) events after massive decompression, leading possibly to an r-process event, towards the end of their cooling period [2]. So far and based upon 187Re-232Th-238U nuclear geochronometry, the Fe-C BLD hypothesis can successfully explain the global terrestrial MORB 232Th/238U signature [5]. Thus, it may help to elucidate the DM (depleted mantle), EMI (enriched mantle 1), EMII (enriched mantle 2) or HIMU (high U/Pb) reservoirs [6], and the 187Os/188Os isotopic dichotomy in Archean magmatic rocks and sediments [7]. Here I present a conceptual model constraining the evolution of a rocky planet like Earth or Mercury from a stellar precursor of the oldest population to a Fe-C BLD, shifting through different spectral classes in a HR diagram after massive decompression and tremendous energy losses. In the light of WD/BLD cosmochronology [1], solar system bodies like Earth, Mercury and Moon are regarded as captured interlopers from the Galactic bulge, Earth and Moon possibly representing remnants of an old binary system. Such a preliminary scenario is supported by similar ages obtained from WD's for the Galactic halo [1] and, independently, by means of 187Re-232Th-238U nuclear geochronometry [3, 4], together with recent observations extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way [8]. This might be further elucidated in the near future by Th/U cosmochronometry based upon a nuclear production ratio Th/U = 0.96 [9] and additionally by means of a newly developed nucleogeochronometric age dating method for stellar spectroscopy [9-11]. The model shall stimulate geochemical data interpretation from a different perspective, to constrain the evolution and differentiation of planetary or lunar crusts and mantles in general. [1] Fontaine et al. (2001), Public. Astron. Soc. of the Pacific 113, 409-435. [2] Roller (2015), Abstract T34B-0407, AGU Spring Meeting 2015. [3] Roller (2016), Goldschmidt Conf. Abstr. 26, 2642. [4] Roller (2015), Goldschmidt Conf. Abstr. 25, 2672. [5] Roller (2015), Geophys. Res. Abstr. 18, EGU2016-33. [6] Arevalo et al. (2010), Chem. Geol. 271, 70-85. [7] Roller (2015), Geophys. Res. Abstr. 17, EGU2015-2399. [8] Howes et al. (2015), Nature 527, 484-487. [9] Roller (2016), JPS Conf. Proc., Nuclei in the Cosmos (NIC XIV), Niigata, Japan, subm. (NICXIV-001); NICXIV Abstr. #1570244284. [10] Roller (2016), JPS Conf. Proc., Nuclei in the Cosmos (NIC XIV), Niigata, Japan, subm. (NICXIV-002); NICXIV Abstr. #1570244285. [11] Roller (2016), JPS Conf. Proc., Nuclei in the Cosmos (NIC XIV), Niigata, Japan, subm. (NICXIV-003); NICXIV Abstr. #1570244281.

  3. Upbend and M1 scissors mode in neutron-rich nuclei - consequences for r-process $$(n,\\gamma )$$ reaction rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, A. C.; Goriely, S.; Bernstein, L. A.

    2015-01-01

    An enhanced probability for low-energy γ-emission ( upbend, Eγ < 3 MeV) at high excitation energies has been observed for several light and medium-mass nuclei close to the valley of stability. Also the M1 scissors mode seen in deformed nuclei increases the γ-decay probability for low-energy γ-rays (E γ ≈ 2–3 MeV). These phenomena, if present in neutron-rich nuclei, have the potential to increase radiative neutron-capture rates relevant for the r-process. Furthermore, the experimental and theoretical status of the upbend is discussed, and preliminary calculations of (n,γ) reaction rates for neutron-rich, mid-mass nuclei including the scissors mode are shown.

  4. Microscopic optical potentials derived from ab initio translationally invariant nonlocal one-body densities

    NASA Astrophysics Data System (ADS)

    Gennari, Michael; Vorabbi, Matteo; Calci, Angelo; Navrátil, Petr

    2018-03-01

    Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important role in the description of the scattering process. Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM) approach utilizing two- and three-nucleon chiral interactions as the only input. Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates. Results: The ground-state local and nonlocal densities of He 4 ,6 ,8 , 12C, and 16O are calculated and applied to optical potential construction. The differential cross sections and the analyzing powers for the elastic proton scattering off these nuclei are then calculated for different values of the incident proton energy. The impact of nonlocality and the COM removal is discussed. Conclusions: The use of nonlocal densities has a substantial impact on the differential cross sections and improves agreement with experiment in comparison to results generated with the local densities especially for light nuclei. For the halo nuclei 6He and 8He, the results for the differential cross section are in a reasonable agreement with the data although a more sophisticated model for the optical potential is required to properly describe the analyzing powers.

  5. Evidence for the onset of color transparency in ρ 0 electroproduction off nuclei

    DOE PAGES

    Guo, L.; Hanretty, C.; Hicks, K.; ...

    2012-05-11

    We have measured the nuclear transparency of the incoherent diffractive A(e,e'ρ 0) process in 12C and 56Fe targets relative to 2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced {rho}{sup 0}'s on a nucleus relative to deuterium, which is sensitive to ρA interaction, was studied as function of the coherence length (I c), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q 2). Thus, while the transparency for both 12C and 56Fe showed no I c dependence, a significant Q 2 dependence was measured, which is consistentmore » with calculations that included the color transparency effects.« less

  6. Further considerations on in vitro skeletal muscle cell death

    PubMed Central

    Battistelli, Michela; Salucci, Sara; Burattini, Sabrina; Falcieri, Elisabetta

    2013-01-01

    Summary The present review discusses the apoptotic behavior induced by chemical and physical triggers in C2C12 skeletal muscle cells, comparing myoblast to myotube sensitivity, and investigating it by means of morphological, biochemical and cytofluorimetric analyses. After all treatments, myotubes, differently from myoblasts, showed a poor sensitivity to cell death. Intriguingly, in cells exposed to staurosporine, etoposide and UVB radiation, apoptotic and normal nuclei within the same fibercould be revealed. The presence of nuclear-dependent “territorial” death domains in the syncytium could explain a delayed cell death of myotubes compared to mononucleated cells. Moreover, autophagic granules abundantly appeared in myotubes after each treatment. Autophagy could protect muscle cell integrity against chemical and physical stimuli, making C2C12 myotubes, more resistant to cell death induction. PMID:24596689

  7. Light deprivation damages monoamine neurons and produces a depressive behavioral phenotype in rats

    PubMed Central

    Gonzalez, M. M. C.; Aston-Jones, G.

    2008-01-01

    Light is an important environmental factor for regulation of mood. There is a high frequency of seasonal affective disorder in high latitudes where light exposure is limited, and bright light therapy is a successful antidepressant treatment. We recently showed that rats kept for 6 weeks in constant darkness (DD) have anatomical and behavioral features similar to depressed patients, including dysregulation of circadian sleep–waking rhythms and impairment of the noradrenergic (NA)-locus coeruleus (LC) system. Here, we analyzed the cell viability of neural systems related to the pathophysiology of depression after DD, including NA-LC, serotoninergic-raphe nuclei and dopaminergic-ventral tegmental area neurons, and evaluated the depressive behavioral profile of light-deprived rats. We found increased apoptosis in the three aminergic systems analyzed when compared with animals maintained for 6 weeks in 12:12 light-dark conditions. The most apoptosis was observed in NA-LC neurons, associated with a significant decrease in the number of cortical NA boutons. Behaviorally, DD induced a depression-like condition as measured by increased immobility in a forced swim test (FST). DD did not appear to be stressful (no effect on adrenal or body weights) but may have sensitized responses to subsequent stressors (increased fecal number during the FST). We also found that the antidepressant desipramine decreases these neural and behavioral effects of light deprivation. These findings indicate that DD induces neural damage in monoamine brain systems and this damage is associated with a depressive behavioral phenotype. Our results suggest a mechanism whereby prolonged limited light intensity could negatively impact mood. PMID:18347342

  8. The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

    NASA Astrophysics Data System (ADS)

    Iwamoto, O.; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.

    2016-01-01

    A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.

  9. Transition between nuclear and quark-gluon descriptions of hadrons and light nuclei

    NASA Astrophysics Data System (ADS)

    Holt, R. J.; Gilman, R.

    2012-08-01

    We provide a perspective on studies aimed at observing the transition between hadronic and quark-gluonic descriptions of reactions involving light nuclei. We begin by summarizing the results for relatively simple reactions such as the pion form factor and the neutral pion transition form factor as well as that for the nucleon and end with exclusive photoreactions in our simplest nuclei. A particular focus will be on reactions involving the deuteron. It is noted that a firm understanding of these issues is essential for unravelling important structure information from processes such as deeply virtual Compton scattering as well as deeply virtual meson production. The connection to exotic phenomena such as color transparency will be discussed. A number of outstanding challenges will require new experiments at modern facilities on the horizon as well as further theoretical developments.

  10. The complex pericentriolar material 1 protein allows differentiation between myonuclei and nuclei of satellite cells of the skeletal muscle.

    PubMed

    Brunn, Anna

    2018-05-27

    The original article by Winje et al., entitled "Specific labelling of myonuclei by an antibody against pericentriolar material 1 (PCM1) on skeletal muscle tissue sections" 1 , sheds new light on the issue of heterogeneity of skeletal muscle and, thus, the problem to reliably distinguish between myonuclei versus nuclei of satellite cells of the skeletal muscle which are intimately associated. At the light microscopical level this differentiation is particularly difficult since only nuclei inside the muscle fiber are defined as true myonuclei. This is a major problem in analyses that use tissue homogenates, while in situ immunohistochemical studies using appropriate antibodies usually allow differentiation of cell populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Measurement of Excitation Spectra in the ^{12}C(p,d) Reaction near the η^{'} Emission Threshold.

    PubMed

    Tanaka, Y K; Itahashi, K; Fujioka, H; Ayyad, Y; Benlliure, J; Brinkmann, K-T; Friedrich, S; Geissel, H; Gellanki, J; Guo, C; Gutz, E; Haettner, E; Harakeh, M N; Hayano, R S; Higashi, Y; Hirenzaki, S; Hornung, C; Igarashi, Y; Ikeno, N; Iwasaki, M; Jido, D; Kalantar-Nayestanaki, N; Kanungo, R; Knöbel, R; Kurz, N; Metag, V; Mukha, I; Nagae, T; Nagahiro, H; Nanova, M; Nishi, T; Ong, H J; Pietri, S; Prochazka, A; Rappold, C; Reiter, M P; Rodríguez-Sánchez, J L; Scheidenberger, C; Simon, H; Sitar, B; Strmen, P; Sun, B; Suzuki, K; Szarka, I; Takechi, M; Tanihata, I; Terashima, S; Watanabe, Y N; Weick, H; Widmann, E; Winfield, J S; Xu, X; Yamakami, H; Zhao, J

    2016-11-11

    Excitation spectra of ^{11}C are measured in the ^{12}C(p,d) reaction near the η^{'} emission threshold. A proton beam extracted from the synchrotron SIS-18 at GSI with an incident energy of 2.5 GeV impinges on a carbon target. The momenta of deuterons emitted at 0° are precisely measured with the fragment separator (FRS) operated as a spectrometer. In contrast to theoretical predictions on the possible existence of deeply bound η^{'}-mesic states in carbon nuclei, no distinct structures are observed associated with the formation of bound states. The spectra are analyzed to set stringent constraints on the formation cross section and on the hitherto barely known η^{'}-nucleus interaction.

  12. partial E

    NASA Astrophysics Data System (ADS)

    Roller, Goetz

    2017-04-01

    Nuclear planetology [1] is a new research field, tightly constrained by a coupled 187Re-232Th-238U systematics [2-6], which by means of nuclear astrophysics aims also at understanding the thermal evolution of Earth-like planets after Mercury-like contraction and Fermi-pressure controlled gravitational collapse events towards the end of their cooling period. In nuclear planetology, Earth-like planets are regarded as old (redshift z >15), down-cooled and differentiated black dwarfs (Fe-C BLD's), so-called interlopers from the Galactic bulge [7], which are subjected to endoergic 56Fe(γ,α)52Cr (etc.) reactions (photodisintegration), (γ,n) or (γ,p) and fusion reactions like 12C(α,γ)16O. It is remarkable that, beside of its surface temperature Teff of its outer core surface, the Earth shows also striking similarity in volume V (radius rEarth ≈6.370 km) with an old white dwarf star (WD; rWD ≈6.300 km) like WD0346+246. This major boundary condition for nuclear planetology can be described in terms of V Earth = V WD = V const=4•π•r3/3 (rWD ≈ rEarth). However, in addition to the fact that Earth is habitable, the most obvious difference between a WD and the Earth is their density ρ (ρ=m/V; m mass, V volume): while a WD may contain 1MO(MO= solar mass) per V const, the mass of the Earth is only a tiny fraction of this, ≈3•10-6 MO per V const. Therefore, it is crucial to understand ∂ρ, or why mEarth«mWD for V const. Here I argue that the application of principles constrained by the theory of relativity [8] may offer a possible answer to this question: it is generally accepted that mass is directly related to energy, E=m•c2 (E energy; m mass; c velocity of light) or m=E/c2. From m˜E we derive that any mass change can be described in terms of energy change [8]. Instead of ρ=m/V we may thus write ρ=E/c2•V, and because of the special scenario V Earth = V WD = V const discussed here, the denominator of this equation becomes a constant term C=c2•Vconst =9.73•1037m5s-2. From this it follows, that ρ=E/C, or ρ•C=E. Therefore, we arrive at ρ ˜E for the WD/FeC-BLD case or, considering the evolution of the system over time t: ∂ρ/∂t˜∂E/∂t.Hence, concerning time integrated planetary evolution it may be concluded that any density change ∂ρ of an old stellar remnant towards a ≈3•10-6 MO habitable Earth-like planet is a measure for the system's energy change ∂E. In the light of nuclear planetology this result has to be considered to understand the formation and evolution of crusts and mantles on planets and moons. [1] Roller (2015), Abstract T34B-0407, AGU Spring Meeting 2015. [2] Roller (2015), Goldschmidt Conf. Abstr. 25, 2672. [3] Roller (2016), Goldschmidt Conf. Abstr. 26, 2642. [4] Roller (2016), JPS Conf. Proc., Nuclei in the Cosmos (NIC XIV), Niigata, Japan, subm. (NICXIV-001); NICXIV Abstr. #1570244284. [5] Roller (2016), JPS Conf. Proc., Nuclei in the Cosmos (NIC XIV), Niigata, Japan, subm. (NICXIV-002); NICXIV Abstr. #1570244285). [6] Roller (2016), JPS Conf. Proc., Nuclei in the Cosmos (NIC XIV), Niigata, Japan, subm. (NICXIV-003); NICXIV Abstr. #1570244281. [7] Howes et al. (2015), Nature 527, 484-487. [8] Einstein (1905), Annalen d. Physik, 18, 639-641.

  13. Variations of the relative abundances of He, (C,N,O) and Fe-group nuclei in solar cosmic rays and their relationship to solar particle acceleration

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Biswas, S.; Fichtel, C. E.; Pellerin, C. J.; Reames, D. V.

    1973-01-01

    Measurements of the flux of helium nuclei in the 24 January 1971 event and of helium and (C,N,O) nuclei in the 1 September 1971 event are combined with previous measurements to obtain the relative abundances of helium, (C,N,O), and Fe-group nuclei in these events. These data are then summarized together with previously reported results to show that, even when the same detector system using a dE/dx plus range technique is used, differences in the He/(C,N,O) value in the same energy/nucleon interval are observed in solar cosmic ray events. Further, when the He/(C,N,O) value is lower the He/(Fe-group nuclei) value is also systematically lower in these large events. When solar particle acceleration theory is analyzed, it is seen that the results suggest that, for large events, Coulomb energy loss probably does not play a major role in determining solar particle composition at higher energies (10 MeV). The variations in multicharged nuclei composition are more likely due to partial ionization during the acceleration phase.

  14. Penning Trap Experiments with the Most Exotic Nuclei on Earth: Precision Mass Measurements of Halo Nuclei

    NASA Astrophysics Data System (ADS)

    Brodeur, M.; Brunner, T.; Ettenauer, S.; Lapierre, A.; Ringle, R.; Delheij, P.; Dilling, J.

    2009-05-01

    Exotic nuclei are characterized with an extremely unbalanced protons-neutrons ratio (p/n) where for instance, the halo isotopes of He and Li have up to 3X more n than p (compared to p/n = 1 in ^12C). The properties of these exotic halo nuclei have long been recognized as the most stringent tests of our understanding of the strong force. ^11Li belongs to a special category of halos called Borromean, bound as a three-body family, while the two-body siblings, ^10Li and 2 n, are unbound as separate entities. Last year, a first mass measurement of the radioisotope ^11Li using a Penning trap spectrometer was carried out at the TITAN (Triumf's Ion Trap for Atomic and Nuclear science) facility at TRIUMF-ISAC. Penning traps are proven to be the most precise device to make mass measurements, yet until now they were unable to reach these nuclei. At TRIUMF we managed to measure the mass of ^11Li to an unprecedented precision of dm/m = 60 ppb, which is remarkable since it has a half-life of only 8.8 ms which it the shortest-lived nuclide to be measured with this technique. Furthermore, new and improved masses for the 2 and 4 n halo ^6,8He, as well has the 1 n halo ^11Be have been performed. An overview of the TITAN mass measurement program and its impact in understanding the most exotic nuclei will be given.

  15. Electromagnetic structure of light nuclei

    DOE PAGES

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  16. Electromagnetic structure of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastore, Saori

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  17. Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos

    PubMed Central

    Giurumescu, Claudiu A.; Kang, Sukryool; Planchon, Thomas A.; Betzig, Eric; Bloomekatz, Joshua; Yelon, Deborah; Cosman, Pamela; Chisholm, Andrew D.

    2012-01-01

    A quantitative understanding of tissue morphogenesis requires description of the movements of individual cells in space and over time. In transparent embryos, such as C. elegans, fluorescently labeled nuclei can be imaged in three-dimensional time-lapse (4D) movies and automatically tracked through early cleavage divisions up to ~350 nuclei. A similar analysis of later stages of C. elegans development has been challenging owing to the increased error rates of automated tracking of large numbers of densely packed nuclei. We present Nucleitracker4D, a freely available software solution for tracking nuclei in complex embryos that integrates automated tracking of nuclei in local searches with manual curation. Using these methods, we have been able to track >99% of all nuclei generated in the C. elegans embryo. Our analysis reveals that ventral enclosure of the epidermis is accompanied by complex coordinated migration of the neuronal substrate. We can efficiently track large numbers of migrating nuclei in 4D movies of zebrafish cardiac morphogenesis, suggesting that this approach is generally useful in situations in which the number, packing or dynamics of nuclei present challenges for automated tracking. PMID:23052905

  18. First lattice QCD study of the gluonic structure of light nuclei

    NASA Astrophysics Data System (ADS)

    Winter, Frank; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Nplqcd Collaboration

    2017-11-01

    The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarized gluon distribution is studied in nuclei up to atomic number A =3 at quark masses corresponding to pion masses of mπ˜450 and 806 MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effect and is constrained to be less than ˜10 % in these nuclei. This is consistent with expectations from phenomenological quark distributions and the momentum sum rule. In the deuteron, the combination of gluon distributions corresponding to the b1 structure function is found to have a small first moment compared with the corresponding momentum fraction. The first moment of the gluon transversity structure function is also investigated in the spin-1 deuteron, where a nonzero signal is observed at mπ˜806 MeV . This is the first indication of gluon contributions to nuclear structure that can not be associated with an individual nucleon.

  19. First lattice QCD study of the gluonic structure of light nuclei

    DOE PAGES

    Winter, Frank; Detmold, William; Gambhir, Arjun S.; ...

    2017-11-28

    The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarised gluon distribution is studied in nuclei up to atomic numbermore » $A=3$ at quark masses corresponding to pion masses of $$m_\\pi\\sim 450$$ and $806$ MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effect and is constrained to be less than $$\\sim 10$$% in these nuclei. This is consistent with expectations from phenomenological quark distributions and the momentum sum rule. In the deuteron, the combination of gluon distributions corresponding to the $$b_1$$ structure function is found to have a small first moment compared with the corresponding momentum fraction. The first moment of the gluon transversity structure function is also investigated in the spin-1 deuteron, where a non-zero signal is observed at $$m_\\pi \\sim 806$$ MeV. In conclusion, this is the first indication of gluon contributions to nuclear structure that can not be associated with an individual nucleon.« less

  20. Light and melatonin schedule neuronal differentiation in the habenular nuclei

    PubMed Central

    de Borsetti, Nancy Hernandez; Dean, Benjamin J.; Bain, Emily J.; Clanton, Joshua A.; Taylor, Robert W.; Gamse, Joshua T.

    2011-01-01

    The formation of the embryonic brain requires the production, migration, and differentiation of neurons to be timely and coordinated. Coupling to the photoperiod could synchronize the development of neurons in the embryo. Here, we consider the effect of light and melatonin on the differentiation of embryonic neurons in zebrafish. We examine the formation of neurons in the habenular nuclei, a paired structure found near the dorsal surface of the brain adjacent to the pineal organ. Keeping embryos in constant darkness causes a temporary accumulation of habenular precursor cells, resulting in late differentiation and a long-lasting reduction in neuronal processes (neuropil). Because constant darkness delays the accumulation of the neurendocrine hormone melatonin in embryos, we looked for a link between melatonin signaling and habenular neurogenesis. A pharmacological block of melatonin receptors delays neurogenesis and reduces neuropil similarly to constant darkness, while addition of melatonin to embryos in constant darkness restores timely neurogenesis and neuropil. We conclude that light and melatonin schedule the differentiation of neurons and the formation of neural processes in the habenular nuclei. PMID:21840306

  1. Constraining the size of the dusty torus in Active Galactic Nuclei: An Optical/Infrared Reverberation Lag Study

    NASA Astrophysics Data System (ADS)

    Vazquez, Billy

    The dusty torus is the key component in the Active Galactic Nuclei (AGN) Unification Scheme that explains the spectroscopic differences between Seyfert galaxies of types 1 and 2. The torus dust is heated by the nuclear source and emits the absorbed energy in the infrared (IR); but because of light travel times, the torus IR emission responds to variations of the nuclear ultraviolet/optical continuum with a delay that corresponds to the size of the emitting region. The results from a mid-infrared (MIR) monitoring campaign using the Spitzer Space Telescope and optical ground-based telescopes (B and V band imaging), which spanned over 2 years and covered a sample of 12 Seyfert galaxies, are presented. The aim was to constrain the distances from the nucleus to the regions in the torus emitting at wavelengths of 3.6 microm and 4.5 microm. MIR light curves showing the variability characteristics of these AGN are presented and the effects of photometric uncertainties on the time-series analysis of the light curves are discussed. Significant variability was observed in the IR light curves of 10 of 12 objects, with relative amplitudes ranging from ˜10% to ˜100% from their mean flux. The "reverberation lags" between the 3.6 microm and 4.5 microm IR bands were determined for the entire sample and between the optical and MIR bands for NGC6418. In NGC6418, the 3.6 microm and 4.5 microm fluxes lagged behind those of the optical continuum by 47.5+2.0-1.9) days and 62.5+2.5-2.9 days, respectively. This is consistent with the inferred lower limit to the sublimation radius for pure graphite grains at T=1800 K but smaller by a factor of 2 than the lower limit for dust grains with a "standard" interstellar medium (ISM) composition. There is evidence that the lags increased following approximately by a factor of 2 increase in luminosity, consistent with an increase in the sublimation radius.

  2. Some Pecularities of the Graviresponse in Vaucheria

    NASA Technical Reports Server (NTRS)

    Gavrilova, O. V.; Rudanova, E. E.; Voloshko, L. N.; Gabova, A. V.

    1996-01-01

    The growth and position of nuclei in the siphonaceous alga Vaucheria sessilis were investigated under conditions of hypergravity and hypogravity. Under hypergravity conditions, active sporogenesis was observed. The accumulation of nuclei in the apical and branching zone preceeded the sporogenesis. The anti-microtubular agent, colchicine inhibits sporogenesis and the response of Vaucheria to hypergravity. Under hypogravity conditions, the quantity of nuclei increased throughout the whole branch. Colchicine prevents the migration of nuclei from the apical zone to the basal part of the branch. The anti-actin agent phalloidin prevents the formation of an actin network, and phalloidin-poisoned cells lose a cluster of nuclei in the apical zone. However, the gravity dependent response is less pronounced. It is supposed that, in Vaucheria sessilis, the primary stages of the reception and translation of gravitational signals coincide with those for light signals and active division of nuclei in the growth zone is an integral part of the graviresponse.

  3. Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions

    NASA Astrophysics Data System (ADS)

    Lonardoni, D.; Gandolfi, S.; Lynn, J. E.; Petrie, C.; Carlson, J.; Schmidt, K. E.; Schwenk, A.

    2018-04-01

    Quantum Monte Carlo methods have recently been employed to study properties of nuclei and infinite matter using local chiral effective-field-theory interactions. In this work, we present a detailed description of the auxiliary field diffusion Monte Carlo algorithm for nuclei in combination with local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We show results for the binding energy, charge radius, charge form factor, and Coulomb sum rule in nuclei with 3 ≤A ≤16 . Particular attention is devoted to the effect of different operator structures in the three-body force for different cutoffs. The outcomes suggest that local chiral interactions fit to few-body observables give a very good description of the ground-state properties of nuclei up to 16O, with the exception of one fit for the softer cutoff which predicts overbinding in larger nuclei.

  4. NeuRad detector prototype pulse shape study

    NASA Astrophysics Data System (ADS)

    Muzalevsky, I.; Chudoba, V.; Belogurov, S.; Kiselev, O.; Bezbakh, A.; Fomichev, A.; Krupko, S.; Slepnev, R.; Kostyleva, D.; Gorshkov, A.; Ovcharenko, E.; Schetinin, V.

    2018-04-01

    The EXPERT setup located at the Super-FRS facility, the part of the FAIR complex in Darmstadt, Germany, is intended for investigation of properties of light exotic nuclei. One of its modules, the high granularity neutron detector NeuRad assembled from a large number of the scintillating fiber is intended for registration of neutrons emitted by investigated nuclei in low-energy decays. Feasibility of the detector strongly depends on its timing properties defined by the spatial distribution of ionization, light propagation inside the fibers, light emission kinetics and transition time jitter in the multi-anode photomultiplier tube. The first attempt of understanding the pulse formation in the prototype of the NeuRad detector by comparing experimental results and Monte Carlo (MC) simulations is reported in this paper.

  5. Utility of light scatter in the morphological analysis of sperm

    EPA Science Inventory

    We were able to differentiate the morphologically diverse sperm nuclei of four animal species by using an Ortho flow cytometer to detect the forward light scatter from a red (helium-neon) laser. Cytograms depicting the axial light loss and forward red scatter signals revealed uni...

  6. Airborne observations of cloud condensation nuclei spectra and aerosols over East Inner Mongolia

    NASA Astrophysics Data System (ADS)

    Yang, Jiefan; Lei, Hengchi; Lü, Yuhuan

    2017-08-01

    A set of vertical profiles of aerosol number concentrations, size distributions and cloud condensation nuclei (CCN) spectra was observed using a passive cloud and aerosol spectrometer (PCASP) and cloud condensation nuclei counter, over the Tongliao area, East Inner Mongolia, China. The results showed that the average aerosol number concentration in this region was much lower than that in heavily polluted areas. Monthly average aerosol number concentrations within the boundary layer reached a maximum in May and a minimum in September, and the variations in CCN number concentrations at different supersaturations showed the same trend. The parameters c and k of the empirical function N = cS k were 539 and 1.477 under clean conditions, and their counterparts under polluted conditions were 1615 and 1.42. Measurements from the airborne probe mounted on a Yun-12 (Y12) aircraft, together with Hybrid Single-Particle Lagrangian Integrated Trajectory model backward trajectories indicated that the air mass from the south of Tongliao contained a high concentration of aerosol particles (1000-2500 cm-3) in the middle and lower parts of the troposphere. Moreover, detailed intercomparison of data obtained on two days in 2010 indicated that the activation efficiency in terms of the ratio of N CCN to N a (aerosols measured from PCASP) was 0.74 (0.4 supersaturations) when the air mass mainly came from south of Tongliao, and this value increased to 0.83 on the relatively cleaner day. Thus, long-range transport of anthropogenic pollutants from heavily polluted mega cities, such as Beijing and Tianjin, may result in slightly decreasing activation efficiencies.

  7. Research program in nuclear and solid state physics. [including pion absorption spectra and muon spin precession

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.

  8. Search for bound states of the eta-meson in light nuclei

    NASA Technical Reports Server (NTRS)

    Chrien, R. E.; Bart, S.; Pile, P.; Sutter, R.; Tsoupas, N.; Funsten, H. O.; Finn, J. M.; Lyndon, C.; Punjabi, V.; Perdrisat, C. F.

    1988-01-01

    A search for nuclear-bound states of the eta meson was carried out. Targets of lithium, carbon, oxygen, and aluminum were placed in a pion(+) beam at 800 MeV/c. A predicted eta bound state in O-15* (E sub x approx. = 540 MeV) with a width of approx. 9 MeV was not observed. A bound state of a size 1/3 of the predicted cross section would have been seen in this experiment at a confidence level of 3sigma (P is greater than 0.9987).

  9. Knockout of deuterons and tritons with large transverse momenta in pA collisions involving 50-GeV protons

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Baldin, A. A.; Viktorov, V. A.; Gapienko, V. A.; Gapienko, G. S.; Gres', V. N.; Ilyushin, M. A.; Korotkov, V. A.; Mysnik, A. I.; Prudkoglyad, A. F.; Semak, A. A.; Terekhov, V. I.; Uglekov, V. Ya.; Ukhanov, M. N.; Chuiko, B. V.; Shimanskii, S. S.

    2016-11-01

    Formation of the d and t cumulative light nuclear fragments emitted from the nucleus with large transverse momenta at an angle of 35° in the laboratory frame is investigated. The data on collisions of 50-GeV protons with the C, Al, Cu, and W nuclei are collected using the extracted proton beam of the IHEP accelerator and the SPIN detector. The results indicate that the dominant contribution to formation of nuclear fragments comes from the local process of direct knockout from the nucleus.

  10. High-seniority states in spherical nuclei: Triple pair breaking in tin isotopes

    NASA Astrophysics Data System (ADS)

    Astier, Alain

    2013-03-01

    The 119-126Sn nuclei have been produced as fission fragments in two reactions induced by heavy ions: 12C+238U at 90 MeV bombarding energy, 18O+208Pb at 85 MeV. Their level schemes have been built from gamma rays detected using the Euroball array. High-spin states located above the long-lived isomeric states of the even- A and odd-A 120-126Sn nuclei have been identified. Moreover isomeric states lying around 4.5 MeV have been established in the even-A 120-126Sn from the delayed coincidences between the fission fragment detector SAPhIR and the Euroball array. All the states located above 3-MeV excitation energy are ascribed to several broken pairs of neutrons occupying the h11/2 orbit. The maximum value of angular momentum available in such a high-j shell, i.e. for mid-occupation and the breaking of the three neutron pairs (seniority v=6), has been identified.

  11. Coulomb Excitation of 78,80Se and the radioactive 84Se (N = 50) isotopes

    NASA Astrophysics Data System (ADS)

    Galindo-Uribarri, A.; Padilla-Rodal, E.; Garcia-Ruiz, R. F.; Allmond, J. M.; Batchelder, J. C.; Beene, J. R.; Lagergren, K. B.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego-Blanco, J. P.; Varner, R. L.; Yu, C.-H.

    2011-10-01

    Coulomb excitation is a purely electromagnetic excitation process of nuclear states due to the Coulomb field of two colliding nuclei. It is a very precise tool to measure excitation probabilities and provide insight on the collectivity of nuclear excitations and in particular on nuclear shapes. We have measured the B(E2) value of various nuclei in the mass A ~ 80 region using particle-gamma coincidences with the HyBall and Clarion arrays at HRIBF. The Coulomb excitation of various projectile-target combinations (ASe on 12C, 24Mg, 27Al and 50Ti) allow the use of consistency cross checks and the systematic study of isotopic and isotonic chains using both stable and radioactive nuclei under almost identical experimental conditions.We present new results for 78Se, 80Se and the radioactive nucleus 84Se (N = 50). Research sponsored by the Office of Nuclear Physics, U.S. Department of Energy and CONACyT Grant 103366.

  12. EUCLIA—Exploring the UV/Optical Continuum Lag in Active Galactic Nuclei. I. A Model without Light Echoing

    NASA Astrophysics Data System (ADS)

    Cai, Zhen-Yi; Wang, Jun-Xian; Zhu, Fei-Fan; Sun, Mou-Yuan; Gu, Wei-Min; Cao, Xin-Wu; Yuan, Feng

    2018-03-01

    The tight interband correlation and the lag–wavelength relation among UV/optical continua of active galactic nuclei have been firmly established. They are usually understood within the widespread reprocessing scenario; however, the implied interband lags are generally too small. Furthermore, it is challenged by new evidence, such as that the X-ray reprocessing yields too much high-frequency UV/optical variation and that it fails to reproduce the observed timescale-dependent color variations among the Swift light curves of NGC 5548. In a different manner, we demonstrate that an upgraded inhomogeneous accretion disk model, whose local independent temperature fluctuations are subject to a speculated common large-scale temperature fluctuation, can intrinsically generate the tight interband correlation and lag across the UV/optical and be in nice agreement with several observational properties of NGC 5548, including the timescale-dependent color variation. The emergent lag is a result of the differential regression capability of local temperature fluctuations when responding to the large-scale fluctuation. An average speed of propagations as large as ≳15% of the speed of light may be required by this common fluctuation. Several potential physical mechanisms for such propagations are discussed. Our interesting phenomenological scenario may shed new light on comprehending the UV/optical continuum variations of active galactic nuclei.

  13. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    PubMed

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  14. Symplectic no-core configuration interaction framework for ab initio nuclear structure. II. Structure of rotational states

    NASA Astrophysics Data System (ADS)

    Caprio, Mark A.; McCoy, Anna E.; Dytrych, Tomas

    2017-09-01

    Rotational band structure is readily apparent as an emergent phenomenon in ab initio nuclear many-body calculations of light nuclei, despite the incompletely converged nature of most such calculations at present. Nuclear rotation in light nuclei can be analyzed in terms of approximate dynamical symmetries of the nuclear many-body problem: in particular, Elliott's SU (3) symmetry of the three-dimensional harmonic oscillator and the symplectic Sp (3 , R) symmetry of three-dimensional phase space. Calculations for rotational band members in the ab initio symplectic no-core configuration interaction (SpNCCI) framework allow us to directly examine the SU (3) and Sp (3 , R) nature of rotational states. We present results for rotational bands in p-shell nuclei. Supported by the US DOE under Award No. DE-FG02-95ER-40934 and the Czech Science Foundation under Grant No. 16-16772S.

  15. The gluon structure of hadrons and nuclei from lattice QCD

    NASA Astrophysics Data System (ADS)

    Shanahan, Phiala

    2018-03-01

    I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCD calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.

  16. The detection of high charge cosmic ray nuclei. [by balloon-borne electronic particle telescope

    NASA Technical Reports Server (NTRS)

    Scarlett, W. R.; Freier, P. S.; Waddington, C. J.

    1975-01-01

    A large-area, light-weight electronic particle telescope was flown on a high altitude balloon in the summer of 1974 to study the heavy nuclei in the cosmic radiation. This telescope consisted of a double Cerenkov-double scintillator array composed of four 1.22 m diameter disk radiators mounted in light diffusion boxes, each looked at by multiple photomultipliers. The impact point of each particle on the scintillation radiators was determined by studying the relative signals observed by three equally spaced peripheral photomultipliers and one mounted at the center of the diffusion boxes. This telescope was flown in a configuration having a geometric factor of 0.45 sq m sr and observed some 5 x 10 to the 4 nuclei with Z exceeding 14 in a 11 hr exposure. The response and sensitivity of this telescope are discussed in detail.

  17. Total reaction cross sections and neutron-removal cross sections of neutron-rich light nuclei measured by the COMBAS fragment-separator

    NASA Astrophysics Data System (ADS)

    Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.

    2017-12-01

    Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.

  18. Momentum sharing in imbalanced Fermi systems

    NASA Astrophysics Data System (ADS)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16

    2014-10-01

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  19. Backscattering measurement of 6He on 209Bi: Critical interaction distance

    NASA Astrophysics Data System (ADS)

    Guimarães, V.; Kolata, J. J.; Aguilera, E. F.; Howard, A.; Roberts, A.; Becchetti, F. D.; Torres-Isea, R. O.; Riggins, A.; Febrarro, M.; Scarduelli, V.; de Faria, P. N.; Monteiro, D. S.; Huiza, J. F. P.; Arazi, A.; Hinnefeld, J.; Moro, A. M.; Rossi, E. S.; Morcelle, V.; Barioni, A.

    2016-06-01

    An elastic backscattering experiment has been performed at energies below the Coulomb barrier to investigate static and dynamic effects in the interaction of 6He with 209Bi. The measured cross sections are presented in terms of the d σ /d σR u t h ratio, as a function of the distance of closest approach on a Rutherford trajectory. The data are compared with a three-body CDCC calculation and good agreement is observed. In addition, the critical distance of interaction was extracted. A larger value was obtained for the exotic 6He nucleus as compared with the weakly bound 6Li and 9Be nuclei and the tightly bound 4He12C, and 16O nuclei.

  20. Microscopic few-body and Gaussian-shaped density distributions for the analysis of the 6He exotic nucleus with different target nuclei

    NASA Astrophysics Data System (ADS)

    Aygun, M.; Kucuk, Y.; Boztosun, I.; Ibraheem, Awad A.

    2010-12-01

    The elastic scattering angular distributions of 6He projectile on different medium and heavy mass target nuclei including 12C, 27Al, 58Ni, 64Zn, 65Cu, 197Au, 208Pb and 209Bi have been examined by using the few-body and Gaussian-shaped density distributions at various energies. The microscopic real parts of the complex nuclear optical potential have been obtained by using the double-folding model for each of the density distributions and the phenomenological imaginary potentials have been taken as the Woods-Saxon type. Comparative results of the few-body and Gaussian-shaped density distributions together with the experimental data are presented within the framework of the optical model.

  1. Extraction of the ANC from the 10Be(d, p)11Be transfer reaction using the ADWA method

    NASA Astrophysics Data System (ADS)

    Yang, J.; Capel, P.

    2018-05-01

    A halo nucleus is built from a core and at least one weakly bound neutron or proton. To understand this unique cluster structure, lots of efforts have been undertaken. During the past decades, the (d, p) reaction has been widely used in experiments and has become an important tool for extracting single-particle properties of nuclei. In this work, our goal is to obtain the Asymptotic Normalization Coefficient (ANC) of the halo nuclei 11Be using the ADWA method. We perform the analysis for the 10Be(d, p)11Be stripping reaction at Ed =21.4, 18, 15, and 12MeV for the ground state and first excited state of the composite nucleus 11Be. The experimental measurement was carried out at Oak Ridge National Laboratory by Schmitt et al. [1] The sensitivity of the calculations to the optical potential choice is also checked. Overall, the transfer process becomes more peripheral at lower energies and forward angles. Investigation in this area is the best way to extract a reliable ANC from the experimental data. For the ground state of 11Be, the ANC obtained using our method (C={0.785}-0.030+0.026{\\text{fm}}-1/2) shows perfect agreement with the one obtained by Ab initio calculations (C Ab=0.786 fm‑1/2) [2].

  2. Spontaneous fission of the end product in α-decay chain of recoiled superheavy nucleus: A theoretical study

    NASA Astrophysics Data System (ADS)

    Kaur, Amandeep; Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.

    The temperature-dependent preformed cluster model [PCM(T)] is employed to extend our recent work [Niyti, G. Sawhney, M. K. Sharma and R. K. Gupta, Phys. Rev. C 91 (2015) 054606] on α-decay chains of various isotopes of Z = 113-118 superheavy nuclei (SHN), to spontaneous fissioning nuclei 103266Lr, 104267Rf, 105266‑268Db, 111281Rg, and 112282Cn occurring as end products of these α-decay chains. The behavior of fragment mass distribution and competitive emergence of the dominant decay mode, i.e., the α-emission versus spontaneous fission (SF), are studied for identifying the most probable heavy fission fragments, along with the estimation of SF half-life times T1/2SF and total kinetic energy (TKE) of the above noted isotopes of Z = 103-112 nuclei decaying via the SF process. The mass distributions of chosen nuclei are clearly symmetric, independent of mass and temperature. The most preferred decay fragment is found to lie in the neighborhood of doubly magic shell closures of Z = 50 and N = 82, with largest preformation factor P0. In addition, a comparative study of the “hot compact” and “cold elongated” configurations of β2i-deformed and 𝜃iopt-oriented nuclei indicates significantly different behaviors of the two mass fragmentation yields, favoring “hot compact” configuration.

  3. Isotopic composition of cosmic ray nuclei with Z greater than or equal to 10

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Lezniak, J. A.; Kish, J.

    1974-01-01

    Results of measurements of the isotopic composition of Z greater than or equal to 10 cosmic ray nuclei using a new technique employing a combination of Cerenkov and total energy counters. An effective mass resolution of about 0.4 AMU is obtained for particles with energies between 400 and 500 MeV/nuc and charges between 12 and 16. The preliminary mass distribution of nuclei with charges from 12 to 28 is presented and discussed.

  4. EphA4 is Involved in Sleep Regulation but Not in the Electrophysiological Response to Sleep Deprivation.

    PubMed

    Freyburger, Marlène; Pierre, Audrey; Paquette, Gabrielle; Bélanger-Nelson, Erika; Bedont, Joseph; Gaudreault, Pierre-Olivier; Drolet, Guy; Laforest, Sylvie; Blackshaw, Seth; Cermakian, Nicolas; Doucet, Guy; Mongrain, Valérie

    2016-03-01

    Optimal sleep is ensured by the interaction of circadian and homeostatic processes. Although synaptic plasticity seems to contribute to both processes, the specific players involved are not well understood. The EphA4 tyrosine kinase receptor is a cell adhesion protein regulating synaptic plasticity. We investigated the role of EphA4 in sleep regulation using electrocorticography in mice lacking EphA4 and gene expression measurements. EphA4 knockout (KO) mice, Clock(Δ19/Δ19) mutant mice and littermates, C57BL/6J and CD-1 mice, and Sprague-Dawley rats were studied under a 12 h light: 12 h dark cycle, under undisturbed conditions or 6 h sleep deprivation (SLD), and submitted to a 48 h electrophysiological recording and/or brain sampling at different time of day. EphA4 KO mice showed less rapid eye movement sleep (REMS), enhanced duration of individual bouts of wakefulness and nonrapid eye movement sleep (NREMS) during the light period, and a blunted daily rhythm of NREMS sigma activity. The NREMS delta activity response to SLD was unchanged in EphA4 KO mice. However, SLD increased EphA4 expression in the thalamic/hypothalamic region in C57BL/6J mice. We further show the presence of E-boxes in the promoter region of EphA4, a lower expression of EphA4 in Clock mutant mice, a rhythmic expression of EphA4 ligands in several brain areas, expression of EphA4 in the suprachiasmatic nuclei of the hypothalamus (SCN), and finally an unchanged number of cells expressing Vip, Grp and Avp in the SCN of EphA4 KO mice. Our results suggest that EphA4 is involved in circadian sleep regulation. © 2016 Associated Professional Sleep Societies, LLC.

  5. Supernova neutrinos and explosive nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes 7Li, 11B, 92Nb, 138La and 180Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements 11B and 7Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ13, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  6. Photonuclear reaction as a probe for α -clustering nuclei in the quasi-deuteron region

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Ma, Y. G.; He, W. B.

    2017-03-01

    Photon-nuclear reaction in a transport model frame, namely an extended quantum molecular dynamics model, has been realized at the photon energy of 70-140 MeV in the quasi-deuteron regime. For an important application, we pay a special focus on photonuclear reactions of 12C(γ ,n p )10B where 12C is considered as different configurations including α clustering. Obvious differences for some observables have been observed among different configurations, which can be attributed to spatial-momentum correlation of a neutron-proton pair inside nucleus, and therefore it gives us a sensitive probe to distinguish the different configurations including α clustering with the help of the photonuclear reaction mechanism.

  7. High spin states of 141Pm

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sarmishtha; Chanda, Somen; Bhattacharjee, Tumpa; Basu, Swapan Kumar; Bhowmik, R. K.; Muralithar, S.; Singh, R. P.; Ghugre, S. S.

    2004-01-01

    The high spin states in the N=80 odd- A141Pm nucleus have been investigated by in-beam γ-spectroscopic techniques following the reaction 133Cs( 12C, 4n) 141Pm at E=65 MeV using a modest γ detector array, consisting of seven Compton-suppressed high purity germanium detectors and a multiplicity ball of 14 bismuth germanate elements. Thirty new γ rays have been assigned to 141Pm on the basis of γ-ray singles and γγ-coincidence data. The level scheme of 141Pm has been extended upto an excitation energy of 5.2 MeV and spin {35}/{2}ℏ and 16 new levels have been proposed. Spin-parity assignments for most of the newly proposed levels have been made on the basis of the deduced directional correlation orientation ratios for strong transitions. The meanlives of a few excited states have been determined from the pulsed beam- γγ coincidence data using the generalised centroid-shift method. The level structure is discussed in the light of known systematics of neighbouring N=80 isotonic nuclei.

  8. Development of activity pencil beam algorithm using measured distribution data of positron emitter nuclei generated by proton irradiation of targets containing (12)C, (16)O, and (40)Ca nuclei in preparation of clinical application.

    PubMed

    Miyatake, Aya; Nishio, Teiji; Ogino, Takashi

    2011-10-01

    The purpose of this study is to develop a new calculation algorithm that is satisfactory in terms of the requirements for both accuracy and calculation time for a simulation of imaging of the proton-irradiated volume in a patient body in clinical proton therapy. The activity pencil beam algorithm (APB algorithm), which is a new technique to apply the pencil beam algorithm generally used for proton dose calculations in proton therapy to the calculation of activity distributions, was developed as a calculation algorithm of the activity distributions formed by positron emitter nuclei generated from target nuclear fragment reactions. In the APB algorithm, activity distributions are calculated using an activity pencil beam kernel. In addition, the activity pencil beam kernel is constructed using measured activity distributions in the depth direction and calculations in the lateral direction. (12)C, (16)O, and (40)Ca nuclei were determined as the major target nuclei that constitute a human body that are of relevance for calculation of activity distributions. In this study, "virtual positron emitter nuclei" was defined as the integral yield of various positron emitter nuclei generated from each target nucleus by target nuclear fragment reactions with irradiated proton beam. Compounds, namely, polyethylene, water (including some gelatin) and calcium oxide, which contain plenty of the target nuclei, were irradiated using a proton beam. In addition, depth activity distributions of virtual positron emitter nuclei generated in each compound from target nuclear fragment reactions were measured using a beam ON-LINE PET system mounted a rotating gantry port (BOLPs-RGp). The measured activity distributions depend on depth or, in other words, energy. The irradiated proton beam energies were 138, 179, and 223 MeV, and measurement time was about 5 h until the measured activity reached the background level. Furthermore, the activity pencil beam data were made using the activity pencil beam kernel, which was composed of the measured depth data and the lateral data including multiple Coulomb scattering approximated by the Gaussian function, and were used for calculating activity distributions. The data of measured depth activity distributions for every target nucleus by proton beam energy were obtained using BOLPs-RGp. The form of the depth activity distribution was verified, and the data were made in consideration of the time-dependent change of the form. Time dependence of an activity distribution form could be represented by two half-lives. Gaussian form of the lateral distribution of the activity pencil beam kernel was decided by the effect of multiple Coulomb scattering. Thus, the data of activity pencil beam involving time dependence could be obtained in this study. The simulation of imaging of the proton-irradiated volume in a patient body using target nuclear fragment reactions was feasible with the developed APB algorithm taking time dependence into account. With the use of the APB algorithm, it was suggested that a system of simulation of activity distributions that has levels of both accuracy and calculation time appropriate for clinical use can be constructed.

  9. Product operator descriptions of INEPT and RINEPT NMR spectroscopies for ISn (I=1/2, S=3/2) spin systems.

    PubMed

    Tokatli, Ahmet; Gençten, Azmi; Sahin, Mükerrem; Tezel, Ozden; Bahçeli, Semiha

    2004-07-01

    The product operator descriptions of INEPT and reverse INEPT (RINEPT) NMR experiments are introduced for weakly coupled ISn (I=1/2, S=3/2 with n=1,2,3) spin systems. Explicit expressions for polarization transfer from spin-3/2 quadrupolar nuclei to spin-1/2 nuclei (and reversed polarization transfer) are given in detail by using the evolutions of product operators under the spin-spin coupling Hamiltonian. The results calculated for the intensities and positions of the observable signals are simulated in the molecules containing the 119Sn (I=1/2) and 35Cl (S=3/2) nuclei at the coupling constant of J(Sn-Cl)=375 Hz by using the Maple programme on computer.

  10. Product operator descriptions of INEPT and RINEPT NMR spectroscopies for ISn ( I=1/2, S=3/2) spin systems

    NASA Astrophysics Data System (ADS)

    Tokatlı, Ahmet; Gençten, Azmi; Şahin, Mükerrem; Tezel, Özden; Bahçeli, Semiha

    2004-07-01

    The product operator descriptions of INEPT and reverse INEPT (RINEPT) NMR experiments are introduced for weakly coupled ISn ( I=1/2, S=3/2 with n=1,2,3) spin systems. Explicit expressions for polarization transfer from spin-3/2 quadrupolar nuclei to spin-1/2 nuclei (and reversed polarization transfer) are given in detail by using the evolutions of product operators under the spin-spin coupling Hamiltonian. The results calculated for the intensities and positions of the observable signals are simulated in the molecules containning the 119Sn ( I=1/2) and 35Cl ( S=3/2) nuclei at the coupling constant of JSn-Cl=375 Hz by using the Maple programme on computer.

  11. Functional Characterization of G12, a Gene Required for Mitotic Progression during Gastrulation in Zebrafish

    NASA Technical Reports Server (NTRS)

    Reinsch, Sigrid; Conway, Gregory; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    In a differential RNA display screen we have isolated a zebrafish gene, G12, for which homologs can only be found in DNA databases for vertebrates, but not invertebrates. This suggests that this is a gene required specifically in vertebrates. G12 expression is upregulated at mid-blastula transition (MBT). Morpholino inactivation of this gene by injection into 1-cell embryos results in mitotic defects and apoptosis shortly after MBT. Nuclei in morpholino treated embryos also display segregation defects. We have characterized the localization of this gene as a GFP fusion in live and fixed embryos. Overexpression of G12-GFP is non-toxic. Animals retain GFP expression for at least 7 days with no developmental defects, Interestingly in these animals G12-GFP is never detectable in blood cells though blood is present. In the deep cells of early embryos, G 12GFP is localized to nuclei and cytoskeletal elements in interphase and to the centrosome and spindle apparatus during mitosis. In the EVL, G12-GFP shows additional localization to the cell periphery, especially in mitosis. In the yolk syncytium, G12-GFP again localizes to nuclei and strongly to cytoplasmic microtubules of migrating nuclei at the YSL margin. Morpholinc, injection specifically into the YSL after cellularization blocks epiboly and nuclei of the YSL show mitotic defects while deep cells show no mitotic defects and continue to divide. Rescue experiments in which morpholino and G12-GFP RNA are co-injected indicate partial rescue by the G12-GFP. The rescue is cell autonomous; that is, regions of the embryo with higher G12-GFP expression show fewer mitotic defects. Spot 14, the human bomolog of G12, has been shown to be amplified in aggressive breast tumors. This finding, along with our functional and morphological data suggest that G12 and spot 14 are vertebrate-specific and may function either as mitotic checkpoints or as structural components of the spindle apparatus.

  12. Improving isotopic identification with INDRA Silicon-CsI(Tl) telescopes

    NASA Astrophysics Data System (ADS)

    Lopez, O.; Pârlog, M.; Borderie, B.; Rivet, M. F.; Lehaut, G.; Tabacaru, G.; Tassan-Got, L.; Pawłowski, P.; Bonnet, E.; Bougault, R.; Chbihi, A.; Dell'Aquila, D.; Frankland, J. D.; Galichet, E.; Gruyer, D.; La Commara, M.; Le Neindre, N.; Lombardo, I.; Manduci, L.; Marini, P.; Steckmeyer, J. C.; Verde, G.; Vient, E.; Wieleczko, J. P.; Indra Collaboration

    2018-03-01

    Profiting from previous works done with the INDRA multidetector on the description of the light response L of the CsI(Tl) crystals to different impinging nuclei, we propose an improved ΔE - L identification-calibration procedure for Silicon-Caesium Iodide (Si-CsI) telescopes, namely an Advanced Mass Estimate (AME) method. AME is compared to the usual, simple visual analysis of the corresponding two-dimensional map of ΔE - E type, by using INDRA experimental data from nuclear reactions induced by heavy ions in the Fermi energy regime. We show that the capability of such telescopes to identify both the atomic Z and the mass A numbers of light and heavy reaction products, can be quantitatively improved thanks to the proposed approach. This conclusion opens new possibilities to use INDRA for studying these reactions especially with radioactive beams. Indeed, the determination of the mass for charged reaction products becomes of paramount importance to shed light on the role of the isospin degree of freedom in the nuclear equation of state [1,2].

  13. The spinocerebellar ataxia 2 locus is located within a 3-cm interval on chromosome 12q23-24.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allotey, R.; Twells, R.; Cemal, C.

    1995-07-01

    The autosomal dominant cerebellar ataxias (ADCA) are a clinically heterogeneous group of neurodegenerative disorders characterized by a predominantly cerebellar syndrome of onset with gait ataxia, dysarthria, dysmetria, and dysdiadochokinesia. Pathologically, the disorders are characterized by premature neuronal loss in the cerebellar cortex and the inferior olivary and pontine nuclei, with degeneration of the spinal cord. We have previously assigned the spinocerebellar ataxia 2 locus to chromosome 12q23-24.1, within a 31-cM interval flanked by the loci D12S58 and PLA2. Linkage to SCA2 has been demonstrated in pedigrees from Europe, Japan, and North America, the latter serving to refine the candidate regionmore » to a 16-cM interval. We report here genetic analysis undertaken between SCA2 and nine microsatellite loci known to span 8 cM within this interval. 12 refs., 2 figs., 1 tab.« less

  14. Research program in nuclear and solid state physics

    NASA Technical Reports Server (NTRS)

    Stronach, C. E.

    1973-01-01

    The spectra of prompt gamma rays emitted following nuclear pion absorption were studied to determine the states of excited daughter nuclei, and the branching ratios for these states. Studies discussed include the negative pion absorption of C-12, S-32, and N-14; and the positive pion absorption on 0-16. Abstracts of papers submitted to the conference of the American Physical Society are included.

  15. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; hide

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx < 1.1 10(exp 22)/sq cm) X-ray nuclei are relatively common (8/12), but the detections are too faint (< 40 counts per nucleus; (sub -10) keV approx < 1.2 10(exp -13) erg/s/sq cm) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  16. The Nucleus of 10 Short-Period Comets

    NASA Astrophysics Data System (ADS)

    Lamy, P. L.; Toth, I.; Weaver, H. A.; Delahodde, C. E.; Jorda, L.; A'Hearn, M. F.

    2001-11-01

    We report on the successful detection and extensive characterization of the nuclei of 10 short-period comets with the Hubble Space Telescope: 47P/Ashbrook-Jackson, 61P/Shajn-Schaldach, 70P/Kojima, 74P/Smirnova-Chernikh, 76P/West-Kohoutek-Ikemura, 82P/Gehrels 3, 86P/Wild 3, 87P/Bus, 110P/Hartley 3, 147P/Kushida-Muramatsu. The observations were performed with the Planetary Camera of WFPC2 during cycle 9, between July 2000 and June 2001. Each comet was observed eight times over a time span of about 12 hours through different filters, up to three (V, R, I) for the brightest ones. The sizes were determined assuming a geometric albedo of 0.04 for the R band and a phase law of 0.04 mag/deg. We confirm our past findings that cometary nuclei are generally extremely small; the radius of 147P/Kushida-Muramatsu was only 0.13 km. We also present the results for the colors and the lightcurves of the nuclei and discuss the implications for their shape and rotational state. This work was supported by grants from the Universite de Provence, from C.N.E.S., C.N.R.S. (France), from the Hungarian Academy of Science and from NASA through grant HST-GO-08699.01-A from the STScI.

  17. Study of Analytic Statistical Model for Decay of Light and Medium Mass Nuclei in Nuclear Fragmentation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1996-01-01

    The angular momentum independent statistical decay model is often applied using a Monte-Carlo simulation to describe the decay of prefragment nuclei in heavy ion reactions. This paper presents an analytical approach to the decay problem of nuclei with mass number less than 60, which is important for galactic cosmic ray (GCR) studies. This decay problem of nuclei with mass number less than 60 incorporates well-known levels of the lightest nuclei (A less than 11) to improve convergence and accuracy. A sensitivity study of the model level density function is used to determine the impact on mass and charge distributions in nuclear fragmentation. This angular momentum independent statistical decay model also describes the momentum and energy distribution of emitted particles (n, p, d, t, h, and a) from a prefragment nucleus.

  18. Expression pattern and phosphorylation status of Smad2/3 in different subtypes of human first trimester trophoblast.

    PubMed

    Haider, S; Kunihs, V; Fiala, C; Pollheimer, J; Knöfler, M

    2017-09-01

    TGF-β superfamily members are thought to play a pivotal role in placental development and differentiation. However, their downstream effectors, the Smad transcription factors, have been poorly investigated in human trophoblasts. Expression and localisation of the canonical TGF-β targets Smad2/3 and their regulators (Smad4 and Smad7) were investigated in first trimester placenta and purified cytotrophoblast (CTB) subtypes using immunofluorescence, western blotting and qPCR. Canonical and non-canonical activation was analysed in nuclear/cytoplasmic extracts of trophoblast subtypes as well as in tissue sections using antibodies against Smad2/3, phosphorylated either at the C-terminus (pSmad2C/3C) or in their linker regions (pSmad2L/3L). Smad phosphorylation was also examined in differentiating extravillous trophoblasts (EVTs) in the absence or presence of decidual stromal cell (DSC)-conditioned medium. Smad2, Smad4 and Smad7 protein were uniformly expressed between 6th and 12th week placentae and the different isolated CTB subtypes. Activated pSmad2L was mainly detected in nuclei and cytoplasm of villous CTBs, whereas pSmad2C was absent from these cells. In contrast, pSmad2C could be detected in the cytoplasm of cell column trophoblasts and in the cytoplasm/nuclei of EVTs. Smad3 and its phosphorylated forms pSmad3C and pSmad3L specifically localised to EVT nuclei. During EVT differentiation autocrine activation of pSmad2C/3C and pSmad3L was observed. DSC-conditioned medium further increased Smad2/3 phosphorylation in EVTs. The lack of pSmad2C in villous CTBs suggests that other mitogens than TGF-β could promote Smad2 linker phosphorylation under homeostatic conditions. Whereas autocrine signalling activates Smad2/3 in differentiating EVTs, paracrine factors contribute to Smad phosphorylation in these cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. An investigation of the structure and bond rotational potential of some fluorinated ethanes by NMR spectroscopy of solutions in nematic liquid crystalline solvents.

    PubMed

    Emsley, J W; Longeri, M; Merlet, D; Pileio, G; Suryaprakash, N

    2006-06-01

    NMR spectra of 1,2-dibromo-1,1-difluoroethane and 1-bromo-2-iodo-tetrafluoroethane dissolved in nematic liquid crystalline solvents have been analysed to yield the magnitudes and signs of the scalar couplings, J(ij), and total anisotropic couplings, T(ij), between all the (1)H, (19)F, and (13)C nuclei, except for those between two (13)C nuclei. The values obtained for T(ij) in principle contain a contribution from J(ij)(aniso), the component along the static applied magnetic field of the anisotropic part of the electron-mediated spin-spin coupling. Neglecting this contribution allows partially averaged dipolar couplings, D(ij), to be extracted from the T(ij), and these were used to determine the structure, orientational order, and the conformational distribution generated by rotation about the C-C bond. The values obtained are compared with the results of calculations by ab initio and density functional methods. The differences found are no greater than those obtained for similar compounds which do not contain fluorine, so that there is no definitive evidence for significant contributions from J(CF)(aniso) or J(FF)(aniso) in the two compounds studied.

  20. An investigation of the structure and bond rotational potential of some fluorinated ethanes by NMR spectroscopy of solutions in nematic liquid crystalline solvents

    NASA Astrophysics Data System (ADS)

    Emsley, J. W.; Longeri, M.; Merlet, D.; Pileio, G.; Suryaprakash, N.

    2006-06-01

    NMR spectra of 1,2-dibromo-1,1-difluoroethane and 1-bromo-2-iodo-tetrafluoroethane dissolved in nematic liquid crystalline solvents have been analysed to yield the magnitudes and signs of the scalar couplings, Jij, and total anisotropic couplings, Tij, between all the 1H, 19F, and 13C nuclei, except for those between two 13C nuclei. The values obtained for Tij in principle contain a contribution from Jijaniso, the component along the static applied magnetic field of the anisotropic part of the electron-mediated spin-spin coupling. Neglecting this contribution allows partially averaged dipolar couplings, Dij, to be extracted from the Tij, and these were used to determine the structure, orientational order, and the conformational distribution generated by rotation about the C-C bond. The values obtained are compared with the results of calculations by ab initio and density functional methods. The differences found are no greater than those obtained for similar compounds which do not contain fluorine, so that there is no definitive evidence for significant contributions from JCFaniso or JFFaniso in the two compounds studied.

  1. Cosmic-ray isotopic composition of C, N, O, Ne, Mg, Si nuclei in the energy range 50-200 MeV per nucleon measured by the Voyager spacecraft during the solar minimum period

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    The isotopic composition of C, N, O, Ne, Mg, Si cosmic ray nuclei has been measured in the energy range 50-200 MeV per nucleon using data collected by the High-Energy Telescope of the cosmic-ray subsystem experiment on the Voyager 1 and 2 spacecraft. These data were collected during the period of minimum solar activity in 1986-1988 at an average distance of 27 AU with an effective solar modulation that was much less than at the Earth. The isotope analysis, based on the energy loss - total energy method, has a mass resolution of 0.2 amu for carbon and 0.4 amu at silicon. We find a (C-13)/(C-12) ratio slightly lower and a (O-18)/(O-16) ratio slightly enhanced over their solar system value. We also observe the previously reported enhancement of the (Ne-22)/(Ne-20) ratio relative to solar at the cosmic-ray source but only a weak, if any, enhancement of the (Mg-25)/(Mg-24), (Mg-26)/(Mg 24), and (Si-30)/(Si-28) ratios.

  2. Distinctive Recruitment of Endogenous Sleep-Promoting Neurons by Volatile Anesthetics and a Non-immobilizer

    PubMed Central

    Han, Bo; McCarren, Hilary S.; O'Neill, Dan; Kelz, Max B.

    2014-01-01

    BACKGROUND Numerous studies demonstrate that anesthetic-induced unconsciousness is accompanied by activation of hypothalamic sleep-promoting neurons, which occurs through both pre- and postsynaptic mechanisms. However, the correlation between drug exposure, neuronal activation, and onset of hypnosis remains incompletely understood. Moreover, the degree to which anesthetics activate both endogenous populations of GABAergic sleep-promoting neurons within the ventrolateral preoptic (VLPO) and median preoptic (MnPO) nuclei remains unknown. METHODS Mice were exposed to oxygen, hypnotic doses of isoflurane or halothane, or 1,2-dicholorhexafluorocyclobutane (F6), a nonimmobilizer. Hypothalamic brain slices prepared from anesthetic-naïve mice were also exposed to oxygen, volatile anesthetics, or F6 ex vivo, both in the presence and absence of tetrodotoxin. Double-label immunohistochemistry was performed to quantify the number of c-Fos-immunoreactive nuclei in the GABAergic subpopulation of neurons in the VLPO and the MnPO to test the hypothesis that volatile anesthetics, but not non-immobilizers, activate sleep-promoting neurons in both nuclei. RESULTS In vivo exposure to isoflurane and halothane doubled the fraction of active, c-Fos-expressing GABAergic neurons in the VLPO, while F6 failed to affect VLPO c-Fos expression. Both in the presence and absence of tetrodotoxin, isoflurane dose-dependently increased c-Fos expression in GABAergic neurons ex vivo, while F6 failed to alter expression. In GABAergic neurons of the MnPO, c-Fos expression increased with isoflurane and F6, but not with halothane exposure. CONCLUSIONS Anesthetic unconsciousness is not accompanied by global activation of all putative sleep-promoting neurons. However, within the VLPO hypnotic doses of volatile anesthetics, but not non-immobilizers, activate putative sleep-promoting neurons, correlating with the appearance of the hypnotic state. PMID:25057841

  3. A new measurement of the flux of the light cosmic-ray nuclei at high energies

    NASA Technical Reports Server (NTRS)

    Buckley, J.; Dwyer, J.; Mueller, D.; Swordy, S.; Tang, K. K.

    1994-01-01

    A new cosmic-ray detector utilizing a ring-imaging Cerenkov counter to determine the energy of light cosmic-ray nuclei was flown on high-altitude balloon from Fort Sumner, NM, in 1991 September. We describe the design and performance of this instrument and discuss the data analysis procedures. The measurement provides a new determination of the absolute flux and differential energy spectrum of the primary cosmic-ray species helium between 40 and 320 GeV/nucleon. The experiment also yields the spectra of carbon and oxygen and some information on the intensities of the secondary nuclei Li, Be, and B. A comparison between our results and previous measurements of heavier nuclei (Z greater than or equal to 4) from HEAO 3 and Spacelab 2 indicates good consistency between these measurements. The data set is compared with the results of a leaky box propagation model. We find good agreement with this model if the abundance of helium relative to oxygen at the source is taken to be 25 +/- 6 and if the source spectrum is given by a power law in energy proportional to E(exp -2.15).

  4. Relation between proton and neutron asymptotic normalization coefficients for light mirror nuclei and its relevance to nuclear astrophysics.

    PubMed

    Timofeyuk, N K; Johnson, R C; Mukhamedzhanov, A M

    2003-12-05

    We show how the charge symmetry of strong interactions can be used to relate the proton and neutron asymptotic normalization coefficients (ANCs) of the one-nucleon overlap integrals for light mirror nuclei. This relation extends to the case of real proton decay where the mirror analog is a virtual neutron decay of a loosely bound state. In this case, a link is obtained between the proton width and the squared ANC of the mirror neutron state. The relation between mirror overlaps can be used to study astrophysically relevant proton capture reactions based on information obtained from transfer reactions with stable beams.

  5. Soil hydric characteristics and environmental ice nuclei influence supercooling capacity of hatchling painted turtles Chrysemys picta.

    PubMed

    Costanzo, J P; Litzgus, J D; Iverson, J B; Lee, R E

    1998-11-01

    Hatchling painted turtles (Chrysemys picta) hibernate in their shallow natal nests where temperatures occasionally fall below -10 C during cold winters. Because the thermal limit of freeze tolerance in this species is approximately -4 C, hatchlings rely on supercooling to survive exposure to extreme cold. We investigated the influence of environmental ice nuclei on susceptibility to inoculative freezing in hatchling C. picta indigenous to the Sandhills of west-central Nebraska. In the absence of external ice nuclei, hatchlings cooled to -14.6 1.9 C (mean s.e.m.; N=5) before spontaneously freezing. Supercooling capacity varied markedly among turtles cooled in physical contact with sandy soil collected from nesting locales or samples of the native soil to which water-binding agents (clay or peat) had been added, despite the fact that all substrata contained the same amount of moisture (7.5 % moisture, w/w). The temperature of crystallization (Tc) of turtles exposed to frozen native soil was -1.6 0.4 C (N=5), whereas turtles exposed to frozen soil/clay and soil/peat mixtures supercooled extensively (mean Tc values approximately -13 C). Hatchlings cooled in contact with drier (less than or equal to 4 % moisture) native soil also supercooled extensively. Thus, inoculative freezing is promoted by exposure to sandy soils containing abundant moisture and little clay or organic matter. Soil collected at turtle nesting locales in mid and late winter contained variable amounts of moisture (4-15 % w/w) and organic matter (1-3 % w/w). In addition to ice, the soil at turtle nesting locales may harbor inorganic and organic ice nuclei that may also seed the freezing of hatchlings. Bulk samples of native soil, which were autoclaved to destroy any organic nuclei, nucleated aqueous solutions at approximately -7 C (Tc range -6.1 to -8.2 C). Non-autoclaved samples contained water-extractable, presumably organic, ice nuclei (Tc range -4.4 to -5.3 C). Ice nuclei of both classes varied in potency among turtle nesting locales. Interaction with ice nuclei in the winter microenvironment determines whether hatchling C. picta remain supercooled or freeze and may ultimately account for differential mortality in nests at a given locale and for variation in winter survival rates among populations.

  6. Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonardoni, D.; Gandolfi, S.; Lynn, J. E.

    Quantum Monte Carlo methods have recently been employed to study properties of nuclei and infinite matter using local chiral effective-field-theory interactions. In this paper, we present a detailed description of the auxiliary field diffusion Monte Carlo algorithm for nuclei in combination with local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We show results for the binding energy, charge radius, charge form factor, and Coulomb sum rule in nuclei withmore » $$3{\\le}A{\\le}16$$. Particular attention is devoted to the effect of different operator structures in the three-body force for different cutoffs. Finally, the outcomes suggest that local chiral interactions fit to few-body observables give a very good description of the ground-state properties of nuclei up to $$^{16}\\mathrm{O}$$, with the exception of one fit for the softer cutoff which predicts overbinding in larger nuclei.« less

  7. Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions

    DOE PAGES

    Lonardoni, D.; Gandolfi, S.; Lynn, J. E.; ...

    2018-04-24

    Quantum Monte Carlo methods have recently been employed to study properties of nuclei and infinite matter using local chiral effective-field-theory interactions. In this paper, we present a detailed description of the auxiliary field diffusion Monte Carlo algorithm for nuclei in combination with local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We show results for the binding energy, charge radius, charge form factor, and Coulomb sum rule in nuclei withmore » $$3{\\le}A{\\le}16$$. Particular attention is devoted to the effect of different operator structures in the three-body force for different cutoffs. Finally, the outcomes suggest that local chiral interactions fit to few-body observables give a very good description of the ground-state properties of nuclei up to $$^{16}\\mathrm{O}$$, with the exception of one fit for the softer cutoff which predicts overbinding in larger nuclei.« less

  8. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    PubMed

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution. © 2011 Macmillan Publishers Limited. All rights reserved

  9. Hemocytes of the cochineal insect: ultrastructure.

    PubMed

    Caselín-Castro, Sandra; Llanderal-Cázares, Celina; Méndez-Gallegos, Santiago de Jesús; Ramírez-Cruz, Arturo; Hernández-Hernández, Fidel de la Cruz

    2010-03-01

    Using transmission electron microscopy, light microscopy (Giemsa May-Grumwald), and the Periodic Acid-Schif (PAS) and Sudan Black B staining techniques, hemocytes in the hemolymph of adult female Dactylopius coccus were characterized. The following, in order of abundance, were found: granulocytes, plasmatocytes, prohemocytes, and oenocytoids. Granulocytes varied in size with granulations in the cytoplasm, a large quantity of mitochondria, rugose endoplasmatic reticulum, ribosomes and vesicles, central or exocentric, spherical and occasionally lobulate nucleus. Plasmatocytes were polymorphic with irregularities in the plasma membrane; cytoplasm contained mitochondria, rugose endoplasmatic reticulum and vesicles, and exocentric, spherical, or irregular nucleus. In both types of hemocytes, scant polysaccharides and lipids were found. Prohemocytes were small and spherical with homogeneous cytoplasm and large exocentric nuclei. Oenocytoids were oval or irregular with dense homogeneous cytoplasm and elongated exocentric nuclei. The percentages of granulocytes on different days (d 1 and 10) during the life of the adult female were significantly different, as were those of plasmatocytes on d 30 and 50 and prohemocytes on d 1 and 50. (c) 2010 Wiley Periodicals, Inc.

  10. Targets used in the production of radioactive ion beams at the HRIBF

    NASA Astrophysics Data System (ADS)

    Stracener, D. W.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Mueller, P. E.; Bilheux, J. C.

    2004-03-01

    Radioactive ion beams are produced at the Holifield Radioactive Ion Beam Facility using the Isotope Separation On-Line (ISOL) technique where the atoms are produced in a thick target, transported to an ion source, ionized, and extracted from the ion source to form an ion beam. These radioactive ion beams are then accelerated to energies of a few MeV per nucleon and delivered to experimental stations for use in nuclear physics and nuclear astrophysics experiments. At the heart of this facility is the RIB production target, where the radioactive nuclei are produced using beams of light ions (p, d, 3He, α) to induce nuclear reactions in the target nuclei. Several target materials have been developed and used successfully, including Al 2O 3, HfO 2, SiC, CeS, liquid Ge, liquid Ni, and a low-density matrix of uranium carbide. The details of these targets and some of the target developments that led to the delivery of high-quality radioactive ion beams are discussed in this paper.

  11. Nesprin provides elastic properties to muscle nuclei by cooperating with spectraplakin and EB1

    PubMed Central

    Wang, Shuoshuo; Reuveny, Adriana

    2015-01-01

    Muscle nuclei are exposed to variable cytoplasmic strain produced by muscle contraction and relaxation, but their morphology remains stable. Still, the mechanism responsible for maintaining myonuclear architecture, and its importance, is currently elusive. Herein, we uncovered a unique myonuclear scaffold in Drosophila melanogaster larval muscles, exhibiting both elastic features contributed by the stretching capacity of MSP300 (nesprin) and rigidity provided by a perinuclear network of microtubules stabilized by Shot (spectraplakin) and EB1. Together, they form a flexible perinuclear shield that protects myonuclei from intrinsic or extrinsic forces. The loss of this scaffold resulted in significantly aberrant nuclear morphology and subsequently reduced levels of essential nuclear factors such as lamin A/C, lamin B, and HP1. Overall, we propose a novel mechanism for maintaining myonuclear morphology and reveal its critical link to correct levels of nuclear factors in differentiated muscle fibers. These findings may shed light on the underlying mechanism of various muscular dystrophies. PMID:26008743

  12. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons

    PubMed Central

    Krishnaswami, Suguna Rani; Grindberg, Rashel V; Novotny, Mark; Venepally, Pratap; Lacar, Benjamin; Bhutani, Kunal; Linker, Sara B; Pham, Son; Erwin, Jennifer A; Miller, Jeremy A; Hodge, Rebecca; McCarthy, James K; Kelder, Martin; McCorrison, Jamison; Aevermann, Brian D; Fuertes, Francisco Diez; Scheuermann, Richard H; Lee, Jun; Lein, Ed S; Schork, Nicholas; McConnell, Michael J; Gage, Fred H; Lasken, Roger S

    2016-01-01

    A protocol is described for sequencing the transcriptome of a cell nucleus. Nuclei are isolated from specimens and sorted by FACS, cDNA libraries are constructed and RNA-seq is performed, followed by data analysis. Some steps follow published methods (Smart-seq2 for cDNA synthesis and Nextera XT barcoded library preparation) and are not described in detail here. Previous single-cell approaches for RNA-seq from tissues include cell dissociation using protease treatment at 30 °C, which is known to alter the transcriptome. We isolate nuclei at 4 °C from tissue homogenates, which cause minimal damage. Nuclear transcriptomes can be obtained from postmortem human brain tissue stored at −80 °C, making brain archives accessible for RNA-seq from individual neurons. The method also allows investigation of biological features unique to nuclei, such as enrichment of certain transcripts and precursors of some noncoding RNAs. By following this procedure, it takes about 4 d to construct cDNA libraries that are ready for sequencing. PMID:26890679

  13. Microscopic Shell Model Calculations for sd-Shell Nuclei

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Shirokov, Andrey M.; Smirnova, Nadya A.; Vary, James P.

    Several techniques now exist for performing detailed and accurate calculations of the structure of light nuclei, i.e., A ≤ 16. Going to heavier nuclei requires new techniques or extensions of old ones. One of these is the so-called No Core Shell Model (NCSM) with a Core approach, which involves an Okubo-Lee-Suzuki (OLS) transformation of a converged NCSM result into a single major shell, such as the sd-shell. The obtained effective two-body matrix elements can be separated into core and single-particle (s.p.) energies plus residual two-body interactions, which can be used for performing standard shell-model (SSM) calculations. As an example, an application of this procedure will be given for nuclei at the beginning ofthe sd-shell.

  14. Age of heart disease presentation and dysmorphic nuclei in patients with LMNA mutations

    PubMed Central

    Core, Jason Q.; Mehrabi, Mehrsa; Robinson, Zachery R.; Ochs, Alexander R.; McCarthy, Linda A.; Zaragoza, Michael V.

    2017-01-01

    Nuclear shape defects are a distinguishing characteristic in laminopathies, cancers, and other pathologies. Correlating these defects to the symptoms, mechanisms, and progression of disease requires unbiased, quantitative, and high-throughput means of quantifying nuclear morphology. To accomplish this, we developed a method of automatically segmenting fluorescently stained nuclei in 2D microscopy images and then classifying them as normal or dysmorphic based on three geometric features of the nucleus using a package of Matlab codes. As a test case, cultured skin-fibroblast nuclei of individuals possessing LMNA splice-site mutation (c.357-2A>G), LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 4, LMNA missense mutation (c.1003C>T, pR335W) in exon 6, Hutchinson-Gilford Progeria Syndrome, and no LMNA mutations were analyzed. For each cell type, the percentage of dysmorphic nuclei, and other morphological features such as average nuclear area and average eccentricity were obtained. Compared to blind observers, our procedure implemented in Matlab codes possessed similar accuracy to manual counting of dysmorphic nuclei while being significantly more consistent. The automatic quantification of nuclear defects revealed a correlation between in vitro results and age of patients for initial symptom onset. Our results demonstrate the method’s utility in experimental studies of diseases affecting nuclear shape through automated, unbiased, and accurate identification of dysmorphic nuclei. PMID:29149195

  15. Age of heart disease presentation and dysmorphic nuclei in patients with LMNA mutations.

    PubMed

    Core, Jason Q; Mehrabi, Mehrsa; Robinson, Zachery R; Ochs, Alexander R; McCarthy, Linda A; Zaragoza, Michael V; Grosberg, Anna

    2017-01-01

    Nuclear shape defects are a distinguishing characteristic in laminopathies, cancers, and other pathologies. Correlating these defects to the symptoms, mechanisms, and progression of disease requires unbiased, quantitative, and high-throughput means of quantifying nuclear morphology. To accomplish this, we developed a method of automatically segmenting fluorescently stained nuclei in 2D microscopy images and then classifying them as normal or dysmorphic based on three geometric features of the nucleus using a package of Matlab codes. As a test case, cultured skin-fibroblast nuclei of individuals possessing LMNA splice-site mutation (c.357-2A>G), LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 4, LMNA missense mutation (c.1003C>T, pR335W) in exon 6, Hutchinson-Gilford Progeria Syndrome, and no LMNA mutations were analyzed. For each cell type, the percentage of dysmorphic nuclei, and other morphological features such as average nuclear area and average eccentricity were obtained. Compared to blind observers, our procedure implemented in Matlab codes possessed similar accuracy to manual counting of dysmorphic nuclei while being significantly more consistent. The automatic quantification of nuclear defects revealed a correlation between in vitro results and age of patients for initial symptom onset. Our results demonstrate the method's utility in experimental studies of diseases affecting nuclear shape through automated, unbiased, and accurate identification of dysmorphic nuclei.

  16. Study of 11Li and 10,11Be nuclei through elastic scattering and breakup reactions

    NASA Astrophysics Data System (ADS)

    Gaidarov, M. K.; Lukyanov, V. K.; Kadrev, D. N.; Zemlyanaya, E. V.; Antonov, A. N.; Lukyanov, K. V.; Spasova, K.

    2016-01-01

    The hybrid model of the microscopic optical potential (OP) is applied to calculate the 11Li+p, 10,11Be+p, and 10,11Be+12C elastic scattering cross sections at energies E < 100 MeV/nucleon. The OP's contain the folding-model real part (ReOP) with the direct and exchange terms included, while its imaginary part (ImOP) is derived within the high-energy approximation (HEA) theory. For the 11Li+p elastic scattering, the microscopic large-scale shell model (LSSM) density of 11Li is used, while the density distributions of 10,11Be nuclei obtained within the quantum Monte Carlo (QMC) model and the generator coordinate method (GCM) are utilized to calculate the microscopic OPs and cross sections of elastic scattering of these nuclei on protons and 12C. The depths of the real and imaginary parts of OP are fitted to the elastic scattering data, being simultaneously adjusted to reproduce the true energy dependence of the corresponding volume integrals. Also, the cluster models, in which 11Li consists of 2n-halo and the 9Li core having its own LSSM form of density and 11Be consists of a n-halo and the 10Be core, are adopted. Within the latter, we give predictions for the longitudinal momentum distributions of 9Li fragments produced in the breakup of 11Li at 62 MeV/nucleon on a proton target. It is shown that our results for the diffraction and stripping reaction cross sections in 11Be scattering on 9Be, 93Nb, 181Ta, and 238U targets at 63 MeV/nucleon are in a good agreement with the available experimental data.

  17. Metabolic and reward feeding synchronises the rhythmic brain.

    PubMed

    Challet, Etienne; Mendoza, Jorge

    2010-07-01

    Daily brain rhythmicity, which controls the sleep-wake cycle and neuroendocrine functions, is generated by an endogenous circadian timing system. Within the multi-oscillatory circadian network, a master clock is located in the suprachiasmatic nuclei of the hypothalamus, whose main synchroniser (Zeitgeber) is light. In contrast, imposed meal times and temporally restricted feeding are potent synchronisers for secondary clocks in peripheral organs such as the liver and in brain regions, although not for the suprachiasmatic nuclei. Even when animals are exposed to a light-dark cycle, timed calorie restriction (i.e. when only a hypocaloric diet is given every day) is a synchroniser powerful enough to modify the suprachiasmatic clockwork and increase the synchronising effects of light. A daily chocolate snack in animals fed ad libitum with chow diet entrains the suprachiasmatic clockwork only under the conditions of constant darkness and decreases the synchronising effects of light. Secondary clocks in the brain outside the suprachiasmatic nuclei are differentially influenced by meal timing. Circadian oscillations can either be highly sensitive to food-related metabolic or reward cues (i.e. their phase is shifted according to the timed meal schedule) in some structures or hardly affected by meal timing (palatable or not) in others. Furthermore, animals will manifest food-anticipatory activity prior to their expected meal time. Anticipation of a palatable or regular meal may rely on a network of brain clocks, involving metabolic and reward systems and the cerebellum.

  18. Ultrasensitive spectroscopy based on photonic waveguides on Al2O3/SiO2 platform

    NASA Astrophysics Data System (ADS)

    Heidari, Elham; Xu, Xiaochuan; Tang, Naimei; Mokhtari-Koushyar, Farzad; Dalir, Hamed; Chen, Ray T.

    2018-02-01

    Here a photonic waveguide on Al2O3/SiO2 platform is proposed to cover the 240 320 nm wavelength-range, which is of paramount significance in protein and nuclei acid quantification. Our optical waveguide increases path-length and overlap integration for light-matter interaction with proteins. The proposed system detects one order less proteins concentration as low as 12.5 μg/ml compared with NanoDropTM that detects <125 μg/ml. Also, a linear absorbance change up to protein concentration of 7500 μg/ml is experimentally attained which is based on the Beer-Lambert-law.

  19. Momentum sharing in imbalanced Fermi systems

    DOE PAGES

    Hen, O.; Sargsian, M.; Weinstein, L. B.; ...

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron starsmore » and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.« less

  20. Nuclear physics. Momentum sharing in imbalanced Fermi systems.

    PubMed

    Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I

    2014-10-31

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.

  1. Probing neutron-skin thickness with total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Suzuki, Y.; Inakura, T.

    2014-01-01

    We analyze total reaction cross sections, σR, to explore their sensitivity to the neutron-skin thickness of nuclei. We cover 91 nuclei of O, Ne, Mg, Si, S, Ca, and Ni isotopes. The cross sections are calculated in the Glauber theory using the density distributions obtained with the Skyrme-Hartree-Fock method in three-dimensional coordinate space. Defining a reaction radius, aR=√σR/π , to characterize the nuclear size and target (proton or 12C) dependence, we find an empirical formula for expressing aR with the point matter radius and the skin thickness, and assess two practical ways of determining the skin thickness from proton-nucleus σR values measured at different energies or from σR values measured for different targets.

  2. Ultraviolet-C Light Sanitization of English Cucumber (Cucumis sativus) Packaged in Polyethylene Film.

    PubMed

    Tarek, Abdussamad R; Rasco, Barbara A; Sablani, Shyam S

    2016-06-01

    Food safety is becoming an increasing concern in the United States. This study investigated the effects of ultraviolet-C (UV-C) light as a postpackaging bactericidal treatment on the quality of English cucumber packaged in polyethylene (PE) film. Escherichia coli k-12 was used as a surrogate microbe. The microbial growth and physical properties of packaged cucumbers were analyzed during a 28-d storage period at 5 °C. Inoculating packaged cucumbers treated at 23 °C for 6 min with UV-C (560 mJ/cm(2) ) resulted in a 1.60 log CFU/g reduction. However, this treatment had no significant effect (P > 0.05) on the water vapor transmission rate or oxygen transmission rate of the PE film. Results show that UV-C light treatment delayed the loss of firmness and yellowing of English cucumber up to 28 d at 5 °C. In addition, UV-C light treatment extended the shelf life of treated cucumber 1 wk longer compared to untreated cucumbers. Electron microscopy images indicate that UV-C light treatment influences the morphology of the E. coli k-12 cells. Findings demonstrate that treating cucumbers with UV-C light following packaging in PE film can reduce bacterial populations significantly and delay quality loss. This technology may also be effective for other similarly packaged fresh fruits and vegetables. © 2016 Institute of Food Technologists®

  3. Coacervation and aggregate transitions of a cationic ammonium gemini surfactant with sodium benzoate in aqueous solution.

    PubMed

    Wang, Ruijuan; Tian, Maozhang; Wang, Yilin

    2014-03-21

    Coacervation in an aqueous solution of cationic ammonium gemini surfactant hexamethylene-1,6-bis(dodecyldimethylammonium bromide) (C12C6C12Br2) with sodium benzoate (NaBz) has been investigated at 25 °C by turbidity titration, light microscopy, dynamic light scattering, cryogenic temperature transmission electron microscopy (Cryo-TEM), scanning electron microscopy (SEM), isothermal titration calorimetry, ζ potential and (1)H NMR measurements. There is a critical NaBz concentration of 0.10 M, only above which coacervation can take place. However, if the NaBz concentration is too large, coacervation also becomes difficult. Coacervation takes place at a very low concentration of C12C6C12Br2 and exists in a very wide concentration region of C12C6C12Br2. The phase behavior in the NaBz concentration from 0.15 to 0.50 M includes spherical micelles, threadlike micelles, coacervation, and precipitation. With increasing NaBz concentration, the phase boundaries of coacervation shift to higher C12C6C12Br2 concentration. Moreover, the C12C6C12Br2-NaBz aggregates in the coacervate are found to be close to charge neutralized. The Cryo-TEM and SEM images of the coacervate shows a layer-layer stacking structure consisting of a three-dimensional network formed by the assembly of threadlike micelles. Long, dense and almost uncharged threadlike micelles are the precursors of coacervation in the system.

  4. Deconvolution from Wavefront Sensing Using Optimal Wavefront Estimators

    DTIC Science & Technology

    1996-12-01

    Error Results ....... ............................ 86 B.1 Introduction ................................ 86 B.1.1 Effect of Light Level, my...86 B.1.2 Effect of Atmospheric Coherence Diameter, r0 . . 86 B.1.3 Effect of Tilt Removal ................... 86 B.2 Summary... Effect of Light Level, my .................... 89 C.1.2 Effect of Atmospheric Coherence Diameter, r0 . . 89 C.1.3 Effect of Tilt Removal

  5. Solution Properties of Dissymmetric Sulfonate-type Anionic Gemini Surfactants.

    PubMed

    Yoshimura, Tomokazu; Akiba, Kazuki

    2016-01-01

    Dissymmetric and symmetric anionic gemini surfactants, N-alkyl-N'-alkyl-N,N'dipropanesulfonylethylenediamine (CmCnSul, where m and n represent alkyl chain lengths of m-n = 4-16, 6-14, 8-12, 10-10, and 12-12), were synthesized by two- or three-step reactions. Their physicochemical properties were characterized by equilibrium surface tension measurements, steady-state fluorescence spectroscopy of pyrene, and dynamic light scattering. The critical micelle concentration (CMC) of the dissymmetric surfactants C4C16Sul, C6C14Sul, and C8C12Sul was slightly lower than that of the symmetric surfactant C10C10Sul. The occupied area per molecule (A) of C8C12Sul was smaller than that of C10C10Sul, indicating that C8C12Sul has a high surface activity. However, the increase in the degree of dissymmetry from C8C12Sul to C6C14Sul and then to C4C16Sul resulted in high surface tension and large A. Based on the surface tension, the standard free energies of micellization (∆G°mic) and adsorption (∆G°ads), the efficiency of surface adsorption (pC20), and the effectiveness of surface adsorption (CMC/C20) were obtained. These parameters suggested that C8C12Sul formed micelles more readily than the other surfactants. The properties determined from the surface tension indicated that C8C12Sul's ability is intermediate between those of C10C10Sul and C12C12Sul. The pyrene fluorescence and dynamic light scattering results revealed that the micelle size depends on the longer of the two alkyl chains in dissymmetric surfactants.

  6. Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object tracking

    PubMed Central

    Hamahashi, Shugo; Onami, Shuichi; Kitano, Hiroaki

    2005-01-01

    Background The ability to detect nuclei in embryos is essential for studying the development of multicellular organisms. A system of automated nuclear detection has already been tested on a set of four-dimensional (4D) Nomarski differential interference contrast (DIC) microscope images of Caenorhabditis elegans embryos. However, the system needed laborious hand-tuning of its parameters every time a new image set was used. It could not detect nuclei in the process of cell division, and could detect nuclei only from the two- to eight-cell stages. Results We developed a system that automates the detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. Local image entropy is used to produce regions of the images that have the image texture of the nucleus. From these regions, those that actually detect nuclei are manually selected at the first and last time points of the image set, and an object-tracking algorithm then selects regions that detect nuclei in between the first and last time points. The use of local image entropy makes the system applicable to multiple image sets without the need to change its parameter values. The use of an object-tracking algorithm enables the system to detect nuclei in the process of cell division. The system detected nuclei with high sensitivity and specificity from the one- to 24-cell stages. Conclusion A combination of local image entropy and an object-tracking algorithm enabled highly objective and productive detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. The system will facilitate genomic and computational analyses of C. elegans embryos. PMID:15910690

  7. Evidence for the onset of color transparency in ρ0 electroproduction off nuclei

    NASA Astrophysics Data System (ADS)

    CLAS Collaboration; El Fassi, L.; Zana, L.; Hafidi, K.; Holtrop, M.; Mustapha, B.; Brooks, W. K.; Hakobyan, H.; Zheng, X.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anghinolfi, M.; Arrington, J.; Avakian, H.; Baghdasaryan, H.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bookwalter, C.; Branford, D.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Gabrielyan, M. Y.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hanretty, C.; Heddle, D.; Hicks, K.; Holt, R. J.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S. S.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kuznetsov, V.; Laget, J. M.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Mayer, M.; McAndrew, J.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Phelps, E.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Raue, B. A.; Reimer, P. E.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tedeschi, D. J.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vineyard, M. F.; Voskanyan, H.; Voutier, E.; Watts, D.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zhao, B.; Zhao, Z. W.

    2012-06-01

    We have measured the nuclear transparency of the incoherent diffractive A(e,e‧ρ0) process in 12C and 56Fe targets relative to 2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced ρ0's on a nucleus relative to deuterium, which is sensitive to ρA interaction, was studied as function of the coherence length (lc), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q2). While the transparency for both 12C and 56Fe showed no lc dependence, a significant Q2 dependence was measured, which is consistent with calculations that included the color transparency effects.

  8. On the occurrence of nuclei in mature sieve elements.

    PubMed

    Event, R F; Davis, J D; Tucker, C M; Alfieri, F J

    1970-12-01

    The secondary phloem of 3 species of the Taxodiaceae and 13 species of woody dicotyledons was examined for the occurrence of nuclei in mature sieve elements. Nuclei were found in all mature sieve cells of Metasequoia glyptostroboides, Sequoia sempervirens and Taxodium distichum, and in some mature sieve-tube members in 12 of the 13 species of woody dicotyledons. Except for nuclei of sieve cells undergoing cessation of function, the nuclei in mature sieve cells of M. glyptostroboides, S. sempervirens and T. distichum were normal in appearance. The occurrence and morphology of nuclei in mature sieve-tube members of the woody dicotyledons were quite variable. Only 3 species, Robinia pseudoacacia, Ulmus americana and Vitis riparia, contained some mature sieve elements with apparently normal nuclei.

  9. Correlation of molecular expression with diel rhythm of oviposition in Calliphora vicina (Robineau-Desvoidy) (Diptera: Calliphoridae) and implications for forensic entomology.

    PubMed

    George, Kelly A; Archer, Melanie S; Toop, Tes

    2015-01-01

    This study explored the molecular mechanisms potentially underlying blow fly nocturnal oviposition. A behavioral study revealed that Calliphora vicina (Robineau-Desvoidy) (Diptera: Calliphoridae) possesses a diel rhythm of oviposition in light under 12:12 light/dark conditions. Reversal to 12:12 dark/light resulted in oviposition behavior changing to align with the adjusted regime in most females, but four of 59 experimental females lacked a diel rhythm of oviposition (were arrhythmic). Real-time PCR was used to monitor the molecular expression levels of known circadian genes per and tim in C. vicina to determine whether gene expression and behavior correlated. As with behavior, reversing light/dark conditions changed rhythmic gene expression to align with an adjusted light regime. This suggests that although it is unlikely that C. vicina will colonize dead bodies at night, arrhythmic females and oviposition in the dark was demonstrated. © 2014 American Academy of Forensic Sciences.

  10. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2})more » to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.« less

  11. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schwainski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; hide

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10(sup 11) solar mass that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) less than or approximately 1.1 x 10(exp 22) per square centimeter) X-ray nuclei are relatively common (8/12), but the detections are too faint (less than 40 counts per nucleus; f(sub 2-10 keV) less than or approximately 1.2 x 10(exp -13) ergs per second per square centimeter) to separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  12. AMS with light nuclei at small accelerators

    NASA Astrophysics Data System (ADS)

    Stan-Sion, C.; Enachescu, M.

    2017-06-01

    AMS applications with lighter nuclei are presented. It will be shown how Carbon-14, Boron-10, Beryllium-10, and Tritium-3 can be used to provide valuable information in forensic science, environmental physics, nuclear pollution, in material science and for diagnose of the plasma confinement in fusion reactors. Small accelerators are reliable, efficient and possess the highest ion beam transmissions that confer high precision in measurements.

  13. The Zebrafish G12 Gene is required for Nuclear Positioning and Cell Migrations during Early Development

    NASA Technical Reports Server (NTRS)

    Reinsch, S. S.; Conway, G. C.

    2003-01-01

    After fertilization Zebrafish embryos undergo synchronous cleavage to form a blastula of cells sitting upon a single multinucleate yolk cell. At the beginning of gastrulation these cells undergo extensive cell migrations to form the major body axes. We have discovered a gene, G12, which is required for cell migrations and positioning of nuclei in the large syncytial yolk cell. Overexpression of a G12-GFP fusion protein is not toxic and shows that the protein localizes inside the yolk cell to the yolk nuclei, microtubules, and to the margin between the blastomeres and the large yolk cell. Morpholino (MO) injection into the 1-cell embryo or into just the yolk syncytium conipletely inhibits cell migrations, doming of the yolk cell, and positioning of nuclei around the margin. This effect can be partially rescued by injection of G12-GFP encoding RNA. Given the known role of microtubules in nuclear positioning of yolk nuclei in Zebrafish, we investigated the microtubules in morpholiiio injected and rescued embryos. We find that microtubules are sparse and disorganized in MO-injected embryos and are restored to normal organization upon G12-GFP rescue. G12 plays a pivotal role in organization of inicrotubules during early development. G12 is highly conserved in vertebrates and two homologues exist in the human genome. One of the human hoinologues is amplified in aggressive breast tumors.

  14. Electromagnetic and neutral-weak response functions of light nuclei

    NASA Astrophysics Data System (ADS)

    Lovato, Alessandro

    2015-10-01

    A major goal of nuclear theory is to understand the strong interaction in nuclei as it manifests itself in terms of two- and many-body forces among the nuclear constituents, the protons and neutrons, and the interactions of these constituents with external electroweak probes via one- and many-body currents. Using imaginary-time projection technique, quantum Monte Carlo allows for solving the time-independent Schrödinger equation even for Hamiltonians including highly spin-isospin dependent two- and three- body forces. I will present a recent Green's function Monte Carlo calculation of the quasi-elastic electroweak response functions in light nuclei, needed to describe electron and neutrino scattering. We found that meson-exchange two-body currents generate excess transverse strength from threshold to the quasielastic to the dip region and beyond. These results challenge the conventional picture of quasi elastic inclusive scattering as being largely dominated by single-nucleon knockout processes. These findings are of particular interest for the interpretation of neutrino oscillation signals.

  15. Solving The Longstanding Problem Of Low-Energy Nuclear Reactions At the Highest Microscopic Level - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaglioni, S.

    2016-09-22

    A 2011 DOE-NP Early Career Award (ECA) under Field Work Proposal (FWP) SCW1158 supported the project “Solving the Long-Standing Problem of Low-Energy Nuclear Reactions at the Highest Microscopic Level” in the five-year period from June 15, 2011 to June 14, 2016. This project, led by PI S. Quaglioni, aimed at developing a comprehensive and computationally efficient framework to arrive at a unified description of structural properties and reactions of light nuclei in terms of constituent protons and neutrons interacting through nucleon-nucleon (NN) and three-nucleon (3N) forces. Specifically, the project had three main goals: 1) arriving at the accurate predictions formore » fusion reactions that power stars and Earth-based fusion facilities; 2) realizing a comprehensive description of clustering and continuum effects in exotic nuclei, including light Borromean systems; and 3) achieving fundamental understanding of the role of the 3N force in nuclear reactions and nuclei at the drip line.« less

  16. Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover.

    PubMed

    Bergmann, Olaf; Zdunek, Sofia; Alkass, Kanar; Druid, Henrik; Bernard, Samuel; Frisén, Jonas

    2011-01-15

    Assays to quantify myocardial renewal rely on the accurate identification of cardiomyocyte nuclei. We previously ¹⁴C birth dated human cardiomyocytes based on the nuclear localization of cTroponins T and I. A recent report by Kajstura et al. suggested that cTroponin I is only localized to the nucleus in a senescent subpopulation of cardiomyocytes, implying that ¹⁴C birth dating of cTroponin T and I positive cell populations underestimates cardiomyocyte renewal in humans. We show here that the isolation of cell nuclei from the heart by flow cytometry with antibodies against cardiac Troponins T and I, as well as pericentriolar material 1 (PCM-1), allows for isolation of close to all cardiomyocyte nuclei, based on ploidy and marker expression. We also present a reassessment of cardiomyocyte ploidy, which has important implications for the analysis of cell turnover, and iododeoxyuridine (IdU) incorporation data. These data provide the foundation for reliable analysis of cardiomyocyte turnover in humans. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Production of spin polarized /sup 15/C in heavy-ion reaction and measurement of g-factor for the 1/2/sup +/ ground state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asahi; Ishihara, M.; Shimoda, T.

    1987-12-10

    Spin-polarized /sup 15/C nuclei produced in /sup 15/N-induced reaction were transmitted through an achromatic spectrometer, and implanted in a high-purity graphite stopper in the presence of a static magnetic field. An rf field was applied on the stopper, and the spin inversion induced via nuclear magnetic resonance was observed through a change in the measured up/down asymmetry of ..beta.. rays from /sup 15/C. From the observed resonance frequency the g-factor for the ground state of /sup 15/C has been determined to be chemically bondgchemically bond = 2.63 +- 0.14.

  18. Numerical analysis of dysplasia-associated changes in depth-dependent light scattering profile of cervical epithelium

    NASA Astrophysics Data System (ADS)

    Arifler, Dizem; MacAulay, Calum; Follen, Michele; Guillaud, Martial

    2013-06-01

    Dysplastic progression is known to be associated with changes in morphology and internal structure of cells. A detailed assessment of the influence of these changes on cellular scattering response is needed to develop and optimize optical diagnostic techniques. In this study, we first analyzed a set of quantitative histopathologic images from cervical biopsies and we obtained detailed information on morphometric and photometric features of segmented epithelial cell nuclei. Morphometric parameters included average size and eccentricity of the best-fit ellipse. Photometric parameters included optical density measures that can be related to dielectric properties and texture characteristics of the nuclei. These features enabled us to construct realistic three-dimensional computational models of basal, parabasal, intermediate, and superficial cell nuclei that were representative of four diagnostic categories, namely normal (or negative for dysplasia), mild dysplasia, moderate dysplasia, and severe dysplasia or carcinoma in situ. We then employed the finite-difference time-domain method, a popular numerical tool in electromagnetics, to compute the angle-resolved light scattering properties of these representative models. Results indicated that a high degree of variability can characterize a given diagnostic category, but scattering from moderately and severely dysplastic or cancerous nuclei was generally observed to be stronger compared to scattering from normal and mildly dysplastic nuclei. Simulation results also pointed to significant intensity level variations among different epithelial depths. This suggests that intensity changes associated with dysplastic progression need to be analyzed in a depth-dependent manner.

  19. Distribution of zebrin-immunoreactive Purkinje cell terminals in the cerebellar and vestibular nuclei of birds.

    PubMed

    Wylie, Douglas R; Pakan, Janelle M P; Huynh, Hang; Graham, David J; Iwaniuk, Andrew N

    2012-05-01

    Zebrin II (aldolase C) is expressed in a subset of Purkinje cells in the mammalian and avian cerebella such that there is a characteristic parasagittal organization of zebrin-immunopositive stripes alternating with zebrin-immunonegative stripes. Zebrin is expressed not only in the soma and dendrites of Purkinje cells but also in their axonal terminals. Here we describe the distribution of zebrin immunoreactivity in both the vestibular and the cerebellar nuclei of pigeons (Columba livia) and hummingbirds (Calypte anna, Selasphorus rufus). In the medial cerebellar nucleus, zebrin-positive labeling was particularly heavy in the “shell,” whereas the “core” was zebrin negative. In the lateral cerebellar nucleus, labeling was not as heavy, but a positive shell and negative core were also observed. In the vestibular nuclear complex, zebrin-positive terminal labeling was heavy in the dorsolateral vestibular nucleus and the lateral margin of the superior vestibular nucleus. The central and medial regions of the superior nucleus were generally zebrin negative. Labeling was moderate to heavy in the medial vestibular nucleus, particulary the rostral half of the parvocellular subnucleus. A moderate amount of zebrin-positive labeling was present in the descending vestibular nucleus: this was heaviest laterally, and the central region was generally zebrin negative. Zebrin-positive terminals were also observed in the the cerebellovestibular process, prepositus hypoglossi, and lateral tangential nucleus. We discuss our findings in light of similar studies in rats and with respect to the corticonuclear projections to the cerebellar nuclei and the functional connections of the vestibulocerebellum with the vestibular nuclei. Copyright © 2011 Wiley Periodicals, Inc.

  20. Ab initio theories for light nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Gezerlis, Alexandros

    2016-09-01

    In this talk I will touch upon several features of modern ab initio low-energy nuclear theory. I will start by discussing what ``ab initio'' means in this context. Specifically, I will spend some time going over nucleon-nucleon and three-nucleon interactions and their connections with the underlying theory of Quantum Chromodynamics. I will then show how these interactions are used to describe light nuclei using essentially exact few-body methods. I will then discuss heavier systems, especially those of astrophysical relevance, as well as the methods used to tackle them. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI).

  1. High-K Isomers in Light Superheavy Nuclei by PNC-CSM method

    NASA Astrophysics Data System (ADS)

    He, Xiao-Tao

    2018-05-01

    The high-K isomeric states in light superheavy nuclei around A = 250 mass region are investigated by the Cranked Shell Model (CSM) with pairing treated by a Particle-Number Conserving (PNC) method. With including the higher-order deformation ɛ6, both of the high-K multi-particle state energies and the rotational bands in 254No and N = 150 isotone are reproduced well. The isomeric state energies and the microscopic mechanism of kinematic moment of inertia variations versus rotational frequency are discussed. The irregularity of the two-neutron Kπ = 8- state band at ħω ≈ 0:17 in 252No is caused by the configuration mixing with the two-proton Kπ = 8- band. .

  2. Investigating the spectral characteristics of backscattering from heterogeneous spheroidal nuclei using broadband finite-difference time-domain simulations

    NASA Astrophysics Data System (ADS)

    Chao, Guo-Shan; Sung, Kung-Bin

    2010-02-01

    Backscattered light spectra have been used to extract size distribution of cell nuclei in epithelial tissues for noninvasive detection of precancerous lesions. In existing experimental studies, size estimation is achieved by assuming nuclei as homogeneous spheres or spheroids and fitting the measured data with models based on Mie theory. However, the validity of simplifying nuclei as homogeneous spheres has not been thoroughly examined. In this study, we investigate the spectral characteristics of backscattering from models of spheroidal nuclei under plane wave illumination using three-dimensional finite-difference time-domain (FDTD) simulation. A modulated Gaussian pulse is used to obtain wavelength dependent scattering intensity with a single FDTD run. The simulated model of nuclei consists of a nucleolus and randomly distributed chromatin condensation in homogeneous cytoplasm and nucleoplasm. The results show that backscattering spectra from spheroidal nuclei have similar oscillating patterns to those from homogeneous spheres with the diameter equal to the projective length of the spheroidal nucleus along the propagation direction. The strength of backscattering is enhanced in heterogeneous spheroids as compared to homogeneous spheroids. The degree of which backscattering spectra of heterogeneous nuclei deviate from Mie theory is highly dependent on the distribution of chromatin/nucleolus but not sensitive to nucleolar size, refractive index fluctuation or chromatin density.

  3. Theoretical investigation of α -like quasimolecules in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Dumitrescu, A.; Baran, V. V.

    2018-06-01

    Quasimolecular α -like ground rotational bands were evidenced a long time ago in light nuclei, but they cannot be detected in heavy nuclei due to large Coulomb barriers. In order to search for rotational bands built on excited states in these nuclei, we investigate the shape of an α -nucleus quasimolecular potential matched to a realistic external α -daughter interaction by using as input data α -decay widths. It turns out that its Gaussian length parameter lies in a narrow interval, b0∈[0.6 ,0.8 ] fm, and the equilibrium radius is slightly larger than the predicted Mott transition point from nucleonic to the α -cluster phase in finite nuclei, confirming that α clusters are born on the nuclear surface at low densities. We point out that the α emitters above magic nuclei have the largest spectroscopic factors Sα˜10 % . In addition, we predict that for nuclei with b0>0.75 fm, the first excited vibrational resonant state in the quasimolecular potential is close to the Coulomb barrier and therefore the rotational band built on it can be evidenced by the structure of the α -scattering cross section versus energy. Moreover, its detection by a highly sensitive γ -ray beam produced by laser facilities would provide an additional proof for the existence of α molecules in heavy nuclei.

  4. Thalamocortical Projection Neuron and Interneuron Numbers in the Visual Thalamic Nuclei of the Adult C57BL/6 Mouse.

    PubMed

    Evangelio, Marian; García-Amado, María; Clascá, Francisco

    2018-01-01

    A key parameter to constrain predictive, bottom-up circuit models of a given brain domain is the number and position of the neuronal populations involved. These include not only the neurons whose bodies reside within the domain, but also the neurons in distant regions that innervate the domain. The mouse visual cortex receives its main subcortical input from the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior (LP) complex of the thalamus. The latter consists of three different nuclei: lateral posterior lateral (LPL), lateral posterior medial rostral (LPMR), and lateral posterior medial caudal (LPMC), each exhibiting specific patterns of connections with the various visual cortical areas. Here, we have determined the number of thalamocortical projection neurons and interneurons in the LP complex and dLGN of the adult C57BL/6 male mouse. We combined Nissl staining and histochemical and immunolabeling methods for consistently delineating nuclei borders, and applied unbiased stereological cell counting methods. Thalamic interneurons were identified using GABA immunolabeling. The C57BL/6 dLGN contains ∼21,200 neurons, while LP complex contains ∼31,000 total neurons. The dLGN and LP are the only nuclei of the mouse dorsal thalamus containing substantial numbers GABA-immunoreactive interneurons. These interneurons, however, are scarcer than previously estimated; they are 5.6% of dLGN neurons and just 1.9% of the LP neurons. It can be thus inferred that the dLGN contains ∼20,000 and the LP complex ∼30,400 thalamocortical projection neurons (∼12,000 in LPL, 15,200 in LPMR, and 4,200 in LPMC). The present dataset is relevant for constraining models of mouse visual thalamocortical circuits, as well as for quantitative comparisons between genetically modified mouse strains, or across species.

  5. Thalamocortical Projection Neuron and Interneuron Numbers in the Visual Thalamic Nuclei of the Adult C57BL/6 Mouse

    PubMed Central

    Evangelio, Marian; García-Amado, María; Clascá, Francisco

    2018-01-01

    A key parameter to constrain predictive, bottom-up circuit models of a given brain domain is the number and position of the neuronal populations involved. These include not only the neurons whose bodies reside within the domain, but also the neurons in distant regions that innervate the domain. The mouse visual cortex receives its main subcortical input from the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior (LP) complex of the thalamus. The latter consists of three different nuclei: lateral posterior lateral (LPL), lateral posterior medial rostral (LPMR), and lateral posterior medial caudal (LPMC), each exhibiting specific patterns of connections with the various visual cortical areas. Here, we have determined the number of thalamocortical projection neurons and interneurons in the LP complex and dLGN of the adult C57BL/6 male mouse. We combined Nissl staining and histochemical and immunolabeling methods for consistently delineating nuclei borders, and applied unbiased stereological cell counting methods. Thalamic interneurons were identified using GABA immunolabeling. The C57BL/6 dLGN contains ∼21,200 neurons, while LP complex contains ∼31,000 total neurons. The dLGN and LP are the only nuclei of the mouse dorsal thalamus containing substantial numbers GABA-immunoreactive interneurons. These interneurons, however, are scarcer than previously estimated; they are 5.6% of dLGN neurons and just 1.9% of the LP neurons. It can be thus inferred that the dLGN contains ∼20,000 and the LP complex ∼30,400 thalamocortical projection neurons (∼12,000 in LPL, 15,200 in LPMR, and 4,200 in LPMC). The present dataset is relevant for constraining models of mouse visual thalamocortical circuits, as well as for quantitative comparisons between genetically modified mouse strains, or across species. PMID:29706872

  6. Evolvement of preformation probability of alpha cluster decay of parent nuclei 84≤Z≤92 having N=126

    NASA Astrophysics Data System (ADS)

    Kaur, Rupinder; Singh, Bir Bikram; Kaur, Mandeep; Sandhu, B. S.; Kaur, Maninder

    2018-05-01

    The preformed cluster decay model (PCM) based on collective clusterisation approach of quantum mechanical fragmentation theory (QMFT) has been applied to study the ground state decay of trans-lead parent nuclei 84≤Z≤92 with N=126 emitting α cluster. Within PCM, the α cluster is assumed to be preborn with certain preformation probability P0α before tunneling the potential barrier with penetrability Pα. The nuclear structure information of the emitted α cluster is carried out by P0α . The present work reveals that the relative P0α found to increase as the Z number of parent nuclei moves away from magic proton shell closure i.e. Z=82. It is observed that Pα also increases, consequently, shorter half life T1/2 α of α cluster decay of parent nuclei with increasing Z. The PCM calculated results for the T1/2 α of parent nuclei under study are very well compared with available experimental data.

  7. Noncompound nucleus decay contribution in the 12C+93Nb reaction using various formulations of nuclear proximity potential

    NASA Astrophysics Data System (ADS)

    Chopra, Sahila; Kaur, Arshdeep; Gupta, Raj K.

    2015-01-01

    The earlier study of excitation functions of *105Ag, formed in the 12C+93Nb reaction, based on the dynamical cluster-decay model (DCM), using the pocket formula for nuclear proximity potential is extended to the use of other nuclear interaction potentials derived from the Skyrme energy density functional (SEDF) based on the semiclassical extended Thomas Fermi (ETF) approach and to the use of the extended-Wong model of Gupta and collaborators. The Skyrme forces used are the old SIII and SIV and the new SSk, GSkI, and KDE0(v1) given for both normal and isospin-rich nuclei, with densities added in the frozen-density approximation. Taking advantage of the fact that different Skyrme forces provide different barrier characteristics, we look for the "barrier modification" effects in terms of choosing an appropriate force and hence for the existence or nonexistence of noncompound nucleus (nCN) effects in this reaction. Interestingly, independent of the choice of Skyrme or proximity force, the extended-Wong model fits the experimental data nicely, without any barrier modification and hence no nCN component in the measured fusion cross section, which consists of light-particle evaporation residue (ER) and intermediate-mass fragments (IMFs) up to mass 13, i.e., σfusionExpt .=σER+σIMFs . However, the predicted fusion cross section due to the extended-Wong model is much larger, possibly because of the so-far missing fusion-fission (ff) component in the data. On the other hand, in agreement with the earlier work using the pocket proximity potential, the DCM fits only some data (mainly IMFs) for only some Skyrme forces, and hence it presents the chosen reaction as a case of a large nCN component, whose empirically estimated content is fitted for use of the DCM with a fragment preformation factor taken equal to one, i.e., using DCM (P0=1 ), by introducing "barrier modification" through changing the neck-length parameter Δ R for a best fit to the empirical nCN data in each (ER and IMF) decay channel. Also, the ff component of the DCM is predicted to lie around the symmetric mass A /2 ±16 . All calculations are made for deformed and oriented coplanar nuclei.

  8. Assessment and improvements of Geant4 hadronic models in the context of prompt-gamma hadrontherapy monitoring

    NASA Astrophysics Data System (ADS)

    Dedes, G.; Pinto, M.; Dauvergne, D.; Freud, N.; Krimmer, J.; Létang, J. M.; Ray, C.; Testa, E.

    2014-04-01

    Monte Carlo simulations are nowadays essential tools for a wide range of research topics in the field of radiotherapy. They also play an important role in the effort to develop a real-time monitoring system for quality assurance in proton and carbon ion therapy, by means of prompt-gamma detection. The internal theoretical nuclear models of Monte Carlo simulation toolkits are of decisive importance for the accurate description of neutral or charged particle emission, produced by nuclear interactions between beam particles and target nuclei. We assess the performance of Geant4 nuclear models in the context of prompt-gamma emission, comparing them with experimental data from proton and carbon ion beams. As has been shown in the past and further indicated in our study, the prompt-gamma yields are consistently overestimated by Geant4 by a factor of about 100% to 200% over an energy range from 80 to 310 MeV/u for the case of 12C, and to a lesser extent for 160 MeV protons. Furthermore, we focus on the quantum molecular dynamics (QMD) modeling of ion-ion collisions, in order to optimize its description of light nuclei, which are abundant in the human body and mainly anticipated in hadrontherapy applications. The optimization has been performed by benchmarking QMD free parameters with well established nuclear properties. In addition, we study the effect of this optimization on charged particle emission. With the usage of the proposed parameter values, discrepancies reduce to less than 70%, with the highest values being attributed to the nucleon-ion induced prompt-gammas. This conclusion, also confirmed by the disagreement we observe in the case of proton beams, indicates the need for further investigation on nuclear models which describe proton and neutron induced nuclear reactions.

  9. Organ growth without cell division: somatic polyploidy in a moth, Ephestia kuehniella.

    PubMed

    Buntrock, Lydia; Marec, František; Krueger, Sarah; Traut, Walther

    2012-11-01

    Organ growth depends on cell division and (or) cell growth. Here, we present a study on two organs whose growth depends entirely on cell growth, once they are formed in the embryo: Malpighian tubules and silk glands of the flour moth, Ephestia kuehniella . Between first and last larval instar, the volume of Malpighian tubule cells increases by a factor of ∼1800 and that of silk gland cells by a factor of ∼3100. We determined the number of endocyles required to reach these stages by Feulgen cytometry. Cells of Malpighian tubules were in the 2C stage in first instar larvae and reached 1024C after 9 endocycles in last instar larvae (1C = 0.45 pg DNA). Silk gland cells already reached a DNA content of 8C-16C in first instar larvae and attained up to 8192C in last instar larvae after a total of 12 endocycles. The nuclei were small and more or less spherical in first instar larvae, but they were huge, flat, and bizarrely branched in last instar larvae. We consider branching as a compensatory adaptation to improve molecular traffic between nucleus and cytoplasm in these excessively large and highly polyploid cells (i) by reducing the mean distance between nucleus and cytoplasm and (ii) by enlarging the surface-to-volume ratio of these nuclei.

  10. Release of cell-free ice nuclei from Halomonas elongata expressing the ice nucleation gene inaZ of Pseudomonas syringae.

    PubMed

    Tegos, G; Vargas, C; Perysinakis, A; Koukkou, A I; Christogianni, A; Nieto, J J; Ventosa, A; Drainas, C

    2000-11-01

    Release of ice nuclei in the growth medium of recombinant Halomonas elongata cells expressing the inaZ gene of Pseudomonas syringae was studied in an attempt to produce cell-free active ice nuclei for biotechnological applications. Cell-free ice nuclei were not retained by cellulose acetate filters of 0.2 microm pore size. Highest activity of cell-free ice nuclei was obtained when cells were grown in low salinity (0.5-5% NaCl, w/v). Freezing temperature threshold, estimated to be below -7 degrees C indicating class C nuclei, was not affected by medium salinity. Their density, as estimated by Percoll density centrifugation, was 1.018 +/- 0.002 gml(-1) and they were found to be free of lipids. Ice nuclei are released in the growth medium of recombinant H. elongata cells probably because of inefficient anchoring of the ice-nucleation protein aggregates in the outer membrane. The ice+ recombinant H. elongata cells could be useful for future use as a source of active cell-free ice nucleation protein.

  11. Flavanol binding of nuclei from tree species.

    PubMed

    Feucht, W; Treutter, D; Polster, J

    2004-01-01

    Light microscopy was used to examine the nuclei of five tree species with respect to the presence of flavanols. Flavanols develop a blue colouration in the presence of a special p-dimethylaminocinnamaldehyde (DMACA) reagent that enables those nuclei loaded with flavanols to be recognized. Staining of the nuclei was most pronounced in both Tsuga canadensis and Taxus baccata, variable in Metasequoia glyptostroboides, faint in Coffea arabica and minimal in Prunus avium. HPLC analysis showed that the five species contained substantial amounts of different flavanols such as catechin, epicatechin and proanthocyanidins. Quantitatively, total flavanols were quite different among the species. The nuclei themselves, as studied in Tsuga seed wings, were found to contain mainly catechin, much lower amounts of epicatechin and traces of proanthocyanidins. Blue-coloured nuclei located centrally in small cells were often found to maximally occupy up to 90% of a cell's radius, and the surrounding small rim of cytoplasm was visibly free of flavanols. A survey of 34 gymnosperm and angiosperm species indicated that the first group has much higher nuclear binding capacities for flavanols than the second group.

  12. Cavitation inception from bubble nuclei

    PubMed Central

    Mørch, K. A.

    2015-01-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure–time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  13. Spectral molecular line surveys of active galaxies

    NASA Astrophysics Data System (ADS)

    Villicana Pedraza, Ilhuiyolitzin

    The enormous mass of molecular gas and dust found in the nuclei of active galaxies has a major role in feeding the activity (either starburst or AGN) and therefore in the galactic evolution. Thus, observations of the molecular can provide clues to identify and analyze the type of activity in very deeply obscured galactic nuclei. Indeed, studies of the chemical composition in starburst galaxies via wide band spectral has shown the potential of molecular spectroscopy to trace the physical and chemical propierties of their central ISM material. In this work we present the analysis of the emission of molecules such as HCN, CCH, CN,CS,HCO+, HNC, CH3OH, among others obtained from the survey of spectra of the 3 near seyfert galaxies observed with the APEX Telescope. We have also found that one of the molecules is not at LTE conditions- H3O+ molecule. Whether radiatively pumped or maser enhanced, the emission of H3O+ is emerging from a different region from most other molecules (distributed in two molecular lobes seen as the two velocity components). H3O+ emission peaks close to the systemic velocity of the system, particularly clear in NGC 253, which suggest the emission to be centrally peaked towards the nuclear engine, It is common in the same kind of galaxies? In adition, preliminar conclusions show isotopic ratio 12C/13C in starburst galaxies is higher than nuclei of the Milky Way indicating that interestelar matter in starburst nuclei is less processed than in the nucleus of the Milky Way .There are two possible explanations for this effect in starburst, nucleosynthesis differences due stellar population history and acretion of matter from halo.

  14. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashnik, Stepan Georgievich; Kerby, Leslie Marie

    2015-05-22

    MCNP6, the latest and most advanced LANL Monte Carlo transport code, representing a merger of MCNP5 and MCNPX, is actually much more than the sum of those two computer codes; MCNP6 is available to the public via RSICC at Oak Ridge, TN, USA. In the present work, MCNP6 was validated and verified (V&V) against different experimental data on intermediate-energy fragmentation reactions, and results by several other codes, using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.03 and LAQGSM03.03. It was found that MCNP6 usingmore » CEM03.03 and LAQGSM03.03 describes well fragmentation reactions induced on light and medium target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below, and can serve as a reliable simulation tool for different applications, like cosmic-ray-induced single event upsets (SEU’s), radiation protection, and cancer therapy with proton and ion beams, to name just a few. Future improvements of the predicting capabilities of MCNP6 for such reactions are possible, and are discussed in this work.« less

  15. Characterization of seed nuclei in glucagon aggregation using light scattering methods and field-flow fractionation

    PubMed Central

    Hoppe, Cindy C; Nguyen, Lida T; Kirsch, Lee E; Wiencek, John M

    2008-01-01

    Background Glucagon is a peptide hormone with many uses as a therapeutic agent, including the emergency treatment of hypoglycemia. Physical instability of glucagon in solution leads to problems with the manufacture, formulation, and delivery of this pharmaceutical product. Glucagon has been shown to aggregate and form fibrils and gels in vitro. Small oligomeric precursors serve to initiate and nucleate the aggregation process. In this study, these initial aggregates, or seed nuclei, are characterized in bulk solution using light scattering methods and field-flow fractionation. Results High molecular weight aggregates of glucagon were detected in otherwise monomeric solutions using light scattering techniques. These aggregates were detected upon initial mixing of glucagon powder in dilute HCl and NaOH. In the pharmaceutically relevant case of acidic glucagon, the removal of aggregates by filtration significantly slowed the aggregation process. Field-flow fractionation was used to separate aggregates from monomeric glucagon and determine relative mass. The molar mass of the large aggregates was shown to grow appreciably over time as the glucagon solutions gelled. Conclusion The results of this study indicate that initial glucagon solutions are predominantly monomeric, but contain small quantities of large aggregates. These results suggest that the initial aggregates are seed nuclei, or intermediates which catalyze the aggregation process, even at low concentrations. PMID:18613970

  16. Biomass and lipid enhancement in Chlorella sp. with emphasis on biodiesel quality assessment through detailed FAME signature.

    PubMed

    Shekh, Ajam Yakub; Shrivastava, Preeti; Gupta, Ankit; Krishnamurthi, Kannan; Devi, Sivanesan Saravana; Mudliar, Sandeep N

    2016-02-01

    In this study, the concentrations of MgSO4, salinity and light intensity were optimised for maximum biomass productivity and lipid content in Chlorella sp. Lipid synthesized at varied experimental conditions was also assessed in detail for biodiesel properties through FAME analysis. FAMEs mainly composed of C16:0, C16:1(9), C16:3(7, 10, 13), C18:0, C18:1(11), C18:2(9, 12), C18:3(9, 12, 15). The optimum biomass productivity (372.50mgL(-1)d(-1)) and lipid content (32.57%) was obtained at MgSO4-150ppm; salinity-12.5ppm, and light intensity-25μmolm(-2)s(-1). However, at this condition the cetane number, a major biodiesel property was not complying with worldwide biodiesel standard. Therefore, further optimisations were done to check the suitability of biodiesel fuel. The optimum biomass productivity (348.47mgL(-1)d(-1)) and lipid content (12.43%) with suitable biodiesel fuel properties was obtained at MgSO4-50ppm, salinity-25ppm and light intensity-100μmolm(-2)s(-1). The validation experiments confirmed the closeness of predicted and measured response values. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The lambda mechanism of the 0nbb-decay

    NASA Astrophysics Data System (ADS)

    Šimkovic, Fedor; Štefánik, Dušan; Dvornický, Rastislav

    2017-11-01

    The lambda mechanism (WL-WR exchange) of the neutrinoless double beta decay (0nbb-decay), which has origin in left-right symmetric model with right-handed gauge boson at TeV scale, is investigated. The revisited formalism of the 0nbb-decay, which includes higher order terms of nucleon current, is exploited. The corresponding nuclear matrix elements are calculated within quasiparticle random phase approximation with partial restoration of the isospin symmetry for nuclei of experimental interest. A possibility to distinguish between the conventional light neutrino mass (WL-WL exchange) and lambda mechanisms by observation of the 0nbb-decay in several nuclei is discussed. A qualitative comparison of effective lepton number violating couplings associated with these two mechanisms is performed. By making viable assumption about the seesaw type mixing of light and heavy neutrinos it is concluded that there is a dominance of the conventional light neutrino mass mechanism in the decay rate.

  18. Correlation of individual cosmic ray nuclei with the observation of light flashes by Apollo astronauts. [nuclear emulsion detector design and operation

    NASA Technical Reports Server (NTRS)

    Pinsky, L. S.; Osborne, W. Z.; Bailey, J. V.

    1975-01-01

    A nuclear emulsion detector known as the Apollo Light Flash Moving Emulsion Detector (ALFMED) was designed: (1) to record tracks of primary cosmic rays; (2) to provide time-of-passage information via a relative plate translation technique; (3) to provide particle trajectory information; and (4) to fit into a masklike device that could be located about the head and eyes of an astronaut. An ALFMED device was worn by an astronaut observing light flashes for 60 minutes on each of the last two Apollo missions. During the Apollo 17 experiment seventeen separate flashes were reported by the observer. With one-third of the total plate area completely analyzed, two definite correlations have been found between Z greater than 8 cosmic ray nuclei traversing an eye and the reports of visual sensations.

  19. Isospin symmetry in nucleon scattering from 6Li and 12C at 280 MeV

    NASA Astrophysics Data System (ADS)

    Mildenberger, J.; Häusser, O.; Jeppesen, R. G.; Larson, B.; Pointon, B.; Trudel, A.; Henderson, R.; Hicks, K.; Jackson, K. P.; Miller, A.; Vetterli, M.; Yen, S.; Alford, W. P.; Ćeller, A.; Helmer, R.

    1990-08-01

    Tests of isospin symmetry in (n,p), (p,p'), and (p,n) reactions at 280 MeV populating the T=1 isospin triads in A=6 and A=12 nuclei have been performed. Distorted-wave impulse approximation (DWIA) calculations for the A=12 triad where the known ft asymmetry is included in the analysis show good agreement with experimental (n,p) and (p,p') data. Angular distributions for 6Li(n,p) and 6Li(p,p') cross sections differ significantly at finite values of momentum transfer (q) and do not agree with DWIA calculations. However, this discrepancy may become negligible upon extrapolation to q=0.

  20. Little or no star formation in the central 30 pc of Seyfert 2s from STIS observations

    NASA Astrophysics Data System (ADS)

    Sarzi, Marc

    2011-11-01

    We present a study of the stellar populations in the central parsecs of a sample of 22 Seyfert 2 galaxies, based on a careful separation of nebular emission and stellar light in high-spatial resolution HST-STIS spectra. 14% of the surveyed nuclei display stellar populations of intermediate age, ~1-2~Gyr old, whereas the remaining targets appear to be evenly split between objects showing only very old stellar populations and nuclei requiring also an additional blue featureless component, which we initially characterise by means of very young, few-Myr-old stars. The small fraction of stellar population of intermediate age seems to argue against the presence of such a young component, however, since the short lifetime of O-stars would imply recurrent star-formation episodes and the build-up over the last 1-2~Gyr of a detectable intermediate-age population. Additionally, the doing of correlations between the luminosity of such a blue component and the strength of the nebular emission from highly-ionised species or broad-line regions, together with the general absence of Wolf-Rayet features, further indicate that the featureless continuum arises generally from the central engine rather than from star-forming regions. We discuss our results in the framework of the unification paradigm and of models for star formation close to supermassive black holes.

  1. Endosymbiotic copepods may feed on zooxanthellae from their coral host, Pocillopora damicornis

    NASA Astrophysics Data System (ADS)

    Cheng, Y.-R.; Dai, C.-F.

    2010-03-01

    The Xarifiidae is one of the most common families of endosymbiotic copepods that live in close association with scleractinian corals. Previous studies on xarifiids primarily focused on their taxonomy and morphology, while their influence on corals is still unknown. In this study, we collected a total of 1,579 individuals belonging to 6 species of xarifiids from 360 colonies of Pocillopora damicornis at Nanwan Bay, southern Taiwan from July 2007 to May 2008. Furthermore, using optical and electron microscopic observations, we examined the gut contents of Xarifia fissilis, the most abundant species of the Xarifiidae that we collected. We found that the gut of X. fissilis was characterized by a reddish-brown color due to the presence of numerous unicellular algae with diameters of 5-10 μm. TEM observations indicated that the unicellular algae possessed typical characteristics of Symbiodinium including a peripheral chloroplast, stalked pyrenoids, starch sheaths, mesokaryotic nuclei, amphiesmas, an accumulation body, and mitochondria. After starving the isolated X. fissilis in the light and dark (light intensity: 140 μmol photon m-2 s-1; photoperiod: 12 h light/12 h dark) for 2 weeks, fluorescence was clearly visible in its gut and fecal pellets under fluorescent microscopic observations. The cultivation experiment supports the hypothesis that the unicellular algae were beneficial to the survival of X. fissilis under light conditions, possibly through transferring photosynthates to the hosts. These results suggest that X. fissilis may consume and retain unicellular algae for further photosynthesis.

  2. The AGATA Campaign at GANIL

    NASA Astrophysics Data System (ADS)

    Lenzi, Silvia M.; Clement, Emmanuel

    2018-02-01

    The Advanced Gamma Tracking Array, AGATA, is presently in its construction phase in which the European γ-spectroscopy research community is involved since several years. This powerful HPGe array offers unique possibilities for the study of rare phenomena in nuclei by detailed gamma-ray spectroscopy. The physics campaign in GANIL foresees different setups, with AGATA coupled to different spectrometers, to study nuclear structure properties of nuclei all across the nuclear chart, from light nuclei to very heavy species, using stable and radioactive beams. After a brief description of the AGATA concept, some recent results are presented together with the very interesting opportunities for nuclear structure research in the forthcoming years with AGATA at GANIL.

  3. Search for three-nucleon short-range correlations in light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Z.; Solvignon, P.; Nguyen, D.

    Here, we present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/ 3He cross section ratio is observed to be both x and Q 2 independent for 1.5 < x < 2, confirming the dominance of two- nucleon (2N) short-range correlations (SRCs). For x > 2, our data do not support a previous claim of three-nucleon (3N) correlation dominance. While contributions beyond those from stationary 2N- SRCs are observed, our data show that isolating 3N-SRCs is more complicated than for 2N-SRCs.

  4. Search for three-nucleon short-range correlations in light nuclei

    DOE PAGES

    Ye, Z.; Solvignon, P.; Nguyen, D.; ...

    2018-06-18

    Here, we present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/ 3He cross section ratio is observed to be both x and Q 2 independent for 1.5 < x < 2, confirming the dominance of two- nucleon (2N) short-range correlations (SRCs). For x > 2, our data do not support a previous claim of three-nucleon (3N) correlation dominance. While contributions beyond those from stationary 2N- SRCs are observed, our data show that isolating 3N-SRCs is more complicated than for 2N-SRCs.

  5. The isotropic condition of energetic particles emitted from a large solar flare. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Spalding, J.

    1983-01-01

    Isotope abundance ratios for 5 to 50 MeV/nuc nuclei from a large solar flare were measured. The measurements were made by the heavy isotope spectrometer telescope (HIST) on the ISEE-3 satellite orbiting the Sun near an Earth-Sun liberation point approximately one million miles sunward of the Earth. Finite values for the isotope abundance ratios C-13/C-12, N-15/N-14, O-18/O-16, Ne-22/Ne-20, Mg-25/Mg-24, and Mg-26/Mg-24, and upper limits for the isotope abundance ratios He-3/He-4, C-14/C-12, O-17/O-16 and Ne-21/Ne-20 were reported. Element abundances and spectra were measured to compare the flare with other reported flares. The flare is a typical large flare with low Fe/O abundance or = to 0.1). For C-13/C-12, N-15/N-14, O-18/O-16, Mg-25/Mg-24 and Mg-26/Mg-24 isotope abundance ratios agree with the solar system abundance ratios. Measurement for Ne-22/Ne-20 agree with the isotopic composition of the meteoritic component neon-A.

  6. Precision measurement of quasi-elastic transverse and longitudinal response functions in the range 0.55 GeV/c lte |q-right arrow| lte 1.0 GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atac, Hamza

    The Coulomb Sum is defined by the quasi-elastic nucleon knock-out process and it is the integration of the longitudinal response function over the energy loss of the incident electron. The Coulomb sum goes to the total charge at large q. The existing measurements of the Coulomb Sum Rule show disagreement with the theoretical calculations for the medium and heavy nuclei. To find the reason behind the disagreement might answer the question of whether the properties of the nucleons are affected by the nuclear medium or not. In order to determine the Coulomb Sum in nuclei, a precision measurement of inclusivemore » electron scattering in the quasi-elastic region was performed at the Thomas Jefferson National Accelerator Facility. Incident electrons with energies ranging from 0.4 GeV to 4 GeV scattered off 4He,12C,56Fe and 208Pb nuclei at four scattering angles (15 deg.; 60 deg.; 90 deg.; 120 deg.) and scattered energies ranging from 0.1 GeV to 4 GeV. The Born cross sections were extracted for the Left High Resolution Spectrometer (LHRS) and the Right High Resolution Spectrometer 56Fe data. The Rosenbluth separation was performed to extract the transverse and longitudinal response functions at 650 MeV three-momentum transfer. The preliminary results of the longitudinal and transverse functions were extracted for 56Fe target at 650 MeV three-momentum transfer.« less

  7. Measuring the B(E2) of the 1/2- ->3/2- transition in 7 Be

    NASA Astrophysics Data System (ADS)

    Henderson, S. L.; Ahn, T.; Caprio, M. A.; Constantinou, Ch.; Simon, A.; Twinsol Collaboration

    2017-09-01

    Ab-initio methods have been successful in describing the structure of light nuclei using realistic nucleon-nucleon interactions, but more experimental data is needed for light unstable nuclei. Recent no-core configuration interaction calculations have made predictions for the ratio of E2 transition strengths for the first excited state transition in 7 Be and 7 Li . Additional calculations that include clustering effects show a significant difference in the 7 Be and 7 Li B(E2) value. The E2 transition strength of the 7 Be first excited state has never been measured, which provides an interesting opportunity to investigate the accuracy of these calculations. To measure this E2 transition strength, a Coulomb Excitation experiment was performed at the University of Notre Dame. 7 Be was produced and separated using TwinSol. A beam of 7 Be ions were scattered off a gold target and the gamma rays from the inelastically scattered ions were detected using six clover Ge detectors. The most recent results for the E2 transition strength and its comparison to the no-core configuration interaction approach will be shown. In addition, new systematic checks on the experiment will be presented including the first stages of a Geant4 simulation to help account for beam anisotropies. This work has been supported by US NSF Grant No. PHY 14-19765 and DOE Grant Number DE-FG02-95ER-40934.

  8. Noncrystalline structure of Ni-P nanoparticles prepared by liquid pulse discharge.

    PubMed

    Tan, Yuanyuan; Yu, Hongying; Wu, Zhonghua; Yang, Bin; Gong, Yu; Yan, Shi; Du, Rong; Chen, Zhongjun; Sun, Dongbai

    2015-03-01

    Noncrystalline nickel phosphide (Ni-P) nanoparticles have drawn great attention due to their high potential as catalysts. However, the structure of noncrystalline Ni-P nanoparticles is still unknown, which may shed light on explaining the catalysis mechanism of the Ni-P nanoparticles. In this paper, noncrystalline Ni-P nanoparticles were synthesized. Their morphology, particle size, element contents, local atomic structures, as well as the catalysis in the thermal decomposition of ammonium perchlorate were studied. The results demonstrate that the as-prepared Ni-P nanoparticles are spherical with an average diameter of about 13.5 nm. The Ni and P contents are, respectively, 78.15% and 21.85%. The noncrystalline nature of the as-prepared Ni-P nanoparticles can be attributed to cross-linkage between P-doping f.c.c.-like Ni centers and Ni3P-like P centers. The locally ordered Ni centers and P centers are the nuclei sites, which can explain well the origin of initial nuclei to form the crystalline phases after high-temperature annealing. The starting temperature of high-temperature decomposition of ammonium perchlorate was found having a significant decrease in the presence of the noncrystalline Ni-P nanoparticles. Therefore, the as-prepared noncrystalline Ni-P nanoparticles can be used as a potential catalyst in the thermal decomposition of ammonium perchlorate.

  9. Electromagnetic moments and electric dipole transitions in carbon isotopes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-07-01

    We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12C, 13C, and 14C, both in the low energy region below ħω=14 MeV and in the high energy giant resonance region (14 MeV <ħω⩽30 MeV). The calculated transition strength below the giant dipole resonance (ħω⩽14 MeV) in C isotopes heavier than 15C is found to exhaust about 12 16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50 80 % of the cluster sum rule value.

  10. Light-Induced resetting of the circadian pacemaker: quantitative analysis of transient versus steady-state phase shifts.

    PubMed

    Watanabe, K; Deboer, T; Meijer, J H

    2001-12-01

    The suprachiasmatic nuclei of the hypothalamus contain the major circadian pacemaker in mammals, driving circadian rhythms in behavioral and physiological functions. This circadian pacemaker's responsiveness to light allows synchronization to the light-dark cycle. Phase shifting by light often involves several transient cycles in which the behavioral activity rhythm gradually shifts to its steady-state position. In this article, the authors investigate in Syrian hamsters whether a phase-advancing light pulse results in immediate shifts of the PRC at the next circadian cycle. In a first series of experiments, the authors aimed a light pulse at CT 19 to induce a phase advance. It appeared that the steady-state phase advances were highly correlated with activity onset in the first and second transient cycle. This enabled them to make a reliable estimate of the steady-state phase shift induced by a phase-advancing light pulse on the basis of activity onset in the first transient cycle. In the next series of experiments, they presented a light pulse at CT 19, which was followed by a second light pulse aimed at the delay zone of the PRC on the next circadian cycle. The immediate and steady-state phase delays induced by the second light pulse were compared with data from a third experiment in which animals received a phase-delaying light pulse only. The authors observed that the waveform of the phase-delay part of the PRC (CT 12-16) obtained in Experiment 2 was virtually identical to the phase-delay part of the PRC for a single light pulse (obtained in Experiment 3). This finding allowed for a quantitative assessment of the data. The analysis indicates that the delay part of the PRC-between CT 12 and CT 16-is rapidly reset following a light pulse at CT 19. These findings complement earlier findings in the hamster showing that after a light pulse at CT 19, the phase-advancing part of the PRC is immediately shifted. Together, the data indicate that the basis for phase advancing involves rapid resetting of both advance and delay components of the PRC.

  11. Forward particle production in inelastic Ne-22 inteVractions in emulsion at 4.1 A Ge/c

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The collisions of high energy nuclei are likely to be the subject of intense experimental investigation in the near future. The results are presented on multiple meson production in forward cone in inelastic interactions of Ne-22 nuclei in emulsion at a primary momentum 4.1 GeV/c per nucleon. The detailed characteristics of particle production and the fragmentation processes in collisions of Ne-22 nuclei in emulsion are described.

  12. Absolute rigidity spectrum of protons and helium nuclei above 10 GV/c

    NASA Technical Reports Server (NTRS)

    Golden, R. L.; Horan, S.; Kimbell, B.; Badhwar, G. D.; Lacy, J. L.; Zipse, J. E.; Daniel, R. R.; Stephens, S. A.

    1985-01-01

    Proton and helium nuclei differential spectra were gathered with a balloon borne magnet spectrometer. The data were fitted to the assumption that the differential flux can be represented by a power law in rigidity. In the rigidity range 10 to 25 GV/c the spectral indices were found to be -(2.74 plus or minus 0.04) for protons and -(2.71 plus or minus 0.05) for helium nuclei. A brief discussion is given by systematic errors.

  13. Dynamics of multiple nuclei in Ashbya gossypii hyphae depend on the control of cytoplasmic microtubules length by Bik1, Kip2, Kip3, and not on a capture/shrinkage mechanism.

    PubMed

    Grava, Sandrine; Philippsen, Peter

    2010-11-01

    Ashbya gossypii has a budding yeast-like genome but grows exclusively as multinucleated hyphae. In contrast to budding yeast where positioning of nuclei at the bud neck is a major function of cytoplasmic microtubules (cMTs), A. gossypii nuclei are constantly in motion and positioning is not an issue. To investigate the role of cMTs in nuclear oscillation and bypassing, we constructed mutants potentially affecting cMT lengths. Hyphae lacking the plus (+)end marker Bik1 or the kinesin Kip2 cannot polymerize long cMTs and lose wild-type nuclear movements. Interestingly, hyphae lacking the kinesin Kip3 display longer cMTs concomitant with increased nuclear oscillation and bypassing. Polymerization and depolymerization rates of cMTs are 3 times higher in A. gossypii than in budding yeast and cMT catastrophes are rare. Growing cMTs slide along the hyphal cortex and exert pulling forces on nuclei. Surprisingly, a capture/shrinkage mechanism seems to be absent in A. gossypii. cMTs reaching a hyphal tip do not shrink, and cMT +ends accumulate in hyphal tips. Thus, differences in cMT dynamics and length control between budding yeast and A. gossypii are key elements in the adaptation of the cMT cytoskeleton to much longer cells and much higher degrees of nuclear mobilities.

  14. Quantitative analysis of Earth's field NMR spectra of strongly-coupled heteronuclear systems.

    PubMed

    Halse, Meghan E; Callaghan, Paul T; Feland, Brett C; Wasylishen, Roderick E

    2009-09-01

    In the Earth's magnetic field, it is possible to observe spin systems consisting of unlike spins that exhibit strongly coupled second-order NMR spectra. Such spectra result when the J-coupling between two unlike spins is of the same order of magnitude as the difference in their Larmor precession frequencies. Although the analysis of second-order spectra involving only spin-(1/2) nuclei has been discussed since the early days of NMR spectroscopy, NMR spectra involving spin-(1/2) nuclei and quadrupolar (I>(1/2)) nuclei have rarely been treated. Two examples are presented here, the tetrahydroborate anion, BH4-, and the ammonium cation, NH4+. For the tetrahydroborate anion, (1)J((11)B,(1)H)=80.9Hz, and in an Earth's field of 53.3microT, nu((1)H)=2269Hz and nu((11)B)=728Hz. The (1)H NMR spectra exhibit features that both first- and second-order perturbation theory are unable to reproduce. On the other hand, second-order perturbation theory adequately describes (1)H NMR spectra of the ammonium anion, (14)NH4+, where (1)J((14)N,(1)H)=52.75Hz when nu((1)H)=2269Hz and nu((14)N)=164Hz. Contrary to an early report, we find that the (1)H NMR spectra are independent of the sign of (1)J((14)N,(1)H). Exact analysis of two-spin systems consisting of quadrupolar nuclei and spin-(1/2) nuclei are also discussed.

  15. Fragmentation of relativistic nuclei in peripheral interactions in nuclear track emulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemenkov, D. A., E-mail: artemenkov@lhe.jinr.ru; Bradnova, V.; Chernyavsky, M. M.

    2008-09-15

    The technique of nuclear track emulsions is used to explore the fragmentation of light relativistic nuclei down to the most peripheral interactions: nuclear 'white' stars. A complete pattern of the relativistic dissociation of a 8B nucleus with target fragment accompaniment is presented. Relativistic dissociation {sup 9}Be {yields} 2{alpha} is explored using significant statistics, and a relative contribution of {sup 8}Be decays from 0+ and 2+ states is established. Target fragment accompaniments are shown for relativistic fragmentation {sup 14}N {yields} 3He +H and {sup 22}Ne {yields} 5He. The leading role of the electromagnetic dissociation on heavy nuclei with respect to breakupsmore » on target protons is demonstrated in all these cases. It is possible to conclude that the peripheral dissociation of relativistic nuclei in nuclear track emulsion is a unique tool to study many-body systems composed of the lightest nuclei and nucleons in the energy scale relevant for nuclear astrophysics.« less

  16. Early and long-term effects of low- and high-LET radiation on rat behavior and monoamine metabolism in different brain regions

    NASA Astrophysics Data System (ADS)

    Belov, Oleg

    Space radiation is one of the factors representing a significant health risk to the astronauts during deep-space missions. A most harmful component of space radiation beyond the Earth's magnetosphere is the galactic cosmic rays which are composed of high-energy protons, α particles, and high charge and energy (HZE) nuclei. Recent studies performed at particle accelerators have revealed a significant impact of HZE nuclei on the central nervous system and, in particular, on the cognitive functions. However the exact molecular mechanisms behind the observed impairments remain mostly unclear. This research is focused on study of early and long-term effects of low- and high-linear-energy-transfer (LET) radiation on the rat behavior and monoamine metabolism in the brain regions involved in behavior and motor control and form emotional and motivational states. Different groups of rats were whole-body exposed to 500 MeV/u (12) C particles (LET 10.6 keV/µm) available at the Nuclotron accelerator of the Joint Institute for Nuclear Research (Dubna, Russia) and to gamma rays at the equivalent dose of 1 Gy. An additional group of animals was sham-irradiated and considered as a control. The isolated brain regions have included the prefrontal cortex, nucleus accumbens, hypothalamus, hippocampus, and striatum where we determined the concentrations of noradrenalin, dopamine and its metabolites 3,4-doxyphenylacetic acid, homovanillic acid, and 3-methoxytyramine and serotonin and its metabolite 5-hydroxyindoleacetic acid. The following effects were observed in the different periods after irradiation. 1 day after exposure to (12) C particles strong changes in the concentration of monoamines and their metabolites were observed in three structures, namely, the prefrontal cortex, nucleus accumbens, and hippocampus. However, significant changes were found in the prefrontal cortex and weaker changes were seen in the nucleus accumbens, whereas changes were insignificant in the hippocampus. The experiments revealed the high sensitivity and reactivity of the prefrontal cortex, which we relate to the key role of this structure in essential processes of behavior. 30 days after irradiation with (12) C particles and gamma rays behavioral reactions of rats were evaluated by the open field test. The measurements have revealed differences between the effects observed after irradiation with HZE nuclei and gamma-rays at the same dose. The effect of accelerated carbon ions consisted in increasing motion activity measured as the number of sector border crossings and inhibiting exploratory activity of the animals estimated by burrowing, while gamma-irradiation had a significant impact only on the latter index. The rats' total activity increased by 18% after irradiation with (12) C ions, but exposure to gamma rays caused no significant differences from the control values. However the changes in total activity index after sparsely and densely ionizing radiations were also significant. In parallel to the analysis of monoamine metabolism, exploratory behavior, and general activity, some other immunohematological criteria were estimated on the 30th day after exposure to (12) C particles and gamma rays. The significant differences between the HZE-, gamma-irradiated, and control groups were found in the bone marrow cellularity. The changes in spleen mass were significant only between control and each of irradiated group whereas effects of (12) C and gamma rays were near the same. The similar difference was observed for the number of leucocytes in peripheral blood.

  17. The major nucleoside triphosphatase in pea (Pisum sativum L.) nuclei and in rat liver nuclei share common epitopes also present in nuclear lamins

    NASA Technical Reports Server (NTRS)

    Tong, C. G.; Dauwalder, M.; Clawson, G. A.; Hatem, C. L.; Roux, S. J.

    1993-01-01

    The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.

  18. Structure models: From shell model to ab initio methods. A brief introduction to microscopic theories for exotic nuclei

    NASA Astrophysics Data System (ADS)

    Bacca, Sonia

    2016-04-01

    A brief review of models to describe nuclear structure and reactions properties is presented, starting from the historical shell model picture and encompassing modern ab initio approaches. A selection of recent theoretical results on observables for exotic light and medium-mass nuclei is shown. Emphasis is given to the comparison with experiment and to what can be learned about three-body forces and continuum properties.

  19. Low levels of citrin (SLC25A13) expression in adult mouse brain restricted to neuronal clusters.

    PubMed

    Contreras, Laura; Urbieta, Almudena; Kobayashi, Keiko; Saheki, Takeyori; Satrústegui, Jorgina

    2010-04-01

    The mitochondrial aspartate-glutamate carriers (AGC) aralar (SLC25A12) and citrin (SLC25A13) are components of the malate aspartate shuttle (MAS), a major intracellular pathway to transfer reducing equivalents from NADH to the mitochondrial matrix. Aralar is the main AGC isoform present in the adult brain, and it is expressed mainly in neurons. To search for the other AGC isoform, citrin, in brain glial cells, we used a citrin knockout mouse in which the lacZ gene was inserted into the citrin locus as reporter gene. In agreement with the low citrin levels known to be present in the adult mouse brain, beta-galactosidase expression was very low. Surprisingly, unlike the case with astroglial cultures that express citrin, no beta-galactosidase was found in brain glial cells. It was confined to neuronal cells within discrete neuronal clusters. Double-immunolabelling experiments showed that beta-galactosidase colocalized not with glial cell markers but with the pan-neuronal marker NeuN. The deep cerebellar nuclei and a few midbrain nuclei (reticular tegmental pontine nuclei; magnocellular red nuclei) were the regions where beta-galactosidase expression was highest, and it was up-regulated in fasted mice, as was also the case for liver beta-galactosidase. The results support the notion that glial cells have much lower AGC levels and MAS activity than neurons. (c) 2009 Wiley-Liss, Inc.

  20. Cluster states and container picture in light nuclei, and triple-alpha reaction rate

    NASA Astrophysics Data System (ADS)

    Funaki, Yasuro

    2015-04-01

    The excited states in 12C are investigated by using an extended version of the so- called Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function, where both the 3α condensate and 8Be + α cluster asymptotic configurations are included. We focus on the structures of the “Hoyle band” states, 2+2, and 4+2 states, which are recently observed above the Hoyle state, and of the 0+3 and 0+4 states, which are also quite recently identified in experiment. We show that the Hoyle band is not simply considered to be the 8Be(0+) + α rotation as suggested by previous cluster model calculations, nor to be a rotation of a rigid-body triangle-shaped object composed of the 3α particles. We also discuss the rate of the triple-alpha radiative capture reaction, applyng the imaginary-time method. Results of the triple-alpha reaction rate are consistent with NACRE rate for both high (≈ 109K) and low (≈ 107 K) temperatures. We show that the rate of the imaginary-time calculation in coupled-channels approach has a large enhancement for low temperatures if we truncate the number of channels.

  1. Coherent dissociation of relativistic {sup 9}C nuclei in nuclear track emulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivenkov, D. O.; Artemenkov, D. A.; Bradnova, V.

    2010-04-30

    For the first time nuclear track emulsion is exposed to relativistic {sup 9}C nuclei. A systematic pattern of the distributions of charge combinations of fragments in the peripheral interactions of {sup 9}C nuclei in a nuclear track emulsion has been obtained. The main conclusion is that the contribution of the channel {sup 9}C->{sup 8}B+p and {sup 9}C->{sup 7}Be+2p is most important in events that do not involve the production of target-nucleus fragments or mesons (coherent dissociation). It can be concluded that in the peripheral {sup 9}C dissociation the picture hitherto obtained for {sup 8}B and {sup 7}Be with the additionmore » of one or two protons, respectively, is reproduced. Three coherent dissociation events {sup 9}C->3{sup 3}He accompanied by neither target fragments of the nucleus target nor charged mesons are identified.« less

  2. Decay of excited nuclei produced in (78,82)Kr+(40)Ca reactions at 5.5 MeV/nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez Del Campo, Jorge; Ademard, G.; Wieleczko, J. P.

    2011-01-01

    Decay modes of excited nuclei are investigated in {sup 78,82}Kr+{sup 40}Ca reactions at 5.5 MeV/nucleon. Charged products were measured by means of the 4{pi} INDRA array. Kinetic-energy spectra and angular distributions of fragments with atomic number 3 {le} Z {le} 28 indicate a high degree of relaxation and are compatible with a fissionlike phenomenon. Persistence of structure effects is evidenced from elemental cross sections ({sigma}{sub Z}) as well as a strong odd-even staggering (o-e-s) of the light-fragment yields. The magnitude of the staggering does not significantly depend on the neutron content of the emitting system. Fragment-particle coincidences suggest that themore » light partners in very asymmetric fission are emitted either cold or at excitation energies below the particle emission thresholds. The evaporation residue cross section of the {sup 78}Kr+{sup 40}Ca reaction is slightly higher than the one measured in the {sup 82}Kr+{sup 40}Ca reaction. The fissionlike component is larger by {approx}25% for the reaction having the lowest neutron-to-proton ratio. These experimental features are confronted to the predictions of theoretical models. The Hauser-Feshbach approach including the emission of fragments up to Z = 14 in their ground states as well as excited states does not account for the main features of {sigma}{sub Z}. For both reactions, the transition-state formalism reasonably reproduces the Z distribution of the fragments with charge 12 {le} Z {le} 28. However, this model strongly overestimates the light-fragment cross sections and does not explain the o-e-s of the yields for 6 {le} Z {le} 10. The shape of the whole Z distribution and the o-e-s of the light-fragment yields are satisfactorily reproduced within the dinuclear system framework which treats the competition among evaporation, fusion-fission, and quasifission processes. The model suggests that heavy fragments come mainly from quasifission while light fragments are predominantly populated by fusion. An underestimation of the cross sections for 16 {le} Z {le} 22 could signal a mechanism in addition to the capture process.« less

  3. Electrical stimulation of the hypothalamic nucleus paraventricularis mimics the effects of light on pineal melatonin synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olcese, J.; Reuss, S.; Steinlechner, S.

    In an attempt to clarify further the role of the hypothalamic paraventricular nuclei (PVN) in the control of pineal function, the effects of 2 min electrical stimulation of these nuclei were investigated in acutely blinded, adult, male Sprague-Dawley rats. Pineal serotonin-N-acetyltransferase (NAT) activity, melatonin content and catecholamine levels were measured by means of radio-enzymatic, radioimmunoassay and high-performance liquid-chromatography methods, respectively. All three pineal parameters underwent significant declines following brief PVN stimulation during the night time. These observations lend credence to the view that the neural pathways transmitting light information to the sympathetic innervation controlling pineal melatonin synthesis. 22 references, 1more » figure.« less

  4. Application of an extended random-phase approximation to giant resonances in light-, medium-, and heavy-mass nuclei

    NASA Astrophysics Data System (ADS)

    Tselyaev, V.; Lyutorovich, N.; Speth, J.; Krewald, S.; Reinhard, P.-G.

    2016-09-01

    We present results of the time blocking approximation (TBA) for giant resonances in light-, medium-, and heavy-mass nuclei. The TBA is an extension of the widely used random-phase approximation (RPA) adding complex configurations by coupling to phonon excitations. A new method for handling the single-particle continuum is developed and applied in the present calculations. We investigate in detail the dependence of the numerical results on the size of the single-particle space and the number of phonons as well as on nuclear matter properties. Our approach is self-consistent, based on an energy-density functional of Skyrme type where we used seven different parameter sets. The numerical results are compared with experimental data.

  5. Isospin degree of freedom in even-even 68-76Ge and 62-70Zn isotopes

    NASA Astrophysics Data System (ADS)

    Jalili Majarshin, A.

    2018-01-01

    The introduction of isotopic spin is significant in light nuclei as Ge and Zn isotopes in order to take into account isospin effects on energy spectra. Dynamical symmetries in spherical, γ-soft limits and transition in the interacting boson model IBM-3 are analyzed. Analytic expressions and exact eigenenergies, electromagnetic transitions probabilities are obtained for the transition between spherical and γ-soft shapes by using the Bethe ansatz within an infinite-dimensional Lie algebra in light mass nuclei. The corresponding algebraic structure and reduction chain are studied in IBM-3. For examples, the nuclear structure of the 68-76Ge and 62-70Zn isotopes is calculated in IBM-3 and compared with experimental results.

  6. Probing short-range correlations in asymmetric nuclei with quasi-free pair knockout reactions

    NASA Astrophysics Data System (ADS)

    Stevens, Sam; Ryckebusch, Jan; Cosyn, Wim; Waets, Andreas

    2018-02-01

    Short-range correlations (SRC) in asymmetric nuclei with an unusual neutron-to-proton ratio can be studied with quasi-free two-nucleon knockout processes following the collision between accelerated ions and a proton target. We derive an approximate factorized cross section for those SRC-driven p (A ,p‧N1N2) reactions. Our reaction model hinges on the factorization properties of SRC-driven A (e ,e‧N1N2) reactions for which strong indications are found in theory-experiment comparisons. In order to put our model to the test we compare its predictions with results of 12C (p ,p‧ pn) measurements conducted at Brookhaven National Laboratory (BNL) and find a fair agreement. The model can also reproduce characteristic features of SRC-driven two-nucleon knockout reactions, like back-to-back emission of the correlated nucleons. We study the asymmetry dependence of nuclear SRC by providing predictions for the ratio of proton-proton to proton-neutron knockout cross sections for the carbon isotopes 9-15C thereby covering neutron excess values (N - Z) / Z between -0.5 and +0.5.

  7. C-fos expression in the pons and medulla of the cat during carbachol-induced active sleep.

    PubMed

    Yamuy, J; Mancillas, J R; Morales, F R; Chase, M H

    1993-06-01

    Microinjection of carbachol into the rostral pontine tegmentum of the cat induces a state that is comparable to naturally occurring active (REM, rapid eye movement) sleep. We sought to determine, during this pharmacologically induced behavioral state, which we refer to as active sleep-carbachol, the distribution of activated neuron within the pons and medulla using c-fos immunocytochemistry as a functional marker. Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited higher numbers of c-fos-expressing neurons in (1) the medial and portions of the lateral reticular formation of the pons and medulla, (2) nuclei in the dorsolateral rostral pons, (3) various raphe nuclei, including the dorsal, central superior, magnus, pallidus, and obscurus, (4) the medial and lateral vestibular, prepositus hypoglossi, and intercalatus nuclei, and (5) the abducens nuclei. On the other hand, the mean number of c-fos-expressing neurons found in the masseter, facial, and hypoglossal nuclei was lower in carbachol-injected than in control cats. The data indicate that c-fos expression can be employed as a marker of state-dependent neuronal activity. The specific sites in which there were greater numbers of c-fos-expressing neurons during active sleep-carbachol are discussed in relation to the state of active sleep, as well as the functional role that these sites play in generating the various physiological patterns of activity that occur during this state.

  8. Responses of the circadian system of rats to conditioned and unconditioned stimuli.

    PubMed

    de Groot, M H; Rusak, B

    2000-08-01

    The circadian systems of rodents respond to light pulses presented during the subjective night with phase shifts and altered cellular activity in the suprachiasmatic nuclei (SCN), including expression of immediate-early genes (IEGs) such as c-fos. A recent study showed that a nonphotic stimulus (an air disturbance generated by a fan) that does not normally induce the expression of c-fos-like immunoreactivity in the SCN of rats can be made to do so after being paired repeatedly with a light pulse in a Pavlovian conditioning paradigm. Furthermore, after conditioning (but not after noncontingent exposure to these stimuli), the fan also induced phase shifts in activity and body temperature rhythms comparable to those produced by light. The authors performed three experiments designed to replicate and extend these findings in rats. In experiment 1, rats were tested for conditioning effects of repeated pairings of a light pulse with a neutral air disturbance under a full photoperiod. In experiment 2, a modified conditioning paradigm was used in which a skeleton photoperiod served as both the entraining zeitgeber and the unconditioned stimulus. Animals in the paired and unpaired training conditions were exposed to both the light pulse and the air disturbance, but the air disturbance signaled the onset of light in the paired condition only. Phase shifts of wheel-running activity rhythms and gene expression in the SCN, intergeniculate leaflet, and paraventricular nucleus of the thalamus were assessed in animals following either of the training conditions or the control procedures. Experiment 3 assessed whether the air disturbance could entrain the circadian activity rhythms of rats with or without previous pairing with light in a classical conditioning paradigm. No evidence for classical conditioning, nor for unconditioned effects of the air disturbance on the circadian system, was found in these studies.

  9. Nuclear composition and energy spectra in the 1969 April 12 solar-particle event.

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Fichtel, C. E.; Reames, D. V.

    1972-01-01

    Measurement of the charge composition for several of the multicharged nuclei and the energy spectra for hydrogen, helium, and medium (6 less than or equal to Z less than or equal to 9) nuclei in the Apr. 12, 1969, solar-particle event. The energy/nucleon spectral shape of the medium nuclei was again the same as that of the helium nuclei, and the ratio of these two species was consistent with the present best average of 58 plus or minus 5. By combining the results obtained here with previous work, improved estimates of the Ne/O and Mg/O values of 0.16 plus or minus 0.03 and 0.056 plus or minus 0.014, respectively, were obtained. Silicon and sulfur abundances relative to O were determined to be 0.208 plus or minus 0.008 plus or minus 0.006, respectively, and 85% confidence upper limits for Ar and Ca relative to O of 0.017 and 0.010 were obtained. Previously, these last four nuclei had only been listed as a group.

  10. Mirror energy difference and the structure of loosely bound proton-rich nuclei around A =20

    NASA Astrophysics Data System (ADS)

    Yuan, Cenxi; Qi, Chong; Xu, Furong; Suzuki, Toshio; Otsuka, Takaharu

    2014-04-01

    The properties of loosely bound proton-rich nuclei around A =20 are investigated within the framework of the nuclear shell model. In these nuclei, the strength of the effective interactions involving the loosely bound proton s1/2 orbit is significantly reduced in comparison with that of those in their mirror nuclei. We evaluate the reduction of the effective interaction by calculating the monopole-based-universal interaction (VMU) in the Woods-Saxon basis. The shell-model Hamiltonian in the sd shell, such as USD, can thus be modified to reproduce the binding energies and energy levels of the weakly bound proton-rich nuclei around A =20. The effect of the reduction of the effective interaction on the structure and decay properties of these nuclei is also discussed.

  11. Supernova nucleosynthesis and the physics of neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, Toshitaka

    2012-11-01

    We studied the explosive nucleosynthesis in core-collapse supernovae and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and others are predominantly produced by the neutrino interactions with several abundant nuclei. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here first study how to know the suitable average neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the neutrino oscillation parameters, θ13 and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process 11B and 7Li encapsulated in the grains. Combining the recent experimental constraints on θ13, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  12. Study on the apoptosis mediated by cytochrome c and factors that affect the activation of bovine longissimus muscle during postmortem aging.

    PubMed

    Zhang, Jiaying; Yu, Qunli; Han, Ling; Chen, Cheng; Li, Hang; Han, Guangxing

    2017-06-01

    This study investigates whether bovine longissimus muscle cell apoptosis occurs during postmortem aging and whether apoptosis is dependent on the mitochondria pathway. This study also determines the apoptosis process mediated by cytochrome c after its release from mitochondria and the factors that affect the activation processes. Results indicate that apoptotic nuclei were detected at 12 h postmortem. Cytochrome c release from the mitochondria to the cytoplasm activated the caspase-9 and caspase-3 at early postmortem aging and the activation of caspase-9 occurs before the activation of caspase-3. The pH level decreased during the first 48 h postmortem, whereas the mitochondria membrane permeability increased from 6 to 12 h. Results demonstrate that an apoptosis process of bovine muscle occurred during postmortem aging. Apoptosis was dependent on the mitochondria pathway and occurred at early postmortem aging. Increased mitochondria membrane permeability and low pH are necessary conditions for the release of cytochrome c during postmortem aging.

  13. Effect of light Intensity and photoperiod on growth of Chlorella pyrenoidosa and CO2 Biofixation

    NASA Astrophysics Data System (ADS)

    Gunawan, Teuku Johar; Ikhwan, Yusni; Restuhadi, Fajar; Pato, Usman

    2018-02-01

    Microalgae have been viewed as one of potential solution for CO2 biofixation or CO2 sequestration. However, many factors need to be evaluated to support development of CO2 biofixation. One important environmental factor for the growth of micro algae is related with light requirement. The aim of this study was to evaluate the effect of light intensity and photoperiod on growth of Chlorellapyrenoidosa (C.pyrenoidosa) and CO2 biofixation. Experiments were carried out in 1000 mL semi batch photo bioreactors, purged continuously with air (0.034% CO2). An Experiment of Factorial Design was employed in which the light intensity was evaluated 4 level at 2000, 4000, 6000 and 8000 lux with 3 level of photo period at L/D (light /dark) 8 hours/16 hours; L/D 12 hours/12 hours and L/D 16 hours/8 hours. The result indicated that both light intensity and photo period had significant effect (p< 0.05) on growth of C. pyrenoidosa. However, the photo period showed stronger effect relative to light intensity on growth of C.pyrenoidosa within the range reviewed. The interaction between the two factors was indicative but statistically not significant. Best growth profile sustained at combination of L/D 16 hours/8 hours of photoperiod and light intensity of 8000 lux with the highest average biomass observed at 0.516 ± 0.069gr/L. An increase in CO2biofixation rate of around 2 times was also observed between highest setting (8000 lux; L/D 16/12 hours) relative to that of lowest setting (2000 lux; L/D 8/12 hours).

  14. Imidazoline ring cleavage in 1,3,6,10-tetraazatetracyclo-(7. 3. 1. 0/sup 2,7/. 0/sup 6,13/)trideca-4,11-dienes, leading to the formation of diquinoxalino(1,2-. cap alpha. :2',3'-d)pyrrole derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charushin, V.N.; Petrova, G.M.; Aleksandrov, G.G.

    1987-10-01

    Dibenzo(d,k)-1,3,6,10-tetraazatetracyclo(7.3.1.0/sup 2,7/.0/sup 6,13/) trideca-4,11-dienes undergo addition reactions at the C/sub (2)/ carbon atom with alcohols and thiols, accompanied by cleavage of the C-N bond of the imidazoline ring, to generate diquinoxalino(1,2-..cap alpha..:2',3'-d)pyrrole derivatives. /sup 1/H NMR spectra were recorded on Perkin-Elmer R 12B (60 MHz) and Bruker WH-90 spectrometer for CDCl/sub 3/ solutions at 40/sup 0/C and with TMS as internal standard. /sup 13/C NMR spectra were obtained on a Bruker WH-90 (22.62 MHz) spectrometer. /sup 13/C chemical shifts were measured relative to solvent signals (deltaCDCl/sub 3/ 77.0 ppm). /sup 13/C NMR spectra of compounds IIa and g were takenmore » using full spin-spin carbon-proton decoupling. In order to measure SSCC the spectrum was recorded both with proton coupling and also with selective decoupling of individual protons and their attached /sup 13/C carbon nuclei.« less

  15. Fission barriers of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grotowski, K.; Pl-dash-baraneta, R.; Blann, M.

    1989-04-01

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems.

  16. The Use of a Human Breast Tumor Progression Series and a 3-D Culture Model to Determine if Nuclear Structure Could Provide a Molecular and Therapeutic Marker

    DTIC Science & Technology

    2000-01-01

    organization with cell phenotype. (In manuscript form) C Ortiz de Solorzano, R . Malladi , SA Leli~vre, and SJ Lockett. Segmentation of nuclei and cells...Ortiz de Solorzano, R . Malladi , SA Leli~vre, and SJ Lockett. "Segmentation of nuclei and cells using membrane related protein markers." (Submitted) 6...specificity Segmentation of Nuclei and Cells using Membrane Related Protein Markers C. Ortiz de Solorzano, R . Malladi , S!/•Lelievre, S.J. Lockett Lawrence

  17. EphA4 is Involved in Sleep Regulation but Not in the Electrophysiological Response to Sleep Deprivation

    PubMed Central

    Freyburger, Marlène; Pierre, Audrey; Paquette, Gabrielle; Bélanger-Nelson, Erika; Bedont, Joseph; Gaudreault, Pierre-Olivier; Drolet, Guy; Laforest, Sylvie; Blackshaw, Seth; Cermakian, Nicolas; Doucet, Guy; Mongrain, Valérie

    2016-01-01

    Study Objectives: Optimal sleep is ensured by the interaction of circadian and homeostatic processes. Although synaptic plasticity seems to contribute to both processes, the specific players involved are not well understood. The EphA4 tyrosine kinase receptor is a cell adhesion protein regulating synaptic plasticity. We investigated the role of EphA4 in sleep regulation using electrocorticography in mice lacking EphA4 and gene expression measurements. Methods: EphA4 knockout (KO) mice, ClockΔ19/Δ19 mutant mice and littermates, C57BL/6J and CD-1 mice, and Sprague-Dawley rats were studied under a 12 h light: 12 h dark cycle, under undisturbed conditions or 6 h sleep deprivation (SLD), and submitted to a 48 h electrophysiological recording and/or brain sampling at different time of day. Results: EphA4 KO mice showed less rapid eye movement sleep (REMS), enhanced duration of individual bouts of wakefulness and nonrapid eye movement sleep (NREMS) during the light period, and a blunted daily rhythm of NREMS sigma activity. The NREMS delta activity response to SLD was unchanged in EphA4 KO mice. However, SLD increased EphA4 expression in the thalamic/hypothalamic region in C57BL/6J mice. We further show the presence of E-boxes in the promoter region of EphA4, a lower expression of EphA4 in Clock mutant mice, a rhythmic expression of EphA4 ligands in several brain areas, expression of EphA4 in the suprachiasmatic nuclei of the hypothalamus (SCN), and finally an unchanged number of cells expressing Vip, Grp and Avp in the SCN of EphA4 KO mice. Conclusions: Our results suggest that EphA4 is involved in circadian sleep regulation. Citation: Freyburger M, Pierre A, Paquette G, Bélanger-Nelson E, Bedont J, Gaudreault PO, Drolet G, Laforest S, Blackshaw S, Cermakian N, Doucet G, Mongrain V. EphA4 is involved in sleep regulation but not in the electrophysiological response to sleep deprivation. SLEEP 2016;39(3):613–624. PMID:26612390

  18. Attempt to probe nuclear charge radii by cluster and proton emissions

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong

    2013-05-01

    We deduce the rms nuclear charge radii for ground states of light and medium-mass nuclei from experimental data of cluster radioactivity and proton emission in a unified framework. On the basis of the density-dependent cluster model, the calculated decay half-lives are obtained within the modified two-potential approach. The charge distribution of emitted clusters in the cluster decay and that of daughter nuclei in the proton emission are determined to correspondingly reproduce the experimental half-lives within the folding model. The obtained charge distribution is then employed to give the rms charge radius of the studied nuclei. Satisfactory agreement between theory and experiment is achieved for available experimental data, and the present results are found to be consistent with theoretical estimations. This study is expected to be helpful in the future detection of nuclear sizes, especially for these exotic nuclei near the proton dripline.

  19. Extended Glauber Model of Antiproton-Nucleus Annihilation for All Energies and Mass Numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2014-01-01

    Previous analytical formulas in the Glauber model for high-energy nucleus-nucleus collisions developed by Wong are utilized and extended to study Antiproton-nucleus annihilations for both high and low energies, after taking into account the effects of Coulomb and nuclear interactions, and the change of the antiproton momentum inside a nucleus. The extended analytical formulas capture the main features of the experimental antiproton-nucleus annihilation cross sections for all energies and mass numbers. At high antiproton energies, they exhibit the granular property for the lightest nuclei and the black-disk limit for the heavy nuclei. At low antiproton energies, they display the effect ofmore » the antiproton momentum increase due to the nuclear interaction for the light nuclei, and the effect of the magnification due to the attractive Coulomb interaction for the heavy nuclei.« less

  20. Kinetic freeze-out conditions for the production of resonances, hadronic molecules, and light nuclei

    NASA Astrophysics Data System (ADS)

    Cho, Sungtae; Song, Taesoo; Lee, Su Houng

    2018-02-01

    We investigate the freeze-out conditions of a particle in an expanding system of interacting particles in order to understand the productions of resonances, hadronic molecules, and light nuclei in heavy-ion collisions. Applying the kinetic freeze-out condition with explicit hydrodynamic calculations for the expanding hadronic phase to the daughter particles of K* mesons, we find that the larger suppression of the yield ratio of K*/K at the Large Hadron Collider (LHC) than at the Relativisitic Heavy Ion Collider (RHIC) compared to the expectations from the statistical hadronization model based on chemical freeze-out parameters reflects the lower kinetic freeze-out temperature at LHC than at RHIC. Furthermore, we point out that for the light nuclei or hadronic molecules that are bound, the freeze-out condition should be applied to the respective particle in the hadronic matter. It is then shown through the rate equation that when the nucleon and pion numbers are kept constant at the chemical freeze-out value during the hadronic phase, the deuteron number quickly approaches an asymptotic value that is close to the statistical model prediction at the chemical freeze-out point. We argue that the reduction seen in K* numbers is a typical result for a particle that has a large natural decay width decaying into daughter particles, while that for deuteron is typical for a stable hadronic bound state.

  1. 3-D DNA methylation phenotypes correlate with cytotoxicity levels in prostate and liver cancer cell models

    PubMed Central

    2013-01-01

    Background The spatial organization of the genome is being evaluated as a novel indicator of toxicity in conjunction with drug-induced global DNA hypomethylation and concurrent chromatin reorganization. 3D quantitative DNA methylation imaging (3D-qDMI) was applied as a cell-by-cell high-throughput approach to investigate this matter by assessing genome topology through represented immunofluorescent nuclear distribution patterns of 5-methylcytosine (MeC) and global DNA (4,6-diamidino-2-phenylindole = DAPI) in labeled nuclei. Methods Differential progression of global DNA hypomethylation was studied by comparatively dosing zebularine (ZEB) and 5-azacytidine (AZA). Treated and untreated (control) human prostate and liver cancer cells were subjected to confocal scanning microscopy and dedicated 3D image analysis for the following features: differential nuclear MeC/DAPI load and codistribution patterns, cell similarity based on these patterns, and corresponding differences in the topology of low-intensity MeC (LIM) and low in intensity DAPI (LID) sites. Results Both agents generated a high fraction of similar MeC phenotypes across applied concentrations. ZEB exerted similar effects at 10–100-fold higher drug concentrations than its AZA analogue: concentration-dependent progression of global cytosine demethylation, validated by measuring differential MeC levels in repeat sequences using MethyLight, and the concurrent increase in nuclear LIM densities correlated with cellular growth reduction and cytotoxicity. Conclusions 3D-qDMI demonstrated the capability of quantitating dose-dependent drug-induced spatial progression of DNA demethylation in cell nuclei, independent from interphase cell-cycle stages and in conjunction with cytotoxicity. The results support the notion of DNA methylation topology being considered as a potential indicator of causal impacts on chromatin distribution with a conceivable application in epigenetic drug toxicology. PMID:23394161

  2. Central depression in nucleonic densities: Trend analysis in the nuclear density functional theory approach

    NASA Astrophysics Data System (ADS)

    Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.

    2017-08-01

    Background: The central depression of nucleonic density, i.e., a reduction of density in the nuclear interior, has been attributed to many factors. For instance, bubble structures in superheavy nuclei are believed to be due to the electrostatic repulsion. In light nuclei, the mechanism behind the density reduction in the interior has been discussed in terms of shell effects associated with occupations of s orbits. Purpose: The main objective of this work is to reveal mechanisms behind the formation of central depression in nucleonic densities in light and heavy nuclei. To this end, we introduce several measures of the internal nucleonic density. Through the statistical analysis, we study the information content of these measures with respect to nuclear matter properties. Method: We apply nuclear density functional theory with Skyrme functionals. Using the statistical tools of linear least square regression, we inspect correlations between various measures of central depression and model parameters, including nuclear matter properties. We study bivariate correlations with selected quantities as well as multiple correlations with groups of parameters. Detailed correlation analysis is carried out for 34Si for which a bubble structure has been reported recently, 48Ca, and N =82 , 126, and 184 isotonic chains. Results: We show that the central depression in medium-mass nuclei is very sensitive to shell effects, whereas for superheavy systems it is firmly driven by the electrostatic repulsion. An appreciable semibubble structure in proton density is predicted for 294Og, which is currently the heaviest nucleus known experimentally. Conclusion: Our correlation analysis reveals that the central density indicators in nuclei below 208Pb carry little information on parameters of nuclear matter; they are predominantly driven by shell structure. On the other hand, in the superheavy nuclei there exists a clear relationship between the central nucleonic density and symmetry energy.

  3. Structure of the exotic 9He nucleus from the no-core shell model with continuum

    NASA Astrophysics Data System (ADS)

    Vorabbi, Matteo; Calci, Angelo; Navrátil, Petr; Kruse, Michael K. G.; Quaglioni, Sofia; Hupin, Guillaume

    2018-03-01

    Background: The exotic 9He nucleus, which presents one of the most extreme neutron-to-proton ratios, belongs to the N =7 isotonic chain famous for the phenomenon of ground-state parity inversion with decreasing number of protons. Consequently, it would be expected to have an unnatural (positive) parity ground state similar to 11Be and 10Li. Despite many experimental and theoretical investigations, its structure remains uncertain. Apart from the fact that it is unbound, other properties including the spin and parity of its ground state, and the very existence of additional low-lying resonances are still a matter of debate. Purpose: In this work, we study the properties of 9He by analyzing the n +8He continuum in the context of the ab initio no-core shell model with continuum (NCSMC) formalism with chiral nucleon-nucleon interactions as the only input. Methods: The NCSMC is a state-of-the-art approach for the ab initio description of light nuclei. With its capability to predict properties of bound states, resonances, and scattering states in a unified framework, the method is particularly well suited for the study of unbound nuclei such as 9He. Results: Our analysis produces an unbound 9He nucleus. Two resonant states are found at the energies of ˜1 and ˜3.5 MeV, respectively, above the n +8He breakup threshold. The first state has a spin-parity assignment of Jπ=1/2 - and can be associated with the ground state of 9He, while the second, broader state has a spin parity of 3/2 -. No resonance is found in the 1/2 + channel, only a very weak attraction. Conclusions: We find that the 9He ground-state resonance has a negative parity and thus breaks the parity-inversion mechanism found in the 11Be and 10Li nuclei of the same N =7 isotonic chain.

  4. Source spectral index of heavy cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Engelmann, J. J.; Ferrando, P.; Koch-Miramond, L.; Masse, P.; Soutoul, A.; Webber, W. R.

    1985-01-01

    From the energy spectra of the heavy nuclei observed by the French-Danish experiment on HEAO-3, the source spectra of the mostly primary nuclei (C, O, Ne, Mg, Si, Ca and Fe) in the framework of an energy dependent leaky box model (Engelmann, et al., 1985) were derived. The energy dependence of the escape length was derived from the observed B/C and sub-iron/iron ratios and the presently available cross sections for C and Fe on H nuclei (Koch-Miramond, et al., 1983). A good fit to the source energy spectra of all these nuclei was obtained by a power law in momentum with an exponent gamma = -2.4+0.05 for the energy range 1 to 25GeV/n (Engelmann, et al., 1985). Comparison with data obtained at higher energy suggested a progressive flattening of these spectra. More accurate spectral indices are sought by using better values of the escape length based on the latest cross section measurements (Webber 1984, Soutoul, et al., this conference). The aim is also to extend the analysis to lower energies down to 0.4GeV/n (kinetic energy observed near Earth), using data obtained by other groups. The only nuclei for which a good data base is possessed in a broad range of energies are O and Fe, so the present study is restricted to these two elements.

  5. AMS results on the fluxes of light nuclei in cosmic rays

    NASA Astrophysics Data System (ADS)

    Bertucci, Bruna; AMS Collaboration

    2017-01-01

    AMS-02 is a wide acceptance high-energy physics experiment installed on the International Space Station in May 2011 and it has been operating continuously since then. AMS-02 is able to separate cosmic rays light nuclei species (1 <= Z <= 8) with contaminations less than 10-3 thanks to the redundant measurement of the particle charge in eight silicon tracker layers, four scintillator planes and the Ring Imaging Cherenkov detector. The accurate measure of their spectrum in the GeV-TeV range is performed by the magnetic spectrometer with a maximum detectable rigidity of 2-3 TV. Precise measurements from AMS will be presented, including proton, helium, boron to carbon flux ratio, and highlights of ongoing analyses discussed. On behalf of the AMS Collaboration.

  6. Two-proton radioactivity with 2p halo in light mass nuclei A = 18-34

    NASA Astrophysics Data System (ADS)

    Saxena, G.; Kumawat, M.; Kaushik, M.; Jain, S. K.; Aggarwal, Mamta

    2017-12-01

    Two-proton radioactivity with 2p halo is reported theoretically in light mass nuclei A = 18- 34. We predict 19Mg, 22Si, 26S, 30Ar and 34Ca as promising candidates of ground state 2p-radioactivity with S2p < 0 and Sp > 0. Observation of extended tail of spatial charge density distribution, larger charge radius and study of proton single particle states, Fermi energy and the wave functions indicate 2p halo like structure which supports direct 2p emission. The Coulomb and centrifugal barriers in experimentally identified 2p unbound 22Si show a quasi-bound state that ensures enough life time for such experimental probes. Our predictions are in good accord with experimental and other theoretical data available so far.

  7. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

    DOE PAGES

    Lynn, J. E.; Tews, I.; Carlson, Joseph Allen; ...

    2016-02-09

    Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N 2LO). The two undetermined 3N low-energy couplings are fi t to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N 2LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter,more » in contrast to commonly used phenomenological 3N interactions.« less

  8. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, J. E.; Tews, I.; Carlson, Joseph Allen

    Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N 2LO). The two undetermined 3N low-energy couplings are fi t to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N 2LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter,more » in contrast to commonly used phenomenological 3N interactions.« less

  9. Paraoxonase 2 Serves a Proapopotic Function in Mouse and Human Cells in Response to the Pseudomonas aeruginosa Quorum-sensing Molecule N-(3-Oxododecanoyl)-homoserine Lactone*

    PubMed Central

    Schwarzer, Christian; Fu, Zhu; Morita, Takeshi; Whitt, Aaron G.; Neely, Aaron M.; Li, Chi; Machen, Terry E.

    2015-01-01

    Pseudomonas aeruginosa use quorum-sensing molecules, including N-(3-oxododecanoyl)-homoserine lactone (C12), for intercellular communication. C12 activated apoptosis in mouse embryo fibroblasts (MEF) from both wild type (WT) and Bax/Bak double knock-out mice (WT MEF and DKO MEF that were responsive to C12, DKOR MEF): nuclei fragmented; mitochondrial membrane potential (Δψmito) depolarized; Ca2+ was released from the endoplasmic reticulum (ER), increasing cytosolic [Ca2+] (Cacyto); and caspase 3/7 was activated. DKOR MEF had been isolated from a nonclonal pool of DKO MEF that were non-responsive to C12 (DKONR MEF). RNAseq analysis, quantitative PCR, and Western blots showed that WT and DKOR MEF both expressed genes associated with cancer, including paraoxonase 2 (PON2), whereas DKONR MEF expressed little PON2. Adenovirus-mediated expression of human PON2 in DKONR MEF rendered them responsive to C12: Δψmito depolarized, Cacyto increased, and caspase 3/7 activated. Human embryonic kidney 293T (HEK293T) cells expressed low levels of endogenous PON2, and these cells were also less responsive to C12. Overexpression of PON2, but not PON2-H114Q (no lactonase activity) in HEK293T cells caused them to become sensitive to C12. Because [C12] may reach high levels in biofilms in lungs of cystic fibrosis (CF) patients, PON2 lactonase activity may control Δψmito, Ca2+ release from the ER, and apoptosis in CF airway epithelia. Coupled with previous data, these results also indicate that PON2 uses its lactonase activity to prevent Bax- and Bak-dependent apoptosis in response to common proapoptotic drugs like doxorubicin and staurosporine, but activates Bax- and Bak-independent apoptosis in response to C12. PMID:25627690

  10. Short-lived Isotopes from a Close-by AGB Star Triggering the Protosolar Nebula

    NASA Astrophysics Data System (ADS)

    Gallino, R.; Busso, M.; Wasserburg, G. J.; Straniero, O.

    The presence of short-lived isotopes in the early solar system, in particular 26Al, 41Ca, 60Fe, and 107Pd, point to a close-by and fresh nucleosynthesis source, possibly triggering the collapse of the protosolar nebula. We present the results of nucleosynthesis calculations based on an AGB polluting hypothesis. A general concordance of the predicted yields of the above radioactivities relative to 26Al can be obtained in the case of an intermediate mass AGB star with hot bottom burning in the envelope (thus producing 26Al), and mixing through a series of third dredge-up episodes a fraction of the C-rich and s-processed material from the He intershell with the extended envelope. Polution of the protosolar nebula with freshly synthesized material may derive from the efficient winds of the AGB star. In AGB stars, the s-process nucleosynthesis occurs both during the maximum phase of every thermal runaway, driven by the partial activation of the 22Ne(alpha,n)25Mg reaction, and in the interpulse phase, where the 13C nuclei are fully consumed in radiative conditions by the activation of the 13C(alpha,n)16O reaction. We have used different prescriptions for the amount of the 13C nuclei present in the intershell. A minimum amount of 13C is naturally expected in the ashes of H-shell burning. Possible formation of an extra "13C-pocket" derives from the injection of a small amount of protons from the envelope into the 12C-rich intershell during any third dredge-up episode, when the H-shell is inactivated. Prediction for other short-lived, 36Cl, 135Cs, and 205Pb, are given. General consequences for the pollution of the protosolar nebula with newly synthesized stable isotopes from the AGB winds are outlined. The origin of other detected short-lived nuclei, in particular 53Mn, 129I, and 182Hf, which cannot come from an AGB source, is analysed. The alternative trigger hypothesis by a close-by Supernova is discussed.

  11. Clustering of Nuclei in Multinucleated Hyphae Is Prevented by Dynein-Driven Bidirectional Nuclear Movements and Microtubule Growth Control in Ashbya gossypii ▿ †

    PubMed Central

    Grava, Sandrine; Keller, Miyako; Voegeli, Sylvia; Seger, Shanon; Lang, Claudia; Philippsen, Peter

    2011-01-01

    During filamentous fungus development, multinucleated hyphae employ a system for long-range nuclear migration to maintain an equal nuclear density. A decade ago the microtubule motor dynein was shown to play a central role in this process. Previous studies with Ashbya gossypii revealed extensive bidirectional movements and bypassings of nuclei, an autonomous cytoplasmic microtubule (cMT) cytoskeleton emanating from each nucleus, and pulling of nuclei by sliding of cMTs along the cortex. Here, we show that dynein is the sole motor for bidirectional movements and bypassing because these movements are concomitantly decreased in mutants carrying truncations of the dynein heavy-chain DYN1 promoter. The dynactin component Jnm1, the accessory proteins Dyn2 and Ndl1, and the potential dynein cortical anchor Num1 are also involved in the dynamic distribution of nuclei. In their absence, nuclei aggregate to different degrees, whereby the mutants with dense nuclear clusters grow extremely long cMTs. As in budding yeast, we found that dynein is delivered to cMT plus ends, and its activity or processivity is probably controlled by dynactin and Num1. Together with its role in powering nuclear movements, we propose that dynein also plays (directly or indirectly) a role in the control of cMT length. Those combined dynein actions prevent nuclear clustering in A. gossypii and thus reveal a novel cellular role for dynein. PMID:21642510

  12. Clustering of nuclei in multinucleated hyphae is prevented by dynein-driven bidirectional nuclear movements and microtubule growth control in Ashbya gossypii.

    PubMed

    Grava, Sandrine; Keller, Miyako; Voegeli, Sylvia; Seger, Shanon; Lang, Claudia; Philippsen, Peter

    2011-07-01

    During filamentous fungus development, multinucleated hyphae employ a system for long-range nuclear migration to maintain an equal nuclear density. A decade ago the microtubule motor dynein was shown to play a central role in this process. Previous studies with Ashbya gossypii revealed extensive bidirectional movements and bypassings of nuclei, an autonomous cytoplasmic microtubule (cMT) cytoskeleton emanating from each nucleus, and pulling of nuclei by sliding of cMTs along the cortex. Here, we show that dynein is the sole motor for bidirectional movements and bypassing because these movements are concomitantly decreased in mutants carrying truncations of the dynein heavy-chain DYN1 promoter. The dynactin component Jnm1, the accessory proteins Dyn2 and Ndl1, and the potential dynein cortical anchor Num1 are also involved in the dynamic distribution of nuclei. In their absence, nuclei aggregate to different degrees, whereby the mutants with dense nuclear clusters grow extremely long cMTs. As in budding yeast, we found that dynein is delivered to cMT plus ends, and its activity or processivity is probably controlled by dynactin and Num1. Together with its role in powering nuclear movements, we propose that dynein also plays (directly or indirectly) a role in the control of cMT length. Those combined dynein actions prevent nuclear clustering in A. gossypii and thus reveal a novel cellular role for dynein.

  13. Type Ia Supernovae as Sites of the p-process: Two-dimensional Models Coupled to Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Travaglio, C.; Röpke, F. K.; Gallino, R.; Hillebrandt, W.

    2011-10-01

    Beyond Fe, there is a class of 35 proton-rich nuclides, between 74Se and 196Hg, called p-nuclei. They are bypassed by the s and r neutron capture processes and are typically 10-1000 times less abundant than the s- and/or r-isotopes in the solar system. The bulk of p-isotopes is created in the "gamma processes" by sequences of photodisintegrations and beta decays in explosive conditions in both core collapse supernovae (SNe II) and in Type Ia supernovae (SNe Ia). SNe II contribute to the production of p-nuclei through explosive neon and oxygen burning. However, the major problem in SN II ejecta is a general underproduction of the light p-nuclei for A < 120. We explore SNe Ia as p-process sites in the framework of a two-dimensional SN Ia delayed detonation model as well as pure deflagration models. The white dwarf precursor is assumed to have reached the Chandrasekhar mass in a binary system by mass accretion from a giant/main-sequence companion. We use enhanced s-seed distributions, with seeds directly obtained from a sequence of thermal pulse instabilities both in the asymptotic giant branch phase and in the accreted material. We apply the tracer-particle method to reconstruct the nucleosynthesis by the thermal histories of Lagrangian particles, passively advected in the hydrodynamic calculations. For each particle, we follow the explosive nucleosynthesis with a detailed nuclear reaction network for all isotopes up to 209Bi. We select tracers within the typical temperature range for p-process production, (1.5-3.7) × 109 K, and analyze in detail their behavior, exploring the influence of different s-process distributions on the p-process nucleosynthesis. In addition, we discuss the sensitivity of p-process production to parameters of the explosion mechanism, taking into account the consequences on Fe and alpha elements. We find that SNe Ia can produce a large amount of p-nuclei, both the light p-nuclei below A = 120 and the heavy-p nuclei, at quite flat average production factors, tightly related to the s-process seed distribution. For the first time, we find a stellar source able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the debated neutron magic 92, 94Mo and 96, 98Ru. We also find that there is an important contribution from the p-process nucleosynthesis to the s-only nuclei 80Kr, 86Sr, to the neutron magic 90Zr, and to the neutron-rich 96Zr. Finally, we investigate the metallicity effect on p-process production in our models. Starting with different s-process seed distributions for two metallicities Z = 0.02 and Z = 0.001, running two-dimensional SN Ia models with different initial composition, we estimate that SNe Ia can contribute to at least 50% of the solar p-process composition. A more detailed analysis of the role of SNe Ia in Galactic chemical evolution of p-nuclei is in preparation.

  14. Characterization of nucleoside triphosphatase activity in isolated pea nuclei and its photoreversible regulation by light

    NASA Technical Reports Server (NTRS)

    Chen, Y. R.; Roux, S. J.

    1986-01-01

    A nucleoside triphosphatase (NTPase) present in highly purified preparations of pea nuclei was partially characterized. The activity of this enzyme was stimulated by divalent cations (Mg2+ = Mn2+ > Ca2+), but was not affected by the monovalent cations, Na+ and K+. The Mg(2+)-dependent activity was further stimulated by concentrations of Ca2+ in the low micromolar range. It could catalyze the hydrolysis of ATP, GTP, UTP, and CTP, all with a pH optimum of 7.5. The nuclear NTPase activity was not inhibited by vanadate, oligomycin, or nitrate, but was inhibited by relatively low concentrations of quercetin and the calmodulin inhibitor, compound 48/80. The NTPase was stimulated more than 50% by red light, and this effect was reversed by subsequent irradiation with far-red light. The photoreversibility of the stimulation indicated that the photoreceptor for this response was phytochrome, an important regulator of photomorphogenesis and gene expression in plants.

  15. Catalysts for synthesizing various short chain hydrocarbons

    DOEpatents

    Colmenares, Carlos

    1991-01-01

    Method and apparatus (10), including novel photocatalysts, are disclosed for the synthesis of various short chain hydrocarbons. Light-transparent SiO.sub.2 aerogels doped with photochemically active uranyl ions (18) are fluidized in a fluidized-bed reactor (12) having a transparent window (16), by hydrogen and CO, C.sub.2 H.sub.4 or C.sub.2 H.sub.6 gas mixtures (20), and exposed to radiation (34) from a light source (32) external to the reactor (12), to produce the short chain hydrocarbons (36).

  16. Light Flashes Observed by Astronauts on Apollo 11 through Apollo 17.

    PubMed

    Pinsky, L S; Osborne, W Z; Bailey, J V; Benson, R E; Thompson, L F

    1974-03-08

    The crew members on the last seven Apollo flights observed light flashes that are tentatively attributed to cosmic ray nuclei (atomic number >/= 6) penetrating the head and eyes of the observers. Analyses of the event rates for all missions has revealed an anomalously low rate for transearth coast observations with respect to translunar coast observations.

  17. STRANDEDNESS OF VICIA FABA CHROMOSOMES AS REVEALED BY ENZYME DIGESTION STUDIES

    PubMed Central

    Trosko, James E.; Wolff, Sheldon

    1965-01-01

    Chromosomes and nuclei isolated from neutral formalin-fixed Vicia faba lateral roots were treated with trypsin, pepsin, RNase, or DNase. Only trypsin affected the morphology of the chromosomes and nuclei. The appearance of the chromosomes after trypsin digestion indicated that each chromatid contained four strands that could be seen with an ordinary light microscope. The experiments are interpreted as indicating that mitotic chromosomes of Vicia faba are multistranded and that the linear continuity of the chromosome is dependent on protein. PMID:5323605

  18. Energy levels for Ac-212 (Actinium-212)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of Subvolume C `Tables of Excitations of Proton- and Neutron-rich Unstable Nuclei' of Volume 19 `Nuclear States from Charged Particle Reactions' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides energy levels for atomic nuclei of the isotope Ac-212 (actinium, atomic number Z = 89, mass number A = 212).

  19. Ameliorative effects of melatonin administration and photoperiods on diurnal fluctuations in cloacal temperature of Marshall broiler chickens during the hot dry season

    NASA Astrophysics Data System (ADS)

    Sinkalu, Victor O.; Ayo, Joseph O.; Adelaiye, Alexander B.; Hambolu, Joseph O.

    2015-01-01

    Experiments were performed with the aim of determining the effect of melatonin administration on diurnal fluctuations in cloacal temperature (CT) of Marshall broiler chickens during the hot dry season. Birds in group I (12L:12D cycle) were raised under natural photoperiod of 12-h light and 12-h darkness, without melatonin supplementation, while those in group II (LL) were kept under 24-h continuous lighting, without melatonin administration. Broiler chickens in group III (LL + melatonin) were raised under 24-h continuous lighting, with melatonin supplementation at 0.5 mg/kg per os. The cloacal temperatures of 15 labeled broiler chickens from each group were measured at 6:00, 13:00, and 19:00 h, 7 days apart, from days 14-42. Temperature-humidity index was highest at day 14 of the study, with the value of 36.72 ± 0.82 °C but lowest at day 28 with the value of 30.91 ± 0.80 °C ( P < 0.0001). The overall mean hourly cloacal temperature value of 41.51 ± 0.03 °C obtained in the 12L:12D cycle birds was significantly higher ( P < 0.001) than the value of 41.16 ± 0.03 °C recorded in the melatonin-treated group but lower than that of 41.65 ± 0.03 °C obtained in the LL birds. Mortality due to hyperthermia commenced at day 28 in both 12L:12D cycle and LL broiler chickens but was delayed till day 42 in LL + MEL broiler chickens. In conclusion, melatonin administration alleviated the deleterious effects of heat stress on broiler chickens by maintaining their cloacal temperature at relatively low values.

  20. Effect of experimental glaucoma on the non-image forming visual system.

    PubMed

    de Zavalía, Nuria; Plano, Santiago A; Fernandez, Diego C; Lanzani, María Florencia; Salido, Ezequiel; Belforte, Nicolás; Sarmiento, María I Keller; Golombek, Diego A; Rosenstein, Ruth E

    2011-06-01

    Glaucoma is a leading cause of blindness worldwide, characterized by retinal ganglion cell degeneration and damage to the optic nerve. We investigated the non-image forming visual system in an experimental model of glaucoma in rats induced by weekly injections of chondroitin sulphate (CS) in the eye anterior chamber. Animals were unilaterally or bilaterally injected with CS or vehicle for 6 or 10 weeks. In the retinas from eyes injected with CS, a similar decrease in melanopsin and Thy-1 levels was observed. CS injections induced a similar decrease in the number of melanopsin-containing cells and superior collicular retinal ganglion cells. Experimental glaucoma induced a significant decrease in the afferent pupil light reflex. White light significantly decreased nocturnal pineal melatonin content in control and glaucomatous animals, whereas blue light decreased this parameter in vehicle- but not in CS-injected animals. A significant decrease in light-induced c-Fos expression in the suprachiasmatic nuclei was observed in glaucomatous animals. General rhythmicity and gross entrainment appear to be conserved, but glaucomatous animals exhibited a delayed phase angle with respect to lights off and a significant increase in the percentage of diurnal activity. These results indicate the glaucoma induced significant alterations in the non-image forming visual system. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  1. Resolved Structure of the Arp 220 Nuclei at λ ≈ 3 mm

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kazushi; Aalto, Susanne; Barcos-Muñoz, Loreto; Costagliola, Francesco; Evans, Aaron S.; Harada, Nanase; Martín, Sergio; Wiedner, Martina; Wilner, David

    2017-11-01

    We analyze the 3 mm emission of the ultraluminous infrared galaxy Arp 220 for the spatially resolved structure and the spectral properties of the merger nuclei. ALMA archival data at ˜0.″05 resolution are used for extensive visibility fitting and deep imaging of the continuum emission. The data are fitted well by two concentric components for each nucleus, such as two Gaussians or one Gaussian plus one exponential disk. The larger components in the individual nuclei are similar in shape and extent, ˜100-150 pc, to the centimeter wave emission due to supernovae. They are therefore identified with the known starburst nuclear disks. The smaller components in both nuclei have about a few 10 pc sizes and peak brightness temperatures ({T}{{b}}) more than twice higher than those in previous single-Gaussian fitting. They correspond to the dust emission that we find centrally concentrated in both nuclei by subtracting the plasma emission measured at 33 GHz. The dust emission in the western nucleus is found to have a peak {T}{{b}}≈ 530 K and an FWHM of about 20 pc. This component is estimated to have a bolometric luminosity on the order of {10}12.5 {L}⊙ and a 20 pc scale luminosity surface density {10}15.5 {{L}}⊙ {{{k}}{{p}}{{c}}}-2. A luminous active galactic nucleus is a plausible energy source for these high values while other explanations remain to be explored. Our continuum image also reveals a third structural component of the western nucleus—a pair of faint spurs perpendicular to the disk major axis. We attribute it to a bipolar outflow from the highly inclined (I≈ 60^\\circ ) western nuclear disk.

  2. Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration.

    PubMed

    Croft, Daniel R; Coleman, Mathew L; Li, Shuixing; Robertson, David; Sullivan, Teresa; Stewart, Colin L; Olson, Michael F

    2005-01-17

    Membrane blebbing during the apoptotic execution phase results from caspase-mediated cleavage and activation of ROCK I. Here, we show that ROCK activity, myosin light chain (MLC) phosphorylation, MLC ATPase activity, and an intact actin cytoskeleton, but not microtubular cytoskeleton, are required for disruption of nuclear integrity during apoptosis. Inhibition of ROCK or MLC ATPase activity, which protect apoptotic nuclear integrity, does not affect caspase-mediated degradation of nuclear proteins such as lamins A, B1, or C. The conditional activation of ROCK I was sufficient to tear apart nuclei in lamin A/C null fibroblasts, but not in wild-type fibroblasts. Thus, apoptotic nuclear disintegration requires actin-myosin contractile force and lamin proteolysis, making apoptosis analogous to, but distinct from, mitosis where nuclear disintegration results from microtubule-based forces and from lamin phosphorylation and depolymerization.

  3. Actin-myosin–based contraction is responsible for apoptotic nuclear disintegration

    PubMed Central

    Croft, Daniel R.; Coleman, Mathew L.; Li, Shuixing; Robertson, David; Sullivan, Teresa; Stewart, Colin L.; Olson, Michael F.

    2005-01-01

    Membrane blebbing during the apoptotic execution phase results from caspase-mediated cleavage and activation of ROCK I. Here, we show that ROCK activity, myosin light chain (MLC) phosphorylation, MLC ATPase activity, and an intact actin cytoskeleton, but not microtubular cytoskeleton, are required for disruption of nuclear integrity during apoptosis. Inhibition of ROCK or MLC ATPase activity, which protect apoptotic nuclear integrity, does not affect caspase-mediated degradation of nuclear proteins such as lamins A, B1, or C. The conditional activation of ROCK I was sufficient to tear apart nuclei in lamin A/C null fibroblasts, but not in wild-type fibroblasts. Thus, apoptotic nuclear disintegration requires actin-myosin contractile force and lamin proteolysis, making apoptosis analogous to, but distinct from, mitosis where nuclear disintegration results from microtubule-based forces and from lamin phosphorylation and depolymerization. PMID:15657395

  4. High Temperature Inhibits Ascorbate Recycling and Light Stimulation of the Ascorbate Pool in Tomato despite Increased Expression of Biosynthesis Genes

    PubMed Central

    Massot, Capucine; Bancel, Doriane; Lopez Lauri, Félicie; Truffault, Vincent; Baldet, Pierre; Stevens, Rebecca; Gautier, Hélène

    2013-01-01

    Understanding how the fruit microclimate affects ascorbate (AsA) biosynthesis, oxidation and recycling is a great challenge in improving fruit nutritional quality. For this purpose, tomatoes at breaker stage were harvested and placed in controlled environment conditions at different temperatures (12, 17, 23, 27 and 31°C) and irradiance regimes (darkness or 150 µmol m-2 s-1). Fruit pericarp tissue was used to assay ascorbate, glutathione, enzymes related to oxidative stress and the AsA/glutathione cycle and follow the expression of genes coding for 5 enzymes of the AsA biosynthesis pathway (GME, VTC2, GPP, L-GalDH, GLDH). The AsA pool size in pericarp tissue was significantly higher under light at temperatures below 27°C. In addition, light promoted glutathione accumulation at low and high temperatures. At 12°C, increased AsA content was correlated with the enhanced expression of all genes of the biosynthesis pathway studied, combined with higher DHAR and MDHAR activities and increased enzymatic activities related to oxidative stress (CAT and APX). In contrast, at 31°C, MDHAR and GR activities were significantly reduced under light indicating that enzymes of the AsA/glutathione cycle may limit AsA recycling and pool size in fruit pericarp, despite enhanced expression of genes coding for AsA biosynthesis enzymes. In conclusion, this study confirms the important role of fruit microclimate in the regulation of fruit pericarp AsA content, as under oxidative conditions (12°C, light) total fruit pericarp AsA content increased up to 71%. Moreover, it reveals that light and temperature interact to regulate both AsA biosynthesis gene expression in tomato fruits and AsA oxidation and recycling. PMID:24367665

  5. High temperature inhibits ascorbate recycling and light stimulation of the ascorbate pool in tomato despite increased expression of biosynthesis genes.

    PubMed

    Massot, Capucine; Bancel, Doriane; Lopez Lauri, Félicie; Truffault, Vincent; Baldet, Pierre; Stevens, Rebecca; Gautier, Hélène

    2013-01-01

    Understanding how the fruit microclimate affects ascorbate (AsA) biosynthesis, oxidation and recycling is a great challenge in improving fruit nutritional quality. For this purpose, tomatoes at breaker stage were harvested and placed in controlled environment conditions at different temperatures (12, 17, 23, 27 and 31 °C) and irradiance regimes (darkness or 150 µmol m(-2) s(-1)). Fruit pericarp tissue was used to assay ascorbate, glutathione, enzymes related to oxidative stress and the AsA/glutathione cycle and follow the expression of genes coding for 5 enzymes of the AsA biosynthesis pathway (GME, VTC2, GPP, L-GalDH, GLDH). The AsA pool size in pericarp tissue was significantly higher under light at temperatures below 27 °C. In addition, light promoted glutathione accumulation at low and high temperatures. At 12 °C, increased AsA content was correlated with the enhanced expression of all genes of the biosynthesis pathway studied, combined with higher DHAR and MDHAR activities and increased enzymatic activities related to oxidative stress (CAT and APX). In contrast, at 31 °C, MDHAR and GR activities were significantly reduced under light indicating that enzymes of the AsA/glutathione cycle may limit AsA recycling and pool size in fruit pericarp, despite enhanced expression of genes coding for AsA biosynthesis enzymes. In conclusion, this study confirms the important role of fruit microclimate in the regulation of fruit pericarp AsA content, as under oxidative conditions (12 °C, light) total fruit pericarp AsA content increased up to 71%. Moreover, it reveals that light and temperature interact to regulate both AsA biosynthesis gene expression in tomato fruits and AsA oxidation and recycling.

  6. Substance P in the dorsal vagal complex inhibits medullary TRH-induced gastric acid secretion in rats.

    PubMed

    Yang, H; Taché, Y

    1997-05-01

    Neurons that contain substance P (SP) and thyrotropin-releasing hormone (TRH) in medullary midline raphe nuclei project to the dorsal vagal complex (DVC). The modulatory role of SP on basal gastric acid secretion (GAS) and TRH on DVC-induced stimulation of GAS was studied in urethan-anesthetized rats. The stable SP agonist, DiMe-C7 ([pGlu5, MePhe8, MeGly9]SP5-11, 50 and 100 pmol), injected unilaterally into the DVC reduced the GAS response (47 +/- 12 mumol/60 min) to coinjected TRH analog, RX 77368 (25 pmol), by 53% and 85%, respectively, whereas DiMe-C7 (100 pmol) alone had no effect on basal and pentagastrin-stimulated GAS. DiMe-C7 (100 pmol/site) inhibited the GAS response to kainic acid injected into the raphe pallidus (Rpa) when it was injected bilaterally into the DVC but not the hypoglossal nuclei. The SP nourokinin-1-receptor antagonist, CP-96,345, injected bilaterally into the DVC (1 nmol/ site) increased basal GAS (33 +/- 8 mumol/90 min) and potentiated the GAS response to kainic acid injected into the Rpa by 40%. These results suggest that SP acts on neurokinin-1 receptors in the DVC to reduce medullary TRH-induced stimulation of GAS in rats.

  7. 33 CFR 83.22 - Visibility of lights (Rule 22).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or more in length: (1) A masthead light, 6 miles; (2) A sidelight, 3 miles; (3) A sternlight, 3 miles; (4) A towing light, 3 miles; (5) A white, red, green or yellow all-round light, 3 miles; and (6) A... yellow all-round light, 2 miles; and (6) A special flashing light, 2 miles. (c) Vessels of less than 12...

  8. Expression of Prox1 defines regions of the avian otocyst that give rise to sensory or neural cells

    NASA Technical Reports Server (NTRS)

    Stone, Jennifer S.; Shang, Jia-Lin; Tomarev, Stanislav

    2003-01-01

    The simple primordium of the inner ear (otocyst) differentiates into many cell types, including sensory neurons and hair cells. We examined expression of the divergent homeobox transcription factor, cProx1, during otocyst development in chickens. Nuclear cProx1 protein is not evident in the otic placode but emerges in the otic cup by stage 12. At stage 16, cProx1-positive nuclei are scattered continuously throughout the neuroepithelium, from anteroventral to posteromedial. These labeled cells are neural precursors; they express betaIII-tubulin and migrate to the cochleovestibular ganglion between stages 13 and 21. By stage 18, two areas develop a dense pattern of cProx1 expression in which every nucleus is labeled. These areas emerge at the anterior and posterior extremes of the band of scattered cProx1 expression and express the sensory markers cSerrate1 and Cath1 by stage 23. Four discrete patches of dense cProx1 expression appear by stage 23 that correspond to the future superior crista, lateral crista, saccular macula, and posterior crista, as confirmed by immunolabeling for hair cell antigen (HCA) by stage 29. The remaining sensory epithelia display a dense pattern of cProx1 expression and label for HCA by stage 29. In the basilar papilla, nuclear cProx1 expression is down-regulated in most hair cells by stage 37 and in many supporting cells by stage 40. Our findings show that regions of the otocyst that give rise to neurons or hair cells are distinguished by their relative density of cProx1-positive nuclei, and suggest a role for cProx1 in the genesis of these cell types.

  9. Quantified Gamow shell model interaction for p s d -shell nuclei

    NASA Astrophysics Data System (ADS)

    Jaganathen, Y.; Betan, R. M. Id; Michel, N.; Nazarewicz, W.; Płoszajczak, M.

    2017-11-01

    Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In this study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the p s d f -shell-model space. The resulting interaction is expected to describe nuclei with 5 ≤A ≲12 at the p -s d -shell interface. Method: The one-body potential of the 4He core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon-4He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A =9 . A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities and excitation spectra of light nuclei with quantified uncertainties. Conclusion: The new interaction will enable comprehensive and fully quantified studies of structure and reactions aspects of nuclei from the p s d region of the nuclear chart.

  10. Quantified Gamow shell model interaction for p s d -shell nuclei

    DOE PAGES

    Jaganathen, Y.; Betan, R. M. Id; Michel, N.; ...

    2017-11-20

    Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In thismore » study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the psdf-shell-model space. The resulting interaction is expected to describe nuclei with 5 ≤ A ≲ 12 at the p-sd-shell interface. Method: The one-body potential of the 4He core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ 2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon- 4He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A = 9 . A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities and excitation spectra of light nuclei with quantified uncertainties. In conclusion: The new interaction will enable comprehensive and fully quantified studies of structure and reactions aspects of nuclei from the psd region of the nuclear chart.« less

  11. Examination of the 22C radius determination with interaction cross sections

    NASA Astrophysics Data System (ADS)

    Nagahisa, T.; Horiuchi, W.

    2018-05-01

    A nuclear radius of 22C is investigated with the total reaction cross sections at medium- to high-incident energies in order to resolve the radius puzzle in which two recent interaction cross-section measurements using 1H and 12C targets show the quite different radii. The cross sections of 22C are calculated consistently for these target nuclei within a reliable microscopic framework, the Glauber theory. To describe appropriately such a reaction involving a spatially extended nucleus, the multiple scattering processes within the Glauber theory are fully taken into account, that is, the multidimensional integration in the Glauber amplitude is evaluated using a Monte Carlo technique without recourse to the optical-limit approximation. We discuss the sensitivity of the spatially extended halo tail to the total reaction cross sections. The root-mean-square matter radius obtained in this study is consistent with that extracted from the recent cross-section measurement on 12C target. We show that the simultaneous reproduction of the two recent measured cross sections is not feasible within this framework.

  12. Role of the vestibular nuclei in endothelin-1-induced barrel rotation in rats.

    PubMed

    Kozako, Tomohiro; Kawachi, Akio; Cheng, Shi-Bin; Kuchiiwa, Satoshi; Motoya, Toshiro; Nakagawa, Shiro; Yamada, Katsushi

    2002-11-15

    The fourth or lateral ventricular injection of endothelin-1 resulted in a dose-dependent increase in the barrel rotation and produced marked induction of c-Fos-positive cells in the vestibular nuclei. The doses of the former injection were lower and had shorter mean latent periods compared with the later injection. c-Fos expression after endothelin-1 injection was prevented by the pretreatment with the endothelin ET(A) receptor antagonist, cyclo(D-alpha-aspartyl-L-propyl-D-valyl-L-leucyl-D-tryptophyl) (BQ-123), the glutamate NMDA receptor antagonist, dizocilpine maleate (MK-801), or the L-type Ca(2+) channel antagonist, verapamil, in addition to the incidence of the rotational behavior. There was a significant difference in c-Fos expression between the right and left medial vestibular nuclei, and the number of c-Fos-labeled neurons in the medial vestibular nucleus was markedly increased on the opposite side of the rotational direction. These results suggest that the elicitation of the barrel rotation may be mediated by endothelin ET(A) receptors, glutamate NMDA receptors, and L-type Ca(2+) channels. The changes in the receptor and channel systems induced by endothelin-1 injections appeared to exert crucial influences on the vestibular nuclei and then on the maintenance of equilibrium. The direction of the barrel rotation has a deep connection with the imbalance of neuronal activity in the left and right medial vestibular nuclei.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z Xu; C Chen; Y Wang

    Combined effects of graphene nanosheets (GNSs) and shear flow on the crystallization behavior of isotactic polypropylene (iPP) were investigated by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. For crystallization under quiescent condition (at 145 C), the half-crystallization time (t{sub 1/2}) of nanocomposites containing 0.05 and 0.1 wt % GNSs was reduced to at least 50% compared to that of neat iPP, indicating the high nucleation ability of GNSs. The crystallization rate of iPP was directly proportional to the GNS content. Under a relatively weak shear flow (at a rate of 20 s{sup -1} for 5more » s duration) and a low degree of supercooling, the neat iPP exhibited an isotropic structure due to the relaxation of row nuclei. However, visible antisotropic crystals appeared in sheared iPP/GNSs nanocomposites, indicating that GNSs induced a network structure hindering the mobility of iPP chains and allowing the survival of oriented row nuclei for a long period of time. The presence of GNSs clearly enhanced the effects of shear-induced nucleation as well as orientation of iPP crystals. Two kinds of nucleating origins coexisted in the sheared nanocomposite melt: heterogeneous nucleating sites initiated by GNSs and homogeneous nucleating sites (row nuclei) induced by shear. The difference of t{sub 1/2} of nanocomposites with and without shear was significantly larger than that of neat iPP. The presence of GNSs and shear flow exhibited a synergistic interaction on promoting crystallization kinetics of iPP, although the effect of GNS concentration was not apparent. From WAXD results of isothermal and nonisothermal crystallization of sheared iPP, it was found that the appearance of {beta}-crystals depended on the preservation of row nuclei, where the {alpha}-crystals were predominant in the iPP/GNSs nanocomposites, indicating that GNSs could directly induce {alpha}-crystals of iPP.« less

  14. Off-forward gluonic structure of vector mesons

    NASA Astrophysics Data System (ADS)

    Detmold, W.; Pefkou, D.; Shanahan, P. E.

    2017-06-01

    The spin-independent and transversity generalized form factors (GFFs) of the ϕ meson are studied using lattice QCD calculations with light quark masses corresponding to a pion mass mπ˜450 (5 ) MeV . One transversity and three spin-independent GFFs related to the lowest moments of leading-twist spin-independent and transversity gluon distributions are obtained at six nonzero values of the momentum transfer up to 1.2 GeV 2 . These quantities are compared with the analogous spin-independent quark GFFs and the electromagnetic form factors determined on the same lattice ensemble. The results show quantitative distinction between the spatial distribution of transversely polarized gluons, unpolarized gluons, and quarks and point the way towards further investigations of the gluon structure of nucleons and nuclei.

  15. Three-Body Forces and the Limit of Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu; Suzuki, Toshio; Holt, Jason D.; Schwenk, Achim; Akaishi, Yoshinori

    2010-07-01

    The limit of neutron-rich nuclei, the neutron drip line, evolves regularly from light to medium-mass nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in shell-model calculations derived from microscopic two-nucleon forces. Here, we present the first microscopic explanation of the oxygen anomaly based on three-nucleon forces that have been established in few-body systems. This leads to repulsive contributions to the interactions among excess neutrons that change the location of the neutron drip line from O28 to the experimentally observed O24. Since the mechanism is robust and general, our findings impact the prediction of the most neutron-rich nuclei and the synthesis of heavy elements in neutron-rich environments.

  16. Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei

    NASA Astrophysics Data System (ADS)

    Shamami, S. Rahimi; Pahlavani, M. R.

    2018-01-01

    A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.

  17. Anteroventral third ventricle (AV3V) lesions alter c-fos expression induced by salt loading

    NASA Technical Reports Server (NTRS)

    Rocha, M. J.; Beltz, T. G.; Dornelles, R. C.; Johnson, A. K.; Franci, C. R.

    1999-01-01

    Lesion of the anteroventral third-ventricle region (AV3VX) reduced saline consumption. Salt loading in AV3VX rats resulted in reduced but not completely abolished c-fos expression in the supraoptic and paraventricular nuclei. Intrinsic osmosensitivity of the magnocellular neurons, or input from other brain areas, such as the subfornical and median preoptic nuclei, may account for this residual c-fos expression. These regions showed c-fos expression following salt loading. Copyright 1999 Elsevier Science B.V.

  18. Triangle Universities Nuclear Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    This report contains brief papers that discusses the following topics: Fundamental Symmetries in the Nucleus; Internucleon Interactions; Dynamics of Very Light Nuclei; Facets of the Nuclear Many-Body Problem; and Nuclear Instruments and Methods.

  19. DNA content of hepatocyte and erythrocyte nuclei of the spined loach (Cobitis taenia L.) and its polyploid forms.

    PubMed

    Juchno, Dorota; Lackowska, Bozena; Boron, Alicja; Kilarski, Wincenty

    2010-09-01

    We analyzed the DNA content of hepatocyte and erythrocyte nuclei of the spined loach Cobitis taenia (diploid) and its allopolyploid forms. Twenty triploid females and one tetraploid were used. At least 20,000 hepatocyte and erythrocyte nuclei were acquired and analyzed by flow cytometry. C. taenia erythrocyte nuclei contain 3.15 +/- 0.21 pg of DNA and the hepatocyte nuclei 4.45 +/- 0.46 pg of DNA. Triploid Cobitis have 5.08 +/- 0.41 pg of DNA in erythrocyte nuclei and 6.11 +/- 0.40 pg of DNA in hepatocyte nuclei, whereas the tetraploid erythrocyte and hepatocyte nuclei contained 6.60 and 7.40 pg of DNA, respectively. In general, the DNA contents correlate positively with the ploidy level of the fish investigated. The DNA content variation in the hepatocyte and erythrocyte nuclei may be due to differences in extent of chromatin condensation, which is more pronounced in the erythrocyte than hepatocyte nuclei, or to the several orders of ploidy that occur in the parenchymal liver cells.

  20. Biological Ice Nuclei: They are Everywhere, What are Their Roles? (Invited)

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.

    2009-12-01

    Biological ice nuclei active at temperatures warmer than -2C were first observed in the late 1960s associated with decaying grass and tree leaves; discovered more by accident than in a planned experiment. The active component of the decaying leaves was subsequently found to be produced by a few living bacteria, the two most ubiquitous being strains of P. syringae and E. herbicola. The active bacterial ice nuclei are easily deactivated by anaerobic, chemical and heat stresses. The same grass and tree leaves, when well decayed, generally contain less active ice nuclei (threshold temperatures of -5C to - 6C) in the 0.1 micron diameter range compared to the larger (1 micron) bacteria associated ice nuclei. The well decayed leaf litter ice nuclei are stable over a wide range of stresses and time; some samples of leaf derived nuclei stored at room temperature have exhibited the same ice nucleus concentration for over 30 years. Fungi also have active ice nuclei that are stable over many decades. Active ice nuclei are found in marine waters associated with plankton, and are produced by at least one marine dinoflagellate (Heterocapsa niei) that expresses ice nucleus activity almost as warm as terrestrial bacteria ice nuclei. Living ice nucleus bacteria have been found in marine fogs far at sea, in precipitation in Antarctica as well as over many continental areas, in air in the high Arctic, on vegetation around the world, on remote ice bound islands, and growing on and inside water storing vegetation on isolated tropical mountain peaks. But why? What is the evolutionary advantage for the ice nucleus gene to be expressed in such a wide range of environments, by greatly different species? There is an energy cost for bacteria and fungi to support the ice gene, so it probably is not a genetic anomaly. Possibly the ice nuclei play many roles? These could include damaging plants to acquire a food source, an aid in survival and dispersal in clouds, initiation of precipitation to help plant growth, initiating ice formation and subsequent scavenging of water vapor in cold climates (e.g. Arctic and high elevation lichen), living in symbiosis with high elevation vegetation that freezes nightly, and probably a range of others we have not observed or yet hypothesized. Bacterial ice nucleation is truly an intriguing and fantastic phenomenon for which we have just begun to understand.

  1. Theory of Quasi-Equilibrium Nucleosynthesis and Applications to Matter Expanding from High Temperature and Density

    NASA Astrophysics Data System (ADS)

    Meyer, Bradley S.; Krishnan, Tracy D.; Clayton, Donald D.

    1998-05-01

    Our first purpose is construction of a formal theory of quasi-equilibrium. We define quasi-equilibrium, in its simplest form, as statistical equilibrium in the face of an extra constraint on the nuclear populations. We show that the extra constraint introduces a uniform translation of the chemical potentials for the heavy nuclei and derive the abundances in terms of it. We then generalize this theory to accommodate any number of constraints. For nucleosynthesis, the most important constraint occurs when the total number of heavy nuclei Yh within a system of nuclei differs from the number that would exist in nuclear statistical equilibrium (NSE) under the same conditions of density and temperature. Three situations of high relevance are (1) silicon burning, wherein the total number of nuclei exceeds but asymptotically approaches the NSE number; (2) alpha-rich freezeout expansions of high entropy, wherein Yh is less than the NSE number; and (3) expansions from high temperature of low-entropy matter, in which Yh exceeds the NSE number. These are of importance, respectively, within (1) supernova shells, (2) Type II supernova cores modestly outside the mass cut, and (3) Type Ia supernova cores in near-Chandrasekhar-mass events. Our next goal is the detailed analysis of situation (2), the high-entropy alpha-rich neutron-rich freezeout. We employ a nuclear reaction network, which we integrate, to compare the actual abundances with those obtained at the same thermal conditions by the quasi-equilibrium (QSE) theory and by the NSE theory. For this detailed comparison, we choose a high-entropy photon-to-nucleon ratio φ = 6.8, for which we conduct expansions at initial bulk neutron excess η0 = 0.10. We demonstrate that the abundance populations, as they begin expansion and cooling from temperature 10 × 109 K, are characterized by three distinct phases: (1) NSE, (2) QSE having Yh smaller than the NSE value, and (3) final reaction rate-dependent freezeout modifications of the QSE. We demonstrate that the true final abundances are well approximated by the QSE distribution near the freezeout temperature T9f = 4.0. During the expansion, the QSE distribution changes shape continuously in ways that are independent of the reaction cross sections of the heavy nuclei with free light particles. It is this changing shape, rather than ``nuclear flows,'' that establish the abundance pattern. The abundance pattern is actually determined by the parameter Yh and the degree to which it differs from the NSE value owing to the slowness with which light particles can be assembled into heavy nuclei (A >= 12). We also detail the nature and magnitude of the freezeout corrections to the QSE distribution. The entire distribution depends less upon the values of heavy-element cross sections than has been heretofore thought. Our third goal is to survey the alpha-rich freezeout. We do this by less complete analysis of nine different expansions determined by the matrix of three distinct entropies (φ = 1.7, 6.8, and 17) and three distinct initial neutron excesses (η0 = 0.003, 0.10, and 0.1667). The trends are easily comprehended in terms of the concept of quasi-equilibrium, whereas they are not understandable in terms of either NSE or in terms of reaction rates. This secures for the QSE concept a major diagnostic capability within nucleosynthesis theory. We delineate the key trends and also remark on the ways that order arises from disorder in this complex system. We conclude with a discussion of how such systems assemble heavy nuclei.

  2. Memory for fearful faces across development: specialization of amygdala nuclei and medial temporal lobe structures.

    PubMed

    Pinabiaux, Charlotte; Hertz-Pannier, Lucie; Chiron, Catherine; Rodrigo, Sébastian; Jambaqué, Isabelle; Noulhiane, Marion

    2013-01-01

    Enhanced memory for emotional faces is a significant component of adaptive social interactions, but little is known on its neural developmental correlates. We explored the role of amygdaloid complex (AC) and medial temporal lobe (MTL) in emotional memory recognition across development, by comparing fMRI activations of successful memory encoding of fearful and neutral faces in children (n = 12; 8-12 years) and adolescents (n = 12; 13-17 years). Memory for fearful faces was enhanced compared with neutral ones in adolescents, as opposed to children. In adolescents, activations associated with successful encoding of fearful faces were centered on baso-lateral AC nuclei, hippocampus, enthorhinal and parahippocampal cortices. In children, successful encoding of fearful faces relied on activations of centro-mesial AC nuclei, which was not accompanied by functional activation of MTL memory structures. Successful encoding of neutral faces depended on activations in anterior MTL region (hippocampal head and body) in adolescents, but more posterior ones (hippocampal tail and parahippocampal cortex) in children. In conclusion, two distinct functional specializations emerge from childhood to adolescence and result in the enhancement of memory for these particular stimuli: the specialization of baso-lateral AC nuclei, which is associated with the expertise in processing emotional facial expression, and which is intimately related to the specialization of MTL memory network. How the interplay between specialization of AC nuclei and of MTL memory structures is fundamental for the edification of social interactions remains to be elucidated.

  3. Memory for fearful faces across development: specialization of amygdala nuclei and medial temporal lobe structures

    PubMed Central

    Pinabiaux, Charlotte; Hertz-Pannier, Lucie; Chiron, Catherine; Rodrigo, Sébastian; Jambaqué, Isabelle; Noulhiane, Marion

    2013-01-01

    Enhanced memory for emotional faces is a significant component of adaptive social interactions, but little is known on its neural developmental correlates. We explored the role of amygdaloid complex (AC) and medial temporal lobe (MTL) in emotional memory recognition across development, by comparing fMRI activations of successful memory encoding of fearful and neutral faces in children (n = 12; 8–12 years) and adolescents (n = 12; 13–17 years). Memory for fearful faces was enhanced compared with neutral ones in adolescents, as opposed to children. In adolescents, activations associated with successful encoding of fearful faces were centered on baso-lateral AC nuclei, hippocampus, enthorhinal and parahippocampal cortices. In children, successful encoding of fearful faces relied on activations of centro-mesial AC nuclei, which was not accompanied by functional activation of MTL memory structures. Successful encoding of neutral faces depended on activations in anterior MTL region (hippocampal head and body) in adolescents, but more posterior ones (hippocampal tail and parahippocampal cortex) in children. In conclusion, two distinct functional specializations emerge from childhood to adolescence and result in the enhancement of memory for these particular stimuli: the specialization of baso-lateral AC nuclei, which is associated with the expertise in processing emotional facial expression, and which is intimately related to the specialization of MTL memory network. How the interplay between specialization of AC nuclei and of MTL memory structures is fundamental for the edification of social interactions remains to be elucidated. PMID:24399958

  4. Stage-specific appearance of cytoplasmic microtubules around the surviving nuclei during the third prezygotic division of Paramecium.

    PubMed

    Wang, Yi-Wen; Yuan, Jin-Qiang; Gao, Xin; Yang, Xian-Yu

    2012-12-01

    There are six micronuclear divisions during conjugation of Paramecium caudatum: three prezygotic and three postzygotic divisions. Four haploid nuclei are formed during the first two meiotic prezygotic divisions. Usually only one meiotic product is located in the paroral cone (PC) region at the completion of meiosis, which survives and divides mitotically to complete the third prezygotic division to yield a stationary and a migratory pronucleus. The remaining three located outside of the PC degenerate. The migratory pronuclei are then exchanged between two conjugants and fuse with the stationary pronuclei to form synkarya, which undergo three successive divisions (postzygotic divisions). However, little is known about the surviving mechanism of the PC nuclei. In the current study, stage-specific appearance of cytoplasmic microtubules (cMTs) was indicated during the third prezygotic division by immunofluorescence labeling with anti-alpha tubulin antibodies surrounding the surviving nuclei, including the PC nuclei and the two types of prospective pronuclei. This suggested that cMTs were involved in the formation of a physical barrier, whose function may relate to sequestering and protecting the surviving nuclei from the major cytoplasm, where degeneration of extra-meiotic products occurs, another important nuclear event during the third prezygotic division.

  5. Nitric oxide measurements in hTERT-RPE cells and subcellular fractions exposed to low levels of red light

    NASA Astrophysics Data System (ADS)

    Wigle, Jeffrey C.; Castellanos, Cherry C.; Denton, Michael L.; Holwitt, Eric A.

    2014-02-01

    Cells in a tissue culture model for laser eye injury exhibit increased resistance to a lethal pulse of 2.0-μm laser radiation if the cells are first exposed to 2.88 J/cm2 of red light 24 hr prior to the lethal laser exposure. Changes in expression of various genes associated with apoptosis have been observed, but the biochemical link between light absorption and gene expression remains unknown. Cytochome c oxidase (CCOX), in the electron transport chain, is the currentlyhypothesized absorber. Absorption of the red light by CCOX is thought to facilitate displacement of nitric oxide (NO) by O2 in the active site, increasing cellular respiration and intracellular ATP. However, NO is also an important regulator and mediator of numerous physiological processes in a variety of cell and tissue types that is synthesized from l-arginine by NO synthases. In an effort to determine the relative NO contributions from these competing pathways, we measured NO levels in whole cells and subcellular fractions, with and without exposure to red light, using DAF-FM, a fluorescent dye that stoichiometrically reacts with NO. Red light induced a small, but consistently reproducible, increase in fluorescence intensity in whole cells and some subcellular fractions. Whole cells exhibited the highest overall fluorescence intensity followed by (in order) cytosolic proteins, microsomes, then nuclei and mitochondria.

  6. The ALICE Transition Radiation Detector: Construction, operation, and performance

    NASA Astrophysics Data System (ADS)

    Alice Collaboration

    2018-02-01

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/ c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.

  7. Systematic analysis of inelastic α scattering off self-conjugate A =4 n nuclei

    NASA Astrophysics Data System (ADS)

    Adachi, S.; Kawabata, T.; Minomo, K.; Kadoya, T.; Yokota, N.; Akimune, H.; Baba, T.; Fujimura, H.; Fujiwara, M.; Funaki, Y.; Furuno, T.; Hashimoto, T.; Hatanaka, K.; Inaba, K.; Ishii, Y.; Itoh, M.; Iwamoto, C.; Kawase, K.; Maeda, Y.; Matsubara, H.; Matsuda, Y.; Matsuno, H.; Morimoto, T.; Morita, H.; Murata, M.; Nanamura, T.; Ou, I.; Sakaguchi, S.; Sasamoto, Y.; Sawada, R.; Shimizu, Y.; Suda, K.; Tamii, A.; Tameshige, Y.; Tsumura, M.; Uchida, M.; Uesaka, T.; Yoshida, H. P.; Yoshida, S.

    2018-01-01

    We systematically measured the differential cross sections of inelastic α scattering off self-conjugate A =4 n nuclei at two incident energies Eα=130 MeV and 386 MeV at Research Center for Nuclear Physics, Osaka University. The measured cross sections were analyzed by the distorted-wave Born-approximation (DWBA) calculation using the single-folding potentials, which are obtained by folding macroscopic transition densities with the phenomenological α N interaction. The DWBA calculation with the density-dependent α N interaction systematically overestimates the cross sections for the Δ L =0 transitions. However, the DWBA calculation using the density-independent α N interaction reasonably well describes all the transitions with Δ L =0 -4. We examined uncertainties in the present DWBA calculation stemming from the macroscopic transition densities, distorting potentials, phenomenological α N interaction, and coupled channel effects in 12C. It was found that the DWBA calculation is not sensitive to details of the transition densities nor the distorting potentials, and the phenomenological density-independent α N interaction gives reasonable results. The coupled-channel effects are negligibly small for the 21+ and 31- states in 12C, but not for the 02+ state. However, the DWBA calculation using the density-independent interaction at Eα=386 MeV is still reasonable even for the 02+ state. We concluded that the macroscopic DWBA calculations using the density-independent interaction are reliably applicable to the analysis of inelastic α scattering at Eα˜100 MeV /u .

  8. Determination of the charge radii of several light nuclei from precision, high-energy electron elastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabir, Al Amin

    2015-12-01

    Analysis of high-energy electron scattering has been used to determine the charge radii of nuclei for several decades. Recent analysis of the Lamb shift in muonic hydrogen found an r.m.s. radius significantly different than the electron scattering result. To understand this puzzle we have analyzed the "LEDEX" data for the (e, e'p) reaction. This experiment includes measurements on several light nuclei, hydrogen, deuterium, lithium, boron, and carbon. To test our ability to measure absolute cross sections, as well as our ability to extract the charge radius, we tested our technique against the extremely well-measured carbon case and found excellent agreementmore » using the Fourier-Bessel parametrization. We then extended the procedure to boron and lithium, which show nice agreement with the latest theoretical calculations. For hydrogen, we see clearly the limits of this technique and therefore, the charge radius is determined from the traditional extrapolation to q 2 = 0. We will show that there is a model dependence in extracting the charge radius of hydrogen and its unambiguous determination is very difficult with available electron-scattering measurements.« less

  9. Self-transcendence trait and its relationship with in vivo serotonin transporter availability in brainstem raphe nuclei: An ultra-high resolution PET-MRI study.

    PubMed

    Kim, Jong-Hoon; Son, Young-Don; Kim, Jeong-Hee; Choi, Eun-Jung; Lee, Sang-Yoon; Joo, Yo-Han; Kim, Young-Bo; Cho, Zang-Hee

    2015-12-10

    Self-transcendence is an inherent human personality trait relating to the experience of spiritual aspects of the self. We examined the relationship between self-transcendence and serotonin transporter (SERT) availability in brainstem raphe nuclei, which are collections of five different serotonergic nuclei with rostro-caudal extension, using ultra-high resolution magnetic resonance imaging (MRI) and positron emission tomography (PET) with (11)C-3-amino-4-(2-dimethylaminomethylphenylthio)benzonitrile ([(11)C]DASB) to elucidate potential roles of serotonergic neuronal activities in this personality trait. Sixteen healthy subjects completed 7.0T MRI and High Resolution Research Tomograph (HRRT) PET. The regions of interest (ROIs) included the dorsal raphe nucleus (R1), median raphe nucleus (R2), raphe pontis (R3), and the caudal raphe nuclei (R4 and R5). For the estimation of SERT availability, the binding potential (BPND) was derived using the simplified reference tissue model (SRTM2). The Temperament and Character Inventory was used to measure self-transcendence. The analysis revealed that the self-transcendence total score had a significant negative correlation with the [(11)C]DASB BPND in the caudal raphe (R5). The subscale score for spiritual acceptance was significantly negatively correlated with the [(11)C]DASB BPND in the median raphe nucleus (R2). The results indicate that the self-transcendence trait is associated with SERT availability in specific raphe subnuclei, suggesting that the serotonin system may serve as an important biological basis for human self-transcendence. Based on the connections of these nuclei with cortico-limbic and visceral autonomic structures, the functional activity of these nuclei and their related neural circuitry may play a crucial role in the manifestation of self-transcendence. Copyright © 2015. Published by Elsevier B.V.

  10. Software Design Document GT Real-Time Software Host CSCI (9B). Volume 1, Sections 1.0 - 2.12.19.2

    DTIC Science & Technology

    1991-06-01

    78 2.4.2.8 bOsig-frame-rate.c ............................. 79 2.4.2.9 bO- database -info.c.............................. 79...93 2.4.3 Ballistics Database Interaction ......................................... 94 2.4.3.1 bxbvolintc... database -disable................................ 417 2.12.6.11 _handle-.point-lights ............................. 418 2.12.6.12 _-reset~model-Wpinters

  11. [The polyploidization characteristics of the hepatocytes of the mouse-like hamster Calomyscus mystax].

    PubMed

    Anatskaia, O V; Malikov, V G; Meĭer, M N; Kudriavtsev, B N

    1995-01-01

    A cytophotometric measurement of DNA content in hepatocytes of maturing mouse-like hamsters was made. Cells belonging to ordinary mammalian ploidy classes 2c, 2c x 2, 4c, and 4c x 2 made about 90% of the hepatocyte population. The share of binucleated cells wa high (about 80%), the majority of these cells being 2c X 2 hepatocytes. Binucleated cells with tetraploid and diploid nuclei occur in almost every animal. An average hepatocyte ploidy level in mouse-like hamster is 4.6c. The main peculiarity of parenchymal liver cell populations is that up 5% of hepatocytes contain 3--11 nuclei of different ploidy classes. Multinucleated cells increase in number from 1.5% to 4% within the period from one year (the age of maturation) to two years. Later on their percentage does not change. It is found that in binucleated and multinucleated hepatocytes DNA synthesis can proceed asynchronously. Asynchrony in DNA synthesis elevates as the number of nuclei increases. Among the 2c x 2 and 2c x 3 cells an uneven distribution of 3H-thymidine label can occur, respectively, in 5 and in 50% cases, whereas all the cells with more than 3 nuclei display an uneven an uneven 3H-thymidin label distribution. The formation of multinucleated cells is supposed to be associated with asynchrony in DNA-synthesis in binucleated cells and with the restitution of mitosis.

  12. Tidal Disruptions of Main Sequence Stars: Inferences from the Composition of the Fallback Material

    NASA Astrophysics Data System (ADS)

    Gallegos, Monica; Law-Smith, Jamie; Ramírez-Ruiz, Enrico

    2018-01-01

    We study black holes within galactic nuclei by analyzing the motions of stars swarming around them. When the conditions are right we can observe and analyze characteristics of the black hole’s destructive power. In this paper we analyze the case when a star lurks close enough to these gravity giants to be ripped apart. After disruption, material that is bound to the supermassive black hole accretes onto it and creates a powerful flare. The standard light curve of these flares is classically described by a t-5/3 power law in time. In this paper we adopt an analytical method to calculate the fallback rate and use Modules for Experiments in Stellar Astrophysics (MESA) to study the disruption of stars with masses between 0.8-3 M⊙ at various evolutionary stages. We move beyond the analysis of the light curve and peer into the interiors of the disrupted stars by studying the compositional features of the fallback material. With this work we can begin to constrain the nature of the stars that are tidally disrupted. We find that most stars develop nitrogen (14N) enhancements with carbon (12C) and oxygen (16O) depletion relative to solar abundance and find that these features are more pronounced for higher mass stars. We also find that these features become prominent only after the time of maximum fallback rate, tpeak, and are observed to appear at earlier times for stars of increasing mass. This work provides a clear spectral method to help classify the transient events we observe at the centers of galaxies.

  13. Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy

    PubMed Central

    Lau, Condon; Šćepanović, Obrad; Mirkovic, Jelena; McGee, Sasha; Yu, Chung-Chieh; Fulghum, Stephen; Wallace, Michael; Tunnell, James; Bechtel, Kate; Feld, Michael

    2009-01-01

    Model-based light scattering spectroscopy (LSS) seemed a promising technique for in-vivo diagnosis of dysplasia in multiple organs. In the studies, the residual spectrum, the difference between the observed and modeled diffuse reflectance spectra, was attributed to single elastic light scattering from epithelial nuclei, and diagnostic information due to nuclear changes was extracted from it. We show that this picture is incorrect. The actual single scattering signal arising from epithelial nuclei is much smaller than the previously computed residual spectrum, and does not have the wavelength dependence characteristic of Mie scattering. Rather, the residual spectrum largely arises from assuming a uniform hemoglobin distribution. In fact, hemoglobin is packaged in blood vessels, which alters the reflectance. When we include vessel packaging, which accounts for an inhomogeneous hemoglobin distribution, in the diffuse reflectance model, the reflectance is modeled more accurately, greatly reducing the amplitude of the residual spectrum. These findings are verified via numerical estimates based on light propagation and Mie theory, tissue phantom experiments, and analysis of published data measured from Barrett’s esophagus. In future studies, vessel packaging should be included in the model of diffuse reflectance and use of model-based LSS should be discontinued. PMID:19405760

  14. Polyacetylene liquid crystals: new mesomorphic materials with high thermal stability and novel light-emitting properties

    NASA Astrophysics Data System (ADS)

    Tang, Ben Z.; Lam, Jacky W. Y.; Lai, Lo M.; Xie, Zhiliang; Kwok, Hoi S.

    2003-12-01

    A series of new disubstituted liquid crystalline polyacetylenes (LCPAs) with general molecular structures of -{(R)C=C[(CH2)m-Mes]}n- and -[(C6H13)C=C(C6H4-Mes)]n- (R = CH3, C6H5, m = 3, 4, 9, Mes = mesogen) have been designed and synthesized. All the LCPAs are thermally stable and do not loss their weights when heated to a temperature as high as 400 deg.C. While a few polymers exhibit nematicity, most of them form enantiotropic SA phase of monolayer structure. Upon photoexcitation, the polymers emit intense UV and blue lights with quantum yield up to 81%. Multilayer light-emitting diodes with a device configuration of ITO/PVK/PA/LiF/Al are constructed, which emits blue light with maximum luminance and external quantum efficiency of 119 cd/m2 and 0.12%, respectively.

  15. Early adaptation to altered gravitational environments in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.

    1985-01-01

    The feeding behavior of two squirrel monkeys flown in Spacelab 3 is compared to that of six monkeys exposed to 1.5 G through centrifugation. The monkeys in the centrifugation study were housed unrestrained in cages, maintained at 25 C + or - 1 C, exposed to a 12:12 light/dark cycle, and had unrestrained access to food and water. The Spacelab monkeys were maintained at 26 C, exposed to a 12:12 light/dark cycle and had unlimited food and water. It is observed that the centrifuge rats displayed a change in feeding behavior for 4 days prior to resuming a normal pattern; one Spacelab monkey exhibited a 6 day depression before recover to control levels, and the feeding pattern of the second monkey was not influenced by the environment. It is noted that the effect of an altered dynamic environment is variable on the feeding behavior of individual monkeys.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanahan, Phiala A.

    I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCDmore » calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.« less

  17. Quantum Monte Carlo calculations of light nuclei with local chiral two- and three-nucleon interactions

    DOE PAGES

    Lynn, J. E.; Tews, I.; Carlson, J.; ...

    2017-11-30

    Local chiral effective field theory interactions have recently been developed and used in the context of quantum Monte Carlo few- and many-body methods for nuclear physics. In this paper, we go over detailed features of local chiral nucleon-nucleon interactions and examine their effect on properties of the deuteron, paying special attention to the perturbativeness of the expansion. We then turn to three-nucleon interactions, focusing on operator ambiguities and their interplay with regulator effects. We then discuss the nuclear Green's function Monte Carlo method, going over both wave-function correlations and approximations for the two- and three-body propagators. Finally, following this, wemore » present a range of results on light nuclei: Binding energies and distribution functions are contrasted and compared, starting from several different microscopic interactions.« less

  18. Effects of arbuscular mycorrhizal colonization and phosphorus application on nuclear ploidy in Allium porrum plants.

    PubMed

    Fusconi, Anna; Lingua, Guido; Trotta, Antonio; Berta, Graziella

    2005-07-01

    Arbuscular mycorrhizal (AM) colonization can strongly affect the plant cell nucleus, causing displacement from the periphery to the center of the cell, hypertrophy and polyploidization. The hypertrophy response has been shown in a variety of AM plants whilst polyploidization has been reported only in Lycopersicon esculentum, a multiploid species with a small genome. In order to determine whether polyploidization is a general plant response to AM colonization, analyses were performed on Allium porrum, a plant with a large genome, which is much less subject to polyploidization than L. esculentum. The ploidy status of leaves, complete root systems and four zones of the adventitious roots was investigated in relation to phosphorus content, AM colonization and root differentiation in A. porrum plants grown under two different regimes of phosphate nutrition in order to distinguish direct effects of the fungus from those of improved nutrition. Results showed the presence of two nuclear populations (2C and 4C) in all treatments and samples. Linear regression analyses suggested a general negative correlation between phosphorus content and the proportion of 2C nuclei. The percentage of 2C nuclei (and consequently that of 4C nuclei), was also influenced by AM colonization, differentiation and ageing of the root cells, which resulted in earlier occurrence, in time and space, of polyploid nuclei.

  19. Synthesis and luminescent properties of Tb3Al5O12:Ce3+ phosphors for warm white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Meng, Qinghuan; Liu, Ying; Fu, Yujie; Zu, Yuangang; Zhou, Zhenbao

    2018-01-01

    A series of Tb3Al5O12:Ce3+ phosphors were successfully synthesized by a precipitation method. The pure Tb3Al5O12 phase was obtained in the synthesized Tb3Al5O12:Ce3+ phosphors after heat treatments at 500 °C in air for 3 h. The excitation spectra of Tb3Al5O12:Ce3+ phosphors include excitation bands corresponding to Tb3+ and Ce3+ ions. Under the excitation at 455 nm, Tb3Al5O12:Ce3+ phosphors show emission band at around 553 nm. The critical doping concentration of Ce3+ in Tb3Al5O12 is 6mol%, which shows the highest emission intensity. White light-emitting diodes were fabricated by combining InGaN-based blue light-emitting diodes with Tb3Al5O12:Ce3+ and Y3Al5O12:Ce3+ phosphors. The Tb3Al5O12:Ce3+ based white light-emitting diode shows a lower color temperature than that of Y3Al5O12:Ce3+ based white light-emitting diode. The experimental results clearly indicate that the prepared Tb3Al5O12:Ce3+ has potential applications in white light emitting diodes.

  20. Polyploidization on SK-N-MC human neuroblastoma cells infected with herpes simplex virus 1.

    PubMed

    Karalyan, Zaven; Izmailyan, Roza; Karalova, Elena; Abroyan, Liana; Hakobyan, Lina; Avetisyan, Aida; Semerjyan, Zara

    2016-01-01

    Polyploidization is one of the most dramatic changes occurring within cell genome owing to various reasons including under many viral infections. We examined the impact of herpes simplex virus-1 (HSV-1) on SK-N-MC human neuroblastoma cell line. The infected cells were followed from 6 hours up to 96 hours post infection (hpi). A large number of polyploid cells with giant nuclei was observed under the influence of HSV-1 at 24 hpi with the DNA content of 32c to 64c or more, in comparison with control SK-N-MC cells that were characterized by relatively moderate values of ploidy, i.e. 8с to 16с (where 1c is the haploid amount of nuclear DNA found in normal diploid populations in G0/G1). After 48-96 hpi, the population of polyploid cells with giant nuclei decreased to the benchmark level. The SK-NMC cells infected with HSV-1 for 24 hours were stained with gallocyanine and monitored for cytological features. The infected cells underwent virus induced cellcell and nuclei fusion with the formation of dense nuclei syncytium. The metabolic activity of HSV-1 infected cells was higher in both nuclei and nucleoli when compared to control cells.

  1. Astrophysical quests for neutron capture data of unstable nuclei

    NASA Astrophysics Data System (ADS)

    Käppeler, F.

    2016-11-01

    The abundances of the chemical elements heavier than iron can be attributed in about equal parts to the r and to the s process, which are taking place in supernova explosions and during the He and C burning phases of stellar evolution, respectively. So far, quantitative studies on the extremely short-lived neutron-rich nuclei constituting the ( n, γ) network of the r process are out of reach. On the contrary, the situation for the s -process is far advanced, as the reaction path of the s process from 12C to the Pb/Bi region is located within the valley of stability. Accordingly, a comprehensive database of experimental ( n, γ) cross sections has been established. While for many stable isotopes the necessary accuracy is still to be reached, reliable cross sections for the involved unstable isotopes are almost completely missing. Because of the intrinsic γ background of radioactive samples, successful time-of-flight measurements are depending on intense pulsed neutron sources. Such data are fundamental for our understanding of branchings in the s -process reaction path, which carry important model-independent information on neutron flux and temperature in the deep stellar interior.

  2. Relative Abundances of Cosmic Ray Nuclei B-C-N-O in the Energy Region from 10 GeV/n to 300 GeV/n. Results from the Science Flight of the ATIC

    NASA Technical Reports Server (NTRS)

    Panov, A. D.; Sokolskaya, N. V.; Adams, J.H.; Ahn, H.S.; Bashindzhagyan, G. L.; Batkov, K.E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganal, O.; hide

    2007-01-01

    The ATIC balloon-borne experiment measures the energy spectra of elements from H to Fe in primary cosmic rays from about 100 GeV to 100 TeV. ATIC is comprised of a fully active bismuth germanate calorimeter, a carbon target with embedded scintillator hodoscopes, and a silicon matrix that is used as a main charge detector. The silicon matrix produces good charge resolution for the protons and helium but only a partial resolution for heavier nuclei. In the present paper a charge resolution of ATIC device was essentially improved and backgrounds were reduced in the region from Be to Si by means of the upper layer of the scintillator hodoscope that was used as an additional charge detector together with the silicon matrix. The flux ratios of nuclei B/C, O/C, N/C in the energy region from about 10 GeV/nucleon to 300 GeV/nucleon that were obtained from new high-resolution and high-quality charge spectra of nuclei are presented. The results are compared with existing theoretical predictions.

  3. 13C-13C rotational resonance in a transmembrane peptide: A comparison of the fluid and gel phases

    NASA Astrophysics Data System (ADS)

    Langlais, Denis B.; Hodges, Robert S.; Davis, James H.

    1999-05-01

    A comparative study of two doubly 13C labeled amphiphilic transmembrane peptides was undertaken to determine the potential of rotational resonance for measuring internuclear distances through the direct dipolar coupling in the presence of motion. The two peptides, having the sequence acetyl-K2-G-L16-K2-A-amide, differed only in the position of 13C labels. The first peptide, [1-13C]leu11:[α-13C]leu12, had labels on adjacent residues, at the carbonyl of leu11 and the α carbon of leu12. The second, [1-13C]leu8:[α-13\\|C]leu11, was labeled on consecutive turns of the α-helical peptide. The internuclear distance between labeled positions of the first peptide, which for an ideal α helix has a value of 2.48 Å, is relatively independent of internal flexibility or peptide conformational change. The dipolar coupling between these two nuclei is sensitive to motional averaging by molecular reorientation, however, making this peptide ideal for investigating these motions. The internuclear distance between labels on the second peptide has an expected static ideal α-helix value of 4.6 Å, but this is sensitive to internal flexibility. In addition, the dipolar coupling between these two nuclei is much weaker because of their larger separation, making this peptide a much more difficult test of the rotational resonance technique. The dipolar couplings between the labeled nuclei of these two peptides were measured by rotational resonance in the dry peptide powders and in multilamellar dispersions with dimyristoylphosphatidylcholine in the gel phase, at -10 °C, and in the fluid phase, at 40 °C. The results for the peptide having adjacent labels can be readily interpreted in terms of a simple model for the peptide motion. The results for the second peptide show that, in the fluid phase, the motionally averaged dipolar coupling is too small to be measured by rotational resonance. Rotational resonance, rotational echo double resonance, and related techniques can be used to obtain reliable and valuable dipolar couplings in static solid and membrane systems. The interpretation of these couplings in terms of internuclear distances is straightforward in the absence of molecular motion. These techniques hold considerable promise for membrane protein structural studies under conditions, such as at low temperatures, where molecular motion does not modulate the dipolar couplings. However, a typical membrane at physiological temperatures exhibits complex molecular motions. In the absence of an accurate and detailed description of both internal and whole body molecular motions, it is unlikely that techniques of this type, which are based on extracting distances from direct internuclear dipolar couplings, can be used to study molecular structure under these conditions. Furthermore, the reduction in the strengths of the dipolar couplings by these motions dramatically reduces the useful range of distances which can be measured.

  4. Low collectivity of the first 2+ states of 212,210Po

    NASA Astrophysics Data System (ADS)

    Kocheva, D.; Rainovski, G.; Jolie, J.; Pietralla, N.; Blazhev, A.; Astier, A.; Altenkirch, R.; Bast, M.; Beckers, M.; Ansari, S.; Braunroth, Th.; Cappellazzo, M.; Cortés, M. L.; Dewald, A.; Diel, F.; Djongolov, M.; Fransen, C.; Gladnishki, K.; Goldkuhle, A.; Hennig, A.; Karayonchev, V.; Keatings, J. M.; Kluge, E.; Kröll, Th.; Litzinger, J.; Moschner, K.; Müller-Gatermann, C.; Petkov, P.; Rudigier, M.; Scheck, M.; Spagnoletti, P.; Scholz, Ph.; Schmidt, T.; Spieker, M.; Stahl, C.; Stegmann, R.; Stolz, A.; Vogt, A.; Stoyanova, M.; Thöle, P.; Warr, N.; Werner, V.; Witt, W.; Wölk, D.; Zamora, J. C.; Zell, K. O.; Van Isacker, P.; Ponomarev, V. Yu.

    2018-05-01

    The lifetimes of the first 2+ excited states of 212,210Po were measured in two transfer reactions 208Pb(12C,8Be)212Po and 208Pb(12C,10Be)210Po by the Recoil Distance Doppler Shift (RDDS) method and by the Doppler Shift Attenuation method (DSAM), respectively. The derived absolute B(E2) values of 2.6(3) W.u. for 212Po and 1.83(28) W.u. for 210Po indicate low collectivity. It is shown that the properties of the yrast {2}1+, {4}1+, {6}1+ and {8}1+ states in both nuclei cannot be described consistently in the framework of nuclear shell models. It is also demonstrated in the case of 210Po that Quasi-particle Phonon Model (QPM) calculations cannot overcome this problem thus indicating the existence of a peculiarity which is neglected in both theoretical approaches.

  5. Time-dependent mean-field determination of the excitation energy in transfer reactions: Application to the reaction 238U on 12C at 6.14 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Scamps, G.; Rodríguez-Tajes, C.; Lacroix, D.; Farget, F.

    2017-02-01

    The internal excitation of nuclei after multinucleon transfer is estimated by using the time-dependent mean-field theory. Transfer probabilities for each channel as well as the energy loss after reseparation are calculated. By combining these two pieces of information, we show that the excitation energy distribution of the transfer fragments can be obtained separately for the different transfer channels. The method is applied to the reaction involving a 238U beam on a 12C target, which has recently been measured at GANIL. It is shown that the excitation energy calculated with the microscopic theory compares well with the experimental observation, provided that the competition with fusion is properly taken into account. The reliability of the excitation energy is further confirmed by the comparison with the phenomenological heavy-ion phase-space model at higher center-of-mass energies.

  6. Solar cosmic ray composition above 10 MeV/nucleon and its energy dependence in the 4 August 1972 event. [including proton, helium, and Fe-group nuclei fluxes

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Biswas, S.; Reames, D. V.

    1974-01-01

    Observations of the proton, helium (C,N,O) and Fe-group nuclei fluxes made during the large 4 August 1972 solar particle event are presented. The results show a small, but significant variation of the composition of multicharged nuclei as a function of energy in the energy region above 10 MeV/nucleon. In particular, the He/(C,N,O) abundance ratio varies by a factor approximately 2 between 10 and 50 MeV/nucleon, and the Fe-group/(C,N,O) ratio suggests a similar variation. Abundance ratios from the 4 August 1972 event are compared as a function of energy with ratios measured in other solar events. At energies approximately greater than 50 MeV/nucleon, the He/(C,N,O) abundance ratio for August 1972 is consistent with all earlier measurements made above that energy.

  7. [Nuclear protein matrix from giant nuclei of Chironomus plumosus determinates polythene chromosome organization].

    PubMed

    Makarov, M S; Chentsov, Iu S

    2010-01-01

    Giant nuclei from salivary glands of Chironomus plumosus were treated in situ with detergent, 2 M NaCl and nucleases in order to reveal residual nuclear matrix proteins (NMP). It was shown, that preceding stabilization of non-histone proteins with 2 mM CuCl2 allowed to visualize the structure of polythene chromosomes at every stage of the extraction of histones and DNA. Stabilized NPM of polythene chromosomes maintains their morphology and banding patterns, which is observed by light and electron microscopy, whereas internal fibril net or residual nucleoli are not found. In stabilized NPM of polythene chromosomes, topoisomerase IIalpha and SMC1 retain their localization that is typical of untreated chromosomes. NPM of polythene chromosomes also includes sites of DNA replication, visualized with BrDU incubation, and some RNA-components. So, we can conclude that structure of NPM from giant nuclei is equal to NPM from normal interphase nuclei, and that morphological features of polythene chromosomes depend on the presence of NMP.

  8. Angular momentum dependence in 22 MeV $alpha$-particle elastic scattering by light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lega, J.; Macq, P.C.

    1974-01-01

    Elastic scattering of 22 MeV alpha -particles by /sup 23, /sup 24,15,26/ Mg, /sup 27/Al and /sup 28/Si was measured between 24 and 174 deg lab. Partial angular distributions, from 120 to 174 deg , were also measured at incident energies of 18.4 and 20.7 MeV for /sup 24/Mg, and 18.9 and 20.5 MeV for /sup 28/ Si. The most striking feature of the data is the large-angle behavior spin-zero nuclei display more pronounced backward oscillations and the cross section rises more steeply towards 180 deg for 4n nuclei than for the others. Optical Model analyses with an l-dependent absorptionmore » and a minimum of free parameters are used to describe the general trend of the data for A = 23 to 28 nuclei at different energies; a spinorbit coupling term, 2.75 MeV deep, is added to describe the /sup 23/Na scattering data. (auth)« less

  9. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations

    NASA Astrophysics Data System (ADS)

    Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin

    2016-04-01

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.

  10. Observation of an antimatter hypernucleus.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Alakhverdyants, A V; Alekseev, I; Anderson, B D; Arkhipkin, D; Averichev, G S; Balewski, J; Barnby, L S; Baumgart, S; Beavis, D R; Bellwied, R; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bonner, B E; Bouchet, J; Braidot, E; Brandin, A V; Bridgeman, A; Bruna, E; Bueltmann, S; Bunzarov, I; Burton, T P; Cai, X Z; Caines, H; Calderon, M; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, P; Clarke, R F; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; DePhillips, M; Derevschikov, A A; Derradi de Souza, R; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Dunlop, J C; Dutta Mazumdar, M R; Efimov, L G; Elhalhuli, E; Elnimr, M; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Evdokimov, O; Fachini, P; Fatemi, R; Fedorisin, J; Fersch, R G; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gangadharan, D R; Ganti, M S; Garcia-Solis, E J; Geromitsos, A; Geurts, F; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hamed, A; Han, L-X; Harris, J W; Hays-Wehle, J P; Heinz, M; Heppelmann, S; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, B; Huang, H Z; Humanic, T J; Huo, L; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jena, C; Jin, F; Jones, C L; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kauder, K; Keane, D; Kechechyan, A; Kettler, D; Kikola, D P; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Konzer, J; Kopytine, M; Koralt, I; Koroleva, L; Korsch, W; Kotchenda, L; Kouchpil, V; Kravtsov, P; Krueger, K; Krus, M; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lee, J H; Leight, W; Levine, M J; Li, C; Li, L; Li, N; Li, W; Li, X; Li, Y; Li, Z; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Luo, X; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mal, O I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Masui, H; Matis, H S; Matulenko, Yu A; McDonald, D; McShane, T S; Meschanin, A; Milner, R; Minaev, N G; Mioduszewski, S; Mischke, A; Mitrovski, M K; Mohanty, B; Mondal, M M; Morozov, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Pile, P; Planinic, M; Ploskon, M A; Pluta, J; Plyku, D; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Powell, C B; Prindle, D; Pruneau, C; Pruthi, N K; Pujahari, P R; Putschke, J; Qiu, H; Raniwala, R; Raniwala, S; Ray, R L; Redwine, R; Reed, R; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Sahoo, R; Sakai, S; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sangaline, E; Schambach, J; Scharenberg, R P; Schmitz, N; Schuster, T R; Seele, J; Seger, J; Selyuzhenkov, I; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, T D S; Staszak, D; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarini, L H; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty, D; Tokarev, M; Trainor, T A; Tram, V N; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van Leeuwen, M; van Nieuwenhuizen, G; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Videbaek, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, Q; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wingfield, E; Wissink, S W; Witt, R; Wu, Y; Xie, W; Xu, H; Xu, N; Xu, Q H; Xu, W; Xu, Y; Xu, Z; Xue, L; Yang, Y; Yepes, P; Yip, K; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, J; Zhang, S; Zhang, W M; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, J; Zhong, C; Zhou, J; Zhou, W; Zhu, X; Zhu, Y H; Zoulkarneev, R; Zoulkarneeva, Y

    2010-04-02

    Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons--comprising an antiproton, an antineutron, and an antilambda hyperon--produced by colliding gold nuclei at high energy. Our analysis yields 70 +/- 17 antihypertritons ((Lambda)(3)-H) and 157 +/- 30 hypertritons (Lambda3H). The measured yields of Lambda3H ((Lambda)(3)-H) and 3He (3He) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and of nuclei containing strange quarks, have implications spanning nuclear and particle physics, astrophysics, and cosmology.

  11. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations.

    PubMed

    Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin

    2016-04-07

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.

  12. Relaxation dynamics of light-induced photon emission by mammalian cells and nuclei

    NASA Astrophysics Data System (ADS)

    Van Wijk, R.; Van Aken, J. M.; Laerdal, H. E.; Souren, J. E. M.

    1995-12-01

    Photon emission from mammalian cells has been the subject of study for many years. Throughout the history of this field of research the question of a functional biological role of the low intensity emission has been repeatedly raised. The discussion concerns the possible participation of biophotons in intra- and intercellular communication. In this paper we consider the significance of the studies on light-induced photon emission of isolated mammalian cells. Furthermore we report on the source of this light-induced photon emission.

  13. New particle formation events as a source for cloud condensation nuclei in an urban environment

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Burkart, Julia; Wagner, Robert; Reischl, Georg; Steiner, Gerhard; Hitzenberger, Regina

    2014-05-01

    Nucleation and growth events have been observed in many remote, urban and rural environments. The new particles can contribute significantly to cloud condensation nuclei concentrations, after growing into the appropriate size range (Kerminen et al., 2012). Several studies have attempted to quantify this contribution (e.g. Asmi et al., 2011, Matsui et al., 2013), but only a limited number of them to date have used simultaneous measurements of CCN concentrations and particle size distributions for this purpose (e.g. Levin et al., 2012). In this study, a data set from an urban background station, consisting of 22 months of size distribution and 12 months of CCN concentration measurements (Burkart et al., 2011, Burkart et al., 2012) with 10 months of overlapping measurements is combined to explore the variability of CCN concentrations, their possible causes, and the contribution of nucleation and growth events to CCN concentrations. Consistent with observations in many other locations, nucleation and growth events occur on 30% of all days in spring and summer, on 11% of days in fall and on 4% of days in winter. This suggests a potentially large source of CCN from nucleation and growth events, particularly in the warm season. We acknowledge funding from FWF (Austrian Science Fund) P19515-N20 References: Asmi E., Kivekas, N., Kerminen, V. M., Komppula, M., Hyvarinen, A. P., Hatakka, J., Viisanen, Y., and Lihavainen, H.: Secondary new particle formation in Northern Finland Pallas site between the years 2000 and 2010, Atmos. Chem. Phys., 11, 12959-12972, doi: 10.5194/acp-11-12959-2011, 2011 Burkart J., Steiner, G., Reischl, G., and Hitzenberger, R.: Long-term study of cloud condensation nuclei (CCN) acticvation of the atmospheric aerosol in Vienna, Atmos. Environ., 45, 5751-5759, doi: 10.1016/j.atmosenv.2011.07.022, 2011. Burkart J., Hitzenberger, R., Reischl, G., Bauer, H., Leder, K., and Puxbaum, H.: Activation of "synthetic ambient" aerosols - relation to chemical composition of particles < 100 nm, Atmos. Environ., 54, 583-591, doi: 10.1016/j.atmosenv.2012.01.063, 2012. Kerminen V.-M., Paramonov, M., Anttila, T., Riipinen, I., Fountoukis, C., Korhonen, H., Asmi, E., Laakso, L., Lihavainen, H., Swietlicki, E., Svenningsson, B., Asmi, A., Pandis, S. N., Kulmala, M., and Petäjä, T.: Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results, Atmos. Chem. Phys., 12, 12037-12059, doi: 10.5194/acp-12-12037-2012, 2012. Levin, E. J. T., Prenni, A. J., Petters, M. D., Kreidenweis, S. M., Sullivan, R. C., Atwood, S. A., Ortega, J., DeMott, P. J., and Smith, J. N.: An annual cycle of size-resolved aerosol hygroscopicity at a forested site in Colorado, J. Geophys. Res., 117, 06201, doi:10.1029/2011JD016854, 2012. Matsui, H., Koike, M., Kondo, Y., Takegawa, N., Wiedensohler, A., Fast, J. D., and Zaveri, R. A.: Impact of new particle formation on the concentrations of aerosols and cloud condensation nuclei around Beijing, J. Geophys. Res., 116, 19208, doi:10.1029/2011JD016025, 2011.

  14. EMC effect: Past, Present, and Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomin, Nadia

    2015-09-01

    Since the discovery of the EMC effect over 30 years ago, it has been of great theoretical interest and studied in several experimental measurements. No unified picture arose to explain the underlying cause of per nucleon structure function modification in nuclei. Precise measurements on light nuclei from JLab’s 6 GeV era revitalized this research by showing that traditional A or density dependent models of this nuclear modification do not work. The measurements will be reviewed, discussed and preliminary data on heavy targets from JLab’s E03-103 will be presented.

  15. Weak interaction probes of light nuclei

    NASA Astrophysics Data System (ADS)

    Towner, I. S.

    1986-03-01

    Experimental evidence for pion enhancement in axial charge transitions as predicted by softpion theorems is reviewed. Corrections from non-soft-pion terms seem to be limited. For transitions involving the space part of the axial-vector current, soft-pion theorems are powerless. Meson-exchange currents then involve a complicated interplay among competing process. Explicit calculations in the hard-pion model for closed-shell-plus (or minus)-one nuclei, A=15 and A= =17, are in reasonable agreement with experiment. Quenching in the off-diagonal spin-flip matrix element is larger than in the diagonal matrix element.

  16. Ordering of the 0 d5 /2 and 1 s1 /2 proton levels in light nuclei

    NASA Astrophysics Data System (ADS)

    Hoffman, C. R.; Kay, B. P.; Schiffer, J. P.

    2016-08-01

    A survey of the available single-proton data in A ≤17 nuclei was completed. These data, along with calculations using a Woods-Saxon potential, show that the ordering of the 0 d5 /2 and 1 s1 /2 proton orbitals are determined primarily by the proximity of the s -state proton energy to the Coulomb barrier. This is analogous to the dependence of the corresponding neutron orbitals in proximity to the neutron threshold, which was previously discussed.

  17. Search for the Dirac Monopole with 30-bev Protons

    DOE R&D Accomplishments Database

    Purcell, E.M.; Collins, G.B.; Fujii, T.; Hornbostel, J.; Turkot, F.

    1963-03-01

    A search was made at the Brookhaven alternating gradient synchrotron for magnetic monopoles produced either in collisions of 30-Bev protons with light nuclei, or produced by gamma rays secondary to these protons in the Coulomb field of protons or of carbon nuclei. In runs using 5.7 x 10{sup 15} circulating protons, no monopole-like event was found. This implies an upper limit for production in protonnucleon interactions of about 2 x 10{sup -40} cm{sup 2}. Experimental limits are also derived for the photoproduction of pole pairs. (auth)

  18. Program of polarization studies and capabilities of accelerating polarized proton and light nuclear beams at the nuclotron of the joint institute for nuclear research

    NASA Astrophysics Data System (ADS)

    Vokal, S.; Kovalenko, A. D.; Kondratenko, A. M.; Kondratenko, M. A.; Mikhailov, V. A.; Filatov, Yu. N.; Shimanskii, S. S.

    2009-01-01

    A program of polarization studies is presented; this program can enhance our understanding of the constituents from which the spin of hadrons and lightest nuclei is constructed. Beams of polarized lightest nuclei at Nuclotron are required to complete this program. Calculations of linear resonance strengths at Nuclotron, which may result in depolarization effects, are presented. The application of a new method for conserving particle beam polarization at crossing these resonances at Nuclotron is discussed.

  19. The in vitro antitumor activity of vitamins C and K3 against ovarian carcinoma.

    PubMed

    von Gruenigen, Vivian E; Jamison, James M; Gilloteaux, Jacques; Lorimer, Heather E; Summers, Marcia; Pollard, Robert R; Gwin, Carley A; Summers, Jack L

    2003-01-01

    The objective was to evaluate the cytotoxic effect and mechanism of action of vitamins C (VC) and K3 (VK3) on ovarian carcinoma. Cytotoxicity assays were performed on ovarian cancer cell lines with VC, VK3 or a VC/VK3 combination. FIC index was employed to evaluate synergism. Flow cytometry was accomplished at 90% cytotoxic doses. Light, transmission electron microscopy and DNA isolation were performed. Antitumor activity was exhibited by both VC, VK3 and VC/VK3. VC/VK3 demonstrated synergistic activity. VC/VK3 may induce a G1 block in the cell cycle. Combined vitamin treatment resulted in cells that maintain apparently intact nuclei while extruding pieces of organelle-free cytoplasm. Degradation of chromosomal DNA was observed. Cell death (autoschizis) displayed characteristics of both apoptosis and necrosis. The cytotoxic effects observed may enable vitamins C and K3 to play an adjuvant role in the treatment of ovarian cancer.

  20. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Anitha, R.; Devi, L.; Mohan, S.; Yang, Haifeng

    2015-01-01

    Aromatic epoxides are causative factors for mutagenic and carcinogenic activity of polycyclic arenes. The 1,2- or 2,3-epoxy compounds are widely used to a considerable extent in the textile, plastics, pharmaceutical, cosmetics, detergent and photochemical industries. The FTIR and FT-Raman spectra of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane are recorded in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. The structure of the compound has been optimised with B3LYP method using 6-311++G** and cc-pVTZ basis sets. The IR and Raman intensities are determined. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of the compounds has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecules have been analysed.

  1. A cosmic double helix in the archetypical quasar 3C273.

    PubMed

    Lobanov, A P; Zensus, J A

    2001-10-05

    Finding direct evidence for plasma instability in extragalactic jets is crucial for understanding the nature of relativistic outflows from active galactic nuclei. Our radio interferometric observations of the quasar 3C273 made with the orbiting radio telescope, HALCA, and an array of ground telescopes have yielded an image in which the emission across the jet is resolved, revealing two threadlike patterns that form a double helix inside the jet. This double helical structure is consistent with a Kelvin-Helmholtz instability, and at least five different instability modes can be identified and modeled by a light jet with a Lorentz factor of 2 and Mach number of 3.5. The model reproduces in detail the internal structure of the jet on scales of up to 30 milli-arc seconds ( approximately 300 parsecs) and is consistent with the general morphology of the jet on scales of up to 1 kiloparsec.

  2. Opsin1-2, G(q)α and arrestin levels at Limulus rhabdoms are controlled by diurnal light and a circadian clock.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Parker, Alexander K; Gaddie, Cristina D

    2013-05-15

    Dark and light adaptation in photoreceptors involve multiple processes including those that change protein concentrations at photosensitive membranes. Light- and dark-adaptive changes in protein levels at rhabdoms have been described in detail in white-eyed Drosophila maintained under artificial light. Here we tested whether protein levels at rhabdoms change significantly in the highly pigmented lateral eyes of wild-caught Limulus polyphemus maintained in natural diurnal illumination and whether these changes are under circadian control. We found that rhabdomeral levels of opsins (Ops1-2), the G protein activated by rhodopsin (G(q)α) and arrestin change significantly from day to night and that nighttime levels of each protein at rhabdoms are significantly influenced by signals from the animal's central circadian clock. Clock input at night increases Ops1-2 and G(q)α and decreases arrestin levels at rhabdoms. Clock input is also required for a rapid decrease in rhabdomeral Ops1-2 beginning at sunrise. We found further that dark adaptation during the day and the night are not equivalent. During daytime dark adaptation, when clock input is silent, the increase of Ops1-2 at rhabdoms is small and G(q)α levels do not increase. However, increases in Ops1-2 and G(q)α at rhabdoms are enhanced during daytime dark adaptation by treatments that elevate cAMP in photoreceptors, suggesting that the clock influences dark-adaptive increases in Ops1-2 and G(q)α at Limulus rhabdoms by activating cAMP-dependent processes. The circadian regulation of Ops1-2 and G(q)α levels at rhabdoms probably has a dual role: to increase retinal sensitivity at night and to protect photoreceptors from light damage during the day.

  3. 94 Mo(γ,n) and 90Zr(γ,n) cross-section measurements towards understanding the origin of p-nuclei

    NASA Astrophysics Data System (ADS)

    Meekins, E.; Banu, A.; Karwowski, H.; Silano, J.; Zimmerman, W.; Muller, J.; Rich, G.; Bhike, M.; Tornow, W.; McClesky, M.; Travaglio, C.

    2014-09-01

    The nucleosynthesis beyond iron of the rarest stable isotopes in the cosmos, the so-called p-nuclei, is one of the forefront topics in nuclear astrophysics. Recently, a stellar source was found that, for the first time, was able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the most debated 92,94Mo and 96,98Ru; it was also found that there is an important contribution from the p-process nucleosynthesis to the neutron magic nucleus 90Zr. We focus here on constraining the origin of p-nuclei through nuclear physics by studying two key astrophysical photoneutron reaction cross sections for 94Mo(γ,n) and 90Zr(γ,n). Their energy dependencies were measured using quasi-monochromatic photon beams from Duke University's High Intensity Gamma-ray Source facility at the respective neutron threshold energies up to 18 MeV. Preliminary results of these experimental cross sections will be presented along with their comparison to predictions by a statistical model based on the Hauser-Feshbach formalism implemented in codes like TALYS and SMARAGD. The nucleosynthesis beyond iron of the rarest stable isotopes in the cosmos, the so-called p-nuclei, is one of the forefront topics in nuclear astrophysics. Recently, a stellar source was found that, for the first time, was able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the most debated 92,94Mo and 96,98Ru; it was also found that there is an important contribution from the p-process nucleosynthesis to the neutron magic nucleus 90Zr. We focus here on constraining the origin of p-nuclei through nuclear physics by studying two key astrophysical photoneutron reaction cross sections for 94Mo(γ,n) and 90Zr(γ,n). Their energy dependencies were measured using quasi-monochromatic photon beams from Duke University's High Intensity Gamma-ray Source facility at the respective neutron threshold energies up to 18 MeV. Preliminary results of these experimental cross sections will be presented along with their comparison to predictions by a statistical model based on the Hauser-Feshbach formalism implemented in codes like TALYS and SMARAGD. This research was supported by the Research Corporation for Science Advancement.

  4. Yrast excitations of neutron-rich nuclei around doubly magic Tin-132

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Pallab Kumar

    Investigation of the yrast structures of neutron-rich nuclei around the double closed shell nucleus 132Sn is important in the understanding of simple two-body nucleon-nucleon interactions in that region. However conventional fusion-evaporation methods do not populate these nuclei and β-decay studies are useful only in studying low spin states. The spectroscopy of these nuclei from thick target γ-γ coincidence measurements of deep inelastic heavy ion collisions as well as from fission fragment γ-ray studies using large multidetector arrays are presented in this thesis. Analyses of data from the 124Sn + 665 MeV 136Xe and 130Te + 272 MeV 64Ni deep inelastic experiments identified new yrast isomers in the N = 80 nuclei 134Xe and 136Ba which de- excite by γ-ray cascades concluding with their known 4+/to2+ and 2+/to0+ transitions. The isomeric decay characteristics are presented and discussed in light of the systematic features in N = 80 isotones. By analyzing fission product γ-ray data measured at Eurogam II using a 248Cm source, yrast level structures of the two-, three- and four-proton N = 82 isotones 134Te, 135I and 136Xe were developed, and the proton-proton interactions from the two-body nucleus 134Te were used in interpreting 135I and 136Xe levels using shell model calculations. From the same data the yrast states in the N = 83 isotones 134Sb, 135Te, 136I and 137Xe were explored, and key proton-neutron interactions were extracted from the 134Sb level spectrum which were used in interpreting the levels of the other N = 83 isotones. Similarly yrast states in previously unexplored N = 81 isotones 132Sb and 133Te were also identified and interpreted with shell model calculations; the 132Sb level spectrum yielded important proton-neutron hole interactions. Neutron core-excited states at higher energies were also identified in most of these nuclei. For establishing isotopic assignments of unknown cascades, the γgamma cross coincidences between heavy and light fission partners were vital. Overall, both deep inelastic and fission product studies have contributed to the exploration of an otherwise inaccessible region of the nuclidic chart. This opens up a new horizon in studying the structure of these important neutron-rich nuclei.

  5. New ultra deep blue emitters based on chrysene chromophores

    NASA Astrophysics Data System (ADS)

    Shin, Hwangyu; Kang, Seokwoo; Jung, Hyocheol; Lee, Hayoon; Lee, Jaehyun; Kim, Beomjin; Park, Jongwook

    2016-09-01

    Chrysene, which has a wide band gap, was selected as an emission core to develop and study new materials that emit ultra-deep-blue light with high efficiency. Six compounds introducing various side groups were designed and synthesized: 6, 12-bis(30,50-diphenylphenyl)chrysene (TP-C-TP), 6-(30,50-diphenylphenyl)-12-(3,5-diphenylbiphenyl-400-yl)chrysene (TP-C-TPB) and 6,12-bis(300,500-diphenylbiphenyl-40-yl)chrysene (TPB-C-TPB), which contained bulky aromatic si de groups; and N,N,N0 ,N0-tetraphenyl-chrysene-6,12-diamine (DPA-C-DPA), [12-(4-diphenylamino-phenyl)-chrysene-6-yl]-diphenylamine(DPA-C-TPA) and 6,12-bis[4-(diphenylamino)phenyl]chrysene (TPA-C-TPA), which contained aromatic amine groups, were designed to afford improved hole injection properties. The synthesized materials showed maxi mum absorption wavelengths at 342-402 nm in the film state and exhibited deep-blue photoluminescence (PL) emission s at 417-464 nm. The use of TP-C-TPB in a non-doped organic light emitting diode (OLED) device resulted in ultra-deep-blue emission with an external quantum efficiency (EQE) of 4.02% and Commission Internationale de L'Eclairage coo rdinates (CIE x, y) of (0.154, 0.042) through effective control of the internal conjugation length and suppression of the p -p* stacking. The use of TPA-C-TPA, which includes an aromatic amine side group, afforded an excellent EQE of 4.83 % and excellent color coordinates CIE x, y of (0.147, 0.077).

  6. Effects of hypergravity on the development of cell number and asymmetry in fish brain nuclei

    NASA Astrophysics Data System (ADS)

    Anken, R. H.; Werner, K.; Rahmann, H.

    Larval cichlid fish ( Oreochromis mossambicus) siblings were subjected to 3g hypergravity (hg) and total darkness for 21 days during development and subsequently processed for conventional histology. Further siblings reared at 1g and alternating light/dark (12h:12h) conditions served as contros. Cell number counts of the visual Nucleus isthmi (Ni) versus the vestibular Nucleus magnocellularis (Nm) revealed that in experimental animals total cell number was decreased in the Ni, possibly due to retarded growth as a result of the lack of visual input whereas no effect was observed in the Nm. Calculating the percentual asymmetry in cell number (i.e., right vs. the left side of the brain), no effects of hg/darkness were seen in the Ni, whereas asymmetry was slightly increased in the Nm. Since the asymmetry of inner ear otoliths is decreased under hg, this finding may indicate efferent vestibular action of the CNS on the level of the Nm by means of a feedback mechanism.

  7. Light-modulated abundance of an mRNA encoding a calmodulin-regulated, chromatin-associated NTPase in pea

    NASA Technical Reports Server (NTRS)

    Hsieh, H. L.; Tong, C. G.; Thomas, C.; Roux, S. J.

    1996-01-01

    A CDNA encoding a 47 kDa nucleoside triphosphatase (NTPase) that is associated with the chromatin of pea nuclei has been cloned and sequenced. The translated sequence of the cDNA includes several domains predicted by known biochemical properties of the enzyme, including five motifs characteristic of the ATP-binding domain of many proteins, several potential casein kinase II phosphorylation sites, a helix-turn-helix region characteristic of DNA-binding proteins, and a potential calmodulin-binding domain. The deduced primary structure also includes an N-terminal sequence that is a predicted signal peptide and an internal sequence that could serve as a bipartite-type nuclear localization signal. Both in situ immunocytochemistry of pea plumules and immunoblots of purified cell fractions indicate that most of the immunodetectable NTPase is within the nucleus, a compartment proteins typically reach through nuclear pores rather than through the endoplasmic reticulum pathway. The translated sequence has some similarity to that of human lamin C, but not high enough to account for the earlier observation that IgG against human lamin C binds to the NTPase in immunoblots. Northern blot analysis shows that the NTPase MRNA is strongly expressed in etiolated plumules, but only poorly or not at all in the leaf and stem tissues of light-grown plants. Accumulation of NTPase mRNA in etiolated seedlings is stimulated by brief treatments with both red and far-red light, as is characteristic of very low-fluence phytochrome responses. Southern blotting with pea genomic DNA indicates the NTPase is likely to be encoded by a single gene.

  8. The ν process in the innermost supernova ejecta

    NASA Astrophysics Data System (ADS)

    Sieverding, Andre; Martínez Pinedo, Gabriel; Langanke, Karlheinz; Harris, J. Austin; Hix, W. Raphael

    2018-01-01

    The neutrino-induced nucleosynthesis (ν process) in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2D supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.

  9. Exotic Nuclei in South America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtenthaeler, R.; Lepine-Szily, A.; Guimaraes, V.

    The Radioactive Ion Beams in Brasil(RIBRAS) is described. Experiments using radioactive secondary beams of light rare isotopes such as {sup 6}He, {sup 7}Be, {sup 8}Li on several targets have been performed and the results are presented.

  10. Collective Flows of 16O+16O Collisions with α-Clustering Configurations

    NASA Astrophysics Data System (ADS)

    Guo, Chen-Chen; He, Wan-Bing; Ma, Yu-Gang

    2017-08-01

    The main purpose of the present paper is to discuss whether or not the collective flows in heavy-ion collision at Fermi energy can be taken as a tool to investigate the cluster configuration in light nuclei. In practice, within an Extended Quantum Molecular Dynamics model, four $\\alpha$-clustering (linear chain, kite, square, and tetrahedron) configurations of $^{16}$O are employed in the initialization, $^{16}$O+$^{16}$O around Fermi energy (40 - 60 MeV$/$nucleon) with impact parameter 1 - 3 fm are simulated, the directed and elliptic flows are analyzed. It is found that collective flows are influenced by the different $\\alpha$-clustering configurations, and the directed flow of free protons is more sensitive to the initial cluster configuration than the elliptic flow. Nuclear reaction at Fermi energy can be taken a useful way to study cluster configuration in light nuclei.

  11. Supernova equations of state including full nuclear ensemble with in-medium effects

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2017-01-01

    We construct new equations of state for baryons at sub-nuclear densities for the use in core-collapse supernova simulations. The abundance of various nuclei is obtained together with thermodynamic quantities. The formulation is an extension of the previous model, in which we adopted the relativistic mean field theory with the TM1 parameter set for nucleons, the quantum approach for d, t, h and α as well as the liquid drop model for the other nuclei under the nuclear statistical equilibrium. We reformulate the model of the light nuclei other than d, t, h and α based on the quasi-particle description. Furthermore, we modify the model so that the temperature dependences of surface and shell energies of heavy nuclei could be taken into account. The pasta phases for heavy nuclei and the Pauli- and self-energy shifts for d, t, h and α are taken into account in the same way as in the previous model. We find that nuclear composition is considerably affected by the modifications in this work, whereas thermodynamical quantities are not changed much. In particular, the washout of shell effect has a great impact on the mass distribution above T ∼ 1 MeV. This improvement may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.

  12. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    PubMed

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  13. Nuclear CD38 in retinoic acid-induced HL-60 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalcintepe, Leman; Albeniz, Isil; Adin-Cinar, Suzan

    2005-02-01

    The cell surface antigen, CD38, is a 45-kDa transmembrane protein which is predominantly expressed on hematopoietic cells during differentiation. As a bifunctional ectoenzyme, it catalyzes the synthesis of cyclic ADP-ribose (cADPR) from NAD{sup +} and hydrolysis of either NAD{sup +} or cADPR to ADP-ribose. All-trans-retinoic acid (RA) is a potent and specific inducer of CD38 in myeloid cells. In this report, we demonstrate that the nuclei of RA-treated human HL-60 myeloblastic cells reveal enzymatic activities inherent to CD38. Thus, GDP-ribosyl cyclase and NAD{sup +} glycohydrolase activities in the nuclear fraction increased very significantly in response to incubation with RA. Withmore » Western blotting, we detected in the nuclear protein fraction from RA-treated cells a {approx}43-kDa protein band which was reactive with the CD38-specific monoclonal antibody OKT10. The expression of CD38 in HL-60 nuclei was also shown with FACScan analysis. RA treatment gave rise to an increase in in vitro ADP ribosylation of the {approx}43-kDa nuclear protein. Moreover, nuclei isolated from RA-treated HL-60 cells revealed calcium release in response to cADPR, whereas a similar response was not observed in control nuclei. These results suggest that CD38 is expressed in HL-60 cell nuclei during RA-induced differentiation.« less

  14. JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papenbrock, Thomas

    2014-05-16

    The grant “JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei ” (DOE DE-FG02-06ER41407) ran from 02/01/2006 thru 12/31/2013. JUSTIPEN is a venue for international collaboration between U.S.-based and Japanese scientists who share an interest in theory of rare isotopes. Since its inception JUSTIPEN has supported many visitors, fostered collaborations between physicists in the U.S. and Japan, and enabled them to deepen our understanding of exotic nuclei and their role in cosmos.

  15. Postnatal development of Na+-K+-2Cl− co-transporter 1 (NKCC1) and K+-Cl−co-transporter 2 (KCC2) immunoreactivity in multiple brain stem respiratory nuclei of the rat

    PubMed Central

    Liu, Qiuli; Wong-Riley, Margaret T.T.

    2012-01-01

    Previously, we reported that in rats, GABAA and glycine receptor immunoreactivity increased markedly in multiple brain stem respiratory nuclei around postnatal days (P) 12–13, a critical period when abrupt neurochemical, metabolic, ventilatory, and electrophysiological changes occur in the respiratory network and when the system is under greater inhibition than excitation. Since Na+-K+-2Cl− co-transporter 1 (NKCC1) and K+-Cl− co-transporter 2 (KCC2) play pivotal roles in determining the responses of GABAA and glycine receptors, we hypothesized that NKCC1 and KCC2 undergo significant changes during the critical period. An in-depth immunohistochemical and single neuron optical densitometric study of neurons in seven respiratory-related nuclei (the pre-Bötzinger complex [PBC], nucleus ambiguus [Amb], hypoglossal nucleus [XII], ventrolateral subnucleus of solitary tract nucleus [NTSVL], retrotrapezoid nucleus/parafacial respiratory group [RTN/pFRG], dorsal motor nucleus of the vagus nerve [DMNX], and inferior olivary nucleus [IO]) and a non-respiratory cuneate nucleus (CN, an internal control) was undertaken in P0–21 rats. Our data revealed that: (1) NKCC1 immunoreactivity exhibited a developmental decrease from P0 to P21 in all eight nuclei examined, being relatively high during the first 1½ postnatal weeks and decreased thereafter. The decrease was abrupt and statistically significant at P12 in the PBC, Amb, and XII; (2) KCC2 immunoreactivity in these eight nuclei showed a developmental increase from P0 to P21; and (3) the significant reduction in NKCC1 and the greater dominance of KCC2 around P12 in multiple respiratory nuclei of the brain stem may form the basis of an enhanced inhibition in the respiratory network during the critical period before the system stabilizes to a more mature state. PMID:22441038

  16. Interkinetic nuclear migration in the mouse embryonic ureteric epithelium: Possible implication for congenital anomalies of the kidney and urinary tract.

    PubMed

    Motoya, Tomoyuki; Ogawa, Noriko; Nitta, Tetsuya; Rafiq, Ashiq Mahmood; Jahan, Esrat; Furuya, Motohide; Matsumoto, Akihiro; Udagawa, Jun; Otani, Hiroki

    2016-05-01

    Interkinetic nuclear migration (INM) is a phenomenon in which progenitor cell nuclei migrate along the apico-basal axis of the pseudostratified epithelium, which is characterized by the presence of apical primary cilia, in synchrony with the cell cycle in a manner of apical mitosis. INM is suggested to regulate not only stem/progenitor cell proliferation/differentiation but also organ size and shape. INM has been reported in epithelia of both ectoderm and endoderm origin. We examined whether INM exists in the mesoderm-derived ureteric epithelium. At embryonic day (E) 11.5, E12.5 and E13.5, C57BL/6J mouse dams were injected with 5-bromo-2'-deoxyuridine (BrdU) and embryos were killed 1, 2, 4, 6, 8, 10 and 12 h later. We immunostained transverse sections of the ureter for BrdU, and measured the position of BrdU (+) nuclei in the ureteric epithelia along the apico-basal axis at each time point. We analyzed the distribution patterns of BrdU (+) nuclei in histograms using the multidimensional scaling. Changes in the nucleus distribution patterns suggested nucleus movement characteristic of INM in the ureteric epithelia, and the mode of INM varied throughout the ureter development. While apical primary cilia are related with INM by providing a centrosome for the apical mitosis, congenital anomalies of the kidney and urinary tract (CAKUT) include syndromes linked to primary ciliary dysfunction affecting epithelial tubular organs such as kidney, ureter, and brain. The present study showed that INM exists in the ureteric epithelium and suggests that INM may be related with the CAKUT etiology via primary ciliary protein function. © 2015 Japanese Teratology Society.

  17. Fusion cross sections measurements with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.

    2014-09-01

    The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.

  18. Four-body calculation of {sup 12}C(α, γ){sup 16}O radiative capture reaction at stellar energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi, H., E-mail: H-Sadeghi@Araku.ac.ir; Firoozabadi, M. M.

    2016-01-15

    On the basis of the four-alphamodel, the {sup 12}C(α, γ){sup 16}Oradiative capture process is investigated by using the four-body Faddeev–Yakubovsky equations as well as the two- and three-body electromagnetic currents. The present calculation is an application of our current conservation realistic potentials method for the {sup 12}C(α, γ){sup 16}Oradiative capture process. This work clears the way formore refinedmodels of radiative capture based on two- and three-body realistic potentials and current conservation. The calculation is carried out by considering the {sup 4}He + {sup 12}C (1 + 3) and the {sup 8}Be + {sup 8}Be (2 + 2) subamplitudes, respectively. Radiativemore » capture {sup 12}C(α, γ){sup 16}Oreaction is one of the most important reactions in nuclear astrophysics. For this reaction, the electric dipole transitions between states with the same isospin are forbidden in the first order. Because the state 1{sup +} and 0{sup +} ground state nuclei {sup 16}O have zero isospin, thus the electric dipole radiations are not at the first order between two levels and electric dipole radiation will be the second order and electric dipole radiation is the same order as the electric quadrupole radiation. Therefore, we must consider the effects of both radiations. In comparison with other theoretical methods and available experimental data, good agreement is achieved for the E{sub 1} and E{sub 2} contribution to the cross section and the astrophysical S factor for this process.« less

  19. The ALICE Transition Radiation Detector: Construction, operation, and performance

    DOE PAGES

    Acharya, S; Adam, J; Adamova, D; ...

    2017-09-21

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this article, the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction.more » The triggering capability is demonstrated both for jet, light nuclei, and electron selection.« less

  20. The ALICE Transition Radiation Detector: Construction, operation, and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, S; Adam, J; Adamova, D

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this article, the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction.more » The triggering capability is demonstrated both for jet, light nuclei, and electron selection.« less

Top