Sample records for light response function

  1. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation.

    PubMed

    Sakai, T; Kagawa, T; Kasahara, M; Swartz, T E; Christie, J M; Briggs, W R; Wada, M; Okada, K

    2001-06-05

    UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1 npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1 npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner.

  2. Environmental limits to growth: physiological niche boundaries of corals along turbidity-light gradients.

    PubMed

    Anthony, Kenneth R N; Connolly, Sean R

    2004-11-01

    The physiological responses of organisms to resources and environmental conditions are important determinants of niche boundaries. In previous work, functional relationships between organism energetics and environment have been limited to energy intakes. However, energetic costs of maintenance may also depend on the supply of resources. In many mixotrophic organisms, two such resource types are light and particle concentration (turbidity). Using two coral species with contrasting abundances along light and turbidity gradients (Acropora valida and Turbinaria mesenterina), we incorporate the dual resource-stressor roles of these variables by calibrating functional responses of energy costs (respiration and loss of organic carbon) as well as energy intake (photosynthesis and particle feeding). This allows us to characterize physiological niche boundaries along light and turbidity gradients, identify species-specific differences in these boundaries, and assess the sensitivity of these differences to interspecific differences in particular functional response parameters. The turbidity-light niche of T. mesenterina was substantially larger than that of A. valida, consistent with its broader ecological distribution. As expected, the responses of photosynthesis, heterotrophic capacity, respiration, and organic carbon loss to light and turbidity varied between species. Niche boundaries were highly sensitive to the functional responses of energy costs to light and turbidity. Moreover, the study species' niche differences were almost entirely attributable to species-specific differences in one functional response: that of respiration to turbidity. These results demonstrate that functional responses of energy-loss processes are important determinants of species-specific physiological limits to growth, and thereby of niche differences in reef corals. Given that many resources can stress organisms when supply rates are high, we propose that the functional responses of energy losses will prove to be important determinants of niche differences in other systems as well.

  3. Arabidopsis nph1 and npl1: Blue light receptors that mediate both phototropism and chloroplast relocation

    PubMed Central

    Sakai, Tatsuya; Kagawa, Takatoshi; Kasahara, Masahiro; Swartz, Trevor E.; Christie, John M.; Briggs, Winslow R.; Wada, Masamitsu; Okada, Kiyotaka

    2001-01-01

    UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner. PMID:11371609

  4. Circadian perinatal photoperiod has enduring effects on retinal dopamine and visual function.

    PubMed

    Jackson, Chad R; Capozzi, Megan; Dai, Heng; McMahon, Douglas G

    2014-03-26

    Visual system development depends on neural activity, driven by intrinsic and light-sensitive mechanisms. Here, we examined the effects on retinal function due to exposure to summer- and winter-like circadian light cycles during development and adulthood. Retinal light responses, visual behaviors, dopamine content, retinal morphology, and gene expression were assessed in mice reared in seasonal photoperiods consisting of light/dark cycles of 8:16, 16:8, and 12:12 h, respectively. Mice exposed to short, winter-like, light cycles showed enduring deficits in photopic retinal light responses and visual contrast sensitivity, but only transient changes were observed for scotopic measures. Dopamine levels were significantly lower in short photoperiod mice, and dopaminergic agonist treatment rescued the photopic light response deficits. Tyrosine hydroxylase and Early Growth Response factor-1 mRNA expression were reduced in short photoperiod retinas. Therefore, seasonal light cycles experienced during retinal development and maturation have lasting influence on retinal and visual function, likely through developmental programming of retinal dopamine.

  5. Genetic separation of phototropism from blue light inhibition of hypocotyl elongation on Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liscum, E.; Young, J.C.; Hangarter, R.P.

    1991-05-01

    Phototropism and inhibition of stem elongation occur in response to blue light-induced inhibition of cell elongation. However, phototropism is a low fluence response and inhibition of hypocotyl elongation is a high irradiance response. The authors have isolated several mutant lines of Arabidopsis which lack blue light-induced inhibition of hypocotyl elongation but retain normal phototropic functions. In addition, a mutant line which completely lacks the phototropic response retains normal blue light-induced inhibition of hypocotyl elongation. F1 progeny of crosses between these two mutant classes exhibited wild-type phototropism and inhibition of hypocotyl elongation in response to blue light stimuli. In the F2more » generation, one in sixteen seedlings were double mutants lacking both phototropism and blue light-induced hypocotyl growth inhibition. These studies conclusively show that blue light-induced phototropism and hypocotyl growth inhibition function through genetically distinct signal transduction or response systems.« less

  6. Neutron light output response and resolution functions in EJ-309 liquid scintillation detectors

    DOE PAGES

    Enqvist, Andreas; Lawrence, Christopher C.; Wieger, Brian M.; ...

    2013-03-26

    Here, the neutron light output response functions and detector resolution functions were measured at Ohio University's tandem Van de Graaff generator for three cylindrical EJ-309 liquid scintillator cells, having dimensions 12.7(circle divide)-by-12.7, 7.6-by-7.6, and 7.6-by-5.1 cm. A 7.44 MeV deuteron beam was used on an Al-27 target generating a continuous spectrum over the energy range from a few hundred keV to over 10 MeV. The light output response functions are determined using an exponential fit. Detector resolution functions are obtained for the 12.7-by-12.7 and 7.6-by-7.6 cm detectors. It is demonstrated that the dependence on detector size is important for themore » light output response functions, but not to the same extent for the resolution function, even when photomultiplier tubes, detector material, and other detector characteristics are carefully matched.« less

  7. Comparing light sensitivity, linearity and step response of electronic cameras for ophthalmology.

    PubMed

    Kopp, O; Markert, S; Tornow, R P

    2002-01-01

    To develop and test a procedure to measure and compare light sensitivity, linearity and step response of electronic cameras. The pixel value (PV) of digitized images as a function of light intensity (I) was measured. The sensitivity was calculated from the slope of the P(I) function, the linearity was estimated from the correlation coefficient of this function. To measure the step response, a short sequence of images was acquired. During acquisition, a light source was switched on and off using a fast shutter. The resulting PV was calculated for each video field of the sequence. A CCD camera optimized for the near-infrared (IR) spectrum showed the highest sensitivity for both, visible and IR light. There are little differences in linearity. The step response depends on the procedure of integration and read out.

  8. Aging reduces the stimulating effect of blue light on cognitive brain functions.

    PubMed

    Daneault, Véronique; Hébert, Marc; Albouy, Geneviève; Doyon, Julien; Dumont, Marie; Carrier, Julie; Vandewalle, Gilles

    2014-01-01

    Light exposure, particularly blue light, is being recognized as a potent mean to stimulate alertness and cognition in young individuals. Aging is associated with changes in alertness regulation and cognition. Whether the effect of light on cognitive brain function changes with aging is unknown, however. Cross-sectional study. Functional Neuroimaging Unit, University of Montreal Geriatric Institute. Sixteen younger (23 ± 4.1 y) and 14 older (61 ± 4.5 y) healthy participants were recruited in the current study. Blue light administration. We used functional magnetic resonance imaging to record brain responses to an auditory working memory task in young and older healthy individuals, alternatively maintained in darkness or exposed to blue light. Results show that the older brain remains capable of showing sustained responses to light in several brain areas. However, compared to young individuals, the effect of blue light is decreased in the pulvinar, amygdala, and tegmentum as well as in the insular, prefrontal, and occipital cortices in elderly individuals. The effect of blue light on brain responses diminishes with aging in areas typically involved in visual functions and in key regions for alertness regulation and higher executive processes. Our findings provide the first indications that the effect of light on cognition may be reduced in healthy aging.

  9. A phytochrome/phototropin chimeric photoreceptor of fern functions as a blue/far-red light-dependent photoreceptor for phototropism in Arabidopsis.

    PubMed

    Kanegae, Takeshi; Kimura, Izumi

    2015-08-01

    In the fern Adiantum capillus-veneris, the phototropic response of the protonemal cells is induced by blue light and partially inhibited by subsequent irradiation with far-red light. This observation strongly suggests the existence of a phytochrome that mediates this blue/far-red reversible response; however, the phytochrome responsible for this response has not been identified. PHY3/NEO1, one of the three phytochrome genes identified in Adiantum, encodes a chimeric photoreceptor composed of both a phytochrome and a phototropin domain. It was demonstrated that phy3 mediates the red light-dependent phototropic response of Adiantum, and that phy3 potentially functions as a phototropin. These findings suggest that phy3 is the phytochrome that mediates the blue/far-red response in Adiantum protonemata. In the present study, we expressed Adiantum phy3 in a phot1 phot2 phototropin-deficient Arabidopsis line, and investigated the ability of phy3 to induce phototropic responses under various light conditions. Blue light irradiation clearly induced a phototropic response in the phy3-expressing transgenic seedlings, and this effect was fully inhibited by simultaneous irradiation with far-red light. In addition, experiments using amino acid-substituted phy3 indicated that FMN-cysteinyl adduct formation in the light, oxygen, voltage (LOV) domain was not necessary for the induction of blue light-dependent phototropism by phy3. We thus demonstrate that phy3 is the phytochrome that mediates the blue/far-red reversible phototropic response in Adiantum. Furthermore, our results imply that phy3 can function as a phototropin, but that it acts principally as a phytochrome that mediates both the red/far-red and blue/far-red light responses. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  10. Functional characterization of blue-light-induced responses and PHOTOTROPIN 1 gene in Welwitschia mirabilis.

    PubMed

    Ishishita, Kazuhiro; Suetsugu, Noriyuki; Hirose, Yuki; Higa, Takeshi; Doi, Michio; Wada, Masamitsu; Matsushita, Tomonao; Gotoh, Eiji

    2016-03-01

    The blue light (BL) receptor phototropin (phot) is specifically found in green plants; it regulates various BL-induced responses such as phototropism, chloroplast movement, stomatal opening, and leaf flattening. In Arabidopsis thaliana, two phototropins--phot1 and phot2--respond to blue light in overlapping but distinct ways. These BL-receptor-mediated responses enhance the photosynthetic activity of plants under weak light and minimize photodamage under strong light conditions. Welwitschia mirabilis Hook.f. found in the Namib Desert, and it has adapted to severe environmental stresses such as limiting water and strong sunlight. Although the plant has physiologically and ecologically unique features, it is unknown whether phototropin is functional in this plant. In this study, we assessed the functioning of phot-mediated BL responses in W. mirabilis. BL-dependent phototropism and stomatal opening was observed but light-dependent chloroplast movement was not detected. We performed a functional analysis of the PHOT1 gene of W. mirabilis, WmPHOT1, in Arabidopsis thaliana. We generated transgenic A. thaliana lines expressing WmPHOT1 in a phot1 phot2 double mutant background. Several Wmphot1 transgenic plants showed normal growth, although phot1 phot2 double mutant plants showed stunted growth. Furthermore, Wmphot1 transgenic plants showed normal phot1-mediated responses including phototropism, chloroplast accumulation, stomatal opening, and leaf flattening, but lacked the chloroplast avoidance response that is specifically mediated by phot2. Thus, our findings indicate that W. mirabilis possesses typical phot-mediated BL responses that were at least partially mediated by functional phototropin 1, an ortholog of Atphot1.

  11. Variation in Rhodopsin Kinase Expression Alters the Dim Flash Response Shut Off and the Light Adaptation in Rod Photoreceptors

    PubMed Central

    Sakurai, Keisuke; Young, Joyce E.; Kefalov, Vladimir J.; Khani, Shahrokh C.

    2011-01-01

    Purpose. Rod photoreceptors are exquisitely sensitive light detectors that function in dim light. The timely inactivation of their light responses is critical for the ability of rods to reliably detect and count photons. A key step in the inactivation of the rod transduction is the phosphorylation of the rod visual pigment, rhodopsin, catalyzed by G-protein-dependent receptor kinase 1 (GRK1). Absence of GRK1 greatly prolongs the photoreceptors' light response and enhances their susceptibility to degeneration. This study examined the light responses from mouse rods expressing various levels of GRK1 to evaluate how their function is modulated by rhodopsin inactivation. Methods. Transretinal and single-cell rod electrophysiological recordings were obtained from several strains of mice expressing GRK1 at 0.3- to 3-fold the wild-type levels. The effect of GRK1 expression level on the function of mouse rods was examined in darkness and during background adaptation. Results. Altering the expression of GRK1 from 0.3- to 3-fold that in wild-type rods had little effect on the single photon response amplitude. Notably, increasing the expression level of GRK1 accelerated the dim flash response shut off but had no effect on the saturated response shut off. Additionally, GRK1 excess abolished the acceleration of saturated responses shut off during light adaptation. Conclusions. These results demonstrate that rhodopsin inactivation can modulate the kinetics of recovery from dim light stimulation. More importantly, the ratio of rhodopsin kinase to its modulator recoverin appears critical for the proper adaptation of rods and the acceleration of their response shut off in background light. PMID:21474765

  12. Variation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors.

    PubMed

    Sakurai, Keisuke; Young, Joyce E; Kefalov, Vladimir J; Khani, Shahrokh C

    2011-08-29

    Rod photoreceptors are exquisitely sensitive light detectors that function in dim light. The timely inactivation of their light responses is critical for the ability of rods to reliably detect and count photons. A key step in the inactivation of the rod transduction is the phosphorylation of the rod visual pigment, rhodopsin, catalyzed by G-protein-dependent receptor kinase 1 (GRK1). Absence of GRK1 greatly prolongs the photoreceptors' light response and enhances their susceptibility to degeneration. This study examined the light responses from mouse rods expressing various levels of GRK1 to evaluate how their function is modulated by rhodopsin inactivation. Transretinal and single-cell rod electrophysiological recordings were obtained from several strains of mice expressing GRK1 at 0.3- to 3-fold the wild-type levels. The effect of GRK1 expression level on the function of mouse rods was examined in darkness and during background adaptation. Altering the expression of GRK1 from 0.3- to 3-fold that in wild-type rods had little effect on the single photon response amplitude. Notably, increasing the expression level of GRK1 accelerated the dim flash response shut off but had no effect on the saturated response shut off. Additionally, GRK1 excess abolished the acceleration of saturated responses shut off during light adaptation. These results demonstrate that rhodopsin inactivation can modulate the kinetics of recovery from dim light stimulation. More importantly, the ratio of rhodopsin kinase to its modulator recoverin appears critical for the proper adaptation of rods and the acceleration of their response shut off in background light.

  13. Generation of the neutron response function of an NE213 scintillator for fusion applications

    NASA Astrophysics Data System (ADS)

    Binda, F.; Eriksson, J.; Ericsson, G.; Hellesen, C.; Conroy, S.; Nocente, M.; Sundén, E. Andersson; JET Contributors

    2017-09-01

    In this work we present a method to evaluate the neutron response function of an NE213 liquid scintillator. This method is particularly useful when the proton light yield function of the detector has not been measured, since it is based on a proton light yield function taken from literature, MCNPX simulations, measurements of gamma-rays from a calibration source and measurements of neutrons from fusion experiments with ohmic plasmas. The inclusion of the latter improves the description of the proton light yield function in the energy range of interest (around 2.46 MeV). We apply this method to an NE213 detector installed at JET, inside the radiation shielding of the magnetic proton recoil (MPRu) spectrometer, and present the results from the calibration along with some examples of application of the response function to perform neutron emission spectroscopy (NES) of fusion plasmas. We also investigate how the choice of the proton light yield function affects the NES analysis, finding that the result does not change significantly. This points to the fact that the method for the evaluation of the neutron response function is robust and gives reliable results.

  14. Double-heterojunction nanorod light-responsive LEDs for display applications.

    PubMed

    Oh, Nuri; Kim, Bong Hoon; Cho, Seong-Yong; Nam, Sooji; Rogers, Steven P; Jiang, Yiran; Flanagan, Joseph C; Zhai, You; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Cho, Youn Kyoung; Hur, Gyum; Zhang, Jieqian; Trefonas, Peter; Rogers, John A; Shim, Moonsub

    2017-02-10

    Dual-functioning displays, which can simultaneously transmit and receive information and energy through visible light, would enable enhanced user interfaces and device-to-device interactivity. We demonstrate that double heterojunctions designed into colloidal semiconductor nanorods allow both efficient photocurrent generation through a photovoltaic response and electroluminescence within a single device. These dual-functioning, all-solution-processed double-heterojunction nanorod light-responsive light-emitting diodes open feasible routes to a variety of advanced applications, from touchless interactive screens to energy harvesting and scavenging displays and massively parallel display-to-display data communication. Copyright © 2017, American Association for the Advancement of Science.

  15. Nanowire arrays restore vision in blind mice.

    PubMed

    Tang, Jing; Qin, Nan; Chong, Yan; Diao, Yupu; Yiliguma; Wang, Zhexuan; Xue, Tian; Jiang, Min; Zhang, Jiayi; Zheng, Gengfeng

    2018-03-06

    The restoration of light response with complex spatiotemporal features in retinal degenerative diseases towards retinal prosthesis has proven to be a considerable challenge over the past decades. Herein, inspired by the structure and function of photoreceptors in retinas, we develop artificial photoreceptors based on gold nanoparticle-decorated titania nanowire arrays, for restoration of visual responses in the blind mice with degenerated photoreceptors. Green, blue and near UV light responses in the retinal ganglion cells (RGCs) are restored with a spatial resolution better than 100 µm. ON responses in RGCs are blocked by glutamatergic antagonists, suggesting functional preservation of the remaining retinal circuits. Moreover, neurons in the primary visual cortex respond to light after subretinal implant of nanowire arrays. Improvement in pupillary light reflex suggests the behavioral recovery of light sensitivity. Our study will shed light on the development of a new generation of optoelectronic toolkits for subretinal prosthetic devices.

  16. CRYPTOCHROME mediates behavioral executive choice in response to UV light

    PubMed Central

    Baik, Lisa S.; Fogle, Keri J.; Roberts, Logan; Galschiodt, Alexis M.; Chevez, Joshua A.; Recinos, Yocelyn; Nguy, Vinh; Holmes, Todd C.

    2017-01-01

    Drosophila melanogaster CRYPTOCHROME (CRY) mediates behavioral and electrophysiological responses to blue light coded by circadian and arousal neurons. However, spectroscopic and biochemical assays of heterologously expressed CRY suggest that CRY may mediate functional responses to UV-A (ultraviolet A) light as well. To determine the relative contributions of distinct phototransduction systems, we tested mutants lacking CRY and mutants with disrupted opsin-based phototransduction for behavioral and electrophysiological responses to UV light. CRY and opsin-based external photoreceptor systems cooperate for UV light-evoked acute responses. CRY mediates behavioral avoidance responses related to executive choice, consistent with its expression in central brain neurons. PMID:28062690

  17. Optimized lighting method of applying shaped-function signal for increasing the dynamic range of LED-multispectral imaging system

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling

    2018-02-01

    This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.

  18. Optimized lighting method of applying shaped-function signal for increasing the dynamic range of LED-multispectral imaging system.

    PubMed

    Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling

    2018-02-01

    This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.

  19. The pupillary light responses of animals; a review of their distribution, dynamics, mechanisms and functions.

    PubMed

    Douglas, Ronald H

    2018-05-01

    The timecourse and extent of changes in pupil area in response to light are reviewed in all classes of vertebrate and cephalopods. Although the speed and extent of these responses vary, most species, except the majority of teleost fish, show extensive changes in pupil area related to light exposure. The neuromuscular pathways underlying light-evoked pupil constriction are described and found to be relatively conserved, although the precise autonomic mechanisms differ somewhat between species. In mammals, illumination of only one eye is known to cause constriction in the unilluminated pupil. Such consensual responses occur widely in other animals too, and their function and relation to decussation of the visual pathway is considered. Intrinsic photosensitivity of the iris muscles has long been known in amphibia, but is in fact widespread in other animals. The functions of changes in pupil area are considered. In the majority of species, changes in pupil area serve to balance the conflicting demands of high spatial acuity and increased sensitivity in different light levels. In the few teleosts in which pupil movements occur they do not serve a visual function but play a role in camouflaging the eye of bottom-dwelling species. The occurrence and functions of the light-independent changes in pupil size displayed by many animals are also considered. Finally, the significance of the variations in pupil shape, ranging from circular to various orientations of slits, ovals, and other shapes, is discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Exposure to Blue Light Increases Subsequent Functional Activation of the Prefrontal Cortex During Performance of a Working Memory Task.

    PubMed

    Alkozei, Anna; Smith, Ryan; Pisner, Derek A; Vanuk, John R; Berryhill, Sarah M; Fridman, Andrew; Shane, Bradley R; Knight, Sara A; Killgore, William D S

    2016-09-01

    Prolonged exposure to blue wavelength light has been shown to have an alerting effect, and enhances performance on cognitive tasks. A small number of studies have also shown that relatively short exposure to blue light leads to changes in functional brain responses during the period of exposure. The extent to which blue light continues to affect brain functioning during a cognitively challenging task after cessation of longer periods of exposure (i.e., roughly 30 minutes or longer), however, has not been fully investigated. A total of 35 healthy participants (18 female) were exposed to either blue (469 nm) (n = 17) or amber (578 nm) (n = 18) wavelength light for 30 minutes in a darkened room, followed immediately by functional magnetic resonance imaging (fMRI) while undergoing a working memory task (N-back task). Participants in the blue light condition were faster in their responses on the N-back task and showed increased activation in the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex compared to those in the amber control light condition. Furthermore, greater activation within the VLPFC was correlated with faster N-back response times. This is the first study to suggest that a relatively brief, single exposure to blue light has a subsequent beneficial effect on working memory performance, even after cessation of exposure, and leads to temporarily persisting functional brain changes within prefrontal brain regions associated with executive functions. These findings may have broader implication for using blue-enriched light in a variety of work settings where alertness and quick decision-making are important. © 2016 Associated Professional Sleep Societies, LLC.

  1. [Functional state of the visual analyzer in the conditions of the use of traditional and LED light sources].

    PubMed

    Kaptsov, V A; Sosunov, N N; Shishchenko, I I; Viktorov, V S; Tulushev, V N; Deynego, V N; Bukhareva, E A; Murashova, M A; Shishchenko, A A

    2014-01-01

    There was performed the experimental work on the study of the possibility of the application of LED lighting (LED light sources) in rail transport for traffic safety in related professions. Results of 4 series of studies involving 10 volunteers for the study and a comparative evaluation of the functional state of the visual analyzer, the general functional state and mental capacity under the performing the simulated operator activity in conditions of traditional light sources (incandescent, fluorescent lamp) and the new LED (LED lamp, LED panel) light sources have revealed changes in the negative direction. This was pronounced in a some decrease of functional stability to color discrimination between green and red cone signals, as well as an increase in response time in complex visual--motor response and significant reduction in readiness for emergency action of examinees.

  2. Initial characterization of shade avoidance response suggests functional diversity between Populus phytochrome B genes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karve, Abhijit A; Weston, David; Jawdy, Sara

    2012-01-01

    Shade avoidance signaling in higher plants involves perception of the incident red/far-red (R/FR) light by phytochromes and the modulation of downstream transcriptional networks to regulate developmental plasticity in relation to heterogeneous light environments. In this study, we characterized the expression and functional features of Populus phytochrome (PHY) gene family as well as the transcriptional responses of Populus to the changes in R/FR light. Expression data indicated that PHYA is the predominant PHY in the dark grown Populus seedling whereas PHYBs are most abundant in mature tissue types. Out of three Populus PHYs, PHYA is light labile and localized to cytosolmore » in dark whereas both PHYB1 and PHYB2 are light stable and are localized to nucleus in mesophyll protoplasts. When expressed in Arabidopsis, PHYB1 rescued Arabidopsis phyB mutant phenotype whereas PHYB2 did not, suggesting functional diversification between these two gene family members. However, phenotypes of transgenic Populus lines with altered expression of PHYB1, PHYB2 or both and the expression of candidate shade response genes in these transgenic lines suggest that PHYB1 and PHYB2 may have distinct yet overlapping functions. The RNAseq results and analysis of Populus exposed to enriched-FR light indicate that genes associated in cell wall modification and brassinosteroid signaling were induced under far red light. Overall our data indicate that Populus transcriptional responses are at least partially conserved with Arabidopsis.« less

  3. Exposure to Blue Light Increases Subsequent Functional Activation of the Prefrontal Cortex During Performance of a Working Memory Task

    PubMed Central

    Alkozei, Anna; Smith, Ryan; Pisner, Derek A.; Vanuk, John R.; Berryhill, Sarah M.; Fridman, Andrew; Shane, Bradley R.; Knight, Sara A.; Killgore, William D.S.

    2016-01-01

    Study Objectives: Prolonged exposure to blue wavelength light has been shown to have an alerting effect, and enhances performance on cognitive tasks. A small number of studies have also shown that relatively short exposure to blue light leads to changes in functional brain responses during the period of exposure. The extent to which blue light continues to affect brain functioning during a cognitively challenging task after cessation of longer periods of exposure (i.e., roughly 30 minutes or longer), however, has not been fully investigated. Methods: A total of 35 healthy participants (18 female) were exposed to either blue (469 nm) (n = 17) or amber (578 nm) (n = 18) wavelength light for 30 minutes in a darkened room, followed immediately by functional magnetic resonance imaging (fMRI) while undergoing a working memory task (N-back task). Results: Participants in the blue light condition were faster in their responses on the N-back task and showed increased activation in the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex compared to those in the amber control light condition. Furthermore, greater activation within the VLPFC was correlated with faster N-back response times. Conclusions: This is the first study to suggest that a relatively brief, single exposure to blue light has a subsequent beneficial effect on working memory performance, even after cessation of exposure, and leads to temporarily persisting functional brain changes within prefrontal brain regions associated with executive functions. These findings may have broader implication for using blue-enriched light in a variety of work settings where alertness and quick decision-making are important. Citation: Alkozei A, Smith R, Pisner DA, Vanuk JR, Berryhill SM, Fridman A, Shane BR, Knight SA, Killgore WD. Exposure to blue light increases subsequent functional activation of the prefrontal cortex during performance of a working memory task. SLEEP 2016;39(9):1671–1680. PMID:27253770

  4. Low angle light scattering analysis: a novel quantitative method for functional characterization of human and murine platelet receptors.

    PubMed

    Mindukshev, Igor; Gambaryan, Stepan; Kehrer, Linda; Schuetz, Claudia; Kobsar, Anna; Rukoyatkina, Natalia; Nikolaev, Viacheslav O; Krivchenko, Alexander; Watson, Steve P; Walter, Ulrich; Geiger, Joerg

    2012-07-01

    Determinations of platelet receptor functions are indispensable diagnostic indicators of cardiovascular and hemostatic diseases including hereditary and acquired receptor defects and receptor responses to drugs. However, presently available techniques for assessing platelet function have some disadvantages, such as low sensitivity and the requirement of large sample sizes and unphysiologically high agonist concentrations. Our goal was to develop and initially characterize a new technique designed to quantitatively analyze platelet receptor activation and platelet function on the basis of measuring changes in low angle light scattering. We developed a novel technique based on low angle light scattering registering changes in light scattering at a range of different angles in platelet suspensions during activation. The method proved to be highly sensitive for simultaneous real time detection of changes in size and shape of platelets during activation. Unlike commonly-used methods, the light scattering method could detect platelet shape change and aggregation in response to nanomolar concentrations of extracellular nucleotides. Furthermore, our results demonstrate that the advantages of the light scattering method make it a choice method for platelet receptor monitoring and for investigation of both murine and human platelets in disease models. Our data demonstrate the suitability and superiority of this new low angle light scattering method for comprehensive analyses of platelet receptors and functions. This highly sensitive, quantitative, and online detection of essential physiological, pathophysiological and pharmacological-response properties of human and mouse platelets is a significant improvement over conventional techniques.

  5. Assessment of Rod, Cone, and Intrinsically Photosensitive Retinal Ganglion Cell Contributions to the Canine Chromatic Pupillary Response.

    PubMed

    Yeh, Connie Y; Koehl, Kristin L; Harman, Christine D; Iwabe, Simone; Guzman, José M; Petersen-Jones, Simon M; Kardon, Randy H; Komáromy, András M

    2017-01-01

    The purpose of this study was to evaluate a chromatic pupillometry protocol for specific functional assessment of rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) in dogs. Chromatic pupillometry was tested and compared in 37 dogs in different stages of primary loss of rod, cone, and combined rod/cone and optic nerve function, and in 5 wild-type (WT) dogs. Eyes were stimulated with 1-s flashes of dim (1 cd/m2) and bright (400 cd/m2) blue light (for scotopic conditions) or bright red (400 cd/m2) light with 25-cd/m2 blue background (for photopic conditions). Canine retinal melanopsin/Opn4 was cloned, and its expression was evaluated using real-time quantitative reverse transcription-PCR and immunohistochemistry. Mean ± SD percentage of pupil constriction amplitudes induced by scotopic dim blue (scDB), scotopic bright blue (scBB), and photopic bright red (phBR) lights in WT dogs were 21.3% ± 10.6%, 50.0% ± 17.5%, and 19.4% ± 7.4%, respectively. Melanopsin-mediated responses to scBB persisted for several minutes (7.7 ± 4.6 min) after stimulus offset. In dogs with inherited retinal degeneration, loss of rod function resulted in absent scDB responses, followed by decreased phBR responses with disease progression and loss of cone function. Primary loss of cone function abolished phBR responses but preserved those responses to blue light (scDB and scBB). Although melanopsin/Opn4 expression was diminished with retinal degeneration, melanopsin-expressing ipRGCs were identified for the first time in both WT and degenerated canine retinas. Pupil responses elicited by light stimuli of different colors and intensities allowed differential functional assessment of canine rods, cones, and ipRGCs. Chromatic pupillometry offers an effective tool for diagnosing retinal and optic nerve diseases.

  6. Adaptations in rod outer segment disc membranes in response to environmental lighting conditions.

    PubMed

    Rakshit, Tatini; Senapati, Subhadip; Parmar, Vipul M; Sahu, Bhubanananda; Maeda, Akiko; Park, Paul S-H

    2017-10-01

    The light-sensing rod photoreceptor cell exhibits several adaptations in response to the lighting environment. While adaptations to short-term changes in lighting conditions have been examined in depth, adaptations to long-term changes in lighting conditions are less understood. Atomic force microscopy was used to characterize the structure of rod outer segment disc membranes, the site of photon absorption by the pigment rhodopsin, to better understand how photoreceptor cells respond to long-term lighting changes. Structural properties of the disc membrane changed in response to housing mice in constant dark or light conditions and these adaptive changes required output from the phototransduction cascade initiated by rhodopsin. Among these were changes in the packing density of rhodopsin in the membrane, which was independent of rhodopsin synthesis and specifically affected scotopic visual function as assessed by electroretinography. Studies here support the concept of photostasis, which maintains optimal photoreceptor cell function with implications in retinal degenerations. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Blue light filtered white light induces depression-like responses and temporary spatial learning deficits in rats.

    PubMed

    Meng, Qinghe; Lian, Yuzheng; Jiang, Jianjun; Wang, Wei; Hou, Xiaohong; Pan, Yao; Chu, Hongqian; Shang, Lanqin; Wei, Xuetao; Hao, Weidong

    2018-04-18

    Ambient light has a vital impact on mood and cognitive functions. Blue light has been previously reported to play a salient role in the antidepressant effect via melanopsin. Whether blue light filtered white light (BFW) affects mood and cognitive functions remains unclear. The present study aimed to investigate whether BFW led to depression-like symptoms and cognitive deficits including spatial learning and memory abilities in rats, and whether they were associated with the light-responsive function in retinal explants. Male Sprague-Dawley albino rats were randomly divided into 2 groups (n = 10) and treated with a white light-emitting diode (LED) light source and BFW light source, respectively, under a standard 12 : 12 h L/D condition over 30 days. The sucrose consumption test, forced swim test (FST) and the level of plasma corticosterone (CORT) were employed to evaluate depression-like symptoms in rats. Cognitive functions were assessed by the Morris water maze (MWM) test. A multi-electrode array (MEA) system was utilized to measure electro-retinogram (ERG) responses induced by white or BFW flashes. The effect of BFW over 30 days on depression-like responses in rats was indicated by decreased sucrose consumption in the sucrose consumption test, an increased immobility time in the FST and an elevated level of plasma CORT. BFW led to temporary spatial learning deficits in rats, which was evidenced by prolonged escape latency and swimming distances in the spatial navigation test. However, no changes were observed in the short memory ability of rats treated with BFW. The micro-ERG results showed a delayed implicit time and reduced amplitudes evoked by BFW flashes compared to the white flash group. BFW induces depression-like symptoms and temporary spatial learning deficits in rats, which might be closely related to the impairment of light-evoked output signals in the retina.

  8. RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells

    PubMed Central

    Walker, Marquis T.; Rupp, Alan; Elsaesser, Rebecca; Güler, Ali D.; Sheng, Wenlong; Weng, Shijun; Berson, David M.; Hattar, Samer; Montell, Craig

    2015-01-01

    A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2−/− mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2−/− were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2−/− mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light. PMID:26269578

  9. Phototropism: a "simple" physiological response modulated by multiple interacting photosensory-response pathways.

    PubMed

    Liscum, E; Stowe-Evans, E L

    2000-09-01

    Phototropism is the process by which plants reorient growth of various organs, most notably stems, in response to lateral differences in light quantity and/or quality. The ubiquitous nature of the phototropic response in the plant kingdom implies that it provides some adaptive evolutionary advantage. Upon visual inspection it is tempting to surmise that phototropic curvatures result from a relatively simple growth response to a directional stimulus. However, detailed photophysiological, and more recently genetic and molecular, studies have demonstrated that phototropism is in fact regulated by complex interactions among several photosensory systems. At least two receptors, phototropin and a presently unidentified receptor, appear to mediate the primary photoreception of directional blue light cues in dark-grown plants. PhyB may also function as a primary receptor to detect lateral increases in far-red light in neighbor-avoidance responses of light-grown plants. Phytochromes (phyA and phyB at a minimum) also appear to function as secondary receptors to regulate adaptation processes that ultimately modulate the magnitude of curvature induced by primary photoperception. As a result of the interactions of these multiple photosensory systems plants are able to maximize the adaptive advantage of the phototropic response in ever changing light environments.

  10. Signal coding in cockroach photoreceptors is tuned to dim environments.

    PubMed

    Heimonen, K; Immonen, E-V; Frolov, R V; Salmela, I; Juusola, M; Vähäsöyrinki, M; Weckström, M

    2012-11-01

    In dim light, scarcity of photons typically leads to poor vision. Nonetheless, many animals show visually guided behavior with dim environments. We investigated the signaling properties of photoreceptors of the dark active cockroach (Periplaneta americana) using intracellular and whole-cell patch-clamp recordings to determine whether they show selective functional adaptations to dark. Expectedly, dark-adapted photoreceptors generated large and slow responses to single photons. However, when light adapted, responses of both phototransduction and the nontransductive membrane to white noise (WN)-modulated stimuli remained slow with corner frequencies ~20 Hz. This promotes temporal integration of light inputs and maintains high sensitivity of vision. Adaptive changes in dynamics were limited to dim conditions. Characteristically, both step and frequency responses stayed effectively unchanged for intensities >1,000 photons/s/photoreceptor. A signal-to-noise ratio (SNR) of the light responses was transiently higher at frequencies <5 Hz for ~5 s after light onset but deteriorated to a lower value upon longer stimulation. Naturalistic light stimuli, as opposed to WN, evoked markedly larger responses with higher SNRs at low frequencies. This allowed realistic estimates of information transfer rates, which saturated at ~100 bits/s at low-light intensities. We found, therefore, selective adaptations beneficial for vision in dim environments in cockroach photoreceptors: large amplitude of single-photon responses, constant high level of temporal integration of light inputs, saturation of response properties at low intensities, and only transiently efficient encoding of light contrasts. The results also suggest that the sources of the large functional variability among different photoreceptors reside mostly in phototransduction processes and not in the properties of the nontransductive membrane.

  11. The planarian TRPA1 homolog mediates extraocular behavioral responses to near-ultraviolet light.

    PubMed

    Birkholz, Taylor R; Beane, Wendy S

    2017-07-15

    Although light is most commonly thought of as a visual cue, many animals possess mechanisms to detect light outside of the eye for various functions, including predator avoidance, circadian rhythms, phototaxis and migration. Here we confirm that planarians (like Caenorhabditis elegans , leeches and Drosophila larvae) are capable of detecting and responding to light using extraocular photoreception. We found that, when either eyeless or decapitated worms were exposed to near-ultraviolet (near-UV) light, intense wild-type photophobic behaviors were still observed. Our data also revealed that behavioral responses to green wavelengths were mediated by ocular mechanisms, whereas near-UV responses were driven by extraocular mechanisms. As part of a candidate screen to uncover the genetic basis of extraocular photoreception in the planarian species Schmidtea mediterranea , we identified a potential role for a homolog of the transient receptor potential channel A1 ( TRPA1 ) in mediating behavioral responses to extraocular light cues. RNA interference (RNAi) to Smed-TrpA resulted in worms that lacked extraocular photophobic responses to near-UV light, a mechanism previously only identified in Drosophila These data show that the planarian TRPA1 homolog is required for planarian extraocular-light avoidance and may represent a potential ancestral function of this gene. TRPA1 is an evolutionarily conserved detector of temperature and chemical irritants, including reactive oxygen species that are byproducts of UV-light exposure. Our results suggest that planarians possess extraocular photoreception and display an unconventional TRPA1-mediated photophobic response to near-UV light. © 2017. Published by The Company of Biologists Ltd.

  12. Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters.

    PubMed

    Bedrosian, Tracy A; Fonken, Laura K; Walton, James C; Nelson, Randy J

    2011-06-23

    Species have been adapted to specific niches optimizing survival and reproduction; however, urbanization by humans has dramatically altered natural habitats. Artificial light at night (LAN), termed 'light pollution', is an often overlooked, yet increasing disruptor of habitats, which perturbs physiological processes that rely on precise light information. For example, LAN alters the timing of reproduction and activity in some species, which decreases the odds of successful breeding and increases the threat of predation for these individuals, leading to reduced fitness. LAN also suppresses immune function, an important proxy for survival. To investigate the impact of LAN in a species naive to light pollution in its native habitat, immune function was examined in Siberian hamsters derived from wild-caught stock. After four weeks exposure to dim LAN, immune responses to three different challenges were assessed: (i) delayed-type hypersensitivity (DTH), (ii) lipopolysaccharide-induced fever, and (iii) bactericide activity of blood. LAN suppressed DTH response and reduced bactericide activity of blood after lipopolysaccharide treatment, in addition to altering daily patterns of locomotor activity, suggesting that human encroachment on habitats via night-time lighting may inadvertently compromise immune function and ultimately fitness.

  13. Removal of the blue component of light significantly decreases retinal damage after high intensity exposure.

    PubMed

    Vicente-Tejedor, Javier; Marchena, Miguel; Ramírez, Laura; García-Ayuso, Diego; Gómez-Vicente, Violeta; Sánchez-Ramos, Celia; de la Villa, Pedro; Germain, Francisco

    2018-01-01

    Light causes damage to the retina (phototoxicity) and decreases photoreceptor responses to light. The most harmful component of visible light is the blue wavelength (400-500 nm). Different filters have been tested, but so far all of them allow passing a lot of this wavelength (70%). The aim of this work has been to prove that a filter that removes 94% of the blue component may protect the function and morphology of the retina significantly. Three experimental groups were designed. The first group was unexposed to light, the second one was exposed and the third one was exposed and protected by a blue-blocking filter. Light damage was induced in young albino mice (p30) by exposing them to white light of high intensity (5,000 lux) continuously for 7 days. Short wavelength light filters were used for light protection. The blue component was removed (94%) from the light source by our filter. Electroretinographical recordings were performed before and after light damage. Changes in retinal structure were studied using immunohistochemistry, and TUNEL labeling. Also, cells in the outer nuclear layer were counted and compared among the three different groups. Functional visual responses were significantly more conserved in protected animals (with the blue-blocking filter) than in unprotected animals. Also, retinal structure was better kept and photoreceptor survival was greater in protected animals, these differences were significant in central areas of the retina. Still, functional and morphological responses were significantly lower in protected than in unexposed groups. In conclusion, this blue-blocking filter decreases significantly photoreceptor damage after exposure to high intensity light. Actually, our eyes are exposed for a very long time to high levels of blue light (screens, artificial light LED, neons…). The potential damage caused by blue light can be palliated.

  14. Canopy gradients in leaf functional traits for species that differ in growth strategies and shade tolerance.

    PubMed

    Coble, Adam P; Fogel, Marilyn L; Parker, Geoffrey G

    2017-10-01

    In temperate deciduous forests, vertical gradients in leaf mass per area (LMA) and area-based leaf nitrogen (Narea) are strongly controlled by gradients in light availability. While there is evidence that hydrostatic constraints on leaf development may diminish LMA and Narea responses to light, inherent differences among tree species may also influence leaf developmental and morphological response to light. We investigated vertical gradients in LMA, Narea and leaf carbon isotope composition (δ13C) for three temperate deciduous species (Carpinus caroliniana Walter, Fagus grandifolia Ehrh., Liriodendron tulipifera L.) that differed in growth strategy (e.g., indeterminate and determinate growth), shade tolerance and leaf area to sapwood ratio (Al:As). Leaves were sampled across a broad range of light conditions within three vertical layers of tree crowns to maximize variation in light availability at each height and to minimize collinearity between light and height. All species displayed similar responses to light with respect to Narea and δ13C, but not for LMA. Light was more important for gradients in LMA for the shade-tolerant (C. caroliniana) and -intolerant (L. tulipifera) species with indeterminate growth, and height (e.g., hydrostatic gradients) and light were equally important for the shade-tolerant (F. grandifolia) species with determinate growth. Fagus grandifolia had a higher morphological plasticity in response to light, which may offer a competitive advantage in occupying a broader range of light conditions throughout the canopy. Differences in responses to light and height for the taller tree species, L. tulipifera and F. grandifolia, may be attributed to differences in growth strategy or Al:As, which may alter morphological and functional responses to light availability. While height was important in F. grandifolia, height was no more robust in predicting LMA than light in any of the species, confirming the strong role of light availability in determining LMA for temperate deciduous species. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. A revision of existing Karolinska Sleepiness Scale responses to light: A melanopic perspective.

    PubMed

    Hommes, Vanja; Giménez, Marina C

    2015-01-01

    A new photometric measure of light intensity that takes into account the relatively large contribution of the ipRGCs to the non-image forming (NIF) system was recently proposed. We set out to revise publications reporting on alertness scores as measured by the Karolinska Sleepiness Scale (KSS) under different light conditions in order to assess the extendibility of the equivalent-melanopic function to NIF responses in humans. The KSS response (-Δ KSS) to the different light conditions used on previous studies, preferably including a comparison to a dim light condition, was assessed. Based on the light descriptions of the different studies, the equivalent melanopic lux (m-illuminance) was calculated. The -Δ KSS was plotted against photopic-illuminance and m-illuminance, and fitted to a sigmoidal function already shown to described KSS responses to different light intensities. The root mean-squared error and r(2) were used as criteria to explain the best-describing light unit measurement. Studies that compared only the influence of light under otherwise same conditions and in which participants were not totally sleep deprived were included. Our results show that the effects of light on KSS are better explained by a melanopic unit measurement than by photopic lux. The present analysis allowed for the construction of a melanopic alertness response curve. This curve needs to be validated with appropriate designs. Nonetheless, it may serve as starting point for the development of hypothesis of predictions on the relative changes in KSS under a given condition due to changes in light properties.

  16. Fluorescent light exposure incites acute and prolonged immune responses in zebrafish (Danio rerio) skin.

    PubMed

    Gonzalez, Trevor J; Lu, Yuan; Boswell, Mikki; Boswell, William; Medrano, Geraldo; Walter, Sean; Ellis, Samuel; Savage, Markita; Varga, Zoltan M; Lawrence, Christian; Sanders, George; Walter, Ronald B

    2018-06-01

    Artificial light produces an emission spectrum that is considerably different than the solar spectrum. Artificial light has been shown to affect various behavior and physiological processes in vertebrates. However, there exists a paucity of data regarding the molecular genetic effects of artificial light exposure. Previous studies showed that one of the commonly used fluorescent light source (FL; 4100K or "cool white") can affect signaling pathways related to maintenance of circadian rhythm, cell cycle progression, chromosome segregation, and DNA repair/recombination in the skin of male Xiphophorus maculatus. These observations raise questions concerning the kinetics of the FL induced gene expression response, and which biological functions become modulated at various times after light exposure. To address these questions, we exposed zebrafish to 4100K FL and utilized RNA-Seq to assess gene expression changes in skin at various times (1 to 12h) after FL exposure. We found 4100K FL incites a robust early (1-2h) transcriptional response, followed by a more protracted late response (i.e., 4-12h). The early transcriptional response involves genes associated with cell migration/infiltration and cell proliferation as part of an overall increase in immune function and inflammation. The protracted late transcriptional response occurs within gene sets predicted to maintain and perpetuate the inflammatory response, as well as suppression of lipid, xenobiotic, and melatonin metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. XAP5 CIRCADIAN TIMEKEEPER Coordinates Light Signals for Proper Timing of Photomorphogenesis and the Circadian Clock in Arabidopsis[W

    PubMed Central

    Martin-Tryon, Ellen L.; Harmer, Stacey L.

    2008-01-01

    Numerous, varied, and widespread taxa have an internal circadian clock that allows anticipation of rhythmic changes in the environment. We have identified XAP5 CIRCADIAN TIMEKEEPER (XCT), an Arabidopsis thaliana gene important for light regulation of the circadian clock and photomorphogenesis. XCT is essential for proper clock function: xct mutants display a shortened circadian period in all conditions tested. Interestingly, XCT plays opposite roles in plant responses to light depending both on trait and wavelength. The clock in xct plants is hypersensitive to red but shows normal responses to blue light. By contrast, inhibition of hypocotyl elongation in xct is hyposensitive to red light but hypersensitive to blue light. Finally, XCT is important for ribulose-1,5-bisphosphate carboxylase/oxygenase production and plant greening in response to light. This novel combination of phenotypes suggests XCT may play a global role in coordinating growth in response to the light environment. XCT contains a XAP5 domain and is well conserved across diverse taxa, suggesting it has a common function in higher eukaryotes. Downregulation of the XCT ortholog in Caenorhabditis elegans is lethal, suggesting that studies in Arabidopsis may be instrumental to understanding the biochemical activity of XCT. PMID:18515502

  18. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Zeitzer, J. M.; Czeisler, C. A.; Dijk, D. J.

    2000-01-01

    Light can elicit both circadian and acute physiological responses in humans. In a dose response protocol men and women were exposed to illuminances ranging from 3 to 9100 lux for 6.5 h during the early biological night after they had been exposed to <3 lux for several hours. Light exerted an acute alerting response as assessed by a reduction in the incidence of slow-eye movements, a reduction of EEG activity in the theta-alpha frequencies (power density in the 5-9 Hz range) as well as a reduction in self-reported sleepiness. This alerting response was positively correlated with the degree of melatonin suppression by light. In accordance with the dose response function for circadian resetting and melatonin suppression, the responses of all three indices of alertness to variations in illuminance were consistent with a logistic dose response curve. Half of the maximum alerting response to bright light of 9100 lux was obtained with room light of approximately 100 lux. This sensitivity to light indicates that variations in illuminance within the range of typical, ambient, room light (90-180 lux) can have a significant impact on subjective alertness and its electrophysiologic concomitants in humans during the early biological night.

  19. The light output and the detection efficiency of the liquid scintillator EJ-309.

    PubMed

    Pino, F; Stevanato, L; Cester, D; Nebbia, G; Sajo-Bohus, L; Viesti, G

    2014-07-01

    The light output response and the neutron and gamma-ray detection efficiency are determined for liquid scintillator EJ-309. The light output function is compared to those of previous studies. Experimental efficiency results are compared to predictions from GEANT4, MCNPX and PENELOPE Monte Carlo simulations. The differences associated with the use of different light output functions are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. What determines the complex kinetics of stomatal conductance under blueless PAR in Festuca arundinacea? Subsequent effects on leaf transpiration.

    PubMed

    Barillot, Romain; Frak, Ela; Combes, Didier; Durand, Jean-Louis; Escobar-Gutiérrez, Abraham J

    2010-06-01

    Light quality and, in particular, its content of blue light is involved in plant functioning and morphogenesis. Blue light variation frequently occurs within a stand as shaded zones are characterized by a simultaneous decrease of PAR and blue light levels which both affect plant functioning, for example, gas exchange. However, little is known about the effects of low blue light itself on gas exchange. The aims of the present study were (i) to characterize stomatal behaviour in Festuca arundinacea leaves through leaf gas exchange measurements in response to a sudden reduction in blue light, and (ii) to test the putative role of Ci on blue light gas exchange responses. An infrared gas analyser (IRGA) was used with light transmission filters to study stomatal conductance (gs), transpiration (Tr), assimilation (A), and intercellular concentration of CO(2) (Ci) responses to blueless PAR (1.80 mumol m(-2) s(-1)). The results were compared with those obtained under a neutral filter supplying a similar photosynthetic efficiency to the blueless PAR filter. It was shown that the reduction of blue light triggered a drastic and instantaneous decrease of gs by 43.2% and of Tr by 40.0%, but a gradual stomatal reopening began 20 min after the start of the low blue light treatment, thus leading to new steady-states. This new stomatal equilibrium was supposed to be related to Ci. The results were confirmed in more developed plants although they exhibited delayed and less marked responses. It is concluded that stomatal responses to blue light could play a key role in photomorphogenetic mechanisms through their effect on transpiration.

  1. Extracellular Recording of Light Responses from Optic Nerve Fibers and the Caudal Photoreceptor in the Crayfish

    PubMed Central

    Nesbit, Steven C.; Van Hoof, Alexander G.; Le, Chi C.; Dearworth, James R.

    2015-01-01

    Few laboratory exercises have been developed using the crayfish as a model for teaching how neural processing is done by sensory organs that detect light stimuli. This article describes the dissection procedures and methods for conducting extracellular recording from light responses of both the optic nerve fibers found in the animal’s eyestalk and from the caudal photoreceptor located in the ventral nerve cord. Instruction for ADInstruments’ data acquisition system is also featured for the data collection and analysis of responses. The comparison provides students a unique view on how spike activities measured from neurons code image-forming and non-image-forming processes. Results from the exercise show longer latency and lower frequency of firing by the caudal photoreceptor compared to optic nerve fibers to demonstrate evidence of different functions. After students learn the dissection, recording procedure, and the functional anatomy, they can develop their own experiments to learn more about the photoreceptive mechanisms and the sensory integration of modalities by these light-responsive interneurons. PMID:26557793

  2. λ Light Chain Bias Associated With Enhanced Binding and Function of Anti-HIV Env Glycoprotein Antibodies

    PubMed Central

    Sajadi, Mohammad M.; Farshidpour, Maham; Brown, Eric P.; Ouyang, Xin; Seaman, Michael S.; Pazgier, Marzena; Ackerman, Margaret E.; Robinson, Harriet; Tomaras, Georgia; Parsons, Matthew S.; Charurat, Manhattan; DeVico, Anthony L.; Redfield, Robert R.; Lewis, George K.

    2016-01-01

    The humoral response to human immunodeficiency virus (HIV) remains incompletely understood. In this report, we describe biased λ light chain use during the HIV Env glycoprotein (Env) response in HIV infection and vaccination. We examined HIV Env binding (and neutralization) in the context of light chain use in subjects with acute HIV infection, chronic HIV infection, and among HIV vaccinees. In all populations tested, there was a λ chain bias for HIV Env binding antibodies, compared with other HIV antigens (such as p24) or tetanus toxoid. In subjects with chronic HIV infection, a λ bias was noted for neutralization, with λ antibodies accounting for up to 90% of all neutralization activity observed. This is the first report of antibody function in a human infection being tied to light chain use. In HIV infection, antibodies expressing λ light chains tended to have longer CDRL3s, increased light chain contact with HIV Env, and less hypermutation in the heavy chain, compared with antibodies using the κ light chain. These data also support an evolutionary model for the understanding the various κ to λ light chain ratios observed across species and suggest that the λ light chain bias against HIV provides the host an advantage in developing a more efficient humoral response. PMID:26347575

  3. A preview of a modular surface light scattering instrument with autotracking optics

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Tin, Padetha; Mann, J. Adin, Jr.; Cheung, H. Michael; Rogers, Richard B.; Lading, Lars

    1994-01-01

    NASA's Advanced Technology Development (ATD) program is sponsoring the development of a new generation of surface light scattering hardware. This instrument is designed to non-invasively measure the surface response function of liquids over a wide range of operating conditions while automatically compensating for a sloshing surface. The surface response function can be used to compute surface tension, properties of monolayers present, viscosity, surface tension gradient and surface temperature. The instrument uses optical and electronic building blocks developed for the laser light scattering program at NASA Lewis along with several unique surface light scattering components. The emphasis of this paper is the compensation for bulk surface motion (slosh). Some data processing background information is also included.

  4. Cryptogein-Induced Transcriptional Reprogramming in Tobacco Is Light Dependent1[C][W

    PubMed Central

    Hoeberichts, Frank A.; Davoine, Céline; Vandorpe, Michaël; Morsa, Stijn; Ksas, Brigitte; Stassen, Catherine; Triantaphylidès, Christian; Van Breusegem, Frank

    2013-01-01

    The fungal elicitor cryptogein triggers a light-dependent hypersensitive response in tobacco (Nicotiana tabacum). To assess the effect of light on this nonhost resistance in more detail, we studied various aspects of the response under dark and light conditions using the tobacco-cryptogein experimental system. Here, we show that light drastically alters the plant’s transcriptional response to cryptogein, notably by dampening the induction of genes involved in multiple processes, such as ethylene biosynthesis, secondary metabolism, and glutathione turnover. Furthermore, chlorophyll fluorescence measurements demonstrated that quantum yield and functioning of the light-harvesting antennae decreased simultaneously, indicating that photoinhibition underlies the observed decreased photosynthesis and that photooxidative damage might be involved in the establishment of the altered response. Analysis of the isomer distribution of hydroxy fatty acids illustrated that, in the light, lipid peroxidation was predominantly due to the production of singlet oxygen. Differences in (reduced) glutathione concentrations and the rapid development of symptoms in the light when cryptogein was coinfiltrated with glutathione biosynthesis inhibitors suggest that glutathione might become a limiting factor during the cryptogein-induced hypersensitive response in the dark and that this response might be modified by an increased antioxidant availability in the light. PMID:23878079

  5. Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene.

    PubMed Central

    Schulze-Lefert, P; Dangl, J L; Becker-André, M; Hahlbrock, K; Schulz, W

    1989-01-01

    We began characterization of the protein--DNA interactions necessary for UV light induced transcriptional activation of the gene encoding chalcone synthase (CHS), a key plant defense enzyme. Three light dependent in vivo footprints appear on a 90 bp stretch of the CHS promoter with a time course correlated with the onset of CHS transcription. We define a minimal light responsive promoter by functional analysis of truncated CHS promoter fusions with a reporter gene in transient expression experiments in parsley protoplasts. Two of the three footprinted sequence 'boxes' reside within the minimal promoter. Replacement of 10 bp within either of these 'boxes' leads to complete loss of light responsiveness. We conclude that these sequences define the necessary cis elements of the minimal CHS promoter's light responsive element. One of the functionally defined 'boxes' is homologous to an element implicated in regulation of genes involved in photosynthesis. These data represent the first example in a plant defense gene of an induced change in protein--DNA contacts necessary for transcriptional activation. Also, our data argue strongly that divergent light induced biosynthetic pathways share common regulatory units. Images PMID:2566481

  6. Laser-based irradiation apparatus and method to measure the functional dose-rate response of semiconductor devices

    DOEpatents

    Horn, Kevin M [Albuquerque, NM

    2008-05-20

    A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.

  7. Blue and Red Light-Evoked Pupil Responses in Photophobic Subjects with TBI.

    PubMed

    Yuhas, Phillip T; Shorter, Patrick D; McDaniel, Catherine E; Earley, Michael J; Hartwick, Andrew T E

    2017-01-01

    Photophobia is a common symptom in individuals suffering from traumatic brain injury (TBI). Recent evidence has implicated blue light-sensitive intrinsically photosensitive retinal ganglion cells (ipRGCs) in contributing to the neural circuitry mediating photophobia in migraine sufferers. The goal of this work is to test the hypothesis that ipRGC function is altered in TBI patients with photophobia by assessing pupillary responses to blue and red light. Twenty-four case participants (mean age 43.3; 58% female), with mild TBI and self-reported photophobia, and 12 control participants (mean age 42.6; 58% female) were in this study. After 10 minutes of dark adaptation, blue (470 nm, 1 × 10 phots/s/cm) and red (625 nm, 7 × 10 phots/s/cm) flashing (0.1 Hz) light stimuli were delivered for 30 seconds to the dilated left eye while the right pupil was recorded. The amplitude of normalized pupil fluctuation (constriction and dilation) was quantified using Fourier fast transforms. In both case and control participants, the amplitude of pupil fluctuation was significantly less for the blue light stimuli as compared to the red light stimuli, consistent with a contribution of ipRGCs to these pupil responses. There was no significant difference in the mean pupil fluctuation amplitudes between the two participant groups, but case participants displayed greater variability in their pupil responses to the blue stimulus. Case and control participants showed robust ipRGC-mediated components in their pupil responses to blue light. The results did not support the hypothesis that ipRGCs are "hypersensitive" to light in TBI participants with photophobia. However, greater pupil response variability in the case subjects suggests that ipRGC function may be more heterogeneous in this group.

  8. Demonstrating the Light-Emitting Diode.

    ERIC Educational Resources Information Center

    Johnson, David A.

    1995-01-01

    Describes a simple inexpensive circuit which can be used to quickly demonstrate the basic function and versatility of the solid state diode. Can be used to demonstrate the light-emitting diode (LED) as a light emitter, temperature sensor, light detector with both a linear and logarithmic response, and charge storage device. (JRH)

  9. RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells.

    PubMed

    Walker, Marquis T; Rupp, Alan; Elsaesser, Rebecca; Güler, Ali D; Sheng, Wenlong; Weng, Shijun; Berson, David M; Hattar, Samer; Montell, Craig

    2015-10-15

    A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2(-/-) mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2(-/-) were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2(-/-) mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light. © 2015 Walker et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Peripheral Sensory Neurons Expressing Melanopsin Respond to Light

    PubMed Central

    Matynia, Anna; Nguyen, Eileen; Sun, Xiaoping; Blixt, Frank W.; Parikh, Sachin; Kessler, Jason; Pérez de Sevilla Müller, Luis; Habib, Samer; Kim, Paul; Wang, Zhe Z.; Rodriguez, Allen; Charles, Andrew; Nusinowitz, Steven; Edvinsson, Lars; Barnes, Steven; Brecha, Nicholas C.; Gorin, Michael B.

    2016-01-01

    The ability of light to cause pain is paradoxical. The retina detects light but is devoid of nociceptors while the trigeminal sensory ganglia (TG) contain nociceptors but not photoreceptors. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are thought to mediate light-induced pain but recent evidence raises the possibility of an alternative light responsive pathway independent of the retina and optic nerve. Here, we show that melanopsin is expressed in both human and mouse TG neurons. In mice, they represent 3% of small TG neurons that are preferentially localized in the ophthalmic branch of the trigeminal nerve and are likely nociceptive C fibers and high-threshold mechanoreceptor Aδ fibers based on a strong size-function association. These isolated neurons respond to blue light stimuli with a delayed onset and sustained firing, similar to the melanopsin-dependent intrinsic photosensitivity observed in ipRGCs. Mice with severe bilateral optic nerve crush exhibit no light-induced responses including behavioral light aversion until treated with nitroglycerin, an inducer of migraine in people and migraine-like symptoms in mice. With nitroglycerin, these same mice with optic nerve crush exhibit significant light aversion. Furthermore, this retained light aversion remains dependent on melanopsin-expressing neurons. Our results demonstrate a novel light-responsive neural function independent of the optic nerve that may originate in the peripheral nervous system to provide the first direct mechanism for an alternative light detection pathway that influences motivated behavior. PMID:27559310

  11. Photochemical restoration of visual responses in blind mice

    PubMed Central

    Polosukhina, Aleksandra; Litt, Jeffrey; Tochitsky, Ivan; Nemargut, Joseph; Sychev, Yivgeny; De Kouchkovsky, Ivan; Huang, Tracy; Borges, Katharine; Trauner, Dirk; Van Gelder, Russell N.; Kramer, Richard H.

    2012-01-01

    Summary Retinitis pigmentosa (RP) and age-related macular degeneration (AMD) are degenerative blinding diseases caused by the death of rods and cones, leaving the remainder of the visual system intact but largely unable to respond to light. Here we show that, AAQ, a synthetic small molecule photoswitch, can restore light sensitivity to the retina and behavioral responses in vivo in mouse models of RP without exogenous gene delivery. Brief application of AAQ bestows prolonged light sensitivity on multiple types of retinal neurons, resulting in synaptically amplified responses and center-surround antagonism in arrays of retinal ganglion cells (RGCs). Intraocular injection of AAQ restores the pupillary light reflex and locomotory light avoidance responses in mice lacking retinal photoreceptors, indicating reconstitution of light signaling to brain circuits. AAQ and related photoswitch molecules present a new drug strategy for restoring retinal function in degenerative blinding diseases. PMID:22841312

  12. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types

    PubMed Central

    Niinemets, Ülo; Keenan, Trevor F.; Hallik, Lea

    2018-01-01

    Summary Extensive within-canopy light gradients importantly affect photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitatively separating the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they fundamentally differ in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. In contrast, species with slow leaf turnover exhibit a passive AA acclimation response primarily determined by acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types and solves an old enigma of the role of mass- vs. area-based traits in vegetation acclimation. PMID:25318596

  13. CYCLIN H;1 regulates drought stress responses and blue light-induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis.

    PubMed

    Zhou, Xiao Feng; Jin, Yin Hua; Yoo, Chan Yul; Lin, Xiao-Li; Kim, Woe-Yeon; Yun, Dae-Jin; Bressan, Ray A; Hasegawa, Paul M; Jin, Jing Bo

    2013-06-01

    Arabidopsis (Arabidopsis thaliana) CYCLIN-DEPENDENT KINASE Ds (CDKDs) phosphorylate the C-terminal domain of the largest subunit of RNA polymerase II. Arabidopsis CYCLIN H;1 (CYCH;1) interacts with and activates CDKDs; however, the physiological function of CYCH;1 has not been determined. Here, we report that CYCH;1, which is localized to the nucleus, positively regulates blue light-induced stomatal opening. Reduced-function cych;1 RNA interference (cych;1 RNAi) plants exhibited a drought tolerance phenotype. CYCH;1 is predominantly expressed in guard cells, and its expression was substantially down-regulated by dehydration. Transpiration of intact leaves was reduced in cych;1 RNAi plants compared with the wild-type control in light but not in darkness. CYCH;1 down-regulation impaired blue light-induced stomatal opening but did not affect guard cell development or abscisic acid-mediated stomatal closure. Microarray and real-time polymerase chain reaction analyses indicated that CYCH;1 did not regulate the expression of abscisic acid-responsive genes or light-induced stomatal opening signaling determinants, such as MYB60, MYB61, Hypersensitive to red and blue1, and Protein phosphatase7. CYCH;1 down-regulation induced the expression of redox homeostasis genes, such as LIPOXYGENASE3 (LOX3), LOX4, ARABIDOPSIS GLUTATHIONE PEROXIDASE 7 (ATGPX7), EARLY LIGHT-INDUCIBLE PROTEIN1 (ELIP1), and ELIP2, and increased hydrogen peroxide production in guard cells. Furthermore, loss-of-function mutations in CDKD;2 or CDKD;3 did not affect responsiveness to drought stress, suggesting that CYCH;1 regulates the drought stress response in a CDKD-independent manner. We propose that CYCH;1 regulates blue light-mediated stomatal opening by controlling reactive oxygen species homeostasis.

  14. Carbon Dioxide and Fruit Odor Transduction in Drosophila Olfactory Neurons. What Controls their Dynamic Properties?

    PubMed Central

    French, Andrew S.; Meisner, Shannon; Su, Chih-Ying; Torkkeli, Päivi H.

    2014-01-01

    We measured frequency response functions between odorants and action potentials in two types of neurons in Drosophila antennal basiconic sensilla. CO2 was used to stimulate ab1C neurons, and the fruit odor ethyl butyrate was used to stimulate ab3A neurons. We also measured frequency response functions for light-induced action potential responses from transgenic flies expressing H134R-channelrhodopsin-2 (ChR2) in the ab1C and ab3A neurons. Frequency response functions for all stimulation methods were well-fitted by a band-pass filter function with two time constants that determined the lower and upper frequency limits of the response. Low frequency time constants were the same in each type of neuron, independent of stimulus method, but varied between neuron types. High frequency time constants were significantly slower with ethyl butyrate stimulation than light or CO2 stimulation. In spite of these quantitative differences, there were strong similarities in the form and frequency ranges of all responses. Since light-activated ChR2 depolarizes neurons directly, rather than through a chemoreceptor mechanism, these data suggest that low frequency dynamic properties of Drosophila olfactory sensilla are dominated by neuron-specific ionic processes during action potential production. In contrast, high frequency dynamics are limited by processes associated with earlier steps in odor transduction, and CO2 is detected more rapidly than fruit odor. PMID:24466044

  15. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light

    PubMed Central

    Hogewoning, Sander W.; Trouwborst, Govert; Maljaars, Hans; Poorter, Hendrik; van Ieperen, Wim; Harbinson, Jeremy

    2010-01-01

    The blue part of the light spectrum has been associated with leaf characteristics which also develop under high irradiances. In this study blue light dose–response curves were made for the photosynthetic properties and related developmental characteristics of cucumber leaves that were grown at an equal irradiance under seven different combinations of red and blue light provided by light-emitting diodes. Only the leaves developed under red light alone (0% blue) displayed dysfunctional photosynthetic operation, characterized by a suboptimal and heterogeneously distributed dark-adapted Fv/Fm, a stomatal conductance unresponsive to irradiance, and a relatively low light-limited quantum yield for CO2 fixation. Only 7% blue light was sufficient to prevent any overt dysfunctional photosynthesis, which can be considered a qualitatively blue light effect. The photosynthetic capacity (Amax) was twice as high for leaves grown at 7% blue compared with 0% blue, and continued to increase with increasing blue percentage during growth measured up to 50% blue. At 100% blue, Amax was lower but photosynthetic functioning was normal. The increase in Amax with blue percentage (0–50%) was associated with an increase in leaf mass per unit leaf area (LMA), nitrogen (N) content per area, chlorophyll (Chl) content per area, and stomatal conductance. Above 15% blue, the parameters Amax, LMA, Chl content, photosynthetic N use efficiency, and the Chl:N ratio had a comparable relationship as reported for leaf responses to irradiance intensity. It is concluded that blue light during growth is qualitatively required for normal photosynthetic functioning and quantitatively mediates leaf responses resembling those to irradiance intensity. PMID:20504875

  16. A novel function for the pineal organ in the control of swim depth in the Atlantic halibut larva

    NASA Astrophysics Data System (ADS)

    Novales Flamarique, Iñigo

    2002-02-01

    The pineal organ of vertebrates is a photo-sensitive structure that conveys photoperiod information to the brain. This information influences circadian rhythm and related metabolic processes such as thermoregulation, hatching time, body growth, and the timing of reproduction. This study demonstrates extra-ocular light responses that control swim depth in the larva of the Atlantic halibut, Hyppoglosus hyppoglosus. Young larvae without a functional eye (<29 days) swim upwards after an average delay of 5 s following the onset of a downwelling light stimulus, but sink downwards a few seconds later. Older larvae (>=29 days), which possess a functional eye, swim immediately downwards (microsecond delay) following the onset of the light stimulus, but proceed to swim upwards several seconds later. These two response patterns are thus opposite in polarity and have different time kinetics. Because the pineal organ of the Atlantic halibut develops during the embryonic stage, and because it is the only centre in the brain that expresses functional visual pigments (opsins) at early larval stages, it is the only photosensory organ capable of generating the extra-ocular responses observed.

  17. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes.

    PubMed

    Schmitz, Lars; Wainwright, Peter C

    2011-11-19

    Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts.

  18. Comparative transcriptional profiling-based identification of raphanusanin-inducible genes

    PubMed Central

    2010-01-01

    Background Raphanusanin (Ra) is a light-induced growth inhibitor involved in the inhibition of hypocotyl growth in response to unilateral blue-light illumination in radish seedlings. Knowledge of the roles of Ra still remains elusive. To understand the roles of Ra and its functional coupling to light signalling, we constructed the Ra-induced gene library using the Suppression Subtractive Hybridisation (SSH) technique and present a comparative investigation of gene regulation in radish seedlings in response to short-term Ra and blue-light exposure. Results The predicted gene ontology (GO) term revealed that 55% of the clones in the Ra-induced gene library were associated with genes involved in common defence mechanisms, including thirty four genes homologous to Arabidopsis genes implicated in R-gene-triggered resistance in the programmed cell death (PCD) pathway. Overall, the library was enriched with transporters, hydrolases, protein kinases, and signal transducers. The transcriptome analysis revealed that, among the fifty genes from various functional categories selected from 88 independent genes of the Ra-induced library, 44 genes were up-regulated and 4 were down-regulated. The comparative analysis showed that, among the transcriptional profiles of 33 highly Ra-inducible genes, 25 ESTs were commonly regulated by different intensities and duration of blue-light irradiation. The transcriptional profiles, coupled with the transcriptional regulation of early blue light, have provided the functional roles of many genes expected to be involved in the light-mediated defence mechanism. Conclusions This study is the first comprehensive survey of transcriptional regulation in response to Ra. The results described herein suggest a link between Ra and cellular defence and light signalling, and thereby contribute to further our understanding of how Ra is involved in light-mediated mechanisms of plant defence. PMID:20553608

  19. Nocturnal illumination maintains reproductive function and simulates the period-lengthening effect of constant light in the mature male Djungarian hamster (Phodopus sungorus)

    NASA Technical Reports Server (NTRS)

    Ferraro, J. S.

    1990-01-01

    Mature male Djungarian hamsters (Phodopus sungorus) were placed in individual light-tight, sound attenuated chambers and exposed to one of four lighting conditions for a duration of approximately seven weeks. The four lighting conditions were: constant light (LL); constant dark (DD); feedback lighting (LDFB; a condition that illuminates the cage in response to locomotor activity); or a feedback lighting neighbor control (LDFB NC; the animal receives the same light pattern as a paired animal in feedback lighting, but has no control over it). Exposure of hamsters to LL or LDFB produced significantly and similarly longer free-running periods of the locomotor activity rhythm than exposure of animals to DD. Hamsters exposed to LDFB NC did not free-run or entrain, but rather displayed "relative coordination". The paired testes and sex accessory glands weights suggest that in the Djungarian hamster, LL and LDFB exposed animals maintained reproductive function, whereas DD exposed animals did not. Animals exposed to LDFB NC had intermediate paired testes weights. Since several previous studies have demonstrated that short pulses of light, which are coincident with the subjective night, are photostimulatory, it is not surprising that LDFB maintained reproductive function in the mature Djungarian hamster. Feedback lighting, however, has been shown to be an insufficient stimulus to maintain reproductive function of mature male and female Syrian hamsters, and to the reproductive maturation of immature Djungarian hamsters. The results suggest that there may be slight, but significant differences in the way these two species interpret photoperiod, as well as a developmental change in the photoperiodic response of Djungarian hamsters.

  20. Dopamine D1 Receptors Regulate the Light Dependent Development of Retinal Synaptic Responses

    PubMed Central

    He, Quanhua; Xu, Hong-ping; Wang, Ping; Tian, Ning

    2013-01-01

    Retinal synaptic connections and function are developmentally regulated. Retinal synaptic activity plays critical roles in the development of retinal synaptic circuitry. Dopamine receptors have been thought to play important roles in the activity-dependent synaptic plasticity in central nervous system. The primary goal of this study is to determine whether dopamine D1 receptor regulates the activity-dependent development of retinal light responsiveness. Accordingly, we recorded electroretinogram from wild type mice and mice with genetic deletion of D1 dopamine receptor (D1−/− mice) raised under cyclic light conditions and constant darkness. Our results demonstrated that D1−/− mice have reduced amplitudes of all three major components of electroretinogram in adulthood. When the relative strength of the responses is considered, the D1−/− mice have selective reduction of the amplitudes of a-wave and oscillatory potentials evoked by low-intermediate intensities of lights. During postnatal development, D1−/− mice have increased amplitude of b-wave at the time of eye-opening but reduced developmental increase of the amplitude of b-wave after eye opening. Light deprivation from birth significantly reduced the amplitudes of b-wave and oscillatory potentials, increased the outer retinal light response gain and altered the light response kinetics of both a- and b-waves of wild type mice. In D1−/− mice, the effect of dark rearing on the amplitude of oscillatory potentials was diminished and dark rearing induced effects on the response gain of outer retina and the kinetics of a-wave were reversed. These results demonstrated roles of dopamine D1 receptor in the activity-dependent functional development of mouse retina. PMID:24260267

  1. [Methodological approaches to the hygienic evaluation of total artificial lighting of classrooms with different light sources on the basis of the response of the cardiovascular system of schoolchildren].

    PubMed

    Teksheva, L M; Zvezdina, I V

    2014-01-01

    Hygienic evaluation of innovative equipment in educational institutions requires the use of appropriate methods permitting to establish valuable criterias for the effectiveness of the application of new technologies. The study of the response of the cardiovascular system of schoolchildren under using different light sources allowed to establish the increase in adaptive capacities and the improvement of the functional state of the organism in LED in comparison with fluorescent lighting.

  2. Roles of ON Cone Bipolar Cell Subtypes in Temporal Coding in the Mouse Retina

    PubMed Central

    Fyk-Kolodziej, Bozena; Cohn, Jesse

    2014-01-01

    In the visual system, diverse image processing starts with bipolar cells, which are the second-order neurons of the retina. Thirteen subtypes of bipolar cells have been identified, which are thought to encode different features of image signaling and to initiate distinct signal-processing streams. Although morphologically identified, the functional roles of each bipolar cell subtype in visual signal encoding are not fully understood. Here, we investigated how ON cone bipolar cells of the mouse retina encode diverse temporal image signaling. We recorded bipolar cell voltage changes in response to two different input functions: sinusoidal light and step light stimuli. Temporal tuning in ON cone bipolar cells was diverse and occurred in a subtype-dependent manner. Subtypes 5s and 8 exhibited low-pass filtering property in response to a sinusoidal light stimulus, and responded with sustained fashion to step-light stimulation. Conversely, subtypes 5f, 6, 7, and XBC exhibited bandpass filtering property in response to sinusoidal light stimuli, and responded transiently to step-light stimuli. In particular, subtypes 7 and XBC were high-temporal tuning cells. We recorded responses in different ways to further examine the underlying mechanisms of temporal tuning. Current injection evoked low-pass filtering, whereas light responses in voltage-clamp mode produced bandpass filtering in all ON bipolar cells. These findings suggest that cone photoreceptor inputs shape bandpass filtering in bipolar cells, whereas intrinsic properties of bipolar cells shape low-pass filtering. Together, our results demonstrate that ON bipolar cells encode diverse temporal image signaling in a subtype-dependent manner to initiate temporal visual information-processing pathways. PMID:24966376

  3. Dopamine D2 receptors preferentially regulate the development of light responses of the inner retina

    PubMed Central

    Tian, Ning; Xu, Hong-ping; Wang, Ping

    2014-01-01

    Retinal light responsiveness measured via electroretinography undergoes developmental modulation and is thought to be critically regulated by both visual experience and dopamine. The primary goal of this study is to determine whether the dopamine D2 receptor regulates the visual experience-dependent functional development of the retina. Accordingly, we recorded electroretinograms from wild type mice and mice with a genetic deletion of the gene that encodes the dopamine D2 receptor raised under normal cyclic light conditions and constant darkness. Our results demonstrate that mutation of the dopamine D2 receptors preferentially increases the amplitude of the inner retinal light responses evoked by high intensity light measured as oscillatory potentials in adult mice. During postnatal development, all three major components of electroretinograms, the a-wave, b-wave and oscillatory potentials, increase with age. Comparatively, mutation of the dopamine D2 receptors preferentially reduces the age-dependent increase of b-waves evoked by low intensity light. Light deprivation from birth reduces the amplitude of b-waves and completely diminishes the increased amplitude of oscillatory potentials. Taken together, these results demonstrate that the dopamine D2 receptor plays an important role in the activity-dependent functional development of the mouse retina. PMID:25393815

  4. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma.

    PubMed

    Della Santina, Luca; Inman, Denise M; Lupien, Caroline B; Horner, Philip J; Wong, Rachel O L

    2013-10-30

    Intraocular pressure (IOP) elevation is a principal risk factor for glaucoma. Using a microbead injection technique to chronically raise IOP for 15 or 30 d in mice, we identified the early changes in visual response properties of different types of retinal ganglion cells (RGCs) and correlated these changes with neuronal morphology before cell death. Microbead-injected eyes showed reduced optokinetic tracking as well as cell death. In such eyes, multielectrode array recordings revealed that four RGC types show diverse alterations in their light responses upon IOP elevation. OFF-transient RGCs exhibited a more rapid decline in both structural and functional organizations compared with other RGCs. In contrast, although the light-evoked responses of OFF-sustained RGCs were perturbed, the dendritic arbor of this cell type remained intact. ON-transient and ON-sustained RGCs had normal functional receptive field sizes but their spontaneous and light-evoked firing rates were reduced. ON- and OFF-sustained RGCs lost excitatory synapses across an otherwise structurally normal dendritic arbor. Together, our observations indicate that there are changes in spontaneous activity and light-evoked responses in RGCs before detectable dendritic loss. However, when dendrites retract, we found corresponding changes in receptive field center size. Importantly, the effects of IOP elevation are not uniformly manifested in the structure and function of diverse RGC populations, nor are distinct RGC types perturbed within the same time-frame by such a challenge.

  5. Cell response to quasi-monochromatic light with different coherence

    NASA Astrophysics Data System (ADS)

    Budagovsky, A. V.; Solovykh, N. V.; Budagovskaya, O. N.; Budagovsky, I. A.

    2015-04-01

    The problem of the light coherence effect on the magnitude of the photoinduced cell response is discussed. The origins of ambiguous interpretation of the known experimental results are considered. Using the biological models, essentially differing in anatomy, morphology and biological functions (acrospires of radish, blackberry microsprouts cultivated in vitro, plum pollen), the effect of statistical properties of quasi-monochromatic light (λmax = 633 nm) on the magnitude of the photoinduced cell response is shown. It is found that for relatively low spatial coherence, the cell functional activity changes insignificantly. The maximal enhancement of growing processes (stimulating effect) is observed when the coherence length Lcoh and the correlation radius rcor are greater than the cell size, i.e., the entire cell fits into the field coherence volume. In this case, the representative indicators (germination of seeds and pollen, the spears length) exceeds those of non-irradiated objects by 1.7 - 3.9 times. For more correct assessment of the effect of light statistical properties on photocontrol processes, it is proposed to replace the qualitative description (coherent - incoherent) with the quantitative one, using the determination of spatial and temporal correlation functions and comparing them with the characteristic dimensions of the biological structures, e.g., the cell size.

  6. Functions of a new photoreceptor membrane. [energy conversion via halobacteria rhodopsin changes

    NASA Technical Reports Server (NTRS)

    Oesterhelt, D.; Stoeckenius, W.

    1973-01-01

    In the investigation of light responses on halobacteria phototaxis; ATP synthesis; and changes in O2 consumption, purple membrane biosynthesis, and proton translocation were found. The last three effects are discussed, which suggest that the purple membrane may function as an energy-coupling membrane for light. It is also suggested that purple membrane, through cyclic light-induced conformational changes of its bacteriorhodopsin, directly converts absorbed light energy into a proton gradient and presumably also an electric potential difference across the membrane analogous to observations in other prokaryotic cells, mitochondria, and chloroplasts.

  7. Light-Responsive and pH-Responsive DNA Microcapsules for Controlled Release of Loads.

    PubMed

    Huang, Fujian; Liao, Wei-Ching; Sohn, Yang Sung; Nechushtai, Rachel; Lu, Chun-Hua; Willner, Itamar

    2016-07-20

    A method to assemble light-responsive or pH-responsive microcapsules loaded with different loads (tetramethylrhodamine-modified dextran, TMR-D; microperoxidase-11, MP-11; CdSe/ZnS quantum dots; or doxorubicin-modified dextran, DOX-D) is described. The method is based on the layer-by-layer deposition of sequence-specific nucleic acids on poly(allylamine hydrochloride)-functionalized CaCO3 core microparticles, loaded with the different loads, that after the dissolution of the core particles with EDTA yields the stimuli-responsive microcapsules that include the respective loads. The light-responsive microcapsules are composed of photocleavable o-nitrobenzyl-phosphate-modified DNA shells, and the pH-responsive microcapsules are made of a cytosine-rich layer cross-linked by nucleic acid bridges. Irradiating the o-nitrobenzyl phosphate-functionalized microcapsules, λ = 365 nm, or subjecting the pH-responsive microcapsules to pH = 5.0, results in the cleavage of the microcapsule shells and the release of the loads. Preliminary studies address the cytotoxicity of the DOX-D-loaded microcapsules toward MDA-MB-231 breast cancer cells and normal MCF-10A breast epithelial cells. Selective cytotoxicity of the DOX-D-loaded microcapsules toward cancer cells is demonstrated.

  8. Versatile functional roles of horizontal cells in the retinal circuit.

    PubMed

    Chaya, Taro; Matsumoto, Akihiro; Sugita, Yuko; Watanabe, Satoshi; Kuwahara, Ryusuke; Tachibana, Masao; Furukawa, Takahisa

    2017-07-17

    In the retinal circuit, environmental light signals are converted into electrical signals that can be decoded properly by the brain. At the first synapse of the visual system, information flow from photoreceptors to bipolar cells is modulated by horizontal cells (HCs), however, their functional contribution to retinal output and individual visual function is not fully understood. In the current study, we investigated functional roles for HCs in retinal ganglion cell (RGC) response properties and optokinetic responses by establishing a HC-depleted mouse line. We observed that HC depletion impairs the antagonistic center-surround receptive field formation of RGCs, supporting a previously reported HC function revealed by pharmacological approaches. In addition, we found that HC loss reduces both the ON and OFF response diversities of RGCs, impairs adjustment of the sensitivity to ambient light at the retinal output level, and alters spatial frequency tuning at an individual level. Taken together, our current study suggests multiple functional aspects of HCs crucial for visual processing.

  9. The Melanopic Sensitivity Function Accounts for Melanopsin-Driven Responses in Mice under Diverse Lighting Conditions

    PubMed Central

    Brown, Timothy M.; Allen, Annette E.; al-Enezi, Jazi; Wynne, Jonathan; Schlangen, Luc; Hommes, Vanja; Lucas, Robert J.

    2013-01-01

    In addition to rods and cones, photoreception in mammals extends to a third retinal cell type expressing the photopigment melanopsin. The influences of this novel opsin are widespread, ranging from pupillary and circadian responses to brightness perception, yet established approaches to quantifying the biological effects of light do not adequately account for melanopsin sensitivity. We have recently proposed a novel metric, the melanopic sensitivity function (VZλ), to address this deficiency. Here, we further validate this new measure with a variety of tests based on potential barriers to its applicability identified in the literature or relating to obvious practical benefits. Using electrophysiogical approaches and pupillometry, initially in rodless+coneless mice, our data demonstrate that under a very wide range of different conditions (including switching between stimuli with highly divergent spectral content) the VZλ function provides an accurate prediction of the sensitivity of melanopsin-dependent responses. We further show that VZλ provides the best available description of the spectral sensitivity of at least one aspect of the visual response in mice with functional rods and cones: tonic firing activity in the lateral geniculate nuclei. Together, these data establish VZλ as an important new approach for light measurement with widespread practical utility. PMID:23301090

  10. The Relation Between Light-Induced Lacrimation and the Melanopsin-Driven Postillumination Pupil Response.

    PubMed

    Lei, Shaobo; Goltz, Herbert C; Chen, Xingqiao; Zivcevska, Marija; Wong, Agnes M F

    2017-03-01

    To investigate the chromatic characteristics and intensity-response function of light-induced reflex lacrimation and its correlation with the melanopsin-driven postillumination pupil response (PIPR). Eleven visually normal participants completed the experiment. Lacrimation was measured in one eye by placing a calibrated filter paper strip in the conjunctival sac over a 1 minute-interval (Schirmer's test) during which participants received either no light stimulation (baseline trial) or one flash of blue or red light stimuli presented binocularly with a Ganzfeld stimulator, while the pupil response was recorded simultaneously from the fellow eye by using an eye tracker. Light stimulation trials were presented in alternating fashion at seven incremental intensity steps (0.1, 1, 3.16, 10, 31.6, 100, and 400 cd/m2). Postillumination pupil response was defined as the mean pupil constriction from 10 to 30 seconds post illumination. The amount of lacrimation in response to 10 to 400 cd/m2 blue light was significantly greater than baseline and increased monotonically with increasing light intensity. Red light did not induce significant reflex lacrimation until the brightest stimulation at 400 cd/m2. There was a positive linear correlation between PIPR and lacrimation in response to blue light (r = 0.74, P < 0.001) but not to red light (r = 0.13, P = 0.25). The chromatic characteristics and intensity-response of light-induced lacrimation are highly consistent with the features of melanopsin phototransduction. This finding is the first in vivo evidence in humans, supporting the hypothesis that light-induced reflex lacrimation is mediated primarily by melanopsin photoactivity, and provides new insight into the putative mechanisms of photophobia.

  11. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types.

    PubMed

    Niinemets, Ülo; Keenan, Trevor F; Hallik, Lea

    2015-02-01

    Extensive within-canopy light gradients importantly affect the photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitative separation of the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they differ fundamentally in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover, exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. By contrast, species with slow leaf turnover exhibit a passive AA acclimation response, primarily determined by the acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types, and solves an old enigma of the role of mass- vs area-based traits in vegetation acclimation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  12. Abnormal hypothalamic response to light in seasonal affective disorder.

    PubMed

    Vandewalle, Gilles; Hébert, Marc; Beaulieu, Catherine; Richard, Laurence; Daneault, Véronique; Garon, Marie-Lou; Leblanc, Jean; Grandjean, Didier; Maquet, Pierre; Schwartz, Sophie; Dumont, Marie; Doyon, Julien; Carrier, Julie

    2011-11-15

    Vulnerability to the reduction in natural light associated with fall/winter is generally accepted as the main trigger of seasonal affective disorder (SAD), whereas light therapy is a treatment of choice of the disorder. However, the relationship between exposure to light and mood regulation remains unclear. As compared with green light, blue light was shown to acutely modulate emotion brain processing in healthy individuals. Here, we investigated the impact of light on emotion brain processing in patients with SAD and healthy control subjects and its relationship with retinal light sensitivity. Fourteen symptomatic untreated patients with SAD (34.5 ± 8.2 years; 9 women) and 16 healthy control subjects (32.3 ± 7.7 years; 11 women) performed an auditory emotional task in functional magnetic resonance imaging during the fall/winter season, while being exposed to alternating blue and green monochromatic light. Scotopic and photopic retinal light sensitivities were then evaluated with electroretinography. Blue light enhanced responses to auditory emotional stimuli in the posterior hypothalamus in patients with SAD, whereas green light decreased these responses. These effects of blue and green light were not observed in healthy control subjects, despite similar retinal sensitivity in SAD and control subjects. These results point to the posterior hypothalamus as the neurobiological substrate involved in specific aspects of SAD, including a distinctive response to light and altered emotional responses. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. The short-term response of Arabidopsis thaliana (C3) and Zea mays (C4) chloroplasts to red and far red light.

    PubMed

    Zienkiewicz, Maksymilian; Drożak, Anna; Wasilewska, Wioleta; Bacławska, Ilona; Przedpełska-Wąsowicz, Ewa; Romanowska, Elżbieta

    2015-12-01

    Light quality has various effects on photochemistry and protein phosphorylation in Zea mays and Arabidopsis thaliana thylakoids due to different degrees of light penetration across leaves and redox status in chloroplasts. The effect of the spectral quality of light (red, R and far red, FR) on the function of thylakoid proteins in Zea mays and Arabidopsis thaliana was investigated. It was concluded that red light stimulates PSII activity in A. thaliana thylakoids and in maize bundle sheath (BS) thylakoids, but not in mesophyll (M) thylakoids. The light quality did not change PSI activity in M thylakoids of maize. FR used after a white light period increased PSI activity significantly in maize BS and only slightly in A. thaliana thylakoids. As shown by blue native (BN)-PAGE followed by SDS-PAGE, proteins were differently phosphorylated in the thylakoids, indicating their different functions. FR light increased dephosphorylation of LHCII proteins in A. thaliana thylakoids, whereas in maize, dephosphorylation did not occur at all. The rate of phosphorylation was higher in maize BS than in M thylakoids. D1 protein phosphorylation increased in maize and decreased in A. thaliana upon irradiation with both R and growth light (white light, W). Light variations did not change the level of proteins in thylakoids. Our data strongly suggest that response to light quality is a species-dependent phenomenon. We concluded that the maize chloroplasts were differently stimulated, probably due to different degrees of light penetration across the leaf and thereby the redox status in the chloroplasts. These acclimation changes induced by light quality are important in the regulation of chloroplast membrane flexibility and thus its function.

  14. Determining Concentration of Nanoparticles from Ellipsometry

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa; Kempen, Lothar U.; Chipman, Russell

    2008-01-01

    A method of using ellipsometry or polarization analysis of light in total internal reflection of a surface to determine the number density of gold nanoparticles on a smooth substrate has been developed. The method can be modified to enable determination of densities of sparse distributions of nanoparticles in general, and is expected to be especially useful for measuring gold-nanoparticle-labeled biomolecules on microarrays. The method is based on theoretical calculations of the ellipsometric responses of gold nanoparticles. Elements of the calculations include the following: For simplicity, the gold nanoparticles are assumed to be spherical and to have the same radius. The distribution of gold nanoparticles is assumed to be a sub-monolayer (that is, sparser than a monolayer). The optical response of the sub-monolayer is modeled by use of a thin-island-film theory, according to which the polarizabilities parallel and perpendicular to the substrate are functions of the wavelength of light, the dielectric functions (permittivities expressed as complex functions of frequency or wavelength) of the gold and the suspending medium (in this case, the suspending medium is air), the fraction of the substrate area covered by the nanoparticles, and the radius of the nanoparticles. For the purpose of the thin-island-film theory, the dielectric function of the gold nanoparticles is modeled as the known dielectric function of bulk gold plus a correction term that is necessitated by the fact that the mean free path length for electrons in gold decreases with decreasing radius, in such a manner as to cause the imaginary part of the dielectric function to increase with decreasing radius (see figure). The correction term is a function of the nanoparticle radius, the wavelength of light, the mean free path and the Fermi speed of electrons in bulk gold, the plasma frequency of gold, and the speed of light in a vacuum. These models are used to calculate ellipsometric responses for various concentrations of gold nanoparticles having an assumed radius. The modeled data indicates distinct spectral features for both the real and the imaginary part of the dielectric function. An ellipsometric measurement would determine this distinct feature and thus can be used to measure nanoparticle concentration. By "ellipsometric responses" is meant the intensities of light measured in various polarization states as functions of the angle of incidence and the polarization states of the incident light. These calculated ellipsometric responses are used as calibration curves: Data from subsequent ellipsometric measurements on real specimens are compared with the calibration curves. The concentration of the nanoparticles on a specimen is assumed to be that of the calibration curve that most closely matches the data pertaining to that specimen.

  15. The Function of Television for Children and Adolescents.

    ERIC Educational Resources Information Center

    Furu, Takeo

    A study was devised to investigate the function of television (TV) in children's leisure time. Subjects were 3000 school children in a suburban area of Tokyo. From the children's responses to questionnaires, they were separated into TV-type (heavy TV viewers and light print media users) and print-type (light TV viewers and heavy print media users)…

  16. Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry--functional relationships between short-term and long-term light quality acclimation in plants.

    PubMed

    Dietzel, Lars; Bräutigam, Katharina; Pfannschmidt, Thomas

    2008-03-01

    In dense plant populations, individuals shade each other resulting in a low-light habitat that is enriched in far-red light. This light quality gradient decreases the efficiency of the photosynthetic light reaction as a result of imbalanced excitation of the two photosystems. Plants counteract such conditions by performing acclimation reactions. Two major mechanisms are known to assure efficient photosynthesis: state transitions, which act on a short-term timescale; and a long-term response, which enables the plant to re-adjust photosystem stoichiometry in favour of the rate-limiting photosystem. Both processes start with the perception of the imbalanced photosystem excitation via reduction/oxidation (redox) signals from the photosynthetic electron transport chain. Recent data in Arabidopsis indicate that initialization of the molecular processes in both cases involve the activity of the thylakoid membrane-associated kinase, STN7. Thus, redox-controlled phosphorylation events may not only adjust photosystem antenna structure but may also affect plastid, as well as nuclear, gene expression. Both state transitions and the long-term response have been described mainly in molecular terms, while the physiological relevance concerning plant survival and reproduction has been poorly investigated. Recent studies have shed more light on this topic. Here, we give an overview on the long-term response, its physiological effects, possible mechanisms and its relationship to state transitions as well as to nonphotochemical quenching, another important short-term mechanism that mediates high-light acclimation. Special emphasis is given to the functional roles and potential interactions between the different light acclimation strategies. A working model displays the various responses as an integrated molecular system that helps plants to acclimate to the changing light environment.

  17. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes

    PubMed Central

    2011-01-01

    Background Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. Results We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Conclusions Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts. PMID:22098687

  18. Phase response of the Arabidopsis thaliana circadian clock to light pulses of different wavelengths.

    PubMed

    Ohara, Takayuki; Fukuda, Hirokazu; Tokuda, Isao T

    2015-04-01

    Light is known as one of the most powerful environmental time cues for the circadian system. The quality of light is characterized by its intensity and wavelength. We examined how the phase response of Arabidopsis thaliana depends on the wavelength of the stimulus light and the type of light perturbation. Using transgenic A. thaliana expressing a luciferase gene, we monitored the rhythm of the bioluminescence signal. We stimulated the plants under constant red light using 3 light perturbation treatments: (1) increasing the red light intensity, (2) turning on a blue light while turning off the red light, and (3) turning on a blue light while keeping the red light on. To examine the phase response properties, we generated a phase transition curve (PTC), which plots the phase after the perturbation as a function of the phase before the perturbation. To evaluate the effect of the 3 light perturbation treatments, we simulated PTCs using a mathematical model of the plant circadian clock and fitted the simulated PTCs to the experimentally measured PTCs. Among the 3 treatments, perturbation (3) provided the strongest stimulus. The results indicate that the color of the stimulus light and the type of pulse administration affect the phase response in a complex manner. Moreover, the results suggest the involvement of interaction between red and blue light signaling pathways in resetting of the plant circadian clock. © 2015 The Author(s).

  19. Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: The Effects of Cloud Orientation and Anisotropic Illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeyda, Triana; Robinson, Andrew; Richmond, Michael

    The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the codemore » computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μ m that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.« less

  20. Melanopsin-Mediated Acute Light Responses Measured in Winter and in Summer: Seasonal Variations in Adults with and without Cataracts.

    PubMed

    Münch, Mirjam; Ladaique, Myriam; Roemer, Ségolène; Hashemi, Kattayoon; Kawasaki, Aki

    2017-01-01

    Seasonal adaptation is a ubiquitous behavior seen in many species on both global hemispheres and is conveyed by changing photoperiods. In humans this seasonal adaptation is less apparent, in part because changes in daylength are masked by the use of electrical lighting at night. On the other hand, cataracts which reduce light transmission, may compound seasonal changes related to the reduced daylength of winter. To better understand the effects of different photoperiod lengths in healthy adults without and with cataracts, we tested their melanopsin-mediated light responses in summer vs. winter. Fifty-two participants (mean age 67.4 years; 30 with bilateral cataracts and 22 age-matched controls with clear lenses; pseudophakes) were tested twice, once in summer and once in winter. At each test session we assessed the electroretinogram and pupil responses during daytime and we determined melatonin suppression, subjective sleepiness and mood in response to light exposure in the evening. Circadian rest-activity cycles and sleep from activity recordings were also analyzed for both seasons. Both groups had similar visual function. There were no seasonal differences in the electroretinogram. For the pupil responses to bright blue light, the post-illumination pupil response (PIPR) was greater in winter than summer in pseudophakes, but not in cataract participants, whereas melatonin suppression to acute light exposure showed no differences between both groups and seasons. Overall, intra-daily variability of rest-activity was worse in winter but participants felt sleepier and reported worse mood at the laboratory in evening time in the summer. Those with cataracts had poorer sleep quality with lower sleep efficiency, and higher activity during sleep in winter than summer. In this study, the PIPR showed a seasonal variation in which a larger response was found during winter. This variation was only detected in participants with a clear intraocular lens. In the cataract group, visual function was not impaired yet these participants showed a lack of seasonal changes in the pupil response to blue light and poorer sleep in winter. These findings raise the question for tailored lighting conditions for cataract patients in order to counter potentially deleterious effects of living with chronically lower light exposure.

  1. Melanopsin-Mediated Acute Light Responses Measured in Winter and in Summer: Seasonal Variations in Adults with and without Cataracts

    PubMed Central

    Münch, Mirjam; Ladaique, Myriam; Roemer, Ségolène; Hashemi, Kattayoon; Kawasaki, Aki

    2017-01-01

    Seasonal adaptation is a ubiquitous behavior seen in many species on both global hemispheres and is conveyed by changing photoperiods. In humans this seasonal adaptation is less apparent, in part because changes in daylength are masked by the use of electrical lighting at night. On the other hand, cataracts which reduce light transmission, may compound seasonal changes related to the reduced daylength of winter. To better understand the effects of different photoperiod lengths in healthy adults without and with cataracts, we tested their melanopsin-mediated light responses in summer vs. winter. Fifty-two participants (mean age 67.4 years; 30 with bilateral cataracts and 22 age-matched controls with clear lenses; pseudophakes) were tested twice, once in summer and once in winter. At each test session we assessed the electroretinogram and pupil responses during daytime and we determined melatonin suppression, subjective sleepiness and mood in response to light exposure in the evening. Circadian rest-activity cycles and sleep from activity recordings were also analyzed for both seasons. Both groups had similar visual function. There were no seasonal differences in the electroretinogram. For the pupil responses to bright blue light, the post-illumination pupil response (PIPR) was greater in winter than summer in pseudophakes, but not in cataract participants, whereas melatonin suppression to acute light exposure showed no differences between both groups and seasons. Overall, intra-daily variability of rest-activity was worse in winter but participants felt sleepier and reported worse mood at the laboratory in evening time in the summer. Those with cataracts had poorer sleep quality with lower sleep efficiency, and higher activity during sleep in winter than summer. In this study, the PIPR showed a seasonal variation in which a larger response was found during winter. This variation was only detected in participants with a clear intraocular lens. In the cataract group, visual function was not impaired yet these participants showed a lack of seasonal changes in the pupil response to blue light and poorer sleep in winter. These findings raise the question for tailored lighting conditions for cataract patients in order to counter potentially deleterious effects of living with chronically lower light exposure. PMID:28955293

  2. Light-sensitive brain pathways and aging.

    PubMed

    Daneault, V; Dumont, M; Massé, É; Vandewalle, G; Carrier, J

    2016-03-15

    Notwithstanding its effects on the classical visual system allowing image formation, light acts upon several non-image-forming (NIF) functions including body temperature, hormonal secretions, sleep-wake cycle, alertness, and cognitive performance. Studies have shown that NIF functions are maximally sensitive to blue wavelengths (460-480 nm), in comparison to longer light wavelengths. Higher blue light sensitivity has been reported for melatonin suppression, pupillary constriction, vigilance, and performance improvement but also for modulation of cognitive brain functions. Studies investigating acute stimulating effects of light on brain activity during the execution of cognitive tasks have suggested that brain activations progress from subcortical regions involved in alertness, such as the thalamus, the hypothalamus, and the brainstem, before reaching cortical regions associated with the ongoing task. In the course of aging, lower blue light sensitivity of some NIF functions has been reported. Here, we first describe neural pathways underlying effects of light on NIF functions and we discuss eye and cerebral mechanisms associated with aging which may affect NIF light sensitivity. Thereafter, we report results of investigations on pupillary constriction and cognitive brain sensitivity to light in the course of aging. Whereas the impact of light on cognitive brain responses appears to decrease substantially, pupillary constriction seems to remain more intact over the lifespan. Altogether, these results demonstrate that aging research should take into account the diversity of the pathways underlying the effects of light on specific NIF functions which may explain their differences in light sensitivity.

  3. Aperiodic nanoplasmonic devices for directional colour filtering and sensing.

    PubMed

    Davis, Matthew S; Zhu, Wenqi; Xu, Ting; Lee, Jay K; Lezec, Henri J; Agrawal, Amit

    2017-11-07

    Exploiting the wave-nature of light in its simplest form, periodic architectures have enabled a panoply of tunable optical devices with the ability to perform useful functions such as filtering, spectroscopy, and multiplexing. Here, we remove the constraint of structural periodicity to enhance, simultaneously, the performance and functionality of passive plasmonic devices operating at optical frequencies. By using a physically intuitive, first-order interference model of plasmon-light interactions, we demonstrate a simple and efficient route towards designing devices with flexible, multi-spectral optical response, fundamentally not achievable using periodic architectures. Leveraging this approach, we experimentally implement ultra-compact directional light-filters and colour-sorters exhibiting angle- or spectrally-tunable optical responses with high contrast, and low spectral or spatial crosstalk. Expanding the potential of aperiodic systems to implement tailored spectral and angular responses, these results hint at promising applications in solar-energy harvesting, optical signal multiplexing, and integrated sensing.

  4. Assessing potential targets of calcium action in light-modulated gravitropism

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1995-01-01

    Light, through the mediation of the pigment phytochrome, modulates the gravitropic response of the shoots and roots of many plants. The transduction of both light and gravity stimuli appears to involve Ca(2+)-regulated steps, one or more of which may represent points of intersection between the two transduction chains. To be confident that Ca2+ plays a critical role in stimulus-response coupling for gravitropism, it will be important to identify specific targets of Ca2+ action whose function can be clearly linked to the regulation of growth. Calcium typically exerts its influence on cell metabolism through binding to and activating key regulatory proteins. The three best characterized of these proteins in plants are the calmodulins, calcium-dependent protein kinases, and annexins. In this review we summarize what is known about the structure and function of these proteins and speculate on how their activation by Ca2+ could influence the differential growth response of gravitropism.

  5. Fos expression in the suprachiasmatic nucleus in response to light stimulation in a solitary and social species of African mole-rat (family Bathyergidae).

    PubMed

    Oosthuizen, M K; Bennett, N C; Cooper, H M

    2005-01-01

    Mole-rats are strictly subterranean rodents that are rarely exposed to environmental light. They are well adapted to their environment and have reduced eyes and a severely regressed visual system. It has been shown, however, that mole-rats do exhibit endogenous circadian rhythms that can be entrained, suggesting an intact and functional circadian system. To determine whether light is the entraining agent in these animals, Fos expression in response to light pulses at different circadian times was investigated to obtain phase response curves. Light is integrated effectively in the suprachiasmatic nucleus of the Cape mole-rat (Georychus capensis), and Fos expression is gated according to the phase of the circadian clock. The Fos response in the Cape mole-rat was comparable to that of aboveground rodents. In contrast, the highveld mole-rat (Cryptomys hottentotus pretoriae) was less sensitive to light and did not show a selective Fos response according to the phase of the circadian cycle. Social species appear to be less sensitive to light than their solitary counterparts, which compares well with results from locomotor activity studies.

  6. Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems.

    PubMed

    Cardano, Francesca; Frasconi, Marco; Giordani, Silvia

    2018-01-01

    Photo-responsive multifunctional nanomaterials are receiving considerable attention for biological applications because of their unique properties. The functionalization of the surface of carbon nanotubes (CNTs) and graphene, among other carbon based nanomaterials, with molecular switches that exhibit reversible transformations between two or more isomers in response to different kind of external stimuli, such as electromagnetic radiation, temperature and pH, has allowed the control of the optical and electrical properties of the nanomaterial. Light-controlled molecular switches, such as azobenzene and spiropyran, have attracted a lot of attention for nanomaterial's functionalization because of the remote modulation of their physicochemical properties using light stimulus. The enhanced properties of the hybrid materials obtained from the coupling of carbon based nanomaterials with light-responsive switches has enabled the fabrication of smart devices for various biological applications, including drug delivery, bioimaging and nanobiosensors. In this review, we highlight the properties of photo-responsive carbon nanomaterials obtained by the conjugation of CNTs and graphene with azobenzenes and spiropyrans molecules to investigate biological systems, devising possible future directions in the field.

  7. Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems

    PubMed Central

    Cardano, Francesca; Frasconi, Marco; Giordani, Silvia

    2018-01-01

    Photo-responsive multifunctional nanomaterials are receiving considerable attention for biological applications because of their unique properties. The functionalization of the surface of carbon nanotubes (CNTs) and graphene, among other carbon based nanomaterials, with molecular switches that exhibit reversible transformations between two or more isomers in response to different kind of external stimuli, such as electromagnetic radiation, temperature and pH, has allowed the control of the optical and electrical properties of the nanomaterial. Light-controlled molecular switches, such as azobenzene and spiropyran, have attracted a lot of attention for nanomaterial's functionalization because of the remote modulation of their physicochemical properties using light stimulus. The enhanced properties of the hybrid materials obtained from the coupling of carbon based nanomaterials with light-responsive switches has enabled the fabrication of smart devices for various biological applications, including drug delivery, bioimaging and nanobiosensors. In this review, we highlight the properties of photo-responsive carbon nanomaterials obtained by the conjugation of CNTs and graphene with azobenzenes and spiropyrans molecules to investigate biological systems, devising possible future directions in the field. PMID:29707534

  8. Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems

    NASA Astrophysics Data System (ADS)

    Cardano, Francesca; Frasconi, Marco; Giordani, Silvia

    2018-04-01

    Photo-responsive multifunctional nanomaterials are receiving considerable attention for biological applications because of their unique properties. The functionalization of the surface of carbon nanotubes (CNTs) and graphene, among other carbon based nanomaterials, with molecular switches that exhibit reversible transformations between two or more isomers in response to different kind of external stimuli, such as electromagnetic radiation, temperature and pH, has allowed the control of the optical and electrical properties of the nanomaterial. Light-controlled molecular switches, such as azobenzene and spiropyran, have attracted a lot of attention for nanomaterial’s functionalization because of the remote modulation of their physicochemical properties using light stimulus. The enhanced properties of the hybrid materials obtained from the coupling of carbon based nanomaterials with light-responsive switches has enabled the fabrication of smart devices for various biological applications, including drug delivery, bioimaging and nanobiosensors. In this review, we highlight the properties of photo-responsive carbon nanomaterials obtained by the conjugation of CNTs and graphene with azobenzenes and spiropyrans molecules to investigate biological systems, devising possible future directions in the field.

  9. Light response characteristics of a morphologically diverse group of southern hemisphere conifers as measured by chlorophyll fluorescence.

    PubMed

    Brodribb, T; Hill, Robert S

    1997-03-01

    Unlike northern hemisphere conifer families, the southern family, Podocarpaceae, produces a great variety of foliage forms ranging from functionally broad-, to needle-leaved. The production of broad photosynthetic surfaces in podocarps has been linked qualitatively to low-light-environments, and we undertook to assess the validity of this assumption by measuring the light response of a morphologically diverse group of podocarps. The light response, as apparent photochemical electron transport rate (ETR), was measured by modulated fluorescence in ten species of this family and six associated species (including five Cupressaceae and one functionally needle-leaved angiosperm) all grown under identical glasshouse conditions. In all species, ETR was found to increase as light intensity increased, reaching a peak value (ETR max ) at saturating quantum flux (PPFD sat ), and decreasing thereafter. ETR max ranged from 217 μmol electrons · m -2  · s -1 at a PPFD sat of 1725 μmol photons · m -2  · s -1 in Actinostrobus acuminatus to an ETR of 60 μmol electrons · m -2  · s -1 at a PPFD sat of 745 μmol electrons · m -2  · s -1 in Podocarpus dispermis. Good correlations were observed between ETR max and both PPFD sat and maximum assimilation rate measured by gas-exchange analysis. The effective quantum yield at light saturation remained constant in all species with an average value of 0.278 ± 0.0035 determined for all 16 species. Differences in the shapes of light response curves were related to differences in the response of non-photochemical quenching (q n ), with q n saturating faster in species with low PPFD sat . Amongst the species of Podocarpaceae, the log of average shoot width was well correlated with PPFD sat , wider leaves saturating at lower light intensities. This suggests that broadly flattened shoots in the Podocarpaceae are an adaptation to low light intensity.

  10. Light and Nutrient Dependent Responses in Secondary Metabolites of Plantago lanceolata Offspring Are Due to Phenotypic Plasticity in Experimental Grasslands

    PubMed Central

    Miehe-Steier, Annegret; Roscher, Christiane; Reichelt, Michael; Gershenzon, Jonathan; Unsicker, Sybille B.

    2015-01-01

    A few studies in the past have shown that plant diversity in terms of species richness and functional composition can modify plant defense chemistry. However, it is not yet clear to what extent genetic differentiation of plant chemotypes or phenotypic plasticity in response to diversity-induced variation in growth conditions or a combination of both is responsible for this pattern. We collected seed families of ribwort plantain (Plantago lanceolata) from six-year old experimental grasslands of varying plant diversity (Jena Experiment). The offspring of these seed families was grown under standardized conditions with two levels of light and nutrients. The iridoid glycosides, catalpol and aucubin, and verbascoside, a caffeoyl phenylethanoid glycoside, were measured in roots and shoots. Although offspring of different seed families differed in the tissue concentrations of defensive metabolites, plant diversity in the mothers' environment did not explain the variation in the measured defensive metabolites of P. lanceolata offspring. However secondary metabolite levels in roots and shoots were strongly affected by light and nutrient availability. Highest concentrations of iridoid glycosides and verbascoside were found under high light conditions, and nutrient availability had positive effects on iridoid glycoside concentrations in plants grown under high light conditions. However, verbascoside concentrations decreased under high levels of nutrients irrespective of light. The data from our greenhouse study show that phenotypic plasticity in response to environmental variation rather than genetic differentiation in response to plant community diversity is responsible for variation in secondary metabolite concentrations of P. lanceolata in the six-year old communities of the grassland biodiversity experiment. Due to its large phenotypic plasticity P. lanceolata has the potential for a fast and efficient adjustment to varying environmental conditions in plant communities of different species richness and functional composition. PMID:26336100

  11. High-precision measurement of the light response of BC-418 plastic scintillator to protons with energies from 100 keV to 10 MeV

    NASA Astrophysics Data System (ADS)

    Henzl, Vladimir; Daub, Brian; French, Jennifer; Matthews, June; Kovash, Michael; Wender, Stephen; Famiano, Michael; Koehler, Katrina; Yuly, Mark

    2010-11-01

    The determination of the light response of many organic scintillators to various types of radiation has been a subject of numerous experimental as well as theoretical studies in the past. But while the data on light response to particles with energies above 1 MeV are precise and abundant, the information on light response to very low energy particles (i.e. below 1 MeV) is scarce or completely missing. In this study we measured the light response of a BC-418 scintillator to protons with energies from 100 keV to 10 MeV. The experiment was performed at Weapons Neutron Research Facility at LANSCE, Los Alamos. The neutron beam from a spallation source is used to irradiate the active target made from BC-418 plastic scintillator. The recoiled protons detected in the active target are measured in coincidence with elastically scattered incident neutrons detected by and adjacent liquid scintillator. Time of flight of the incident neutron and the knowledge of scattering geometry allow for a kinematically complete and high-precision measurement of the light response as a function of the proton energy.

  12. Emotional Responses to Odors in Children with High-Functioning Autism: Autonomic Arousal, Facial Behavior and Self-Report

    ERIC Educational Resources Information Center

    Legisa, Jasna; Messinger, Daniel S.; Kermol, Enzo; Marlier, Luc

    2013-01-01

    Although emotional functioning is impaired in children with autism, it is unclear if this impairment is due to difficulties with facial expression, autonomic responsiveness, or the verbal description of emotional states. To shed light on this issue, we examined responses to pleasant and unpleasant odors in eight children (8-14 years) with…

  13. Temperate rain forest species partition fine-scale gradients in light availability based on their leaf mass per area (LMA)

    PubMed Central

    Fajardo, Alex; Siefert, Andrew

    2016-01-01

    Background and Aims Ecologists are increasingly using plant functional traits to predict community assembly, but few studies have linked functional traits to species’ responses to fine-scale resource gradients. In this study, it was tested whether saplings of woody species partition fine-scale gradients in light availability based on their leaf mass per area (LMA) in three temperate rain forests and one Mediterranean forest in southern Chile. Methods LMA was measured under field conditions of all woody species contained in approx. 60 plots of 2 m2 in each site, and light availability, computed as the gap light index (GLI), was determined. For each site, species’ pairwise differences in mean LMA (Δ LMA) and abundance-weighted mean GLI (Δ light response) of 2 m2 plots were calculated and it was tested whether they were positively related using Mantel tests, i.e. if species with different LMA values differed in their response to light availability. Additionally linear models were fitted to the relationship between plot-level mean LMA and GLI across plots for each site. Key Results A positive and significant relationship was found between species’ pairwise differences in mean LMA and differences in light response across species for all temperate rain forests, but not for the Mediterranean forest. The results also indicated a significant positive interspecific link between LMA and light availability for all forests. This is in contrast to what is traditionally reported and to expectations from the leaf economics spectrum. Conclusions In environments subjected to light limitation, interspecific differences in a leaf trait (LMA) can explain the fine-scale partitioning of light availability gradients by woody plant species. This niche partitioning potentially facilitates species coexistence at the within-community level. The high frequency of evergreen shade-intolerant species in these forests may explain the positive correlation between light availability and LMA. PMID:27604280

  14. Cell response to quasi-monochromatic light with different coherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budagovsky, A V; Solovykh, N V; Budagovskaya, O N

    The problem of the light coherence effect on the magnitude of the photoinduced cell response is discussed. The origins of ambiguous interpretation of the known experimental results are considered. Using the biological models, essentially differing in anatomy, morphology and biological functions (acrospires of radish, blackberry microsprouts cultivated in vitro, plum pollen), the effect of statistical properties of quasi-monochromatic light (λ{sub max} = 633 nm) on the magnitude of the photoinduced cell response is shown. It is found that for relatively low spatial coherence, the cell functional activity changes insignificantly. The maximal enhancement of growing processes (stimulating effect) is observed whenmore » the coherence length L{sub coh} and the correlation radius r{sub cor} are greater than the cell size, i.e., the entire cell fits into the field coherence volume. In this case, the representative indicators (germination of seeds and pollen, the spears length) exceeds those of non-irradiated objects by 1.7 – 3.9 times. For more correct assessment of the effect of light statistical properties on photocontrol processes, it is proposed to replace the qualitative description (coherent – incoherent) with the quantitative one, using the determination of spatial and temporal correlation functions and comparing them with the characteristic dimensions of the biological structures, e.g., the cell size. (biophotonics)« less

  15. Human phase response curve to a 1 h pulse of bright white light

    PubMed Central

    St Hilaire, Melissa A; Gooley, Joshua J; Khalsa, Sat Bir S; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W

    2012-01-01

    The phase resetting response of the human circadian pacemaker to light depends on the timing of exposure and is described by a phase response curve (PRC). The current study aimed to construct a PRC for a 1 h exposure to bright white light (∼8000 lux) and to compare this PRC to a <3 lux dim background light PRC. These data were also compared to a previously completed 6.7 h bright white light PRC and a <15 lux dim background light PRC constructed under similar conditions. Participants were randomized for exposure to 1 h of either bright white light (n= 18) or <3 lux dim background light (n= 18) scheduled at 1 of 18 circadian phases. Participants completed constant routine (CR) procedures in dim light (<3 lux) before and after the light exposure to assess circadian phase. Phase shifts were calculated as the difference in timing of dim light melatonin onset (DLMO) during pre- and post-stimulus CRs. Exposure to 1 h of bright white light induced a Type 1 PRC with a fitted peak-to-trough amplitude of 2.20 h. No discernible PRC was observed in the <3 lux dim background light PRC. The fitted peak-to-trough amplitude of the 1 h bright light PRC was ∼40% of that for the 6.7 h PRC despite representing only 15% of the light exposure duration, consistent with previous studies showing a non-linear duration–response function for the effects of light on circadian resetting. PMID:22547633

  16. Human phase response curve to a 1 h pulse of bright white light.

    PubMed

    St Hilaire, Melissa A; Gooley, Joshua J; Khalsa, Sat Bir S; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W

    2012-07-01

    The phase resetting response of the human circadian pacemaker to light depends on the timing of exposure and is described by a phase response curve (PRC). The current study aimed to construct a PRC for a 1 h exposure to bright white light (∼8000 lux) and to compare this PRC to a <3 lux dim background light PRC. These data were also compared to a previously completed 6.7 h bright white light PRC and a <15 lux dim background light PRC constructed under similar conditions. Participants were randomized for exposure to 1 h of either bright white light (n=18) or <3 lux dim background light (n=18) scheduled at 1 of 18 circadian phases. Participants completed constant routine (CR) procedures in dim light (<3 lux) before and after the light exposure to assess circadian phase. Phase shifts were calculated as the difference in timing of dim light melatonin onset (DLMO) during pre- and post-stimulus CRs. Exposure to 1 h of bright white light induced a Type 1 PRC with a fitted peak-to-trough amplitude of 2.20 h. No discernible PRC was observed in the <3 lux dim background light PRC. The fitted peak-to-trough amplitude of the 1 h bright light PRC was ∼40% of that for the 6.7 h PRC despite representing only 15% of the light exposure duration, consistent with previous studies showing a non-linear duration–response function for the effects of light on circadian resetting.

  17. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yonggang; Lu, Xujie; Yang, Wenge

    Hydrostatic pressure, as an alternative of chemical pressure to tune the crystal structure and physical properties, is a significant technique for novel function material design and fundamental research. In this article, we report the phase stability and visible light response of the organolead bromide perovskite, CH 3NH 3PbBr 3 (MAPbBr 3), under hydrostatic pressure up to 34 GPa at room temperature: Two phase transformations below 2 GPa (from Pm3¯m to Im3¯, then to Pnma) and a reversible amorphization starting from about 2 GPa were observed, which could be attributed to the tilting of PbBr 6 octahedra and destroying of long-rangemore » ordering of MA cations, respectively. The visible light response of MAPbBr 3 to pressure was studied by in situ photoluminescence, electric resistance, photocurrent measurements and first-principle simulations. The anomalous band gap evolution during compression with red-shift followed by blue-shift is explained by the competition between compression effect and pressure-induced amorphization. Along with the amorphization process accomplished around 25 GPa, the resistance increased by 5 orders of magnitude while the system still maintains its semiconductor characteristics and considerable response to the visible light irradiation. Lastly, our results not only show that hydrostatic pressure may provide an applicable tool for the organohalide perovskites based photovoltaic device functioning as switcher or controller, but also shed light on the exploration of more amorphous organometal composites as potential light absorber.« less

  18. Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite.

    PubMed

    Wang, Yonggang; Lü, Xujie; Yang, Wenge; Wen, Ting; Yang, Liuxiang; Ren, Xiangting; Wang, Lin; Lin, Zheshuai; Zhao, Yusheng

    2015-09-02

    Hydrostatic pressure, as an alternative of chemical pressure to tune the crystal structure and physical properties, is a significant technique for novel function material design and fundamental research. In this article, we report the phase stability and visible light response of the organolead bromide perovskite, CH3NH3PbBr3 (MAPbBr3), under hydrostatic pressure up to 34 GPa at room temperature. Two phase transformations below 2 GPa (from Pm3̅m to Im3̅, then to Pnma) and a reversible amorphization starting from about 2 GPa were observed, which could be attributed to the tilting of PbBr6 octahedra and destroying of long-range ordering of MA cations, respectively. The visible light response of MAPbBr3 to pressure was studied by in situ photoluminescence, electric resistance, photocurrent measurements and first-principle simulations. The anomalous band gap evolution during compression with red-shift followed by blue-shift is explained by the competition between compression effect and pressure-induced amorphization. Along with the amorphization process accomplished around 25 GPa, the resistance increased by 5 orders of magnitude while the system still maintains its semiconductor characteristics and considerable response to the visible light irradiation. Our results not only show that hydrostatic pressure may provide an applicable tool for the organohalide perovskites based photovoltaic device functioning as switcher or controller, but also shed light on the exploration of more amorphous organometal composites as potential light absorber.

  19. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite

    DOE PAGES

    Wang, Yonggang; Lu, Xujie; Yang, Wenge; ...

    2015-08-18

    Hydrostatic pressure, as an alternative of chemical pressure to tune the crystal structure and physical properties, is a significant technique for novel function material design and fundamental research. In this article, we report the phase stability and visible light response of the organolead bromide perovskite, CH 3NH 3PbBr 3 (MAPbBr 3), under hydrostatic pressure up to 34 GPa at room temperature: Two phase transformations below 2 GPa (from Pm3¯m to Im3¯, then to Pnma) and a reversible amorphization starting from about 2 GPa were observed, which could be attributed to the tilting of PbBr 6 octahedra and destroying of long-rangemore » ordering of MA cations, respectively. The visible light response of MAPbBr 3 to pressure was studied by in situ photoluminescence, electric resistance, photocurrent measurements and first-principle simulations. The anomalous band gap evolution during compression with red-shift followed by blue-shift is explained by the competition between compression effect and pressure-induced amorphization. Along with the amorphization process accomplished around 25 GPa, the resistance increased by 5 orders of magnitude while the system still maintains its semiconductor characteristics and considerable response to the visible light irradiation. Lastly, our results not only show that hydrostatic pressure may provide an applicable tool for the organohalide perovskites based photovoltaic device functioning as switcher or controller, but also shed light on the exploration of more amorphous organometal composites as potential light absorber.« less

  20. Neuronal Organization of Deep Brain Opsin Photoreceptors in Adult Teleosts

    PubMed Central

    Hang, Chong Yee; Kitahashi, Takashi; Parhar, Ishwar S.

    2016-01-01

    Biological impacts of light beyond vision, i.e., non-visual functions of light, signify the need to better understand light detection (or photoreception) systems in vertebrates. Photopigments, which comprise light-absorbing chromophores bound to a variety of G-protein coupled receptor opsins, are responsible for visual and non-visual photoreception. Non-visual opsin photopigments in the retina of mammals and extra-retinal tissues of non-mammals play an important role in non-image-forming functions of light, e.g., biological rhythms and seasonal reproduction. This review highlights the role of opsin photoreceptors in the deep brain, which could involve conserved neurochemical systems that control different time- and light-dependent physiologies in in non-mammalian vertebrates including teleost fish. PMID:27199680

  1. Directional orientation of birds by the magnetic field under different light conditions

    PubMed Central

    Wiltschko, Roswitha; Stapput, Katrin; Thalau, Peter; Wiltschko, Wolfgang

    2010-01-01

    This paper reviews the directional orientation of birds with the help of the geomagnetic field under various light conditions. Two fundamentally different types of response can be distinguished. (i) Compass orientation controlled by the inclination compass that allows birds to locate courses of different origin. This is restricted to a narrow functional window around the total intensity of the local geomagnetic field and requires light from the short-wavelength part of the spectrum. The compass is based on radical-pair processes in the right eye; magnetite-based receptors in the beak are not involved. Compass orientation is observed under ‘white’ and low-level monochromatic light from ultraviolet (UV) to about 565 nm green light. (ii) ‘Fixed direction’ responses occur under artificial light conditions such as more intense monochromatic light, when 590 nm yellow light is added to short-wavelength light, and in total darkness. The manifestation of these responses depends on the ambient light regime and is ‘fixed’ in the sense of not showing the normal change between spring and autumn; their biological significance is unclear. In contrast to compass orientation, fixed-direction responses are polar magnetic responses and occur within a wide range of magnetic intensities. They are disrupted by local anaesthesia of the upper beak, which indicates that the respective magnetic information is mediated by iron-based receptors located there. The influence of light conditions on the two types of response suggests complex interactions between magnetoreceptors in the right eye, those in the upper beak and the visual system. PMID:19864263

  2. A Flavin Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii[W

    PubMed Central

    Beel, Benedikt; Prager, Katja; Spexard, Meike; Sasso, Severin; Weiss, Daniel; Müller, Nico; Heinnickel, Mark; Dewez, David; Ikoma, Danielle; Grossman, Arthur R.; Kottke, Tilman; Mittag, Maria

    2012-01-01

    Cryptochromes are flavoproteins that act as sensory blue light receptors in insects, plants, fungi, and bacteria. We have investigated a cryptochrome from the green alga Chlamydomonas reinhardtii with sequence homology to animal cryptochromes and (6-4) photolyases. In response to blue and red light exposure, this animal-like cryptochrome (aCRY) alters the light-dependent expression of various genes encoding proteins involved in chlorophyll and carotenoid biosynthesis, light-harvesting complexes, nitrogen metabolism, cell cycle control, and the circadian clock. Additionally, exposure to yellow but not far-red light leads to comparable increases in the expression of specific genes; this expression is significantly reduced in an acry insertional mutant. These in vivo effects are congruent with in vitro data showing that blue, yellow, and red light, but not far-red light, are absorbed by the neutral radical state of flavin in aCRY. The aCRY neutral radical is formed following blue light absorption of the oxidized flavin. Red illumination leads to conversion to the fully reduced state. Our data suggest that aCRY is a functionally important blue and red light–activated flavoprotein. The broad spectral response implies that the neutral radical state functions as a dark form in aCRY and expands the paradigm of flavoproteins and cryptochromes as blue light sensors to include other light qualities. PMID:22773746

  3. Corticotropin-Releasing Factor Critical for Zebrafish Camouflage Behavior Is Regulated by Light and Sensitive to Ethanol

    PubMed Central

    Wagle, Mahendra; Mathur, Priya; Guo, Su

    2011-01-01

    The zebrafish camouflage response is an innate “hard-wired” behavior that offers an excellent opportunity to explore neural circuit assembly and function. Moreover, the camouflage response is sensitive to ethanol, making it a tractable system for understanding how ethanol influences neural circuit development and function. Here we report the identification of corticotropin releasing factor (CRF) as a critical component of the camouflage response pathway. We further show that ethanol, having no direct effect on the visual sensory system or the melanocytes, acts downstream of retinal ganglion cells and requires the CRF-proopiomelanocortin (POMC) pathway to exert its effect on camouflage. Treatment with ethanol, as well as alteration of light exposure that changes sensory input into the camouflage circuit, robustly modifies CRF expression in subsets of neurons. Activity of both Adenylyl Cyclase 5 and Extracellular signal Regulated Kinase (ERK) is required for such ethanol- or light- induced plasticity of crf expression. These results reveal an essential role of a peptidergic pathway in camouflage that is regulated by light and influenced by ethanol at concentrations relevant to abuse and anxiolysis, in a cAMP- and ERK- dependent manner. We conclude that this ethanol-modulated camouflage response represents a novel and relevant system for molecular genetic dissection of a neural circuit that is regulated by light and sensitive to ethanol. PMID:21209207

  4. Corticotropin-releasing factor critical for zebrafish camouflage behavior is regulated by light and sensitive to ethanol.

    PubMed

    Wagle, Mahendra; Mathur, Priya; Guo, Su

    2011-01-05

    The zebrafish camouflage response is an innate "hard-wired" behavior that offers an excellent opportunity to explore neural circuit assembly and function. Moreover, the camouflage response is sensitive to ethanol, making it a tractable system for understanding how ethanol influences neural circuit development and function. Here we report the identification of corticotropin-releasing factor (CRF) as a critical component of the camouflage response pathway. We further show that ethanol, having no direct effect on the visual sensory system or the melanocytes, acts downstream of retinal ganglion cells and requires the CRF-proopiomelanocortin pathway to exert its effect on camouflage. Treatment with ethanol, as well as alteration of light exposure that changes sensory input into the camouflage circuit, robustly modifies CRF expression in subsets of neurons. Activity of both adenylyl cyclase 5 and extracellular signal-regulated kinase (ERK) is required for such ethanol-induced or light-induced plasticity of crf expression. These results reveal an essential role of a peptidergic pathway in camouflage that is regulated by light and influenced by ethanol at concentrations relevant to abuse and anxiolysis, in a cAMP-dependent and ERK-dependent manner. We conclude that this ethanol-modulated camouflage response represents a novel and relevant system for molecular genetic dissection of a neural circuit that is regulated by light and sensitive to ethanol.

  5. Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury.

    PubMed

    Mohan, Kabhilan; Kecova, Helga; Hernandez-Merino, Elena; Kardon, Randy H; Harper, Matthew M

    2013-05-15

    To evaluate retina and optic nerve damage following experimental blast injury. Healthy adult mice were exposed to an overpressure blast wave using a custom-built blast chamber. The effects of blast exposure on retina and optic nerve function and structure were evaluated using the pattern electroretinogram (pERG), spectral domain optical coherence tomography (OCT), and the chromatic pupil light reflex. Assessment of the pupil response to light demonstrated decreased maximum pupil constriction diameter in blast-injured mice using red light or blue light stimuli 24 hours after injury compared with baseline in the eye exposed to direct blast injury. A decrease in the pupil light reflex was not observed chronically following blast exposure. We observed a biphasic pERG decrease with the acute injury recovering by 24 hours postblast and the chronic injury appearing at 4 months postblast injury. Furthermore, at 3 months following injury, a significant decrease in the retinal nerve fiber layer was observed using OCT compared with controls. Histologic analysis of the retina and optic nerve revealed punctate regions of reduced cellularity in the ganglion cell layer and damage to optic nerves. Additionally, a significant upregulation of proteins associated with oxidative stress was observed acutely following blast exposure compared with control mice. Our study demonstrates that decrements in retinal ganglion cell responses can be detected after blast injury using noninvasive functional and structural tests. These objective responses may serve as surrogate tests for higher CNS functions following traumatic brain injury that are difficult to quantify.

  6. "Crypto-Display" in Dual-Mode Metasurfaces by Simultaneous Control of Phase and Spectral Responses.

    PubMed

    Yoon, Gwanho; Lee, Dasol; Nam, Ki Tae; Rho, Junsuk

    2018-06-26

    Although conventional metasurfaces have demonstrated many promising functionalities in light control by tailoring either phase or spectral responses of subwavelength structures, simultaneous control of both responses has not been explored yet. Here, we propose a concept of dual-mode metasurfaces that enables simultaneous control of phase and spectral responses for two kinds of operation modes of transmission and reflection, respectively. In the transmission mode, the dual-mode metasurface acts as conventional metasurfaces by tailoring phase distribution of incident light. In the reflection mode, a reflected colored image is produced under white light illumination. We also experimentally demonstrate a crypto-display as one application of the dual-mode metasurface. The crypto-display looks a normal reflective display under white light illumination but generates a hologram that reveals the encrypted phase information under single-wavelength coherent light illumination. Because two operation modes do not affect each other, the crypto-display can have applications in security techniques.

  7. Noniterative algorithm for improving the accuracy of a multicolor-light-emitting-diode-based colorimeter.

    PubMed

    Yang, Pao-Keng

    2012-05-01

    We present a noniterative algorithm to reliably reconstruct the spectral reflectance from discrete reflectance values measured by using multicolor light emitting diodes (LEDs) as probing light sources. The proposed algorithm estimates the spectral reflectance by a linear combination of product functions of the detector's responsivity function and the LEDs' line-shape functions. After introducing suitable correction, the resulting spectral reflectance was found to be free from the spectral-broadening effect due to the finite bandwidth of LED. We analyzed the data for a real sample and found that spectral reflectance with enhanced resolution gives a more accurate prediction in the color measurement.

  8. Noniterative algorithm for improving the accuracy of a multicolor-light-emitting-diode-based colorimeter

    NASA Astrophysics Data System (ADS)

    Yang, Pao-Keng

    2012-05-01

    We present a noniterative algorithm to reliably reconstruct the spectral reflectance from discrete reflectance values measured by using multicolor light emitting diodes (LEDs) as probing light sources. The proposed algorithm estimates the spectral reflectance by a linear combination of product functions of the detector's responsivity function and the LEDs' line-shape functions. After introducing suitable correction, the resulting spectral reflectance was found to be free from the spectral-broadening effect due to the finite bandwidth of LED. We analyzed the data for a real sample and found that spectral reflectance with enhanced resolution gives a more accurate prediction in the color measurement.

  9. Applications of Light-Responsive Systems for Cancer Theranostics.

    PubMed

    Chen, Hongzhong; Zhao, Yanli

    2018-06-27

    Achieving controlled and targeted delivery of chemotherapeutic drugs and other therapeutic agents to tumor sites is challenging. Among many stimulus strategies, light as a mode of action shows various advantages such as high spatiotemporal selectivity, minimal invasiveness and easy operation. Thus, drug delivery systems (DDSs) have been designed with the incorporation of various functionalities responsive to light as an exogenous stimulus. Early development has focused on guiding chemotherapeutic drugs to designated location, followed by the utilization of UV irradiation for controlled drug release. Because of the disadvantages of UV light such as phototoxicity and limited tissue penetration depth, scientists have moved the research focus onto developing nanoparticle systems responsive to light in the visible region (400-700 nm), aiming to reduce the phototoxicity. In order to enhance the tissue penetration depth, near-infrared light triggered DDSs become increasingly important. In addition, light-based advanced systems for fluorescent and photoacoustic imaging, as well as photodynamic and photothermal therapy have also been reported. Herein, we highlight some of recent developments by applying light-responsive systems in cancer theranostics, including light activated drug release, photodynamic and photothermal therapy, and bioimaging techniques such as fluorescent and photoacoustic imaging. Future prospect of light-mediated cancer treatment is discussed at the end of the review. This Spotlights on Applications article aims to provide up-to-date information about the rapidly developing field of light-based cancer theranostics.

  10. Circadian rhythms in myocardial metabolism and contractile function: influence of workload and oleate.

    PubMed

    Durgan, David J; Moore, Michael W S; Ha, Ngan P; Egbejimi, Oluwaseun; Fields, Anna; Mbawuike, Uchenna; Egbejimi, Anu; Shaw, Chad A; Bray, Molly S; Nannegari, Vijayalakshmi; Hickson-Bick, Diane L; Heird, William C; Dyck, Jason R B; Chandler, Margaret P; Young, Martin E

    2007-10-01

    Multiple extracardiac stimuli, such as workload and circulating nutrients (e.g., fatty acids), known to influence myocardial metabolism and contractile function exhibit marked circadian rhythms. The aim of the present study was to investigate whether the rat heart exhibits circadian rhythms in its responsiveness to changes in workload and/or fatty acid (oleate) availability. Thus, hearts were isolated from male Wistar rats (housed during a 12:12-h light-dark cycle: lights on at 9 AM) at 9 AM, 3 PM, 9 PM, and 3 AM and perfused in the working mode ex vivo with 5 mM glucose plus either 0.4 or 0.8 mM oleate. Following 20-min perfusion at normal workload (i.e., 100 cm H(2)O afterload), hearts were challenged with increased workload (140 cm H(2)O afterload plus 1 microM epinephrine). In the presence of 0.4 mM oleate, myocardial metabolism exhibited a marked circadian rhythm, with decreased rates of glucose oxidation, increased rates of lactate release, decreased glycogenolysis capacity, and increased channeling of oleate into nonoxidative pathways during the light phase. Rat hearts also exhibited a modest circadian rhythm in responsiveness to the workload challenge when perfused in the presence of 0.4 mM oleate, with increased myocardial oxygen consumption at the dark-to-light phase transition. However, rat hearts perfused in the presence of 0.8 mM oleate exhibited a markedly blunted contractile function response to the workload challenge during the light phase. In conclusion, these studies expose marked circadian rhythmicities in myocardial oxidative and nonoxidative metabolism as well as responsiveness of the rat heart to changes in workload and fatty acid availability.

  11. Phytochrome B Requires PIF Degradation and Sequestration to Induce Light Responses Across a Wide Range of Light Conditions.

    PubMed

    Park, Eunae; Kim, Yeojae; Choi, Giltsu

    2018-05-15

    Phytochrome B (phyB) inhibits the function of phytochrome-interacting factors (PIFs) by inducing their degradation and sequestration, but the relative physiological importance of these two phyB activities is unclear. In an analysis of published Arabidopsis thaliana phyB mutations, we identified a point mutation in the N-terminal half of phyB (phyBG111D) that abolishes its PIF sequestration activity without affecting its PIF degradation activity. We also identified a point mutation in the phyB C-terminal domain, which, when combined with a deletion of the C-terminal end (phyB990G767R), does the opposite; it blocks PIF degradation without affecting PIF sequestration. The resulting phyB proteins, phyB990G767R and phyBG111D, are equally capable of inducing light responses under continuous red light. However, phyBG111D, which exhibits only the PIF degradation activity, induces stronger light responses than phyB990G767R under white light with prolonged dark periods (i.e., diurnal cycles). In contrast, phyB990G767R, which exhibits only the PIF sequestration activity, induces stronger light responses in flickering light (a condition that mimics sunflecks). Together, our results indicate that both of these separable phyB activities are required for light responses in varying light conditions. © 2018 American Society of Plant Biologists. All rights reserved.

  12. Circadian Behavioral Responses to Light and Optic Chiasm-Evoked Glutamatergic EPSCs in the Suprachiasmatic Nucleus of ipRGC Conditional vGlut2 Knock-Out Mice

    PubMed Central

    2018-01-01

    Abstract Intrinsically photosensitive retinal ganglion cells (ipRGCs) innervate the hypothalamic suprachiasmatic nucleus (SCN), a circadian oscillator that functions as a biological clock. ipRGCs use vesicular glutamate transporter 2 (vGlut2) to package glutamate into synaptic vesicles and light-evoked resetting of the SCN circadian clock is widely attributed to ipRGC glutamatergic neurotransmission. Pituitary adenylate cyclase-activating polypeptide (PACAP) is also packaged into vesicles in ipRGCs and PACAP may be coreleased with glutamate in the SCN. vGlut2 has been conditionally deleted in ipRGCs in mice [conditional knock-outs (cKOs)] and their aberrant photoentrainment and residual attenuated light responses have been ascribed to ipRGC PACAP release. However, there is no direct evidence that all ipRGC glutamatergic neurotransmission is eliminated in vGlut2 cKOs. Here, we examined two lines of ipRGC vGlut2 cKO mice for SCN-mediated behavioral responses under several lighting conditions and for ipRGC glutamatergic neurotransmission in the SCN. Circadian behavioral responses varied from a very limited response to light to near normal photoentrainment. After collecting behavioral data, hypothalamic slices were prepared and evoked EPSCs (eEPSCs) were recorded from SCN neurons by stimulating the optic chiasm. In cKOs, glutamatergic eEPSCs were recorded and all eEPSC parameters examined (stimulus threshold, amplitude, rise time or time-to-peak and stimulus strength to evoke a maximal response) were similar to controls. We conclude that a variable number but functionally significant percentage of ipRGCs in two vGlut2 cKO mouse lines continue to release glutamate. Thus, the residual SCN-mediated light responses in these cKO mouse lines cannot be attributed solely to ipRGC PACAP release. PMID:29756029

  13. Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision.

    PubMed

    Pons, Carmen; Mazade, Reece; Jin, Jianzhong; Dul, Mitchell W; Zaidi, Qasim; Alonso, Jose-Manuel

    2017-12-01

    Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the ON retinal pathway. Consistent with this prediction, here we show that stimulus conditions that increase ON luminance/response saturation (e.g., dark backgrounds) or its effect on light stimuli (e.g., optical blur) impair the perceptual discrimination and salience of light targets more than dark targets in human vision. We also show that, in cat visual cortex, the magnitude of the ON luminance/response saturation remains relatively constant under a wide range of luminance conditions that are common indoors, and only shifts away from the lowest luminance contrasts under low mesopic light. Finally, we show that the ON luminance/response saturation affects visual salience mostly when the high spatial frequencies of the image are reduced by poor illumination or optical blur. Because both low luminance and optical blur are risk factors in myopia, our results suggest a possible neuronal mechanism linking myopia progression with the function of the ON visual pathway.

  14. Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision

    PubMed Central

    Pons, Carmen; Mazade, Reece; Jin, Jianzhong; Dul, Mitchell W.; Zaidi, Qasim; Alonso, Jose-Manuel

    2017-01-01

    Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the ON retinal pathway. Consistent with this prediction, here we show that stimulus conditions that increase ON luminance/response saturation (e.g., dark backgrounds) or its effect on light stimuli (e.g., optical blur) impair the perceptual discrimination and salience of light targets more than dark targets in human vision. We also show that, in cat visual cortex, the magnitude of the ON luminance/response saturation remains relatively constant under a wide range of luminance conditions that are common indoors, and only shifts away from the lowest luminance contrasts under low mesopic light. Finally, we show that the ON luminance/response saturation affects visual salience mostly when the high spatial frequencies of the image are reduced by poor illumination or optical blur. Because both low luminance and optical blur are risk factors in myopia, our results suggest a possible neuronal mechanism linking myopia progression with the function of the ON visual pathway. PMID:29196762

  15. MYB75 Phosphorylation by MPK4 Is Required for Light-Induced Anthocyanin Accumulation in Arabidopsis[OPEN

    PubMed Central

    Li, Shengnan; Wang, Wenyi; Gao, Jinlan; Yin, Kangquan; Wang, Rui; Wang, Chengcheng; Mundy, John

    2016-01-01

    Light is a major environmental cue affecting various physiological and metabolic processes in plants. Although plant photoreceptors are well characterized, the mechanisms by which light regulates downstream responses are less clear. In Arabidopsis thaliana, the accumulation of photoprotective anthocyanin pigments is light dependent, and the R2R3 MYB transcription factor MYB75/PAP1 regulates anthocyanin accumulation. Here, we report that MYB75 interacts with and is phosphorylated by MAP KINASE4 (MPK4). Their interaction is dependent on MPK4 kinase activity and is required for full function of MYB75. MPK4 can be activated in response to light and is involved in the light-induced accumulation of anthocyanins. We show that MPK4 phosphorylation of MYB75 increases its stability and is essential for light-induced anthocyanin accumulation. Our findings reveal an important role for a MAPK pathway in light signal transduction. PMID:27811015

  16. Light-driven liquid microlenses

    NASA Astrophysics Data System (ADS)

    Angelini, A.; Pirani, F.; Frascella, F.; Ricciardi, S.; Descrovi, E.

    2017-02-01

    We propose a liquid polymeric compound based on photo-responsive azo-polymers to be used as light-activated optical element with tunable and reversible functionalities. The interaction of a laser beam locally modifies the liquid density thus producing a refractive index gradient. The laser induced refractive index profiles are observed along the optical axis of the microscope to evaluate the total phase shift induced and along the orthogonal direction to provide the axial distribution of the refractive index variation. The focusing and imaging properties of the liquid lenses as functions of the light intensity are illustrated.

  17. Responsiveness of outcome measures for upper limb prosthetic rehabilitation.

    PubMed

    Resnik, Linda; Borgia, Matthew

    2016-02-01

    There is limited research on responsiveness of prosthetic rehabilitation outcome measures. To examine responsiveness of the Box and Block test, Jebsen-Taylor Hand Function tests, Upper Extremity Functional Scale, University of New Brunswick skill and spontaneity tests, Activity Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale. This was a quasi-experimental study with repeated measurements in a convenience sample of upper limb amputees. Measures were collected before, during, and after training with the DEKA Arm. Largest effect sizes were observed for Patient-Specific Functional Scale (effect size: 1.59, confidence interval: 1.00, 2.14), Activity Measure for Upper Limb Amputation (effect size: 1.33, confidence interval: 0.73, 1.90), and University of New Brunswick skill test (effect size: 1.18, confidence interval: 0.61, 1.73). Other measures that were responsive to change were Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, and University of New Brunswick spontaneity test. Responsiveness and pattern of responsiveness varied by prosthetic level. The Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, University of New Brunswick skill and spontaneity tests, Activities Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale were responsive to change during prosthetic training. These findings have implications for choice of measures for research and practice and inform clinicians about the amount of training necessary to maximize outcomes with the DEKA Arm. Findings on responsiveness of outcome measures have implications for the choice of measures for clinical trials and practice. Findings regarding the responsiveness to change over the course of training can inform clinicians about the amount of training that may be necessary to maximize specific outcomes with the DEKA Arm. © The International Society for Prosthetics and Orthotics 2014.

  18. Experience-Dependent Color Constancy in Guppies (Poecilia reticulata)

    PubMed Central

    Intskirveli, I. E.; Roinishvili, M. O.; Kezeli, A. R.

    2002-01-01

    We investigated the ability to recognize the color of surfaces in fish (Poecilia reticulata), bred from birth in conditions of artificial light with constant spectral content. The capacity for color constancy significantly deteriorated when compared that to the control group. Further alteration of lighting conditions and transfer into natural daylight conditions restored the suppressed function to its normal level. We suggest that the color constancy function belongs in the visual system-response functions, the full development of which requires the accumulation of individual visual experience. PMID:12757371

  19. Experience-dependent color constancy in guppies (Poecilia reticulata).

    PubMed

    Intskirveli, I E; Roinishvili, M O; Kezeli, A R

    2002-01-01

    We investigated the ability to recognize the color of surfaces in fish (Poecilia reticulata), bred from birth in conditions of artificial light with constant spectral content. The capacity for color constancy significantly deteriorated when compared that to the control group. Further alteration of lighting conditions and transfer into natural daylight conditions restored the suppressed function to its normal level. We suggest that the color constancy function belongs in the visual system-response functions, the full development of which requires the accumulation of individual visual experience.

  20. Suppression of Melatonin Secretion in Totally Visually Blind People by Ocular Exposure to White Light: Clinical Characteristics.

    PubMed

    Hull, Joseph T; Czeisler, Charles A; Lockley, Steven W

    2018-04-03

    Although most totally visually blind individuals exhibit nonentrained circadian rhythms due to an inability of light to entrain the circadian pacemaker, a small proportion retain photic circadian entrainment, melatonin suppression, and other nonimage-forming responses to light. It is thought that these responses to light persist because of the survival of melanospin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs), which project primarily to the circadian pacemaker and are functionally distinct from the rod and cone photoreceptors that mediate vision. We aimed to assess the integrity of nonimage-forming photoreception in totally visually blind patients with a range of ocular disorders. Within-subject, dark-controlled design. A total of 18 totally visually blind individuals (7 females; mean age ± standard deviation = 49.8±11.0 years) with various causes of blindness, including 3 bilaterally enucleated controls. Melatonin concentrations were compared during exposure to a 6.5-hour bright white light (∼7000 lux) with melatonin concentrations measured 24 hours earlier at the corresponding clock times under dim-light (4 lux) conditions. Area under the curve (AUC) for melatonin concentration. Melatonin concentrations were significantly suppressed (defined as ≥33% suppression) during the bright-light condition compared with the dim-light condition in 5 of 15 participants with eyes (retinitis pigmentosa, n = 2; retinopathy of prematurity [ROP], n = 2; bilateral retinal detachments, n = 1). Melatonin concentrations remained unchanged in response to light in the remaining 10 participants with eyes (ROP, n = 3; optic neuritis/neuropathy, n = 2; retinopathy unknown, n = 2; congenital glaucoma, n = 1; congenital rubella syndrome, n = 1; measles retinopathy, n = 1) and in all 3 bilaterally enucleated participants. These data confirm that light-induced suppression of melatonin remains functionally intact in a minority of totally visually blind individuals with eyes. None of the bilaterally enucleated individuals or those with phthisis bulbi was responsive to light; of the remainder, half were responsive to light. Although inner retinal damage is associated with a high likelihood that nonimage-forming photoreception is absent, the impact of outer retinal damage is more ambiguous, and therefore the assessment of the presence, attenuation, or absence of nonimage-forming light responses in totally blind patients requires careful individual confirmation and cannot simply be assumed from the type of blindness. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  1. Circadian Behaviour in Neuroglobin Deficient Mice

    PubMed Central

    Hundahl, Christian A.; Fahrenkrug, Jan; Hay-Schmidt, Anders; Georg, Birgitte; Faltoft, Birgitte; Hannibal, Jens

    2012-01-01

    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night. PMID:22496809

  2. Circadian behaviour in neuroglobin deficient mice.

    PubMed

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders; Georg, Birgitte; Faltoft, Birgitte; Hannibal, Jens

    2012-01-01

    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.

  3. Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A

    PubMed Central

    Rösler, Jutta; Klein, Ilse; Zeidler, Mathias

    2007-01-01

    Phytochrome A (phyA) plays an important role during germination and early seedling development. Because phyA is the primary photoreceptor for the high-irradiance response and the very-low-fluence response, it can trigger development not only in red and far-red (FR) light but also in a wider range of light qualities. Although phyA action is generally associated with translocation to the nucleus and regulation of transcription, there is evidence for additional cytoplasmic functions. Because nuclear accumulation of phyA has been shown to depend on far-red-elongated hypocotyl 1 (FHY1) and FHL (FHY1-like), investigation of phyA function in a double fhl/fhy1 mutant might be valuable in revealing the mechanism of phyA translocation and possible cytoplasmic functions. In fhl/fhy1, the FR-triggered nuclear translocation of phyA could no longer be detected but could be restored by transgenic expression of CFP:FHY1. Whereas the fhl/fhy1 mutant showed a phyA phenotype in respect to hypocotyl elongation and cotyledon opening under high-irradiance response conditions as well as a typical phyA germination phenotype under very-low-fluence response conditions, fhl/fhy1 showed no phenotype with respect to the phyA-dependent abrogation of negative gravitropism in blue light and in red-enhanced phototropism, demonstrating clear cytoplasmic functions of phyA. Disturbance of phyA nuclear import in fhl/fhy1 led to formation of FR-induced phyA:GFP cytoplasmic foci resembling the sequestered areas of phytochrome. FHY1 and FHL play crucial roles in phyA nuclear translocation and signaling. Thus the double-mutant fhl/fhy1 allows nuclear and cytoplasmic phyA functions to be separated, leading to the novel identification of cytoplasmic phyA responses. PMID:17566111

  4. Members of the neuropeptide transcriptional network in Helicoverpa armigera and their expression in response to light stress.

    PubMed

    Wang, Lijun; Liu, Xinhui; Liu, Zhengxing; Wang, Xiaoping; Lei, Chaoliang; Zhu, Fen

    2018-05-19

    Neuropeptides and peptide hormones play central roles in the regulation of various types of insect physiology and behavior. Artificial light at night, a form of environmental stress, has recently been regarded as a source of light stress on nocturnal insects. Because related genomic information is not available, molecular biological studies on the response of neuropeptides in nocturnal insects to light stress are limited. Based on the de novo sequencing of the Helicoverpa armigera head transcriptome, we obtained 124,960 unigenes. Of these, the number of unigenes annotated as neuropeptides and peptide hormones, neurotransmitter precursor processing enzymes, and neurotransmitter receptors were 34, 17, and 58, respectively. Under light stress, there were sex-specific differences in gene expression measured by qRT-PCR. The IMFamide, leucokinin and sNPF genes were differentially expressed at the mRNA level in males but not in females in response to light stress. The results provide new insights on the diversity of the neuropeptide transcriptional network of H. armigera. In addition, some neuropeptides exhibited sex-specific differential expression in response to light stress. Taken collectively, these results not only expand the catalog of known insect neuropeptides but also provide a framework for future functional studies on the physiological roles they play in the light stress response behavior of nocturnal moths. Copyright © 2017. Published by Elsevier B.V.

  5. The rat suprachiasmatic nucleus: the master clock ticks at 30 Hz

    PubMed Central

    Tsuji, Takahiro; Tsuji, Chiharu; Ludwig, Mike

    2016-01-01

    Key points Light‐responsive neurones in the rat suprachiasmatic nucleus discharge with a harmonic distribution of interspike intervals, whereas unresponsive neurones seldom do.This harmonic patterning has a fundamental frequency of close to 30 Hz, and is the same in light‐on cells as in light‐off cells, and is unaffected by exposure to light.Light‐on cells are more active than light‐off cells in both subjective day and subjective night, and both light‐on cells and light‐off cells respond more strongly to changes in light intensity during the subjective night than during the subjective day.Paired recordings indicate that the discharge of adjacent light‐responsive cells is very tightly synchronized.The gap junction inhibitor carbenoxolone increases the spontaneous activity of suprachiasmatic nucleus neurones but does not block the harmonic discharge patterning. Abstract The suprachiasmatic nucleus (SCN) of the hypothalamus has an essential role in orchestrating circadian rhythms of behaviour and physiology. In the present study, we recorded from single SCN neurons in urethane‐anaesthetized rats, categorized them by the statistical features of their electrical activity and by their responses to light, and examined how activity in the light phase differs from activity in the dark phase. We classified cells as light‐on cells or light‐off cells according to how their firing rate changed in acute response to light, or as non‐responsive cells. In both sets of light‐responsive neurons, responses to light were stronger at subjective night than in subjective day. Neuronal firing patterns were analysed by constructing hazard functions from interspike interval data. For most light‐responsive cells, the hazard functions showed a multimodal distribution, with a harmonic sequence of modes, indicating that spike activity was driven by an oscillatory input with a fundamental frequency of close to 30 Hz; this harmonic pattern was rarely seen in non‐responsive SCN cells. The frequency of the rhythm was the same in light‐on cells as in light‐off cells, was the same in subjective day as at subjective night, and was unaffected by exposure to light. Paired recordings indicated that the discharge of adjacent light‐responsive neurons was very tightly synchronized, consistent with electrical coupling. PMID:27061101

  6. Light transport feature for SCINFUL.

    PubMed

    Etaati, G R; Ghal-Eh, N

    2008-03-01

    An extended version of the scintillator response function prediction code SCINFUL has been developed by incorporating PHOTRACK, a Monte Carlo light transport code. Comparisons of calculated and experimental results for organic scintillators exposed to neutrons show that the extended code improves the predictive capability of SCINFUL.

  7. Early light deprivation effects on human cone-driven retinal function.

    PubMed

    Esposito Veneruso, Paolo; Ziccardi, Lucia; Magli, Giulia; Parisi, Vincenzo; Falsini, Benedetto; Magli, Adriano

    2017-03-01

    To assess whether the early light deprivation induced by congenital cataract may influence the cone-driven retinal function in humans. Forty-one patients affected by congenital cataract (CC) who had undergone uncomplicated cataract extraction surgery and intraocular lens implant, and 14 healthy subjects (HS) were enrolled. All patients underwent complete ophthalmological and orthoptic evaluations and best-corrected visual acuity (BCVA) measurement; light-adapted full-field electroretinograms (ERG) and photopic negative responses (PhNR) were recorded to obtain a reliable measurement of the outer/inner retinal function and of the retinal ganglion cells' function respectively. Mean values of light-adapted ERG a- and b-wave and PhNR amplitude of CC eyes were significantly reduced and photopic ERG b-wave implicit time mean values were significantly delayed when compared to HS ones. When studying photopic ERG mean amplitudes at 5 ms, significant differences were found when comparing CC and control eyes. In CC eyes, statistically significant correlations were found between a- and b- wave amplitudes and PhNR amplitudes. No significant correlations were found between ERG parameters and BCVA, as well as between the age of CC patients at surgery and the time elapsed from lens extraction. No significant differences were found when functional parameters of bilateral and unilateral congenital cataract (uCC) eyes were compared, however uCC eyes showed significant differences when compared with contralateral healthy eyes. We found a significant impairment of cone-driven retinal responses in patients with a history of congenital cataract. These changes might result from the long-lasting effects of early light deprivation on the cone retinal pathways. Our findings support the relevance of retinal involvement in deficits induced by early light deprivation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  8. The plasma membrane-associated NADH oxidase of spinach leaves responds to blue light

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Penel, Claude; Greppin, Hubert; Morre, Dorothy M.

    2002-01-01

    The plasma membrane-associated NADH oxidase (NOX) of spinach leaf disks is characterized by oscillations in activity with a regular period length of ca. 24 min. Within a single population of plants exposed to light at the same time, NOX activities of all plants function synchronously. Exposure of plants transferred from darkness to blue light (495 nm, 2 min, 50 micromoles m-2 s-1) resulted in a complex response pattern but with a new maximum in the rate of NOX activity 36 (24+12) min after illumination and then with maxima in the rate of NOX activity every 24 min thereafter. Transient maxima in NOX activity were observed as well after 9.3 + /- 1.4 and 20.7 +/- 2.1 min. The blue light response differed from the response to red (650 nm, 10 min, 50 micromoles m-2 s-1) or white light where activity maxima were initiated 12 min after the light exposure followed by maxima every 24 min thereafter. Green or yellow light was ineffective. The light response was independent of the time in the 24-min NOX cycle when the light was given. The net effects of blue and red light were ultimately the same with a new maximum in the rate of NOX activity at 12+24=36 min (and every 24 min thereafter), but the mechanisms appear to be distinct.

  9. Pupillary Responses to Full-Field Chromatic Stimuli Are Reduced in Patients with Early-Stage Primary Open-Angle Glaucoma.

    PubMed

    Najjar, Raymond P; Sharma, Sourabh; Atalay, Eray; Rukmini, Annadata V; Sun, Christopher; Lock, Jing Zhan; Baskaran, Mani; Perera, Shamira A; Husain, Rahat; Lamoureux, Ecosse; Gooley, Joshua J; Aung, Tin; Milea, Dan

    2018-03-21

    To evaluate the ability of chromatic pupillometry to reveal abnormal pupillary responses to light in patients with early-stage primary open-angle glaucoma (POAG) and to test whether the degree of pupillometric impairment correlates with structural hallmarks of optic nerve damage in the disease. Cross-sectional study. Forty-six patients with early-stage POAG (63.4±8.3 years, 63% male, 87% ethnic-Chinese) and 90 age-matched healthy controls (61.4±8.6 years, 34% male, 89% ethnic-Chinese). Patients with POAG had a visual field mean deviation (VFMD) of -6 decibels or better on automated perimetry. Each participant underwent a monocular 2-minute exposure to blue light (462 nm) followed by another 2-minute exposure to red light (638 nm) using a modified Ganzfeld dome equipped with a light-emitting diode lighting system. The light stimuli intensity was increased logarithmically to evaluate the combined extrinsic and intrinsic response of intrinsically photosensitive retinal ganglion cells (ipRGCs). Light-induced changes in horizontal pupil diameter were assessed monocularly using infrared pupillography. Baseline-adjusted, light-induced pupillary constriction amplitudes were calculated, and individual irradiance-response curves were constructed for each stimulus. Pupillary constriction amplitudes were compared between groups and across light intensities using a linear mixed model analysis. The linear relationship between pupillometric parameters and different structural and functional features of glaucoma was assessed using Pearson's correlation analysis. Light-induced pupillary constriction was reduced in patients with early-stage POAG compared with controls at moderate to high irradiances (≥11 Log photons/cm 2 /s) of blue (P = 0.003) and red (P < 0.001) light. Maximal pupillary constriction amplitude was correlated with retinal nerve fiber layer thickness (RNFL) thickness (blue: r = 0.51, P < 0.001; red: r = 0.45, P = 0.002) in patients with POAG but not in controls. Conversely, pupillometric parameters were not correlated with visual field scores in patients with early-stage POAG. Patients with early-stage POAG exhibit reduced pupillary responses to moderate and high irradiances of blue and red lights. This wavelength-independent functional alteration correlates with structural thinning of the RNFL and could be the consequence of dysfunction or loss of melanopsin expressing ipRGCs in the early stages of the disease. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  10. The B3 Subunit of the Cone Cyclic Nucleotide-gated Channel Regulates the Light Responses of Cones and Contributes to the Channel Structural Flexibility*

    PubMed Central

    Ding, Xi-Qin; Thapa, Arjun; Ma, Hongwei; Xu, Jianhua; Elliott, Michael H.; Rodgers, Karla K.; Smith, Marci L.; Wang, Jin-Shan; Pittler, Steven J.; Kefalov, Vladimir J.

    2016-01-01

    Cone photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in cone phototransduction, which is a process essential for daylight vision, color vision, and visual acuity. Mutations in the cone channel subunits CNGA3 and CNGB3 are associated with human cone diseases, including achromatopsia, cone dystrophies, and early onset macular degeneration. Mutations in CNGB3 alone account for 50% of reported cases of achromatopsia. This work investigated the role of CNGB3 in cone light response and cone channel structural stability. As cones comprise only 2–3% of the total photoreceptor population in the wild-type mouse retina, we used Cngb3−/−/Nrl−/− mice with CNGB3 deficiency on a cone-dominant background in our study. We found that, in the absence of CNGB3, CNGA3 was able to travel to the outer segments, co-localize with cone opsin, and form tetrameric complexes. Electroretinogram analyses revealed reduced cone light response amplitude/sensitivity and slower response recovery in Cngb3−/−/Nrl−/− mice compared with Nrl−/− mice. Absence of CNGB3 expression altered the adaptation capacity of cones and severely compromised function in bright light. Biochemical analysis demonstrated that CNGA3 channels lacking CNGB3 were more resilient to proteolysis than CNGA3/CNGB3 channels, suggesting a hindered structural flexibility. Thus, CNGB3 regulates cone light response kinetics and the channel structural flexibility. This work advances our understanding of the biochemical and functional role of CNGB3 in cone photoreceptors. PMID:26893377

  11. Neuroprotective Dose Response in RCS Rats Implanted with Microphotodiode Arrays

    PubMed Central

    Pardue, Machelle T.; Kim, Moon K.; Walker, Tiffany A.; Faulkner, Amanda E.; Chow, Alan Y.; Ciavatta, Vincent T.

    2012-01-01

    Purpose Neuropreservation of retinal function and structure in RCS rats following implantation of a microphotodiode array (MPA) has been shown in previous studies(Pardue et al. 2005a; Pardue et al. 2005b). Since microphotodiodes produce electrical currents in proportion to the intensity of incident light, increased light exposure may result in greater neuroprotective effects. Our previous studies suggested that the frequency of light exposure to electroretinogram (ERG) flash stimuli might provide increased neuroprotection. Thus, in this study, we examined the dose response of subretinal electrical stimulation by exposing RCS rats implanted with MPAs to variable durations and combinations of two different lighting regimens: pulsing incandescent bulbs and xenon stimuli from an ERG Ganzfeld. While incandescent light regimens did not produce any significant differences in ERG function, we found significantly greater dark-adapted ERG b-wave amplitudes in RCS rats that received weekly versus biweekly ERGs over the course of 8 weeks of follow-up. These results suggest that subretinal electrical stimulation may be optimized to produce greater neuroprotective effects by dosing with periodic higher current. PMID:22183323

  12. Functional Profiling Identifies Genes Involved in Organ-Specific Branches of the PIF3 Regulatory Network in Arabidopsis[C][W

    PubMed Central

    Sentandreu, Maria; Martín, Guiomar; González-Schain, Nahuel; Leivar, Pablo; Soy, Judit; Tepperman, James M.; Quail, Peter H.; Monte, Elena

    2011-01-01

    The phytochrome (phy)-interacting basic helix-loop-helix transcription factors (PIFs) constitutively sustain the etiolated state of dark-germinated seedlings by actively repressing deetiolation in darkness. This action is rapidly reversed upon light exposure by phy-induced proteolytic degradation of the PIFs. Here, we combined a microarray-based approach with a functional profiling strategy and identified four PIF3-regulated genes misexpressed in the dark (MIDAs) that are novel regulators of seedling deetiolation. We provide evidence that each one of these four MIDA genes regulates a specific facet of etiolation (hook maintenance, cotyledon appression, or hypocotyl elongation), indicating that there is branching in the signaling that PIF3 relays. Furthermore, combining inferred MIDA gene function from mutant analyses with their expression profiles in response to light-induced degradation of PIF3 provides evidence consistent with a model where the action of the PIF3/MIDA regulatory network enables an initial fast response to the light and subsequently prevents an overresponse to the initial light trigger, thus optimizing the seedling deetiolation process. Collectively, the data suggest that at least part of the phy/PIF system acts through these four MIDAs to initiate and optimize seedling deetiolation, and that this mechanism might allow the implementation of spatial (i.e., organ-specific) and temporal responses during the photomorphogenic program. PMID:22108407

  13. Measuring circadian and acute light responses in mice using wheel running activity.

    PubMed

    LeGates, Tara A; Altimus, Cara M

    2011-02-04

    Circadian rhythms are physiological functions that cycle over a period of approximately 24 hours (circadian- circa: approximate and diem: day). They are responsible for timing our sleep/wake cycles and hormone secretion. Since this timing is not precisely 24-hours, it is synchronized to the solar day by light input. This is accomplished via photic input from the retina to the suprachiasmatic nucleus (SCN) which serves as the master pacemaker synchronizing peripheral clocks in other regions of the brain and peripheral tissues to the environmental light dark cycle. The alignment of rhythms to this environmental light dark cycle organizes particular physiological events to the correct temporal niche, which is crucial for survival. For example, mice sleep during the day and are active at night. This ability to consolidate activity to either the light or dark portion of the day is referred to as circadian photoentrainment and requires light input to the circadian clock. Activity of mice at night is robust particularly in the presence of a running wheel. Measuring this behavior is a minimally invasive method that can be used to evaluate the functionality of the circadian system as well as light input to this system. Methods that will covered here are used to examine the circadian clock, light input to this system, as well as the direct influence of light on wheel running behavior.

  14. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  15. Roles of Protein Kinase A and Adenylate Cyclase in Light-Modulated Cellulase Regulation in Trichoderma reesei

    PubMed Central

    Schuster, André; Tisch, Doris; Seidl-Seiboth, Verena; Kubicek, Christian P.

    2012-01-01

    The cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies of Trichoderma reesei (anamorph of Hypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within the cel6a/cbh2 promoter in light and darkness and in the absence of pkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression in T. reesei and have a dampening effect on the light responsiveness of this process. PMID:22286997

  16. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria.

    PubMed

    Liou, Je-Wen; Chang, Hsin-Hou

    2012-08-01

    This review focuses on the antibacterial activities of visible light-responsive titanium dioxide (TiO(2)) photocatalysts. These photocatalysts have a range of applications including disinfection, air and water cleaning, deodorization, and pollution and environmental control. Titanium dioxide is a chemically stable and inert material, and can continuously exert antimicrobial effects when illuminated. The energy source could be solar light; therefore, TiO(2) photocatalysts are also useful in remote areas where electricity is insufficient. However, because of its large band gap for excitation, only biohazardous ultraviolet (UV) light irradiation can excite TiO(2), which limits its application in the living environment. To extend its application, impurity doping, through metal coating and controlled calcination, has successfully modified the substrates of TiO(2) to expand its absorption wavelengths to the visible light region. Previous studies have investigated the antibacterial abilities of visible light-responsive photocatalysts using the model bacteria Escherichia coli and human pathogens. The modified TiO(2) photocatalysts significantly reduced the numbers of surviving bacterial cells in response to visible light illumination. They also significantly reduced the activity of bacterial endospores; reducing their toxicity while retaining their germinating abilities. It is suggested that the photocatalytic killing mechanism initially damages the surfaces weak points of the bacterial cells, before totally breakage of the cell membranes. The internal bacterial components then leak from the cells through the damaged sites. Finally, the photocatalytic reaction oxidizes the cell debris. In summary, visible light-responsive TiO(2) photocatalysts are more convenient than the traditional UV light-responsive TiO(2) photocatalysts because they do not require harmful UV light irradiation to function. These photocatalysts, thus, provide a promising and feasible approach for disinfection of pathogenic bacteria; facilitating the prevention of infectious diseases.

  17. Predictive assessment of kidney functional recovery following ischemic injury using optical spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, Rajesh N.; Pivetti, Christopher D.; Ramsamooj, Rajendra

    Functional changes in rat kidneys during the induced ischemic injury and recovery phases were explored using multimodal autofluorescence and light scattering imaging. We aim to evaluate the use of noncontact optical signatures for rapid assessment of tissue function and viability. Specifically, autofluorescence images were acquired in vivo under 355, 325, and 266 nm illumination while light scattering images were collected at the excitation wavelengths as well as using relatively narrowband light centered at 500 nm. The images were simultaneously recorded using a multimodal optical imaging system. We also analyzed to obtain time constants, which were correlated to kidney dysfunction asmore » determined by a subsequent survival study and histopathological analysis. This analysis of both the light scattering and autofluorescence images suggests that changes in tissue microstructure, fluorophore emission, and blood absorption spectral characteristics, coupled with vascular response, contribute to the behavior of the observed signal, which may be used to obtain tissue functional information and offer the ability to predict posttransplant kidney function.« less

  18. Predictive assessment of kidney functional recovery following ischemic injury using optical spectroscopy

    DOE PAGES

    Raman, Rajesh N.; Pivetti, Christopher D.; Ramsamooj, Rajendra; ...

    2017-05-03

    Functional changes in rat kidneys during the induced ischemic injury and recovery phases were explored using multimodal autofluorescence and light scattering imaging. We aim to evaluate the use of noncontact optical signatures for rapid assessment of tissue function and viability. Specifically, autofluorescence images were acquired in vivo under 355, 325, and 266 nm illumination while light scattering images were collected at the excitation wavelengths as well as using relatively narrowband light centered at 500 nm. The images were simultaneously recorded using a multimodal optical imaging system. We also analyzed to obtain time constants, which were correlated to kidney dysfunction asmore » determined by a subsequent survival study and histopathological analysis. This analysis of both the light scattering and autofluorescence images suggests that changes in tissue microstructure, fluorophore emission, and blood absorption spectral characteristics, coupled with vascular response, contribute to the behavior of the observed signal, which may be used to obtain tissue functional information and offer the ability to predict posttransplant kidney function.« less

  19. Nighttime dim light exposure alters the responses of the circadian system.

    PubMed

    Shuboni, D; Yan, L

    2010-11-10

    The daily light dark cycle is the most salient entraining factor for the circadian system. However, in modern society, darkness at night is vanishing as light pollution steadily increases. The impact of brighter nights on wild life ecology and human physiology is just now being recognized. In the present study, we tested the possible detrimental effects of dim light exposure on the regulation of circadian rhythms, using CD1 mice housed in light/dim light (LdimL, 300 lux:20 lux) or light/dark (LD, 300 lux:1 lux) conditions. We first examined the expression of clock genes in the suprachiasmatic nucleus (SCN), the locus of the principal brain clock, in the animals of the LD and LdimL groups. Under the entrained condition, there was no difference in PER1 peak expression between the two groups, but at the trough of the PER 1 rhythm, there was an increase in PER1 in the LdimL group, indicating a decrease in the amplitude of the PER1 rhythm. After a brief light exposure (30 min, 300 lux) at night, the light-induced expression of mPer1 and mPer2 genes was attenuated in the SCN of LdimL group. Next, we examined the behavioral rhythms by monitoring wheel-running activity to determine whether the altered responses in the SCN of LdimL group have behavioral consequence. Compared to the LD controls, the LdimL group showed increased daytime activity. After being released into constant darkness, the LdimL group displayed shorter free-running periods. Furthermore, following the light exposure, the phase shifting responses were smaller in the LdimL group. The results indicate that nighttime dim light exposure can cause functional changes of the circadian system, and suggest that altered circadian function could be one of the mechanisms underlying the adverse effects of light pollution on wild life ecology and human physiology. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Retinal Ganglion Cell Damage in an Experimental Rodent Model of Blast-Mediated Traumatic Brain Injury

    PubMed Central

    Mohan, Kabhilan; Kecova, Helga; Hernandez-Merino, Elena; Kardon, Randy H.; Harper, Matthew M.

    2013-01-01

    Purpose. To evaluate retina and optic nerve damage following experimental blast injury. Methods. Healthy adult mice were exposed to an overpressure blast wave using a custom-built blast chamber. The effects of blast exposure on retina and optic nerve function and structure were evaluated using the pattern electroretinogram (pERG), spectral domain optical coherence tomography (OCT), and the chromatic pupil light reflex. Results. Assessment of the pupil response to light demonstrated decreased maximum pupil constriction diameter in blast-injured mice using red light or blue light stimuli 24 hours after injury compared with baseline in the eye exposed to direct blast injury. A decrease in the pupil light reflex was not observed chronically following blast exposure. We observed a biphasic pERG decrease with the acute injury recovering by 24 hours postblast and the chronic injury appearing at 4 months postblast injury. Furthermore, at 3 months following injury, a significant decrease in the retinal nerve fiber layer was observed using OCT compared with controls. Histologic analysis of the retina and optic nerve revealed punctate regions of reduced cellularity in the ganglion cell layer and damage to optic nerves. Additionally, a significant upregulation of proteins associated with oxidative stress was observed acutely following blast exposure compared with control mice. Conclusions. Our study demonstrates that decrements in retinal ganglion cell responses can be detected after blast injury using noninvasive functional and structural tests. These objective responses may serve as surrogate tests for higher CNS functions following traumatic brain injury that are difficult to quantify. PMID:23620426

  1. The relationship of systemic markers of renal function and vascular function with retinal blood vessel responses.

    PubMed

    Heitmar, R; Varma, C; De, P; Lau, Y C; Blann, A D

    2016-11-01

    To test the hypothesis of a significant relationship between systemic markers of renal and vascular function (processes linked to cardiovascular disease and its development) and retinal microvascular function in diabetes and/or cardiovascular disease. Ocular microcirculatory function was measured in 116 patients with diabetes and/or cardiovascular disease using static and continuous retinal vessel responses to three cycles of flickering light. Endothelial function was evaluated by von Willebrand factor (vWf), endothelial microparticles and soluble E selectin, renal function by serum creatinine, creatinine clearance and estimated glomerular filtration rate (eGFR). HbA1c was used as a control index. Central retinal vein equivalence and venous maximum dilation to flicker were linked to HbA1c (both p < 0.05). Arterial reaction time was linked to serum creatinine (p = 0.036) and eGFR (p = 0.039); venous reaction time was linked to creatinine clearance (p = 0.018). Creatinine clearance and eGFR were linked to arterial maximum dilatation (p < 0.001 and p = 0.003, respectively) and the dilatation amplitude (p = 0.038 and p = 0.048, respectively) responses in the third flicker cycle. Of venous responses to the first flicker cycle, HbA1c was linked to the maximum dilation response (p = 0.004) and dilatation amplitude (p = 0.017), vWf was linked to the maximum constriction response (p = 0.016), and creatinine clearance to the baseline diameter fluctuation (p = 0.029). In the second flicker cycle, dilatation amplitude was linked to serum creatinine (p = 0.022). Several retinal blood vessel responses to flickering light are linked to glycaemia and renal function, but only one index is linked to endothelial function. Renal function must be considered when interpreting retinal vessel responses.

  2. A Physiological and Psychometric Evaluation of Human Subconscious Visual Response and Its Application in Health Promoting Lighting

    NASA Astrophysics Data System (ADS)

    Vartanian, Garen V.

    Subconscious vision is a recent focus of the vision science community, brought on by the discovery of a previously unknown photoreceptor in the retina dedicated to driving non-image-forming responses, intrinsically photosensitive retinal ganglion cells (ipRGCs). In addition to accepting inputs from rod and cone photoreceptors, ipRGCs contain their own photopigment, melanopsin, and are considered true photoreceptors. ipRGCs drive various non-image-forming photoresponses, including circadian photoentrainment, melatonin suppression, and pupil constriction. In order to understand more about ipRGC function in humans, we studied its sensitivity to light stimuli in the evening and day. First, we measured the sensitivity threshold of melatonin suppression at night. Using a protocol that enhances data precision, we have found the threshold for human melatonin suppression to be two orders of magnitude lower than previously reported. This finding has far-reaching implications since there is mounting evidence that nocturnal activation of the circadian system can be harmful. Paradoxically, ipRGCs are understimulated during the day. Optimizing daytime non-image-forming photostimulation has health benefits, such as increased alertness, faster reaction times, better sleep quality, and treatment of depression. In order to enhance ipRGC excitation, we aimed to circumvent adaptation (i.e. desensitization) of the photoresponse by using flickering instead of steady light. We find that properly timed flickering light enhances pupillary light reflex significantly when compared to steady light with 9-fold more energy density. Employing our findings, a new form of LED light is proposed to enhance subconscious visual responses at a typical indoor illuminance level. Using the silent substitution technique, a melanopsin-selective flicker is introduced into the light. A linear optimization algorithm is used to maximize the contrast of the subconscious, melanopsin-based response function while keeping conscious, cone-driven responses to the pulsing light fixed. Additional boundary conditions utilizing test color samples as an environmental mimic are introduced to limit the amount of perceived color change in a simulated environment. Two examples of lights are given to illustrate potential applications for general illumination and therapeutic purposes. For the lighting and electronics industry, we hope our study of subconscious-stimulative thresholds at night will better inform their design guidelines for health conscious products.

  3. Extension of applicable neutron energy of DARWIN up to 1 GeV.

    PubMed

    Satoh, D; Sato, T; Endo, A; Matsufuji, N; Takada, M

    2007-01-01

    The radiation-dose monitor, DARWIN, needs a set of response functions of the liquid organic scintillator to assess a neutron dose. SCINFUL-QMD is a Monte Carlo based computer code to evaluate the response functions. In order to improve the accuracy of the code, a new light-output function based on the experimental data was developed for the production and transport of protons deuterons, tritons, (3)He nuclei and alpha particles, and incorporated into the code. The applicable energy of DARWIN was extended to 1 GeV using the response functions calculated by the modified SCINFUL-QMD code.

  4. Effect of a combination of green and blue monochromatic light on broiler immune response.

    PubMed

    Zhang, Ziqiang; Cao, Jing; Wang, Zixu; Dong, Yulan; Chen, Yaoxing

    2014-09-05

    Our previous study suggested that green light or blue light would enhance the broiler immune response; this study was conducted to evaluate whether a combination of green and blue monochromatic light would result in improved immune response. A total of 192 Arbor Acre male broilers were exposed to white light, red light, green light, and blue light from 0 to 26 days. From 27 to 49 days, half of the broilers in green light and blue light were switched to blue light (G-B) and green light (B-G), respectively. The levels of anti-Newcastle disease virus (NDV) and anti-bovine serum albumin (BSA) IgG in G-B group were elevated by 11.9-40.3% and 17.4-48.7%, respectively, compared to single monochromatic lights (P<0.05). Moreover, the proliferation of peripheral blood T and B lymphocytes and the IL-2 concentration in the G-B groups increased by 10.4-36.2%, 10.0-50.0% and 24.7-60.3% (P<0.05), respectively, compared with the single monochromatic light groups. However, the serum TNF-α concentration in the G-B group was reduced by 3.64-40.5% compared to other groups, and no significant difference was found between the G-B and B-G groups in any type of detection index at the end of the experiment. These results suggested that the combination of G-B and B-G monochromatic light could effectively enhance the antibody titer, the proliferation index of lymphocytes and alleviate the stress response in broilers. Therefore, the combination of green and blue monochromatic light can improve the immune function of broilers. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. PHYTOCHROME KINASE SUBSTRATE1 Regulates Root Phototropism and Gravitropism1[C][W][OA

    PubMed Central

    Boccalandro, Hernán E.; De Simone, Silvia N.; Bergmann-Honsberger, Ariane; Schepens, Isabelle; Fankhauser, Christian; Casal, Jorge J.

    2008-01-01

    Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light. PMID:18024556

  6. PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism.

    PubMed

    Boccalandro, Hernán E; De Simone, Silvia N; Bergmann-Honsberger, Ariane; Schepens, Isabelle; Fankhauser, Christian; Casal, Jorge J

    2008-01-01

    Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light.

  7. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.

    PubMed

    Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J

    2014-10-13

    Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.

  8. Living at the margins - The response of deep-water seagrasses to light and temperature renders them susceptible to acute impacts.

    PubMed

    Chartrand, Kathryn M; Szabó, Milán; Sinutok, Sutinee; Rasheed, Michael A; Ralph, Peter J

    2018-05-01

    Seagrasses inhabit environments where light varies at different timescales, nonetheless are acutely sensitive to reductions in light beyond some conditional bounds. Two tropical deep-water seagrasses, Halophila decipiens and Halophila spinulosa, from the Great Barrier Reef were tested for their response to defined light and temperature regimes to identify their growth requirements and potential thresholds of mortality. Species were exposed to two light intensities, saturating (75 μmol photons m -2 s -1 ) and limiting (25 μmol photons m -2 s -1 ) light and two temperature treatments (26 °C and 30 °C) over a four-week period. Wavelength-specific parameters of PSII photochemistry were evaluated for seagrass leaves, as well as shoot density, gas exchange, and pigment content. Both species were sustained under saturating light levels (3.2 mol photons m -2 d -1 ) while limiting light led to decreased shoot density for H. decipiens and H. spinulosa after two and four weeks, respectively. Wavelength-specific photochemistry was also affected under light-limiting treatments for both species while the functional absorption cross section was highly conserved. Photoacclimation and physiological adjustments by either species was not adequate to compensate for reduced irradiance suggesting these plants reside at the margins of their functional limits. As such, relatively short periods of light attenuating events, like dredging or flood plumes, may be detrimental to deep-water seagrass populations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Imaging light responses of foveal ganglion cells in the living macaque eye.

    PubMed

    Yin, Lu; Masella, Benjamin; Dalkara, Deniz; Zhang, Jie; Flannery, John G; Schaffer, David V; Williams, David R; Merigan, William H

    2014-05-07

    The fovea dominates primate vision, and its anatomy and perceptual abilities are well studied, but its physiology has been little explored because of limitations of current physiological methods. In this study, we adapted a novel in vivo imaging method, originally developed in mouse retina, to explore foveal physiology in the macaque, which permits the repeated imaging of the functional response of many retinal ganglion cells (RGCs) simultaneously. A genetically encoded calcium indicator, G-CaMP5, was inserted into foveal RGCs, followed by calcium imaging of the displacement of foveal RGCs from their receptive fields, and their intensity-response functions. The spatial offset of foveal RGCs from their cone inputs makes this method especially appropriate for fovea by permitting imaging of RGC responses without excessive light adaptation of cones. This new method will permit the tracking of visual development, progression of retinal disease, or therapeutic interventions, such as insertion of visual prostheses.

  10. Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide.

    PubMed

    Fonken, Laura K; Weil, Zachary M; Nelson, Randy J

    2013-11-01

    The mammalian circadian system regulates many physiological functions including inflammatory responses. Appropriately timed light information is essential for maintaining circadian organization. Over the past ∼120 years, urbanization and the widespread adoption of electric lights have dramatically altered lighting environments. Exposure to light at night (LAN) is pervasive in modern society and disrupts core circadian clock mechanisms. Because microglia are the resident macrophages in the brain and macrophages contain intrinsic circadian clocks, we hypothesized that chronic exposure to LAN would alter microglia cytokine expression and sickness behavior following LPS administration. Exposure to 4 weeks of dim LAN elevated inflammatory responses in mice. Mice exposed to dimly lit, as compared to dark, nights exaggerated changes in body temperature and elevated microglia pro-inflammatory cytokine expression following LPS administration. Furthermore, dLAN mice had a prolonged sickness response following the LPS challenge. Mice exposed to dark or dimly lit nights had comparable sickness behavior directly following the LPS injection; however, dLAN mice showed greater reductions in locomotor activity, increased anorectic behavior, and increased weight loss than mice maintained in dark nights 24h post-LPS injection. Overall, these data suggest that chronic exposure to even very low levels of light pollution may alter inflammatory responses. These results may have important implications for humans and other urban dwelling species that commonly experience nighttime light exposure. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Wavelength-Selective Light-Responsive DASA-Functionalized Polymersome Nanoreactors.

    PubMed

    Rifaie-Graham, Omar; Ulrich, Sebastian; Galensowske, Nikolas F B; Balog, Sandor; Chami, Mohamed; Rentsch, Daniel; Hemmer, James R; Read de Alaniz, Javier; Boesel, Luciano F; Bruns, Nico

    2018-06-27

    Transient activation of biochemical reactions by visible light and subsequent return to the inactive state in the absence of light is an essential feature of the biochemical processes in photoreceptor cells. To mimic such light-responsiveness with artificial nanosystems, polymersome nanoreactors were developed that can be switched on by visible light and self-revert fast in the dark at room temperature to their inactive state. Donor-acceptor Stenhouse adducts (DASAs), with their ability to isomerize upon irradiation with visible light, were employed to change the permeability of polymersome membranes by switching polarity from a nonpolar triene-enol form to a cyclopentenone with increased polarity. To this end, amphiphilic block copolymers containing poly(pentafluorophenyl methacrylate) in their hydrophobic block were synthesized by reversible addition-fragmentation chain-transfer (RAFT) radical polymerization and functionalized either with a DASA that is based on Meldrum's acid or with a novel fast-switching pyrazolone-based DASA. These polymers were self-assembled into vesicles. Release of hydrophilic payload could be triggered by light and stopped as soon as the light was turned off. The encapsulation of enzymes yielded photoresponsive nanoreactors that catalyzed reactions only if they were irradiated with light. A mixture of polymersome nanoreactors, one that switches in green light, the other switching in red light, permitted specific control of the individual reactions of a reaction cascade in one pot by irradiation with varied wavelengths, thus enabling light-controlled wavelength-selective catalysis. The DASA-based nanoreactors demonstrate the potential of DASAs to switch permeability of membranes and could find application to switch reactions on and off, on demand, e.g., in microfluidics or in drug delivery.

  12. Ultra-high contrast retinal display system for single photoreceptor psychophysics

    PubMed Central

    Domdei, Niklas; Domdei, Lennart; Reiniger, Jenny L.; Linden, Michael; Holz, Frank G.; Roorda, Austin; Harmening, Wolf M.

    2017-01-01

    Due to the enormous dynamic range of human photoreceptors in response to light, studying their visual function in the intact retina challenges the stimulation hardware, specifically with regard to the displayable luminance contrast. The adaptive optics scanning laser ophthalmoscope (AOSLO) is an optical platform that focuses light to extremely small retinal extents, approaching the size of single photoreceptor cells. However, the current light modulation techniques produce spurious visible backgrounds which fundamentally limit experimental options. To remove unwanted background light and to improve contrast for high dynamic range visual stimulation in an AOSLO, we cascaded two commercial fiber-coupled acousto-optic modulators (AOMs) and measured their combined optical contrast. By compensating for zero-point differences in the individual AOMs, we demonstrate a multiplicative extinction ratio in the cascade that was in accordance with the extinction ratios of both single AOMs. When latency differences in the AOM response functions were individually corrected, single switch events as short as 50 ns with radiant power contrasts up to 1:1010 were achieved. This is the highest visual contrast reported for any display system so far. We show psychophysically that this contrast ratio is sufficient to stimulate single foveal photoreceptor cells with small and bright enough visible targets that do not contain a detectable background. Background-free stimulation will enable photoreceptor testing with custom adaptation lights. Furthermore, a larger dynamic range in displayable light levels can drive photoreceptor responses in cones as well as in rods. PMID:29359094

  13. Adaptational changes in the lipids and fatty acid profile of the cell and thylakoid membrane of rice plants exposed to sunlight.

    PubMed

    Vaz, Janet F; Sharma, Prabhat Kumar

    2010-07-01

    Adaptational changes occurring in the lipids and fatty acids of the cell and the thylakoid membrane in response to high light treatment, was studied in 30 days old rice (Oryza sativa L. cv. Jyothi) plants grown under low (150-200 μmol m(-2) s(-1)) or moderate (600-800 μmol m(-2) s(-1)) light conditions. Results were compared with rice plants grown in high (1200-2200 μmol m(-2) s(-1)) light conditions. Exposure of rice plants and isolated chloroplast to high light, resulted in an increase in the amount of malonaldehyde, indicating oxidation of membrane lipids. Qualitative and quantitative changes in the phosphoglycolipids and quantitative changes in neutral lipids were observed in rice plants grown under the different growth conditions. A few of the phosphoglycolipids and neutral lipids were present exclusively in plants grown at low or moderate or high light, indicating requirement of different type of lipid composition of rice plants in response to their different growth irradiances. However, no significant quantitative changes were observed in the different saturated and unsaturated fatty acid groups of total lipids in low, moderate and high light grown rice plants, as a result of exposure to high light. No qualitative changes in the fatty acid composition due to difference in growth irradiance or high light treatment were seen. The changes observed in the phosphoglycolipids and neutral lipid composition of cell and thylakoid membrane of low, moderate and high light grown rice plants in response to high light, are probably the result of physiological changes in the rice plants, to sustain optimum structure and function of the cell and thylakoid membrane to maintain active physiological functions to endure high light conditions.

  14. Response functions for dimers and square-symmetric molecules in four-wave-mixing experiments with polarized light

    NASA Astrophysics Data System (ADS)

    Smith, Eric Ryan; Farrow, Darcie A.; Jonas, David M.

    2005-07-01

    Four-wave-mixing nonlinear-response functions are given for intermolecular and intramolecular vibrations of a perpendicular dimer and intramolecular vibrations of a square-symmetric molecule containing a doubly degenerate state. A two-dimensional particle-in-a-box model is used to approximate the electronic wave functions and obtain harmonic potentials for nuclear motion. Vibronic interactions due to symmetry-lowering distortions along Jahn-Teller active normal modes are discussed. Electronic dephasing due to nuclear motion along both symmetric and asymmetric normal modes is included in these response functions, but population transfer between states is not. As an illustration, these response functions are used to predict the pump-probe polarization anisotropy in the limit of impulsive excitation.

  15. Dissociating speech perception and comprehension at reduced levels of awareness

    PubMed Central

    Davis, Matthew H.; Coleman, Martin R.; Absalom, Anthony R.; Rodd, Jennifer M.; Johnsrude, Ingrid S.; Matta, Basil F.; Owen, Adrian M.; Menon, David K.

    2007-01-01

    We used functional MRI and the anesthetic agent propofol to assess the relationship among neural responses to speech, successful comprehension, and conscious awareness. Volunteers were scanned while listening to sentences containing ambiguous words, matched sentences without ambiguous words, and signal-correlated noise (SCN). During three scanning sessions, participants were nonsedated (awake), lightly sedated (a slowed response to conversation), and deeply sedated (no conversational response, rousable by loud command). Bilateral temporal-lobe responses for sentences compared with signal-correlated noise were observed at all three levels of sedation, although prefrontal and premotor responses to speech were absent at the deepest level of sedation. Additional inferior frontal and posterior temporal responses to ambiguous sentences provide a neural correlate of semantic processes critical for comprehending sentences containing ambiguous words. However, this additional response was absent during light sedation, suggesting a marked impairment of sentence comprehension. A significant decline in postscan recognition memory for sentences also suggests that sedation impaired encoding of sentences into memory, with left inferior frontal and temporal lobe responses during light sedation predicting subsequent recognition memory. These findings suggest a graded degradation of cognitive function in response to sedation such that “higher-level” semantic and mnemonic processes can be impaired at relatively low levels of sedation, whereas perceptual processing of speech remains resilient even during deep sedation. These results have important implications for understanding the relationship between speech comprehension and awareness in the healthy brain in patients receiving sedation and in patients with disorders of consciousness. PMID:17938125

  16. Molecular mechanisms and ecological function of far-red light signalling.

    PubMed

    Sheerin, David J; Hiltbrunner, Andreas

    2017-11-01

    Land plants possess the ability to sense and respond to far-red light (700-760 nm), which serves as an important environmental cue. Due to the nature of far-red light, it is not absorbed by chlorophyll and thus is enriched in canopy shade and will also penetrate deeper into soil than other visible wavelengths. Far-red light responses include regulation of seed germination, suppression of hypocotyl growth, induction of flowering and accumulation of anthocyanins, which depend on one member of the phytochrome photoreceptor family, phytochrome A (phyA). Here, we review the current understanding of the underlying molecular mechanisms of how plants sense far-red light through phyA and the physiological responses to this light quality. Light-activated phytochromes act on two primary pathways within the nucleus; suppression of the E3 ubiquitin ligase complex CUL4/DDB1 COP1/SPA and inactivation of the PHYTOCHROME INTERACTING FACTOR (PIF) family of bHLH transcription factors. These pathways integrate with other signal transduction pathways, including phytohormones, for tissue and developmental stage specific responses. Unlike other phytochromes that mediate red-light responses, phyA is transported from the cytoplasm to the nucleus in far-red light by the shuttle proteins FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). However, additional mechanisms must exist that shift the action of phyA to far-red light; current hypotheses are discussed. © 2017 John Wiley & Sons Ltd.

  17. Thioredoxin f1 and NADPH-Dependent Thioredoxin Reductase C Have Overlapping Functions in Regulating Photosynthetic Metabolism and Plant Growth in Response to Varying Light Conditions.

    PubMed

    Thormählen, Ina; Meitzel, Tobias; Groysman, Julia; Öchsner, Alexandra Bianca; von Roepenack-Lahaye, Edda; Naranjo, Belén; Cejudo, Francisco J; Geigenberger, Peter

    2015-11-01

    Two different thiol redox systems exist in plant chloroplasts, the ferredoxin-thioredoxin (Trx) system, which depends on ferredoxin reduced by the photosynthetic electron transport chain and, thus, on light, and the NADPH-dependent Trx reductase C (NTRC) system, which relies on NADPH and thus may be linked to sugar metabolism in the dark. Previous studies suggested, therefore, that the two different systems may have different functions in plants. We now report that there is a previously unrecognized functional redundancy of Trx f1 and NTRC in regulating photosynthetic metabolism and growth. In Arabidopsis (Arabidopsis thaliana) mutants, combined, but not single, deficiencies of Trx f1 and NTRC led to severe growth inhibition and perturbed light acclimation, accompanied by strong impairments of Calvin-Benson cycle activity and starch accumulation. Light activation of key enzymes of these pathways, fructose-1,6-bisphosphatase and ADP-glucose pyrophosphorylase, was almost completely abolished. The subsequent increase in NADPH-NADP(+) and ATP-ADP ratios led to increased nitrogen assimilation, NADP-malate dehydrogenase activation, and light vulnerability of photosystem I core proteins. In an additional approach, reporter studies show that Trx f1 and NTRC proteins are both colocalized in the same chloroplast substructure. Results provide genetic evidence that light- and NADPH-dependent thiol redox systems interact at the level of Trx f1 and NTRC to coordinately participate in the regulation of the Calvin-Benson cycle, starch metabolism, and growth in response to varying light conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  18. Spectral characterization of plastic scintillation detector response as a function of magnetic field strength

    NASA Astrophysics Data System (ADS)

    Simiele, E.; Kapsch, R.-P.; Ankerhold, U.; Culberson, W.; DeWerd, L.

    2018-04-01

    The purpose of this work was to characterize intensity and spectral response changes in a plastic scintillation detector (PSD) as a function of magnetic field strength. Spectra measurements as a function of magnetic field strength were performed using an optical spectrometer. The response of both a PSD and PMMA fiber were investigated to isolate the changes in response from the scintillator and the noise signal as a function of magnetic field strength. All irradiations were performed in water at a photon beam energy of 6 MV. Magnetic field strengths of (0, ±0.35, ±0.70, ±1.05, and  ±1.40) T were investigated. Four noise subtraction techniques were investigated to evaluate the impact on the resulting noise-subtracted scintillator response with magnetic field strength. The noise subtraction methods included direct spectral subtraction, the spectral method, and variants thereof. The PMMA fiber exhibited changes in response of up to 50% with magnetic field strength due to the directional light emission from \\breve{C} erenkov radiation. The PSD showed increases in response of up to 10% when not corrected for the noise signal, which agrees with previous investigations of scintillator response in magnetic fields. Decreases in the \\breve{C} erenkov light ratio with negative field strength were observed with a maximum change at  ‑1.40 T of 3.2% compared to 0 T. The change in the noise-subtracted PSD response as a function of magnetic field strength varied with the noise subtraction technique used. Even after noise subtraction, the PSD exhibited changes in response of up to 5.5% over the four noise subtraction methods investigated.

  19. Influence of the spectral power distribution of a LED on the illuminance responsivity of a photometer

    NASA Astrophysics Data System (ADS)

    Sametoglu, Ferhat

    2008-09-01

    The measurement accuracy in the photometric quantities measured through photometer head is determined by the value of the spectral mismatch correction factor ( c( St, Ss)), which is defined as a function of spectral power distribution of light sources, besides illuminance responsivity of the photometer head used. This factor is more important when photometric quantities of the light-emitting diode (LED) style optical sources, which radiate within relatively narrow spectral bands as compared with that of other optical sources, are being measured. Variations of the illuminance responsivities of various V( λ)-adopted photometer heads are discussed. High-power-colored LEDs, manufactured by Lumileds Lighting Co., were used as light sources and their relative spectral power distributions (RSPDs) were measured using a spectrometer-based optical setup. Dependences of the c( St, Ss) factors of three types of photometer heads ( f1'=1.4%, f1'=0.8% and f1'=0.5%) with wavelength and influences of the factors on the illuminance responsivities of photometer heads are presented.

  20. Analysis of complex samples using a portable multi-wavelength light emitting diode (LED) fluorescence spectrometer

    USDA-ARS?s Scientific Manuscript database

    Spectroscopic analysis of chemically complex samples often requires an increase n the dimensionality of the measured response surface. This often involves the measurement of emitted light intensities as functions of both wavelengths of excitation and emission resulting in the generation of an excita...

  1. Pan-retinal characterisation of Light Responses from Ganglion Cells in the Developing Mouse Retina.

    PubMed

    Hilgen, Gerrit; Pirmoradian, Sahar; Pamplona, Daniela; Kornprobst, Pierre; Cessac, Bruno; Hennig, Matthias H; Sernagor, Evelyne

    2017-02-10

    We have investigated the ontogeny of light-driven responses in mouse retinal ganglion cells (RGCs). Using a large-scale, high-density multielectrode array, we recorded from hundreds to thousands of RGCs simultaneously at pan-retinal level, including dorsal and ventral locations. Responses to different contrasts not only revealed a complex developmental profile for ON, OFF and ON-OFF responses, but also unveiled differences between dorsal and ventral RGC responses. At eye-opening, dorsal RGCs of all types were more responsive to light, perhaps indicating an environmental priority to nest viewing for pre-weaning pups. The developmental profile of ON and OFF responses exhibited antagonistic behaviour, with the strongest ON responses shortly after eye-opening, followed by an increase in the strength of OFF responses later on. Further, we found that with maturation receptive field (RF) center sizes decrease, spike-triggered averaged responses to white noise become stronger, and centers become more circular while maintaining differences between RGC types. We conclude that the maturation of retinal functionality is not spatially homogeneous, likely reflecting ecological requirements that favour earlier maturation of the dorsal retina.

  2. Pan-retinal characterisation of Light Responses from Ganglion Cells in the Developing Mouse Retina

    PubMed Central

    Hilgen, Gerrit; Pirmoradian, Sahar; Pamplona, Daniela; Kornprobst, Pierre; Cessac, Bruno; Hennig, Matthias H.; Sernagor, Evelyne

    2017-01-01

    We have investigated the ontogeny of light-driven responses in mouse retinal ganglion cells (RGCs). Using a large-scale, high-density multielectrode array, we recorded from hundreds to thousands of RGCs simultaneously at pan-retinal level, including dorsal and ventral locations. Responses to different contrasts not only revealed a complex developmental profile for ON, OFF and ON-OFF responses, but also unveiled differences between dorsal and ventral RGC responses. At eye-opening, dorsal RGCs of all types were more responsive to light, perhaps indicating an environmental priority to nest viewing for pre-weaning pups. The developmental profile of ON and OFF responses exhibited antagonistic behaviour, with the strongest ON responses shortly after eye-opening, followed by an increase in the strength of OFF responses later on. Further, we found that with maturation receptive field (RF) center sizes decrease, spike-triggered averaged responses to white noise become stronger, and centers become more circular while maintaining differences between RGC types. We conclude that the maturation of retinal functionality is not spatially homogeneous, likely reflecting ecological requirements that favour earlier maturation of the dorsal retina. PMID:28186129

  3. Multiple phytochromes are involved in red-light-induced enhancement of first-positive phototropism in arabidopsis thaliana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janoudi, A.K.; Gordon, W.R.; Poff, K.L.

    1997-03-01

    The amplitude of phototropic curvature to blue light is enhanced by a prior exposure of seedlings to red light. This enhancement is mediated by phytochrome. Fluence-response relationships have been constructed for red-light-induced enhancement in the phytochrome A (phyA) null mutant, the phytochrome B- (phyB) deficient mutant, and in two transgenic lines of Arabidopsis thaliana that overexpress either phyA or phyB. These fluence-response relationships demonstrate the existence of two responses in enhancement, a response in the very-low-to-low-fluence range, and a response in the high-fluence range. Only the response in the high-fluence range is present in the phyA null mutant. In contrast,more » the phyB-deficient mutant is indistinguishable from the wild-type parent in red-light responsiveness. These data indicate that phyA is necessary for the very-low-to-low but not the high-fluence response, and that phyB is not necessary for either response range. Based on these results, the high-fluence response, if controlled by a single phytochrome, must be controlled by a phytochrome other than phyA or phyB. Overexpression of phyA has a negative effect and overexpression of phyB has an enhancing effect in the high fluence range. These results suggest that overexpression of either phytochrome perturbs the function of the endogenous photoreceptor system in unpreditable fashion. 25 refs., 3 figs.« less

  4. Organic light emitting board for dynamic interactive display

    PubMed Central

    Kim, Eui Hyuk; Cho, Sung Hwan; Lee, Ju Han; Jeong, Beomjin; Kim, Richard Hahnkee; Yu, Seunggun; Lee, Tae-Woo; Shim, Wooyoung; Park, Cheolmin

    2017-01-01

    Interactive displays involve the interfacing of a stimuli-responsive sensor with a visual human-readable response. Here, we describe a polymeric electroluminescence-based stimuli-responsive display method that simultaneously detects external stimuli and visualizes the stimulant object. This organic light-emitting board is capable of both sensing and direct visualization of a variety of conductive information. Simultaneous sensing and visualization of the conductive substance is achieved when the conductive object is coupled with the light emissive material layer on application of alternating current. A variety of conductive materials can be detected regardless of their work functions, and thus information written by a conductive pen is clearly visualized, as is a human fingerprint with natural conductivity. Furthermore, we demonstrate that integration of the organic light-emitting board with a fluidic channel readily allows for dynamic monitoring of metallic liquid flow through the channel, which may be suitable for biological detection and imaging applications. PMID:28406151

  5. Organic light emitting board for dynamic interactive display

    NASA Astrophysics Data System (ADS)

    Kim, Eui Hyuk; Cho, Sung Hwan; Lee, Ju Han; Jeong, Beomjin; Kim, Richard Hahnkee; Yu, Seunggun; Lee, Tae-Woo; Shim, Wooyoung; Park, Cheolmin

    2017-04-01

    Interactive displays involve the interfacing of a stimuli-responsive sensor with a visual human-readable response. Here, we describe a polymeric electroluminescence-based stimuli-responsive display method that simultaneously detects external stimuli and visualizes the stimulant object. This organic light-emitting board is capable of both sensing and direct visualization of a variety of conductive information. Simultaneous sensing and visualization of the conductive substance is achieved when the conductive object is coupled with the light emissive material layer on application of alternating current. A variety of conductive materials can be detected regardless of their work functions, and thus information written by a conductive pen is clearly visualized, as is a human fingerprint with natural conductivity. Furthermore, we demonstrate that integration of the organic light-emitting board with a fluidic channel readily allows for dynamic monitoring of metallic liquid flow through the channel, which may be suitable for biological detection and imaging applications.

  6. PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis

    PubMed Central

    Huang, He; Yoo, Chan Yul; Bindbeutel, Rebecca; Goldsworthy, Jessica; Tielking, Allison; Alvarez, Sophie; Naldrett, Michael J; Evans, Bradley S; Chen, Meng; Nusinow, Dmitri A

    2016-01-01

    Plants react to seasonal change in day length through altering physiology and development. Factors that function to harmonize growth with photoperiod are poorly understood. Here we characterize a new protein that associates with both circadian clock and photoreceptor components, named PHOTOPERIODIC CONTROL OF HYPOCOTYL1 (PCH1). pch1 seedlings have overly elongated hypocotyls specifically under short days while constitutive expression of PCH1 shortens hypocotyls independent of day length. PCH1 peaks at dusk, binds phytochrome B (phyB) in a red light-dependent manner, and co-localizes with phyB into photobodies. PCH1 is necessary and sufficient to promote the biogenesis of large photobodies to maintain an active phyB pool after light exposure, potentiating red-light signaling and prolonging memory of prior illumination. Manipulating PCH1 alters PHYTOCHROME INTERACTING FACTOR 4 levels and regulates light-responsive gene expression. Thus, PCH1 is a new factor that regulates photoperiod-responsive growth by integrating the clock with light perception pathways through modulating daily phyB-signaling. DOI: http://dx.doi.org/10.7554/eLife.13292.001 PMID:26839287

  7. Structure and function of homodomain-leucine zipper (HD-Zip) proteins.

    PubMed

    Elhiti, Mohamed; Stasolla, Claudio

    2009-02-01

    Homeodomain-leucine zipper (HD-Zip) proteins are transcription factors unique to plants and are encoded by more than 25 genes in Arabidopsis thaliana. Based on sequence analyses these proteins have been classified into four distinct groups: HD-Zip I-IV. HD-Zip proteins are characterized by the presence of two functional domains; a homeodomain (HD) responsible for DNA binding and a leucine zipper domain (Zip) located immediately C-terminal to the homeodomain and involved in protein-protein interaction. Despite sequence similarities HD-ZIP proteins participate in a variety of processes during plant growth and development. HD-Zip I proteins are generally involved in responses related to abiotic stress, abscisic acid (ABA), blue light, de-etiolation and embryogenesis. HD-Zip II proteins participate in light response, shade avoidance and auxin signalling. Members of the third group (HD-Zip III) control embryogenesis, leaf polarity, lateral organ initiation and meristem function. HD-Zip IV proteins play significant roles during anthocyanin accumulation, differentiation of epidermal cells, trichome formation and root development.

  8. Do UV-A radiation and blue light during growth prime leaves to cope with acute high-light in photoreceptor mutants of Arabidopsis thaliana?

    PubMed

    Brelsford, Craig C; Morales, Luis O; Nezval, Jakub; Kotilainen, Titta K; Hartikainen, Saara M; Aphalo, Pedro J; Robson, T Matthew

    2018-04-28

    We studied how plants acclimated to growing conditions that included combinations of blue light and ultraviolet-A (UV-A) radiation, and whether their growing environment affected their photosynthetic capacity during and after a brief period of acute high light (as might happen during an under-canopy sunfleck). Arabidopsis thaliana Landsberg erecta wild-type were compared with mutants lacking functional blue-light-and-UV photoreceptors: phototropin 1PHOT1, cryptochromes (CRY1 and CRY2) and UV RESISTANT LOCUS 8 (uvr8). This was achieved using LED lamps in a controlled environment to create treatments with or without blue light, in a split-plot design with or without UV-A radiation. We compared the accumulation of phenolic compounds under growth conditions and after exposure to 30 minutes of high light at the end of the experiment (46 days), and likewise measured the operational efficiency of photosystem II (φPSII a proxy for photosynthetic performance) and dark-adapted maximum quantum yield (F v /F m to assess PSII damage). Our results indicate that cryptochromes are the main photoreceptors regulating phenolic-compound accumulation in response to blue light and UV-A radiation, and a lack of functional cryptochromes impairs photosynthetic performance under high light. Our findings also reveal a role for UVR8 in accumulating flavonoids in response to a low UV-A dose. Interestingly, phototropin 1 partially-mediated constitutive accumulation of phenolic compounds in the absence of blue light. Low irradiance blue light and UV-A did not improve φPSII and F v /F m upon our acute high light treatment, however CRYs played an important role in ameliorating high-light stress. This article is protected by copyright. All rights reserved.

  9. Herbivores modify selection on plant functional traits in a temperate rainforest understory.

    PubMed

    Salgado-Luarte, Cristian; Gianoli, Ernesto

    2012-08-01

    There is limited evidence regarding the adaptive value of plant functional traits in contrasting light environments. It has been suggested that changes in these traits in response to light availability can increase herbivore susceptibility. We tested the adaptive value of plant functional traits linked with carbon gain in contrasting light environments and also evaluated whether herbivores can modify selection on these traits in each light environment. In a temperate rainforest, we examined phenotypic selection on functional traits in seedlings of the pioneer tree Aristotelia chilensis growing in sun (canopy gap) and shade (forest understory) and subjected to either natural herbivory or herbivore exclusion. We found differential selection on functional traits depending on light environment. In sun, there was positive directional selection on photosynthetic rate and relative growth rate (RGR), indicating that selection favors competitive ability in a high-resource environment. Seedlings with high specific leaf area (SLA) and intermediate RGR were selected in shade, suggesting that light capture and conservative resource use are favored in the understory. Herbivores reduced the strength of positive directional selection acting on SLA in shade. We provide the first demonstration that natural herbivory rates can change the strength of selection on plant ecophysiological traits, that is, attributes whose main function is resource uptake. Research addressing the evolution of shade tolerance should incorporate the selective role of herbivores.

  10. Visual Function Changes after Laser Exposure.

    DTIC Science & Technology

    1984-04-01

    degeneration induced by prolonged exposure to flourescent light. Using the ERG as a criterion response Noell et al (5) showed that the damage action...without photoreceptors. Exp Neurol 1972;34:446-454 15. Bennett 11H, Dyer RF, Dunn JD. Light-induced retinal degeneration : effect upon light-dark...20. Lemmon V, Anderson VV. Behavioral effects of retinal degeneration . Exp Neurol 1979;63:35-49 21. Wright A, Sperling HG. Psychophysical biochemical

  11. Blue light-induced immunosuppression in Bactrocera dorsalis adults, as a carryover effect of larval exposure.

    PubMed

    Tariq, K; Noor, M; Hori, M; Ali, A; Hussain, A; Peng, W; Chang, C-J; Zhang, H

    2017-12-01

    Detrimental effects of ultraviolet (UV) light on living organisms are well understood, little is known about the effects of blue light irradiation. Although a recent study revealed that blue light caused more harmful effects on insects than UV light and blue light irradiation killed insect pests of various orders including Diptera, the effects of blue light on physiology of insects are still largely unknown. Here we studied the effects of blue light irradiation on cuticular melanin in larval and the immune response in adult stage of Bactrocera dorsalis. We also evaluated the effects of blue light exposure in larval stage on various age and mass at metamorphosis and the mediatory role of cuticular melanin in carryover effects of larval stressors across metamorphosis. We found that larvae exposed to blue light decreased melanin contents in their exoskeleton with smaller mass and delayed metamorphosis than insects reared without blue light exposure. Across metamorphosis, lower melanotic encapsulation response and higher susceptibility to Beauveria bassiana was detected in adults that had been exposed to blue light at their larval stage, thereby constituting the first evidence that blue light impaired adult immune function in B. dorsalis as a carryover effect of larval exposure.

  12. Use of GaN as a Scintillating Ionizing Radiation Detector

    NASA Astrophysics Data System (ADS)

    Wensman, Johnathan; Guardala, Noel; Mathur, Veerendra; Alasagas, Leslie; Vanhoy, Jeffrey; Statham, John; Marron, Daniel; Millett, Marshall; Marsh, Jarrod; Currie, John; Price, Jack

    2017-09-01

    Gallium nitride (GaN) is a III/V direct bandgap semiconductor which has been used in light emitting diodes (LEDs) since the 1990s. Currently, due to a potential for increased efficiency, GaN is being investigated as a replacement for silicon in power electronics finding potential uses ranging from data centers to electric vehicles. In addition to LEDs and power electronics though, doped GaN can be used as a gamma insensitive fast neutron detector due to the direct band-gap, light propagation properties, and response to ionizing radiations. Investigation of GaN as a semiconductor scintillator for use in a radiation detection system involves mapping the response function of the detector crystal over a range of photon and neutron energies, and measurements of light generation in the GaN crystal due to proton, alpha, and nitrogen projectiles. In this presentation we discuss the measurements made to date, and plausible interpretations of the response functions. This work funded in part by the Naval Surface Warfare Center, Carderock Division In-house Laboratory Independent Research program.

  13. A proteorhodopsin-based biohybrid light-powering pH sensor.

    PubMed

    Rao, Siyuan; Guo, Zhibin; Liang, Dawei; Chen, Deliang; Wei, Yen; Xiang, Yan

    2013-10-14

    The biohybrid sensor is an emerging technique for multi-functional detection that utilizes the instinctive responses or interactions of biomolecules. We develop a biohybrid pH sensor by taking advantage of the pH-dependent photoelectric characteristics of proteorhodopsin (pR). The transient absorption kinetics study indicates that the photoelectric behavior of pR is attributed to the varying lifetime of the M intermediate at different environmental pH values. This pR-based biohybrid light-powering sensor with microfluidic design can achieve real-time pH detection with quick response and high sensitivity. The results of this work would shed light on pR and its potential applications.

  14. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity.

    PubMed

    Cissé, Yasmine M; Russart, Kathryn L G; Nelson, Randy J

    2017-03-31

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues.

  15. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity

    PubMed Central

    Cissé, Yasmine M.; Russart, Kathryn L.G.; Nelson, Randy J.

    2017-01-01

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues. PMID:28361901

  16. Worldwide variation in within-canopy photosynthetic acclimation: differences in temporal and environmental controls among plant functional types

    NASA Astrophysics Data System (ADS)

    Niinemets, Ülo; Keenan, Trevor

    2017-04-01

    Major light gradients, characteristically 10- to 50-fold, constitute the most prominent feature of plant canopies. These gradients drive within-canopy variation in foliage structural, chemical and physiological traits. As a key acclimation response to variation in light availability, foliage photosynthetic capacity per area (Aarea) increases with increasing light availability within the canopy, maximizing whole canopy photosynthesis. Recently, a worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types was constructed and within-canopy variation in photosynthetic acclimation was characterized (Niinemets Ü, Keenan TF, Hallik L (2015) Tansley review. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. The New Phytologist 205: 973-993). However, the understanding of how within-canopy photosynthetic gradients vary during the growing season and in response to site and stand characteristics is still limited. Here we analyzed temporal, environmental and site (nutrient availability, stand density, ambient CO2 concentration, water availability) sources of variation in within-canopy photosynthetic acclimation in different plant functional types. Variation in key structural (leaf dry mass per unit area, MA), chemical (nitrogen content per dry mass, NM, and area, NA) and physiological (photosynthetic nitrogen use efficiency, EN) photosynthetic capacity per dry mass, Amass and area, Aarea) was examined. The analysis demonstrates major, typically 1.5-2-fold, time-, environment and site-dependent modifications in within-canopy variation in foliage photosynthetic capacity. However, the magnitude and direction of temporal and environmental variations in plasticity significantly varied among functional types. Species with longer leaf life span and low rates of canopy expansion or flush-type canopy formation had lower within canopy plasticity during the growing season and in response to environmental and site modifications than species with high rates of canopy expansion and leaf turnover. The fast canopy-expanding species that grow in highly dynamic light environments, actively modified Aarea by nitrogen reallocation among and partitioning within leaves. In contrast, species with low rate of leaf turnover generally exhibited a passive acclimation response with variation in Aarea primarily determined by light-dependent modifications in leaf structure during leaf growth. Due to limited reacclimation capacity in species with low leaf turnover, within-canopy variation in Aarea decreased with increasing leaf age in these species. Furthermore, the plasticity responded less to modifications in environmental and site characteristics than in species with faster leaf turnover. This analysis concludes that the rate of leaf turnover is the key trait determining the temporal variation and environmental responses of canopy photosynthetic acclimation.

  17. Temporal partitioning of adaptive responses of the murine heart to fasting.

    PubMed

    Brewer, Rachel A; Collins, Helen E; Berry, Ryan D; Brahma, Manoja K; Tirado, Brian A; Peliciari-Garcia, Rodrigo A; Stanley, Haley L; Wende, Adam R; Taegtmeyer, Heinrich; Rajasekaran, Namakkal Soorappan; Darley-Usmar, Victor; Zhang, Jianhua; Frank, Stuart J; Chatham, John C; Young, Martin E

    2018-03-15

    Recent studies suggest that the time of day at which food is consumed dramatically influences clinically-relevant cardiometabolic parameters (e.g., adiposity, insulin sensitivity, and cardiac function). Meal feeding benefits may be the result of daily periods of feeding and/or fasting, highlighting the need for improved understanding of the temporal adaptation of cardiometabolic tissues (e.g., heart) to fasting. Such studies may provide mechanistic insight regarding how time-of-day-dependent feeding/fasting cycles influence cardiac function. We hypothesized that fasting during the sleep period elicits beneficial adaptation of the heart at transcriptional, translational, and metabolic levels. To test this hypothesis, temporal adaptation was investigated in wild-type mice fasted for 24-h, or for either the 12-h light/sleep phase or the 12-h dark/awake phase. Fasting maximally induced fatty acid responsive genes (e.g., Pdk4) during the dark/active phase; transcriptional changes were mirrored at translational (e.g., PDK4) and metabolic flux (e.g., glucose/oleate oxidation) levels. Similarly, maximal repression of myocardial p-mTOR and protein synthesis rates occurred during the dark phase; both parameters remained elevated in the heart of fasted mice during the light phase. In contrast, markers of autophagy (e.g., LC3II) exhibited peak responses to fasting during the light phase. Collectively, these data show that responsiveness of the heart to fasting is temporally partitioned. Autophagy peaks during the light/sleep phase, while repression of glucose utilization and protein synthesis is maximized during the dark/active phase. We speculate that sleep phase fasting may benefit cardiac function through augmentation of protein/cellular constituent turnover. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Die Fledermaus: Regarding Optokinetic Contrast Sensitivity and Light-Adaptation, Chicks Are Mice with Wings

    PubMed Central

    Shi, Qing; Stell, William K.

    2013-01-01

    Background Through adaptation, animals can function visually under an extremely broad range of light intensities. Light adaptation starts in the retina, through shifts in photoreceptor sensitivity and kinetics plus modulation of visual processing in retinal circuits. Although considerable research has been conducted on retinal adaptation in nocturnal species with rod-dominated retinas, such as the mouse, little is known about how cone-dominated avian retinas adapt to changes in mean light intensity. Methodology/Principal Findings We used the optokinetic response to characterize contrast sensitivity (CS) in the chick retina as a function of spatial frequency and temporal frequency at different mean light intensities. We found that: 1) daytime, cone-driven CS was tuned to spatial frequency; 2) nighttime, presumably rod-driven CS was tuned to temporal frequency and spatial frequency; 3) daytime, presumably cone-driven CS at threshold intensity was invariant with temporal and spatial frequency; and 4) daytime photopic CS was invariant with clock time. Conclusion/Significance Light- and dark-adaptational changes in CS were investigated comprehensively for the first time in the cone-dominated retina of an avian, diurnal species. The chick retina, like the mouse retina, adapts by using a “day/night” or “cone/rod” switch in tuning preference during changes in lighting conditions. The chick optokinetic response is an attractive model for noninvasive, behavioral studies of adaptation in retinal circuitry in health and disease. PMID:24098693

  19. LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth, and promotes the growth of adult tomato plants

    PubMed Central

    2014-01-01

    Background Arabidopsis ZBF1/MYC2bHLH transcription factor is a repressor of photomorphogenesis, and acts as a point of cross talk in light, abscisic acid (ABA) and jasmonic acid (JA) signaling pathways. MYC2 also functions as a positive regulator of lateral root development and flowering time under long day conditions. However, the function of MYC2 in growth and development remains unknown in crop plants. Results Here, we report the functional analyses of LeMYC2 in tomato (Lycopersicon esculentum). The amino acid sequence of LeMYC2 showed extensive homology with Arabidopsis MYC2, containing the conserved bHLH domain. To study the function of LeMYC2 in tomato, overexpression and RNA interference (RNAi) LeMYC2 tomato transgenic plants were generated. Examination of seedling morphology, physiological responses and light regulated gene expression has revealed that LeMYC2 works as a negative regulator of blue light mediated photomorphogenesis. Furthermore, LeMYC2 specifically binds to the G-box of LeRBCS-3A promoter. Overexpression of LeMYC2 has led to increased root length with more number of lateral roots. The tomato plants overexpressing LeMYC2 have reduced internode distance with more branches, and display the opposite morphology to RNAi transgenic lines. Furthermore, this study shows that LeMYC2 promotes ABA and JA responsiveness. Conclusions Collectively, this study highlights that working in light, ABA and JA signaling pathways LeMYC2 works as an important regulator for growth and development in tomato plants. PMID:24483714

  20. Trait coordination, mechanical behaviour and growth form plasticity of Amborella trichopoda under variation in canopy openness

    PubMed Central

    Trueba, Santiago; Isnard, Sandrine; Barthélémy, Daniel; Olson, Mark E.

    2016-01-01

    Understanding the distribution of traits across the angiosperm phylogeny helps map the nested hierarchy of features that characterize key nodes. Finding that Amborella is sister to the rest of the angiosperms has raised the question of whether it shares certain key functional trait characteristics, and plastic responses apparently widespread within the angiosperms at large. With this in mind, we test the hypothesis that local canopy openness induces plastic responses. We used this variation in morphological and functional traits to estimate the pervasiveness of trait scaling and leaf and stem economics. We studied the architecture of Amborella and how it varies under different degrees of canopy openness. We analyzed the coordination of 12 leaf and stem structural and functional traits, and the association of this covariation with differing morphologies. The Amborella habit is made up of a series of sympodial modules that vary in size and branching pattern under different canopy openness. Amborella stems vary from self-supporting to semi-scandent. Changes in stem elongation and leaf size in Amborella produce distinct morphologies under different light environments. Correlations were found between most leaf and stem functional traits. Stem tissue rigidity decreased with increasing canopy openness. Despite substantial modulation of leaf size and leaf mass per area by light availability, branches in different light environments had similar leaf area-stem size scaling. The sympodial growth observed in Amborella could point to an angiosperm synapomorphy. Our study provides evidence of intraspecific coordination between leaf and stem economic spectra. Trait variation along these spectra is likely adaptive under different light environments and is consistent with these plastic responses having been present in the angiosperm common ancestor. PMID:27672131

  1. A novel cryptochrome-dependent oscillator in Neurospora crassa.

    PubMed

    Nsa, Imade Y; Karunarathna, Nirmala; Liu, Xiaoguang; Huang, Howard; Boetteger, Brittni; Bell-Pedersen, Deborah

    2015-01-01

    Several lines of evidence suggest that the circadian clock is constructed of multiple molecular feedback oscillators that function to generate robust rhythms in organisms. However, while core oscillator mechanisms driving specific behaviors are well described in several model systems, the nature of other potential circadian oscillators is not understood. Using genetic approaches in the fungus Neurospora crassa, we uncovered an oscillator mechanism that drives rhythmic spore development in the absence of the well-characterized FRQ/WCC oscillator (FWO) and in constant light, conditions under which the FWO is not functional. While this novel oscillator does not require the FWO for activity, it does require the blue-light photoreceptor CRYPTOCHROME (CRY); thus, we call it the CRY-dependent oscillator (CDO). The CDO was uncovered in a strain carrying a mutation in cog-1 (cry-dependent oscillator gate-1), has a period of ∼1 day in constant light, and is temperature-compensated. In addition, cog-1 cells lacking the circadian blue-light photoreceptor WC-1 respond to blue light, suggesting that alternate light inputs function in cog-1 mutant cells. We show that the blue-light photoreceptors VIVID and CRY compensate for each other and for WC-1 in CRY-dependent oscillator light responses, but that WC-1 is necessary for circadian light entrainment. Copyright © 2015 by the Genetics Society of America.

  2. A Novel Cryptochrome-Dependent Oscillator in Neurospora crassa

    PubMed Central

    Nsa, Imade Y.; Karunarathna, Nirmala; Liu, Xiaoguang; Huang, Howard; Boetteger, Brittni; Bell-Pedersen, Deborah

    2015-01-01

    Several lines of evidence suggest that the circadian clock is constructed of multiple molecular feedback oscillators that function to generate robust rhythms in organisms. However, while core oscillator mechanisms driving specific behaviors are well described in several model systems, the nature of other potential circadian oscillators is not understood. Using genetic approaches in the fungus Neurospora crassa, we uncovered an oscillator mechanism that drives rhythmic spore development in the absence of the well-characterized FRQ/WCC oscillator (FWO) and in constant light, conditions under which the FWO is not functional. While this novel oscillator does not require the FWO for activity, it does require the blue-light photoreceptor CRYPTOCHROME (CRY); thus, we call it the CRY-dependent oscillator (CDO). The CDO was uncovered in a strain carrying a mutation in cog-1 (cry-dependent oscillator gate-1), has a period of ∼1 day in constant light, and is temperature-compensated. In addition, cog-1 cells lacking the circadian blue-light photoreceptor WC-1 respond to blue light, suggesting that alternate light inputs function in cog-1 mutant cells. We show that the blue-light photoreceptors VIVID and CRY compensate for each other and for WC-1 in CRY-dependent oscillator light responses, but that WC-1 is necessary for circadian light entrainment. PMID:25361899

  3. A Comparative Proteome Approach Reveals Metabolic Changes Associated with Flammulina velutipes Mycelia in Response to Cold and Light Stress.

    PubMed

    Liu, Jing-Yu; Chang, Ming-Chang; Meng, Jun-Long; Feng, Cui-Ping; Wang, Yu

    2018-04-11

    In some industrial processes, cold and light stresses are recognized as two important environmental triggers for the transformation of mycelia into fruit-bodies via intermediate primordia in Flammulina velutipes cultivation. To gain insights into the mechanism of regulation of F. velutipes mycelia in response to cold and light stress, proteins expressed abundantly and characteristically at particular stress states were investigated by using the isobaric tags for the relative and absolute quantitation labeling technique. Among the 1046 nonredundant proteins identified with a high degree of confidence, 264 proteins, which were detected as differentially expressed proteins, were associated with 176 specific KEGG pathways. In-depth data analysis revealed that the regulatory network underlying the cold and light response mechanisms of F. velutipes mycelia was complex and multifaceted, as it included varied functions such as rapid energy supply, the biosynthesis of lysine, phenylalanine, tyrosine, and γ-aminobutyric acid, the calcium signal transduction process, dynein-dependent actin and microtubule cytoskeleton formation, autolysis, oxidative stress adaptation, pigment secretion, tissue and organ morphogenesis, and other interesting stress-related processes. Insights into the proteins might shed light on an intuitive understanding of the cold and light stress response mechanism underlying the fruiting processes of F. velutipes. Furthermore, the data might also provide further insights into the stress response mechanism of macro-fungi and valuable information for scientific improvement of some mushroom cultivation techniques in practice.

  4. Prediction of Excitation Energies for Conjugated Oligomers and Polymers from Time-Dependent Density Functional Theory

    PubMed Central

    Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin

    2010-01-01

    With technological advances, light-emitting conjugated oligomers and polymers have become competitive candidates in the commercial market of light-emitting diodes for display and other technologies, due to the ultralow cost, light weight, and flexibility. Prediction of excitation energies of these systems plays a crucial role in the understanding of their optical properties and device design. In this review article, we discuss the calculation of excitation energies with time-dependent density functional theory, which is one of the most successful methods in the investigation of the dynamical response of molecular systems to external perturbation, owing to its high computational efficiency.

  5. Mutants of phospholipase A (pPLA-I) have a red light and auxin phenotype.

    PubMed

    Effendi, Yunus; Radatz, Katrin; Labusch, Corinna; Rietz, Steffen; Wimalasekera, Rinukshi; Helizon, Hanna; Zeidler, Mathias; Scherer, Günther F E

    2014-07-01

    pPLA-I is the evolutionarily oldest patatin-related phospholipase A (pPLA) in plants, which have previously been implicated to function in auxin and defence signalling. Molecular and physiological analysis of two allelic null mutants for pPLA-I [ppla-I-1 in Wassilewskija (Ws) and ppla-I-3 in Columbia (Col) ] revealed pPLA-I functions in auxin and light signalling. The enzyme is localized in the cytosol and to membranes. After auxin application expression of early auxin-induced genes is significantly slower compared with wild type and both alleles show a slower gravitropic response of hypocotyls, indicating compromised auxin signalling. Additionally, phytochrome-modulated responses like abrogation of gravitropism, enhancement of phototropism and growth in far red-enriched light are decreased in both alleles. While early flowering, root coils and delayed phototropism are only observed in the Ws mutant devoid of phyD, the light-related phenotypes observed in both alleles point to an involvement of pPLA-I in phytochrome signalling. © 2014 John Wiley & Sons Ltd.

  6. Light responses and morphology of bNOS-immunoreactive neurons in the mouse retina

    PubMed Central

    Pang, Ji-Jie; Gao, Fan; Wu, Samuel M.

    2010-01-01

    Nitric oxide (NO), produced by NO synthase (NOS), modulates the function of all retinal neurons and ocular blood vessels and participates in the pathogenesis of ocular diseases. To further understand the regulation of ocular NO release, we systematically studied the morphology, topography and light responses of NOS-containing amacrine cells (NOACs) in dark-adapted mouse retina. Immunohistological staining for neuronal NOS (bNOS), combined with retrograde labeling of ganglion cells (GCs) with Neurobiotin (NB, a gap junction permeable dye) and Lucifer yellow (LY, a less permeable dye), was used to identify NOACs. The light responses of ACs were recorded under whole-cell voltage clamp conditions and cell morphology was examined with a confocal microscope. We found that in dark-adapted conditions bNOS-immunoreactivity (IR) was present primarily in the inner nuclear layer and the ganglion cell layer. bNOS-IR somas were negative for LY, thus they were identified as ACs; nearly 6 % of the cells were labeled by NB but not by LY, indicating that they were dye-coupled with GCs. Three morphological subtypes of NOACs (NI, NII and displaced) were identified. The cell density, inter-cellular distance and the distribution of NOACs were studied in whole retinas. Light evoked depolarizing highly sensitive ON-OFF responses in NI cells and less sensitive OFF responses in NII cells. Frequent (1 to 2 Hz) or abrupt change of light-intensity evoked larger peak responses. The possibility for light to modify NO release from NOACs is discussed. PMID:20503422

  7. Arabidopsis Casein Kinase1 Proteins CK1.3 and CK1.4 Phosphorylate Cryptochrome2 to Regulate Blue Light Signaling[C][W

    PubMed Central

    Tan, Shu-Tang; Dai, Cheng; Liu, Hong-Tao; Xue, Hong-Wei

    2013-01-01

    Casein kinase1 (CK1) plays crucial roles in regulating growth and development via phosphorylating various substrates throughout the eukaryote kingdom. Blue light is crucial for normal growth of both plants and animals, and blue light receptor cryptochrome2 (CRY2) undergoes blue light–dependent phosphorylation and degradation in planta. To study the function of plant CK1s, systematic genetic analysis showed that deficiency of two paralogous Arabidopsis thaliana CK1s, CK1.3 and CK1.4, caused shortened hypocotyls, especially under blue light, while overexpression of either CK1.3 or CK1.4 resulted in the insensitive response to blue light and delayed flowering under long-day conditions. CK1.3 or CK1.4 act dependently on CRY2, and overexpression of CK1.3 or CK1.4 significantly suppresses the hypersensitive response to blue light by CRY2 overexpression. Biochemical studies showed that CK1.3 and CK1.4 directly phosphorylate CRY2 at Ser-587 and Thr-603 in vitro and negatively regulate CRY2 stability in planta, which are stimulated by blue light, further confirming the crucial roles of CK1.3 and CK1.4 in blue light responses through phosphorylating CRY2. Interestingly, expression of CK1.3 and CK1.4 is stimulated by blue light and feedback regulated by CRY2-mediated signaling. These results provide direct evidence for CRY2 phosphorylation and informative clues on the mechanisms of CRY2-mediated light responses. PMID:23897926

  8. Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent

    PubMed Central

    Radhika, Venkatesan; Kost, Christian; Mithöfer, Axel; Boland, Wilhelm

    2010-01-01

    To maximize fitness, plants need to perceive changes in their light environment and adjust their physiological responses accordingly. Whether and how such changes also affect the regulation of their defense responses against herbivores remains largely unclear. We addressed this issue by studying the secretion of extrafloral nectar (EFN) in lima bean (Phaseolus lunatus), which is known to be activated by the phytohormone jasmonic acid (JA) and functions as an indirect defense mechanism against herbivores. We found that the plant’s EFN secretion in response to JA was light dependent: In the dark, JA reduced EFN secretion, whereas under light conditions, JA induced EFN secretion relative to controls. This modulation was affected by the light’s spectral composition [i.e., ratio of red to far-red (R:FR) radiation], but not light intensity. These findings demonstrate a unique differential effect of JA on EFN secretion depending on the ambient light conditions. Interestingly, treatment with the isoleucine–JA conjugate (JA–Ile) enhanced EFN secretion under light conditions yet did not reduce EFN secretion in the dark. Moreover, inhibition of Ile biosynthesis in light-exposed plants significantly decreased the EFN secretion rate. This reduction could be recovered by additional application of JA–Ile, suggesting that JA–Ile is the active compound required to up-regulate EFN secretion. Finally, experiments with mechanically damaged plants revealed that light was required for the formation of JA–Ile, but not of JA. These results demonstrate that in lima bean, the light environment modulates the plant’s response to jasmonates as well as JA–Ile biosynthesis, which controls the subsequent EFN secretion. PMID:20855624

  9. Molecular Profiles of Contrasting Shade Response Strategies in Wild Plants: Differential Control of Immunity and Shoot Elongation.

    PubMed

    Gommers, Charlotte M M; Keuskamp, Diederik H; Buti, Sara; van Veen, Hans; Koevoets, Iko T; Reinen, Emilie; Voesenek, Laurentius A C J; Pierik, Ronald

    2017-02-01

    Plants growing at high densities elongate their shoots to reach for light, a response known as the shade avoidance syndrome (SAS). Phytochrome-mediated detection of far-red light reflection from neighboring plants activates growth-promoting molecular pathways leading to SAS However, it is unknown how plants that complete their life cycle in the forest understory and are shade tolerant prevent SAS when exposed to shade. Here, we show how two wild Geranium species from different native light environments regulate contrasting responses to light quality cues. A comparative RNA sequencing approach unveiled the molecular underpinnings of their contrasting growth responses to far-red light enrichment. It also identified differential phytochrome control of plant immunity genes and confirmed that far-red enrichment indeed contrastingly affects resistance against Botrytis cinerea between the two species. Furthermore, we identify a number of candidate regulators of differential shade avoidance. Three of these, the receptor-like kinases FERONIA and THESEUS1 and the non-DNA binding bHLH protein KIDARI, are functionally validated in Arabidopsis thaliana through gene knockout and/or overexpression studies. We propose that these components may be associated with either showing or not showing shade avoidance responses. © 2017 American Society of Plant Biologists. All rights reserved.

  10. Decreased retinal sensitivity in depressive disorder: a controlled study.

    PubMed

    Berman, G; Muttuvelu, D; Berman, D; Larsen, J I; Licht, R W; Ledolter, J; Kardon, R H

    2018-03-01

    To compare pupil responses in depressed patients with a seasonal pattern, depressed patients without a seasonal pattern and healthy controls as a function of daylight hours on the testing day. Patients suffering from a major depressive episode were included in wintertime. The pupil light reflex was measured at inclusion and in the following summer using a binocular pupillometer. A protocol of low (1 lux) and high (400 lux) intensity red and blue lights was used to assess rod, cone and melanopsin-containing intrinsic photosensitive retinal ganglion cell input to the pupil reflex. The mean group pupil responses associated with a melanopsin-mediated sustained pupil response at 400 lux blue light were significantly reduced in the depressed subjects (N = 39) as compared to the healthy controls (N = 24) (P = 0.023). Across all groups, a reduction in number of daylight hours was significantly associated with a reduction in sustained pupil response (P = 0.007). All groups showed an equal effect of daylight hours on the melanopsin-mediated sustained pupil response. The melanopsin-mediated sustained pupil contraction to offset of high-intensity blue light is reduced in depressed patients. These results further emphasize the interaction of light exposure with depression. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. A Green-Light-Responsive System for the Control of Transgene Expression in Mammalian and Plant Cells.

    PubMed

    Chatelle, Claire; Ochoa-Fernandez, Rocio; Engesser, Raphael; Schneider, Nils; Beyer, Hannes M; Jones, Alex R; Timmer, Jens; Zurbriggen, Matias D; Weber, Wilfried

    2018-05-18

    The ever-increasing complexity of synthetic gene networks and applications of synthetic biology requires precise and orthogonal gene expression systems. Of particular interest are systems responsive to light as they enable the control of gene expression dynamics with unprecedented resolution in space and time. While broadly used in mammalian backgrounds, however, optogenetic approaches in plant cells are still limited due to interference of the activating light with endogenous photoreceptors. Here, we describe the development of the first synthetic light-responsive system for the targeted control of gene expression in mammalian and plant cells that responds to the green range of the light spectrum in which plant photoreceptors have minimal activity. We first engineered a system based on the light-sensitive bacterial transcription factor CarH and its cognate DNA operator sequence CarO from Thermus thermophilus to control gene expression in mammalian cells. The system was functional in various mammalian cell lines, showing high induction (up to 350-fold) along with low leakiness, as well as high reversibility. We quantitatively described the systems characteristics by the development and experimental validation of a mathematical model. Finally, we transferred the system into A. thaliana protoplasts and demonstrated gene repression in response to green light. We expect that this system will provide new opportunities in applications based on synthetic gene networks and will open up perspectives for optogenetic studies in mammalian and plant cells.

  12. Assessing the Effects of Light on Differentiation and Virulence of the Plant Pathogen Botrytis cinerea: Characterization of the White Collar Complex

    PubMed Central

    Hevia, Montserrat A.; Tudzynski, Paul; Larrondo, Luis F.

    2013-01-01

    Organisms are exposed to a tough environment, where acute daily challenges, like light, can strongly affect several aspects of an individual's physiology, including pathogenesis. While several fungal models have been widely employed to understand the physiological and molecular events associated with light perception, various other agricultural-relevant fungi still remain, in terms of their responsiveness to light, in the dark. The fungus Botrytis cinerea is an aggressive pathogen able to cause disease on a wide range of plant species. Natural B. cinerea isolates exhibit a high degree of diversity in their predominant mode of reproduction. Thus, the majority of naturally occurring strains are known to reproduce asexually via conidia and sclerotia, and sexually via apothecia. Studies from the 1970′s reported on specific developmental responses to treatments with near-UV, blue, red and far-red light. To unravel the signaling machinery triggering development – and possibly also connected with virulence – we initiated the functional characterization of the transcription factor/photoreceptor BcWCL1 and its partner BcWCL2, that form the White Collar Complex (WCC) in B. cinerea. Using mutants either abolished in or exhibiting enhanced WCC signaling (overexpression of both bcwcl1 and bcwcl2), we demonstrate that the WCC is an integral part of the mentioned machinery by mediating transcriptional responses to white light and the inhibition of conidiation in response to this stimulus. Furthermore, the WCC is required for coping with excessive light, oxidative stress and also to achieve full virulence. Although several transcriptional responses are abolished in the absence of bcwcl1, the expression of some genes is still light induced and a distinct conidiation pattern in response to daily light oscillations is enhanced, revealing a complex underlying photobiology. Though overlaps with well-studied fungal systems exist, the light-associated machinery of B. cinerea appears more complex than those of Neurospora crassa and Aspergillus nidulans. PMID:24391918

  13. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar Complex.

    PubMed

    Canessa, Paulo; Schumacher, Julia; Hevia, Montserrat A; Tudzynski, Paul; Larrondo, Luis F

    2013-01-01

    Organisms are exposed to a tough environment, where acute daily challenges, like light, can strongly affect several aspects of an individual's physiology, including pathogenesis. While several fungal models have been widely employed to understand the physiological and molecular events associated with light perception, various other agricultural-relevant fungi still remain, in terms of their responsiveness to light, in the dark. The fungus Botrytis cinerea is an aggressive pathogen able to cause disease on a wide range of plant species. Natural B. cinerea isolates exhibit a high degree of diversity in their predominant mode of reproduction. Thus, the majority of naturally occurring strains are known to reproduce asexually via conidia and sclerotia, and sexually via apothecia. Studies from the 1970's reported on specific developmental responses to treatments with near-UV, blue, red and far-red light. To unravel the signaling machinery triggering development--and possibly also connected with virulence--we initiated the functional characterization of the transcription factor/photoreceptor BcWCL1 and its partner BcWCL2, that form the White Collar Complex (WCC) in B. cinerea. Using mutants either abolished in or exhibiting enhanced WCC signaling (overexpression of both bcwcl1 and bcwcl2), we demonstrate that the WCC is an integral part of the mentioned machinery by mediating transcriptional responses to white light and the inhibition of conidiation in response to this stimulus. Furthermore, the WCC is required for coping with excessive light, oxidative stress and also to achieve full virulence. Although several transcriptional responses are abolished in the absence of bcwcl1, the expression of some genes is still light induced and a distinct conidiation pattern in response to daily light oscillations is enhanced, revealing a complex underlying photobiology. Though overlaps with well-studied fungal systems exist, the light-associated machinery of B. cinerea appears more complex than those of Neurospora crassa and Aspergillus nidulans.

  14. Dim light at night interferes with the development of the short-day phenotype and impairs cell-mediated immunity in Siberian hamsters (Phodopus sungorus).

    PubMed

    Aubrecht, Taryn G; Weil, Zachary M; Nelson, Randy J

    2014-10-01

    Winter is a challenging time to survive and breed outside of the tropics. Animals use day length (photoperiod) to regulate seasonally appropriate adaptations in anticipation of challenging winter conditions. The net result of these photoperiod-mediated adjustments is enhanced immune function and increased survival. Thus, the ability to discriminate day length information is critical for survival and reproduction in small animals. However, during the past century, urban and suburban development has rapidly expanded and filled the night sky with light from various sources, obscuring crucial light-dark signals, which alters physiological interpretation of day lengths. Furthermore, reduced space, increased proximity to people, and the presence of light at night may act as stressors for small animals. Whereas acute stressors typically enhance immune responses, chronic exposure to stressors often impairs immune responses. Therefore, we hypothesized that the combination of dim light at night and chronic stress interferes with enhanced cell-mediated immunity observed during short days. Siberian hamsters (Phodopus sungorus) were assigned to short or long days with dark nights (0 lux) or dim (5 lux) light at night for 10 weeks. Following 2 weeks of chronic restraint (6 hr/day), a model of chronic stress, delayed type hypersensitivity (DTH) responses were assessed. Both dim light at night and restraint reduced the DTH response. Dim light at night during long nights produced an intermediate short day phenotype. These results suggest the constant presence of light at night could negatively affect survival of photoperiodic rodents by disrupting the timing of breeding and immune responses. © 2014 Wiley Periodicals, Inc.

  15. Adaptation of light-harvesting functions of unicellular green algae to different light qualities.

    PubMed

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2018-05-28

    Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.

  16. Phytochrome from Green Plants: Properties and biological Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quail, Peter H.

    2014-07-25

    Plants constantly monitor the light environment for informational light signals used to direct adaptational responses to the prevailing conditions. One major such response, the Shade-Avaoidance Response (SAR), triggered when plants sense the presence of competing neighbors, results in enhanced channeling of photosynthetically-fixed carbon into stem elongation at the expense of deposition in reproductive tissues. This response has been selected against in many modern food crops to ensure maximum edible yield (e.g. seeds). Converse enhancement of the SAR, with consequent increased carbon channeling into vegetative cellulose, could contribute to the generation of crops with improved yield of tissues suitable for cellulosicmore » biofuel production. The signal for this response is light enriched in far-red wavelengths. This signal is produced by sunlight filtered through, or reflected from, neighboring vegetation, as a result of preferential depletion of red photons through chlorophyll absorption. The plant phytochrome (phy) photoreceptor system (predominantly phyB) senses this signal through its capacity to switch reversibly, in milliseconds, between two molecular states: the biologically inactive Pr (red-light-absorbing) and biologically active Pfr (far-red-light-absorbing) conformers. The photoequilibrium established between these two conformers in light-grown plants is determined by the ratio of red-to-far-red wavelengths in the incoming signal. The levels of Pfr then dictate the recipient plant’s growth response: high levels suppress elongation growth; low levels promote elongation growth. Studies on seedling deetiolation have advanced our understanding considerably in recent years, of the mechanism by which the photoactivated phy molecule transduces its signal into cellular growth responses. The data show that a subfamily of phy-interacting bHLH transcription factors (PIFs) promote skotomorphogenic seedling development in post-germinative darkness, but that the phy Pfr conformer reverses this activity upon initial light exposure, inducing the switch to photomorphogenic development. This reversal involves light-triggered translocation of the photoactivated phy molecule into the nucleus where it interacts with PIF-family members, inducing rapid phosphorylation and degradation of the PIFs via the ubiquitin-proteasome system. This degradation in turn elicits rapid alterations in gene expression that drive the deetiolation transition. This project has made considerable progress in defining phy-PIF signaling activity in controlling the SAR. The biological functions of the multiple PIF-family members in controlling the SAR, including dissection of the relative contributions of the individual PIFs to this process, as well as to diurnal growth-control oscillations, have been investigated using higher-order pif-mutant combinations. Using microarray analysis of a quadruple pif mutant we have defined the shade-induced, PIF-regulated transcriptional network genome-wide. This has revealed that a dynamic antagonism between the phys and PIFs generates selective reciprocal responses during deetiolation and the SAR in a rapidly light-responsive transcriptional network. Using integrated RNA-seq and ChIP-seq analysis of higher order pif-mutant combinations, we have defined the direct gene-targets of PIF transcriptional regulation, and have obtained evidence that this regulation involves differential direct targeting of rapidly light-responsive genes by the individual PIF-family members. This project has provided significant advances in our understanding of the molecular mechanisms by which the phy-PIF photosensory signaling pathway regulates an important bioenergy-related plant response to the light environment. The identification of molecular targets in the primary transcriptional-regulatory circuitry of this pathway has the potential to enable genetic or reverse-genetic manipulation of the partitioning of carbon between reproductive and vegetative (cellulose-accumulating) tissue, toward enhanced bioenergy yield.« less

  17. Rod Electroretinograms Elicited by Silent Substitution Stimuli from the Light-Adapted Human Eye

    PubMed Central

    Maguire, John; Parry, Neil R. A.; Kremers, Jan; Kommanapalli, Deepika; Murray, Ian J.; McKeefry, Declan J.

    2016-01-01

    Purpose To demonstrate that silent substitution stimuli can be used to generate electroretinograms (ERGs) that effectively isolate rod photoreceptor function in humans without the need for dark adaptation, and that this approach constitutes a viable alternative to current clinical standard testing protocols. Methods Rod-isolating and non-isolating sinusoidal flicker stimuli were generated on a 4 primary light-emitting diode (LED) Ganzfeld stimulator to elicit ERGs from participants with normal and compromised rod function who had not undergone dark-adaptation. Responses were subjected to Fourier analysis, and the amplitude and phase of the fundamental were used to examine temporal frequency and retinal illuminance response characteristics. Results Electroretinograms elicited by rod-isolating silent substitution stimuli exhibit low-pass temporal frequency response characteristics with an upper response limit of 30 Hz. Responses are optimal between 5 and 8 Hz and between 10 and 100 photopic trolands (Td). There is a significant correlation between the response amplitudes obtained with the silent substitution method and current standard clinical protocols. Analysis of signal-to-noise ratios reveals significant differences between subjects with normal and compromised rod function. Conclusions Silent substitution provides an effective method for the isolation of human rod photoreceptor function in subjects with normal as well as compromised rod function when stimuli are used within appropriate parameter ranges. Translational Relevance This method of generating rod-mediated ERGs can be achieved without time-consuming periods of dark adaptation, provides improved isolation of rod- from cone-based activity, and will lead to the development of faster clinical electrophysiologic testing protocols with improved selectivity. PMID:27617180

  18. Basic quantitative assessment of visual performance in patients with very low vision.

    PubMed

    Bach, Michael; Wilke, Michaela; Wilhelm, Barbara; Zrenner, Eberhart; Wilke, Robert

    2010-02-01

    A variety of approaches to developing visual prostheses are being pursued: subretinal, epiretinal, via the optic nerve, or via the visual cortex. This report presents a method of comparing their efficacy at genuinely improving visual function, starting at no light perception (NLP). A test battery (a computer program, Basic Assessment of Light and Motion [BaLM]) was developed in four basic visual dimensions: (1) light perception (light/no light), with an unstructured large-field stimulus; (2) temporal resolution, with single versus double flash discrimination; (3) localization of light, where a wedge extends from the center into four possible directions; and (4) motion, with a coarse pattern moving in one of four directions. Two- or four-alternative, forced-choice paradigms were used. The participants' responses were self-paced and delivered with a keypad. The feasibility of the BaLM was tested in 73 eyes of 51 patients with low vision. The light and time test modules discriminated between NLP and light perception (LP). The localization and motion modules showed no significant response for NLP but discriminated between LP and hand movement (HM). All four modules reached their ceilings in the acuity categories higher than HM. BaLM results systematically differed between the very-low-acuity categories NLP, LP, and HM. Light and time yielded similar results, as did localization and motion; still, for assessing the visual prostheses with differing temporal characteristics, they are not redundant. The results suggest that this simple test battery provides a quantitative assessment of visual function in the very-low-vision range from NLP to HM.

  19. Light environment change induces differential expression of guppy opsins in a multi-generational evolution experiment.

    PubMed

    Kranz, Alexandrea M; Forgan, Leonard G; Cole, Gemma L; Endler, John A

    2018-06-19

    Light environments critically impact species that rely on vision to survive and reproduce. Animal visual systems must accommodate changes in light that occur from minutes to years, yet the mechanistic basis of their response to spectral (color) changes is largely unknown. Here we used a laboratory experiment where replicate guppy populations were kept under three different light environments for up to 8-12 generations to explore possible differences in the expression levels of nine guppy opsin genes. Previous evidence for opsin expression-light environment 'tuning' has been either correlative or focused exclusively on the relationship between the light environment and opsin expression over one or two generations. In our multi-generation experiment, the relative expression levels of nine different guppy opsin genes responded differently to light environment changes: some did not respond, while others differed due to phenotypic plasticity. Moreover, for the LWS-1 opsin we found that, while we observed a wide range of plastic responses under different light conditions, common plastic responses (where the population replicates all followed the same trajectory) occurred only after multigenerational exposure to different light environments. Taken together this suggests that opsin expression plasticity plays an important role in light environment 'tuning' in different light environments on different time scales, and, in turn, has important implications for both visual system function and evolution. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Programmable light-controlled shape changes in layered polymer nanocomposites.

    PubMed

    Zhu, Zhichen; Senses, Erkan; Akcora, Pinar; Sukhishvili, Svetlana A

    2012-04-24

    We present soft, layered nanocomposites that exhibit controlled swelling anisotropy and spatially specific shape reconfigurations in response to light irradiation. The use of gold nanoparticles grafted with a temperature-responsive polymer (poly(N-isopropylacrylamide), PNIPAM) with layer-by-layer (LbL) assembly allowed placement of plasmonic structures within specific regions in the film, while exposure to light caused localized material deswelling by a photothermal mechanism. By layering PNIPAM-grafted gold nanoparticles in between nonresponsive polymer stacks, we have achieved zero Poisson's ratio materials that exhibit reversible, light-induced unidirectional shape changes. In addition, we report rheological properties of these LbL assemblies in their equilibrium swollen states. Moreover, incorporation of dissimilar plasmonic nanostructures (solid gold nanoparticles and nanoshells) within different material strata enabled controlled shrinkage of specific regions of hydrogels at specific excitation wavelengths. The approach is applicable to a wide range of metal nanoparticles and temperature-responsive polymers and affords many advanced build-in options useful in optically manipulated functional devices, including precise control of plasmonic layer thickness, tunability of shape variations to the excitation wavelength, and programmable spatial control of optical response.

  1. Light triggers habitat choice of eyeless subterranean but not of eyed surface amphipods.

    PubMed

    Fišer, Žiga; Novak, Luka; Luštrik, Roman; Fišer, Cene

    2016-02-01

    Boundaries of species distributions are the result of colonization-extinction processes. Survival on the boundary depends on how well individuals discriminate optimal from suboptimal habitat patches. Such behaviour is called habitat choice and was only rarely applied to macroecology, although it links species ecological niche and species distribution. Surface and subterranean aquatic species are spatially strongly segregated, even in the absence of physical barriers. We explored whether a behavioural response to light functions as a habitat choice mechanism that could explain species turnover between surface and subterranean aquatic ecosystems. In a controlled laboratory experiment, we studied the behavioural response to light of ten pairs of surface and subterranean amphipods that permanently co-occur in springs. Surface species showed a weak photophobic, photoneutral, and in one case, photophilic response, whereas all subterranean species showed a strong photophobic response. Eyeless subterranean but not eyed surface amphipods appear to orient themselves with light cues. On a local scale, this difference possibly diminishes harmful interactions between the co-occurring amphipods, whereas on a regional scale, photophobia could explain limited dispersal and a high degree of endemism observed among subterranean species.

  2. The Shift of ERG B-Wave Induced by Hours' Dark Exposure in Rodents.

    PubMed

    Li, Dake; Fang, Qi; Yu, Hongbo

    2016-01-01

    Dark adaptation can induce a rapid functional shift in the retina, and after that, the retinal function is believed to remain stable during the continuous dark exposure. However, we found that electroretinograms (ERG) b-waves gradually shifted during 24 hours' dark exposure in rodents. Detailed experiments were designed to explore this non-classical dark adaptation. In vivo ERG recording in adult and developing rodents after light manipulations. We revealed a five-fold decrease in ERG b-waves in adult rats that were dark exposed for 24 hours. The ERG b-waves significantly increased within the first hour's dark exposure, but after that decreased continuously and finally attained steady state after 1 day's dark exposure. After 3 repetitive, 10 minutes' light exposure, the dark exposed rats fully recovered. This recovery effect was eye-specific, and light exposure to one eye could not restore the ERGs in the non-exposed eye. The prolonged dark exposure-induced functional shift was also reflected in the down-regulation on the amplitude of intensity-ERG response curve, but the dynamic range of the responsive light intensity remained largely stable. Furthermore, the ERG b-wave shifts occurred in and beyond classical critical period, and in both rats and mice. Importantly, when ERG b-wave greatly shifted, the amplitude of ERG a-wave did not change significantly after the prolonged dark exposure. This rapid age-independent ERG change demonstrates a generally existing functional shift in the retina, which is at the entry level of visual system.

  3. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo

    PubMed Central

    Hirai, Yasuharu; Nishino, Eri

    2015-01-01

    Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. PMID:25761950

  4. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo.

    PubMed

    Hirai, Yasuharu; Nishino, Eri; Ohmori, Harunori

    2015-06-01

    Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. Copyright © 2015 the American Physiological Society.

  5. Development of visible light-responsive RNA scissors based on the 10-23 DNAzyme.

    PubMed

    Kamiya, Yukiko; Arimura, Yu; Ooi, Hideaki; Kato, Kenjiro; Liang, Xingguo; Asanuma, Hiroyuki

    2018-04-22

    10-23 DNAzyme is an artificially developed functional oligonucleotide, which can cleave RNA in a sequence-specific manner. In this study, we designed a new photo-driven DNAzyme possessing a photo-responsive DNA overhang complementary to the catalytic core region. The photo-responsive overhang region of the DNAzyme included either azobenzenes (Azos) or 2,6-dimethyl-4-(methylthio)azobenzenes (SDM-Azos) introduced via a D-threoninol linker. When the Azos or SDM-Azos were in the trans form, the photo-responsive DNA overhang hybridized with the DNAzyme, and the RNA cleavage activity was suppressed. Cis isomerization of Azos or SDM-Azos induced by 365 or 400 nm light, respectively, destabilized the duplex between the photo-responsive overhang and the catalytic core, and the DNAzyme recovered RNA cleavage activity. Reversible on and off of the DNAzyme activity was achieved by specific light irradiation. Further, light-dependent on and off of protein expression under the DNAzyme-containing condition was demonstrated. Thus, this photo-driven DNAzyme has potential for application in photo-controlled gene silencing system and a photo-activatable gene expression system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The auxin-resistant diageotropica mutant of tomato responds to gravity via an auxin-mediated pathway

    NASA Technical Reports Server (NTRS)

    Rice, M. S.; Lomax, T. L.

    2000-01-01

    Hypocotyls of the diageotropica (dgt) mutant of tomato (Lycopersicon esculentum Mill.) do not elongate in response to exogenous auxin, but can respond to gravity. This appears paradoxical in light of the Cholodny-Went hypothesis, which states that shoot gravicurvature results from asymmetric stimulation of elongation by auxin. While light-grown dgt seedlings can achieve correct gravitropic reorientation, the response is slow compared to wild-type seedlings. The sensitivity of dgt seedlings to inhibition of gravicurvature by immersion in auxin or auxin-transport inhibitors is similar to that of wild-type plants, indicating that both an auxin gradient and auxin transport are required for the gravitropic response and that auxin uptake, efflux, and at least one auxin receptor are functional in dgt. Furthermore, dgt gravicurvature is the result of asymmetrically increased elongation as would be expected for an auxin-mediated response. Our results suggest differences between elongation in response to exogenous auxin (absent in dgt) and elongation in response to gravistimulation (present but attenuated in dgt) and confirm the presence of two phases during the gravitropic response, both of which are dependent on functional auxin transport.

  7. Self-rolling and light-trapping in flexible quantum well–embedded nanomembranes for wide-angle infrared photodetectors

    PubMed Central

    Wang, Han; Zhen, Honglou; Li, Shilong; Jing, Youliang; Huang, Gaoshan; Mei, Yongfeng; Lu, Wei

    2016-01-01

    Three-dimensional (3D) design and manufacturing enable flexible nanomembranes to deliver unique properties and applications in flexible electronics, photovoltaics, and photonics. We demonstrate that a quantum well (QW)–embedded nanomembrane in a rolled-up geometry facilitates a 3D QW infrared photodetector (QWIP) device with enhanced responsivity and detectivity. Circular geometry of nanomembrane rolls provides the light coupling route; thus, there are no external light coupling structures, which are normally necessary for QWIPs. This 3D QWIP device under tube-based light-trapping mode presents broadband enhancement of coupling efficiency and omnidirectional detection under a wide incident angle (±70°), offering a unique solution to high-performance focal plane array. The winding number of these rolled-up QWIPs provides well-tunable blackbody photocurrents and responsivity. 3D self-assembly of functional nanomembranes offers a new path for high conversion efficiency between light and electricity in photodetectors, solar cells, and light-emitting diodes. PMID:27536723

  8. Polydopamine Particle-Filled Shape-Memory Polyurethane Composites with Fast Near-Infrared Light Responsibility.

    PubMed

    Yang, Li; Tong, Rui; Wang, Zhanhua; Xia, Hesheng

    2018-03-25

    A new kind of fast near-infrared (NIR) light-responsive shape-memory polymer composites was prepared by introducing polydopamine particles (PDAPs) into commercial shape-memory polyurethane (SMPU). The toughness and strength of the polydopamine-particle-filled polyurethane composites (SMPU-PDAPs) were significantly enhanced with the addition of PDAPs due to the strong interface interaction between PDAPs and polyurethane segments. Owing to the outstanding photothermal effect of PDAPs, the composites exhibit a rapid light-responsive shape-memory process in 60 s with a PDAPs content of 0.01 wt%. Due to the excellent dispersion and convenient preparation method, PDAPs have great potential to be used as high-efficiency and environmentally friendly fillers to obtain novel photoactive functional polymer composites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism

    PubMed Central

    Lariguet, Patricia; Schepens, Isabelle; Hodgson, Daniel; Pedmale, Ullas V.; Trevisan, Martine; Kami, Chitose; de Carbonnel, Matthieu; Alonso, José M.; Ecker, Joseph R.; Liscum, Emmanuel; Fankhauser, Christian

    2006-01-01

    Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1–PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families. PMID:16777956

  10. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism.

    PubMed

    Lariguet, Patricia; Schepens, Isabelle; Hodgson, Daniel; Pedmale, Ullas V; Trevisan, Martine; Kami, Chitose; de Carbonnel, Matthieu; Alonso, José M; Ecker, Joseph R; Liscum, Emmanuel; Fankhauser, Christian

    2006-06-27

    Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1-PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families.

  11. Antagonistic Basic Helix-Loop-Helix/bZIP Transcription Factors Form Transcriptional Modules That Integrate Light and Reactive Oxygen Species Signaling in Arabidopsis[W

    PubMed Central

    Chen, Dongqin; Xu, Gang; Tang, Weijiang; Jing, Yanjun; Ji, Qiang; Fei, Zhangjun; Lin, Rongcheng

    2013-01-01

    The critical developmental switch from heterotrophic to autotrophic growth of plants involves light signaling transduction and the production of reactive oxygen species (ROS). ROS function as signaling molecules that regulate multiple developmental processes, including cell death. However, the relationship between light and ROS signaling remains unclear. Here, we identify transcriptional modules composed of the basic helix-loop-helix and bZIP transcription factors PHYTOCHROME-INTERACTING FACTOR1 (PIF1), PIF3, ELONGATED HYPOCOTYL5 (HY5), and HY5 HOMOLOGY (HYH) that bridge light and ROS signaling to regulate cell death and photooxidative response. We show that pif mutants release more singlet oxygen and exhibit more extensive cell death than the wild type during Arabidopsis thaliana deetiolation. Genome-wide expression profiling indicates that PIF1 represses numerous ROS and stress-related genes. Molecular and biochemical analyses reveal that PIF1/PIF3 and HY5/HYH physically interact and coordinately regulate the expression of five ROS-responsive genes by directly binding to their promoters. Furthermore, PIF1/PIF3 and HY5/HYH function antagonistically during the seedling greening process. In addition, phytochromes, cryptochromes, and CONSTITUTIVE PHOTOMORPHOGENIC1 act upstream to regulate ROS signaling. Together, this study reveals that the PIF1/PIF3-HY5/HYH transcriptional modules mediate crosstalk between light and ROS signaling and sheds light on a new mechanism by which plants adapt to the light environments. PMID:23645630

  12. Left-right asymmetry is required for the habenulae to respond to both visual and olfactory stimuli.

    PubMed

    Dreosti, Elena; Vendrell Llopis, Nuria; Carl, Matthias; Yaksi, Emre; Wilson, Stephen W

    2014-02-17

    Left-right asymmetries are most likely a universal feature of bilaterian nervous systems and may serve to increase neural capacity by specializing equivalent structures on left and right sides for distinct roles. However, little is known about how asymmetries are encoded within vertebrate neural circuits and how lateralization influences processing of information in the brain. Consequently, it remains unclear the extent to which lateralization of the nervous system is important for normal cognitive and other brain functions and whether defects in lateralization contribute to neurological deficits. Here we show that sensory responses to light and odor are lateralized in larval zebrafish habenulae and that loss of brain asymmetry leads to concomitant loss of responsiveness to either visual or olfactory stimuli. We find that in wild-type zebrafish, most habenular neurons responding to light are present on the left, whereas neurons responding to odor are more frequent on the right. Manipulations that reverse the direction of brain asymmetry reverse the functional properties of habenular neurons, whereas manipulations that generate either double-left- or double-right-sided brains lead to loss of habenular responsiveness to either odor or light, respectively. Our results indicate that loss of brain lateralization has significant consequences upon sensory processing and circuit function. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. How light competition between plants affects their response to climate change.

    PubMed

    van Loon, Marloes P; Schieving, Feike; Rietkerk, Max; Dekker, Stefan C; Sterck, Frank; Anten, Niels P R

    2014-09-01

    How plants respond to climate change is of major concern, as plants will strongly impact future ecosystem functioning, food production and climate. Here, we investigated how vegetation structure and functioning may be influenced by predicted increases in annual temperatures and atmospheric CO2 concentration, and modeled the extent to which local plant-plant interactions may modify these effects. A canopy model was developed, which calculates photosynthesis as a function of light, nitrogen, temperature, CO2 and water availability, and considers different degrees of light competition between neighboring plants through canopy mixing; soybean (Glycine max) was used as a reference system. The model predicts increased net photosynthesis and reduced stomatal conductance and transpiration under atmospheric CO2 increase. When CO2 elevation is combined with warming, photosynthesis is increased more, but transpiration is reduced less. Intriguingly, when competition is considered, the optimal response shifts to producing larger leaf areas, but with lower stomatal conductance and associated vegetation transpiration than when competition is not considered. Furthermore, only when competition is considered are the predicted effects of elevated CO2 on leaf area index (LAI) well within the range of observed effects obtained by Free air CO2 enrichment (FACE) experiments. Together, our results illustrate how competition between plants may modify vegetation responses to climate change. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  14. Current anti-myeloma therapies in renal manifestations of monoclonal light chain-associated Fanconi syndrome: a retrospective series of 49 patients.

    PubMed

    Vignon, M; Javaugue, V; Alexander, M P; El-Karoui, K; Karras, A; Roos-Weil, D; Royer, B; Asli, B; Knebelmann, B; Touchard, G; Jaccard, A; Arnulf, B; Bridoux, F; Leung, N; Fermand, J P

    2017-01-01

    We retrospectively reviewed 49 patients with light chain (LC) Fanconi syndrome (FS). Patients presented with chronic kidney disease (median estimated glomerular filtration rate (eGFR) of 33 ml/min/1.73 m 2 ) and tubular proteinuria. All patients tested had elevated fractional excretion of phosphate, uric acid, generalized aminoaciduria and/or normoglycemic glycosuria. Thirty-eight patients had monoclonal gammopathy of renal significance and eleven patients had an overt hematological malignancy. The monoclonal LC isotype was kappa in 46/49 cases. Kidney biopsy in 39 patients showed various proximal tubular lesions and characteristic LC intracytoplasmic crystalline inclusions in 24 patients. Forty-two patients received chemotherapy. Patients with plasma cell proliferation (n=38) received bortezomib-based regimens (n=11), immunomodulatory agents (n=7) or alkylating agents (n=6). High-dose melphalan (HDM) followed by autologous stem cell transplantation was performed in 14 patients. Hematological response was obtained in 90% of evaluable patients, assessed on serum free light chains (FLC). GFR remained stable as long as hematological response was maintained and declined when serum FLC level rebounded. Improvement in proximal tubule function occurred in 13 patients. In patients with LC-associated FS, chemotherapy using HDM and/or new generation anti-myeloma agents can stabilize renal function and improve proximal tubule function. Serum FLC should be used to assess the hematological response, related to renal outcome.

  15. Development of radiochromic film for spatially quantitative dosimetric analysis of indirect ionizing radiation fields

    NASA Astrophysics Data System (ADS)

    Brady, Samuel Loren

    Two types of radiochromic films (RCF) were characterized for this work: EBT and XRQA film. Both films were investigated for: radiation interaction with film structure; light interaction with film structure for optimal film readout (densitometry) sensitivity; range of absorbed dose measurements; dependence of film dose measurement response as a function of changing radiation energy; fractionation and dose rate effects on film measurement response; film response sensitivity to ambient factors; and stability of measured film response with time. EBT film was shown to have the following properties: near water equivalent atomic weight (Zeff); dynamic dose range of 10 -1-102 Gy; 3% change in optical density (OD) response for a single exposure level when exposed to radiation energies from (75-18,000) kV; and best digitized using transmission densitometry. XRQA film was shown to have: a Zeff of ˜25; a 12 fold increase in sensitivity at lower photon energies for a dynamic dose range of 10-3-100 Gy, a difference of 25% in OD response when comparing 120 kV to 320 kV, and best digitized using reflective densitometry. Both XRQA and EBT films were shown to have: a temporal stability (DeltaOD) of ˜1% for t > 24 hr post film exposure for up to ˜20 days; a change in dose response of ˜0.03 mGy hr-1 when exposed to fluorescent room lighting at standard room temperature and humidity levels; a negligible dose rate and fractionation effect when operated within the optimal dose ranges; and a light wavelength dependence with dose for film readout. The flat bed scanner was chosen as the primary film digitizer due to its availability, cost, OD range, functionality (transmission and reflection scanning), and digitization speed. As a cost verses functionality comparison, the intrinsic and operational limitations were determined for two flat bed scanners. The EPSON V700 and 10000XL exhibited equal spatial and OD accuracy. The combined precision of both the scanner light sources and CCD sensors measured < 2% and < 7% deviation in pixel light intensities for 50 consecutive scans, respectively. Both scanner light sources were shown to be uniform in transmission and reflection scan modes along the center axis of light source translation. Additionally, RCFs demonstrated a larger dynamic range in pixel light intensities, and to be less sensitive to off axis light inhomogeneity, when scanned in landscape mode (long axis of film parallel with axis of light source translation). The EPSON 10000XL demonstrated slightly better light source/CCD temporal stability and provided a capacity to scan larger film formats at the center of the scanner in landscape mode. However, the EPSON V700 only measured an overall difference in accuracy and precision by 2%, and though smaller in size, at the time of this work, was one sixth the cost of the 10000XL. A scan protocol was developed to maximize RCF digitization accuracy and precision, and a calibration fitting function was developed for RCF absolute dosimetry. The fitting function demonstrated a superior goodness of fit for both RCF types over a large range of absorbed dose levels as compared to the currently accepted function found in literature. The RCF dosimetry system was applied to three novel areas from which a benefit could be derived for 2D or 3D dosimetric information. The first area was for a 3D dosimetry of a pendant breast in 3D-CT mammography. The novel method of developing a volumetric image of the breast from a CT acquisition technique was empirically measured for its dosimetry and compared to standard dual field digital mammography. The second area was dose reduction in CT for pediatric and adult scan protocols. In this application, novel methodologies were developed to measure 3D organ dosimetry and characterize a dose reduction scan protocol for pediatric and adult body habitus. The third area was in the field of small animal irradiation for radiobiology purposes and cancer patient treatment verification. In every case, the RCF dosimetry system was verified for accuracy using a traditional PDD as the golden standard. When considering all areas of radiation energy applications, the RCF dosimetry system agreed to better than 7% of the golden standard, and in some cases within better than 1%. In many instances, this work provided vital dosimetric information that otherwise was not captured using the PDD in similar geometry. This work demonstrates the need for RCF to more accurately measure volumetric dose. (Abstract shortened by UMI.)

  16. Assessment of Murine Retinal Function by Electroretinography

    PubMed Central

    Benchorin, Gillie; Calton, Melissa A.; Beaulieu, Marielle O.; Vollrath, Douglas

    2017-01-01

    The electroretinogram (ERG) is a sensitive and noninvasive method for testing retinal function. In this protocol, we describe a method for performing ERGs in mice. Contact lenses on the mouse cornea measure the electrical response to a light stimulus of photoreceptors and downstream retinal cells, and the collected data are analyzed to evaluate retinal function. PMID:29177186

  17. A new mouse model for stationary night blindness with mutant Slc24a1 explains the pathophysiology of the associated human disease

    PubMed Central

    Vinberg, Frans; Wang, Tian; Molday, Robert S.; Chen, Jeannie; Kefalov, Vladimir J.

    2015-01-01

    Mutations that affect calcium homeostasis (Ca2+) in rod photoreceptors are linked to retinal degeneration and visual disorders such as retinitis pigmentosa and congenital stationary night blindness (CSNB). It is thought that the concentration of Ca2+ in rod outer segments is controlled by a dynamic balance between influx via cGMP-gated (CNG) channels and extrusion via Na+/Ca2+, K+ exchangers (NCKX1). The extrusion-driven lowering of rod [Ca2+]i following light exposure controls their light adaptation and response termination. Mutant NCKX1 has been linked to autosomal-recessive stationary night blindness. However, whether NCKX1 contributes to light adaptation has not been directly tested and the mechanisms by which human NCKX1 mutations cause night blindness are not understood. Here, we report that the deletion of NCKX1 in mice results in malformed outer segment disks, suppressed expression and function of rod CNG channels and a subsequent 100-fold reduction in rod responses, while preserving normal cone responses. The compensating loss of CNG channel function in the absence of NCKX1-mediated Ca2+ extrusion may prevent toxic Ca2+ buildup and provides an explanation for the stationary nature of the associated disorder in humans. Surprisingly, the lack of NCKX1 did not compromise rod background light adaptation, suggesting additional Ca2+-extruding mechanisms exist in these cells. PMID:26246500

  18. Effect of color on pilot performance and transfer functions using a full-spectrum, calligraphic, color display system

    NASA Technical Reports Server (NTRS)

    Chase, W. D.

    1976-01-01

    The use of blue and red color in out-of-window cockpit displays, in full-spectrum calligraphic computer-generated display systems, is studied with attention given to pilot stereographic depth perception and response to visual cues. Displays for vertical approach, with dynamic and frozen-range landing approach and perspective arrays, are analyzed. Pilot transfer function and the transfer function associated with the contrasted approach and perspective arrays are discussed. Out-of-window blue lights are perceived by pilots as indicating greater distance depth, red lights as indicating proximity. The computer-generated chromatic display was adapted to flight simulators for the tests.

  19. Seagrass canopy photosynthetic response is a function of canopy density and light environment: a model for Amphibolis griffithii.

    PubMed

    Hedley, John D; McMahon, Kathryn; Fearns, Peter

    2014-01-01

    A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments.

  20. Seagrass Canopy Photosynthetic Response Is a Function of Canopy Density and Light Environment: A Model for Amphibolis griffithii

    PubMed Central

    Hedley, John D.; McMahon, Kathryn; Fearns, Peter

    2014-01-01

    A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments. PMID:25347849

  1. A neuronal circuit for colour vision based on rod-cone opponency.

    PubMed

    Joesch, Maximilian; Meister, Markus

    2016-04-14

    In bright light, cone-photoreceptors are active and colour vision derives from a comparison of signals in cones with different visual pigments. This comparison begins in the retina, where certain retinal ganglion cells have 'colour-opponent' visual responses-excited by light of one colour and suppressed by another colour. In dim light, rod-photoreceptors are active, but colour vision is impossible because they all use the same visual pigment. Instead, the rod signals are thought to splice into retinal circuits at various points, in synergy with the cone signals. Here we report a new circuit for colour vision that challenges these expectations. A genetically identified type of mouse retinal ganglion cell called JAMB (J-RGC), was found to have colour-opponent responses, OFF to ultraviolet (UV) light and ON to green light. Although the mouse retina contains a green-sensitive cone, the ON response instead originates in rods. Rods and cones both contribute to the response over several decades of light intensity. Remarkably, the rod signal in this circuit is antagonistic to that from cones. For rodents, this UV-green channel may play a role in social communication, as suggested by spectral measurements from the environment. In the human retina, all of the components for this circuit exist as well, and its function can explain certain experiences of colour in dim lights, such as a 'blue shift' in twilight. The discovery of this genetically defined pathway will enable new targeted studies of colour processing in the brain.

  2. Multiple ketolases involved in light regulation of canthaxanthin biosynthesis in Nostoc punctiforme PCC 73102.

    PubMed

    Schöpf, Lotte; Mautz, Jürgen; Sandmann, Gerhard

    2013-05-01

    In the genome of Nostoc punctiforme PCC 73102, three functional β-carotene ketolase genes exist, one of the crtO and two of the crtW type. They were all expressed and their corresponding enzymes were functional inserting 4-keto groups into β-carotene as shown by functional pathway complementation in Escherichia coli. They all synthesized canthaxanthin but with different efficiencies. Canthaxanthin is the photoprotective carotenoid of N. punctiforme PCC 73102. Under high-light stress, its synthesis was enhanced. This was caused by up-regulation of the transcripts of two genes in combination. The first crtB-encoding phytoene synthase is the gate way enzyme of carotenogenesis resulting in an increased inflow into the pathway. The second was the ketolase gene crtW148 which in high light takes over β-carotene conversion into canthaxanthin from the other ketolases. The other ketolases were down-regulated under high-light conditions. CrtW148 was also exclusively responsible for the last step in 4-keto-myxoxanthophyll synthesis.

  3. A Natural Glycyrrhizic Acid-Tailored Light-Responsive Gelator.

    PubMed

    Fang, Heshu; Zhao, Xia; Lin, Yuan; Yang, Song; Hu, Jun

    2018-05-04

    The construction of stimuli-responsive materials by using naturally occurring molecules as building blocks has received increasing attention owing to their bioavailability, biocompatibility, and biodegradability. Herein, a symmetrical azobenzene-functionalized natural glycyrrhizic acid (trans-GAG) was synthesized and could form stable supramolecular gels in DMSO/H 2 O and MeOH/H 2 O. Owing to trans-cis isomerization, this gel exhibited typical light-responsive behavior that led to a reversible gel-sol transition accompanied by a variation in morphology and rheology. Additionally, this trans-GAG gel displayed a distinct injectable self-healing property and outstanding biocompatibility. This work provides a simple yet rational strategy to fabricate stimuli-responsive materials from naturally occurring, eco-friendly molecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A negative effector of blue light-induced and gravitropic bending in Arabidopsis.

    PubMed

    Knauer, Torsten; Dümmer, Michaela; Landgraf, Frank; Forreiter, Christoph

    2011-05-01

    Although sessile, plants are able to grow toward or away from an environmental stimulus. Important examples are stem or leaf orientation of higher plants in response to the direction of the incident light. The responsible photoreceptors belong to the phototropin photoreceptor family. Although the mode of phototropin action is quite well understood, much less is known of how the light signal is transformed into a bending response. Several lines of evidence indicate that a lateral auxin gradient is responsible for asymmetric cell elongation along the light gradient within the stem. However, some of the molecular key players leading to this asymmetric auxin distribution are, as yet, unidentified. Previously, it was shown that phototropin gets autophosphorylated upon illumination and binds to a scaffold protein termed NPH3 (for nonphototropic hypocotyl 3). Using a yeast three-hybrid approach with phototropin and NPH3 as a bait complex, we isolated a protein, termed EHB1 (for enhanced bending 1), with a so far unknown function, which binds to this binary complex. This novel interacting factor negatively affects hypocotyl bending under blue light conditions in Arabidopsis (Arabidopsis thaliana) and thus seems to be an important component regulating phototropism. Interestingly, it could be shown that the gravitropic response was also affected. Thus, it cannot be ruled out that this protein might also have a more general role in auxin-mediated bending toward an environmental stimulus.

  5. Light-fuelled transport of large dendrimers and proteins.

    PubMed

    Koskela, Jenni E; Liljeström, Ville; Lim, Jongdoo; Simanek, Eric E; Ras, Robin H A; Priimagi, Arri; Kostiainen, Mauri A

    2014-05-14

    This work presents a facile water-based supramolecular approach for light-induced surface patterning. The method is based upon azobenzene-functionalized high-molecular weight triazine dendrimers up to generation 9, demonstrating that even very large globular supramolecular complexes can be made to move in response to light. We also demonstrate light-fuelled macroscopic movements in native biomolecules, showing that complexes of apoferritin protein and azobenzene can effectively form light-induced surface patterns. Fundamentally, the results establish that thin films comprising both flexible and rigid globular particles of large diameter can be moved with light, whereas the presented material concepts offer new possibilities for the yet marginally explored biological applications of azobenzene surface patterning.

  6. A trait-based trade-off between growth and mortality: evidence from 15 tropical tree species using size-specific relative growth rates

    PubMed Central

    Philipson, Christopher D; Dent, Daisy H; O’Brien, Michael J; Chamagne, Juliette; Dzulkifli, Dzaeman; Nilus, Reuben; Philips, Sam; Reynolds, Glen; Saner, Philippe; Hector, Andy

    2014-01-01

    A life-history trade-off between low mortality in the dark and rapid growth in the light is one of the most widely accepted mechanisms underlying plant ecological strategies in tropical forests. Differences in plant functional traits are thought to underlie these distinct ecological strategies; however, very few studies have shown relationships between functional traits and demographic rates within a functional group. We present 8 years of growth and mortality data from saplings of 15 species of Dipterocarpaceae planted into logged-over forest in Malaysian Borneo, and the relationships between these demographic rates and four key functional traits: wood density, specific leaf area (SLA), seed mass, and leaf C:N ratio. Species-specific differences in growth rates were separated from seedling size effects by fitting nonlinear mixed-effects models, to repeated measurements taken on individuals at multiple time points. Mortality data were analyzed using binary logistic regressions in a mixed-effects models framework. Growth increased and mortality decreased with increasing light availability. Species differed in both their growth and mortality rates, yet there was little evidence for a statistical interaction between species and light for either response. There was a positive relationship between growth rate and the predicted probability of mortality regardless of light environment, suggesting that this relationship may be driven by a general trade-off between traits that maximize growth and traits that minimize mortality, rather than through differential species responses to light. Our results indicate that wood density is an important trait that indicates both the ability of species to grow and resistance to mortality, but no other trait was correlated with either growth or mortality. Therefore, the growth mortality trade-off among species of dipterocarp appears to be general in being independent of species crossovers in performance in different light environments. PMID:25478157

  7. Measurement of α -particle quenching in LAB based scintillator in independent small-scale experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Krosigk, B.; Chen, M.; Hans, S.

    2016-02-29

    The α -particle light response of liquid scintillators based on linear alkylbenzene (LAB) has been measured with three different experimental approaches. In the first approach, α -particles were produced in the scintillator via 12C(n,α) 9 Be reactions. In the second approach, the scintillator was loaded with 2 % of natSm providing an α-emitter, 147Sm, as an internal source. In the third approach, a scintillator flask was deployed into the water-filled SNO+ detector and the radioactive contaminants 222Rn, 218Po and 214Po provided the α -particle signal. The behavior of the observed α -particle light outputs are in agreement with each casemore » successfully described by Birks’ law. The resulting Birks parameter kB ranges from (0.0066±0.0016) to (0.0076±0.0003) cm/MeV. In the first approach, the α -particle light response was measured simultaneously with the light response of recoil protons produced via neutron–proton elastic scattering. This enabled a first time a direct comparison of kB describing the proton and the α -particle response of LAB based scintillator. The observed kB values describing the two light response functions deviate by more than 5σ . The presented results are valuable for all current and future detectors, using LAB based scintillator as target, since they depend on an accurate knowledge of the scintillator response to different particles.« less

  8. Objective Measures of Visual Function in Papilledema

    PubMed Central

    Moss, Heather E.

    2016-01-01

    Synopsis Visual function is an important parameter to consider when managing patients with papilledema. Though the current standard of care uses standard automated perimetry (SAP) to obtain this information, this test is inherently subjective and prone to patient errors. Objective visual function tests including the visual evoked potential, pattern electroretinogram, photopic negative response of the full field electroretinogram, and pupillary light response have the potential to replace or supplement subjective visual function tests in papilledema management. This article reviews the evidence for use of objective visual function tests to assess visual function in papilledema and discusses future investigations needed to develop them as clinically practical and useful measures for this purpose. PMID:28451649

  9. Constant light suppresses production of Met-enkephalin-containing peptides in cultured splenic macrophages and impairs primary immune response in rats.

    PubMed

    Valdés-Tovar, Marcela; Escobar, Carolina; Solís-Chagoyán, Héctor; Asai, Miguel; Benítez-King, Gloria

    2015-03-01

    The light-dark cycle is an environmental factor that influences immune physiology, and so, variations of the photoperiod length result in altered immune responsivity. Macrophage physiology comprises a spectrum of functions that goes from host defense to immune down-regulation, in addition to their homeostatic activities. Macrophages also play a key role in the transition from innate to adaptive immune responses. Met-enkephalin (MEnk) has been recognized as a modulator of macrophage physiology acting in an autocrine or paracrine fashion to influence macrophage activation, phenotype polarization and production of cytokines that would enhance lymphocyte activation at early stages of an immune response. Previously it was shown that splenic MEnk tissue content is reduced in rats exposed to constant light. In this work, we explored whether production of Met-enkephalin-containing peptides (MECPs) in cultured splenic macrophages is affected by exposure of rats to a constant light regime. In addition, we explored whether primary immune response was impaired under this condition. We found that in rats, 15 days in constant light was sufficient to disrupt their general activity rhythm. Splenic MEnk content oscillations and levels were also blunted throughout a 24-h period in animals subjected to constant light. In agreement, de novo synthesis of MECPs evaluated through incorporation of (35)S-methionine was reduced in splenic macrophages from rats exposed to constant light. Moreover, MECPs immunocytochemistry showed a decrease in the intracellular content and lack of granule-like deposits in this condition. Furthermore, we found that primary T-dependent antibody response was compromised in rats exposed to constant light. In those animals, pharmacologic treatment with MEnk increased IFN-γ-secreting cells. Also, IL-2 secretion from antigen-stimulated splenocytes was reduced after incubation with naloxone, suggesting that immune-derived opioid peptides and stimulation of opioid receptors are involved in this process. Thus, the immune impairment observed from early stages of the response in constant light-subjected rats, could be associated with reduced production of macrophage-derived enkephalins, leading to a sub-optimal interaction between macrophages and lymphocytes in the spleen and the subsequent deficiency in antibody production.

  10. Regulatory Subunit B′γ of Protein Phosphatase 2A Prevents Unnecessary Defense Reactions under Low Light in Arabidopsis1[W][OA

    PubMed Central

    Trotta, Andrea; Wrzaczek, Michael; Scharte, Judith; Tikkanen, Mikko; Konert, Grzegorz; Rahikainen, Moona; Holmström, Maija; Hiltunen, Hanna-Maija; Rips, Stephan; Sipari, Nina; Mulo, Paula; Weis, Engelbert; von Schaewen, Antje; Aro, Eva-Mari; Kangasjärvi, Saijaliisa

    2011-01-01

    Light is an important environmental factor that modulates acclimation strategies and defense responses in plants. We explored the functional role of the regulatory subunit B′γ (B′γ) of protein phosphatase 2A (PP2A) in light-dependent stress responses of Arabidopsis (Arabidopsis thaliana). The predominant form of PP2A consists of catalytic subunit C, scaffold subunit A, and highly variable regulatory subunit B, which determines the substrate specificity of PP2A holoenzymes. Mutant leaves of knockdown pp2a-b′γ plants show disintegration of chloroplasts and premature yellowing conditionally under moderate light intensity. The cell-death phenotype is accompanied by the accumulation of hydrogen peroxide through a pathway that requires CONSTITUTIVE EXPRESSION OF PR GENES5 (CPR5). Moreover, the pp2a-b′γ cpr5 double mutant additionally displays growth suppression and malformed trichomes. Similar to cpr5, the pp2a-b′γ mutant shows constitutive activation of both salicylic acid- and jasmonic acid-dependent defense pathways. In contrast to cpr5, however, pp2a-b′γ leaves do not contain increased levels of salicylic acid or jasmonic acid. Rather, the constitutive defense response associates with hypomethylation of DNA and increased levels of methionine-salvage pathway components in pp2a-b′γ leaves. We suggest that the specific B′γ subunit of PP2A is functionally connected to CPR5 and operates in the basal repression of defense responses under low irradiance. PMID:21571669

  11. Intrinsically photosensitive retinal ganglion cell function in relation to age: A pupillometric study in humans with special reference to the age-related optic properties of the lens

    PubMed Central

    2012-01-01

    Background The activity of melanopsin containing intrinsically photosensitive ganglion retinal cells (ipRGC) can be assessed by a means of pupil responses to bright blue (appr.480 nm) light. Due to age related factors in the eye, particularly, structural changes of the lens, less light reaches retina. The aim of this study was to examine how age and in vivo measured lens transmission of blue light might affect pupil light responses, in particular, mediated by the ipRGC. Methods Consensual pupil responses were explored in 44 healthy subjects aged between 26 and 68 years. A pupil response was recorded to a continuous 20 s light stimulus of 660 nm (red) or 470 nm (blue) both at 300 cd/m2 intensity (14.9 and 14.8 log photons/cm2/s, respectively). Additional recordings were performed using four 470 nm stimulus intensities of 3, 30, 100 and 300 cd/m2. The baseline pupil size was measured in darkness and results were adjusted for the baseline pupil and gender. The main outcome parameters were maximal and sustained pupil contraction amplitudes and the postillumination response assessed as area under the curve (AUC) over two time-windows: early (0–10 s after light termination) and late (10–30 s after light termination). Lens transmission was measured with an ocular fluorometer. Results The sustained pupil contraction and the early poststimulus AUC correlated positively with age (p = 0.02, p = 0.0014, respectively) for the blue light stimulus condition only. The maximal pupil contraction amplitude did not correlate to age either for bright blue or red light stimulus conditions. Lens transmission decreased linearly with age (p < 0.0001). The pupil response was stable or increased with decreasing transmission, though only significantly for the early poststimulus AUC to 300 cd/m2 light (p = 0.02). Conclusions Age did not reduce, but rather enhance pupil responses mediated by ipRGC. The age related decrease of blue light transmission led to similar results, however, the effect of age was greater on these pupil responses than that of the lens transmission. Thus there must be other age related factors such as lens scatter and/or adaptive processes influencing the ipRGC mediated pupil response enhancement observed with advancing age. PMID:22471313

  12. Stimuli-Responsive Polymer Brushes for Flow Control through Nanopores

    PubMed Central

    Adiga, Shashishekar P.; Brenner, Donald W.

    2012-01-01

    Responsive polymers attached to the inside of nano/micro-pores have attracted great interest owing to the prospect of designing flow-control devices and signal responsive delivery systems. An intriguing possibility involves functionalizing nanoporous materials with smart polymers to modulate biomolecular transport in response to pH, temperature, ionic concentration, light or electric field. These efforts open up avenues to develop smart medical devices that respond to specific physiological conditions. In this work, an overview of nanoporous materials functionalized with responsive polymers is given. Various examples of pH, temperature and solvent responsive polymers are discussed. A theoretical treatment that accounts for polymer conformational change in response to a stimulus and the associated flow-control effect is presented. PMID:24955529

  13. Phototropism and gravitropism in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Miller, Kelley M.; Ogden, Lisa A.; Roth, Kelly K.

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  14. Phototropism and gravitropism in lateral roots of Arabidopsis.

    PubMed

    Kiss, John Z; Miller, Kelley M; Ogden, Lisa A; Roth, Kelly K

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  15. The Extracellular Matrix in Photosynthetic Mats: A Cyanobacterial Gingerbread House

    NASA Astrophysics Data System (ADS)

    Stuart, R.; Stannard, W.; Bebout, B.; Pett-Ridge, J.; Mayali, X.; Weber, P. K.; Lipton, M. S.; Lee, J.; Everroad, R. C.; Thelen, M.

    2014-12-01

    Hypersaline laminated cyanobacterial mats are excellent model systems for investigating photoautotrophic contributions to biogeochemical cycling on a millimeter scale. These self-sustaining ecosystems are characterized by steep physiochemical gradients that fluctuate dramatically on hour timescales, providing a dynamic environment to study microbial response. However, elucidating the distribution of energy from light absorption into biomass requires a complete understanding of the various constituents of the mat. Extracellular polymeric substances (EPS), which can be composed of proteins, polysaccharides, lipids and DNA are a major component of these mats and may function in the redistribution of nutrients and metabolites within the community. To test this notion, we established a model mat-building culture for comparison with the phylogenetically diverse natural mat communities. In these two systems we determined how proteins and glycans in the matrix changed as a function of light and tracked nutrient flow from the matrix. Using mass spectrometry metaproteomics analysis, we found homologous proteins in both field and culture extracellular matrix that point to cyanobacterial turnover of amino acids, inorganic nutrients, carbohydrates and nucleic acids from the EPS. Other abundant functions identified included oxidative stress response from both the cyanobacteria and heterotrophs and cyanobacterial structural proteins that may play a role in mat cohesion. Several degradative enzymes also varied in abundance in the EPS in response to light availability, suggesting active secretion. To further test cyanobacterial EPS turnover, we generated isotopically-labeled EPS and used NanoSIMS to trace uptake of this labeled EPS. Our findings suggest Cyanobacteria may facilitate nutrient transfer to other groups, as well as uptake of their own products through degradation of EPS components. This work provides evidence for the essential roles of EPS for storage, structural cohesion and protection, with active light-dependent turnover by both Cyanobacteria and the heterotrophic community.

  16. Effects of MDMA alone and after pretreatment with reboxetine, duloxetine, clonidine, carvedilol, and doxazosin on pupillary light reflex.

    PubMed

    Hysek, Cédric M; Liechti, Matthias E

    2012-12-01

    Pupillometry can be used to characterize autonomic drug effects. This study was conducted to determine the autonomic effects of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), administered alone and after pretreatment with reboxetine, duloxetine, clonidine, carvedilol, and doxazosin, on pupillary function. Infrared pupillometry was performed in five placebo-controlled randomized studies. Each study included 16 healthy subjects (eight men, eight women) who received placebo-MDMA (125 mg), placebo-placebo, pretreatment-placebo, or pretreatment-MDMA using a crossover design. MDMA produced mydriasis, prolonged the latency, reduced the response to light, and shortened the recovery time. The impaired reflex response was associated with subjective, cardiostimulant, and hyperthermic drug effects and returned to normal within 6 h after MDMA administration when plasma MDMA levels were still high. Mydriasis was associated with changes in plasma MDMA concentration over time and longer-lasting. Both reboxetine and duloxetine interacted with the effects of MDMA on pupillary function. Clonidine did not significantly reduce the mydriatic effects of MDMA, although it produced miosis when administered alone. Carvedilol and doxazosin did not alter the effects of MDMA on pupillary function. The MDMA-induced prolongation of the latency to and reduction of light-induced miosis indicate indirect central parasympathetic inhibition, and the faster recovery time reflects an increased sympathomimetic action. Both norepinephrine and serotonin mediate the effects of MDMA on pupillary function. Although mydriasis is lasting and mirrors the plasma concentration-time curve of MDMA, the impairment in the reaction to light is associated with the subjective and other autonomic effects of MDMA and exhibits acute tolerance.

  17. The Shift of ERG B-Wave Induced by Hours' Dark Exposure in Rodents

    PubMed Central

    Li, Dake; Fang, Qi; Yu, Hongbo

    2016-01-01

    Purpose Dark adaptation can induce a rapid functional shift in the retina, and after that, the retinal function is believed to remain stable during the continuous dark exposure. However, we found that electroretinograms (ERG) b-waves gradually shifted during 24 hours’ dark exposure in rodents. Detailed experiments were designed to explore this non-classical dark adaptation. Methods In vivo ERG recording in adult and developing rodents after light manipulations. Results We revealed a five-fold decrease in ERG b-waves in adult rats that were dark exposed for 24 hours. The ERG b-waves significantly increased within the first hour’s dark exposure, but after that decreased continuously and finally attained steady state after 1 day’s dark exposure. After 3 repetitive, 10 minutes’ light exposure, the dark exposed rats fully recovered. This recovery effect was eye-specific, and light exposure to one eye could not restore the ERGs in the non-exposed eye. The prolonged dark exposure-induced functional shift was also reflected in the down-regulation on the amplitude of intensity-ERG response curve, but the dynamic range of the responsive light intensity remained largely stable. Furthermore, the ERG b-wave shifts occurred in and beyond classical critical period, and in both rats and mice. Importantly, when ERG b-wave greatly shifted, the amplitude of ERG a-wave did not change significantly after the prolonged dark exposure. Conclusions This rapid age-independent ERG change demonstrates a generally existing functional shift in the retina, which is at the entry level of visual system. PMID:27517462

  18. Design, Synthesis, and Isomerization Studies of Light-Driven Molecular Motors for Single Molecular Imaging

    PubMed Central

    2018-01-01

    The design of a multicomponent system that aims at the direct visualization of a synthetic rotary motor at the single molecule level on surfaces is presented. The synthesis of two functional motors enabling photochemical rotation and fluorescent detection is described. The light-driven molecular motor is found to operate in the presence of a fluorescent tag if a rigid long rod (32 Å) is installed between both photoactive moieties. The photochemical isomerization and subsequent thermal helix inversion steps are confirmed by 1H NMR and UV–vis absorption spectroscopies. In addition, the tetra-acid functioned motor can be successfully grafted onto amine-coated quartz and it is shown that the light responsive rotary motion on surfaces is preserved. PMID:29741383

  19. Genetically expressed voltage sensor ArcLight for imaging large scale cortical activity in the anesthetized and awake mouse

    PubMed Central

    Borden, Peter Y.; Ortiz, Alex D.; Waiblinger, Christian; Sederberg, Audrey J.; Morrissette, Arthur E.; Forest, Craig R.; Jaeger, Dieter; Stanley, Garrett B.

    2017-01-01

    Abstract. With the recent breakthrough in genetically expressed voltage indicators (GEVIs), there has been a tremendous demand to determine the capabilities of these sensors in vivo. Novel voltage sensitive fluorescent proteins allow for direct measurement of neuron membrane potential changes through changes in fluorescence. Here, we utilized ArcLight, a recently developed GEVI, and examined the functional characteristics in the widely used mouse somatosensory whisker pathway. We measured the resulting evoked fluorescence using a wide-field microscope and a CCD camera at 200 Hz, which enabled voltage recordings over the entire cortical region with high temporal resolution. We found that ArcLight produced a fluorescent response in the S1 barrel cortex during sensory stimulation at single whisker resolution. During wide-field cortical imaging, we encountered substantial hemodynamic noise that required additional post hoc processing through noise subtraction techniques. Over a period of 28 days, we found clear and consistent ArcLight fluorescence responses to a simple sensory input. Finally, we demonstrated the use of ArcLight to resolve cortical S1 sensory responses in the awake mouse. Taken together, our results demonstrate the feasibility of ArcLight as a measurement tool for mesoscopic, chronic imaging. PMID:28491905

  20. Material model for physically based rendering

    NASA Astrophysics Data System (ADS)

    Robart, Mathieu; Paulin, Mathias; Caubet, Rene

    1999-09-01

    In computer graphics, a complete knowledge of the interactions between light and a material is essential to obtain photorealistic pictures. Physical measurements allow us to obtain data on the material response, but are limited to industrial surfaces and depend on measure conditions. Analytic models do exist, but they are often inadequate for common use: the empiric ones are too simple to be realistic, and the physically-based ones are often to complex or too specialized to be generally useful. Therefore, we have developed a multiresolution virtual material model, that not only describes the surface of a material, but also its internal structure thanks to distribution functions of microelements, arranged in layers. Each microelement possesses its own response to an incident light, from an elementary reflection to a complex response provided by its inner structure, taking into account geometry, energy, polarization, . . ., of each light ray. This model is virtually illuminated, in order to compute its response to an incident radiance. This directional response is stored in a compressed data structure using spherical wavelets, and is destined to be used in a rendering model such as directional radiosity.

  1. Melanopsin photoreception in the eye regulates light-induced skin colour changes through the production of α-MSH in the pituitary gland.

    PubMed

    Bertolesi, Gabriel E; Hehr, Carrie L; McFarlane, Sarah

    2015-09-01

    How skin colour adjusts to circadian light/dark cycles is poorly understood. Melanopsin (Opn4) is expressed in melanophores, where in vitro studies suggest it regulates skin pigmentation through a 'primary colour response' in which light photosensitivity is translated directly into pigment movement. However, the entrainment of the circadian rhythm is regulated by a population of melanopsin-expressing retinal ganglion cells (mRGCs) in the eye. Therefore, in vivo, melanopsin may trigger a 'secondary colour response' initiated in the eye and controlled by the neuro-endocrine system. We analysed the expression of opn4m and opn4x and melanin aggregation induced by light (background adaptation) in Xenopus laevis embryos. While opn4m and opn4x are expressed at early developmental times, light-induced pigment aggregation requires the eye to become functional. Pharmacological inhibition of melanopsin suggests a model whereby mRGC activation lightens skin pigmentation via a secondary response involving negative regulation of alpha-melanocyte-stimulating hormone (α-MSH) secretion by the pituitary. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Multiple cone pathways are involved in photic regulation of retinal dopamine.

    PubMed

    Qiao, Sheng-Nan; Zhang, Zhijing; Ribelayga, Christophe P; Zhong, Yong-Mei; Zhang, Dao-Qi

    2016-06-30

    Dopamine is a key neurotransmitter in the retina and plays a central role in the light adaptive processes of the visual system. The sole source of retinal dopamine is dopaminergic amacrine cells (DACs). We and others have previously demonstrated that DACs are activated by rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) upon illumination. However, it is still not clear how each class of photosensitive cells generates light responses in DACs. We genetically isolated cone function in mice to specifically examine the cone-mediated responses of DACs and their neural pathways. In addition to the reported excitatory input to DACs from light-increment (ON) bipolar cells, we found that cones alternatively signal to DACs via a retrograde signalling pathway from ipRGCs. Cones also produce ON and light-decrement (OFF) inhibitory responses in DACs, which are mediated by other amacrine cells, likely driven by type 1 and type 2/3a OFF bipolar cells, respectively. Dye injections indicated that DACs had similar morphological profiles with or without ON/OFF inhibition. Our data demonstrate that cones utilize specific parallel excitatory and inhibitory circuits to modulate DAC activity and efficiently regulate dopamine release and the light-adaptive state of the retina.

  3. PINOID AGC kinases are necessary for phytochrome-mediated enhancement of hypocotyl phototropism in Arabidopsis.

    PubMed

    Haga, Ken; Hayashi, Ken-ichiro; Sakai, Tatsuya

    2014-11-01

    Several members of the AGCVIII kinase subfamily, which includes PINOID (PID), PID2, and WAVY ROOT GROWTH (WAG) proteins, have previously been shown to phosphorylate PIN-FORMED (PIN) auxin transporters and control the auxin flow in plants. PID has been proposed as a key component of the phototropin signaling pathway that induces phototropic responses, although the responses were not significantly impaired in the pid single and pid wag1 wag2 triple mutants. This raises questions about the functional roles of the PID family in phototropic responses. Here, we investigated hypocotyl phototropism in the pid pid2 wag1 wag2 quadruple mutant in detail to clarify the roles of the PID family in Arabidopsis (Arabidopsis thaliana). The pid quadruple mutants exhibited moderate responses in continuous light-induced phototropism with a decrease in growth rates of hypocotyls and normal responses in pulse-induced phototropism. However, they showed serious defects in enhancements of pulse-induced phototropic curvatures and lateral fluorescent auxin transport by red light pretreatment. Red light pretreatment significantly reduced the expression level of PID, and the constitutive expression of PID prevented pulse-induced phototropism, irrespective of red light pretreatment. This suggests that the PID family plays a significant role in phytochrome-mediated phototropic enhancement but not the phototropin signaling pathway. Red light treatment enhanced the intracellular accumulation of PIN proteins in response to the vesicle-trafficking inhibitor brefeldin A in addition to increasing their expression levels. Taken together, these results suggest that red light preirradiation enhances phototropic curvatures by up-regulation of PIN proteins, which are not being phosphorylated by the PID family. © 2014 American Society of Plant Biologists. All Rights Reserved.

  4. PINOID AGC Kinases Are Necessary for Phytochrome-Mediated Enhancement of Hypocotyl Phototropism in Arabidopsis1[W][OPEN

    PubMed Central

    Haga, Ken; Hayashi, Ken-ichiro; Sakai, Tatsuya

    2014-01-01

    Several members of the AGCVIII kinase subfamily, which includes PINOID (PID), PID2, and WAVY ROOT GROWTH (WAG) proteins, have previously been shown to phosphorylate PIN-FORMED (PIN) auxin transporters and control the auxin flow in plants. PID has been proposed as a key component of the phototropin signaling pathway that induces phototropic responses, although the responses were not significantly impaired in the pid single and pid wag1 wag2 triple mutants. This raises questions about the functional roles of the PID family in phototropic responses. Here, we investigated hypocotyl phototropism in the pid pid2 wag1 wag2 quadruple mutant in detail to clarify the roles of the PID family in Arabidopsis (Arabidopsis thaliana). The pid quadruple mutants exhibited moderate responses in continuous light-induced phototropism with a decrease in growth rates of hypocotyls and normal responses in pulse-induced phototropism. However, they showed serious defects in enhancements of pulse-induced phototropic curvatures and lateral fluorescent auxin transport by red light pretreatment. Red light pretreatment significantly reduced the expression level of PID, and the constitutive expression of PID prevented pulse-induced phototropism, irrespective of red light pretreatment. This suggests that the PID family plays a significant role in phytochrome-mediated phototropic enhancement but not the phototropin signaling pathway. Red light treatment enhanced the intracellular accumulation of PIN proteins in response to the vesicle-trafficking inhibitor brefeldin A in addition to increasing their expression levels. Taken together, these results suggest that red light preirradiation enhances phototropic curvatures by up-regulation of PIN proteins, which are not being phosphorylated by the PID family. PMID:25281709

  5. System for measuring film thickness

    DOEpatents

    Batishko, Charles R.; Kirihara, Leslie J.; Peters, Timothy J.; Rasmussen, Donald E.

    1990-01-01

    A system for determining the thicknesses of thin films of materials exhibiting fluorescence in response to exposure to excitation energy from a suitable source of such energy. A section of film is illuminated with a fixed level of excitation energy from a source such as an argon ion laser emitting blue-green light. The amount of fluorescent light produced by the film over a limited area within the section so illuminated is then measured using a detector such as a photomultiplier tube. Since the amount of fluorescent light produced is a function of the thicknesses of thin films, the thickness of a specific film can be determined by comparing the intensity of fluorescent light produced by this film with the intensity of light produced by similar films of known thicknesses in response to the same amount of excitation energy. The preferred embodiment of the invention uses fiber optic probes in measuring the thicknesses of oil films on the operational components of machinery which are ordinarily obscured from view.

  6. Bottom-up production of meta-atoms for optical magnetism in visible and NIR light

    NASA Astrophysics Data System (ADS)

    Barois, Philippe; Ponsinet, Virginie; Baron, Alexandre; Richetti, Philippe

    2018-02-01

    Many unusual optical properties of metamaterials arise from the magnetic response of engineered structures of sub-wavelength size (meta-atoms) exposed to light. The top-down approach whereby engineered nanostructure of well-defined morphology are engraved on a surface proved to be successful for the generation of strong optical magnetism. It faces however the limitations of high cost and small active area in visible light where nanometre resolution is needed. The bottom-up approach whereby the fabrication metamaterials of large volume or large area results from the combination of nanochemitry and self-assembly techniques may constitute a cost-effective alternative. This approach nevertheless requires the large-scale production of functional building-blocks (meta-atoms) bearing a strong magnetic optical response. We propose in this paper a few tracks that lead to the large scale synthesis of magnetic metamaterials operating in visible or near IR light.

  7. Effects of an ethanol-paired CS on responding for ethanol and food: Comparisons with a stimulus in a Truly-Random-Control group and to a food-paired CS on responding for food.

    PubMed

    Lamb, R J; Ginsburg, Brett C; Schindler, Charles W

    2016-12-01

    Motivational increases due to exposure to alcohol-paired Conditioned Stimuli (CS) are central to some accounts of alcoholism. However, few studies isolate a stimulus's function as a CS from its other potential functions. Pavlovian-Instrumental-Transfer (PIT) procedures isolate a stimulus's function as a CS from its other functions. Though there are several relevant studies using PIT, knowledge gaps exist. Particularly, it is not clear that an alcohol-paired CS will increase alcohol seeking compared to the same stimulus in a Truly-Random-Control group, nor whether such increases are specific to alcohol seeking. To address these knowledge gaps in Experiment 1, rats responded for ethanol (0.1 ml 8% w/v) under an RI 30-sec schedule, then the lever was removed and half the rats had ethanol delivered during occasional 120-sec light presentations, while the remainder had ethanol and the light presented under independent RT schedules. Later the lever was returned and the light was presented during responding in extinction (PIT test). Following this test, levers were again removed and the light was presented without ethanol (light extinction), following again by a PIT test. Responding in the two groups during light presentations did not differ in either PIT test. Experiment 2 repeated Experiment 1 using food instead of ethanol. In Experiment 2, responding during light presentations increased in the paired group. In Experiment 3, rats were trained on a concurrent FR schedule of food and ethanol delivery. Ethanol was delivered following 5 responses and the response requirement for food adjusted so that similar numbers of food and ethanol deliveries were obtained. Subsequently, rats underwent conditioning, control and testing procedures identical to those in Experiment 1. In Experiment 3, the ethanol-paired CS increased ethanol-responding, but not food-responding. These results are most easily interpreted as changes in responding resulting from CS-elicited behavior rather than motivational changes. This interpretation is more compatible with some descriptions of the role of an alcohol-paired CS in alcoholism than others. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Alternative Use of DNA Binding Domains by the Neurospora White Collar Complex Dictates Circadian Regulation and Light Responses

    PubMed Central

    Wang, Bin; Zhou, Xiaoying; Loros, Jennifer J.

    2015-01-01

    In the Neurospora circadian system, the White Collar complex (WCC) of WC-1 and WC-2 drives transcription of the circadian pacemaker gene frequency (frq), whose gene product, FRQ, as a part of the FRQ-FRH complex (FFC), inhibits its own expression. The WCC is also the principal Neurospora photoreceptor; WCC-mediated light induction of frq resets the clock, and all acute light induction is triggered by WCC binding to promoters of light-induced genes. However, not all acutely light-induced genes are also clock regulated, and conversely, not all clock-regulated direct targets of WCC are light induced; the structural determinants governing the shift from WCC's dark circadian role to its light activation role are poorly described. We report that the DBD region (named for being defective in binding DNA), a basic region in WC-1 proximal to the DNA-binding zinc finger (ZnF) whose function was previously ascribed to nuclear localization, instead plays multiple essential roles assisting in DNA binding and mediating interactions with the FFC. DNA binding for light induction by the WCC requires only WC-2, whereas DNA binding for circadian functions requires WC-2 as well as the ZnF and DBD motif of WC-1. The data suggest a means by which alterations in the tertiary and quaternary structures of the WCC can lead to its distinct functions in the dark and in the light. PMID:26711258

  9. Study on Response Function of Organic Liquid Scintillator for High-Energy Neutrons

    NASA Astrophysics Data System (ADS)

    Satoh, Daiki; Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Takada, Masashi; Ishibashi, Kenji

    2005-05-01

    Response functions of liquid organic scintillator for neutrons up to 800 MeV have been measured at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) of National Institute of Radiological Sciences (NIRS). 800-MeV/u Si ions and 400-MeV/u C ions bombarded a thick carbon target to produce neutrons. The kinetic energies of emitted neutrons were determined by the time-of-flight (TOF) method. Light output for neutrons was evaluated by eliminating events due to gamma-rays and charged particles. The measured response functions were compared with calculations using SCINFUL-QMD and CECIL codes. It was found that SCINFUL-QMD reproduced our experimental data adequately.

  10. Study on Response Function of Organic Liquid Scintillator for High-Energy Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satoh, Daiki; Sato, Tatsuhiko; Endo, Akira

    2005-05-24

    Response functions of liquid organic scintillator for neutrons up to 800 MeV have been measured at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) of National Institute of Radiological Sciences (NIRS). 800-MeV/u Si ions and 400-MeV/u C ions bombarded a thick carbon target to produce neutrons. The kinetic energies of emitted neutrons were determined by the time-of-flight (TOF) method. Light output for neutrons was evaluated by eliminating events due to gamma-rays and charged particles. The measured response functions were compared with calculations using SCINFUL-QMD and CECIL codes. It was found that SCINFUL-QMD reproduced our experimental data adequately.

  11. Apo-bacteriophytochromes modulate bacterial photosynthesis in response to low light.

    PubMed

    Fixen, Kathryn R; Baker, Anna W; Stojkovic, Emina A; Beatty, J Thomas; Harwood, Caroline S

    2014-01-14

    Bacteriophytochromes (BphPs) are light-sensing regulatory proteins encoded by photosynthetic and nonphotosynthetic bacteria. This protein class has been characterized structurally, but its biological activities remain relatively unexplored. Two BphPs in the anoxygenic photosynthetic bacterium Rhodopseudomonas palustris, designated regulatory proteins RpBphP2 and RpBphP3, are configured as light-regulated histidine kinases, which initiate a signal transduction system that controls expression of genes for the low light harvesting 4 (LH4) antenna complex. In vitro, RpBphP2 and RpBphP3 respond to light quality by reversible photoconversion, a property that requires the light-absorbing chromophore biliverdin. In vivo, RpBphP2 and RpBphP3 are both required for the expression of the LH4 antenna complex under anaerobic conditions, but biliverdin requires oxygen for its synthesis by heme oxygenase. On further investigation, we found that the apo-bacteriophytochrome forms of RpBphP2 and RpBphP3 are necessary and sufficient to control LH4 expression in response to light intensity in conjunction with other signal transduction proteins. One possibility is that the system senses a reduced quinone pool generated when light energy is absorbed by bacteriochlorophyll. The biliverdin-bound forms of the BphPs have the additional property of being able to fine-tune LH4 expression in response to light quality. These observations support the concept that some bacteriophytochromes can function with or without a chromophore and may be involved in regulating physiological processes not directly related to light sensing.

  12. Förster resonance energy transfer (FRET)-based picosecond lifetime reference for instrument response evaluation

    NASA Astrophysics Data System (ADS)

    Luchowski, R.; Kapusta, P.; Szabelski, M.; Sarkar, P.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I.

    2009-09-01

    Förster resonance energy transfer (FRET) can be utilized to achieve ultrashort fluorescence responses in time-domain fluorometry. In a poly(vinyl) alcohol matrix, the presence of 60 mM Rhodamine 800 acceptor shortens the fluorescence lifetime of a pyridine 1 donor to about 20 ps. Such a fast fluorescence response is very similar to the instrument response function (IRF) obtained using scattered excitation light. A solid fluorescent sample (e.g a film) with picosecond lifetime is ideal for IRF measurements and particularly useful for time-resolved microscopy. Avalanche photodiode detectors, commonly used in this field, feature color- dependent-timing responses. We demonstrate that recording the fluorescence decay of the proposed FRET-based reference sample yields a better IRF approximation than the conventional light-scattering method and therefore avoids systematic errors in decay curve analysis.

  13. Arabidopsis thaliana FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1) modulate starch synthesis in response to light and sugar.

    PubMed

    Ma, Lin; Xue, Na; Fu, Xiaoyu; Zhang, Haisen; Li, Gang

    2017-03-01

    In living organisms, daily light/dark cycles profoundly affect cellular processes. In plants, optimal growth and development, and adaptation to daily light-dark cycles, require starch synthesis and turnover. However, the underlying molecular mechanisms coordinating daily starch metabolism remain poorly understood. To explore the roles of Arabidopsis thaliana light signal transduction proteins FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1) in starch metabolism, the contents of starch and water-soluble polysaccharides, and the structure of starch granules were investigated in fhy3, far1 and fhy3 far1 mutant plants. Disruption of FHY3 or FAR1 reduced starch accumulation and altered starch granule structure in the fhy3-4, far1-2, and fhy3-4 far1-2 mutant plants. Furthermore, molecular and genetic evidence revealed that the gene encoding the starch-debranching enzyme ISOAMYLASE2 (ISA2) is a direct target of FHY3 and FAR1, and functions in light-induced starch synthesis. Our data establish the first molecular link between light signal transduction and starch synthesis, suggesting that the light-signaling proteins FHY3 and FAR1 influence starch synthesis and starch granule formation through transcriptional activation of ISA2. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Development of the Astyanax mexicanus circadian clock and non-visual light responses.

    PubMed

    Frøland Steindal, Inga A; Beale, Andrew D; Yamamoto, Yoshiyuki; Whitmore, David

    2018-06-23

    Most animals and plants live on the planet exposed to periods of rhythmic light and dark. As such, they have evolved endogenous circadian clocks to regulate their physiology rhythmically, and non-visual light detection mechanisms to set the clock to the environmental light-dark cycle. In the case of fish, circadian pacemakers are not only present in the majority of tissues and cells, but these tissues are themselves directly light-sensitive, expressing a wide range of opsin photopigments. This broad non-visual light sensitivity exists to set the clock, but also impacts a wide range of fundamental cell biological processes, such as DNA repair regulation. In this context, Astyanax mexicanus is a very intriguing model system with which to explore non-visual light detection and circadian clock function. Previous work has shown that surface fish possess the same directly light entrainable circadian clocks, described above. The same is true for cave strains of Astyanax in the laboratory, though no daily rhythms have been observed under natural dark conditions in Mexico. There are, however, clear alterations in the cave strain light response and changes to the circadian clock, with a difference in phase of peak gene expression and a reduction in amplitude. In this study, we expand these early observations by exploring the development of non-visual light sensitivity and clock function between surface and cave populations. When does the circadian pacemaker begin to oscillate during development, and are there differences between the various strains? Is the difference in acute light sensitivity, seen in adults, apparent from the earliest stages of development? Our results show that both cave and surface populations must experience daily light exposure to establish a larval gene expression rhythm. These oscillations begin early, around the third day of development in all strains, but gene expression rhythms show a significantly higher amplitude in surface fish larvae. In addition, the light induction of clock genes is developmentally delayed in cave populations. Zebrafish embryonic light sensitivity has been shown to be critical not only for clock entrainment, but also for transcriptional activation of DNA repair processes. Similar downstream transcriptional responses to light also occur in Astyanax. Interestingly, the establishment of the adult timing profile of clock gene expression takes several days to become apparent. This fact may provide mechanistic insight into the key differences between the cave and surface fish clock mechanisms. Copyright © 2018. Published by Elsevier Inc.

  15. Functional trait values, not trait plasticity, drive the invasiveness of Rosa sp. in response to light availability.

    PubMed

    Murphy, Jennifer E; Burns, Jean H; Fougère-Danezan, Marie; Drenovsky, Rebecca E

    2016-12-01

    Functional trait plasticity in resource capture traits has been suggested as an underlying mechanism promoting invasive species establishment and spread. Earlier studies on this mechanism treat invasiveness as a discrete characteristic (i.e., invasive vs. noninvasive) and do not consider the potential impacts of evolutionary history. In the present study, we used a continuous measure of invasiveness and a phylogenetic framework to quantify the relationship between functional trait expression, plasticity, and invasiveness in Rosa. In a manipulative greenhouse experiment, we evaluated how light availability affects functional traits and their plasticity in Rosa sp. and the out-group species, Potentilla recta, which vary in their invasiveness. Across functional traits, we found no significant relationship between plasticity and invasiveness. However, more invasive roses demonstrated an ability to produce a more branched plant architecture, promoting optimal light capture. Invasiveness also was linked with lower photosynthetic and stomatal conductance rates, leading to increased water-use efficiency (WUE) in more invasive roses. Our results suggest that functional trait values, rather than plasticity, promote invasive rose success, counter to earlier predictions about the role of plasticity in invasiveness. Furthermore, our study indicates that invasive roses demonstrate key functional traits, such as increased WUE, to promote their success in the high-light, edge habitats they commonly invade. © 2016 Botanical Society of America.

  16. Ratiometric sensing of fluoride and acetate anions based on a BODIPY-azaindole platform and its application to living cell imaging.

    PubMed

    Mahapatra, Ajit Kumar; Maji, Rajkishor; Maiti, Kalipada; Adhikari, Susanta Sekhar; Das Mukhopadhyay, Chitrangada; Mandal, Debasish

    2014-01-07

    A new BODIPY-azaindole based fluorescent sensor 1 was designed and synthesized as a new colorimetric and ratiometric fluorescent chemosensor for fluoride. The binding and sensing abilities of sensor 1 towards various anions were studied by absorption, emission and (1)H NMR titration spectroscopies. The spectral responses of 1 to fluoride in acetonitrile-water were studied: an approximately 69 nm red shift in absorption and ratiometric fluorescent response was observed. The striking light yellow to deep brown color change in ambient light and green to blue emission color change are thought to be due to the deprotonation of the indole moiety of the azaindole fluorophore. From the changes in the absorption, fluorescence, and (1)H NMR titration spectra, proton-transfer mechanisms were deduced. Density function theory and time-dependent density function theory calculations were conducted to rationalize the optical response of the sensor. Results were supported by confocal fluorescence imaging and MTT assay of live cells.

  17. Hemispheric Asymmetry of Visual Cortical Response by Means of Functional Transcranial Doppler

    PubMed Central

    Roje-Bedeković, Marina; Lovrenčić-Huzjan, Arijana; Bosnar-Puretić, Marijana; Šerić, Vesna; Demarin, Vida

    2012-01-01

    We assessed the visual evoked response and investigated side-to-side differences in mean blood flow velocities (MBFVs) by means of functional transcranial Doppler (fTCD) in 49 right-handed patients with severe internal carotid artery (ICA) stenosis and 30 healthy volunteers, simultaneously in both posterior cerebral arteries (PCAs) using 2 MHz probes, successively in the dark and during the white light stimulation. Statistically significant correlation (P = 0.001) was shown in healthy and in patients (P < 0.05) between MBFV in right PCA in physiological conditions and MBFV in right PCA during the white light stimulation and in the dark. The correlation between MBVF in right PCA and contralateral left PCA was not statistically significant (P > 0.05). The correlation between ipsilateral left PCA was significantly higher than the one with contralateral right PCA (P < 0.05). There is a clear trend towards the lateralisation of the visual evoked response in the right PCA. PMID:22135771

  18. Photic Resetting and Entrainment in CLOCK-Deficient Mice

    PubMed Central

    Dallmann, Robert; DeBruyne, Jason P.; Weaver, David R.

    2012-01-01

    Mice lacking CLOCK protein have a relatively subtle circadian phenotype, including a slightly shorter period in constant darkness, differences in phase resetting after 4-hr light pulses in the early and late night, and a variably advanced phase angle of entrainment in a light-dark (LD) cycle (DeBruyne et al., Neuron 50:465–477, 2006). The present series of experiments was conducted to more fully characterize the circadian phenotype of Clock−/− mice under various lighting conditions. A phase-response curve (PRC) to 4-hour light pulses in free-running mice was conducted; the results confirm that Clock−/− mice exhibit very large phase advances after 4 hrs light pulses in the late subjective night, but have relatively normal responses to light at other phases. The abnormal shape of the PRC to light may explain the tendency of CLOCK-deficient mice to begin activity before lights-out when housed in a 12 hrs light: 12 hrs dark lighting schedule. To assess this relationship further, Clock−/− and wild-type control mice were entrained to skeleton lighting cycles (1L:23D, and 1L:10D:1L:12D). Comparing entrainment under the two types of skeleton photoperiods revealed that exposure to 1 hr light in the morning leads to a phase advance of activity onset (expressed the following afternoon) in Clock−/− mice, but not in the controls. Constant light typically causes an intensity-dependent increase in circadian period in mice, but this did not occur in CLOCK-deficient mice. The failure of Clock−/− mice to respond to the period-lengthening effect of constant light likely results from the increased functional impact of light falling in the phase advance zone of the PRC. Collectively, these experiments reveal that alterations in the response of CLOCK-deficient mice to light in several paradigms are likely due to an imbalance in the shape of the PRC to light. PMID:21921293

  19. Smart Biointerface with Photoswitched Functions between Bactericidal Activity and Bacteria-Releasing Ability.

    PubMed

    Wei, Ting; Zhan, Wenjun; Yu, Qian; Chen, Hong

    2017-08-09

    Smart biointerfaces with capability to regulate cell-surface interactions in response to external stimuli are of great interest for both fundamental research and practical applications. Smart surfaces with "ON/OFF" switchability for a single function such as cell attachment/detachment are well-known and useful, but the ability to switch between two different functions may be seen as the next level of "smart". In this work reported, a smart supramolecular surface capable of switching functions reversibly between bactericidal activity and bacteria-releasing ability in response to UV-visible light is developed. This platform is composed of surface-containing azobenzene (Azo) groups and a biocidal β-cyclodextrin derivative conjugated with seven quaternary ammonium salt groups (CD-QAS). The surface-immobilized Azo groups in trans form can specially incorporate CD-QAS to achieve a strongly bactericidal surface that kill more than 90% attached bacteria. On irradiation with UV light, the Azo groups switch to cis form, resulting in the dissociation of the Azo/CD-QAS inclusion complex and release of dead bacteria from the surface. After the kill-and-release cycle, the surface can be easily regenerated for reuse by irradiation with visible light and reincorporation of fresh CD-QAS. The use of supramolecular chemistry represents a promising approach to the realization of smart, multifunctional surfaces, and has the potential to be applied to diverse materials and devices in the biomedical field.

  20. Photophysiology of kleptoplasts: photosynthetic use of light by chloroplasts living in animal cells.

    PubMed

    Serôdio, João; Cruz, Sónia; Cartaxana, Paulo; Calado, Ricardo

    2014-04-19

    Kleptoplasty is a remarkable type of photosynthetic association, resulting from the maintenance of functional chloroplasts--the 'kleptoplasts'--in the tissues of a non-photosynthetic host. It represents a biologically unique condition for chloroplast and photosynthesis functioning, occurring in different phylogenetic lineages, namely dinoflagellates, ciliates, foraminiferans and, most interestingly, a single taxon of metazoans, the sacoglossan sea slugs. In the case of sea slugs, chloroplasts from macroalgae are often maintained as intracellular organelles in cells of these marine gastropods, structurally intact and photosynthetically competent for extended periods of time. Kleptoplasty has long attracted interest owing to the longevity of functional kleptoplasts in the absence of the original algal nucleus and the limited number of proteins encoded by the chloroplast genome. This review updates the state-of-the-art on kleptoplast photophysiology, focusing on the comparative analysis of the responses to light of the chloroplasts when in their original, macroalgal cells, and when sequestered in animal cells and functioning as kleptoplasts. It covers fundamental but ecologically relevant aspects of kleptoplast light responses, such as the occurrence of photoacclimation in hospite, operation of photoprotective processes and susceptibility to photoinhibition. Emphasis is given to host-mediated processes unique to kleptoplastic associations, reviewing current hypotheses on behavioural photoprotection and host-mediated enhancement of photosynthetic performance, and identifying current gaps in sacoglossan kleptoplast photophysiology research.

  1. Functional Cooperation between the IP3 Receptor and Phospholipase C Secures the High Sensitivity to Light of Drosophila Photoreceptors In Vivo

    PubMed Central

    Kohn, Elkana; Katz, Ben; Yasin, Bushra; Peters, Maximilian; Rhodes, Elisheva; Zaguri, Rachel; Weiss, Shirley

    2015-01-01

    Drosophila phototransduction is a model system for the ubiquitous phosphoinositide signaling. In complete darkness, spontaneous unitary current events (dark bumps) are produced by spontaneous single Gqα activation, while single-photon responses (quantum bumps) arise from synchronous activation of several Gqα molecules. We have recently shown that most of the spontaneous single Gqα activations do not produce dark bumps, because of a critical phospholipase Cβ (PLCβ) activity level required for bump generation. Surpassing the threshold of channel activation depends on both PLCβ activity and cellular [Ca2+], which participates in light excitation via a still unclear mechanism. We show here that in IP3 receptor (IP3R)-deficient photoreceptors, both light-activated Ca2+ release from internal stores and light sensitivity were strongly attenuated. This was further verified by Ca2+ store depletion, linking Ca2+ release to light excitation. In IP3R-deficient photoreceptors, dark bumps were virtually absent and the quantum-bump rate was reduced, indicating that Ca2+ release from internal stores is necessary to reach the critical level of PLCβ catalytic activity and the cellular [Ca2+] required for excitation. Combination of IP3R knockdown with reduced PLCβ catalytic activity resulted in highly suppressed light responses that were partially rescued by cellular Ca2+ elevation, showing a functional cooperation between IP3R and PLCβ via released Ca2+. These findings suggest that in contrast to the current dogma that Ca2+ release via IP3R does not participate in light excitation, we show that released Ca2+ plays a critical role in light excitation. The positive feedback between PLCβ and IP3R found here may represent a common feature of the inositol-lipid signaling. PMID:25673847

  2. PIN auxin efflux carriers are necessary for pulse-induced but not continuous light-induced phototropism in Arabidopsis.

    PubMed

    Haga, Ken; Sakai, Tatsuya

    2012-10-01

    Auxin efflux carrier PIN-FORMED (PIN) proteins are thought to have central roles in regulating asymmetrical auxin translocation during tropic responses, including gravitropism and phototropism, in plants. Although PIN3 is known to be involved in phototropism in Arabidopsis (Arabidopsis thaliana), no severe defects of phototropism in any of the pin mutants have been reported. We show here that the pulse-induced, first positive phototropism is impaired partially in pin1, pin3, and pin7 single mutants, and severely in triple mutants. In contrast, such impairment was not observed in continuous-light-induced second positive phototropism. Analysis with an auxin-reporter gene demonstrated that PIN3-mediated auxin gradients participate in pulse-induced phototropism but not in continuous-light-induced phototropism. Similar functional separation was also applicable to PINOID, a regulator of PIN localization. Our results strongly suggest the existence of functionally distinct mechanisms i.e. a PIN-dependent mechanism in which transient stimulation is sufficient to induce phototropism, and a PIN-independent mechanism that requires continuous stimulation and does not operate in the former phototropism process. Although a previous study has proposed that blue-light photoreceptors, the phototropins, control PIN localization through the transcriptional down-regulation of PINOID, we could not detect this blue-light-dependent down-regulation event, suggesting that other as yet unknown mechanisms are involved in phototropin-mediated phototropic responses.

  3. Concerted Changes in Gene Expression and Cell Physiology of the Cyanobacterium Synechocystis sp. Strain PCC 6803 during Transitions between Nitrogen and Light-Limited Growth1[W][OA

    PubMed Central

    Aguirre von Wobeser, Eneas; Ibelings, Bas W.; Bok, Jasper; Krasikov, Vladimir; Huisman, Jef; Matthijs, Hans C.P.

    2011-01-01

    Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment composition, light absorption coefficient, photosynthetic electron transport, and specific growth rate. Physiological changes were accompanied by reproducible changes in the expression of several hundred open reading frames, genes with functions in photosynthesis and respiration, carbon and nitrogen assimilation, protein synthesis, phosphorus metabolism, and overall regulation of cell function and proliferation. Cluster analysis of the nearly 1,600 regulated open reading frames identified eight clusters, each showing a different temporal response during the transitions. Two large clusters mirrored each other. One cluster included genes involved in photosynthesis, which were up-regulated during light-limited growth but down-regulated during nitrogen-limited growth. Conversely, genes in the other cluster were down-regulated during light-limited growth but up-regulated during nitrogen-limited growth; this cluster included several genes involved in nitrogen uptake and assimilation. These results demonstrate complementary regulation of gene expression for two major metabolic activities of cyanobacteria. Comparison with batch-culture experiments revealed interesting differences in gene expression between batch and continuous culture and illustrates that continuous-culture experiments can pick up subtle changes in cell physiology and gene expression. PMID:21205618

  4. PIN Auxin Efflux Carriers Are Necessary for Pulse-Induced But Not Continuous Light-Induced Phototropism in Arabidopsis1[W][OA

    PubMed Central

    Haga, Ken; Sakai, Tatsuya

    2012-01-01

    Auxin efflux carrier PIN-FORMED (PIN) proteins are thought to have central roles in regulating asymmetrical auxin translocation during tropic responses, including gravitropism and phototropism, in plants. Although PIN3 is known to be involved in phototropism in Arabidopsis (Arabidopsis thaliana), no severe defects of phototropism in any of the pin mutants have been reported. We show here that the pulse-induced, first positive phototropism is impaired partially in pin1, pin3, and pin7 single mutants, and severely in triple mutants. In contrast, such impairment was not observed in continuous-light-induced second positive phototropism. Analysis with an auxin-reporter gene demonstrated that PIN3-mediated auxin gradients participate in pulse-induced phototropism but not in continuous-light-induced phototropism. Similar functional separation was also applicable to PINOID, a regulator of PIN localization. Our results strongly suggest the existence of functionally distinct mechanisms i.e. a PIN-dependent mechanism in which transient stimulation is sufficient to induce phototropism, and a PIN-independent mechanism that requires continuous stimulation and does not operate in the former phototropism process. Although a previous study has proposed that blue-light photoreceptors, the phototropins, control PIN localization through the transcriptional down-regulation of PINOID, we could not detect this blue-light-dependent down-regulation event, suggesting that other as yet unknown mechanisms are involved in phototropin-mediated phototropic responses. PMID:22843667

  5. Blue News Update: BODIPY-GTP Binds to the Blue-Light Receptor YtvA While GTP Does Not

    PubMed Central

    Schmieder, Peter

    2012-01-01

    Light is an important environmental factor for almost all organisms. It is mainly used as an energy source but it is also a key factor for the regulation of multiple cellular functions. Light as the extracellular stimulus is thereby converted into an intracellular signal by photoreceptors that act as signal transducers. The blue-light receptor YtvA, a bacterial counterpart of plant phototropins, is involved in the stress response of Bacillus subtilis. The mechanism behind its activation, however, remains unknown. It was suggested based on fluorescence spectroscopic studies that YtvA function involves GTP binding and that this interaction is altered by absorption of light. We have investigated this interaction by several biophysical methods and show here using fluorescence spectroscopy, ITC titrations, and three NMR spectroscopic assays that while YtvA interacts with BODIPY-GTP as a fluorescent GTP analogue originally used for the detection of GTP binding, it does not bind GTP. PMID:22247770

  6. Stimulus-responsive light-harvesting complexes based on the pillararene-induced co-assembly of β-carotene and chlorophyll

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Guo, Fang; Zuo, Tongfei; Hua, Jingjing; Diao, Guowang

    2016-06-01

    The locations and arrangements of carotenoids at the subcellular level are responsible for their designated functions, which reinforces the necessity of developing methods for constructing carotenoid-based suprastructures beyond the molecular level. Because carotenoids lack the binding sites necessary for controlled interactions, functional structures based on carotenoids are not easily obtained. Here, we show that carotene-based suprastructures were formed via the induction of pillararene through a phase-transfer-mediated host-guest interaction. More importantly, similar to the main component in natural photosynthesis, complexes could be synthesized after chlorophyll was introduced into the carotene-based suprastructure assembly process. Remarkably, compared with molecular carotene or chlorophyll, this synthesized suprastructure exhibits some photocatalytic activity when exposed to light, which can be exploited for photocatalytic reaction studies of energy capture and solar conversion in living organisms.

  7. Electromagnetic and neutral-weak response functions of light nuclei

    NASA Astrophysics Data System (ADS)

    Lovato, Alessandro

    2015-10-01

    A major goal of nuclear theory is to understand the strong interaction in nuclei as it manifests itself in terms of two- and many-body forces among the nuclear constituents, the protons and neutrons, and the interactions of these constituents with external electroweak probes via one- and many-body currents. Using imaginary-time projection technique, quantum Monte Carlo allows for solving the time-independent Schrödinger equation even for Hamiltonians including highly spin-isospin dependent two- and three- body forces. I will present a recent Green's function Monte Carlo calculation of the quasi-elastic electroweak response functions in light nuclei, needed to describe electron and neutrino scattering. We found that meson-exchange two-body currents generate excess transverse strength from threshold to the quasielastic to the dip region and beyond. These results challenge the conventional picture of quasi elastic inclusive scattering as being largely dominated by single-nucleon knockout processes. These findings are of particular interest for the interpretation of neutrino oscillation signals.

  8. Engineering a Light-Attenuating Artificial Iris

    PubMed Central

    Shareef, Farah J.; Sun, Shan; Kotecha, Mrignayani; Kassem, Iris; Azar, Dimitri; Cho, Michael

    2016-01-01

    Purpose Discomfort from light exposure leads to photophobia, glare, and poor vision in patients with congenital or trauma-induced iris damage. Commercial artificial iris lenses are static in nature to provide aesthetics without restoring the natural iris's dynamic response to light. A new photo-responsive artificial iris was therefore developed using a photochromic material with self-adaptive light transmission properties and encased in a transparent biocompatible polymer matrix. Methods The implantable artificial iris was designed and engineered using Photopia, a class of photo-responsive materials (termed naphthopyrans) embedded in polyethylene. Photopia was reshaped into annular disks that were spin-coated with polydimethylsiloxane (PDMS) to form our artificial iris lens of controlled thickness. Results Activated by UV and blue light in approximately 5 seconds with complete reversal in less than 1 minute, the artificial iris demonstrates graded attenuation of up to 40% of visible and 60% of UV light. There optical characteristics are suitable to reversibly regulate the incident light intensity. In vitro cell culture experiments showed up to 60% cell death within 10 days of exposure to Photopia, but no significant cell death observed when cultured with the artificial iris with protective encapsulation. Nuclear magnetic resonance spectroscopy confirmed these results as there was no apparent leakage of potentially toxic photochromic material from the ophthalmic device. Conclusions Our artificial iris lens mimics the functionality of the natural iris by attenuating light intensity entering the eye with its rapid reversible change in opacity and thus potentially providing an improved treatment option for patients with iris damage. PMID:27116547

  9. Engineering a Light-Attenuating Artificial Iris.

    PubMed

    Shareef, Farah J; Sun, Shan; Kotecha, Mrignayani; Kassem, Iris; Azar, Dimitri; Cho, Michael

    2016-04-01

    Discomfort from light exposure leads to photophobia, glare, and poor vision in patients with congenital or trauma-induced iris damage. Commercial artificial iris lenses are static in nature to provide aesthetics without restoring the natural iris's dynamic response to light. A new photo-responsive artificial iris was therefore developed using a photochromic material with self-adaptive light transmission properties and encased in a transparent biocompatible polymer matrix. The implantable artificial iris was designed and engineered using Photopia, a class of photo-responsive materials (termed naphthopyrans) embedded in polyethylene. Photopia was reshaped into annular disks that were spin-coated with polydimethylsiloxane (PDMS) to form our artificial iris lens of controlled thickness. Activated by UV and blue light in approximately 5 seconds with complete reversal in less than 1 minute, the artificial iris demonstrates graded attenuation of up to 40% of visible and 60% of UV light. There optical characteristics are suitable to reversibly regulate the incident light intensity. In vitro cell culture experiments showed up to 60% cell death within 10 days of exposure to Photopia, but no significant cell death observed when cultured with the artificial iris with protective encapsulation. Nuclear magnetic resonance spectroscopy confirmed these results as there was no apparent leakage of potentially toxic photochromic material from the ophthalmic device. Our artificial iris lens mimics the functionality of the natural iris by attenuating light intensity entering the eye with its rapid reversible change in opacity and thus potentially providing an improved treatment option for patients with iris damage.

  10. Photochemistry of Fe(Iii)-Carboxylates in Polysaccharide-Based Materials with Tunable Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Giammanco, Giuseppe E.

    We present the formulation and study of light-responsive materials based on carboxylate-containing polysaccharides. The functional groups in these natural polymers allow for strong interactions with transition metal ions such as Fe(III). The known photochemistry of hydroxycarboxylic acids in natural waters inspired us in exploring the visible light induced photochemistry of the carboxylates in these polysaccharides when coordinated to Fe(III) ions. Described in this dissertation are the design and characterization of the Fe(III)-polysaccharide materials, specifically the mechanistic aspects of the photochemistry and the effects that these reactions have on the structure of the polymer materials. We present a study of the quantitative photochemistry of different polysaccharide systems, where the presence of uronic acids was important for the photoreaction to take place. Alginate (Alg), pectate (Pec), hyaluronic acid (Hya), xanthan gum (Xan), and a polysaccharide extracted from the Noni fruit (NoniPs), were among the natural uronic acid-containing polysaccharide (UCPS) systems we analyzed. Potato starch, lacking of uronate groups, did not present any photochemistry in the presence of Fe(III); however, we were able to induce a photochemical response in this polysaccharide upon chemical manipulation of its functional groups. Important structure-function relationships were drawn from this study. The uronate moiety present in these polysaccharides is then envisioned as a tool to induce response to light in a variety of materials. Following this approach, we report the formulation of materials for controlled drug release, able to encapsulate and release different drug models only upon illumination with visible light. Furthermore, hybrid hydrogels were prepared from UPCS and non-responsive polymers. Different properties of these materials could be tuned by controlling the irradiation time, intensity and location. These hybrid gels were evaluated as scaffolds for tissue engineering showing great promise, as changes in the behavior of the growing cells were observed as a result of the photochemical treatment of the material. We present these natural and readily available, polysaccharide-based, metal-coordination materials as convenient building blocks in the formulation of new stimuli responsive materials. The photochemical methods developed here can be used as convenient tools for creating advanced materials with tailored patterns and gradients of mechanical properties.

  11. Defining the light emitting area for displays in the unipolar regime of highly efficient light emitting transistors

    PubMed Central

    Ullah, Mujeeb; Armin, Ardalan; Tandy, Kristen; Yambem, Soniya D.; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2015-01-01

    Light-emitting field effect transistors (LEFETs) are an emerging class of multifunctional optoelectronic devices. It combines the light emitting function of an OLED with the switching function of a transistor in a single device architecture. The dual functionality of LEFETs has the potential applications in active matrix displays. However, the key problem of existing LEFETs thus far has been their low EQEs at high brightness, poor ON/OFF and poorly defined light emitting area - a thin emissive zone at the edge of the electrodes. Here we report heterostructure LEFETs based on solution processed unipolar charge transport and an emissive polymer that have an EQE of up to 1% at a brightness of 1350 cd/m2, ON/OFF ratio > 104 and a well-defined light emitting zone suitable for display pixel design. We show that a non-planar hole-injecting electrode combined with a semi-transparent electron-injecting electrode enables to achieve high EQE at high brightness and high ON/OFF ratio. Furthermore, we demonstrate that heterostructure LEFETs have a better frequency response (fcut-off = 2.6 kHz) compared to single layer LEFETs. The results presented here therefore are a major step along the pathway towards the realization of LEFETs for display applications. PMID:25743444

  12. Light-responsive polymer microcapsules as delivery systems for natural active agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bizzarro, Valentina; Carfagna, Cosimo; Cerruti, Pierfrancesco

    2016-05-18

    In this work we report the preparation and the release behavior of UV-responsive polymeric microcapsules containing essential oils as a core. The oil acted also as a monomer solvent during polymerization. Accordingly, the potentially toxic organic solvent traditionally used was replaced with a natural active substance, resulting in a more sustainable functional system. Polymer shell was based on a lightly cross-linked polyamide containing UV-sensitive azobenzene moieties in the main chain. The micro-sized capsules were obtained via interfacial polycondensation in o/w emulsion, and their mean size was measured via Dynamic Light Scattering. Shape and morphology were analyzed through Scanning Electron andmore » Optical Microscopy. UV-responsive behavior was evaluated via spectrofluorimetry, by assessing the release kinetics of a fluorescent probe molecule upon UV light irradiation (λ{sub max}=360 nm). The irradiated samples showed an increase in fluorescence intensity, in accordance with the increase of the probe molecule concentration in the release medium. As for the un-irradiated sample, no changes could be detected demonstrating the effectiveness of the obtained releasing system.« less

  13. Carbon balance and productivity of Lemna gibba, a candidate plant for CELSS

    NASA Technical Reports Server (NTRS)

    Gale, J.; Smernoff, D. T.; Macler, B. A.; Macelroy, R. D.

    1989-01-01

    The photosynthesis and productivity of Lemna gibba is analyzed for CELSS based plant growth. Net photosynthesis of Lemna gibba is determined as a function of incident photosynthetic photon flux (PPF), with the light coming from above, below, or from both directions. Light from below is about 75 percent as effective as from above when the stand is sparse, but much less so with dense stands. High rates of photosynthesis are measured at 750 micromol / sq m per sec PPF and 1500 micromol/ mol CO2 at densities up to 660 g fresh weight (FW)/ sq m with young cultures. The analysis includes diagrams illustrating the net photosynthesis response to bilateral lighting of a sparse stand of low assimilate Lemna gibba; the effect of stand density on the net photosynthesis response to bilateral lighting of high assimilate Lemna gibba; the net photosynthesis response to ambient CO2 of sparse stands of Lemna gibba; and the time course of net photosynthesis and respiration per unit chamber and per unit dry weight of Lemna gibba.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ying, E-mail: yingma@imr.ac.cn; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science; An, Boxing

    By using an electron donor–acceptor molecule that consists of a perylenediimide (PDI) core bonded with two ferrocene (Fc) units, well-defined nanorods, nanowires and microwires of PDI-Fc were formed through simply adjusting the initial concentration of PDI-Fc in dichloromethane or CH{sub 2}Cl{sub 2}. Moreover, the two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were demonstrated in the microwire through controlling the white light on and off with different light intensities. The assembly strategy via complementary donors and acceptors is of significance for constructing photoconductive systems and developing novel functional devices. - Graphical abstract: Themore » two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were observed by controlling the white light on and off with different light intensities. - Highlights: • An electron donor–acceptor molecule (PDI-Fc) was synthesized. • Well-defined nanorods, nanowires and microwires of PDI-Fc were formed. • The two-ended devices based on individual microwire were fabricated. • Highly reproducible and sensitive photo response characteristics were observed.« less

  15. Use of an improved radiation amplification factor to estimate the effect of total ozone changes on action spectrum weighted irradiances and an instrument response function

    NASA Astrophysics Data System (ADS)

    Herman, Jay R.

    2010-12-01

    Multiple scattering radiative transfer results are used to calculate action spectrum weighted irradiances and fractional irradiance changes in terms of a power law in ozone Ω, U(Ω/200)-RAF, where the new radiation amplification factor (RAF) is just a function of solar zenith angle. Including Rayleigh scattering caused small differences in the estimated 30 year changes in action spectrum-weighted irradiances compared to estimates that neglect multiple scattering. The radiative transfer results are applied to several action spectra and to an instrument response function corresponding to the Solar Light 501 meter. The effect of changing ozone on two plant damage action spectra are shown for plants with high sensitivity to UVB (280-315 nm) and those with lower sensitivity, showing that the probability for plant damage for the latter has increased since 1979, especially at middle to high latitudes in the Southern Hemisphere. Similarly, there has been an increase in rates of erythemal skin damage and pre-vitamin D3 production corresponding to measured ozone decreases. An example conversion function is derived to obtain erythemal irradiances and the UV index from measurements with the Solar Light 501 instrument response function. An analytic expressions is given to convert changes in erythemal irradiances to changes in CIE vitamin-D action spectrum weighted irradiances.

  16. Use of an Improved Radiation Amplification Factor to Estimate the Effect of Total Ozone Changes on Action Spectrum Weighted Irradiances and an Instrument Response Function

    NASA Technical Reports Server (NTRS)

    Herman, Jay R.

    2010-01-01

    Multiple scattering radiative transfer results are used to calculate action spectrum weighted irradiances and fractional irradiance changes in terms of a power law in ozone OMEGA, U(OMEGA/200)(sup -RAF), where the new radiation amplification factor (RAF) is just a function of solar zenith angle. Including Rayleigh scattering caused small differences in the estimated 30 year changes in action spectrum-weighted irradiances compared to estimates that neglect multiple scattering. The radiative transfer results are applied to several action spectra and to an instrument response function corresponding to the Solar Light 501 meter. The effect of changing ozone on two plant damage action spectra are shown for plants with high sensitivity to UVB (280-315 run) and those with lower sensitivity, showing that the probability for plant damage for the latter has increased since 1979, especially at middle to high latitudes in the Southern Hemisphere. Similarly, there has been an increase in rates of erythemal skin damage and pre-vitamin D3 production corresponding to measured ozone decreases. An example conversion function is derived to obtain erythemal irradiances and the UV index from measurements with the Solar Light 501 instrument response function. An analytic expressions is given to convert changes in erythemal irradiances to changes in CIE vitamin-D action spectrum weighted irradiances.

  17. Circadian rhythmicity and light sensitivity of the zebrafish brain.

    PubMed

    Moore, Helen A; Whitmore, David

    2014-01-01

    Traditionally, circadian clocks have been thought of as a neurobiological phenomenon. This view changed somewhat over recent years with the discovery of peripheral tissue circadian oscillators. In mammals, however, the suprachiasmatic nucleus (SCN) in the hypothalamus still retains the critical role of a central synchronizer of biological timing. Zebrafish, in contrast, have always reflected a more highly decentralized level of clock organization, as individual cells and tissues contain directly light responsive circadian pacemakers. As a consequence, clock function in the zebrafish brain has remained largely unexplored, and the precise organization of rhythmic and light-sensitive neurons within the brain is unknown. To address this issue, we used the period3 (per3)-luciferase transgenic zebrafish to confirm that multiple brain regions contain endogenous circadian oscillators that are directly light responsive. In addition, in situ hybridization revealed localised neural expression of several rhythmic and light responsive clock genes, including per3, cryptochrome1a (cry1a) and per2. Adult brain nuclei showing significant clock gene expression include the teleost equivalent of the SCN, as well as numerous hypothalamic nuclei, the periventricular grey zone (PGZ) of the optic tectum, and granular cells of the rhombencephalon. To further investigate the light sensitive properties of neurons, expression of c-fos, a marker for neuronal activity, was examined. c-fos mRNA was upregulated in response to changing light conditions in different nuclei within the zebrafish brain. Furthermore, under constant dark (DD) conditions, c-fos shows a significant circadian oscillation. Taken together, these results show that there are numerous areas of the zebrafish central nervous system, which contain deep brain photoreceptors and directly light-entrainable circadian pacemakers. However, there are also multiple brain nuclei, which possess neither, demonstrating a degree of pacemaker complexity that was not previously appreciated.

  18. Circadian Rhythmicity and Light Sensitivity of the Zebrafish Brain

    PubMed Central

    Moore, Helen A.; Whitmore, David

    2014-01-01

    Traditionally, circadian clocks have been thought of as a neurobiological phenomenon. This view changed somewhat over recent years with the discovery of peripheral tissue circadian oscillators. In mammals, however, the suprachiasmatic nucleus (SCN) in the hypothalamus still retains the critical role of a central synchronizer of biological timing. Zebrafish, in contrast, have always reflected a more highly decentralized level of clock organization, as individual cells and tissues contain directly light responsive circadian pacemakers. As a consequence, clock function in the zebrafish brain has remained largely unexplored, and the precise organization of rhythmic and light-sensitive neurons within the brain is unknown. To address this issue, we used the period3 (per3)-luciferase transgenic zebrafish to confirm that multiple brain regions contain endogenous circadian oscillators that are directly light responsive. In addition, in situ hybridization revealed localised neural expression of several rhythmic and light responsive clock genes, including per3, cryptochrome1a (cry1a) and per2. Adult brain nuclei showing significant clock gene expression include the teleost equivalent of the SCN, as well as numerous hypothalamic nuclei, the periventricular grey zone (PGZ) of the optic tectum, and granular cells of the rhombencephalon. To further investigate the light sensitive properties of neurons, expression of c-fos, a marker for neuronal activity, was examined. c-fos mRNA was upregulated in response to changing light conditions in different nuclei within the zebrafish brain. Furthermore, under constant dark (DD) conditions, c-fos shows a significant circadian oscillation. Taken together, these results show that there are numerous areas of the zebrafish central nervous system, which contain deep brain photoreceptors and directly light-entrainable circadian pacemakers. However, there are also multiple brain nuclei, which possess neither, demonstrating a degree of pacemaker complexity that was not previously appreciated. PMID:24465943

  19. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition.

    PubMed

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Téllez-Robledo, Bárbara; Navarro-Neila, Sara; Carrasco, Víctor; Pollmann, Stephan; Gallego, F Javier; Del Pozo, Juan C

    2016-06-01

    Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light. © 2016 American Society of Plant Biologists. All rights reserved.

  20. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition

    PubMed Central

    Silva-Navas, Javier; Moreno-Risueno, Miguel A.; Manzano, Concepción; Téllez-Robledo, Bárbara; Navarro-Neila, Sara; Carrasco, Víctor; Pollmann, Stephan

    2016-01-01

    Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light. PMID:26628743

  1. Exposure to blue wavelength light modulates anterior cingulate cortex activation in response to 'uncertain' versus 'certain' anticipation of positive stimuli.

    PubMed

    Alkozei, Anna; Smith, Ryan; Killgore, William D S

    2016-03-11

    Blue wavelength light has been used as an effective treatment for some types of mood disorders and circadian rhythm related sleep problems. We hypothesized that acute exposure to blue wavelength light would directly affect the functioning of neurocircuity implicated in emotion regulation (i.e., ventromedial prefrontal cortex, amygdala, insula, and anterior cingulate cortex [ACC]) during 'certain' and 'uncertain' anticipation of negative and positive stimuli. Thirty-five healthy adults were randomized to receive a thirty-minute exposure to either blue (active) or amber (placebo) light, immediately followed by an emotional anticipation task during functional magnetic resonance imaging (fMRI). In contrast to placebo, participants in the blue light group showed significantly reduced activation within the rostral ACC during 'uncertain' anticipation (i.e., uncertainty regarding whether a positive or negative stimulus would be shown) in comparison to 'certain' anticipation of a positive stimulus. These findings may be explicable in terms of interactions between blue light exposure and the influence of specific neuromodulators on ACC-mediated decision-making mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. PINOID functions in root phototropism as a negative regulator

    PubMed Central

    Haga, Ken; Sakai, Tatsuya

    2015-01-01

    The PINOID (PID) family, which belongs to AGCVIII kinases, is known to be involved in the regulation of auxin efflux transporter PIN-FORMED (PIN) proteins through changes in the phosphorylation status. Recently, we demonstrated that the PID family is necessary for phytochrome-mediated phototropic enhancement in Arabidopsis hypocotyls and that the downregulation of PID expression by red-light pretreatment results in the promotion of the PIN-mediated auxin gradient during phototropic responses. However, whether PID participates in root phototropism in Arabidopsis seedlings has not been well studied. Here, we demonstrated that negative root phototropic responses are enhanced in the pid quadruple mutant and are severely impaired in transgenic plants expressing PID constitutively. The results indicate that the PID family functions in a negative root phototropism as a negative regulator. On the other hand, analysis with PID fused to a yellow fluorescent protein, VENUS, showed that unilateral blue-light irradiation causes a lower accumulation of PID proteins on the shaded side than on the irradiated side. This result suggests that the blue-light-mediated asymmetrical distribution of PID proteins may be one of the critical responses in phototropin-mediated signals during a negative root phototropism. Alternatively, such a transverse gradient of PID proteins may result from gravitropic stimulation produced by phototropic bending. PMID:26039488

  3. PINOID functions in root phototropism as a negative regulator.

    PubMed

    Haga, Ken; Sakai, Tatsuya

    2015-01-01

    The PINOID (PID) family, which belongs to AGCVIII kinases, is known to be involved in the regulation of auxin efflux transporter PIN-formed (PIN) proteins through changes in the phosphorylation status. Recently, we demonstrated that the PID family is necessary for phytochrome-mediated phototropic enhancement in Arabidopsis hypocotyls and that the downregulation of PID expression by red-light pretreatment results in the promotion of the PIN-mediated auxin gradient during phototropic responses. However, whether PID participates in root phototropism in Arabidopsis seedlings has not been well studied. Here, we demonstrated that negative root phototropic responses are enhanced in the pid quadruple mutant and are severely impaired in transgenic plants expressing PID constitutively. The results indicate that the PID family functions in a negative root phototropism as a negative regulator. On the other hand, analysis with PID fused to a yellow fluorescent protein, VENUS, showed that unilateral blue-light irradiation causes a lower accumulation of PID proteins on the shaded side than on the irradiated side. This result suggests that the blue-light-mediated asymmetrical distribution of PID proteins may be one of the critical responses in phototropin-mediated signals during a negative root phototropism. Alternatively, such a transverse gradient of PID proteins may result from gravitropic stimulation produced by phototropic bending.

  4. PEGylated-nanoliposomal clusterin for amyloidogenic light chain-induced endothelial dysfunction.

    PubMed

    Guzman-Villanueva, Diana; Migrino, Raymond Q; Truran, Seth; Karamanova, Nina; Franco, Daniel A; Burciu, Camelia; Senapati, Subhadip; Nedelkov, Dobrin; Hari, Parameswaran; Weissig, Volkmar

    2018-06-01

    Light chain (AL) amyloidosis is a disease associated with significant morbidity and mortality arising from multi-organ injury induced by amyloidogenic light chain proteins (LC). There is no available treatment to reverse the toxicity of LC. We previously showed that chaperone glycoprotein clusterin (CLU) and nanoliposomes (NL), separately, restore human microvascular endothelial function impaired by LC. In this work, we aim to prepare PEGylated-nanoliposomal clusterin (NL-CLU) formulations that could allow combined benefit against LC while potentially enabling efficient delivery to microvascular tissue, and test efficacy on human arteriole endothelial function. NL-CLU was prepared by a conjugation reaction between the carboxylated surface of NL and the primary amines of the CLU protein. NL were made of phosphatidylcholine (PC), cholesterol (Chol) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (DSPE-PEG 2000 carboxylic acid) at 70:25:5 mol%. The protective effect of NL-CLU was tested by measuring the dilation response to acetylcholine and papaverine in human adipose arterioles exposed to LC. LC treatment significantly reduced the dilation response to acetylcholine and papaverine; co-treatment of LC with PEGylated-nanoliposomal CLU or free CLU restored the dilator response. NL-CLU is a feasible and promising approach to reverse LC-induced endothelial damage.

  5. FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture.

    PubMed

    Bemer, Marian; van Mourik, Hilda; Muiño, Jose M; Ferrándiz, Cristina; Kaufmann, Kerstin; Angenent, Gerco C

    2017-06-15

    MADS-domain transcription factors are well known for their roles in plant development and regulate sets of downstream genes that have been uncovered by high-throughput analyses. A considerable number of these targets are predicted to function in hormone responses or responses to environmental stimuli, suggesting that there is a close link between developmental and environmental regulators of plant growth and development. Here, we show that the Arabidopsis MADS-domain factor FRUITFULL (FUL) executes several functions in addition to its noted role in fruit development. Among the direct targets of FUL, we identified SMALL AUXIN UPREGULATED RNA 10 (SAUR10), a growth regulator that is highly induced by a combination of auxin and brassinosteroids and in response to reduced R:FR light. Interestingly, we discovered that SAUR10 is repressed by FUL in stems and inflorescence branches. SAUR10 is specifically expressed at the abaxial side of these branches and this localized activity is influenced by hormones, light conditions and by FUL, which has an effect on branch angle. Furthermore, we identified a number of other genes involved in hormone pathways and light signalling as direct targets of FUL in the stem, demonstrating a connection between developmentally and environmentally regulated growth programs. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms

    PubMed Central

    Liu, Hongtao; Wang, Qin; Liu, Yawen; Zhao, Xiaoying; Imaizumi, Takato; Somers, David E.; Tobin, Elaine M.; Lin, Chentao

    2013-01-01

    Plants possess multiple photoreceptors to mediate light regulation of growth and development, but it is not well understood how different photoreceptors coordinate their actions to jointly regulate developmental responses, such as flowering time. In Arabidopsis, the photoexcited cryptochrome 2 interacts with the transcription factor CRYPTOCHROME-INTERACTING basic helix–loop–helix 1 (CIB1) to activate transcription and floral initiation. We show that the CIB1 protein expression is regulated by blue light; CIB1 is highly expressed in plants exposed to blue light, but levels of the CIB1 protein decreases in the absence of blue light. We demonstrate that CIB1 is degraded by the 26S proteasome and that blue light suppresses CIB1 degradation. Surprisingly, although cryptochrome 2 physically interacts with CIB1 in response to blue light, it is not the photoreceptor mediating blue-light suppression of CIB1 degradation. Instead, two of the three light–oxygen–voltage (LOV)-domain photoreceptors, ZEITLUPE and LOV KELCH PROTEIN 2, but not FLAVIN-BINDING KELCH REPEAT 1, are required for the function and blue-light suppression of degradation of CIB1. These results support the hypothesis that the evolutionarily unrelated blue-light receptors, cryptochrome and LOV-domain F-box proteins, mediate blue-light regulation of the same transcription factor by distinct mechanisms. PMID:24101505

  7. Multipolar Coupling in Hybrid Metal–Dielectric Metasurfaces

    DOE PAGES

    Guo, Rui; Rusak, Evgenia; Staude, Isabelle; ...

    2016-03-02

    In this paper, we study functional hybrid metasurfaces consisting of metal–dielectric nanoantennas that direct light from an incident plane wave or from localized light sources into a preferential direction. The directionality is obtained by carefully balancing the multipolar contributions to the scattering response from the constituents of the metasurface. The hybrid nanoantennas are composed of a plasmonic gold nanorod acting as a feed element and a silicon nanodisk acting as a director element. In order to experimentally realize this design, we have developed a two-step electron-beam lithography process in combination with a precision alignment step. Finally, the optical response ofmore » the fabricated sample is measured and reveals distinct signatures of coupling between the plasmonic and the dielectric nanoantenna elements that ultimately leads to unidirectional radiation of light.« less

  8. Photoconductivity enhancement and charge transport properties in ruthenium-containing block copolymer/carbon nanotube hybrids.

    PubMed

    Lo, Kin Cheung; Hau, King In; Chan, Wai Kin

    2018-04-05

    Functional polymer/carbon nanotube (CNT) hybrid materials can serve as a good model for light harvesting systems based on CNTs. This paper presents the synthesis of block copolymer/CNT hybrids and the characterization of their photocurrent responses by both experimental and computational approaches. A series of functional diblock copolymers was synthesized by reversible addition-fragmentation chain transfer polymerizations for the dispersion and functionalization of CNTs. The block copolymers contain photosensitizing ruthenium complexes and modified pyrene-based anchoring units. The photocurrent responses of the polymer/CNT hybrids were measured by photoconductive atomic force microscopy (PCAFM), from which the experimental data were analyzed by vigorous statistical models. The difference in photocurrent response among different hybrids was correlated to the conformations of the hybrids, which were elucidated by molecular dynamics simulations, and the electronic properties of polymers. The photoresponse of the block copolymer/CNT hybrids can be enhanced by introducing an electron-accepting block between the photosensitizing block and the CNT. We have demonstrated that the application of a rigorous statistical methodology can unravel the charge transport properties of these hybrid materials and provide general guidelines for the design of molecular light harvesting systems.

  9. Retinal compensatory changes after light damage in albino mice

    PubMed Central

    Montalbán-Soler, Luis; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Salinas-Navarro, Manuel; Galindo-Romero, Caridad; Bezerra de Sá, Fabrízio; García-Ayuso, Diego; Avilés-Trigueros, Marcelino; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta

    2012-01-01

    Purpose To investigate the anatomic and functional changes triggered by light exposure in the albino mouse retina and compare them with those observed in the albino rat. Methods BALB/c albino mice were exposed to 3,000 lx of white light during 24 h and their retinas analyzed from 1 to 180 days after light exposure (ALE). Left pupil mydriasis was induced with topical atropine. Retinal function was analyzed by electroretinographic (ERG) recording. To assess retinal degeneration, hematoxylin and eosin staining, the TdT-mediated dUTP nick-end labeling (TUNEL) technique, and quantitative immunohistofluorescence for synaptophysin and protein kinase Cα (PKCα) were used in cross sections. Intravenous injection of horseradish peroxidase and Fluoro-Gold™ tracing were used in whole-mounted retinas to study the retinal vasculature and the retinal ganglion cell (RGC) population, respectively. Results Light exposure caused apoptotic photoreceptor death in the central retina. This death was more severe in the dorsal than in the ventral retina, sparing the periphery. Neither retinal vascular leakage nor retinal ganglion cell death was observed ALE. The electroretinographic a-wave was permanently impaired, while the b-wave decreased but recovered gradually by 180 days ALE. The scotopic threshold responses, associated with the inner retinal function, diminished at first but recovered completely by 14 days ALE. This functional recovery was concomitant with the upregulation of protein kinase Cα and synaptophysin. Similar results were obtained in both eyes, irrespective of mydriasis. Conclusions In albino mice, light exposure induces substantial retinal damage, but the surviving photoreceptors, together with compensatory morphological/molecular changes, allow an important restoration of the retinal function. PMID:22509098

  10. Ambient illumination switches contrast preference of specific retinal processing streams

    PubMed Central

    Pearson, James T.

    2015-01-01

    Contrast, a fundamental feature of visual scenes, is encoded in a distributed manner by ∼20 retinal ganglion cell (RGC) types, which stream visual information to the brain. RGC types respond preferentially to positive (ONpref) or negative (OFFpref) contrast and differ in their sensitivity to preferred contrast and responsiveness to nonpreferred stimuli. Vision operates over an enormous range of mean light levels. The influence of ambient illumination on contrast encoding across RGC types is not well understood. Here, we used large-scale multielectrode array recordings to characterize responses of mouse RGCs under lighting conditions spanning five orders in brightness magnitude. We identify three functional RGC types that switch contrast preference in a luminance-dependent manner (Sw1-, Sw2-, and Sw3-RGCs). As ambient illumination increases, Sw1- and Sw2-RGCs shift from ONpref to OFFpref and Sw3-RGCs from OFFpref to ONpref. In all cases, transitions in contrast preference are reversible and track light levels. By mapping spatiotemporal receptive fields at different mean light levels, we find that changes in input from ON and OFF pathways in receptive field centers underlie shifts in contrast preference. Sw2-RGCs exhibit direction-selective responses to motion stimuli. Despite changing contrast preference, direction selectivity of Sw2-RGCs and other RGCs as well as orientation-selective responses of RGCs remain stable across light levels. PMID:25995351

  11. Chloroplast avoidance movement is not functional in plants grown under strong sunlight.

    PubMed

    Higa, Takeshi; Wada, Masamitsu

    2016-04-01

    Chloroplast movement in nine climbing plant species was investigated. It is thought that chloroplasts generally escape from strong light to avoid photodamage but accumulate towards weak light to perform photosynthesis effectively. Unexpectedly, however, the leaves of climbing plants grown under strong sunlight showed very low or no chloroplast photorelocation responses to either weak or strong blue light when detected by red light transmittance through leaves. Direct observations of Cayratia japonica leaves, for example, revealed that the average number of chloroplasts in upper periclinal walls of palisade tissue cells was only 1.2 after weak blue-light irradiation and almost all of the chloroplasts remained at the anticlinal wall, the state of chloroplast avoidance response. The leaves grown under strong light have thin and columnar palisade tissue cells comparing with the leaves grown under low light. Depending on our analyses and our schematic model, the thinner cells in a unit leaf area have a wider total plasma membrane area, such that more chloroplasts can exist on the plasma membrane in the thinner cells than in the thicker cells in a unit leaf-area basis. The same strategy might be used in other plant leaves grown under direct sunlight. © 2015 John Wiley & Sons Ltd.

  12. Photo-induced micro-mechanical optical switch

    DOEpatents

    Rajic, Slobodan; Datskos, Panagiotis George; Egert, Charles M.

    2002-01-01

    An optical switch is formed by introducing light lengthwise to a microcantilever waveguide directed toward a second waveguide. The microcantilever is caused to bend by light emitted from a laser diode orthogonal to the microcantilever and at an energy above the band gap, which induces stress as a result of the generation of free carriers. The bending of the waveguide directs the carrier frequency light to a second receptor waveguide or to a non-responsive surface. The switch may be combined in an array to perform multiple switching functions rapidly and at low energy losses.

  13. Uncertainty analysis of accident notification time and emergency medical service response time in work zone traffic accidents.

    PubMed

    Meng, Qiang; Weng, Jinxian

    2013-01-01

    Taking into account the uncertainty caused by exogenous factors, the accident notification time (ANT) and emergency medical service (EMS) response time were modeled as 2 random variables following the lognormal distribution. Their mean values and standard deviations were respectively formulated as the functions of environmental variables including crash time, road type, weekend, holiday, light condition, weather, and work zone type. Work zone traffic accident data from the Fatality Analysis Report System between 2002 and 2009 were utilized to determine the distributions of the ANT and the EMS arrival time in the United States. A mixed logistic regression model, taking into account the uncertainty associated with the ANT and the EMS response time, was developed to estimate the risk of death. The results showed that the uncertainty of the ANT was primarily influenced by crash time and road type, whereas the uncertainty of EMS response time is greatly affected by road type, weather, and light conditions. In addition, work zone accidents occurring during a holiday and in poor light conditions were found to be statistically associated with a longer mean ANT and longer EMS response time. The results also show that shortening the ANT was a more effective approach in reducing the risk of death than the EMS response time in work zones. To shorten the ANT and the EMS response time, work zone activities are suggested to be undertaken during non-holidays, during the daytime, and in good weather and light conditions.

  14. The crustacean eye: dark/light adaptation, polarization sensitivity, flicker fusion frequency, and photoreceptor damage.

    PubMed

    Meyer-Rochow, V B

    2001-12-01

    Compound eyes, nauplius eyes, frontal organs, intracerebral ocelli, and caudal photoreceptors are the main light and darkness detectors in crustaceans, but they need not be present all at once in an individual and in some crustaceans no photoreceptors whatsoever are known. Compound eye designs reflect on their functions and have evolved to allow the eye to operate optimally under a variety of environmental conditions. Dark-light-adaptational changes manifest themselves in pigment granule translocations, cell movements, and optical adjustments which fine-tune an eye's performance to rapid and unpredictable fluctuations in ambient light intensities as well as to the slower and predictable light level changes associated with day and night oscillations. Recycling of photoreceptive membrane and light-induced membrane collapse are superficially similar events that involve the transduction cascade, intracellular calcium, and membrane fatty acid composition, but which differ in aetiology and longterm consequence. Responses to intermittant illumination and linearly polarized light evoke in the eye of many crustaceans characteristic responses that appear to be attuned to each species' special needs. How the visual responses are processed more centrally and to what extent a crustacean makes behavioural use of e-vector discrimination and flickering lights are questions, however, that still have not been satisfactorily answered for the vast majority of all crustacean species. The degree of light-induced photoreceptor damage depends on a large number of variables, but once manifest, it tends to be progressive and irreversible. Concomittant temperature stress aggravates the situation and there is evidence that free radicals and lipid hydroperoxides are involved.

  15. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal

    PubMed Central

    Fisk, Angus S.; Tam, Shu K. E.; Brown, Laurence A.; Vyazovskiy, Vladyslav V.; Bannerman, David M.; Peirson, Stuart N.

    2018-01-01

    Light exerts a wide range of effects on mammalian physiology and behavior. As well as synchronizing circadian rhythms to the external environment, light has been shown to modulate autonomic and neuroendocrine responses as well as regulating sleep and influencing cognitive processes such as attention, arousal, and performance. The last two decades have seen major advances in our understanding of the retinal photoreceptors that mediate these non-image forming responses to light, as well as the neural pathways and molecular mechanisms by which circadian rhythms are generated and entrained to the external light/dark (LD) cycle. By contrast, our understanding of the mechanisms by which lighting influences cognitive processes is more equivocal. The effects of light on different cognitive processes are complex. As well as the direct effects of light on alertness, indirect effects may also occur due to disrupted circadian entrainment. Despite the widespread use of disrupted LD cycles to study the role circadian rhythms on cognition, the different experimental protocols used have subtly different effects on circadian function which are not always comparable. Moreover, these protocols will also disrupt sleep and alter physiological arousal, both of which are known to modulate cognition. Studies have used different assays that are dependent on different cognitive and sensory processes, which may also contribute to their variable findings. Here, we propose that studies addressing the effects of different lighting conditions on cognitive processes must also account for their effects on circadian rhythms, sleep, and arousal if we are to fully understand the physiological basis of these responses. PMID:29479335

  16. Site-directed mutagenesis of the regulatory light-chain Ca2+/Mg2+ binding site and its role in hybrid myosins

    NASA Astrophysics Data System (ADS)

    Reinach, Fernando C.; Nagai, Kiyoshi; Kendrick-Jones, John

    1986-07-01

    The regulatory light chains, small polypeptides located on the myosin head, regulate the interaction of myosin with actin in response to either Ca2+ or phosphorylation. The demonstration that the regulatory light chains on scallop myosin can be replaced by light chains from other myosins has allowed us to compare the functional capabilities of different light chains1, but has not enabled us to probe the role of features, such as the Ca2+/Mg2+ binding site, that are common to all of them. Here, we describe the use of site-directed mutagenesis to study the function of that site. We synthesized the chicken skeletal myosin light chain in Escherichia coli and constructed mutants with substitutions within the Ca2+/Mg2+ binding site. When the aspartate residues at the first and sixth Ca2+ coordination positions are replaced by uncharged alanines, the light chains have a reduced Ca2+ binding capacity but still bind to scallop myosin with high affinity. Unlike the wild-type skeletal light chain which inhibits myosin interaction with actin, the mutants activate it. Thus, an intact Ca2+/Mg2+ binding site in the N-terminal region of the light chain is essential for regulating the interaction of myosin with actin.

  17. Functional Cardiac Recovery and Hematologic Response to Chemotherapy in Patients With Light-Chain Amyloidosis (from the Stanford University Amyloidosis Registry).

    PubMed

    Tuzovic, Mirela; Kobayashi, Yukari; Wheeler, Matthew; Barrett, Christopher; Liedtke, Michaela; Lafayette, Richard; Schrier, Stanley; Haddad, Francois; Witteles, Ronald

    2017-10-15

    Cardiac involvement is common in patients with light-chain (AL) amyloidosis and portends a poor prognosis, although little is known about the changes in cardiac mechanics after chemotherapy. We sought to explore the relation between amyloidosis staging and baseline cardiac mechanics and to investigate short-term changes in cardiac mechanics after chemotherapy. We identified 41 consecutive patients from the Stanford Amyloid Center who had echocardiograms and free light-chain values before and after chemotherapy, along with 40 age- and gender-matched controls. Echocardiographic assessment included left ventricular global longitudinal strain, E/e' ratio, and left atrial (LA) stiffness. Hematologic response to chemotherapy was defined as ≥50% reduction in the difference between the involved and the uninvolved free light chain (dFLC). The mean age was 66.9 ± 8.4 years and 66% were men. Before chemotherapy, global longitudinal strain, E/e' ratio, and LA stiffness were impaired in patients with amyloidosis compared with controls, and the severity of impairment worsened with advanced staging. After chemotherapy, hematologic response was observed in 30 (73%) patients. There was a significant association between the change in dFLC and cardiac function (E/e' ratio: r = -0.43, p = 0.01; LA stiffness: r = -0.35, p = 0.05). There was no significant improvement in cardiac mechanics in patients without a hematologic response to chemotherapy. In conclusion, amyloidosis stage correlated with noninvasive measurements of cardiac mechanics, and improvement in dFLC correlated with cardiac improvement on short-term follow-up echocardiography. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Interplay of sugar, light and gibberellins in expression of Rosa hybrida vacuolar invertase 1 regulation.

    PubMed

    Rabot, Amélie; Portemer, Virginie; Péron, Thomas; Mortreau, Eric; Leduc, Nathalie; Hamama, Latifa; Coutos-Thévenot, Pierre; Atanassova, Rossitza; Sakr, Soulaiman; Le Gourrierec, José

    2014-10-01

    Our previous findings showed that the expression of the Rosa hybrida vacuolar invertase 1 gene (RhVI1) was tightly correlated with the ability of buds to grow out and was under sugar, gibberellin and light control. Here, we aimed to provide an insight into the mechanistic basis of this regulation. In situ hybridization showed that RhVI1 expression was localized in epidermal cells of young leaves of bursting buds. We then isolated a 895 bp fragment of the promoter of RhVI1. In silico analysis identified putative cis-elements involved in the response to sugars, light and gibberellins on its proximal part (595 bp). To carry out functional analysis of the RhVI1 promoter in a homologous system, we developed a direct method for stable transformation of rose cells. 5' deletions of the proximal promoter fused to the uidA reporter gene were inserted into the rose cell genome to study the cell's response to exogenous and endogenous stimuli. Deletion analysis revealed that the 468 bp promoter fragment is sufficient to trigger reporter gene activity in response to light, sugars and gibberellins. This region confers sucrose- and fructose-, but not glucose-, responsive activation in the dark. Inversely, the -595 to -468 bp region that carries the sugar-repressive element (SRE) is required to down-regulate the RhVI1 promoter in response to sucrose and fructose in the dark. We also demonstrate that sugar/light and gibberellin/light act synergistically to up-regulate β-glucuronidase (GUS) activity sharply under the control of the 595 bp pRhVI1 region. These results reveal that the 127 bp promoter fragment located between -595 and -468 bp is critical for light and sugar and light and gibberellins to act synergistically. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Plastids Are Major Regulators of Light Signaling in Arabidopsis1[W][OA

    PubMed Central

    Ruckle, Michael E.; Burgoon, Lyle D.; Lawrence, Lauren A.; Sinkler, Christopher A.; Larkin, Robert M.

    2012-01-01

    We previously provided evidence that plastid signaling regulates the downstream components of a light signaling network and that this signal integration coordinates chloroplast biogenesis with both the light environment and development by regulating gene expression. We tested these ideas by analyzing light- and plastid-regulated transcriptomes in Arabidopsis (Arabidopsis thaliana). We found that the enrichment of Gene Ontology terms in these transcriptomes is consistent with the integration of light and plastid signaling (1) down-regulating photosynthesis and inducing both repair and stress tolerance in dysfunctional chloroplasts and (2) helping coordinate processes such as growth, the circadian rhythm, and stress responses with the degree of chloroplast function. We then tested whether factors that contribute to this signal integration are also regulated by light and plastid signals by characterizing T-DNA insertion alleles of genes that are regulated by light and plastid signaling and that encode proteins that are annotated as contributing to signaling, transcription, or no known function. We found that a high proportion of these mutant alleles induce chloroplast biogenesis during deetiolation. We quantified the expression of four photosynthesis-related genes in seven of these enhanced deetiolation (end) mutants and found that photosynthesis-related gene expression is attenuated. This attenuation is particularly striking for Photosystem II subunit S expression. We conclude that the integration of light and plastid signaling regulates a number of END genes that help optimize chloroplast function and that at least some END genes affect photosynthesis-related gene expression. PMID:22383539

  20. Tunable photonic cavity coupled to a voltage-biased double quantum dot system: Diagrammatic nonequilibrium Green's function approach

    NASA Astrophysics Data System (ADS)

    Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira

    2016-07-01

    We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot systems with an arbitrarily strong dot-lead coupling and with a Holstein-like light-matter interaction, by employing the diagrammatic Keldysh nonequilibrium Green's function approach. We compute out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number, power spectrum, and spectral function. We show that by the careful engineering of these hybrid light-matter systems, one can achieve a significant amplification of the optical signal with the voltage-biased electronic system serving as a gain medium. We also study the steady-state current across the device, identifying elastic and inelastic tunneling processes which involve the cavity mode. Our results show how recent advances in quantum electronics can be exploited to build hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot architecture, but it is generalizable to other hybrid light-matter systems.

  1. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting.

    PubMed

    Panda, Satchidananda; Sato, Trey K; Castrucci, Ana Maria; Rollag, Mark D; DeGrip, Willem J; Hogenesch, John B; Provencio, Ignacio; Kay, Steve A

    2002-12-13

    The master circadian oscillator in the hypothalamic suprachiasmatic nucleus is entrained to the day/night cycle by retinal photoreceptors. Melanopsin (Opn4), an opsin-based photopigment, is a primary candidate for photoreceptor-mediated entrainment. To investigate the functional role of melanopsin in light resetting of the oscillator, we generated melanopsin-null mice (Opn4-/-). These mice entrain to a light/dark cycle and do not exhibit any overt defect in circadian activity rhythms under constant darkness. However, they display severely attenuated phase resetting in response to brief pulses of monochromatic light, highlighting the critical role of melanopsin in circadian photoentrainment in mammals.

  2. The emergence of mirror-like response properties from domain-general principles in vision and audition.

    PubMed

    Saygin, Ayse P; Dick, Frederic

    2014-04-01

    Like Cook et al., we suggest that mirror neurons are a fascinating product of cross-modal learning. As predicted by an associative account, responses in motor regions are observed for novel and/or abstract visual stimuli such as point-light and android movements. Domain-specific mirror responses also emerge as a function of audiomotor expertise that is slowly acquired over years of intensive training.

  3. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction

    PubMed Central

    Du, Juan; Wang, Qingkai; Jiang, Guobao; Xu, Changwen; Zhao, Chujun; Xiang, Yuanjiang; Chen, Yu; Wen, Shuangchun; Zhang, Han

    2014-01-01

    By coupling few-layer Molybdenum Disulfide (MoS2) with fiber-taper evanescent light field, a new type of MoS2 based nonlinear optical modulating element had been successfully fabricated as a two-dimensional layered saturable absorber with strong light-matter interaction. This MoS2-taper-fiber device is not only capable of passively mode-locking an all-normal-dispersion ytterbium-doped fiber laser and enduring high power laser excitation (up to 1 W), but also functions as a polarization sensitive optical modulating component (that is, different polarized light can induce different nonlinear optical response). Thanks to the combined advantages from the strong nonlinear optical response in MoS2 together with the sufficiently-long-range interaction between light and MoS2, this device allows for the generation of high power stable dissipative solitons at 1042.6 nm with pulse duration of 656 ps and a repetition rate of 6.74 MHz at a pump power of 210 mW. Our work may also constitute the first example of MoS2-enabled wave-guiding photonic device, and potentially give some new insights into two-dimensional layered materials related photonics. PMID:25213108

  4. Chemical cues from fish heighten visual sensitivity in larval crabs through changes in photoreceptor structure and function.

    PubMed

    Charpentier, Corie L; Cohen, Jonathan H

    2015-11-01

    Several predator avoidance strategies in zooplankton rely on the use of light to control vertical position in the water column. Although light is the primary cue for such photobehavior, predator chemical cues or kairomones increase swimming responses to light. We currently lack a mechanistic understanding for how zooplankton integrate visual and chemical cues to mediate phenotypic plasticity in defensive photobehavior. In marine systems, kairomones are thought to be amino sugar degradation products of fish body mucus. Here, we demonstrate that increasing concentrations of fish kairomones heightened sensitivity of light-mediated swimming behavior for two larval crab species (Rhithropanopeus harrisii and Hemigrapsus sanguineus). Consistent with these behavioral results, we report increased visual sensitivity at the retinal level in larval crab eyes directly following acute (1-3 h) kairomone exposure, as evidenced electrophysiologically from V-log I curves and morphologically from wider, shorter rhabdoms. The observed increases in visual sensitivity do not correspond with a decline in temporal resolution, because latency in electrophysiological responses actually increased after kairomone exposure. Collectively, these data suggest that phenotypic plasticity in larval crab photobehavior is achieved, at least in part, through rapid changes in photoreceptor structure and function. © 2015. Published by The Company of Biologists Ltd.

  5. Rapid thermal responsive conductive hybrid cryogels with shape memory properties, photothermal properties and pressure dependent conductivity.

    PubMed

    Deng, Zexing; Guo, Yi; Ma, Peter X; Guo, Baolin

    2018-09-15

    Stimuli responsive cryogels with multi-functionality have potential application for electrical devices, actuators, sensors and biomedical devices. However, conventional thermal sensitive poly(N-isopropylacrylamide) cryogels show slow temperature response speed and lack of multi-functionality, which greatly limit their practical application. Herein we present conductive fast (2 min for both deswelling and reswelling behavior) thermally responsive poly(N-isopropylacrylamide) cryogels with rapid shape memory properties (3 s for shape recovery), near-infrared (NIR) light sensitivity and pressure dependent conductivity, and further demonstrated their applications as temperature sensitive on-off switch, NIR light sensitive on-off switch, water triggered shape memory on-off switch and pressure dependent device. These cryogels were first prepared in dimethyl sulfoxide below its melting temperature in ice bath and subsequently put into aniline or pyrrole solution to in situ deposition of conducting polyaniline or polypyrrole nanoparticles. The continuous macroporous sponge-like structure provides cryogels with rapid responsivity both in deswelling, reswelling kinetics and good elasticity. After incorporating electrically conductive polyaniline or polypyrrole nanoaggregates, the hybrid cryogels exhibit desirable conductivity, photothermal property, pressure dependent conductivity and good cytocompatibility. These multifunctional hybrid cryogels make them great potential as stimuli responsive electrical device, tissue engineering scaffolds, drug delivery vehicle and electronic skin. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy

    PubMed Central

    Hunter, Jennifer J.; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H.; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.

    2011-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrinsic fluorescence allowed images of the cone mosaic. Imaging intact ex vivo retina revealed that the strongest two-photon excited fluorescence signal comes from the cone inner segments. The fluorescence response increased following light stimulation, which could provide a functional measure of the effects of light on photoreceptors. PMID:21326644

  7. Dim light at night increases immune function in Nile grass rats, a diurnal rodent.

    PubMed

    Fonken, Laura K; Haim, Achikam; Nelson, Randy J

    2012-02-01

    With the widespread adoption of electrical lighting during the 20th century, human and nonhuman animals became exposed to high levels of light at night for the first time in evolutionary history. This divergence from the natural environment may have significant implications for certain ecological niches because of the important influence light exerts on the circadian system. For example, circadian disruption and nighttime light exposure are linked to changes in immune function. The majority of studies investigating the effects of light exposure and circadian disruption on the immune system use nocturnal rodents. In diurnal species, many hormones and immune parameters vary with secretion patterns 180° out of phase to those of nocturnal rodents. Thus, the authors investigated the effects of nighttime light exposure on immunocompetence in diurnal Nile grass rats (Arvicanthis niloticus). Rats were housed in either standard 14-h light (L):10-h dark (D) cycles with L ∼150 lux and D 0 lux or dim light at night (dLAN) cycles of LD 14:10 with L ∼150 lux and D 5 lux for 3 wks, then tested for plasma bactericidal capacity, as well as humoral and cell-mediated immune responses. Rats exposed to dLAN showed increased delayed-type hypersensitivity pinna swelling, which is consistent with enhanced cell-mediated immune function. dLAN rats similarly showed increased antibody production following inoculation with keyhole lymphocyte hemocyanin (KLH) and increased bactericidal capacity. Daytime corticosterone concentrations were elevated in grass rats exposed to nighttime dim light, which may have influenced immunological measures. Overall, these results indicate nighttime light affects immune parameters in a diurnal rodent.

  8. (Not) Keeping the stem straight: a proteomic analysis of maritime pine seedlings undergoing phototropism and gravitropism.

    PubMed

    Herrera, Raul; Krier, Catherine; Lalanne, Celine; Ba, El Hadji Maodo; Stokes, Alexia; Salin, Franck; Fourcaud, Thierry; Claverol, Stéphane; Plomion, Christophe

    2010-10-06

    Plants are subjected to continuous stimuli from the environment and have evolved an ability to respond through various growth and development processes. Phototropism and gravitropism responses enable the plant to reorient with regard to light and gravity. We quantified the speed of maritime pine seedlings to reorient with regard to light and gravity over 22 days. Seedlings were inclined at 15, 30 and 45 degrees with vertical plants as controls. A lateral light source illuminated the plants and stem movement over time was recorded. Depending on the initial angle of stem lean, the apical response to the lateral light source differed. In control and 15° inclined plants, the apex turned directly towards the light source after only 2 h. In plants inclined at 30° and 45°, the apex first reoriented in the vertical plane after 2 h, then turned towards the light source after 24 h. Two-dimensional gel electrophoresis coupled with mass spectrometry was then used to describe the molecular response of stem bending involved in photo- and gravi-tropism after 22 hr and 8 days of treatment. A total of 486 spots were quantitatively analyzed using image analysis software. Significant changes were determined in the protein accumulation of 68 protein spots. Early response gravitropic associated proteins were identified, which are known to function in energy related and primary metabolism. A group of thirty eight proteins were found to be involved in primary metabolism and energy related metabolic pathways. Degradation of Rubisco was implicated in some protein shifts. Our study demonstrates a rapid gravitropic response in apices of maritime pine seedlings inclined >30°. Little or no response was observed at the stem bases of the same plants. The primary gravitropic response is concomitant with a modification of the proteome, consisting of an over accumulation of energy and metabolism associated proteins, which may allow the stem to reorient rapidly after bending.

  9. (Not) Keeping the stem straight: a proteomic analysis of maritime pine seedlings undergoing phototropism and gravitropism

    PubMed Central

    2010-01-01

    Background Plants are subjected to continuous stimuli from the environment and have evolved an ability to respond through various growth and development processes. Phototropism and gravitropism responses enable the plant to reorient with regard to light and gravity. Results We quantified the speed of maritime pine seedlings to reorient with regard to light and gravity over 22 days. Seedlings were inclined at 15, 30 and 45 degrees with vertical plants as controls. A lateral light source illuminated the plants and stem movement over time was recorded. Depending on the initial angle of stem lean, the apical response to the lateral light source differed. In control and 15° inclined plants, the apex turned directly towards the light source after only 2 h. In plants inclined at 30° and 45°, the apex first reoriented in the vertical plane after 2 h, then turned towards the light source after 24 h. Two-dimensional gel electrophoresis coupled with mass spectrometry was then used to describe the molecular response of stem bending involved in photo- and gravi-tropism after 22 hr and 8 days of treatment. A total of 486 spots were quantitatively analyzed using image analysis software. Significant changes were determined in the protein accumulation of 68 protein spots. Early response gravitropic associated proteins were identified, which are known to function in energy related and primary metabolism. A group of thirty eight proteins were found to be involved in primary metabolism and energy related metabolic pathways. Degradation of Rubisco was implicated in some protein shifts. Conclusions Our study demonstrates a rapid gravitropic response in apices of maritime pine seedlings inclined >30°. Little or no response was observed at the stem bases of the same plants. The primary gravitropic response is concomitant with a modification of the proteome, consisting of an over accumulation of energy and metabolism associated proteins, which may allow the stem to reorient rapidly after bending. PMID:20925929

  10. Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light

    PubMed Central

    Jung, Hou-Sung; Crisp, Peter A.; Estavillo, Gonzalo M.; Cole, Benjamin; Hong, Fangxin; Mockler, Todd C.; Pogson, Barry J.; Chory, Joanne

    2013-01-01

    Sunlight provides energy for photosynthesis and is essential for nearly all life on earth. However, too much or too little light or rapidly fluctuating light conditions cause stress to plants. Rapid changes in the amount of light are perceived as a change in the reduced/oxidized (redox) state of photosynthetic electron transport components in chloroplasts. However, how this generates a signal that is relayed to changes in nuclear gene expression is not well understood. We modified redox state in the reference plant, Arabidopsis thaliana, using either excess light or low light plus the herbicide DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), a well-known inhibitor of photosynthetic electron transport. Modification of redox state caused a change in expression of a common set of about 750 genes, many of which are known stress-responsive genes. Among the most highly enriched promoter elements in the induced gene set were heat-shock elements (HSEs), known motifs that change gene expression in response to high temperature in many systems. We show that HSEs from the promoter of the ASCORBATE PEROXIDASE 2 (APX2) gene were necessary and sufficient for APX2 expression in conditions of excess light, or under low light plus the herbicide. We tested APX2 expression phenotypes in overexpression and loss-of-function mutants of 15 Arabidopsis A-type heat-shock transcription factors (HSFs), and identified HSFA1D, HSFA2, and HSFA3 as key factors regulating APX2 expression in diverse stress conditions. Excess light regulates both the subcellular location of HSFA1D and its biochemical properties, making it a key early component of the excess light stress network of plants. PMID:23918368

  11. Responses of susceptible subpopulations to nitrogen dioxide. Research report, June 1983-January 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, P.E.; Utell, M.J.

    1989-02-01

    Symptom responses and changes in pulmonary function were investigated in people with asthma or chronic obstructive pulmonary disease (COPD) exposed to 0.3 ppm nitrogen dioxide (NO{sub 2}) for four hours. Nonrespiratory-impaired (normal) subjects of comparable ages constituted the control groups. All exposures included periods of exercise and pulmonary function measurements. No significant symptomatic or physiological responses to NO{sub 2} could be detected in either the young or elderly control group. The asthmatic group did not manifest significant reductions in lung function after exposure to 0.3 ppm NO{sub 2}, compared to their preexposure baseline data or to their responses after amore » comparable four-hour exposure to air. During light exercise, subjects with COPD were progressively responsive to 0.3 ppm NO{sub 2}. Subgroup analyses within the asthmatic, COPD, and elderly normal subject groups and intergroup comparisons yielded significant findings and associations.« less

  12. Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells

    PubMed Central

    Gaub, Benjamin M.; Berry, Michael H.; Holt, Amy E.; Reiner, Andreas; Kienzler, Michael A.; Dolgova, Natalia; Nikonov, Sergei; Aguirre, Gustavo D.; Beltran, William A.; Flannery, John G.; Isacoff, Ehud Y.

    2014-01-01

    Most inherited forms of blindness are caused by mutations that lead to photoreceptor cell death but spare second- and third-order retinal neurons. Expression of the light-gated excitatory mammalian ion channel light-gated ionotropic glutamate receptor (LiGluR) in retinal ganglion cells (RGCs) of the retina degeneration (rd1) mouse model of blindness was previously shown to restore some visual functions when stimulated by UV light. Here, we report restored retinal function in visible light in rodent and canine models of blindness through the use of a second-generation photoswitch for LiGluR, maleimide-azobenzene-glutamate 0 with peak efficiency at 460 nm (MAG0460). In the blind rd1 mouse, multielectrode array recordings of retinal explants revealed robust and uniform light-evoked firing when LiGluR-MAG0460 was targeted to RGCs and robust but diverse activity patterns in RGCs when LiGluR-MAG0460 was targeted to ON-bipolar cells (ON-BCs). LiGluR-MAG0460 in either RGCs or ON-BCs of the rd1 mouse reinstated innate light-avoidance behavior and enabled mice to distinguish between different temporal patterns of light in an associative learning task. In the rod-cone dystrophy dog model of blindness, LiGluR-MAG0460 in RGCs restored robust light responses to retinal explants and intravitreal delivery of LiGluR and MAG0460 was well tolerated in vivo. The results in both large and small animal models of photoreceptor degeneration provide a path to clinical translation. PMID:25489083

  13. Light-regulated root gravitropism: a role for, and characterization of, a calcium/calmodulin-dependent protein kinase homolog

    NASA Technical Reports Server (NTRS)

    Lu, Y. T.; Feldman, L. J.

    1997-01-01

    Roots of many species grow downward (orthogravitropism) only when illuminated. Previous work suggests that this is a calcium-regulated response and that both calmodulin and calcium/calmodulin-dependent kinases participate in transducing gravity and light stimuli. A genomic sequence has been obtained for a calcium/calmodulin-dependent kinase homolog (MCK1) expressed in root caps, the site of perception for both light and gravity. This homolog consists of 7265 base pairs and contains 11 exons and 10 introns. Since MCK1 is expressed constitutively in both light and dark, it is unlikely that the light directly affects MCK1 expression, though the activity of the protein may be affected by light. In cultivars showing light-regulated gravitropism, we hypothesize that MCK1, or a homolog, functions in establishing the auxin asymmetry necessary for orthogravitropism.

  14. Dim light at night disrupts the short-day response in Siberian hamsters.

    PubMed

    Ikeno, Tomoko; Weil, Zachary M; Nelson, Randy J

    2014-02-01

    Photoperiodic regulation of physiology, morphology, and behavior is crucial for many animals to survive seasonally variable conditions unfavorable for reproduction and survival. The photoperiodic response in mammals is mediated by nocturnal secretion of melatonin under the control of a circadian clock. However, artificial light at night caused by recent urbanization may disrupt the circadian clock, as well as the photoperiodic response by blunting melatonin secretion. Here we examined the effect of dim light at night (dLAN) (5lux of light during the dark phase) on locomotor activity rhythms and short-day regulation of reproduction, body mass, pelage properties, and immune responses of male Siberian hamsters. Short-day animals reduced gonadal and body mass, decreased spermatid nuclei and sperm numbers, molted to a whiter pelage, and increased pelage density compared to long-day animals. However, animals that experienced short days with dLAN did not show these short-day responses. Moreover, short-day specific immune responses were altered in dLAN conditions. The nocturnal activity pattern was blunted in dLAN hamsters, consistent with the observation that dLAN changed expression of the circadian clock gene, Period1. In addition, we demonstrated that expression levels of genes implicated in the photoperiodic response, Mel-1a melatonin receptor, Eyes absent 3, thyroid stimulating hormone receptor, gonadotropin-releasing hormone, and gonadotropin-inhibitory hormone, were higher in dLAN animals than those in short-day animals. These results suggest that dLAN disturbs the circadian clock function and affects the molecular mechanisms of the photoperiodic response. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Photosynthetic light reactions--an adjustable hub in basic production and plant immunity signaling.

    PubMed

    Kangasjärvi, Saijaliisa; Tikkanen, Mikko; Durian, Guido; Aro, Eva-Mari

    2014-08-01

    Photosynthetic efficiency is a key trait that influences the sustainable utilization of plants for energy and nutrition. By now, extensive research on photosynthetic processes has underscored important structural and functional relationships among photosynthetic thylakoid membrane protein complexes, and their roles in determining the productivity and stress resistance of plants. Photosystem II photoinhibition-repair cycle, for example, has arisen vital in protecting also Photosystem I against light-induced damage. Availability of highly sophisticated genetic, biochemical and biophysical tools has greatly expanded the catalog of components that carry out photoprotective functions in plants. On thylakoid membranes, these components encompass a network of overlapping systems that allow delicate regulation of linear and cyclic electron transfer pathways, balancing of excitation energy distribution between the two photosystems and dissipation of excess light energy in the antenna system as heat. An increasing number of reports indicate that the above mentioned mechanisms also mediate important functions in the regulation of biotic stress responses in plants. Particularly the handling of excitation energy in the light harvesting II antenna complexes appears central to plant immunity signaling. Comprehensive understanding of the underlying mechanisms and regulatory cross-talk, however, still remain elusive. This review highlights the current understanding of components that regulate the function of photosynthetic light reactions and directly or indirectly also modulate disease resistance in higher plants. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Light-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in Chlamydomonas reinhardtii[C][W

    PubMed Central

    Grewe, Sabrina; Ballottari, Matteo; Alcocer, Marcelo; D’Andrea, Cosimo; Blifernez-Klassen, Olga; Hankamer, Ben; Mussgnug, Jan H.; Bassi, Roberto; Kruse, Olaf

    2014-01-01

    Photosynthetic organisms developed multiple strategies for balancing light-harvesting versus intracellular energy utilization to survive ever-changing environmental conditions. The light-harvesting complex (LHC) protein family is of paramount importance for this function and can form light-harvesting pigment protein complexes. In this work, we describe detailed analyses of the photosystem II (PSII) LHC protein LHCBM9 of the microalga Chlamydomonas reinhardtii in terms of expression kinetics, localization, and function. In contrast to most LHC members described before, LHCBM9 expression was determined to be very low during standard cell cultivation but strongly increased as a response to specific stress conditions, e.g., when nutrient availability was limited. LHCBM9 was localized as part of PSII supercomplexes but was not found in association with photosystem I complexes. Knockdown cell lines with 50 to 70% reduced amounts of LHCBM9 showed reduced photosynthetic activity upon illumination and severe perturbation of hydrogen production activity. Functional analysis, performed on isolated PSII supercomplexes and recombinant LHCBM9 proteins, demonstrated that presence of LHCBM9 resulted in faster chlorophyll fluorescence decay and reduced production of singlet oxygen, indicating upgraded photoprotection. We conclude that LHCBM9 has a special role within the family of LHCII proteins and serves an important protective function during stress conditions by promoting efficient light energy dissipation and stabilizing PSII supercomplexes. PMID:24706511

  17. Effects of 810 nm laser on mouse primary cortical neurons

    NASA Astrophysics Data System (ADS)

    Kharkwal, Gitika B.; Sharma, Sulbha K.; Huang, Ying-Ying; De Taboada, Luis; McCarthy, Thomas; Hamblin, Michael R.

    2011-03-01

    In the past four decades numerous studies have reported the efficacy of low level light (laser) therapy (LLLT) as a treatment for diverse diseases and injuries. Recent studies have shown that LLLT can biomodulate processes in the central nervous system and has been extensively studied as a stroke treatment. However there is still a lack of knowledge on the effects of LLLT at the cellular level in neurons. The present study aimed to study the effect of 810 nm laser on several cellular processes in primary cortical neurons cultured from mouse embryonic brains. Neurons were irradiated with light dose of 0.03, 0.3, 3, 10 and 30 J/cm2 and intracellular levels of reactive oxygen species, nitric oxide and calcium were measured. The changes in mitochondrial function in response to light were studied in terms of adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP). Light induced a significant increase in calcium, ATP and MMP at lower fluences and a decrease at higher fluence. ROS was induced significantly by light at all light doses. Nitric oxide levels also showed an increase on treatment with light. The results of the present study suggest that LLLT at lower fluences is capable of inducing mediators of cell signaling process which in turn may be responsible for the biomodulatory effects of the low level laser. At higher fluences beneficial mediators are reduced but potentially harmful mediators are increased thus offering an explanation for the biphasic dose response.

  18. Stimulus-responsive light-harvesting complexes based on the pillararene-induced co-assembly of β-carotene and chlorophyll

    PubMed Central

    Sun, Yan; Guo, Fang; Zuo, Tongfei; Hua, Jingjing; Diao, Guowang

    2016-01-01

    The locations and arrangements of carotenoids at the subcellular level are responsible for their designated functions, which reinforces the necessity of developing methods for constructing carotenoid-based suprastructures beyond the molecular level. Because carotenoids lack the binding sites necessary for controlled interactions, functional structures based on carotenoids are not easily obtained. Here, we show that carotene-based suprastructures were formed via the induction of pillararene through a phase-transfer-mediated host–guest interaction. More importantly, similar to the main component in natural photosynthesis, complexes could be synthesized after chlorophyll was introduced into the carotene-based suprastructure assembly process. Remarkably, compared with molecular carotene or chlorophyll, this synthesized suprastructure exhibits some photocatalytic activity when exposed to light, which can be exploited for photocatalytic reaction studies of energy capture and solar conversion in living organisms. PMID:27345928

  19. Covalently functionalized carbon nanostructures and methods for their separation

    DOEpatents

    Wang, YuHuang; Brozena, Alexandra H; Deng, Shunliu; Zhang, Yin

    2015-03-17

    The present invention is directed to carbon nanostructures, e.g., carbon nanotubes, methods of covalently functionalizing carbon nanostructures, and methods of separating and isolating covalently functionalized carbon. In some embodiments, carbon nanotubes are reacted with alkylating agents to provide water soluble covalently functionalized carbon nanotubes. In other embodiments, carbon nanotubes are reacted with a thermally-responsive agent and exposed to light in order to separate carbon nanotubes of a specific chirality from a mixture of carbon nanotubes.

  20. Lights Off for Arbuscular Mycorrhiza: On Its Symbiotic Functioning under Light Deprivation

    PubMed Central

    Konvalinková, Tereza; Jansa, Jan

    2016-01-01

    Plants are often exposed to shade over different time scales and this may substantially affect not only their own growth, but also development and functioning of the energetically dependent organisms. Among those, the root symbionts such as arbuscular mycorrhizal (AM) fungi and rhizobia represent particularly important cases—on the one hand, they consume a significant share of plant carbon (C) budget and, on the other, they generate a number of important nutritional feedbacks on their plant hosts, often resulting in a net positive effect on their host growth and/or fitness. Here we discuss our previous results comparing mycorrhizal performance under different intensities and durations of shade (Konvalinková et al., 2015) in a broader context of previously published literature. Additionally, we review publicly available knowledge on the root colonization and mycorrhizal growth responses in AM plants under light deprivation. Experimental evidence shows that sudden and intensive decrease of light availability to a mycorrhizal plant triggers rapid deactivation of phosphorus transfer from the AM fungus to the plant already within a few days, implying active and rapid response of the AM fungus to the energetic status of its plant host. When AM plants are exposed to intensive shading on longer time scales (weeks to months), positive mycorrhizal growth responses (MGR) are often decreasing and may eventually become negative. This is most likely due to the high C cost of the symbiosis relative to the C availability, and failure of plants to fully compensate for the fungal C demand under low light. Root colonization by AM fungi often declines under low light intensities, although the active role of plants in regulating the extent of root colonization has not yet been unequivocally demonstrated. Quantitative information on the rates and dynamics of C transfer from the plant to the fungus is mostly missing, as is the knowledge on the involved molecular mechanisms. Therefore, these subjects deserve particular attention in the future. PMID:27375642

  1. Lights Off for Arbuscular Mycorrhiza: On Its Symbiotic Functioning under Light Deprivation.

    PubMed

    Konvalinková, Tereza; Jansa, Jan

    2016-01-01

    Plants are often exposed to shade over different time scales and this may substantially affect not only their own growth, but also development and functioning of the energetically dependent organisms. Among those, the root symbionts such as arbuscular mycorrhizal (AM) fungi and rhizobia represent particularly important cases-on the one hand, they consume a significant share of plant carbon (C) budget and, on the other, they generate a number of important nutritional feedbacks on their plant hosts, often resulting in a net positive effect on their host growth and/or fitness. Here we discuss our previous results comparing mycorrhizal performance under different intensities and durations of shade (Konvalinková et al., 2015) in a broader context of previously published literature. Additionally, we review publicly available knowledge on the root colonization and mycorrhizal growth responses in AM plants under light deprivation. Experimental evidence shows that sudden and intensive decrease of light availability to a mycorrhizal plant triggers rapid deactivation of phosphorus transfer from the AM fungus to the plant already within a few days, implying active and rapid response of the AM fungus to the energetic status of its plant host. When AM plants are exposed to intensive shading on longer time scales (weeks to months), positive mycorrhizal growth responses (MGR) are often decreasing and may eventually become negative. This is most likely due to the high C cost of the symbiosis relative to the C availability, and failure of plants to fully compensate for the fungal C demand under low light. Root colonization by AM fungi often declines under low light intensities, although the active role of plants in regulating the extent of root colonization has not yet been unequivocally demonstrated. Quantitative information on the rates and dynamics of C transfer from the plant to the fungus is mostly missing, as is the knowledge on the involved molecular mechanisms. Therefore, these subjects deserve particular attention in the future.

  2. Reproducibility of the retinal vascular response to flicker light in Asians.

    PubMed

    Nguyen, Thanh T; Kreis, Andreas J; Kawasaki, Ryo; Wang, Jie Jin; Seifert, Bernd-U; Vilser, Walthard; Nagel, Edgar; Wong, Tien Y

    2009-12-01

    Dilation of retinal vessels in response to diffuse luminance flicker may reflect endothelial function. Although this has previously been shown to be reproducible in whites, there have been no similar data in Asians. We assess the reproducibility of repeated measurements of this response in Asians. Healthy Asians (n = 33) with normal vision and no history of glaucoma, age-related macular degeneration, cataract, or retinal arterial/venous occlusion participated in this study. Repeated measures from the same subjects were taken 30-60 min apart using the Dynamic Vessel Analyser (DVA, IMEDOS, Jena, Germany). Modification was made to the shape of the light source for Asian participants. Correlations of the first and second measures were assessed using Pearson correlation (R(2)), and agreement between the two measures was shown using Bland-Altman plots. After modification to the shape of the light source, almost perfect correlation was found between the 1st and 2nd measurements of baseline arteriolar (R(2) = 0.95) and venular diameters (R(2) = 0.98) of arteriolar maximum dilation (R(2) = 0.85). Substantially high correlation between the 1st and 2nd measurements of venular maximum dilation was found (R(2) = 0.80). Measurements of the dilation response of retinal vessels to diffuse luminance flicker an Asian sample using the DVA show high reproducibility for repeated measures over a short period of time. Such measurements may allow non-invasive quantification of endothelial function to study its association with systemic and ocular diseases.

  3. Novel mathematical algorithm for pupillometric data analysis.

    PubMed

    Canver, Matthew C; Canver, Adam C; Revere, Karen E; Amado, Defne; Bennett, Jean; Chung, Daniel C

    2014-01-01

    Pupillometry is used clinically to evaluate retinal and optic nerve function by measuring pupillary response to light stimuli. We have developed a mathematical algorithm to automate and expedite the analysis of non-filtered, non-calculated pupillometric data obtained from mouse pupillary light reflex recordings, obtained from dynamic pupillary diameter recordings following exposure of varying light intensities. The non-filtered, non-calculated pupillometric data is filtered through a low pass finite impulse response (FIR) filter. Thresholding is used to remove data caused by eye blinking, loss of pupil tracking, and/or head movement. Twelve physiologically relevant parameters were extracted from the collected data: (1) baseline diameter, (2) minimum diameter, (3) response amplitude, (4) re-dilation amplitude, (5) percent of baseline diameter, (6) response time, (7) re-dilation time, (8) average constriction velocity, (9) average re-dilation velocity, (10) maximum constriction velocity, (11) maximum re-dilation velocity, and (12) onset latency. No significant differences were noted between parameters derived from algorithm calculated values and manually derived results (p ≥ 0.05). This mathematical algorithm will expedite endpoint data derivation and eliminate human error in the manual calculation of pupillometric parameters from non-filtered, non-calculated pupillometric values. Subsequently, these values can be used as reference metrics for characterizing the natural history of retinal disease. Furthermore, it will be instrumental in the assessment of functional visual recovery in humans and pre-clinical models of retinal degeneration and optic nerve disease following pharmacological or gene-based therapies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Fitting PMT Responses with an Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Kemmerer, William; Niculescu, Gabriel

    2017-09-01

    Correctly modeling the low light responce of photodetectors such as photomultiplier tubes (PMT) is crucial for the operation of particle detection relying on the Cherenkov effect. The Gas Ring Imaging Cherenkov (GRINCH) in the SuperBigBite Spectrometer (SBS) at Jefferson Lab will rely on an array of 510 29 mm 9125B PMTs. To select the tubes for this array, more than 900 were tested and their low-light response function was fitted. An Artificial Neural Network was defined and trained to extract the relevant PMT parameters without carrying out a detailed fir of the ADC spectrum. These results will be discussed here. NSF.

  5. Solar UV light regulates flavonoid metabolism in apple (Malus x domestica).

    PubMed

    Henry-Kirk, Rebecca A; Plunkett, Blue; Hall, Miriam; McGhie, Tony; Allan, Andrew C; Wargent, Jason J; Espley, Richard V

    2018-03-01

    Ultraviolet-B light (UV-B) is one environmental signal perceived by plants that affects the flavonoid pathway and influences the levels of anthocyanins, flavonols, and proanthocyanidins. To understand the mechanisms underlying UV exposure, apple trees were grown under spectral filters that altered transmission of solar UV light. Fruit analysis showed that UV induced changes in physiology, metabolism, and gene expression levels during development over a season. These changes were sustained after storage. Under low UV, ripening was delayed, fruit size decreased, and anthocyanin and flavonols were reduced. Expression analysis showed changes in response to UV light levels for genes in the regulation and biosynthesis of anthocyanin and flavonols. Transcription of flavonol synthase (FLS), ELONGATED HYPOCOTYL 5 (HY5), MYB10, and MYB22 were down-regulated throughout fruit development under reduced UV. Functional testing showed that the FLS promoter was activated by HY5, and this response was enhanced by the presence of MYB22. The MYB22 promoter can also be activated by the anthocyanin regulator, MYB10. As ambient levels of UV light vary around the globe, this study has implications for future crop production, the quality of which can be determined by the response to UV. © 2018 John Wiley & Sons Ltd.

  6. Branching of the PIF3 regulatory network in Arabidopsis: roles of PIF3-regulated MIDAs in seedling development in the dark and in response to light.

    PubMed

    Sentandreu, Maria; Leivar, Pablo; Martín, Guiomar; Monte, Elena

    2012-04-01

    Plants need to accurately adjust their development after germination in the underground darkness to ensure survival of the seedling, both in the dark and in the light upon reaching the soil surface. Recent studies have established that the photoreceptors phytochromes and the bHLH phytochrome interacting factors PIFs regulate seedling development to adjust it to the prevailing light environment during post-germinative growth. However, complete understanding of the downstream regulatory network implementing these developmental responses is still lacking. In a recent work, published in The Plant Cell, we report a subset of PIF3-regulated genes in dark-grown seedlings that we have named MIDAs (MISREGULATED IN DARK). Analysis of their functional relevance using mutants showed that four of them present phenotypic alterations in the dark, and that each affected a particular facet of seedling development, suggesting organ-specific branching in the signal that PIF3 relays downstream. Furthermore, our results also showed an altered response to light in seedlings with an impaired PIF3/MIDA regulatory network, indicating that these factors might also be essential to initiate and optimize the developmental adjustment of the seedling to the light environment.

  7. Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways.

    PubMed Central

    Argüello-Astorga, G R; Herrera-Estrella, L R

    1996-01-01

    Regulation of plant gene transcription by light is mediated by multipartite cis-regulatory units. Previous attempts to identify structural features that are common to all light-responsive elements (LREs) have been unsuccessful. To address the question of what is needed to confer photoresponsiveness to a promoter, the upstream sequences from more than 110 light-regulated plant genes were analyzed by a new, phylogenetic-structural method. As a result, 30 distinct conserved DNA module arrays (CMAs) associated with light-responsive promoter regions were identified. Several of these CMAs have remained invariant throughout the evolutionary radiation of angiosperms and are conserved between homologous genes as well as between members of different gene families. The identified CMAs share a gene superfamily-specific core that correlates with the particular phytochrome-dependent transduction pathway that controls their expression, i.e. ACCTA(A/C)C(A/C) for the cGMP-dependent phenylpropanoid metabolism-associated genes, and GATA(A/T)GR for the Ca2+/calmodulin-dependent photosynthesis-associated nuclear genes. In addition to suggesting a general model for the functional and structural organization of LREs, the data obtained in this study indicate that angiosperm LREs probably evolved from complex cis-acting elements involved in regulatory processes other than photoregulation in gymnosperms. PMID:8938415

  8. Chromatic Multifocal Pupillometer for Objective Perimetry and Diagnosis of Patients with Retinitis Pigmentosa.

    PubMed

    Chibel, Ron; Sher, Ifat; Ben Ner, Daniel; Mhajna, Mohamad O; Achiron, Asaf; Hajyahia, Soad; Skaat, Alon; Berchenko, Yakir; Oberman, Bernice; Kalter-Leibovici, Ofra; Freedman, Laurence; Rotenstreich, Ygal

    2016-09-01

    To assess visual field (VF) defects and retinal function objectively in healthy participants and patients with retinitis pigmentosa (RP) using a chromatic multifocal pupillometer. Cross-sectional study. The right eyes of 16 healthy participants and 13 RP patients. Pupil responses to red and blue light (peak, 485 and 625 nm, respectively) presented by 76 light-emitting diodes, 1.8-mm spot size at different locations of a 16.2° VF were recorded. Subjective VFs of RP patients were determined using chromatic dark-adapted Goldmann VFs (CDA-GVFs). Six healthy participants underwent 2 pupillometer examinations to determine test-retest reliability. Three parameters of pupil contraction were determined automatically: percentage of change of pupil size (PPC), maximum contraction velocity (MCV; in pixels per second), and latency of MCV (LMCV; in seconds). The fraction of functional VF was determined by CDA-GVF. In healthy participants, higher PPC and MCV were measured in response to blue compared with red light. The LMCV in response to blue light was relatively constant throughout the VF. Healthy participants demonstrated higher PPC and MCV and shorter LMCV in central compared with peripheral test points in response to red light. Test-retest correlation coefficients were 0.7 for PPC and 0.5 for MCV. In RP patients, test point in which the PPC and MCV were lower than 4 standard errors from the mean of healthy participants correlated with areas that were indicated as nonseeing by CDA-GVF. The mean absolute deviation in LMCV parameter in response to the red light between different test point was significantly higher in RP patients (range, 0.16-0.47) than in healthy participants (range, 0.02-0.16; P < 0.0001) and indicated its usefulness as a diagnostic tool with high sensitivity and specificity (area under the receiver operating characteristic curve (AUC), 0.97, Mann-Whitney-Wilcoxon analysis). Randomly reducing the number of test points to a total of 15 points did not significantly reduce the AUC in RP diagnosis based on this parameter. This study demonstrates the feasibility of using a chromatic multifocal pupillometer for objective diagnosis of RP and assessment of VF defects. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  9. Light-dependent reversion gravitropism of the moss Pohlia nutans

    NASA Astrophysics Data System (ADS)

    Khorkavtsiv, O.

    Plants have evolved highly sensitive mechanisms adapting their growth to the environmental conditions. Light and gravity are critical importance factors, which exerts an essential and specific influence on the determination of the growth direction and regulation of the early stages of plants ontogeny, sometimes effects of these factors being independent. The negative gravitropic resp onse of moss protonemata causes their spatial orientation towards light, which in its turn is the source of photosynthetic efficiency and phototropism. The gravitropism system does not function independently of other sensory response systems in plants. The competence of protonemata to gravity might be altered and the gravitropic response be reversed from negative to positive by light. It has been shown that response of apical cells to light depend on wavelenght: red light (max = 660 nm) represses the gravitropism and blue ( = 450 nm) inverts the protonemal gravitropism. Light, has also been shown for seed plants to modulate gravitropism of roots and stems through the action of phy B in red/far-red reversible way and by phy A in a non-reversible, very - low-fluence response (Hangarter, 1997). In P. nutans blue light reversed the gravitropism protonemal filaments. The mean angle after 24 h blue irradiation was 83 0, like that of negative gravitropic protonemata in darkness. We compared the effect of blue light on gravitropism of chloronemal filaments of Funaria hygrometrica having very low sensitivity to gravity. After action of blue light, however, the positive gravitropism of F. hygrometrica chloronemata was fairly high - 370 . Among blue light spectrum the highest reversion effectiveness in P. nutans had the UV light ( = 350 nm) initiated bends in 90% of protonemata. If a far-red pulse (5 min per h) was added to the blue/UV the gravitropic growth of protonemata resembled that in the dark control. Phytochrome has maxima of absorption in blue and red spectrum region and in our experiments far-red pulse removed the action of the blue/UV light. This indicates to a participation of phytochrome in changing direction of gravitropism. Since red light inhibited the gravitropism it may be suggested that phytochrome is not directly responsible for positive direction of gravitropism. Probably phytochrome only modifies the activity of other receptors or signal systems participating in realization of the gravitropic reaction. Moveover, the competence of apical cells protonemata to grow in opposite directions might be genetically controlled via blue-light - dependent repressor proteins (Lamparter et al., 1998).

  10. Dorsal light response and changes of its responses under varying acceleration conditions

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Takabayashi, A.; Takagi, S.; von Baumgarten, R.; Wetzig, J.

    In order to improve our understanding about functions of the gravity sensors, we have conducted four experiments in goldfish: 1) To define the effect of visual information influx on the static labyrinthine response, the dorsal light response (DLR) which had been proposed by von Holst as a model for postural adjustment in fish was reexamined with a newly designed, rotatory illumination device. The fish responded to illumination from the upper half of the visual field and a narrow range around 180 degrees of the lower half visual field. The maximal tilting angle of normal fish was about 40 degrees under horizontal illumination. 2) Under the changes of the gravito-inertial force level produced by a linear sled, the threshold of the gravity sensors was determined from postural adjustment responses. 3) Under hypogravic conditions during the parabolic flight of an airplane, the light-dependent behavior was investigated in intact and labyrinthectomized goldfish. 4) As one of the most likely candidates of the neural centers for the DLR, the valvula cerebelli, which receives its visual information not through the optic tectum but through the pretectal areas, is confirmed by the brain lesion experiments.

  11. Bright lights, big city: influences of ecological light pollution on reciprocal stream-riparian invertebrate fluxes.

    PubMed

    Meyer, Lars A; Sullivan, S Mazeika P

    2013-09-01

    Cities produce considerable ecological light pollution (ELP), yet the effects of artificial night lighting on biological communities and ecosystem function have not been fully explored. From June 2010 to June 2011, we surveyed aquatic emergent insects, riparian arthropods entering the water, and riparian spiders of the family Tetragnathidae at nine stream reaches representing common ambient ELP levels of Columbus, Ohio, USA, streams (low, 0.1-0.5 lux; moderate, 0.6-2.0 lux; high, 2.1-4.0 lux). In August 2011, we experimentally increased light levels at the low- and moderate-treatment reaches to 10-12 lux to represent urban streams exposed to extremely high levels of ELP. Although season exerted the dominant influence on invertebrate fluxes over the course of the year, when analyzed by season, we found that light strongly influenced multiple invertebrate responses. The experimental light addition resulted in a 44% decrease in tetragnathid spider density (P = 0.035), decreases of 16% in family richness (P = 0.040) and 76% in mean body size (P = 0.022) of aquatic emergent insects, and a 309% increase in mean body size of terrestrial arthropods (P = 0.015). Our results provide evidence that artificial light sources can alter community structure and ecosystem function in streams via changes in reciprocal aquatic-terrestrial fluxes of invertebrates.

  12. Measurements of the response function and the detection efficiency of an NE213 scintillator for neutrons between 20 and 65 MeV

    NASA Astrophysics Data System (ADS)

    Meigo, S.

    1997-02-01

    For neutrons 25, 30 and 65 MeV, the response functions and detection efficiencies of an NE213 liquid scintillator were measured. Quasi-monoenergetic neutrons produced by the 7Li(p,N 0.1) reaction were employed for the measurement and the absolute flux of incident neutrons was determined within 4% accuracy using a proton recoil telescope. Response functions and detection efficiencies calculated with the Monte Carlo codes, CECIL and SCINFUL, were compared with the measured data. It was found that response functions calculated with SCINFUL agreed better with experimental ones than those with CECIL, however, the deuteron light output used in SCINFUL was too low. The response functions calculated with a revised SCINFUL agreed with the experimental ones quite well even for the deuteron bump and peak due to the C(n,d 0) reaction. It was confirmed that the detection efficiencies calculated with the original and the revised SCINFULs agreed with the experimental data within the experimental error, while those with CECIL were about 20% higher in the energy region above 30 MeV.

  13. Shedding light on walking in the dark: the effects of reduced lighting on the gait of older adults with a higher-level gait disorder and controls.

    PubMed

    Kesler, Anat; Leibovich, Gregory; Herman, Talia; Gruendlinger, Leor; Giladi, Nir; Hausdorff, Jeffrey M

    2005-08-28

    To study the effects of reduced lighting on the gait of older adults with a high level gait disorder (HLGD) and to compare their response to that of healthy elderly controls. 22 patients with a HLGD and 20 age-matched healthy controls were studied under usual lighting conditions (1000 lumens) and in near darkness (5 lumens). Gait speed and gait dynamics were measured under both conditions. Cognitive function, co-morbidities, depressive symptoms, and vision were also evaluated. Under usual lighting conditions, patients walked more slowly, with reduced swing times, and increased stride-to-stride variability, compared to controls. When walking under near darkness conditions, both groups slowed their gait. All other measures of gait were not affected by lighting in the controls. In contrast, patients further reduced their swing times and increased their stride-to-stride variability, both stride time variability and swing time variability. The unique response of the patients was not explained by vision, mental status, co-morbidities, or the values of walking under usual lighting conditions. Walking with reduced lighting does not affect the gait of healthy elderly subjects, except for a reduction in speed. On the other hand, the gait of older adults with a HLGD becomes more variable and unsteady when they walk in near darkness, despite adapting a slow and cautious gait. Further work is needed to identify the causes of the maladaptive response among patients with a HLGD and the potential connection between this behavior and the increased fall risk observed in these patients.

  14. Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels.

    PubMed

    Cao, Zi-Quan; Wang, Guo-Jie

    2016-06-01

    Stimuli-responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi-stimuli-responsive polymer materials have been designed and developed in recent years. Compared with conventional single- or dual-stimuli-based polymer materials, multi-stimuli-responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi-stimuli-responsive polymer materials, namely, multi-stimuli-responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi-stimuli-responsive films (polymer brushes, layer-by-layer polymer films, and porous membranes), and multi-stimuli-responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi-stimuli-responsive particles, films, and bulk gels are comprehensively discussed here. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Ke, Fuyou; Mararenko, Anton; Wei, Zengyan; Banerjee, Probal; Zhou, Shuiqin

    2014-06-01

    Fluorescent carbon nanoparticles (FCNPs) have been successfully immobilized into poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)] nanogels based on one-pot precipitation copolymerization of NIPAM monomers with hydrogen bonded FCNP-AAm complex monomers in water. The resultant poly(NIPAM-AAm)-FCNP hybrid nanogels can combine functions from each building block for fluorescent temperature sensing, cell imaging, and near-infrared (NIR) light responsive drug delivery. The FCNPs in the hybrid nanogels not only emit bright and stable photoluminescence (PL) and exhibit up-conversion PL properties, but also increase the loading capacity of the nanogels for curcumin drug molecules. The reversible thermo-responsive swelling/shrinking transition of the poly(NIPAM-AAm) nanogel can not only modify the physicochemical environment of the FCNPs to manipulate the PL intensity for sensing the environmental temperature change, but also regulate the releasing rate of the loaded anticancer drug. In addition, the FCNPs embedded in the nanogels can convert the NIR light to heat, thus an exogenous NIR irradiation can further accelerate the drug release and enhance the therapeutic efficacy. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells upon laser excitation. The demonstrated hybrid nanogels with nontoxic and optically active FCNPs immobilized in responsive polymer nanogels are promising for the development of a new generation of multifunctional materials for biomedical applications.Fluorescent carbon nanoparticles (FCNPs) have been successfully immobilized into poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)] nanogels based on one-pot precipitation copolymerization of NIPAM monomers with hydrogen bonded FCNP-AAm complex monomers in water. The resultant poly(NIPAM-AAm)-FCNP hybrid nanogels can combine functions from each building block for fluorescent temperature sensing, cell imaging, and near-infrared (NIR) light responsive drug delivery. The FCNPs in the hybrid nanogels not only emit bright and stable photoluminescence (PL) and exhibit up-conversion PL properties, but also increase the loading capacity of the nanogels for curcumin drug molecules. The reversible thermo-responsive swelling/shrinking transition of the poly(NIPAM-AAm) nanogel can not only modify the physicochemical environment of the FCNPs to manipulate the PL intensity for sensing the environmental temperature change, but also regulate the releasing rate of the loaded anticancer drug. In addition, the FCNPs embedded in the nanogels can convert the NIR light to heat, thus an exogenous NIR irradiation can further accelerate the drug release and enhance the therapeutic efficacy. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells upon laser excitation. The demonstrated hybrid nanogels with nontoxic and optically active FCNPs immobilized in responsive polymer nanogels are promising for the development of a new generation of multifunctional materials for biomedical applications. Electronic supplementary information (ESI) available: Fig. S1-S5. See DOI: 10.1039/c4nr01030b

  16. Effects of intracellular injection of calcium buffers on light adaptation in Limulus ventral photoreceptors

    PubMed Central

    1975-01-01

    The calcium sequestering agent, EGTA, was injected into Limulus ventral photoreceptors. Before injection, the inward membrane current induced by a long stimulus had a large initial transient which declined to a smaller plateau. Iontophoretic injection of EGTA tended to prevent the decline from transient to plateau. Before injection the plateau response was a nonlinear function of light intensity. After EGTA injection the response-intensity curves tended to become linear. Before injection, bright lights lowered the sensitivity as determined with subsequent test flashes. EGTA injection decreased the light-induced changes in sensitivity. Ca-EGTA buffers having different levels of free calcium were pressure-injected into ventral photoreceptors; the higher the level of free calcium, the lower the sensitivity measured after injection. The effects of inotophoretic injection of EGTA were not mimicked by injection or similar amounts of sulfate and the effects of pressure injection of EGTA buffer solutions were not mimicked by injection of similar volumes of pH buffer or mannitol. The data are consistent with the hypothesis that light adaptation is mediated by a rise of the intracellular free calcium concentration. PMID:810540

  17. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae.

    PubMed

    Zhang, Shulin; Liang, Meiling; Naqvi, Naweed I; Lin, Chaoxiang; Qian, Wanqiang; Zhang, Lian-Hui; Deng, Yi Zhen

    2017-08-03

    Magnaporthe oryzae, the ascomycete fungus that causes rice blast disease, initiates conidiation in response to light when grown on Prune-Agar medium containing both carbon and nitrogen sources. Macroautophagy/autophagy was shown to be essential for M. oryzae conidiation and induced specifically upon exposure to light but is undetectable in the dark. Therefore, it is inferred that autophagy is naturally induced by light, rather than by starvation during M. oryzae conidiation. However, the signaling pathway(s) involved in such phototropic induction of autophagy remains unknown. We identified an M. oryzae ortholog of GCN5 (MGG_03677), encoding a histone acetyltransferase (HAT) that negatively regulates light- and nitrogen-starvation-induced autophagy, by acetylating the autophagy protein Atg7. Furthermore, we unveiled novel regulatory mechanisms on Gcn5 at both transcriptional and post-translational levels, governing its function associated with the unique phototropic response of autophagy in this pathogenic fungus. Thus, our study depicts a signaling network and regulatory mechanism underlying the autophagy induction by important environmental clues such as light and nutrients.

  18. The role of free kappa and lambda light chains in the pathogenesis and treatment of inflammatory diseases.

    PubMed

    Esparvarinha, Mojgan; Nickho, Hamid; Mohammadi, Hamed; Aghebati-Maleki, Leili; Abdolalizadeh, Jalal; Majidi, Jafar

    2017-07-01

    Kappa (κ) or lambda (λ) free light chains (FLCs) are produced from B cells during immunoglobulin synthesis. FLCs have been shown to participate in several key processes of immune responses. They are necessary to adjust PMN functions and assist PMN pre-stimulation. Moreover, they cause mast cell degranulation which releases pro-inflammatory mediators and stimulates local inflammatory responses in some conditions such as inflammatory bowel disease (IBD). Having low molecular weights which may straightly be toxic to proximal tubule cells (PTCs), FLCs can also have an important role in renal diseases. In this review we have highlighted the involvement of light chains in the pathogenesis of some inflammatory diseases and discussed their potential to be the targets of therapeutic purposes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. White noise analysis of Phycomyces light growth response system. I. Normal intensity range.

    PubMed Central

    Lipson, E D

    1975-01-01

    The Wiener-Lee-Schetzen method for the identification of a nonlinear system through white gaussian noise stimulation was applied to the transient light growth response of the sporangiophore of Phycomyces. In order to cover a moderate dynamic range of light intensity I, the imput variable was defined to be log I. The experiments were performed in the normal range of light intensity, centered about I0 = 10(-6) W/cm2. The kernels of the Wierner functionals were computed up to second order. Within the range of a few decades the system is reasonably linear with log I. The main nonlinear feature of the second-order kernel corresponds to the property of rectification. Power spectral analysis reveals that the slow dynamics of the system are of at least fifth order. The system can be represented approximately by a linear transfer function, including a first-order high-pass (adaptation) filter with a 4 min time constant and an underdamped fourth-order low-pass filter. Accordingly a linear electronic circuit was constructed to simulate the small scale response characteristics. In terms of the adaptation model of Delbrück and Reichardt (1956, in Cellular Mechanisms in Differentiation and Growth, Princeton University Press), kernels were deduced for the dynamic dependence of the growth velocity (output) on the "subjective intensity", a presumed internal variable. Finally the linear electronic simulator above was generalized to accommodate the large scale nonlinearity of the adaptation model and to serve as a tool for deeper test of the model. PMID:1203444

  20. Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor

    PubMed Central

    Bonomi, Hernán R.; Posadas, Diana M.; Paris, Gastón; Carrica, Mariela del Carmen; Frederickson, Marcus; Pietrasanta, Lía Isabel; Bogomolni, Roberto A.; Zorreguieta, Angeles; Goldbaum, Fernando A.

    2012-01-01

    Rhizobium leguminosarum is a soil bacterium that infects root hairs and induces the formation of nitrogen-fixing nodules on leguminous plants. Light, oxygen, and voltage (LOV)-domain proteins are blue-light receptors found in higher plants and many algae, fungi, and bacteria. The genome of R. leguminosarum bv. viciae 3841, a pea-nodulating endosymbiont, encodes a sensor histidine kinase containing a LOV domain at the N-terminal end (R-LOV-HK). R-LOV-HK has a typical LOV domain absorption spectrum with broad bands in the blue and UV-A regions and shows a truncated photocycle. Here we show that the R-LOV-HK protein regulates attachment to an abiotic surface and production of flagellar proteins and exopolysaccharide in response to light. Also, illumination of bacterial cultures before inoculation of pea roots increases the number of nodules per plant and the number of intranodular bacteroids. The effects of light on nodulation are dependent on a functional lov gene. The results presented in this work suggest that light, sensed by R-LOV-HK, is an important environmental factor that controls adaptive responses and the symbiotic efficiency of R. leguminosarum. PMID:22773814

  1. A reverse genetics approach identifies novel mutants in light responses and anthocyanin metabolism in petunia.

    PubMed

    Berenschot, Amanda S; Quecini, Vera

    2014-01-01

    Flower color and plant architecture are important commercially valuable features for ornamental petunias (Petunia x hybrida Vilm.). Photoperception and light signaling are the major environmental factors controlling anthocyanin and chlorophyll biosynthesis and shade-avoidance responses in higher plants. The genetic regulators of these processes were investigated in petunia by in silico analyses and the sequence information was used to devise a reverse genetics approach to probe mutant populations. Petunia orthologs of photoreceptor, light-signaling components and anthocyanin metabolism genes were identified and investigated for functional conservation by phylogenetic and protein motif analyses. The expression profiles of photoreceptor gene families and of transcription factors regulating anthocyanin biosynthesis were obtained by bioinformatic tools. Two mutant populations, generated by an alkalyting agent and by gamma irradiation, were screened using a phenotype-independent, sequence-based method by high-throughput PCR-based assay. The strategy allowed the identification of novel mutant alleles for anthocyanin biosynthesis (CHALCONE SYNTHASE) and regulation (PH4), and for light signaling (CONSTANS) genes.

  2. Growth and photosynthetic responses of wheat plants grown in space

    NASA Technical Reports Server (NTRS)

    Tripathy, B. C.; Brown, C. S.; Levine, H. G.; Krikorian, A. D.

    1996-01-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.

  3. Separation and Measurement of Direct and Indirect Effects of Light on Stomata 1

    PubMed Central

    Sharkey, Thomas D.; Raschke, Klaus

    1981-01-01

    Conductance for water vapor, assimilation of CO2, and intercellular CO2 concentration of leaves of five species were determined at various irradiances and ambient CO2 concentrations. Conductance and assimilation were then plotted as functions of irradiance and intercellular CO2 concentration. The slopes of these curves allowed us to estimate infinitesimal changes in conductance (and assimilation) that occurred when irradiance changed and intercellular CO2 concentration was constant, and when CO2 concentration changed and irradiance was constant. On leaves of Xanthium strumarium L., Gossypium hirsutum L., Phaseolus vulgaris L., and Perilla frutescens (L.), Britt., the stomatal response to light was determined to be mainly a direct response to light and to a small extent only a response to changes in intercellular CO2 concentration. This was also true for stomata of Zea mays L., except at irradiances < 150 watts per square meter, when stomata responded primarily to the depletion of the intercellular spaces of CO2 which in turn was caused by changes in the assimilation of CO2. Stomata responded to light even in leaves whose net exchange of CO2 was reduced to zero through application of the inhibitor of photosynthetic electron transport, cyanazine (2-chloro-4[1-cyano-1-methylethylamino]-6-ethylamino-S-triazine). When leaves were inverted and irradiated on the abaxial surface, conductance decreased in the shaded and increased in the illuminated epidermis, indicating that the photoreceptor pigment(s) involved are located in the epidermis (presumably in the guard cells). In leaves of X. strumarium, the direct effect of light on conductance is primarily a response to blue light. Stomatal responses to CO2 and to light opposed each other. In X. strumarium, stomatal opening in response to light was strongest in CO2 free air and saturated at lower irradiances than in CO2 containing air. Conversely, stomatal closure in response to CO2 was strongest in darkness and it decreased as irradiance increased. In X. strumarium, P. vulgaris, and P. frutescens, an irradiance of 300 watts per square meter was sufficient to eliminate the stomatal response to CO2 altogether. Application of abscisic acid, or an increase in vapor pressure deficit, or a decrease in leaf temperature reduced the stomatal conductance at light saturation, but when the data were normalized with respect to the conductance at the highest irradiance, the various curves were congruent. PMID:16661884

  4. Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus).

    PubMed Central

    Nelson, D E; Takahashi, J S

    1991-01-01

    1. Light-induced phase shifts of the circadian rhythm of wheel-running activity were used to measure the photic sensitivity of a circadian pacemaker and the visual pathway that conveys light information to it in the golden hamster (Mesocricetus auratus). The sensitivity to stimulus irradiance and duration was assessed by measuring the magnitude of phase-shift responses to photic stimuli of different irradiance and duration. The visual sensitivity was also measured at three different phases of the circadian rhythm. 2. The stimulus-response curves measured at different circadian phases suggest that the maximum phase-shift is the only aspect of visual responsivity to change as a function of the circadian day. The half-saturation constants (sigma) for the stimulus-response curves are not significantly different over the three circadian phases tested. The photic sensitivity to irradiance (1/sigma) appears to remain constant over the circadian day. 3. The hamster circadian pacemaker and the photoreceptive system that subserves it are more sensitive to the irradiance of longer-duration stimuli than to irradiance of briefer stimuli. The system is maximally sensitive to the irradiance of stimuli of 300 s and longer in duration. A quantitative model is presented to explain the changes that occur in the stimulus-response curves as a function of photic stimulus duration. 4. The threshold for photic stimulation of the hamster circadian pacemaker is also quite high. The threshold irradiance (the minimum irradiance necessary to induce statistically significant responses) is approximately 10(11) photons cm-2 s-1 for optimal stimulus durations. This threshold is equivalent to a luminance at the cornea of 0.1 cd m-2. 5. We also measured the sensitivity of this visual pathway to the total number of photons in a stimulus. This system is maximally sensitive to photons in stimuli between 30 and 3600 s in duration. The maximum quantum efficiency of photic integration occurs in 300 s stimuli. 6. These results suggest that the visual pathways that convey light information to the mammalian circadian pacemaker possess several unique characteristics. These pathways are relatively insensitive to light irradiance and also integrate light inputs over relatively long durations. This visual system, therefore, possesses an optimal sensitivity of 'tuning' to total photons delivered in stimuli of several minutes in duration. Together these characteristics may make this visual system unresponsive to environmental 'noise' that would interfere with the entrainment of circadian rhythms to light-dark cycles. PMID:1895235

  5. Light and dark-activated biocidal activity of conjugated polyelectrolytes.

    PubMed

    Ji, Eunkyung; Corbitt, Thomas S; Parthasarathy, Anand; Schanze, Kirk S; Whitten, David G

    2011-08-01

    This Spotlight on Applications provides an overview of a research program that has focused on the development and mechanistic study of cationic conjugated polyelectrolytes (CPEs) that function as light- and dark-active biocidal agents. Investigation has centered on poly-(phenylene ethynylene) (PPE) type conjugated polymers that are functionalized with cationic quaternary ammonium solubilizing groups. These polymers are found to interact strongly with Gram-positive and Gram-negative bacteria, and upon illumination with near-UV and visible light act to rapidly kill the bacteria. Mechanistic studies suggest that the cationic PPE-type polymers efficiently sensitize singlet oxygen ((1)O(2)), and this cytotoxic agent is responsible for initiating the sequence of events that lead to light-activated bacterial killing. Specific CPEs also exhibit dark-active antimicrobial activity, and this is believed to arise due to interactions between the cationic/lipophilic polymers and the negatively charged outer membrane characteristic of Gram-negative bacteria. Specific results are shown where a cationic CPE with a degree of polymerization of 49 exhibits pronounced light-activated killing of E. coli when present in the cell suspension at a concentration of 1 μg mL(-1).

  6. Light Irradiation as Key to Shape and Function of Nano-Assemblies in Solution

    NASA Astrophysics Data System (ADS)

    Groehn, Franziska

    Developing strategies to exploit solar energy become more and more important. Inspired by natural systems it is highly promising to self-assemble functional species into effective tailored supramolecular units. Here we report self-assembled polymer structures in solution, taking advantage of optical properties of hybrid structures and light responsiveness. A new type of photocatalytically active self-assembled polymer structure in aqueous solution consists of supramolecular nano-objects obtained from macroions and multivalent inorganic ``counterions'' such as nanoparticles or clusters. These can exhibit expressed selectivity or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, polyelectrolyte-porphyrin nanoscale assemblies exhibit tunable optical properties including strong fluorescence and an up to 20-fold higher photocatalytic activity than without polymeric template. A different approach is to transfer light energy into mechanical energy. Here, light energy is converted into nanoscale shape changes. This route for the conversion of light is highly promising for applications in drug delivery, nanosensors and solar energy conversion. Membership of DPG, Germany ID 153159-.

  7. Not just signal shutoff: the protective role of arrestin-1 in rod cells.

    PubMed

    Sommer, Martha E; Hofmann, Klaus Peter; Heck, Martin

    2014-01-01

    The retinal rod cell is an exquisitely sensitive single-photon detector that primarily functions in dim light (e.g., moonlight). However, rod cells must routinely survive light intensities more than a billion times greater (e.g., bright daylight). One serious challenge to rod cell survival in daylight is the massive amount of all-trans-retinal that is released by Meta II, the light-activated form of the photoreceptor rhodopsin. All-trans-retinal is toxic, and its condensation products have been implicated in disease. Our recent work has developed the concept that rod arrestin (arrestin-1), which terminates Meta II signaling, has an additional role in protecting rod cells from the consequences of bright light by limiting free all-trans-retinal. In this chapter we will elaborate upon the molecular mechanisms by which arrestin-1 serves as both a single-photon response quencher as well as an instrument of rod cell survival in bright light. This discussion will take place within the framework of three distinct functional modules of vision: signal transduction, the retinoid cycle, and protein translocation.

  8. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

    PubMed

    Schur, Rebecca M; Gao, Songqi; Yu, Guanping; Chen, Yu; Maeda, Akiko; Palczewski, Krzysztof; Lu, Zheng-Rong

    2018-01-24

    No clinically approved therapies are currently available that prevent the onset of photoreceptor death in retinal degeneration. Signaling between retinal neurons is regulated by the release and uptake of neurotransmitters, wherein GABA is the main inhibitory neurotransmitter. In this work, novel 3-chloropropiophenone derivatives and the clinical anticonvulsants tiagabine and vigabatrin were tested to modulate GABA signaling and protect against light-induced retinal degeneration. Abca4 -/- Rdh8 -/- mice, an accelerated model of retinal degeneration, were exposed to intense light after prophylactic injections of one of these compounds. Imaging and functional assessments of the retina indicated that these compounds successfully protected photoreceptor cells from degeneration to maintain a full-visual-field response. Furthermore, these compounds demonstrated a strong safety profile in wild-type mice and did not compromise visual function or damage the retina, despite repeated administration. These results indicate that modulating inhibitory GABA signaling can offer prophylactic protection against light-induced retinal degeneration.-Schur, R. M., Gao, S., Yu, G., Chen, Y., Maeda, A., Palczewski, K., Lu, Z.-R. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

  9. Twilight, a Novel Circadian-Regulated Gene, Integrates Phototropism with Nutrient and Redox Homeostasis during Fungal Development

    PubMed Central

    Naqvi, Naweed I.

    2015-01-01

    Phototropic regulation of circadian clock is important for environmental adaptation, organismal growth and differentiation. Light plays a critical role in fungal development and virulence. However, it is unclear what governs the intracellular metabolic response to such dark-light rhythms in fungi. Here, we describe a novel circadian-regulated Twilight (TWL) function essential for phototropic induction of asexual development and pathogenesis in the rice-blast fungus Magnaporthe oryzae. The TWL transcript oscillates during circadian cycles and peaks at subjective twilight. GFP-Twl remains acetylated and cytosolic in the dark, whereas light-induced phosphorylation (by the carbon sensor Snf1 kinase) drives it into the nucleus. The mRNA level of the transcription/repair factor TFB5, was significantly down regulated in the twl∆ mutant. Overexpression of TFB5 significantly suppressed the conidiation defects in the twl∆ mutant. Furthermore, Tfb5-GFP translocates to the nucleus during the phototropic response and under redox stress, while it failed to do so in the twl∆ mutant. Thus, we provide mechanistic insight into Twl-based regulation of nutrient and redox homeostasis in response to light during pathogen adaptation to the host milieu in the rice blast pathosystem. PMID:26102503

  10. Twilight, a Novel Circadian-Regulated Gene, Integrates Phototropism with Nutrient and Redox Homeostasis during Fungal Development.

    PubMed

    Deng, Yi Zhen; Qu, Ziwei; Naqvi, Naweed I

    2015-06-01

    Phototropic regulation of circadian clock is important for environmental adaptation, organismal growth and differentiation. Light plays a critical role in fungal development and virulence. However, it is unclear what governs the intracellular metabolic response to such dark-light rhythms in fungi. Here, we describe a novel circadian-regulated Twilight (TWL) function essential for phototropic induction of asexual development and pathogenesis in the rice-blast fungus Magnaporthe oryzae. The TWL transcript oscillates during circadian cycles and peaks at subjective twilight. GFP-Twl remains acetylated and cytosolic in the dark, whereas light-induced phosphorylation (by the carbon sensor Snf1 kinase) drives it into the nucleus. The mRNA level of the transcription/repair factor TFB5, was significantly down regulated in the twl∆ mutant. Overexpression of TFB5 significantly suppressed the conidiation defects in the twl∆ mutant. Furthermore, Tfb5-GFP translocates to the nucleus during the phototropic response and under redox stress, while it failed to do so in the twl∆ mutant. Thus, we provide mechanistic insight into Twl-based regulation of nutrient and redox homeostasis in response to light during pathogen adaptation to the host milieu in the rice blast pathosystem.

  11. Random-phase metasurfaces at optical wavelengths

    NASA Astrophysics Data System (ADS)

    Pors, Anders; Ding, Fei; Chen, Yiting; Radko, Ilya P.; Bozhevolnyi, Sergey I.

    2016-06-01

    Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light, with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications. Finally, by incorporating a certain correlation between scattering by neighbouring metasurface constituents new types of functionalities can be realised, such as a Lambertian reflector.

  12. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response.

    PubMed

    Dong, Zhaobin; Jiang, Chuan; Chen, Xiaoyang; Zhang, Tao; Ding, Lian; Song, Weibin; Luo, Hongbing; Lai, Jinsheng; Chen, Huabang; Liu, Renyi; Zhang, Xiaolan; Jin, Weiwei

    2013-11-01

    Auxin is a plant hormone that plays key roles in both shoot gravitropism and inflorescence development. However, these two processes appear to be parallel and to be regulated by distinct players. Here, we report that the maize (Zea mays) prostrate stem1 mutant, which is allelic to the classic mutant lazy plant1 (la1), displays prostrate growth with reduced shoot gravitropism and defective inflorescence development. Map-based cloning identified maize ZmLA1 as the functional ortholog of LAZY1 in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana). It has a unique role in inflorescence development and displays enriched expression in reproductive organs such as tassels and ears. Transcription of ZmLA1 responds to auxin and is repressed by light. Furthermore, ZmLA1 physically interacts with a putative auxin transport regulator in the plasma membrane and a putative auxin signaling protein in the nucleus. RNA-SEQ data showed that dozens of auxin transport, auxin response, and light signaling genes were differentially expressed in la1 mutant stems. Therefore, ZmLA1 might mediate the cross talk between shoot gravitropism and inflorescence development by regulating auxin transport, auxin signaling, and probably light response in maize.

  13. Blue light-induced phototropism of inflorescence stems and petioles is mediated by phototropin family members phot1 and phot2.

    PubMed

    Kagawa, Takatoshi; Kimura, Mitsuhiro; Wada, Masamitsu

    2009-10-01

    Phototropin family photoreceptors, phot1 and phot2, in Arabidopsis thaliana control the blue light (BL)-mediated phototropic responses of the hypocotyl, chloroplast relocation movement and stomatal opening. Phototropic responses in dark-grown tissues have been well studied but those in de-etiolated green plants are not well understood. Here, we analyzed phototropic responses of inflorescence stems and petioles of wild-type and phototropin mutant plants of A. thaliana. Similar to the results obtained from dark-grown seedlings, inflorescence stems and petioles in wild-type and phot2 mutant plants showed phototropic bending towards low fluence BL, while in phot1 mutant plants, a high fluence rate of BL was required. phot1 phot2 double mutant plants did not show any phototropic responses even under very high fluence rates of BL. We further studied the photoreceptive sites for phototropic responses of stems and petioles by partial tissue irradiation. The whole part of the inflorescence stem is sensitive to BL and shows phototropism, but in the petiole only the irradiated abaxial side is sensitive. Similar to dark-grown etiolated seedlings, phot1 plays a major role in phototropic responses under weak light, but phot2 functions under high fluence rate conditions in green plants.

  14. Structure, function and regulation of plant photosystem I.

    PubMed

    Jensen, Poul Erik; Bassi, Roberto; Boekema, Egbert J; Dekker, Jan P; Jansson, Stefan; Leister, Dario; Robinson, Colin; Scheller, Henrik Vibe

    2007-05-01

    Photosystem I (PSI) is a multisubunit protein complex located in the thylakoid membranes of green plants and algae, where it initiates one of the first steps of solar energy conversion by light-driven electron transport. In this review, we discuss recent progress on several topics related to the functioning of the PSI complex, like the protein composition of the complex in the plant Arabidopsis thaliana, the function of these subunits and the mechanism by which nuclear-encoded subunits can be inserted into or transported through the thylakoid membrane. Furthermore, the structure of the native PSI complex in several oxygenic photosynthetic organisms and the role of the chlorophylls and carotenoids in the antenna complexes in light harvesting and photoprotection are reviewed. The special role of the 'red' chlorophylls (chlorophyll molecules that absorb at longer wavelength than the primary electron donor P700) is assessed. The physiology and mechanism of the association of the major light-harvesting complex of photosystem II (LHCII) with PSI during short term adaptation to changes in light quality and quantity is discussed in functional and structural terms. The mechanism of excitation energy transfer between the chlorophylls and the mechanism of primary charge separation is outlined and discussed. Finally, a number of regulatory processes like acclimatory responses and retrograde signalling is reviewed with respect to function of the thylakoid membrane. We finish this review by shortly discussing the perspectives for future research on PSI.

  15. Differential Distractor Functioning as a Method for Explaining DIF: The Case of a National Admissions Test in Saudi Arabia

    ERIC Educational Resources Information Center

    Tsaousis, Ioannis; Sideridis, Georgios; Al-Saawi, Fahad

    2018-01-01

    The aim of the present study was to examine Differential Distractor Functioning (DDF) as a means of improving the quality of a measure through understanding biased responses across groups. A DDF analysis could shed light on the potential sources of construct-irrelevant variance by examining whether the differential selection of incorrect choices…

  16. Photomorphogenic responses to ultraviolet-B light.

    PubMed

    Jenkins, Gareth I

    2017-11-01

    Exposure to ultraviolet B (UV-B) light regulates numerous aspects of plant metabolism, morphology and physiology through the differential expression of hundreds of genes. Photomorphogenic responses to UV-B are mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8). Considerable progress has been made in understanding UVR8 action: the structural basis of photoreceptor function, how interaction with CONSTITUTIVELY PHOTOMORPHOGENIC 1 initiates signaling and how REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins negatively regulate UVR8 action. In addition, recent research shows that UVR8 mediates several responses through interaction with other signaling pathways, in particular auxin signaling. Nevertheless, many aspects of UVR8 action remain poorly understood. Most research to date has been undertaken with Arabidopsis, and it is important to explore the functions and regulation of UVR8 in diverse plant species. Furthermore, it is essential to understand how UVR8, and UV-B signaling in general, regulates processes under natural growth conditions. Ultraviolet B regulates the expression of many genes through UVR8-independent pathways, but the activity and importance of these pathways in plants growing in sunlight are poorly understood. © 2017 John Wiley & Sons Ltd.

  17. Long-term effects of UV light on contractility of rat arteries in vivo.

    PubMed

    Morimoto, Yuji; Kohyama, Shinya; Nakai, Kanji; Matsuo, Hirotaka; Karasawa, Fujio; Kikuchi, Makoto

    2003-10-01

    Several studies have shown that UV irradiation may be effective for preventing vascular restenosis or vasopasm. However, the long-term effects of UV light on the physiological properties of vessels such as arterial tension have not been elucidated. We therefore studied the long-term effects of UV using rat carotid arteries treated with UV-B light (wavelength = 313 nm, total energy = 14 mJ/mm2). The animals were sacrificed at 1, 7 and 14 days after UV light exposure, and the carotid arteries were studied by light microscopy and the contractile responses of isolated arterial rings were recorded under isometric tension. UV treatment had induced a substantial loss of smooth muscle cells (SMC) along the entire circumference of the media on days 7 and 14, whereas loss of SMC on day 1 was negligible. Contractile responses of arteries that had been exposed to UV light were significantly reduced on days, 1, 7 and 14. The susceptibility of UV-treated arteries to phenylephrine and prostaglandin F2 alpha was significantly decreased on days 1 and 7, but decreased susceptibility was not seen on day 14. Acetylcholine-induced relaxations were not altered by UV treatment. These results suggest that the long-term effect of UV light is an attenuation of smooth muscle contractility without impairment of endothelial function.

  18. Neutron response function characterization of 4He scintillation detectors

    DOE PAGES

    Kelley, Ryan P.; Rolison, Lucas M.; Lewis, Jason M.; ...

    2015-04-15

    Time-of-flight measurements were conducted to characterize the neutron energy response of pressurized 4He fast neutron scintillation detectors for the first time, using the Van de Graaff generator at Ohio University. The time-of-flight spectra and pulse height distributions were measured. This data was used to determine the light output response function, which was found to be linear at energies below 3.5 MeV. The intrinsic efficiency of the detector as a function of incident energy was also calculated: the average efficiency up to 10 MeV was 3.1%, with a maximum efficiency of 6.6% at 1.05 MeV. Furthermore, these results will enable developmentmore » of neutron spectrum unfolding algorithms for neutron spectroscopy applications with these detectors.« less

  19. Stress-Induced Sleep After Exposure to Ultraviolet Light Is Promoted by p53 in Caenorhabditis elegans.

    PubMed

    DeBardeleben, Hilary K; Lopes, Lindsey E; Nessel, Mark P; Raizen, David M

    2017-10-01

    Stress-induced sleep (SIS) in Caenorhabditis elegans is important for restoration of cellular homeostasis and is a useful model to study the function and regulation of sleep. SIS is triggered when epidermal growth factor (EGF) activates the ALA neuron, which then releases neuropeptides to promote sleep. To further understand this behavior, we established a new model of SIS using irradiation by ultraviolet C (UVC) light. While UVC irradiation requires ALA signaling and leads to a sleep state similar to that induced by heat and other stressors, it does not induce the proteostatic stress seen with heat exposure. Based on the known genotoxic effects of UVC irradiation, we tested two genes, atl-1 and cep-1 , which encode proteins that act in the DNA damage response pathway. Loss-of-function mutants of atl-1 had no defect in UVC-induced SIS but a partial loss-of-function mutant of cep-1 , gk138 , had decreased movement quiescence following UVC irradiation. Germline ablation experiments and tissue-specific RNA interference experiments showed that cep-1 is required somatically in neurons for its effect on SIS. The cep-1 ( gk138 ) mutant suppressed body movement quiescence controlled by EGF, indicating that CEP-1 acts downstream or in parallel to ALA activation to promote quiescence in response to ultraviolet light. Copyright © 2017 by the Genetics Society of America.

  20. Optimization of Photosynthetic Productivity in Contrasting Environments by Regulons Controlling Plant Form and Function

    PubMed Central

    Demmig-Adams, Barbara; Baker, Christopher R.

    2018-01-01

    We review the role of a family of transcription factors and their regulons in maintaining high photosynthetic performance across a range of challenging environments with a focus on extreme temperatures and water availability. Specifically, these transcription factors include CBFs (C-repeat binding factors) and DREBs (dehydration-responsive element-binding), with CBF/DREB1 primarily orchestrating cold adaptation and other DREBs serving in heat, drought, and salinity adaptation. The central role of these modulators in plant performance under challenging environments is based on (i) interweaving of these regulators with other key signaling networks (plant hormones and redox signals) as well as (ii) their function in integrating responses across the whole plant, from light-harvesting and sugar-production in the leaf to foliar sugar export and water import and on to the plant’s sugar-consuming sinks (growth, storage, and reproduction). The example of Arabidopsis thaliana ecotypes from geographic origins with contrasting climates is used to describe the links between natural genetic variation in CBF transcription factors and the differential acclimation of plant anatomical and functional features needed to support superior photosynthetic performance in contrasting environments. Emphasis is placed on considering different temperature environments (hot versus cold) and light environments (limiting versus high light), on trade-offs between adaptations to contrasting environments, and on plant lines minimizing such trade-offs. PMID:29543762

  1. Living Additive Manufacturing: Transformation of Parent Gels into Diversely Functionalized Daughter Gels Made Possible by Visible Light Photoredox Catalysis

    PubMed Central

    2017-01-01

    Light-initiated additive manufacturing techniques typically rely on layer-by-layer addition or continuous extraction of polymers formed via nonliving, free radical polymerization methods that render the final materials “dead” toward further monomer insertion; the polymer chains within the materials cannot be reactivated to induce chain extension. An alternative “living additive manufacturing” strategy would involve the use of photocontrolled living radical polymerization to spatiotemporally insert monomers into dormant “parent” materials to generate more complex and diversely functionalized “daughter” materials. Here, we demonstrate a proof-of-concept study of living additive manufacturing using end-linked polymer gels embedded with trithiocarbonate iniferters that can be activated by photoinduced single-electron transfer from an organic photoredox catalyst in solution. This system enables the synthesis of a wide range of chemically and mechanically differentiated daughter gels from a single type of parent gel via light-controlled modification of the parent’s average composition, strand length, and/or cross-linking density. Daughter gels that are softer than their parent, stiffer than their parent, larger but with the same modulus as their parent, thermally responsive, polarity responsive, healable, and weldable are all realized. PMID:28280779

  2. Living Additive Manufacturing: Transformation of Parent Gels into Diversely Functionalized Daughter Gels Made Possible by Visible Light Photoredox Catalysis.

    PubMed

    Chen, Mao; Gu, Yuwei; Singh, Awaneesh; Zhong, Mingjiang; Jordan, Alex M; Biswas, Santidan; Korley, LaShanda T J; Balazs, Anna C; Johnson, Jeremiah A

    2017-02-22

    Light-initiated additive manufacturing techniques typically rely on layer-by-layer addition or continuous extraction of polymers formed via nonliving, free radical polymerization methods that render the final materials "dead" toward further monomer insertion; the polymer chains within the materials cannot be reactivated to induce chain extension. An alternative "living additive manufacturing" strategy would involve the use of photocontrolled living radical polymerization to spatiotemporally insert monomers into dormant "parent" materials to generate more complex and diversely functionalized "daughter" materials. Here, we demonstrate a proof-of-concept study of living additive manufacturing using end-linked polymer gels embedded with trithiocarbonate iniferters that can be activated by photoinduced single-electron transfer from an organic photoredox catalyst in solution. This system enables the synthesis of a wide range of chemically and mechanically differentiated daughter gels from a single type of parent gel via light-controlled modification of the parent's average composition, strand length, and/or cross-linking density. Daughter gels that are softer than their parent, stiffer than their parent, larger but with the same modulus as their parent, thermally responsive, polarity responsive, healable, and weldable are all realized.

  3. Rod-driven OFF pathway responses in the distal retina: dark-adapted flicker electroretinogram in mouse.

    PubMed

    Lei, Bo

    2012-01-01

    The rodent retina does not exhibit a positive OFF-response in the electroretinogram (ERG), which makes it difficult to evaluate its OFF-pathway functions in vivo. We studied the rod-driven OFF pathway responses by using a dark-adapted 10-Hz flicker ERG procedure in mouse. Conventional ERGs and 10-Hz dark-adapted flicker ERGs were obtained in wild-type mice (C57BL/6), in mice with pure rod (cpfl1) or pure cone (rho(-/-)) function, and in nob1 mice which have a selective ON-pathway defect. To isolate the response from ON or OFF pathway, glutamate analogs 2-amino-4-phosphobutyric acid (APB, an ON pathway blocker) and cis-2, 3-piperidine-dicarboxylic acid (PDA, an OFF pathway blocker), were injected intravitreally. The amplitude-intensity profile of the dark-adapted 10-Hz flicker ERG in the wild-type mice exhibits two peaks at middle and high light intensities. The two peaks represent rod- and cone-driven responses respectively. In APB-treated C57BL/6 mice and in nob1 mice, the dark-adapted ERG b-waves were absent. However, both rod- and cone-driven OFF pathway responses were evident with flicker ERG recording. At middle light intensities that activate only rod system, the flicker ERG responses in saline-injected nob1 mice were similar to those in APB-injected cpfl1 mice and wild-type mice. These responses are sensitive to PDA. The amplitudes of these rod-driven OFF pathway responses were approximately 20% of the total rod-driven flicker ERG responses. We demonstrate that the rod-OFF bipolar cell pathway is functional in the outer retina. The dark-adapted flicker ERG is practical for the evaluation of rod- and cone-driven responses, and the residual OFF pathway signals in subjects with ON pathway defects.

  4. Functional significance of the taper of vertebrate cone photoreceptors

    PubMed Central

    Hárosi, Ferenc I.

    2012-01-01

    Vertebrate photoreceptors are commonly distinguished based on the shape of their outer segments: those of cones taper, whereas the ones from rods do not. The functional advantages of cone taper, a common occurrence in vertebrate retinas, remain elusive. In this study, we investigate this topic using theoretical analyses aimed at revealing structure–function relationships in photoreceptors. Geometrical optics combined with spectrophotometric and morphological data are used to support the analyses and to test predictions. Three functions are considered for correlations between taper and functionality. The first function proposes that outer segment taper serves to compensate for self-screening of the visual pigment contained within. The second function links outer segment taper to compensation for a signal-to-noise ratio decline along the longitudinal dimension. Both functions are supported by the data: real cones taper more than required for these compensatory roles. The third function relates outer segment taper to the optical properties of the inner compartment whereby the primary determinant is the inner segment’s ability to concentrate light via its ellipsoid. In support of this idea, the rod/cone ratios of primarily diurnal animals are predicted based on a principle of equal light flux gathering between photoreceptors. In addition, ellipsoid concentration factor, a measure of ellipsoid ability to concentrate light onto the outer segment, correlates positively with outer segment taper expressed as a ratio of characteristic lengths, where critical taper is the yardstick. Depending on a light-funneling property and the presence of focusing organelles such as oil droplets, cone outer segments can be reduced in size to various degrees. We conclude that outer segment taper is but one component of a miniaturization process that reduces metabolic costs while improving signal detection. Compromise solutions in the various retinas and retinal regions occur between ellipsoid size and acuity, on the one hand, and faster response time and reduced light sensitivity, on the other. PMID:22250013

  5. Species-specific and seasonal differences in chlorophyll fluorescence and photosynthetic light response among three evergreen species in a Madrean sky island mixed conifer forest

    NASA Astrophysics Data System (ADS)

    Potts, D. L.; Minor, R. L.; Braun, Z.; Barron-Gafford, G. A.

    2012-12-01

    Unlike the snowmelt-dominated hydroclimate of more northern mountainous regions, the hydroclimate of the Madrean sky islands is characterized by snowmelt and convective storms associated with the North American Monsoon. These mid-summer storms trigger biological activity and are important drivers of primary productivity. For example, at the highest elevations where mixed conifer forests occur, ecosystem carbon balance is influenced by monsoon rains. Whereas these storms' significance is increasingly recognized at the ecosystem scale, species-specific physiological responses to the monsoon are poorly known. Prior to and following monsoon onset, we measured pre-dawn and light-adapted chlorophyll fluorescence as well as photosynthetic light response in southwestern white pine (Pinus strobiformis), ponderosa pine (Pinus ponderosa), and Douglas fir (Pseudotsuga menziesii) in a Madrean sky island mixed conifer forest near Tucson, Arizona. Photochemical quenching (qp), an indicator of the proportion of open PSII reaction centers, was greatest in P. strobiformis and least in P. menziesii and increased in response to monsoon rains (repeated-measures ANOVA; species, F2,14 = 6.17, P = 0.012; time, F2,14= 8.17, P = 0.013). In contrast, non-photochemical quenching (qN), an indicator of heat dissipation ability, was greatest in P. ponderosa and least in P. menziesii, but was not influenced by monsoon onset (repeated-measures ANOVA; species, F2,12 = 4.18, P = 0.042). Estimated from leaf area-adjusted photosynthetic light response curves, maximum photosynthetic rate (Amax) was greatest in P. ponderosa and least in P. menziesii (repeated-measures ANOVA; species, F2,8= 40.8, P = 0.001). Surprisingly, while the monsoon positively influenced Amax among P. ponderosa and P. strobiformis, Amax of P. menziesii declined with monsoon onset (repeated-measures ANOVA; species x time, F2,8 = 13.8, P = 0.002). Calculated as the initial slope of the photosynthetic light response curve, light-use efficiency (AQE) was similar among P. strobiformis and P. ponderosa and least in P. menziesii (repeated-measures ANOVA; species, F2,8 = 13.83, P = 0.002). Across all three species, monsoon onset increased AQE (repeated-measures ANOVA; time, F1,8= 10.04, P = 0.01). Likewise, P. strobiformis and P. ponderosa shared a similar, greater light compensation point than P. menziesii (repeated-measures ANOVA; species, F2,8 = 5.89, P = 0.02). However, across species, monsoon onset did not influence light compensation points. These results support the hypothesis that the monsoon has species-specific effects on evergreen physiological performance and are broadly consistent with predictions of stress tolerance based on species' latitudinal and elevational range distributions. Moreover, with year-to-year rainfall variability predicted to increase under future climate scenarios, species-specific functional traits related to stress tolerance and photosynthesis may promote ecosystem functional resilience in Madrean sky island mixed conifer forests.

  6. Influence of Alcohol Use on Neural Response to Go/No-Go Task in College Drinkers

    PubMed Central

    Ahmadi, Aral; Pearlson, Godfrey D; Meda, Shashwath A; Dager, Alecia; Potenza, Marc N; Rosen, Rivkah; Austad, Carol S; Raskin, Sarah A; Fallahi, Carolyn R; Tennen, Howard; Wood, Rebecca M; Stevens, Michael C

    2013-01-01

    Impaired inhibition of prepotent motor response may represent an important risk factor for alcoholism. Alcohol use may also increase impulsive behavior, including impaired response inhibition. Little is known about the brain function underlying response inhibition among college-age drinkers based on their drinking patterns, despite college-age drinkers demonstrating high rates of alcohol-use disorders. Our major objective was to compare behavior and associated brain activity measured with fMRI during a response-inhibition task in matched heavy- and light-alcohol-drinking college students. Participants were light (N=36) and heavy (N=56) drinkers, aged 18–20 years. We characterized blood oxygen level-dependent (BOLD) responses, while participants performed an fMRI Go/No-Go task to quantify inhibitory behavior and brain activity. Behaviorally, group performance differences were observed for Go correct-hit and No-Go false-alarm reaction times with increased reaction times in heavy compared with light drinkers. During fMRI No-Go correct rejections, light drinkers exhibited greater BOLD response than did heavy drinkers in left supplementary motor area (SMA), bilateral parietal lobule, right hippocampus, bilateral middle frontal gyrus, left superior temporal gyrus, and cingulate gyrus/anterior cingulate cortex (Brodmann area 24). Group differences in Go/No-Go-related regional activations correlated with alcohol- and impulsivity-related measures. These findings suggest that heavy alcohol drinkers may have dysfunction in brain regions underlying attention and response inhibition, leading to diminished abilities to suppress prepotent responding. The extent to which these tendencies relate to impulsive decision-making and behaviors in real-life settings and may guide intervention development warrants additional investigation. PMID:23670589

  7. Nocturnal light exposure impairs affective responses in a wavelength-dependent manner.

    PubMed

    Bedrosian, Tracy A; Vaughn, Celynn A; Galan, Anabel; Daye, Ghassan; Weil, Zachary M; Nelson, Randy J

    2013-08-07

    Life on earth is entrained to a 24 h solar cycle that synchronizes circadian rhythms in physiology and behavior; light is the most potent entraining cue. In mammals, light is detected by (1) rods and cones, which mediate visual function, and (2) intrinsically photosensitive retinal ganglion cells (ipRGCs), which primarily project to the suprachiasmatic nucleus (SCN) in the hypothalamus to regulate circadian rhythms. Recent evidence, however, demonstrates that ipRGCs also project to limbic brain regions, suggesting that, through this pathway, light may have a role in cognition and mood. Therefore, it follows that unnatural exposure to light may have negative consequences for mood or behavior. Modern environmental lighting conditions have led to excessive exposure to light at night (LAN), and particularly to blue wavelength lights. We hypothesized that nocturnal light exposure (i.e., dim LAN) would induce depressive responses and alter neuronal structure in hamsters (Phodopus sungorus). If this effect is mediated by ipRGCs, which have reduced sensitivity to red wavelength light, then we predicted that red LAN would have limited effects on brain and behavior compared with shorter wavelengths. Additionally, red LAN would not induce c-Fos activation in the SCN. Our results demonstrate that exposure to LAN influences behavior and neuronal plasticity and that this effect is likely mediated by ipRGCs. Modern sources of LAN that contain blue wavelengths may be particularly disruptive to the circadian system, potentially contributing to altered mood regulation.

  8. Circadian light

    PubMed Central

    2010-01-01

    The present paper reflects a work in progress toward a definition of circadian light, one that should be informed by the thoughtful, century-old evolution of our present definition of light as a stimulus for the human visual system. This work in progress is based upon the functional relationship between optical radiation and its effects on nocturnal melatonin suppression, in large part because the basic data are available in the literature. Discussed here are the fundamental differences between responses by the visual and circadian systems to optical radiation. Brief reviews of photometry, colorimetry, and brightness perception are presented as a foundation for the discussion of circadian light. Finally, circadian light (CLA) and circadian stimulus (CS) calculation procedures based on a published mathematical model of human circadian phototransduction are presented with an example. PMID:20377841

  9. Development of a visible light transmission (VLT) measurement system using an open-path optical method

    NASA Astrophysics Data System (ADS)

    Nurulain, S.; Manap, H.

    2017-09-01

    This paper describes about a visible light transmission (VLT) measurement system using an optical method. VLT rate plays an important role in order to determine the visibility of a medium. Current instrument to measure visibility has a gigantic set up, costly and mostly fails to function at low light condition environment. This research focuses on the development of a VLT measurement system using a simple experimental set-up and at a low cost. An open path optical technique is used to measure a few series of known-VLT thin film that act as sample of different visibilities. This measurement system is able to measure the light intensity of these thin films within the visible light region (535-540 nm) and the response time is less than 1s.

  10. Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing

    PubMed Central

    Davuluri, Ganga Rao; van Tuinen, Ageeth; Mustilli, Anna Chiara; Manfredonia, Alessandro; Newman, Robert; Burgess, Diane; Brummell, David A.; King, Stephen R.; Palys, Joe; Uhlig, John; Pennings, Henk M. J.; Bowler, Chris

    2013-01-01

    Summary The tomato HIGH PIGMENT-2 gene encodes an orthologue of the Arabidopsis nuclear protein DE-ETIOLATED 1 (DET1). From genetic analyses it has been proposed that DET1 is a negative regulator of light signal transduction, and recent results indicate that it may control light-regulated gene expression at the level of chromatin remodelling. To gain further understanding about the function of DET1 during plant development, we generated a range of overexpression constructs and introduced them into tomato. Unexpectedly, we only observed phenotypes characteristic of DET1 inactivation, i.e. hyper-responsiveness to light. Molecular analysis indicated in all cases that these phenotypes were a result of suppression of endogenous DET1 expression, due to post-transcriptional gene silencing. DET1 silencing was often lethal when it occurred at relatively early stages of plant development, whereas light hyper-responsive phenotypes were obtained when silencing occurred later on. The appearance of phenotypes correlated with the generation of siRNAs but not DNA hypermethylation, and was most efficient when using constructs with mutations in the DET1 coding sequence or with constructs containing only the 3′-terminal portion of the gene. These results indicate an important function for DET1 throughout plant development and demonstrate that silencing of DET1 in fruits results in increased carotenoids, which may have biotechnological potential. PMID:15469492

  11. DETECTORS AND EXPERIMENTAL METHODS: Measurement of the response function and the detection efficiency of an organic liquid scintillator for neutrons between 1 and 30 MeV

    NASA Astrophysics Data System (ADS)

    Huang, Han-Xiong; Ruan, Xi-Chao; Chen, Guo-Chang; Zhou, Zu-Ying; Li, Xia; Bao, Jie; Nie, Yang-Bo; Zhong, Qi-Ping

    2009-08-01

    The light output function of a varphi50.8 mm × 50.8 mm BC501A scintillation detector was measured in the neutron energy region of 1 to 30 MeV by fitting the pulse height (PH) spectra for neutrons with the simulations from the NRESP code at the edge range. Using the new light output function, the neutron detection efficiency was determined with two Monte-Carlo codes, NEFF and SCINFUL. The calculated efficiency was corrected by comparing the simulated PH spectra with the measured ones. The determined efficiency was verified at the near threshold region and normalized with a Proton-Recoil-Telescope (PRT) at the 8-14 MeV energy region.

  12. Tree diversity affects chlorophyll a fluorescence and other leaf traits of tree species in a boreal forest.

    PubMed

    Pollastrini, Martina; Nogales, Ana Garcia; Benavides, Raquel; Bonal, Damien; Finer, Leena; Fotelli, Mariangela; Gessler, Arthur; Grossiord, Charlotte; Radoglou, Kalliopi; Strasser, Reto J; Bussotti, Filippo

    2017-02-01

    An assemblage of tree species with different crown properties creates heterogeneous environments at the canopy level. Changes of functional leaf traits are expected, especially those related to light interception and photosynthesis. Chlorophyll a fluorescence (ChlF) properties in dark-adapted leaves, specific leaf area, leaf nitrogen content (N) and carbon isotope composition (δ13C) were measured on Picea abies (L.) H.Karst., Pinus sylvestris L. and Betula pendula Roth. in monospecific and mixed boreal forests in Europe, in order to test whether they were affected by stand species richness and composition. Photosynthetic efficiency, assessed by induced emission of leaf ChlF, was positively influenced in B. pendula by species richness, whereas P. abies showed higher photosynthetic efficiency in monospecific stands. Pinus sylvestris had different responses when it coexisted with P. abies or B. pendula. The presence of B. pendula, but not of P. abies, in the forest had a positive effect on the efficiency of photosynthetic electron transport and N in P. sylvestris needles, and the photosynthetic responses were positively correlated with an increase of leaf δ13C. These effects on P. sylvestris may be related to high light availability at the canopy level due to the less dense canopy of B. pendula. The different light requirements of coexisting species was the most important factor affecting the distribution of foliage in the canopy, driving the physiological responses of the mixed species. Future research directions claim to enhance the informative potential of the methods to analyse the responses of pure and mixed forests to environmental factors, including a broader set of plant species' functional traits and physiological responses. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Transcriptional regulation of the CRK/DUF26 group of Receptor-like protein kinases by ozone and plant hormones in Arabidopsis

    PubMed Central

    2010-01-01

    Background Plant Receptor-like/Pelle kinases (RLK) are a group of conserved signalling components that regulate developmental programs and responses to biotic and abiotic stresses. One of the largest RLK groups is formed by the Domain of Unknown Function 26 (DUF26) RLKs, also called Cysteine-rich Receptor-like Kinases (CRKs), which have been suggested to play important roles in the regulation of pathogen defence and programmed cell death. Despite the vast number of RLKs present in plants, however, only a few of them have been functionally characterized. Results We examined the transcriptional regulation of all Arabidopsis CRKs by ozone (O3), high light and pathogen/elicitor treatment - conditions known to induce the production of reactive oxygen species (ROS) in various subcellular compartments. Several CRKs were transcriptionally induced by exposure to O3 but not by light stress. O3 induces an extracellular oxidative burst, whilst light stress leads to ROS production in chloroplasts. Analysis of publicly available microarray data revealed that the transcriptional responses of the CRKs to O3 were very similar to responses to microbes or pathogen-associated molecular patterns (PAMPs). Several mutants altered in hormone biosynthesis or signalling showed changes in basal and O3-induced transcriptional responses. Conclusions Combining expression analysis from multiple treatments with mutants altered in hormone biosynthesis or signalling suggest a model in which O3 and salicylic acid (SA) activate separate signaling pathways that exhibit negative crosstalk. Although O3 is classified as an abiotic stress to plants, transcriptional profiling of CRKs showed strong similarities between the O3 and biotic stress responses. PMID:20500828

  14. Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period.

    PubMed

    Salomé, Patrice A; To, Jennifer P C; Kieber, Joseph J; McClung, C Robertson

    2006-01-01

    Light and temperature are potent environmental signals used to synchronize the circadian oscillator with external time and photoperiod. Phytochrome and cryptochrome photoreceptors integrate light quantity and quality to modulate the pace and phase of the clock. PHYTOCHROME B (phyB) controls period length in red light as well as the phase of the clock in white light. phyB interacts with ARABIDOPSIS RESPONSE REGULATOR4 (ARR4) in a light-dependent manner. Accordingly, we tested ARR4 and other members of the type-A ARR family for roles in clock function and show that ARR4 and its closest relative, ARR3, act redundantly in the Arabidopsis thaliana circadian system. Loss of ARR3 and ARR4 lengthens the period of the clock even in the absence of light, demonstrating that they do so independently of active phyB. In addition, in white light, arr3,4 mutants show a leading phase similar to phyB mutants, suggesting that circadian light input is modulated by the interaction of phyB with ARR4. Although type-A ARRs are involved in cytokinin signaling, the circadian defects appear to be independent of cytokinin, as exogenous cytokinin affects the phase but not the period of the clock. Therefore, ARR3 and ARR4 are critical for proper circadian period and define an additional level of regulation of the circadian clock in Arabidopsis.

  15. Functional Accumulation of Antenna Proteins in Chlorophyll b-Less Mutants of Chlamydomonas reinhardtii.

    PubMed

    Bujaldon, Sandrine; Kodama, Natsumi; Rappaport, Fabrice; Subramanyam, Rajagopal; de Vitry, Catherine; Takahashi, Yuichiro; Wollman, Francis-André

    2017-01-09

    The green alga Chlamydomonas reinhardtii contains several light-harvesting chlorophyll a/b complexes (LHC): four major LHCIIs, two minor LHCIIs, and nine LHCIs. We characterized three chlorophyll b-less mutants to assess the effect of chlorophyll b deficiency on the function, assembly, and stability of these chlorophyll a/b binding proteins. We identified point mutations in two mutants that inactivate the CAO gene responsible for chlorophyll a to chlorophyll b conversion. All LHCIIs accumulated to wild-type levels in a CAO mutant but their light-harvesting function for photosystem II was impaired. In contrast, most LHCIs accumulated to wild-type levels in the mutant and their light-harvesting capability for photosystem I remained unaltered. Unexpectedly, LHCI accumulation and the photosystem I functional antenna size increased in the mutant compared with in the wild type when grown in dim light. When the CAO mutation was placed in a yellow-in-the-dark background (yid-BF3), in which chlorophyll a synthesis remains limited in dim light, accumulation of the major LHCIIs and of most LHCIs was markedly reduced, indicating that sustained synthesis of chlorophyll a is required to preserve the proteolytic resistance of antenna proteins. Indeed, after crossing yid-BF3 with a mutant defective for the thylakoid FtsH protease activity, yid-BF3-ftsh1 restored wild-type levels of LHCI, which defines LHCI as a new substrate for the FtsH protease. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  16. The Transcription Factor BcLTF1 Regulates Virulence and Light Responses in the Necrotrophic Plant Pathogen Botrytis cinerea

    PubMed Central

    Schumacher, Julia; Simon, Adeline; Cohrs, Kim Christopher; Viaud, Muriel; Tudzynski, Paul

    2014-01-01

    Botrytis cinerea is the causal agent of gray mold diseases in a range of dicotyledonous plant species. The fungus can reproduce asexually by forming macroconidia for dispersal and sclerotia for survival; the latter also participate in sexual reproduction by bearing the apothecia after fertilization by microconidia. Light induces the differentiation of conidia and apothecia, while sclerotia are exclusively formed in the absence of light. The relevance of light for virulence of the fungus is not obvious, but infections are observed under natural illumination as well as in constant darkness. By a random mutagenesis approach, we identified a novel virulence-related gene encoding a GATA transcription factor (BcLTF1 for light-responsive TF1) with characterized homologues in Aspergillus nidulans (NsdD) and Neurospora crassa (SUB-1). By deletion and over-expression of bcltf1, we confirmed the predicted role of the transcription factor in virulence, and discovered furthermore its functions in regulation of light-dependent differentiation, the equilibrium between production and scavenging of reactive oxygen species (ROS), and secondary metabolism. Microarray analyses revealed 293 light-responsive genes, and that the expression levels of the majority of these genes (66%) are modulated by BcLTF1. In addition, the deletion of bcltf1 affects the expression of 1,539 genes irrespective of the light conditions, including the overexpression of known and so far uncharacterized secondary metabolism-related genes. Increased expression of genes encoding alternative respiration enzymes, such as the alternative oxidase (AOX), suggest a mitochondrial dysfunction in the absence of bcltf1. The hypersensitivity of Δbctlf1 mutants to exogenously applied oxidative stress - even in the absence of light - and the restoration of virulence and growth rates in continuous light by antioxidants, indicate that BcLTF1 is required to cope with oxidative stress that is caused either by exposure to light or arising during host infection. PMID:24415947

  17. Mitochondrial damage and cytoskeleton reorganization in human dermal fibroblasts exposed to artificial visible light similar to screen-emitted light.

    PubMed

    Rascalou, Adeline; Lamartine, Jérôme; Poydenot, Pauline; Demarne, Frédéric; Bechetoille, Nicolas

    2018-05-05

    Artificial visible light is everywhere in modern life. Social communication confronts us with screens of all kinds, and their use is on the rise. We are therefore increasingly exposed to artificial visible light, the effects of which on skin are poorly known. The purpose of this study was to model the artificial visible light emitted by electronic devices and assess its effect on normal human fibroblasts. The spectral irradiance emitted by electronic devices was optically measured and equipment was developed to accurately reproduce such artificial visible light. Effects on normal human fibroblasts were analyzed on human genome microarray-based gene expression analysis. At cellular level, visualization and image analysis were performed on the mitochondrial network and F-actin cytoskeleton. Cell proliferation, ATP release and type I procollagen secretion were also measured. We developed a device consisting of 36 LEDs simultaneously emitting blue, green and red light at distinct wavelengths (450 nm, 525 nm and 625 nm) with narrow spectra and equivalent radiant power for the three colors. A dose of 99 J/cm 2 artificial visible light was selected so as not to induce cell mortality following exposure. Microarray analysis revealed 2984 light-modulated transcripts. Functional annotation of light-responsive genes revealed several enriched functions including, amongst others, the "mitochondria" and "integrin signaling" categories. Selected results were confirmed by real-time quantitative PCR, analyzing 24 genes representing these two categories. Analysis of micro-patterned culture plates showed marked fragmentation of the mitochondrial network and disorganization of the F-actin cytoskeleton following exposure. Functionally, there was considerable impairment of cell growth and spread, ATP release and type I procollagen secretion in exposed fibroblasts. Artificial visible light induces drastic molecular and cellular changes in normal human fibroblasts. This may impede normal cellular functions and contribute to premature skin aging. The present results extend our knowledge of the effects of the low-energy wavelengths that are increasingly used to treat skin disorders. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  18. Shear-induced surface alignment of polymer dispersed liquid crystal microdroplets on the boundary layer

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Singh, J. J.

    1993-01-01

    Polymer dispersed liquid crystal thin films have been deposited on a glass substrate, utilizing the processes of polymerization and solvent evaporation induced phase separation. Liquid crystal microdroplets trapped on the upper surface of the thin film respond to the shear stress due to air or gas flow on the surface layer. Response to an applied step shear stress input on the surface layer has been measured by measuring the time response of the transmitted light intensity. Initial results on the measurements of the light transmission as a function of the air flow differential pressure indicate that these systems offer features suitable for boundary layer and gas flow sensors.

  19. Fluorescent protein-mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments.

    PubMed

    Gittins, John R; D'Angelo, Cecilia; Oswald, Franz; Edwards, Richard J; Wiedenmann, Jörg

    2015-01-01

    The genomic framework that enables corals to adjust to unfavourable conditions is crucial for coral reef survival in a rapidly changing climate. We have explored the striking intraspecific variability in the expression of coral pigments from the green fluorescent protein (GFP) family to elucidate the genomic basis for the plasticity of stress responses among reef corals. We show that multicopy genes can greatly increase the dynamic range over which corals can modulate transcript levels in response to the light environment. Using the red fluorescent protein amilFP597 in the coral Acropora millepora as a model, we demonstrate that its expression increases with light intensity, but both the minimal and maximal gene transcript levels vary markedly among colour morphs. The pigment concentration in the tissue of different morphs is strongly correlated with the number of gene copies with a particular promoter type. These findings indicate that colour polymorphism in reef corals can be caused by the environmentally regulated expression of multicopy genes. High-level expression of amilFP597 is correlated with reduced photodamage of zooxanthellae under acute light stress, supporting a photoprotective function of this pigment. The cluster of light-regulated pigment genes can enable corals to invest either in expensive high-level pigmentation, offering benefits under light stress, or to rely on low tissue pigment concentrations and use the conserved resources for other purposes, which is preferable in less light-exposed environments. The genomic framework described here allows corals to pursue different strategies to succeed in habitats with highly variable light stress levels. In summary, our results suggest that the intraspecific plasticity of reef corals' stress responses is larger than previously thought. © 2014 The Authors Molecular Ecology Published by John Wiley & Sons Ltd.

  20. Near-infrared light-responsive dynamic wrinkle patterns.

    PubMed

    Li, Fudong; Hou, Honghao; Yin, Jie; Jiang, Xuesong

    2018-04-01

    Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light-responsive dynamic wrinkles by using a carbon nanotube (CNT)-containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics.

  1. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults.

    PubMed

    Cheung, Ivy N; Zee, Phyllis C; Shalman, Dov; Malkani, Roneil G; Kang, Joseph; Reid, Kathryn J

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism.

  2. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults

    PubMed Central

    Cheung, Ivy N.; Zee, Phyllis C.; Shalman, Dov; Malkani, Roneil G.; Kang, Joseph; Reid, Kathryn J.

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism. PMID:27191727

  3. Photoreceptor Cells With Profound Structural Deficits Can Support Useful Vision in Mice

    PubMed Central

    Thompson, Stewart; Blodi, Frederick R.; Lee, Swan; Welder, Chris R.; Mullins, Robert F.; Tucker, Budd A.; Stasheff, Steven F.; Stone, Edwin M.

    2014-01-01

    Purpose. In animal models of degenerative photoreceptor disease, there has been some success in restoring photoreception by transplanting stem cell–derived photoreceptor cells into the subretinal space. However, only a small proportion of transplanted cells develop extended outer segments, considered critical for photoreceptor cell function. The purpose of this study was to determine whether photoreceptor cells that lack a fully formed outer segment could usefully contribute to vision. Methods. Retinal and visual function was tested in wild-type and Rds mice at 90 days of age (RdsP90). Photoreceptor cells of mice homozygous for the Rds mutation in peripherin 2 never develop a fully formed outer segment. The electroretinogram and multielectrode recording of retinal ganglion cells were used to test retinal responses to light. Three distinct visual behaviors were used to assess visual capabilities: the optokinetic tracking response, the discrimination-based visual water task, and a measure of the effect of vision on wheel running. Results. RdsP90 mice had reduced but measurable electroretinogram responses to light, and exhibited light-evoked responses in multiple types of retinal ganglion cells, the output neurons of the retina. In optokinetic and discrimination-based tests, acuity was measurable but reduced, most notably when contrast was decreased. The wheel running test showed that RdsP90 mice needed 3 log units brighter luminance than wild type to support useful vision (10 cd/m2). Conclusions. Photoreceptors that lack fully formed outer segments can support useful vision. This challenges the idea that normal cellular structure needs to be completely reproduced for transplanted cells to contribute to useful vision. PMID:24569582

  4. Brain’s DNA Repair Response to Neurotoxicants

    DTIC Science & Technology

    2005-07-01

    it is possible that OTA exposure may impact on this ability of this structure to maintain its functional integrity over time. Indeed it is known...Gordon et al., 2004). In light of the critical role played by hippocampus in cognitive function, and the importance of neurogenesis in this structure ...uncompetitive inhibitorof both succinate-cytochrome c reductase and succinate dehydrogenase while sparing cytochrome oxidase and NADH dehydrogenase

  5. The Effect of PKCα on the Light Response of Rod Bipolar Cells in the Mouse Retina

    PubMed Central

    Xiong, Wei-Hong; Pang, Ji-Jie; Pennesi, Mark E.; Duvoisin, Robert M.; Wu, Samuel M.; Morgans, Catherine W.

    2015-01-01

    Purpose Protein kinase C α (PKCα) is abundantly expressed in rod bipolar cells (RBCs) in the retina, yet the physiological function of PKCα in these cells is not well understood. To elucidate the role of PKCα in visual processing in the eye, we examined the effect of genetic deletion of PKCα on the ERG and on RBC light responses in the mouse. Methods Immunofluorescent labeling was performed on wild-type (WT), TRPM1 knockout, and PKCα knockout (PKC-KO) retina. Scotopic and photopic ERGs were recorded from WT and PKC-KO mice. Light responses of RBCs were measured using whole-cell recordings in retinal slices from WT and PKC-KO mice. Results Protein kinase C alpha expression in RBCs is correlated with the activity state of the cell. Rod bipolar cells dendrites are a major site of PKCα phosphorylation. Electroretinogram recordings indicated that loss of PKCα affects the scotopic b-wave, including a larger peak amplitude, longer implicit time, and broader width of the b-wave. There were no differences in the ERG a- or c-wave between PKCα KO and WT mice, indicating no measurable effect of PKCα in photoreceptors or the RPE. The photopic ERG was unaffected consistent with the lack of detectable PKCα in cone bipolar cells. Whole-cell recordings from RBCs in PKC-KO retinal slices revealed that, compared with WT, RBC light responses in the PKC-KO retina are delayed and of longer duration. Conclusions Protein kinase C alpha plays an important modulatory role in RBCs, regulating both the peak amplitude and temporal properties of the RBC light response in the rod visual pathway. PMID:26230760

  6. Cobalamin-fluorophores' photochemistry and biomedical applications

    NASA Astrophysics Data System (ADS)

    Rodgers, Zachary Lewis

    As science focuses on the finer details of complex processes occurring in biology, the need for tools responsive to researcher control have become critical to communicate with cellular functions in both a spatial and temporal manner. To this end, light responsive "caging groups" have been used to generate molecular constructs with which researchers can activate using directed irradiation to elicit biological responses where and when they want. This advancement in molecular control has greatly improved our ability to study biological systems in their dynamically intricate form. Most of these photoresponsive moieties perform well within a petri dish, but their application is limited in vivo. Current photochemical tools require high energy light for their activation. Dermal tissue contains bio chromophores that absorb this light and prevents its penetration to less than a few millimeters making photoactivation impossible. However, tissue has an "optical window" in the red and near infrared (600 -- 1000 nm) where light penetrates efficiently to clinically relevant depths. Therefore, researchers have sought long wavelength responsive caging groups but have had little success to date. Herein, I report the development of an entire class of red and near infrared responsive (600 -- 800 nm) caging groups based on Vitamin B12 or cobalamin. Upon modification with a fluorophore antenna, these metal complexes can capture long wavelength light to perform photochemical work in the form of bond scission reactions. The effect is compatible with a range of fluorophores covering the entire near infrared spectrum, and bond scission proceeds rapidly with extremely high efficiencies. In this work, the initial development and characterization of these molecules as photoactivateable groups will be discussed. Furthermore, I will demonstrate how these molecules can be applied for clinical applications, such as drug delivery and tissue scaffold formation, to provide safer and less invasive treatments.

  7. Hypothesis on the nature of time

    NASA Astrophysics Data System (ADS)

    Coumbe, D. N.

    2015-06-01

    We present numerical evidence that fictitious diffusing particles in the causal dynamical triangulation (CDT) approach to quantum gravity exceed the speed of light on small distance scales. We argue this superluminal behavior is responsible for the appearance of dimensional reduction in the spectral dimension. By axiomatically enforcing a scale invariant speed of light we show that time must dilate as a function of relative scale, just as it does as a function of relative velocity. By calculating the Hausdorff dimension of CDT diffusion paths we present a seemingly equivalent dual description in terms of a scale dependent Wick rotation of the metric. Such a modification to the nature of time may also have relevance for other approaches to quantum gravity.

  8. In Vivo Function of Tryptophans in the Arabidopsis UV-B Photoreceptor UVR8[W

    PubMed Central

    O’Hara, Andrew; Jenkins, Gareth I.

    2012-01-01

    Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor specifically for UV-B light that initiates photomorphogenic responses in plants. UV-B exposure causes rapid conversion of UVR8 from dimer to monomer, accumulation in the nucleus, and interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), which functions with UVR8 in UV-B responses. Studies in yeast and with purified UVR8 implicate several tryptophan amino acids in UV-B photoreception. However, their roles in UV-B responses in plants, and the functional significance of all 14 UVR8 tryptophans, are not known. Here we report the functions of the UVR8 tryptophans in vivo. Three tryptophans in the β-propeller core are important in maintaining structural stability and function of UVR8. However, mutation of three other core tryptophans and four at the dimeric interface has no apparent effect on function in vivo. Mutation of three tryptophans implicated in UV-B photoreception, W233, W285, and W337, impairs photomorphogenic responses to different extents. W285 is essential for UVR8 function in plants, whereas W233 is important but not essential for function, and W337 has a lesser role. Ala mutants of these tryptophans appear monomeric and constitutively bind COP1 in plants, but their responses indicate that monomer formation and COP1 binding are not sufficient for UVR8 function. PMID:23012433

  9. Photoelectrochemically driven self-assembly method

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat

    2017-01-17

    Various technologies described herein pertain to assembling electronic devices into a microsystem. The electronic devices are disposed in a solution. Light can be applied to the electronic devices in the solution. The electronic devices can generate currents responsive to the light applied to the electronic devices in the solution, and the currents can cause electrochemical reactions that functionalize regions on surfaces of the electronic devices. Additionally or alternatively, the light applied to the electronic devices in the solution can cause the electronic devices to generate electric fields, which can orient the electronic devices and/or induce movement of the electronic devices with respect to a receiving substrate. Further, electrodes on a receiving substrate can be biased to attract and form connections with the electronic devices having the functionalized regions on the surfaces. The microsystem can include the receiving substrate and the electronic devices connected to the receiving substrate.

  10. Distinct lobes of Limulus ventral photoreceptors. I. Functional and anatomical properties of lobes revealed by removal of glial cells

    PubMed Central

    1982-01-01

    Removing the glial cells that encase Limulus ventral photoreceptors allows direct observation of the cell surface. Light microscopy of denuded photoreceptors reveals a subdivision of the cell body into lobes. Often one lobe, but sometimes several, is relatively clear and translucent (the R lobes). The lobe adjacent to the axon (the A lobe) has a textured appearance. Scanning electron microscopy shows that microvilli cover the surface of R lobes and are absent from the surface of A lobes. When a dim spot of light is incident on the R lobe, the probability of evoking a single photon response is two to three orders of magnitude higher than when the same spot is incident on the A lobe. We conclude that the sensitivity of the cell to light is principally a function of the R lobe. PMID:7175490

  11. Visible-light-driven chemoselective hydrogenation of nitroarenes to anilines in water via graphitic carbon nitride metal-free photocatalysis.

    PubMed

    Xiao, Gang; Li, Peifeng; Zhao, Yilin; Xu, Shengnan; Su, Haijia

    2018-05-20

    Green and efficient procedures are highly required for the chemoselective hydrogenation of functionalized nitroarenes to industrially important anilines. Here, we show that visible-light-driven, chemoselective hydrogenation of functionalized nitroarenes bearing the sensitive groups to anilines can be achieved in good to excellent yields (82-100%) in water under relatively mild conditions, catalyzed by low-cost and recyclable graphitic carbon nitride. It is also applicable in gram-scale reaction with 86% yield of aniline. Mechanism study reveals that visible light induced electrons are responsible for the hydrogenation reactions and thermal energy can also promote the photocatalytic activity. Kinetics study shows that this reaction possibly occurs via one-step hydrogenation or stepwise condensation route. Wide applications can be expected using this green, efficient, and highly selective photocatalysis system in reduction reactions for fine chemical synthesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leucophaea maderae.

    PubMed

    Loesel, R; Homberg, U

    2001-10-15

    The accessory medulla (AMe), a small neuropil in the insect optic lobe, has been proposed to serve a circadian pacemaker function analogous to the role of the suprachiasmatic nucleus in mammals. Building upon considerable knowledge of the circadian system of the cockroach Leucophaea maderae, we investigated the properties of AMe neurons in this insect with intracellular recordings combined with dye injections. Responses of neurons with processes in the AMe to visual stimuli, including stationary white light, moving objects, and polarized light were compared with the responses of adjacent medulla tangential neurons. Neurons with processes in the AMe and additional ramifications in the medulla strongly responded to stationary light stimuli and might, therefore, be part of photic entrainment pathways to the clock. Accessory medulla neurons lacking significant processes in the medulla but with projections to the midbrain or to the contralateral optic lobe, in contrast, responded weakly or not at all to light and, thus, seem to be part of the clock's output pathway. Two types of commissural neurons with tangential arborizations in both medullae were sensitive to polarized light, suggesting a role of these neurons in celestial navigation. Sidebranches in the AMae of one of the two cell types are discussed with respect to a possible involvement of the AMe in polarization vision. Finally, neurons responding to movement stimuli did not arborize in the AMe. The results show that the AMe receives photic input and support a role of this neuropil in circadian timekeeping functions. Copyright 2001 Wiley-Liss, Inc.

  13. Phototropins Function in High-Intensity Blue Light-Induced Hypocotyl Phototropism in Arabidopsis by Altering Cytosolic Calcium1[C][W][OA

    PubMed Central

    Zhao, Xiang; Wang, Yan-Liang; Qiao, Xin-Rong; Wang, Jin; Wang, Lin-Dan; Xu, Chang-Shui; Zhang, Xiao

    2013-01-01

    Phototropins (phot1 and phot2), the blue light receptors in plants, regulate hypocotyl phototropism in a fluence-dependent manner. Especially under high fluence rates of blue light (HBL), the redundant function mediated by both phot1 and phot2 drastically restricts the understanding of the roles of phot2. Here, systematic analysis of phototropin-related mutants and overexpression transgenic lines revealed that HBL specifically induced a transient increase in cytosolic Ca2+ concentration ([Ca2+]cyt) in Arabidopsis (Arabidopsis thaliana) hypocotyls and that the increase in [Ca2+]cyt was primarily attributed to phot2. Pharmacological and genetic experiments illustrated that HBL-induced Ca2+ increases were modulated differently by phot1 and phot2. Phot2 mediated the HBL-induced increase in [Ca2+]cyt mainly by an inner store-dependent Ca2+-release pathway, not by activating plasma membrane Ca2+ channels. Further analysis showed that the increase in [Ca2+]cyt was possibly responsible for HBL-induced hypocotyl phototropism. An inhibitor of auxin efflux carrier exhibited significant inhibitions of both phototropism and increases in [Ca2+]cyt, which indicates that polar auxin transport is possibly involved in HBL-induced responses. Moreover, PHYTOCHROME KINASE SUBSTRATE1 (PKS1), the phototropin-related signaling element identified, interacted physically with phototropins, auxin efflux carrier PIN-FORMED1 and calcium-binding protein CALMODULIN4, in vitro and in vivo, respectively, and HBL-induced phototropism was impaired in pks multiple mutants, indicating the role of the PKS family in HBL-induced phototropism. Together, these results provide new insights into the functions of phototropins and highlight a potential integration point through which Ca2+ signaling-related HBL modulates hypocotyl phototropic responses. PMID:23674105

  14. Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium.

    PubMed

    Zhao, Xiang; Wang, Yan-Liang; Qiao, Xin-Rong; Wang, Jin; Wang, Lin-Dan; Xu, Chang-Shui; Zhang, Xiao

    2013-07-01

    Phototropins (phot1 and phot2), the blue light receptors in plants, regulate hypocotyl phototropism in a fluence-dependent manner. Especially under high fluence rates of blue light (HBL), the redundant function mediated by both phot1 and phot2 drastically restricts the understanding of the roles of phot2. Here, systematic analysis of phototropin-related mutants and overexpression transgenic lines revealed that HBL specifically induced a transient increase in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in Arabidopsis (Arabidopsis thaliana) hypocotyls and that the increase in [Ca(2+)]cyt was primarily attributed to phot2. Pharmacological and genetic experiments illustrated that HBL-induced Ca(2+) increases were modulated differently by phot1 and phot2. Phot2 mediated the HBL-induced increase in [Ca(2+)]cyt mainly by an inner store-dependent Ca(2+)-release pathway, not by activating plasma membrane Ca(2+) channels. Further analysis showed that the increase in [Ca(2+)]cyt was possibly responsible for HBL-induced hypocotyl phototropism. An inhibitor of auxin efflux carrier exhibited significant inhibitions of both phototropism and increases in [Ca(2+)]cyt, which indicates that polar auxin transport is possibly involved in HBL-induced responses. Moreover, PHYTOCHROME KINASE SUBSTRATE1 (PKS1), the phototropin-related signaling element identified, interacted physically with phototropins, auxin efflux carrier PIN-FORMED1 and calcium-binding protein CALMODULIN4, in vitro and in vivo, respectively, and HBL-induced phototropism was impaired in pks multiple mutants, indicating the role of the PKS family in HBL-induced phototropism. Together, these results provide new insights into the functions of phototropins and highlight a potential integration point through which Ca(2+) signaling-related HBL modulates hypocotyl phototropic responses.

  15. Controls on seasonal patterns of maximum ecosystem carbon uptake and canopy-scale photosynthetic light response: contributions from both temperature and photoperiod.

    PubMed

    Stoy, Paul C; Trowbridge, Amy M; Bauerle, William L

    2014-02-01

    Most models of photosynthetic activity assume that temperature is the dominant control over physiological processes. Recent studies have found, however, that photoperiod is a better descriptor than temperature of the seasonal variability of photosynthetic physiology at the leaf scale. Incorporating photoperiodic control into global models consequently improves their representation of the seasonality and magnitude of atmospheric CO2 concentration. The role of photoperiod versus that of temperature in controlling the seasonal variability of photosynthetic function at the canopy scale remains unexplored. We quantified the seasonal variability of ecosystem-level light response curves using nearly 400 site years of eddy covariance data from over eighty Free Fair-Use sites in the FLUXNET database. Model parameters describing maximum canopy CO2 uptake and the initial slope of the light response curve peaked after peak temperature in about 2/3 of site years examined, emphasizing the important role of temperature in controlling seasonal photosynthetic function. Akaike's Information Criterion analyses indicated that photoperiod should be included in models of seasonal parameter variability in over 90% of the site years investigated here, demonstrating that photoperiod also plays an important role in controlling seasonal photosynthetic function. We also performed a Granger causality analysis on both gross ecosystem productivity (GEP) and GEP normalized by photosynthetic photon flux density (GEP n ). While photoperiod Granger-caused GEP and GEP n in 99 and 92% of all site years, respectively, air temperature Granger-caused GEP in a mere 32% of site years but Granger-caused GEP n in 81% of all site years. Results demonstrate that incorporating photoperiod may be a logical step toward improving models of ecosystem carbon uptake, but not at the expense of including enzyme kinetic-based temperature constraints on canopy-scale photosynthesis.

  16. Ocular input for human melatonin regulation: relevance to breast cancer

    NASA Technical Reports Server (NTRS)

    Glickman, Gena; Levin, Robert; Brainard, George C.

    2002-01-01

    The impact of breast cancer on women across the world has been extensive and severe. As prevalence of breast cancer is greatest in industrialized regions, exposure to light at night has been proposed as a potential risk factor. This theory is supported by the epidemiological observations of decreased breast cancer in blind women and increased breast cancer in women who do shift-work. In addition, human, animal and in vitro studies which have investigated the melatonin-cancer dynamic indicate an apparent relationship between light, melatonin and cancer, albeit complex. Recent developments in understanding melatonin regulation by light in humans are examined, with particular attention to factors that contribute to the sensitivity of the light-induced melatonin suppression response. Specifically, the role of spectral characteristics of light is addressed, and recent relevant action spectrum studies in humans and other mammalian species are discussed. Across five action spectra for circadian and other non-visual responses, a peak sensitivity between 446-484 nm was identified. Under highly controlled exposure circumstances, less than 1 lux of monochromatic light elicited a significant suppression of nocturnal melatonin. In view of the possible link between light exposure, melatonin suppression and cancer risk, it is important to continue to identify the basic related ocular physiology. Visual performance, rather than circadian function, has been the primary focus of architectural lighting systems. It is now necessary to reevaluate lighting strategies, with consideration of circadian influences, in an effort to maximize physiological homeostasis and health.

  17. Ocular input for human melatonin regulation: relevance to breast cancer.

    PubMed

    Glickman, Gena; Levin, Robert; Brainard, George C

    2002-07-01

    The impact of breast cancer on women across the world has been extensive and severe. As prevalence of breast cancer is greatest in industrialized regions, exposure to light at night has been proposed as a potential risk factor. This theory is supported by the epidemiological observations of decreased breast cancer in blind women and increased breast cancer in women who do shift-work. In addition, human, animal and in vitro studies which have investigated the melatonin-cancer dynamic indicate an apparent relationship between light, melatonin and cancer, albeit complex. Recent developments in understanding melatonin regulation by light in humans are examined, with particular attention to factors that contribute to the sensitivity of the light-induced melatonin suppression response. Specifically, the role of spectral characteristics of light is addressed, and recent relevant action spectrum studies in humans and other mammalian species are discussed. Across five action spectra for circadian and other non-visual responses, a peak sensitivity between 446-484 nm was identified. Under highly controlled exposure circumstances, less than 1 lux of monochromatic light elicited a significant suppression of nocturnal melatonin. In view of the possible link between light exposure, melatonin suppression and cancer risk, it is important to continue to identify the basic related ocular physiology. Visual performance, rather than circadian function, has been the primary focus of architectural lighting systems. It is now necessary to reevaluate lighting strategies, with consideration of circadian influences, in an effort to maximize physiological homeostasis and health.

  18. Enhanced retinal responses in Huntington's disease patients.

    PubMed

    Pearl, Jocelynn R; Heath, Laura M; Bergey, Dani E; Kelly, John P; Smith, Corrie; Laurino, Mercy Y; Weiss, Avery; Price, Nathan D; LaSpada, Albert; Bird, Thomas D; Jayadev, Suman

    2017-01-01

    Huntington's disease (HD) is a fatal progressive neurodegenerative disease characterized by chorea, cognitive impairment and psychiatric symptoms. Retinal examination of HD patients as well as in HD animal models have shown evidence of retinal dysfunction. However, a detailed retinal study employing clinically available measurement tools has not been reported to date in HD. The goal of this study was to assess retinal responses measured by electroretinogram (ERG) between HD patients and controls and evaluate any correlation between ERG measurements and stage of disease. Eighteen patients and 10 controls with inclusion criteria of ages 18-70 years (average age HD subjects: 52.1 yrs and control subjects: 51.9 yrs) were recruited for the study. Subjects with previous history of retinal or ophthalmologic disease were excluded. Retinal function was examined by full-field ERG in both eyes of each subject. Amplitudes and latencies to increasing flash intensities in both light- and dark-adaptation were measured in all subjects. Statistical analyses employed generalized estimating equations, which account for repeated measures per subject. We analyzed the b-wave amplitudes of ERG response in all flash intensities and with 30 Hz flicker stimulation. We found statistically significant increased amplitudes in HD patients compared to controls at light-adapted (photopic) 24.2 and 60.9 cd.sec/m2 intensities, dark-adapted (scotopic, red flash) 0.22 cd.sec/m2 intensity, and a trend toward significance at light-adapted 30 Hz flicker. Furthermore, we found a significant increase in light-adapted ERG response from female compared to male HD patients, but no significant difference between gender amongst controls. We also noted a positive association between number of CAG repeats and ERG response at the smallest light adapted intensity (3.1 cd.sec/m2). ERG studies revealed significantly altered retinal responses at multiple flash intensities in subjects with an HD expansion allele compared to controls. Significant differences were observed with either light-adapted tests or the dark-adapted red flash which suggests that the enhanced responses in HD patients is specific to the cone photoreceptor pathway.

  19. Quantitative Proteomics Analysis of VEGF-Responsive Endothelial Protein S-Nitrosylation Using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and LC-MS/MS.

    PubMed

    Zhang, Hong-Hai; Lechuga, Thomas J; Chen, Yuezhou; Yang, Yingying; Huang, Lan; Chen, Dong-Bao

    2016-05-01

    Adduction of a nitric oxide moiety (NO•) to cysteine(s), termed S-nitrosylation (SNO), is a novel mechanism for NO to regulate protein function directly. However, the endothelial SNO-protein network that is affected by endogenous and exogenous NO is obscure. This study was designed to develop a quantitative proteomics approach using stable isotope labeling by amino acids in cell culture for comparing vascular endothelial growth factor (VEGFA)- and NO donor-responsive endothelial nitroso-proteomes. Primary placental endothelial cells were labeled with "light" (L-(12)C6 (14)N4-Arg and L-(12)C6 (14)N2-Lys) or "heavy" (L-(13)C6 (15)N4-Arg and L-(13)C6 (15)N2-Lys) amino acids. The light cells were treated with an NO donor nitrosoglutathione (GSNO, 1 mM) or VEGFA (10 ng/ml) for 30 min, while the heavy cells received vehicle as control. Equal amounts of cellular proteins from the light (GSNO or VEGFA treated) and heavy cells were mixed for labeling SNO-proteins by the biotin switch technique and then trypsin digested. Biotinylated SNO-peptides were purified for identifying SNO-proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Ratios of light to heavy SNO-peptides were calculated for determining the changes of the VEGFA- and GSNO-responsive endothelial nitroso-proteomes. A total of 387 light/heavy pairs of SNO-peptides were identified, corresponding to 213 SNO-proteins that include 125 common and 27 VEGFA- and 61 GSNO-responsive SNO-proteins. The specific SNO-cysteine(s) in each SNO-protein were simultaneously identified. Pathway analysis revealed that SNO-proteins are involved in various endothelial functions, including proliferation, motility, metabolism, and protein synthesis. We collectively conclude that endogenous NO on VEGFA stimulation and exogenous NO from GSNO affect common and different SNO-protein networks, implicating SNO as a critical mechanism for VEGFA stimulation of angiogenesis. © 2016 by the Society for the Study of Reproduction, Inc.

  20. Image quality degradation by light-scattering processes in high-performance display devices for medical imaging

    NASA Astrophysics Data System (ADS)

    Badano, Aldo

    1999-11-01

    This thesis addresses the characterization of light scattering processes that degrade image quality in high performance electronic display devices for digital radiography. Using novel experimental and computational tools, we study the lateral diffusion of light in emissive display devices that causes extensive veiling glare and significant reduction of the physical contrast. In addition, we examine the deleterious effects of ambient light reflections that affect the contrast of low luminance regions, and superimpose unwanted structured signal. The analysis begins by introducing the performance limitations of the human visual system to define high fidelity requirements. It is noted that current devices severely suffer from image quality degradation due to optical transport processes. To model the veiling glare and reflectance characteristics of display devices, we introduce a Monte Carlo light transport simulation code, DETECT-II, that tracks individual photons through multiple scattering events. The simulation accounts for the photon polarization state at each scattering event, and provides descriptions for rough surfaces and thin film coatings. A new experimental method to measure veiling glare is described next, based on a conic collimated probe that minimizes contamination from bright areas. The measured veiling glare ratio is taken to be the luminance in the surrounding bright field divided by the luminance in the dark circle. We show that veiling glare ratios in the order of a few hundreds can be measured with an uncertainty of a few percent. The veiling glare response function is obtained by measuring the small spot contrast ratio of test patterns having varying dark spot radius. Using DETECT-II, we then estimate the ring response functions for a high performance medical imaging monitor of current design, and compare the predictions of the model with the experimentally measured response function. The data presented in this thesis demonstrate that although absorption in the faceplate of high performance monochrome cathode-ray tube monitors have reduced glare, a black matrix design is needed for high fidelity applications. For a high performance medical imaging monitor with anti-reflective coating, the glare ratio for a 1 cm diameter dark spot was measured to be 240. Finally, we introduce experimental techniques for measurements of specular and diffuse display reflectance, and we compare measured reflection coefficients with Monte Carlo estimates. A specular reflection coefficient of 0.0012, and a diffuse coefficient of 0.005 nits/lux are required to minimize degradation from ambient light in rooms with 100 lux illumination. In spite of having comparable reflection coefficients, the low maximum luminance of current devices worsens the effect of ambient light reflections when compared to radiographic film. Flat panel technologies with optimized designs can perform even better than film due to a thin faceplate, increased light absorption, and high brightness.

  1. Variation in light intensity with height and time from subsequent lightning return strokes

    NASA Technical Reports Server (NTRS)

    Jordan, D. M.; Uman, M. A.

    1983-01-01

    Photographic measurements of relative light intensity as a function of height and time have been conducted for seven return strokes in two lightning flashes at 7.8 and 8.7 km ranges, using film which possesses an approximately constant spectral response in the 300-670 nm range. The amplitude of the initial light peak is noted to decrease exponentially with height, with a decay constant of 0.6-0.8 km. The logarithm of the peak light intensity near the ground is found to be approximately proportional to the initial peak electric field intensity, implying that the current decrease with height may be much slower than the light decrease. Absolute light intensity is presently estimated through the integration of the photographic signals from individual channel segments, in order to simulate the calibrated, all-sky photoelectric data of Guo and Krider (1982).

  2. Enhanced seed production under prolonged heat stress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase 2

    PubMed Central

    Mittler, Ron

    2013-01-01

    Reactive oxygen species play a key role in the response of plants to abiotic stress conditions. Their level is controlled in Arabidopsis thaliana by a large network of genes that includes the H2O2-scavenging enzymes cytosolic ascorbate peroxidase (APX) 1 and 2. Although the function of APX1 has been established under different growth conditions, genetic evidence for APX2 function, as well as for the mode of cooperation between APX1 and APX2, is very limited. This study characterized the response of Arabidopsis mutants deficient in APX1, APX2, and APX1/APX2 to heat, salinity, light, and oxidative stresses. The findings reveal that deficiency in APX2 resulted in a decreased tolerance to light stress, as well as an enhanced tolerance to salinity and oxidative stresses. Interestingly, plants lacking APX2 were more sensitive to heat stress at the seedling stage, but more tolerant to heat stress at the reproductive stage. Cooperation between APX1 and APX2 was evident during oxidative stress, but not during light, salinity, or heat stress. The findings demonstrate a role for APX2 in the response of plants to light, heat, salinity, and oxidative stresses. The finding that plants lacking APX2 produced more seeds under prolonged heat stress conditions suggests that redundant mechanisms activated in APX2-deficient plants during heat stress play a key role in the protection of reproductive tissues from heat-related damage. This finding is very important because heat-associated damage to reproductive tissues in different crops is a major cause for yield loss in agriculture production worldwide. PMID:23183257

  3. Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis.

    PubMed

    Stone, Bethany B; Stowe-Evans, Emily L; Harper, Reneé M; Celaya, R Brandon; Ljung, Karin; Sandberg, Göran; Liscum, Emmanuel

    2008-01-01

    Phototropism represents a differential growth response by which plant organs can respond adaptively to changes in the direction of incident light to optimize leaf/stem positioning for photosynthetic light capture and root growth orientation for water/nutrient acquisition. Studies over the past few years have identified a number of components in the signaling pathway(s) leading to development of phototropic curvatures in hypocotyls. These include the phototropin photoreceptors (phot1 and phot2) that perceive directional blue-light (BL) cues and then stimulate signaling, leading to relocalization of the plant hormone auxin, as well as the auxin response factor NPH4/ARF7 that responds to changes in local auxin concentrations to directly mediate expression of genes likely encoding proteins necessary for development of phototropic curvatures. While null mutations in NPH4/ARF7 condition an aphototropic response to unidirectional BL, seedlings carrying the same mutations recover BL-dependent phototropic responsiveness if co-irradiated with red light (RL) or pre-treated with either ethylene. In the present study, we identify second-site enhancer mutations in the nph4 background that abrogate these recovery responses. One of these mutations--map1 (modifier of arf7 phenotypes 1)--was found to represent a missense allele of AUX1--a gene encoding a high-affinity auxin influx carrier previously associated with a number of root responses. Pharmacological studies and analyses of additional aux1 mutants confirmed that AUX1 functions as a modulator of hypocotyl phototropism. Moreover, we have found that the strength of dependence of hypocotyl phototropism on AUX1-mediated auxin influx is directly related to the auxin responsiveness of the seedling in question.

  4. Both LOV1 and LOV2 domains of phototropin2 function as the photosensory domain for hypocotyl phototropic responses in Arabidopsis thaliana (Brassicaceae).

    PubMed

    Suetsugu, Noriyuki; Kong, Sam-Geun; Kasahara, Masahiro; Wada, Masamitsu

    2013-01-01

    Phototropins (phot) are blue light receptor proteins that mediate phototropism and control photomovement responses, such as chloroplast photorelocation movement and stomatal opening. Arabidopsis thaliana has two phototropins, phot1 and phot2. Although both phot1 and phot2 redundantly mediate photomovement responses, phot2 uniquely regulates phototropism and the chloroplast avoidance response under high-intensity blue light. However, compared to that of phot1, the mechanistic basis of phot2 function is poorly understood, and in particular, the importance of the LOV2 domain in phot2 function has not been clearly demonstrated. Indeed, photocycle-deficient LOV2 transgenic lines expressing phot2 in a phot1phot2 mutant background retained phototropism, although with less sensitivity than wild-type plants. We isolated 11 alleles of phot2 mutants and determined the molecular lesion in each allele. We analyzed hypocotyl phototropism, chloroplast photorelocation movement, and leaf flattening in the phot2 mutant and the respective phot1phot2 double mutant plants. We demonstrated that unlike the phot2 null mutant, the phot2-10 mutant, which has the defective phot2 LOV2 domain, retained the phototropic response and had unusual chloroplast movement. Mutants phot2-2 and phot2-6, which have a missense mutation in the kinase activation loop of phot2, had the phot2-null mutant phenotype. Furthermore, we convincingly demonstrated that the commonly used phot2-1 mutant allele is a phot2-null mutant. The analyses of the multiple phot2 mutant alleles provided strong evidence for the importance of both LOV domains and the kinase activation loop of phot2 in phototropism and other phot-dependent responses and also demonstrated that phot2-1 allele is a null mutant.

  5. Expression of deep brain photoreceptors in the Pekin drake: a possible role in the maintenance of testicular function

    PubMed Central

    Haas, R.; Alenciks, E.; Meddle, S.; Fraley, G. S.

    2017-01-01

    Abstract Several putative deep brain photoreceptors (DBPs) have been identified, such as melanopsin, opsin 5, and vertebrate ancient opsin. The aim of this study was to elucidate the role of DBPs in gonadal regulation in the Pekin drake. As previously reported, we observed opsin-like immunoreactivity (-ir) in the lateral septum (LS), melanopsin-ir in the premammillary nucleus (PMM), and opsin 5-ir in the periventricular organ. To determine the sensitivity of the DBPs to specific wavelengths of light, drakes were given an acute exposure to red, blue, or white light. Blue light stimulated an increase (P < 0.01) in the immediate early gene fra-2-ir co-expression in melanopsin-ir neurons in the PMM, and red light increased (P < 0.05) fra-2-ir co-expression in opsin-ir neurons, suggesting these neurons are blue- and red-receptive, respectively. To further investigate this photoperiodic response, we exposed drakes to chronic red, long-day white, short-day white, or blue light. Blue light elicited gonadal regression, as testes weight (P < 0.001) and plasma luteinizing hormone (LH) levels (P < 0.001) were lower compared to drakes housed under long-day white light. Photo-regressed drakes experienced complete gonadal recrudescence when housed under long-day red and blue light. qRT-PCR analyses showed that gonadally regressed drakes showed reduced levels (P < 0.01) of gonadotropin releasing hormone (GnRH) mRNA but not photoreceptor or GnIH mRNAs compared to gonadally functional drakes. Our data suggest DBP in the LS may be rhodosin and multiple DBPs are required to fully maintain gonadal function in Pekin drakes. PMID:28339754

  6. Transcriptome Profiling of the Abdominal Skin of Larimichthys crocea in Light Stress

    NASA Astrophysics Data System (ADS)

    Han, Zhaofang; Lv, Changhuan; Xiao, Shijun; Ye, Kun; Zhang, Dongling; Tsai, Huai Jen; Wang, Zhiyong

    2018-04-01

    Large yellow croaker ( Larimichthys crocea), one of the most important marine fish species in China, can change its abdominal skin color when it is shifted from light to dark or from dark to light, providing us an opportunity of investigating the molecular responding mechanism of teleost in light stress. The gene expression profile of fish under light stress is rarely documented. In this research, the transcriptome profiles of the abdominal skin of L. crocea exposed to light or dark for 0 h, 0.5 h and 2 h were produced by next-generation sequencing (NGS). The cluster results demonstrated that stress period, rather than light intensity ( e.g., light or dark), is the major influencing factor. Differently expressed genes (DEGs) were identified between 0 h and 0.5 h groups, between 0 h and 2 h groups, between 0.5 h light and 0.5 h dark, and between 2 h light and 2 h dark, respectively. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation revealed that the genes relating to immunity, energy metabolism, and cytoskeletal protein binding were significantly enriched. The detailed analysis of transcriptome profiles also revealed regular gene expression trends, indicating that the elaborate gene regulation networks underlined the molecular responses of the fish to light stress. This transcriptome analysis suggested that systematic and complicated regulatory cascades were functionally activated in response to external stress, and coloration change caused by light stress was mainly attributed to the change in the density of chromatophores for L. crocea. This study also provided valuable information for skin coloration or light stress research on other marine fish species.

  7. Genetics of the Blue Light-Dependent Signal Cascade That Controls Phototaxis in the Cyanobacterium Synechocystis sp. PCC6803.

    PubMed

    Sugimoto, Yuki; Nakamura, Hiroshi; Ren, Shukun; Hori, Koichi; Masuda, Shinji

    2017-03-01

    The Synechocystis sp. PCC6803 can move on a solid surface in response to light, a phenomenon called phototaxis. Although many of the photoreceptors involved in phototaxis have been identified, the mechanisms that regulate directional motility of Synechocystis are not well understood. Previous studies showed that a mutant lacking the blue light-using flavin (BLUF) photoreceptor PixD exhibits negative phototaxis under conditions where the wild type responds positively. PixD interacts with the pseudo-response regulator-like protein PixE in a light-dependent manner, suggesting that this intermolecular interaction is important for phototaxis regulation, although genetic evidence has been lacking. To gain further insight into phototaxis regulation by PixD-PixE signaling, we constructed the deletion mutants ΔPixE and ΔPixD-ΔPixE, and characterized their phenotypes, which matched those of the wild type (positive phototaxis). Because ΔPixD exhibited negative phototaxis, PixE must function downstream of PixD. Under intense blue light (>100 μmol m-2 s-1; 470 nm) the wild type exhibited negative phototaxis, but ΔPixD-PixE exhibited positive phototaxis toward low-intensity blue light (∼0.8 μmol m-2 s-1; 470 nm). These results suggest that an unknown light-sensing system(s), that is necessary for directional cell movement, can be activated by low-intensity blue light; on the other hand, PixD needs high-intensity blue light to be activated. We also isolated spontaneous mutants that compensated for the pixE deletion. Genome-wide sequencing of the mutants revealed that the uncharacterized gene sll2003 regulates positive and negative phototaxis in response to light intensity. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Chromatic multifocal pupillometer for objective perimetry in patients with macular degeneration (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rotenstreich, Ygal; Ben-Ner, Daniel; Mahajna, Mohamad; Chibel, Ron; Sher, Ifat

    2016-03-01

    Purpose: To objectively assess visual field (VF) defects and retinal cell function in healthy subjects and patients with macular degeneration using a chromatic multifocal pupillometer. Methods: A multifocal chromatic pupillometer (MCP) was used to record pupillary responses (PR) of 17 healthy subjects and 5 Best Vitelliform macular dystrophy patients. Blue and red light stimuli (peak 485nm and 620nm, respectively) were presented at light intensities of 400 and 1000 cd/m2, respectively at 76 different points in a 16.2 degree VF. The PR of patients were compared with their findings on Humphrey's 24-2 perimetry, optical coherence tomography and the PR obtained from healthy subjects. Results: Patients demonstrated reduced percentage of pupillary contraction and slower maximal contraction velocity, more than two standard errors (SE) away from the mean of healthy subjects in response to red light in majority of VF locations. In response to blue light, the percentage of pupillary contraction was lower (by over two SE) compared with normal controls only in central locations. The latency of maximal contraction velocity was shorter in patients compared with healthy subjects in response to both colors. Conclusions: This study demonstrated the advantage of using MCP-based objective VF to assess central scotoma in macular degeneration. Our finding also suggests that chromatic perimetry may differentiate between PR mediated by cones and rods, and can specifically detect defects in macular cones. Different parameters of PR such as latency of maximal contraction velocity may shed light on the pathophysiology of different blinding diseases.

  9. Quantitative Proteomics Analysis of VEGF-Responsive Endothelial Protein S-Nitrosylation Using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and LC-MS/MS1

    PubMed Central

    Zhang, Hong-Hai; Lechuga, Thomas J.; Chen, Yuezhou; Yang, Yingying; Huang, Lan; Chen, Dong-Bao

    2016-01-01

    Adduction of a nitric oxide moiety (NO•) to cysteine(s), termed S-nitrosylation (SNO), is a novel mechanism for NO to regulate protein function directly. However, the endothelial SNO-protein network that is affected by endogenous and exogenous NO is obscure. This study was designed to develop a quantitative proteomics approach using stable isotope labeling by amino acids in cell culture for comparing vascular endothelial growth factor (VEGFA)- and NO donor-responsive endothelial nitroso-proteomes. Primary placental endothelial cells were labeled with “light” (L-12C614N4-Arg and L-12C614N2-Lys) or “heavy” (L-13C615N4-Arg and L-13C615N2-Lys) amino acids. The light cells were treated with an NO donor nitrosoglutathione (GSNO, 1 mM) or VEGFA (10 ng/ml) for 30 min, while the heavy cells received vehicle as control. Equal amounts of cellular proteins from the light (GSNO or VEGFA treated) and heavy cells were mixed for labeling SNO-proteins by the biotin switch technique and then trypsin digested. Biotinylated SNO-peptides were purified for identifying SNO-proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Ratios of light to heavy SNO-peptides were calculated for determining the changes of the VEGFA- and GSNO-responsive endothelial nitroso-proteomes. A total of 387 light/heavy pairs of SNO-peptides were identified, corresponding to 213 SNO-proteins that include 125 common and 27 VEGFA- and 61 GSNO-responsive SNO-proteins. The specific SNO-cysteine(s) in each SNO-protein were simultaneously identified. Pathway analysis revealed that SNO-proteins are involved in various endothelial functions, including proliferation, motility, metabolism, and protein synthesis. We collectively conclude that endogenous NO on VEGFA stimulation and exogenous NO from GSNO affect common and different SNO-protein networks, implicating SNO as a critical mechanism for VEGFA stimulation of angiogenesis. PMID:27075618

  10. Ultraviolet-B radiation increases serum 25-hydroxyvitamin D levels: the effect of UVB dose and skin color.

    PubMed

    Armas, Laura A G; Dowell, Susan; Akhter, Mohammed; Duthuluru, Sowjanya; Huerter, Christopher; Hollis, Bruce W; Lund, Richard; Heaney, Robert P

    2007-10-01

    Ultraviolet (UV)-B light increases vitamin D levels, but the dose response and the effect of skin pigmentation have not been well characterized. We sought to define the relationship between UVB exposure and 25-hydroxyvitamin D (25-OH-D) concentrations as a function of skin pigmentation. Seventy two participants with various skin tones had 90% of their skin exposed to UVB light (20-80 mJ/cm2) 3 times a week for 4 weeks. Serum 25-OH-D was measured weekly. Eighty percent of the variation in treatment response was explained by UVB dose and skin tone. Therapeutically important changes in 25-OH-D were achieved with minimal tanning. Four weeks was not long enough to reach a steady state at the higher dose rates. The response of 25-OH-D levels to UVB light is dependent on skin pigmentation and the amount of UVB given, and useful increases in vitamin D status can be achieved by defined UVB doses small enough to produce only minimal tanning.

  11. Insect photoreceptor adaptations to night vision.

    PubMed

    Honkanen, Anna; Immonen, Esa-Ville; Salmela, Iikka; Heimonen, Kyösti; Weckström, Matti

    2017-04-05

    Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).

  12. Photosynthetic responses to temperature across leaf-canopy-ecosystem scales: a 15-year study in a Californian oak-grass savanna.

    PubMed

    Ma, Siyan; Osuna, Jessica L; Verfaillie, Joseph; Baldocchi, Dennis D

    2017-06-01

    Ecosystem CO 2 fluxes measured with eddy-covariance techniques provide a new opportunity to retest functional responses of photosynthesis to abiotic factors at the ecosystem level, but examining the effects of one factor (e.g., temperature) on photosynthesis remains a challenge as other factors may confound under circumstances of natural experiments. In this study, we developed a data mining framework to analyze a set of ecosystem CO 2 fluxes measured from three eddy-covariance towers, plus a suite of abiotic variables (e.g., temperature, solar radiation, air, and soil moisture) measured simultaneously, in a Californian oak-grass savanna from 2000 to 2015. Natural covariations of temperature and other factors caused remarkable confounding effects in two particular conditions: lower light intensity at lower temperatures and drier air and soil at higher temperatures. But such confounding effects may cancel out. At the ecosystem level, photosynthetic responses to temperature did follow a quadratic function on average. The optimum value of photosynthesis occurred within a narrow temperature range (i.e., optimum temperature, T opt ): 20.6 ± 0.6, 18.5 ± 0.7, 19.2 ± 0.5, and 19.0 ± 0.6 °C for the oak canopy, understory grassland, entire savanna, and open grassland, respectively. This paradigm confirms that photosynthesis response to ambient temperature changes is a functional relationship consistent across leaf-canopy-ecosystem scales. Nevertheless, T opt can shift with variations in light intensity, air dryness, or soil moisture. These findings will pave the way to a direct determination of thermal optima and limits of ecosystem photosynthesis, which can in turn provide a rich resource for baseline thresholds and dynamic response functions required for predicting global carbon balance and geographic shifts of vegetative communities in response to climate change.

  13. Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.

    PubMed

    Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W

    2016-01-22

    In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5  GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.

  14. Pupillary responses in non-proliferative diabetic retinopathy.

    PubMed

    Park, Jason C; Chen, Yi-Fan; Blair, Norman P; Chau, Felix Y; Lim, Jennifer I; Leiderman, Yannek I; Shahidi, Mahnaz; McAnany, J Jason

    2017-03-23

    The goal of this study was to determine the extent of rod-, cone-, and melanopsin-mediated pupillary light reflex (PLR) abnormalities in diabetic patients who have non-proliferative diabetic retinopathy (NPDR). Fifty diabetic subjects who have different stages of NPDR and 25 age-equivalent, non-diabetic controls participated. PLRs were measured in response to full-field, brief-flash stimuli under conditions that target the rod, cone, and intrinsically-photosensitive (melanopsin) retinal ganglion cell pathways. Pupil responses were compared among the subjects groups using age-corrected linear mixed models. Compared to control, the mean baseline pupil diameters were significantly smaller for all patient groups in the dark (all p < 0.001) and for the moderate-severe NPDR group in the light (p = 0.003). Pairwise comparisons indicated: (1) the mean melanopsin-mediated PLR was significantly reduced in the mild and moderate-severe groups (both p < 0.001); (2) the mean cone-mediated PLR was reduced significantly in the moderate-severe group (p = 0.008); (3) no significant differences in the mean rod-mediated responses. The data indicate abnormalities in NPDR patients under conditions that separately assess pupil function driven by different photoreceptor classes. The results provide evidence for compromised neural function in these patients and provide a promising approach for quantifying their neural abnormalities.

  15. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    PubMed

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-28

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption.

  16. Light output function and assembly of the time-of-flight enhanced diagnostics neutron spectrometer plastic scintillators for background reduction by double kinematic selection at EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, X. Y.; Chen, Z. J.; Zhang, X.

    The 2.5 MeV neutron spectrometer TOFED (Time-Of-Flight Enhanced Diagnostics) has been constructed to perform advanced neutron emission spectroscopy diagnosis of deuterium plasmas on EAST. The instrument has a double-ring structure which, in combination with pulse shape digitization, allows for a dual kinematic selection in the time-of-flight/recoil proton energy (tof/E{sub p}) space, thus improving the spectrometer capability to resolve fast ion signatures in the neutron spectrum, in principle up to a factor ≈100. The identification and separation of features from the energetic ions in the neutron spectrum depends on the detailed knowledge of the instrument response function, both in terms ofmore » the light output function of the scintillators and the effect of undesired multiple neutron scatterings in the instrument. This work presents the determination of the light output function of the TOFED plastic scintillator detectors and their geometrical assembly. Results from dedicated experiments with γ-ray sources and quasi-monoenergetic neutron beams are presented. Implications on the instrument capability to perform background suppression based on double kinematic selection are discussed.« less

  17. Subtle variation in shade avoidance responses may have profound consequences for plant competitiveness.

    PubMed

    Bongers, Franca J; Pierik, Ronald; Anten, Niels P R; Evers, Jochem B

    2017-12-21

    Although phenotypic plasticity has been shown to be beneficial for plant competitiveness for light, there is limited knowledge on how variation in these plastic responses plays a role in determining competitiveness. A combination of detailed plant experiments and functional-structural plant (FSP) modelling was used that captures the complex dynamic feedback between the changing plant phenotype and the within-canopy light environment in time and 3-D space. Leaf angle increase (hyponasty) and changes in petiole elongation rates in response to changes in the ratio between red and far-red light, two important shade avoidance responses in Arabidopsis thaliana growing in dense population stands, were chosen as a case study for plant plasticity. Measuring and implementing these responses into an FSP model allowed simulation of plant phenotype as an emergent property of the underlying growth and response mechanisms. Both the experimental and model results showed that substantial differences in competitiveness may arise between genotypes with only marginally different hyponasty or petiole elongation responses, due to the amplification of plant growth differences by small changes in plant phenotype. In addition, this study illustrated that strong competitive responses do not necessarily have to result in a tragedy of the commons; success in competition at the expense of community performance. Together, these findings indicate that selection pressure could probably have played a role in fine-tuning the sensitive shade avoidance responses found in plants. The model approach presented here provides a novel tool to analyse further how natural selection could have acted on the evolution of plastic responses.

  18. Autonomous Mission Operations Roadmap

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  19. A Point-process Response Model for Spike Trains from Single Neurons in Neural Circuits under Optogenetic Stimulation

    PubMed Central

    Luo, X.; Gee, S.; Sohal, V.; Small, D.

    2015-01-01

    Optogenetics is a new tool to study neuronal circuits that have been genetically modified to allow stimulation by flashes of light. We study recordings from single neurons within neural circuits under optogenetic stimulation. The data from these experiments present a statistical challenge of modeling a high frequency point process (neuronal spikes) while the input is another high frequency point process (light flashes). We further develop a generalized linear model approach to model the relationships between two point processes, employing additive point-process response functions. The resulting model, Point-process Responses for Optogenetics (PRO), provides explicit nonlinear transformations to link the input point process with the output one. Such response functions may provide important and interpretable scientific insights into the properties of the biophysical process that governs neural spiking in response to optogenetic stimulation. We validate and compare the PRO model using a real dataset and simulations, and our model yields a superior area-under-the- curve value as high as 93% for predicting every future spike. For our experiment on the recurrent layer V circuit in the prefrontal cortex, the PRO model provides evidence that neurons integrate their inputs in a sophisticated manner. Another use of the model is that it enables understanding how neural circuits are altered under various disease conditions and/or experimental conditions by comparing the PRO parameters. PMID:26411923

  20. Effect of light regime and provenance on leaf characteristics, growth and flavonoid accumulation in Cyclocarya paliurus (Batal) Iljinskaja coppices.

    PubMed

    Liu, Yang; Qian, Chenyun; Ding, Sihui; Shang, Xulan; Yang, Wanxia; Fang, Shengzuo

    2016-12-01

    As a highly valued and multiple function tree species, Cyclocarya paliurus is planted and managed for timber production and medical use. However, limited information is available on its genotype selection and cultivation for growth and phytochemicals. Responses of growth and secondary metabolites to light regimes and genotypes are useful information to determine suitable habitat conditions for the cultivation of medicinal plants. Both light regime and provenance significantly affected the leaf characteristics, leaf flavonoid contents, biomass production and flavonoid accumulation per plant. Leaf thickness, length of palisade cells and chlorophyll a/b decreased significantly under shading conditions, while leaf areas and total chlorophyll content increased obviously. In the full light condition, leaf flavonoid contents showed a bimodal temporal variation pattern with the maximum observed in August and the second peak in October, while shading treatment not only reduced the leaf content of flavonoids but also delayed the peak appearing of the flavonoid contents in the leaves of C. paliurus. Strong correlations were found between leaf thickness, palisade length, monthly light intensity and measured flavonoid contents in the leaves of C. paliurus. Muchuan provenance with full light achieved the highest leaf biomass and flavonoid accumulation per plant. Cyclocarya paliurus genotypes show diverse responses to different light regimes in leaf characteristics, biomass production and flavonoid accumulation, highlighting the opportunity for extensive selection in the leaf flavonoid production.

  1. Evaluation of the Combined Effects of Heat and Lighting on the Level of Attention and Reaction Time: Climate Chamber Experiments in Iran.

    PubMed

    Mohebian, Zohreh; Farhang Dehghan, Somayeh; Dehghan, Habiballah

    2018-01-01

    Heat exposure and unsuitable lighting are two physical hazardous agents in many workplaces for which there are some evidences regarding their mental effects. The purpose of this study was to assess the combined effect of heat exposure and different lighting levels on the attention rate and reaction time in a climatic chamber. This study was conducted on 33 healthy students (17 M/16 F) with a mean (±SD) age of 22.1 ± 2.3 years. The attention and reaction time test were done by continuous performance test and the RT meter, respectively, in different exposure conditions including the dry temperatures (22°C and 37°C) and lighting levels (200, 500, and 1500 lux). Findings demonstrated that increase in heat and lighting level caused a decrease in average attention percentage and correct responses and increase in commission error, omission error, and response time ( P < 0.05). The average of simple, diagnostic, two-color selective, and two-sound selective reaction times increased after combined exposure to heat and lighting ( P < 0.05). The results of this study indicated that, in job task which requires using cognitive functions like attention, vigilance, concentration, cautiousness, and reaction time, the work environment must be optimized in terms of heat and lighting level.

  2. Phenotypic plasticity to light and nutrient availability alters functional trait ranking across eight perennial grassland species.

    PubMed

    Siebenkäs, Alrun; Schumacher, Jens; Roscher, Christiane

    2015-03-27

    Functional traits are often used as species-specific mean trait values in comparative plant ecology or trait-based predictions of ecosystem processes, assuming that interspecific differences are greater than intraspecific trait variation and that trait-based ranking of species is consistent across environments. Although this assumption is increasingly challenged, there is a lack of knowledge regarding to what degree the extent of intraspecific trait variation in response to varying environmental conditions depends on the considered traits and the characteristics of the studied species to evaluate the consequences for trait-based species ranking. We studied functional traits of eight perennial grassland species classified into different functional groups (forbs vs. grasses) and varying in their inherent growth stature (tall vs. small) in a common garden experiment with different environments crossing three levels of nutrient availability and three levels of light availability over 4 months of treatment applications. Grasses and forbs differed in almost all above- and belowground traits, while trait differences related to growth stature were generally small. The traits showing the strongest responses to resource availability were similarly for grasses and forbs those associated with allocation and resource uptake. The strength of trait variation in response to varying resource availability differed among functional groups (grasses > forbs) and species of varying growth stature (small-statured > tall-statured species) in many aboveground traits, but only to a lower extent in belowground traits. These differential responses altered trait-based species ranking in many aboveground traits, such as specific leaf area, tissue nitrogen and carbon concentrations and above-belowground allocation (leaf area ratio and root : shoot ratio) at varying resource supply, while trait-based species ranking was more consistent in belowground traits. Our study shows that species grouping according to functional traits is valid, but trait-based species ranking depends on environmental conditions, thus limiting the applicability of species-specific mean trait values in ecological studies. Published by Oxford University Press on behalf of the Annals of Botany Company.

  3. Aging and the Immune Response to the Haemophilus influenzae Type b Capsular Polysaccharide: Retention of the Dominant Idiotype and Antibody Function in the Elderly

    PubMed Central

    Lucas, Alexander H.; Reason, Donald C.

    1998-01-01

    Anti-Haemophilus influenzae b polysaccharide (Hib PS) antibodies elicited in elderly subjects following conjugate vaccination expressed a light-chain variable-region (VL)-associated idiotype and had functional activities similar to those previously observed in children and younger adults. These findings indicate that advanced age is not accompanied by shifts in the major VL component of the Hib PS-specific repertoire or by diminution of the protective function of antibodies. PMID:9529108

  4. Maize LAZY1 Mediates Shoot Gravitropism and Inflorescence Development through Regulating Auxin Transport, Auxin Signaling, and Light Response1[C][W

    PubMed Central

    Dong, Zhaobin; Jiang, Chuan; Chen, Xiaoyang; Zhang, Tao; Ding, Lian; Song, Weibin; Luo, Hongbing; Lai, Jinsheng; Chen, Huabang; Liu, Renyi; Zhang, Xiaolan; Jin, Weiwei

    2013-01-01

    Auxin is a plant hormone that plays key roles in both shoot gravitropism and inflorescence development. However, these two processes appear to be parallel and to be regulated by distinct players. Here, we report that the maize (Zea mays) prostrate stem1 mutant, which is allelic to the classic mutant lazy plant1 (la1), displays prostrate growth with reduced shoot gravitropism and defective inflorescence development. Map-based cloning identified maize ZmLA1 as the functional ortholog of LAZY1 in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana). It has a unique role in inflorescence development and displays enriched expression in reproductive organs such as tassels and ears. Transcription of ZmLA1 responds to auxin and is repressed by light. Furthermore, ZmLA1 physically interacts with a putative auxin transport regulator in the plasma membrane and a putative auxin signaling protein in the nucleus. RNA-SEQ data showed that dozens of auxin transport, auxin response, and light signaling genes were differentially expressed in la1 mutant stems. Therefore, ZmLA1 might mediate the cross talk between shoot gravitropism and inflorescence development by regulating auxin transport, auxin signaling, and probably light response in maize. PMID:24089437

  5. A method to decompose spectral changes in Synechocystis PCC 6803 during light-induced state transitions.

    PubMed

    Acuña, Alonso M; Kaňa, Radek; Gwizdala, Michal; Snellenburg, Joris J; van Alphen, Pascal; van Oort, Bart; Kirilovsky, Diana; van Grondelle, Rienk; van Stokkum, Ivo H M

    2016-12-01

    Cyanobacteria have developed responses to maintain the balance between the energy absorbed and the energy used in different pigment-protein complexes. One of the relatively rapid (a few minutes) responses is activated when the cells are exposed to high light intensities. This mechanism thermally dissipates excitation energy at the level of the phycobilisome (PB) antenna before it reaches the reaction center. When exposed to low intensities of light that modify the redox state of the plastoquinone pool, the so-called state transitions redistribute energy between photosystem I and II. Experimental techniques to investigate the underlying mechanisms of these responses, such as pulse-amplitude modulated fluorometry, are based on spectrally integrated signals. Previously, a spectrally resolved fluorometry method has been introduced to preserve spectral information. The analysis method introduced in this work allows to interpret SRF data in terms of species-associated spectra of open/closed reaction centers (RCs), (un)quenched PB and state 1 versus state 2. Thus, spectral differences in the time-dependent fluorescence signature of photosynthetic organisms under varying light conditions can be traced and assigned to functional emitting species leading to a number of interpretations of their molecular origins. In particular, we present evidence that state 1 and state 2 correspond to different states of the PB-PSII-PSI megacomplex.

  6. Physiological and molecular mechanisms underlying the integration of light and temperature cues in Arabidopsis thaliana seeds.

    PubMed

    Arana, María Verónica; Tognacca, Rocío Soledad; Estravis-Barcalá, Maximiliano; Sánchez, Rodolfo Augusto; Botto, Javier Francisco

    2017-12-01

    The relief of dormancy and the promotion of seed germination are of extreme importance for a successful seedling establishment. Although alternating temperatures and light are signals promoting the relief of seed dormancy, the underlying mechanisms of their interaction in seeds are scarcely known. By exposing imbibed Arabidopsis thaliana dormant seeds to two-day temperature cycles previous of a red light pulse, we demonstrate that the germination mediated by phytochrome B requires the presence of functional PSEUDO-RESPONSE REGULATOR 7 (PRR7) and TIMING OF CAB EXPRESSION 1 (TOC1) alleles. In addition, daily cycles of alternating temperatures in darkness reduce the protein levels of DELAY OF GERMINATION 1 (DOG1), allowing the expression of TOC1 to induce seed germination. Our results suggest a functional role for some components of the circadian clock related with the action of DOG1 for the integration of alternating temperatures and light signals in the relief of seed dormancy. The synchronization of germination by the synergic action of light and temperature through the activity of circadian clock might have ecological and adaptive consequences. © 2017 John Wiley & Sons Ltd.

  7. Height is more important than light in determining leaf morphology in a tropical forest.

    PubMed

    Cavaleri, Molly A; Oberbauer, Steven F; Clark, David B; Clark, Deborah A; Ryan, Michael G

    2010-06-01

    Both within and between species, leaf physiological parameters are strongly related to leaf dry mass per area (LMA, g/m2), which has been found to increase from forest floor to canopy top in every forest where it has been measured. Although vertical LMA gradients in forests have historically been attributed to a direct phenotypic response to light, an increasing number of recent studies have provided evidence that water limitation in the upper canopy can constrain foliar morphological adaptations to higher light levels. We measured height, light, and LMA of all species encountered along 45 vertical canopy transects across a Costa Rican tropical rain forest. LMA was correlated with light levels in the lower canopy until approximately 18 m sample height and 22% diffuse transmittance. Height showed a remarkably linear relationship with LMA throughout the entire vertical canopy profile for all species pooled and for each functional group individually (except epiphytes), possibly through the influence of gravity on leaf water potential and turgor pressure. Models of forest function may be greatly simplified by estimating LMA-correlated leaf physiological parameters solely from foliage height profiles, which in turn can be assessed with satellite- and aircraft-based remote sensing.

  8. Differential Light-induced Responses in Sectorial Inherited Retinal Degeneration*

    PubMed Central

    Ramon, Eva; Cordomí, Arnau; Aguilà, Mònica; Srinivasan, Sundaramoorthy; Dong, Xiaoyun; Moore, Anthony T.; Webster, Andrew R.; Cheetham, Michael E.; Garriga, Pere

    2014-01-01

    Retinitis pigmentosa (RP) is a group of genetically and clinically heterogeneous inherited degenerative retinopathies caused by abnormalities of photoreceptors or retinal pigment epithelium in the retina leading to progressive sight loss. Rhodopsin is the prototypical G-protein-coupled receptor located in the vertebrate retina and is responsible for dim light vision. Here, novel M39R and N55K variants were identified as causing an intriguing sector phenotype of RP in affected patients, with selective degeneration in the inferior retina. To gain insights into the molecular aspects associated with this sector RP phenotype, whose molecular mechanism remains elusive, the mutations were constructed by site-directed mutagenesis, expressed in heterologous systems, and studied by biochemical, spectroscopic, and functional assays. M39R and N55K opsins had variable degrees of chromophore regeneration when compared with WT opsin but showed no gross structural misfolding or altered trafficking. M39R showed a faster rate for transducin activation than WT rhodopsin with a faster metarhodopsinII decay, whereas N55K presented a reduced activation rate and an altered photobleaching pattern. N55K also showed an altered retinal release from the opsin binding pocket upon light exposure, affecting its optimal functional response. Our data suggest that these sector RP mutations cause different protein phenotypes that may be related to their different clinical progression. Overall, these findings illuminate the molecular mechanisms of sector RP associated with rhodopsin mutations. PMID:25359768

  9. Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress

    PubMed Central

    Todaka, Daisuke; Nakashima, Kazuo; Maruyama, Kyonoshin; Kidokoro, Satoshi; Osakabe, Yuriko; Ito, Yusuke; Matsukura, Satoko; Fujita, Yasunari; Yoshiwara, Kyouko; Ohme-Takagi, Masaru; Kojima, Mikiko; Sakakibara, Hitoshi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2012-01-01

    The mechanisms for plant growth restriction during stress conditions remains unclear. Here, we demonstrate that a phytochrome-interacting factor-like protein, OsPIL1/OsPIL13, acts as a key regulator of reduced internode elongation in rice under drought conditions. The level of OsPIL1 mRNA in rice seedlings grown under nonstressed conditions with light/dark cycles oscillated in a circadian manner with peaks in the middle of the light period. Under drought stress conditions, OsPIL1 expression was inhibited during the light period. We found that OsPIL1 was highly expressed in the node portions of the stem using promoter-glucuronidase analysis. Overexpression of OsPIL1 in transgenic rice plants promoted internode elongation. In contrast, transgenic rice plants with a chimeric repressor resulted in short internode sections. Alteration of internode cell size was observed in OsPIL1 transgenic plants, indicating that differences in cell size cause the change in internode length. Oligoarray analysis revealed OsPIL1 downstream genes, which were enriched for cell wall-related genes responsible for cell elongation. These data suggest that OsPIL1 functions as a key regulatory factor of reduced plant height via cell wall-related genes in response to drought stress. This regulatory system may be important for morphological stress adaptation in rice under drought conditions. PMID:22984180

  10. The Two Cryptochrome/Photolyase Family Proteins Fulfill Distinct Roles in DNA Photorepair and Regulation of Conidiation in the Gray Mold Fungus Botrytis cinerea

    PubMed Central

    Cohrs, Kim C.

    2017-01-01

    ABSTRACT The plant-pathogenic leotiomycete Botrytis cinerea is known for the strict regulation of its asexual differentiation programs by environmental light conditions. Sclerotia are formed in constant darkness; black/near-UV (NUV) light induces conidiation; and blue light represses both differentiation programs. Sensing of black/NUV light is attributed to proteins of the cryptochrome/photolyase family (CPF). To elucidate the molecular basis of the photoinduction of conidiation, we functionally characterized the two CPF proteins encoded in the genome of B. cinerea as putative positive-acting components. B. cinerea CRY1 (BcCRY1), a cyclobutane pyrimidine dimer (CPD) photolyase, acts as the major enzyme of light-driven DNA repair (photoreactivation) and has no obvious role in signaling. In contrast, BcCRY2, belonging to the cry-DASH proteins, is dispensable for photorepair but performs regulatory functions by repressing conidiation in white and especially black/NUV light. The transcription of bccry1 and bccry2 is induced by light in a White Collar complex (WCC)-dependent manner, but neither light nor the WCC is essential for the repression of conidiation through BcCRY2 when bccry2 is constitutively expressed. Further, BcCRY2 affects the transcript levels of both WCC-induced and WCC-repressed genes, suggesting a signaling function downstream of the WCC. Since both CPF proteins are dispensable for photoinduction by black/NUV light, the origin of this effect remains elusive and may be connected to a yet unknown UV-light-responsive system. IMPORTANCE Botrytis cinerea is an economically important plant pathogen that causes gray mold diseases in a wide variety of plant species, including high-value crops and ornamental flowers. The spread of disease in the field relies on the formation of conidia, a process that is regulated by different light qualities. While this feature has been known for a long time, we are just starting to understand the underlying molecular mechanisms. Conidiation in B. cinerea is induced by black/near-UV light, whose sensing is attributed to the action of cryptochrome/photolyase family (CPF) proteins. Here we report on the distinct functions of two CPF proteins in the photoresponse of B. cinerea. While BcCRY1 acts as the major photolyase in photoprotection, BcCRY2 acts as a cryptochrome with a signaling function in regulating photomorphogenesis (repression of conidiation). PMID:28667107

  11. Photosensitization of Intact Heart Mitochondria by the Phthalocyanine Pc 4: Correlation of Structural and Functional Deficits with Cytochrome c Release

    PubMed Central

    Kim, Junhwan; Fujioka, Hisashi; Oleinick, Nancy L.; Anderson, Vernon E.

    2010-01-01

    Singlet oxygen is produced by absorption of red light by the phthalocyanine dye, Pc 4, followed by energy transfer to dissolved triplet oxygen. Mitochondria pre-incubated with Pc 4 were illuminated by red light and the damage to mitochondrial structure and function by the generated singlet oxygen was studied. At early illumination times (3–5 min. of red light exposure), state 3 respiration was inhibited (50%) while state 4 activity increased, resulting in effectively complete uncoupling. Individual complex activities were measured and only complex IV activity was significantly reduced and exhibited a dose response while the activities of electron transport complexes I, II and III were not significantly affected. Cyt c release was an increasing function of irradiation time with 30% being released following 5 min. of illumination. Mitochondrial expansion along with changes in the structure of the cristae were observed by transmission electron microscopy following 5 min. of irradiation with an increase of large vacuoles and membrane rupture occurring following more extensive exposures. PMID:20510354

  12. Mining a sea of data: deducing the environmental controls of ocean chlorophyll.

    PubMed

    Irwin, Andrew J; Finkel, Zoe V

    2008-01-01

    Chlorophyll biomass in the surface ocean is regulated by a complex interaction of physiological, oceanographic, and ecological factors and in turn regulates the rates of primary production and export of organic carbon to the deep ocean. Mechanistic models of phytoplankton responses to climate change require the parameterization of many processes of which we have limited knowledge. We develop a statistical approach to estimate the response of remote-sensed ocean chlorophyll to a variety of physical and chemical variables. Irradiance over the mixed layer depth, surface nitrate, sea-surface temperature, and latitude and longitude together can predict 83% of the variation in log chlorophyll in the North Atlantic. Light and nitrate regulate biomass through an empirically determined minimum function explaining nearly 50% of the variation in log chlorophyll by themselves and confirming that either light or macronutrients are often limiting and that much of the variation in chlorophyll concentration is determined by bottom-up mechanisms. Assuming the dynamics of the future ocean are governed by the same processes at work today, we should be able to apply these response functions to future climate change scenarios, with changes in temperature, nutrient distributions, irradiance, and ocean physics.

  13. Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-07-05

    The thiol-based redox regulation system is believed to adjust chloroplast functions in response to changes in light environments. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been traditionally considered to serve as a transmitter of light signals to target enzymes. However, emerging data indicate that chloroplasts have a complex redox network composed of diverse redox-mediator proteins and target enzymes. Despite extensive research addressing this system, two fundamental questions are still unresolved: How are redox pathways orchestrated within chloroplasts, and why are chloroplasts endowed with a complicated redox network? In this report, we show that NADPH-Trx reductase C (NTRC) is a key redox-mediator protein responsible for regulatory functions distinct from those of the classically known FTR/Trx system. Target screening and subsequent biochemical assays indicated that NTRC and the Trx family differentially recognize their target proteins. In addition, we found that NTRC is an electron donor to Trx-z, which is a key regulator of gene expression in chloroplasts. We further demonstrate that cooperative control of chloroplast functions via the FTR/Trx and NTRC pathways is essential for plant viability. Arabidopsis double mutants impaired in FTR and NTRC expression displayed lethal phenotypes under autotrophic growth conditions. This severe growth phenotype was related to a drastic loss of photosynthetic performance. These combined results provide an expanded map of the chloroplast redox network and its biological functions.

  14. Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability

    PubMed Central

    Yoshida, Keisuke; Hisabori, Toru

    2016-01-01

    The thiol-based redox regulation system is believed to adjust chloroplast functions in response to changes in light environments. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been traditionally considered to serve as a transmitter of light signals to target enzymes. However, emerging data indicate that chloroplasts have a complex redox network composed of diverse redox-mediator proteins and target enzymes. Despite extensive research addressing this system, two fundamental questions are still unresolved: How are redox pathways orchestrated within chloroplasts, and why are chloroplasts endowed with a complicated redox network? In this report, we show that NADPH-Trx reductase C (NTRC) is a key redox-mediator protein responsible for regulatory functions distinct from those of the classically known FTR/Trx system. Target screening and subsequent biochemical assays indicated that NTRC and the Trx family differentially recognize their target proteins. In addition, we found that NTRC is an electron donor to Trx-z, which is a key regulator of gene expression in chloroplasts. We further demonstrate that cooperative control of chloroplast functions via the FTR/Trx and NTRC pathways is essential for plant viability. Arabidopsis double mutants impaired in FTR and NTRC expression displayed lethal phenotypes under autotrophic growth conditions. This severe growth phenotype was related to a drastic loss of photosynthetic performance. These combined results provide an expanded map of the chloroplast redox network and its biological functions. PMID:27335455

  15. Second Positive Phototropism Results from Coordinated Co-Action of the Phototropins and Cryptochromes1

    PubMed Central

    Whippo, Craig W.; Hangarter, Roger P.

    2003-01-01

    Phototropism and hypocotyl growth inhibition are modulated by the coaction of different blue-light photoreceptors and their signaling pathways. How seedlings integrate the activities of the different blue-light photoreceptors to coordinate these hypocotyl growth responses is still unclear. We have used time-lapse imaging and a nontraditional mathematical approach to conduct a detailed examination of phototropism in wild-type Arabidopsis and various blue-light photoreceptor mutants. Our results indicate that high fluence rates of blue light (100 μmol m–2 s–1) attenuate phototropism through the coaction of the phototropin and cryptochrome blue-light photoreceptors. In contrast, we also demonstrate that phototropins and cryptochromes function together to enhance phototropism under low fluence rates (<1.0 μmol m–2 s–1) of blue light. Based on our results, we hypothesize that phototropins and cryptochromes regulate phototropism by coordinating the balance between stimulation and inhibition of growth of the hypocotyl depending on the fluence rate of blue light. PMID:12857830

  16. Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes.

    PubMed

    Whippo, Craig W; Hangarter, Roger P

    2003-07-01

    Phototropism and hypocotyl growth inhibition are modulated by the coaction of different blue-light photoreceptors and their signaling pathways. How seedlings integrate the activities of the different blue-light photoreceptors to coordinate these hypocotyl growth responses is still unclear. We have used time-lapse imaging and a nontraditional mathematical approach to conduct a detailed examination of phototropism in wild-type Arabidopsis and various blue-light photoreceptor mutants. Our results indicate that high fluence rates of blue light (100 micro mol m(-)(2) s(-)(1)) attenuate phototropism through the coaction of the phototropin and cryptochrome blue-light photoreceptors. In contrast, we also demonstrate that phototropins and cryptochromes function together to enhance phototropism under low fluence rates (<1.0 micro mol m(-)(2) s(-)(1)) of blue light. Based on our results, we hypothesize that phototropins and cryptochromes regulate phototropism by coordinating the balance between stimulation and inhibition of growth of the hypocotyl depending on the fluence rate of blue light.

  17. Modulation of chloroplast movement in the green alga Mougeotia by the Ca2+ ionophore A23187 and by calmodulin antagonists.

    PubMed Central

    Serlin, B S; Roux, S J

    1984-01-01

    The Ca2+ ionophore A23187 can induce chloroplast rotation within a single nonirradiated Mougeotia cell. The induced turning was dependent on the position of ionophore application and Ca2+ in the external medium. The role of calmodulin in mediating light-induced chloroplast rotation in the alga Mougeotia was investigated by using the paired calmodulin-antagonist drugs W5-W7 and W12-W13. In each pair, the antagonist with the greater affinity for calmodulin had the greater inhibitor effect on the phytochrome-controlled light response. These results support the hypothesis that calcium functions as a chemical messenger to couple the stimulus of phytochrome photoactivation with physiological responses in plants. Images PMID:11536594

  18. Technological Advances and the Study of Reading.

    ERIC Educational Resources Information Center

    Henk, William A.

    Recent technological advances in neuroanatomy and neurophysiology have unearthed structural and functional patterns in the brain that can be associated with severe reading disabilities. As a response, this paper examines several computer-driven technologies whose capabilities shed light on brain-related issues germane to reading, with the intent…

  19. Lipid anchoring of Arabidopsis phototropin 1 to assess the functional significance of receptor internalization: should I stay or should I go?

    PubMed

    Preuten, Tobias; Blackwood, Lisa; Christie, John M; Fankhauser, Christian

    2015-05-01

    The phototropin 1 (phot1) blue light receptor mediates a number of adaptive responses, including phototropism, that generally serve to optimize photosynthetic capacity. Phot1 is a plasma membrane-associated protein, but upon irradiation, a fraction is internalized into the cytoplasm. Although this phenomenon has been reported for more than a decade, its biological significance remains elusive. Here, we use a genetic approach to revisit the prevalent hypotheses regarding the functional importance of receptor internalization. Transgenic plants expressing lipidated versions of phot1 that are permanently anchored to the plasma membrane were used to analyse the effect of internalization on receptor turnover, phototropism and other phot1-mediated responses. Myristoylation and farnesylation effectively prevented phot1 internalization. Both modified photoreceptors were found to be fully functional in Arabidopsis, rescuing phototropism and all other phot1-mediated responses tested. Light-mediated phot1 turnover occurred as in the native receptor. Furthermore, our work does not provide any evidence of a role of phot1 internalization in the attenuation of receptor signalling during phototropism. Our results demonstrate that phot1 signalling is initiated at the plasma membrane. They furthermore indicate that release of phot1 into the cytosol is not linked to receptor turnover or desensitization. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. A comparative study of rhodopsin function in the great bowerbird (Ptilonorhynchus nuchalis): Spectral tuning and light-activated kinetics.

    PubMed

    van Hazel, Ilke; Dungan, Sarah Z; Hauser, Frances E; Morrow, James M; Endler, John A; Chang, Belinda S W

    2016-07-01

    Rhodopsin is the visual pigment responsible for initiating the phototransduction cascade in vertebrate rod photoreceptors. Although well-characterized in a few model systems, comparative studies of rhodopsin function, particularly for nonmammalian vertebrates are comparatively lacking. Bowerbirds are rare among passerines in possessing a key substitution, D83N, at a site that is otherwise highly conserved among G protein-coupled receptors. While this substitution is present in some dim-light adapted vertebrates, often accompanying another unusual substitution, A292S, its functional relevance in birds is uncertain. To investigate functional effects associated with these two substitutions, we use the rhodopsin gene from the great bowerbird (Ptilonorhynchus nuchalis) as a background for site-directed mutagenesis, in vitro expression and functional characterization. We also mutated these sites in two additional rhodopsins that do not naturally possess N83, chicken and bovine, for comparison. Both sites were found to contribute to spectral blue-shifts, but had opposing effects on kinetic rates. Substitutions at site 83 were found to primarily affect the kinetics of light-activated rhodopsin, while substitutions at site 292 had a larger impact on spectral tuning. The contribution of substitutions at site 83 to spectral tuning in particular depended on genetic background, but overall, the effects of substitutions were otherwise surprisingly additive, and the magnitudes of functional shifts were roughly similar across all three genetic backgrounds. By employing a comparative approach with multiple species, our study provides new insight into the joint impact of sites 83 and 292 on rhodopsin structure-function as well as their evolutionary significance for dim-light vision across vertebrates. © 2016 The Protein Society.

  1. Conceptual design of a stray light facility for Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; Hellin, M. L.; Marcotte, S.; Mazy, E.; Versluys, J.; François, M.; Taccola, M.; Zuccaro Marchi, A.

    2017-11-01

    With the upcoming of TMA or FMA (Three or Four Mirrors Anastigmat) telescope design in Earth Observation system, stray light is a major contributor to the degradation of the image quality. Numerous sources of stray light can be identified and theoretically evaluated. Nevertheless in order to build a stray light model of the instrument, the Point Spread Function(s) of the instrument, i.e., the flux response of the instrument to the flux received at the instrument entrance from an infinite distant point source needs to be determined. This paper presents a conceptual design of a facility placed in a vacuum chamber to eliminate undesired air particles scatter light sources. The specification of the clean room class or vacuum will depend on the required rejection to be measured. Once the vacuum chamber is closed, the stray light level from the external environment can be considered as negligible. Inside the chamber a dedicated baffle design is required to eliminate undesired light generated by the set up itself e.g. retro reflected light away from the instrument under test. This implies blackened shrouds all around the specimen. The proposed illumination system is a 400 mm off axis parabolic mirror with a focal length of 2 m. The off axis design suppresses the problem of stray light that can be generated by the internal obstruction. A dedicated block source is evaluated in order to avoid any stray light coming from the structure around the source pinhole. Dedicated attention is required on the selection of the source to achieve the required large measurement dynamic.

  2. Photonic homeostatics

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Li, Fan-Hui

    2010-11-01

    Photonic homeostatics is a discipline to study the establishment, maintenance, decay, upgrading and representation of function-specific homoestasis (FSH) by using photonics. FSH is a negative-feedback response of a biosystem to maintain the function-specific fluctuations inside the biosystem so that the function is perfectly performed. A stress may increase sirtuin 1 (SIRT1) activities above FSH-specific SIRT1 activity to induce a function far from its FSH. On the one hand, low level laser irradiation or monochromatic light (LLL) can not modulate a function in its FSH or a stress in its stress-specific homeostasis (StSH), but modulate a function far from its FSH or a stress far from its StSH. On the other hand, the biophotons from a biosystem with its function in its FSH should be less than the one from the biosystem with its function far from its FSH. The non-resonant interaction of low intensity laser irradiation or monochromatic light (LIL) and a kind of membrane protein can be amplified by all the membrane proteins if the function is far from its FSH. This amplification might hold for biophoton emission of the membrane protein so that the photonic spectroscopy can be used to represent the function far from its FSH, which is called photonomics.

  3. Effects of Light and Sound on the Prefrontal Cortex Activation and Emotional Function: A Functional Near-Infrared Spectroscopy Study

    PubMed Central

    Hori, Shota; Mori, Koichi; Mashimo, Takehisa; Seiyama, Akitoshi

    2017-01-01

    We constructed a near infrared spectroscopy-based real-time feedback system to estimate the subjects' emotional states using the changes in oxygenated hemoglobin concentration [Δ(oxy-Hb)] in the prefrontal cortex (PFC). Using this system, we investigated the influences of continual mild and equivocal stimuli consisting of lights and a reconstructed waterfall sound on Δ[oxy-Hb] in the PFC. The visual (light) and auditory (sound) stimuli changed randomly and independently, depending on the emotional states of the individual subjects. The emotional states induced by the stimuli were examined via a questionnaire rated on an 11-point scale, from +5 (pleasant) to −5 (unpleasant), through 0 (neutral), after the 5-min experiments. Results from 757 subjects revealed that Δ[oxy-Hb] in the PFC exhibited a weak, but significant, correlation with emotional change, with the given continual and mild stimuli similar to that experienced in response to the intense pleasant/unpleasant stimuli. Based on the results we discuss the generation of pleasant/unpleasant weak emotional change induced by mild and weak stimuli such as light and sound. PMID:28649190

  4. Profiling the transcriptome of Gracilaria changii (Rhodophyta) in response to light deprivation.

    PubMed

    Ho, Chai-Ling; Teoh, Seddon; Teo, Swee-Sen; Rahim, Raha Abdul; Phang, Siew-Moi

    2009-01-01

    Light regulates photosynthesis, growth and reproduction, yield and properties of phycocolloids, and starch contents in seaweeds. Despite its importance as an environmental cue that regulates many developmental, physiological, and biochemical processes, the network of genes involved during light deprivation are obscure. In this study, we profiled the transcriptome of Gracilaria changii at two different irradiance levels using a cDNA microarray containing more than 3,000 cDNA probes. Microarray analysis revealed that 93 and 105 genes were up- and down-regulated more than 3-fold under light deprivation, respectively. However, only 50% of the transcripts have significant matches to the nonredundant peptide sequences in the database. The transcripts that accumulated under light deprivation include vanadium chloroperoxidase, thioredoxin, ferredoxin component, and reduced nicotinamide adenine dinucleotide dehydrogenase. Among the genes that were down-regulated under light deprivation were genes encoding light harvesting protein, light harvesting complex I, phycobilisome 7.8 kDa linker polypeptide, low molecular weight early light-inducible protein, and vanadium bromoperoxidase. Our findings also provided important clues to the functions of many unknown sequences that could not be annotated using sequence comparison.

  5. Plant dual-specificity tyrosine phosphorylation-regulated kinase optimizes light-regulated growth and development in Arabidopsis.

    PubMed

    Huang, Wen-Yu; Wu, Yi-Chen; Pu, Hsin-Yi; Wang, Ying; Jang, Geng-Jen; Wu, Shu-Hsing

    2017-09-01

    Light controls vegetative and reproductive development of plants. For a plant, sensing the light input properly ensures coordination with the ever-changing environment. Previously, we found that LIGHT-REGULATED WD1 (LWD1) and LWD2 regulate the circadian clock and photoperiodic flowering. Here, we identified Arabidopsis YET ANOTHER KINASE1 (AtYAK1), an evolutionarily conserved protein and a member of dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs), as an interacting protein of LWDs. Our study revealed that AtYAK1 is an important regulator for various light responses, including the circadian clock, photomorphogenesis and reproductive development. AtYAK1 could antagonize the function of LWDs in regulating the circadian clock and photoperiodic flowering. By examining phenotypes of atyak1, we found that AtYAK1 regulated light-induced period-length shortening and photomorphogenic development. Moreover, AtYAK1 mediated plant fertility especially under inferior light conditions including low light and short-day length. This study discloses a new regulator connecting environmental light to plant growth. © 2017 John Wiley & Sons Ltd.

  6. Living additive manufacturing: Transformation of parent gels into diversely functionalized daughter gels made possible by visible light photoredox catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mao; Gu, Yuwei; Singh, Awaneesh

    Light-initiated additive manufacturing techniques typically rely on layer-by-layer addition or continuous extraction of polymers formed via nonliving, free radical polymerization methods that render the final materials “dead” toward further monomer insertion; the polymer chains within the materials cannot be reactivated to induce chain extension. An alternative “living additive manufacturing” strategy would involve the use of photocontrolled living radical polymerization to spatiotemporally insert monomers into dormant “parent” materials to generate more complex and diversely functionalized “daughter” materials. Here, we demonstrate a proof-of-concept study of living additive manufacturing using end-linked polymer gels embedded with trithiocarbonate iniferters that can be activated by photoinducedmore » single-electron transfer from an organic photoredox catalyst in solution. This system enables the synthesis of a wide range of chemically and mechanically differentiated daughter gels from a single type of parent gel via light-controlled modification of the parent’s average composition, strand length, and/or cross-linking density. Furthermore, daughter gels that are softer than their parent, stiffer than their parent, larger but with the same modulus as their parent, thermally responsive, polarity responsive, healable, and weldable are all realized.« less

  7. Living additive manufacturing: Transformation of parent gels into diversely functionalized daughter gels made possible by visible light photoredox catalysis

    DOE PAGES

    Chen, Mao; Gu, Yuwei; Singh, Awaneesh; ...

    2017-01-13

    Light-initiated additive manufacturing techniques typically rely on layer-by-layer addition or continuous extraction of polymers formed via nonliving, free radical polymerization methods that render the final materials “dead” toward further monomer insertion; the polymer chains within the materials cannot be reactivated to induce chain extension. An alternative “living additive manufacturing” strategy would involve the use of photocontrolled living radical polymerization to spatiotemporally insert monomers into dormant “parent” materials to generate more complex and diversely functionalized “daughter” materials. Here, we demonstrate a proof-of-concept study of living additive manufacturing using end-linked polymer gels embedded with trithiocarbonate iniferters that can be activated by photoinducedmore » single-electron transfer from an organic photoredox catalyst in solution. This system enables the synthesis of a wide range of chemically and mechanically differentiated daughter gels from a single type of parent gel via light-controlled modification of the parent’s average composition, strand length, and/or cross-linking density. Furthermore, daughter gels that are softer than their parent, stiffer than their parent, larger but with the same modulus as their parent, thermally responsive, polarity responsive, healable, and weldable are all realized.« less

  8. On the mechanism of chromophototherapy used in sports medicine and rehabilitation

    NASA Astrophysics Data System (ADS)

    Tang, Mian; Liu, Timon C.

    2005-01-01

    Light is the primary stimulus for regulating circadian rhythms, seasonal cycles, and neuroendocrine responses in many species, including humans. The major circadian pacemaker in the hypothalamic suprachiasmatic nucleus is entrained to the light/dark cycles from the outside world by circadian photoreceptors which are functionally characterized by the direct sensitivity to light with broad spectrum and the relatively high stability. Chromophototherapy mediated by the color indirect effect (CIE), the physiological and psychological effects of color resulting from color vision, is functionally characterized by the sensitivity to light with narrow spectrum and the relatively low stability. In this paper, the mechanism of chromophototherapy used in sports medicine and rehabilitation, especially in treating overtraining syndrome (OTS), was discussed. Although several hypotheses and the corresponding OTS treatments have been proposed, each only explains and treats a selective aspect of OTS. On the one hand, an autonomic or neuroendocrine imbalance is hypothesized as underlying by Lehmann et al so that the described functional alterations of pituitary-adrenal axis and sympathetic system can explain persistent performance incompetence in affected athletes beside additional mechanisms. On the other hand, cold color (green, blue or violet) excites parasympathetic subsystem and hot color (red, orange or yellow) excites sympathetic subsystem for chromophototherapy. The conclusion was then drawn that chromophototherapy might be a good therapy to treat OTS.

  9. Temperature response of several scintillator materials to light ions

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, M.; Jiménez-Ramos, M. C.; García-Muñoz, M.; García López, J.

    2017-07-01

    Ion beam induced luminescence has been used to study the response of scintillator screens of Y2O3:Eu3+ (P56) and SrGa2S4:Eu2+ (TG-Green) when irradiated with light ions (protons, deuterium and helium particles). The absolute efficiency of the samples has been studied as a function of the ion energy (with energies up to 3.5 MeV), the beam current and the operating temperature. The evolution of the scintillator yield with ion fluence has been carried out for all the scintillators to estimate radiation damage. Finally, measurements of the decay time of these materials using a system of pulsed beam accelerated particles have been done. Among the screens under study, the TG-Green is the best suited material, in terms of absolute efficiency, temporal response and degradation with ion dose, for fast-ion loss detectors in fusion devices.

  10. Functional analysis of chloroplast early light inducible proteins (ELIPs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzel, Carolyn M

    The objectives of this project were to characterize gene expression patterns of early light inducible protein (ELIP) genes in Arabidopsis thaliana and in Lycopersicon esculentum, to identify knock mutants of the 2 ELIP genes in Arabidopsis, and to characterize the effects of the knockouts. Expression in Arabidopsis was studied in response to thylakoid electron transport chain (PETC) capacity, where it was found that there is a signal for expression associated with reduction of the PETC. Expression in response to salt was also studied, with different responses of the two gene copies. Knockout lines for ELIP1 and ELIP2 have been identifiedmore » and are being characterized. In tomato, it was found that the single-copy ELIP gene is highly expressed in ripening fruit during the chloroplast-to-chromoplast transition. Studies of expression in tomato ripening mutants are ongoing.« less

  11. Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function.

    PubMed

    Inoue, Takeshi; Hoshino, Hajime; Yamashita, Taiga; Shimoyama, Seira; Agata, Kiyokazu

    2015-01-01

    Planarians belong to an evolutionarily early group of organisms that possess a central nervous system including a well-organized brain with a simple architecture but many types of neurons. Planarians display a number of behaviors, such as phototaxis and thermotaxis, in response to external stimuli, and it has been shown that various molecules and neural pathways in the brain are involved in controlling these behaviors. However, due to the lack of combinatorial assay methods, it remains obscure whether planarians possess higher brain functions, including integration in the brain, in which multiple signals coming from outside are coordinated and used in determining behavioral strategies. In the present study, we designed chemotaxis and thigmotaxis/kinesis tracking assays to measure several planarian behaviors in addition to those measured by phototaxis and thermotaxis assays previously established by our group, and used these tests to analyze planarian chemotactic and thigmotactic/kinetic behaviors. We found that headless planarian body fragments and planarians that had specifically lost neural activity following regeneration-dependent conditional gene knockdown (Readyknock) of synaptotagmin in the brain lost both chemotactic and thigmotactic behaviors, suggesting that neural activity in the brain is required for the planarian's chemotactic and thigmotactic behaviors. Furthermore, we compared the strength of phototaxis, chemotaxis, thigmotaxis/kinesis, and thermotaxis by presenting simultaneous binary stimuli to planarians. We found that planarians showed a clear order of predominance of these behaviors. For example, when planarians were simultaneously exposed to 400 lux of light and a chemoattractant, they showed chemoattractive behavior irrespective of the direction of the light source, although exposure to light of this intensity alone induces evasive behavior away from the light source. In contrast, when the light intensity was increased to 800 or 1600 lux and the same dose of chemoattractant was presented, planarian behaviors were gradually shifted to negative phototaxis rather than chemoattraction. These results suggest that planarians may be capable of selecting behavioral strategies via the integration of discrete brain functions when exposed to multiple stimuli. The planarian brain processes external signals received through the respective sensory neurons, thereby resulting in the production of appropriate behaviors. In addition, planarians can adjust behavioral features in response to stimulus conditions by integrating multiple external signals in the brain.

  12. Gravity and light effects on the circadian clock of a desert beetle, Trigonoscelis gigas

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, T. M.; Alpatov, A. M.; Wassmer, G. T.; Rietveld, W. J.; Fuller, C. A.

    2003-01-01

    Circadian function is affected by exposure to altered ambient force environments. Under non-earth gravitational fields, both basic features of circadian rhythms and the expression of the clock responsible for these rhythms are altered. We examined the activity rhythm of the tenebrionid beetle, Trigonoscelis gigas, in conditions of microgravity (microG; spaceflight), earth's gravity (1 G) and 2 G (centrifugation). Data were recorded under a light-dark cycle (LD), constant light (LL), and constant darkness (DD). Free-running period (tau) was significantly affected by both the gravitational field and ambient light intensity. In DD, tau was longer under 2 G than under either 1 G or microG. In addition, tauLL was significantly different from tauDD under microG and 1 G, but not under 2 G.

  13. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N

    2008-12-01

    Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening.

  14. Effect of Light and Chilling Temperatures on Chilling-sensitive and Chilling-resistant Plants. Pretreatment of Cucumber and Spinach Thylakoids in Vivo and in Vitro.

    PubMed

    Garber, M P

    1977-05-01

    The effects of chilling temperatures, in light or dark, on the isolated thylakoids and leaf discs of cucumber (Cucumis sativa L. "Marketer") and spinach (Spinacia oleracea L. "Bloomsdale") were studied. The pretreatment of isolated thylakoids and leaf discs at 4 C in the dark did not affect the phenazine methosulfate-dependent phosphorylation, proton uptake, osmotic response to sucrose, Ca(2+)-dependent ATPase activity, or chlorophyll content. Exposure of cucumber cotyledon discs and isolated thylakoids of cucumber and spinach to 4 C in light resulted in a rapid inactivation of the thylakoids. The sequence of activities or components lost during inactivation (starting with the most sensitive) are: phenazine methosulfate-dependent cyclic phosphorylation, proton uptake, osmotic response to sucrose, Ca(2+)-dependent ATPase activity, and chlorophyll. The rate of loss of proton uptake, osmotic response to sucrose, Ca(2+)-dependent ATPase activity and chlorophyll is similar for isolated cucumber and spinach thylakoids, whereas spinach thylakoids are more resistant to the loss of phenazine methosulfate-dependent phosphorylation. The thylakoids of spinach leaf discs were unaffected by exposure to 4 C in light. The results question whether the extreme resistance of spinach thylakoids treated in vivo is solely a function of the chloroplast thylakoid membranes and establish the validity of using in vitro results to make inferences about cucumber thylakoids treated in vivo at 4 C in light.

  15. Effect of Light and Chilling Temperatures on Chilling-sensitive and Chilling-resistant Plants. Pretreatment of Cucumber and Spinach Thylakoids in Vivo and in Vitro1

    PubMed Central

    Garber, Melvin P.

    1977-01-01

    The effects of chilling temperatures, in light or dark, on the isolated thylakoids and leaf discs of cucumber (Cucumis sativa L. “Marketer”) and spinach (Spinacia oleracea L. “Bloomsdale”) were studied. The pretreatment of isolated thylakoids and leaf discs at 4 C in the dark did not affect the phenazine methosulfate-dependent phosphorylation, proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity, or chlorophyll content. Exposure of cucumber cotyledon discs and isolated thylakoids of cucumber and spinach to 4 C in light resulted in a rapid inactivation of the thylakoids. The sequence of activities or components lost during inactivation (starting with the most sensitive) are: phenazine methosulfate-dependent cyclic phosphorylation, proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity, and chlorophyll. The rate of loss of proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity and chlorophyll is similar for isolated cucumber and spinach thylakoids, whereas spinach thylakoids are more resistant to the loss of phenazine methosulfate-dependent phosphorylation. The thylakoids of spinach leaf discs were unaffected by exposure to 4 C in light. The results question whether the extreme resistance of spinach thylakoids treated in vivo is solely a function of the chloroplast thylakoid membranes and establish the validity of using in vitro results to make inferences about cucumber thylakoids treated in vivo at 4 C in light. PMID:16659980

  16. Pupillary response to direct and consensual chromatic light stimuli.

    PubMed

    Traustason, Sindri; Brondsted, Adam Elias; Sander, Birgit; Lund-Andersen, Henrik

    2016-02-01

    To assess whether the direct and consensual postillumination (ipRGC-driven) pupil light responses to chromatic light stimuli are equal in healthy subjects. Pupil responses in healthy volunteers were recorded using a prototype binocular chromatic pupillometer (IdeaMedical, Copenhagen), which is capable of both direct and consensual pupillometry measurements. The device uses a pair of dual monochromatic narrow bandwidth LED light sources, red (660 nm) and blue (470 nm). Pupil light responses were recorded with infrared video cameras and analysed using custom-made circuitry and software. Subjects were randomized to receive light stimuli at either the right or left eye after 5 min of dark adaptation. Pupil light responses were recorded in both eyes for 10 seconds before illumination, during illumination and 50 seconds after illumination with red and blue light. Three variables were defined for the recorded pupil responses: the maximal constriction amplitude (CAmax ), the pupil response during illumination and postillumination pupil response (PIPR). No difference was found in the pupil response to blue light. With red light, the pupil response during illumination was slightly larger during consensual illumination compared to direct illumination (0.54 and 0.52, respectively, p = 0.027, paired Wilcoxon's test, n = 12), while no differences were found for CAmax or the PIPR. No difference was found between direct and consensual pupil response to either red or blue light in the postillumination period. Direct and consensual responses can readily be compared when examining the postillumination pupil response to blue light as estimation of photosensitive retinal ganglion cell activation. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  17. Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana

    PubMed Central

    Wilson, Rebecca L.; Bakshi, Arkadipta; Binder, Brad M.

    2014-01-01

    When exposed to far-red light followed by darkness, wild-type Arabidopsis thaliana seeds fail to germinate or germinate very poorly. We have previously shown that the ethylene receptor ETR1 (ETHYLENE RESPONSE1) inhibits and ETR2 stimulates seed germination of Arabidopsis during salt stress. This function of ETR1 requires the full-length receptor. These roles are independent of ethylene levels and sensitivity and are mainly mediated by a change in abscisic acid (ABA) sensitivity. In the current study we find that etr1-6 and etr1-7 loss-of-function mutant seeds germinate better than wild-type seeds after illumination with far-red light or when germinated in the dark indicating an inhibitory role for ETR1. Surprisingly, this function of ETR1 does not require the receiver domain. No differences between these mutants and wild-type are seen when germination proceeds after treatment with white, blue, green, or red light. Loss of any of the other four ethylene receptor isoforms has no measurable effect on germination after far-red light treatment. An analysis of the transcript abundance for genes encoding ABA and gibberellic acid (GA) metabolic enzymes indicates that etr1-6 mutants may produce more GA and less ABA than wild-type seeds after illumination with far-red light which correlates with the better germination of the mutants. Epistasis analysis suggests that ETR1 may genetically interact with the phytochromes (phy), PHYA and PHYB to control germination and growth. This study shows that of the five ethylene receptor isoforms in Arabidopsis, ETR1 has a unique role in modulating the effects of red and far-red light on plant growth and development. PMID:25221561

  18. Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment.

    PubMed

    Ding, Chendi; Tong, Ling; Feng, Jing; Fu, Jiajun

    2016-12-20

    Benefiting from the development of nanotechnology, drug delivery systems (DDSs) with stimuli-responsive controlled release function show great potential in clinical anti-tumor applications. By using a DDS, the harsh side effects of traditional anti-cancer drug treatments and damage to normal tissues and organs can be avoided to the greatest extent. An ideal DDS must firstly meet bio-safety standards and secondarily the efficiency-related demands of a large drug payload and controlled release function. This review highlights recent research progress on DDSs with stimuli-responsive characteristics. The first section briefly reviews the nanoscale scaffolds of DDSs, including mesoporous nanoparticles, polymers, metal-organic frameworks (MOFs), quantum dots (QDs) and carbon nanotubes (CNTs). The second section presents the main types of stimuli-responsive mechanisms and classifies these into two categories: intrinsic (pH, redox state, biomolecules) and extrinsic (temperature, light irradiation, magnetic field and ultrasound) ones. Clinical applications of DDS, future challenges and perspectives are also mentioned.

  19. Prescribed fire, soil nitrogen dynamics, and plant responses in a semiarid grassland

    USDA-ARS?s Scientific Manuscript database

    Fire is a key driver of the structure and function of grassland ecosystems. In arid and semiarid ecosystems, where moisture limits plant production more than light, fire can potentially affect ecosystem dynamics through changes in soil moisture, temperature, and nitrogen cycling, as well as through ...

  20. USING STABLE ISOTOPES AND MECHANISTIC MODELS TO EXAMINE CARBON RESOURCE PARTITIONING IN THALASSIA TESTUDINUM AND ZOSTERA MARINA

    EPA Science Inventory

    Natural and anthropogenic stress negatively impact seagrass production and ecosystem function. Our goal is to better understand seagrass response to reduced light, nutrient and organic loading at a variety of ecological scales (individual to landscape) in order to help develop p...

  1. Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light.

    PubMed

    Tibiletti, Tania; Auroy, Pascaline; Peltier, Gilles; Caffarri, Stefano

    2016-08-01

    Photosynthetic organisms must respond to excess light in order to avoid photo-oxidative stress. In plants and green algae the fastest response to high light is non-photochemical quenching (NPQ), a process that allows the safe dissipation of the excess energy as heat. This phenomenon is triggered by the low luminal pH generated by photosynthetic electron transport. In vascular plants the main sensor of the low pH is the PsbS protein, while in the green alga Chlamydomonas reinhardtii LhcSR proteins appear to be exclusively responsible for this role. Interestingly, Chlamydomonas also possesses two PsbS genes, but so far the PsbS protein has not been detected and its biological function is unknown. Here, we reinvestigated the kinetics of gene expression and PsbS and LhcSR3 accumulation in Chlamydomonas during high light stress. We found that, unlike LhcSR3, PsbS accumulates very rapidly but only transiently. In order to determine the role of PsbS in NPQ and photoprotection in Chlamydomonas, we generated transplastomic strains expressing the algal or the Arabidopsis psbS gene optimized for plastid expression. Both PsbS proteins showed the ability to increase NPQ in Chlamydomonas wild-type and npq4 (lacking LhcSR3) backgrounds, but no clear photoprotection activity was observed. Quantification of PsbS and LhcSR3 in vivo indicates that PsbS is much less abundant than LhcSR3 during high light stress. Moreover, LhcSR3, unlike PsbS, also accumulates during other stress conditions. The possible role of PsbS in photoprotection is discussed. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light1

    PubMed Central

    Tibiletti, Tania; Auroy, Pascaline; Peltier, Gilles; Caffarri, Stefano

    2016-01-01

    Photosynthetic organisms must respond to excess light in order to avoid photo-oxidative stress. In plants and green algae the fastest response to high light is non-photochemical quenching (NPQ), a process that allows the safe dissipation of the excess energy as heat. This phenomenon is triggered by the low luminal pH generated by photosynthetic electron transport. In vascular plants the main sensor of the low pH is the PsbS protein, while in the green alga Chlamydomonas reinhardtii LhcSR proteins appear to be exclusively responsible for this role. Interestingly, Chlamydomonas also possesses two PsbS genes, but so far the PsbS protein has not been detected and its biological function is unknown. Here, we reinvestigated the kinetics of gene expression and PsbS and LhcSR3 accumulation in Chlamydomonas during high light stress. We found that, unlike LhcSR3, PsbS accumulates very rapidly but only transiently. In order to determine the role of PsbS in NPQ and photoprotection in Chlamydomonas, we generated transplastomic strains expressing the algal or the Arabidopsis psbS gene optimized for plastid expression. Both PsbS proteins showed the ability to increase NPQ in Chlamydomonas wild-type and npq4 (lacking LhcSR3) backgrounds, but no clear photoprotection activity was observed. Quantification of PsbS and LhcSR3 in vivo indicates that PsbS is much less abundant than LhcSR3 during high light stress. Moreover, LhcSR3, unlike PsbS, also accumulates during other stress conditions. The possible role of PsbS in photoprotection is discussed. PMID:27329221

  3. Human annoyance, acceptability and concern as responses to vibration from the construction of Light Rapid Transit lines in residential environments.

    PubMed

    Wong-McSweeney, D; Woodcock, J S; Peris, E; Waddington, D C; Moorhouse, A T; Redel-Macías, M D

    2016-10-15

    The aim of this paper is to investigate the use of different self-reported measures for assessing the human response to environmental vibration from the construction of an urban LRT (Light Rapid Transit) system. The human response to environmental stressors such as vibration and noise is often expressed in terms of exposure-response relationships that describe annoyance as a function of the magnitude of the vibration. These relationships are often the basis of noise and vibration policy and the setting of limit values. This paper examines measures other than annoyance by expressing exposure-response relationships for vibration in terms of self-reported concern about property damage and acceptability. The exposure-response relationships for concern about property damage and for acceptability are then compared with those for annoyance. It is shown that concern about property damage occurs at vibration levels well below those where there is any risk of damage. Earlier research indicated that concern for damage is an important moderator of the annoyance induced. Acceptability, on the other hand, might be influenced by both annoyance and concern, as well as by other considerations. It is concluded that exposure-response relationships expressing acceptability as a function of vibration exposure could usefully complement existing relationships for annoyance in future policy decisions regarding environmental vibration. The results presented in this paper are derived from data collected through a socio-vibration survey (N=321) conducted for the construction of an urban LRT in the United Kingdom. Copyright © 2016. Published by Elsevier B.V.

  4. Plant responses to environmental stress: regulation and functions of the Arabidopsis TCH genes

    NASA Technical Reports Server (NTRS)

    Braam, J.; Sistrunk, M. L.; Polisensky, D. H.; Xu, W.; Purugganan, M. M.; Antosiewicz, D. M.; Campbell, P.; Johnson, K. A.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Expression of the Arabidopsis TCH genes is markedly upregulated in response to a variety of environmental stimuli including the seemingly innocuous stimulus of touch. Understanding the mechanism(s) and factors that control TCH gene regulation will shed light on the signaling pathways that enable plants to respond to environmental conditions. The TCH proteins include calmodulin, calmodulin-related proteins and a xyloglucan endotransglycosylase. Expression analyses and localization of protein accumulation indicates that the potential sites of TCH protein function include expanding cells and tissues under mechanical strain. We hypothesize that at least a subset of the TCH proteins may collaborate in cell wall biogenesis.

  5. Two mechanisms of rephasal of circadian rhythms in response to a 180 deg phase shift /simulated 12-hr time zone change/

    NASA Technical Reports Server (NTRS)

    Deroshia, C. W.; Winget, C. M.; Bond, G. H.

    1976-01-01

    A model developed by Wever (1966) is considered. The model describes the behavior of circadian rhythms in response to photoperiod phase shifts simulating time zone changes, as a function of endogenous periodicity, light intensity, and direction of phase shift. A description is given of an investigation conducted to test the model upon the deep body temperature rhythm in unrestrained subhuman primates. An evaluation is conducted regarding the applicability of the model in predicting the type and duration of desynchronization induced by simulated time zone changes as a function of endogenous periodicity.

  6. Tissue-specific accumulation and regulation of zeaxanthin epoxidase in Arabidopsis reflect the multiple functions of the enzyme in plastids.

    PubMed

    Schwarz, Nadine; Armbruster, Ute; Iven, Tim; Brückle, Lena; Melzer, Michael; Feussner, Ivo; Jahns, Peter

    2015-02-01

    The enzyme zeaxanthin epoxidase (ZEP) catalyzes the conversion of zeaxanthin to violaxanthin, a key reaction for ABA biosynthesis and the xanthophyll cycle. Both processes are important for acclimation to environmental stress conditions, in particular drought (ABA biosynthesis) and light (xanthophyll cycle) stress. Hence, both ZEP functions may require differential regulation to optimize plant fitness. The key to understanding the function of ZEP in both stress responses might lie in its spatial and temporal distribution in plant tissues. Therefore, we analyzed the distribution of ZEP in plant tissues and plastids under drought and light stress by use of a ZEP-specific antibody. In addition, we determined the pigment composition of the plant tissues and chloroplast membrane subcompartments in response to these stresses. The ZEP protein was detected in all plant tissues (except flowers) concomitant with xanthophylls. The highest levels of ZEP were present in leaf chloroplasts and root plastids. Within chloroplasts, ZEP was localized predominantly in the thylakoid membrane and stroma, while only a small fraction was bound by the envelope membrane. Light stress affected neither the accumulation nor the relative distribution of ZEP in chloroplasts, while drought stress led to an increase of ZEP in roots and to a degradation of ZEP in leaves. However, drought stress-induced increases in ABA were similar in both tissues. These data support a tissue- and stress-specific accumulation of the ZEP protein in accordance with its different functions in ABA biosynthesis and the xanthophyll cycle. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Scattering and absorption control in biocompatible fibers towards equalized photobiomodulation.

    PubMed

    George, J; Haghshenas, H; d'Hemecourt, D; Zhu, W; Zhang, L; Sorger, V

    2017-03-01

    Transparent tissue scaffolds enable illumination of growing tissue to accelerate cell proliferation and improve other cell functions through photobiomodulation. The biphasic dose response of cells exposed to photobiomodulating light dictates that the illumination be evenly distributed across the scaffold such that the cells are neither under nor over exposed to light. However, equalized illumination has not been sufficiently addressed. Here we analyze and experimentally demonstrate spatially equalizing illumination by three methods, namely: engineered surface scattering, reflection by a gold mirror, and traveling-waves in a ring mesh. Our results show that nearly equalized illumination is achievable by controlling the light scattering-to-loss ratio. This demonstration furthers opportunities for dose-optimized photobiomodulation in tissue regeneration.

  8. A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity.

    PubMed

    Vandenbrink, Joshua P; Herranz, Raul; Medina, F Javier; Edelmann, Richard E; Kiss, John Z

    2016-12-01

    Blue-light positive phototropism in roots is masked by gravity and revealed in conditions of microgravity. In addition, the magnitude of red-light positive phototropic curvature is correlated to the magnitude of gravity. Due to their sessile nature, plants utilize environmental cues to grow and respond to their surroundings. Two of these cues, light and gravity, play a substantial role in plant orientation and directed growth movements (tropisms). However, very little is currently known about the interaction between light- (phototropic) and gravity (gravitropic)-mediated growth responses. Utilizing the European Modular Cultivation System on board the International Space Station, we investigated the interaction between phototropic and gravitropic responses in three Arabidopsis thaliana genotypes, Landsberg wild type, as well as mutants of phytochrome A and phytochrome B. Onboard centrifuges were used to create a fractional gravity gradient ranging from reduced gravity up to 1g. A novel positive blue-light phototropic response of roots was observed during conditions of microgravity, and this response was attenuated at 0.1g. In addition, a red-light pretreatment of plants enhanced the magnitude of positive phototropic curvature of roots in response to blue illumination. In addition, a positive phototropic response of roots was observed when exposed to red light, and a decrease in response was gradual and correlated with the increase in gravity. The positive red-light phototropic curvature of hypocotyls when exposed to red light was also confirmed. Both red-light and blue-light phototropic responses were also shown to be affected by directional light intensity. To our knowledge, this is the first characterization of a positive blue-light phototropic response in Arabidopsis roots, as well as the first description of the relationship between these phototropic responses in fractional or reduced gravities.

  9. A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity

    PubMed Central

    Vandenbrink, Joshua P.; Herranz, Raul; Medina, F. Javier; Edelmann, Richard E.

    2017-01-01

    Main conclusion Blue-light positive phototropism in roots is masked by gravity and revealed in conditions of microgravity. In addition, the magnitude of red-light positive phototropic curvature is correlated to the magnitude of gravity. Due to their sessile nature, plants utilize environmental cues to grow and respond to their surroundings. Two of these cues, light and gravity, play a substantial role in plant orientation and directed growth movements (tropisms). However, very little is currently known about the interaction between light- (phototropic) and gravity (gravitropic)-mediated growth responses. Utilizing the European Modular Cultivation System on board the International Space Station, we investigated the interaction between phototropic and gravitropic responses in three Arabidopsis thaliana genotypes, Landsberg wild type, as well as mutants of phytochrome A and phytochrome B. Onboard centrifuges were used to create a fractional gravity gradient ranging from reduced gravity up to 1g. A novel positive blue-light phototropic response of roots was observed during conditions of microgravity, and this response was attenuated at 0.1g. In addition, a red-light pretreatment of plants enhanced the magnitude of positive phototropic curvature of roots in response to blue illumination. In addition, a positive phototropic response of roots was observed when exposed to red light, and a decrease in response was gradual and correlated with the increase in gravity. The positive red-light phototropic curvature of hypocotyls when exposed to red light was also confirmed. Both red-light and blue-light phototropic responses were also shown to be affected by directional light intensity. To our knowledge, this is the first characterization of a positive blue-light phototropic response in Arabidopsis roots, as well as the first description of the relationship between these phototropic responses in fractional or reduced gravities. PMID:27507239

  10. Characterization of submillisecond response optical addressing phase modulator based on low light scattering polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Dayong, Zhang; Yongquan, Luo

    2015-01-01

    Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulation effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.

  11. Evolutionary origin of phytochrome responses and signaling in land plants.

    PubMed

    Inoue, Keisuke; Nishihama, Ryuichi; Kohchi, Takayuki

    2017-11-01

    Phytochromes comprise one of the major photoreceptor families in plants, and they regulate many aspects of plant growth and development throughout the plant life cycle. A canonical land plant phytochrome originated in the common ancestor of streptophytes. Phytochromes have diversified in seed plants and some basal land plants because of lineage-specific gene duplications that occurred during the course of land plant evolution. Molecular genetic analyses using Arabidopsis thaliana suggested that there are two types of phytochromes in angiosperms, light-labile type I and light-stable type II, which have different signaling mechanisms and which regulate distinct responses. In basal land plants, little is known about molecular mechanisms of phytochrome signaling, although red light/far-red photoreversible physiological responses and the distribution of phytochrome genes are relatively well documented. Recent advances in molecular genetics using the moss Physcomitrella patens and the liverwort Marchantia polymorpha revealed that basal land plants show far-red-induced responses and that the establishment of phytochrome-mediated transcriptional regulation dates back to at least the common ancestor of land plants. In this review, we summarize our knowledge concerning functions of land plant phytochromes, especially in basal land plants, and discuss subfunctionalization/neofunctionalization of phytochrome signaling during the course of land plant evolution. © 2017 John Wiley & Sons Ltd.

  12. Design and simulation of multifunctional optical devices using metasurfaces

    NASA Astrophysics Data System (ADS)

    Alyammahi, Saleimah

    In classical optics, optical components such as lenses and microscopes are unable to focus the light into deep subwavelength or nanometer scales due to the diffraction limit. However, recent developments in nanophotonics, have enabled researchers to control the light at subwavelength scales and overcome the diffraction limit. Using subwavelength structures, we can create a new class of optical materials with unusual optical responses or with new properties that are not attainable in nature. Such artificial materials can be created by structuring conventional materials on the subwavelength scale, giving rise to the unusual optical properties due to the electric and magnetic responses of each meta-atom. These materials are called metamaterials or engineered materials that exhibit exciting phenomena such as non-linear optical responses and negative refraction. Metasurfaces are two dimensional meta-atoms arranged as an array with subwavelength distances. Therefore, metasurfaces are planar, ultrathin version of metamaterials that offer fascinating possibilities of manipulating the wavefront of the optical fields. Recently, the control of light properties such as phase, amplitude, and polarization has been demonstrated by introducing abrupt phase change across a subwavelength scale. Phase discontinuities at the interface can be attained by engineered metasurfaces with new applications and functionalities that have not been realized with bulk or multilayer materials. In this work, high efficient, planar metasurfaces based on geometric phase are designed to realize various functionalities. The designs include metalenses, axicon lenses, vortex beam generators, and Bessel vortex beam generators. The capability of planar metasurfaces in focusing the incident beams and shaping the optical wavefront is numerically demonstrated. COMSOL simulations are used to prove the capability of these metasurfaces to transform the incident beams into complex beams that carry orbital angular momentum (OAM). New designs of ultrathin, planar metasurfaces may result in development of a new type of photonic devices with reduced loss and broad bandwidth. The advances in metasurface designs will lead to ultrathin devices with surprising functionalities and low cost. These novel designs may offer more possibilities for applications in quantum optic devices, pulse shaping, spatial light modulators, nano-scale sensing or imaging, and so on.

  13. Survey of on-road image projection with pixel light systems

    NASA Astrophysics Data System (ADS)

    Rizvi, Sadiq; Knöchelmann, Marvin; Ley, Peer-Phillip; Lachmayer, Roland

    2017-12-01

    HID, LED and laser-based high resolution automotive headlamps, as of late known as `pixel light systems', are at the forefront of the developing technologies paving the way for autonomous driving. In addition to light distribution capabilities that outperform Adaptive Front Lighting and Matrix Beam systems, pixel light systems provide the possibility of image projection directly onto the street. The underlying objective is to improve the driving experience, in any given scenario, in terms of safety, comfort and interaction for all road users. The focus of this work is to conduct a short survey on this state-of-the-art image projection functionality. A holistic research regarding the image projection functionality can be divided into three major categories: scenario selection, technological development and evaluation design. Consequently, the work presented in this paper is divided into three short studies. Section 1 provides a brief introduction to pixel light systems and a justification for the approach adopted for this study. Section 2 deals with the selection of scenarios (and driving maneuvers) where image projection can play a critical role. Section 3 discusses high power LED and LED array based prototypes that are currently under development. Section 4 demonstrates results from an experiment conducted to evaluate the illuminance of an image space projected using a pixel light system prototype developed at the Institute of Product Development (IPeG). Findings from this work can help to identify and advance future research work relating to: further development of pixel light systems, scenario planning, examination of optimal light sources, behavioral response studies etc.

  14. Method for Ground-to-Satellite Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2015-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  15. Method for Ground-to-Space Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2014-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  16. [The possibility for using the phenomenon of polarized light interference in treating amblyopia].

    PubMed

    Abramov, V G; Vakurina, A E; Kashchenko, T P; Pargina, N M

    1996-01-01

    A new method for treating amblyopia is proposed, making use of the phenomenon of polarized light interference. It helps act simultaneously on the brightness, contrast frequency, and color sensitivity in response to patterns. The method was used in the treatment of 36 children. In group 1 (n = 20) it was combined with the traditional methods. Such treatment was more effective than in controls treated routinely. Group 2 consisted of 16 children in whom previous therapy was of no avail. Visual function was improved in 7 of them.

  17. Changes in morning salivary melatonin correlate with prefrontal responses during working memory performance.

    PubMed

    Killgore, William D S; Kent, Haley C; Knight, Sara A; Alkozei, Anna

    2018-04-11

    Humans demonstrate a circadian rhythm of melatonin production that closely tracks the daily light/dark cycle, with profound increases in circulating levels during the night-time and nearly nonexistent levels during daylight hours. Although melatonin is known to play a role in preparing the brain and body for sleep, its effects on cognition and brain function are not well understood. We hypothesized that declines in morning melatonin would be associated with increased functional activation within cortical regions involved in alertness, attention, and executive function. We measured the change in salivary melatonin from mid-morning to late-morning in 26 healthy young adults who were also exposed to a 30-min period of blue or amber light followed by functional MRI during a working memory task (N-back). Brain activation was regressed on the change in melatonin scores from the mid-morning to late-morning saliva samples and the role of light exposure was also assessed. Although overall melatonin levels did not change significantly over the morning at the group level, individual declines in salivary melatonin were associated with significant increases in activation within the left dorsomedial and right inferior lateral prefrontal cortex during the 2-back condition (P<0.05, cluster corrected). Medial prefrontal activation also correlated modestly with better vigilance performance during the 0-back (P<0.05), but not the 1-back or 2-back conditions. The light condition did not affect the outcomes. These findings suggest declining melatonin levels in the morning are associated with increased prefrontal cortex functioning and may play a role in the increased frontal activation that occurs following awakening.

  18. Adhesion of Chlamydomonas microalgae to surfaces is switchable by light

    NASA Astrophysics Data System (ADS)

    Kreis, Christian Titus; Le Blay, Marine; Linne, Christine; Makowski, Marcin Michal; Bäumchen, Oliver

    2018-01-01

    Microalgae are photoactive microbes that live in liquid-infused environments, such as soil, temporary pools and rocks, where they encounter and colonize a plethora of surfaces. Their photoactivity manifests itself in a variety of processes, including light-directed motility (phototaxis), the growth of microalgal populations, and their photosynthetic machinery. Although microbial responses to light have been widely recognized, any influence of light on cell-surface interactions remains elusive. Here, we reveal that the unspecific adhesion of microalgae to surfaces can be reversibly switched on and off by light. Using a micropipette force spectroscopy technique, we measured in vivo single-cell adhesion forces and show that the microalga's flagella provide light-switchable adhesive contacts with the surface. This light-induced adhesion to surfaces is an active and completely reversible process that occurs on a timescale of seconds. Our results suggest that light-switchable adhesiveness is a natural functionality of microalgae to regulate the transition between the planktonic and the surface-associated state, which yields an adhesive adaptation to optimize the photosynthetic efficiency in conjunction with phototaxis.

  19. Exploring the relationship between patient call-light use rate and nurse call-light response time in acute care settings.

    PubMed

    Tzeng, Huey-Ming; Larson, Janet L

    2011-03-01

    Patient call-light usage and nurse responsiveness to call lights are two intertwined concepts that could affect patients' safety during hospital stays. Little is known about the relationship between call-light usage and call-light response time. Consequently, this exploratory study examined the relationship between the patient-initiated call-light use rate and the nursing staff's average call-light response time in a Michigan community hospital. It used hospital archived data retrieved from the call-light tracking system for the period from February 2007 through June 2008. Curve estimation regression and multiple regression analyses were conducted. The results showed that the call-light response time was not affected by the total nursing hours or RN hours. The nurse call-light response time was longer when the patient call-light use rate was higher and the average length of stay was shorter. It is likely that a shorter length of stay contributes to the nursing care activity level on the unit because it is associated with a higher frequency of patient admissions/discharges and treatment per patient-day. This suggests that the nursing care activity level on the unit and number of call-light alarms could affect nurse call-light response time, independently of the number of nurses available to respond.

  20. Bio-Optics and Bio-Inspired Optical Materials.

    PubMed

    Tadepalli, Sirimuvva; Slocik, Joseph M; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth

    2017-10-25

    Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.

  1. Game theory-based mode cooperative selection mechanism for device-to-device visible light communication

    NASA Astrophysics Data System (ADS)

    Liu, Yuxin; Huang, Zhitong; Li, Wei; Ji, Yuefeng

    2016-03-01

    Various patterns of device-to-device (D2D) communication, from Bluetooth to Wi-Fi Direct, are emerging due to the increasing requirements of information sharing between mobile terminals. This paper presents an innovative pattern named device-to-device visible light communication (D2D-VLC) to alleviate the growing traffic problem. However, the occlusion problem is a difficulty in D2D-VLC. This paper proposes a game theory-based solution in which the best-response dynamics and best-response strategies are used to realize a mode-cooperative selection mechanism. This mechanism uses system capacity as the utility function to optimize system performance and selects the optimal communication mode for each active user from three candidate modes. Moreover, the simulation and experimental results show that the mechanism can attain a significant improvement in terms of effectiveness and energy saving compared with the cases where the users communicate via only the fixed transceivers (light-emitting diode and photo diode) or via only D2D.

  2. Legume species differ in the responses of their functional traits to plant diversity.

    PubMed

    Roscher, Christiane; Schmid, Bernhard; Buchmann, Nina; Weigelt, Alexandra; Schulze, Ernst-Detlef

    2011-02-01

    Plants can respond to environmental impacts by variation in functional traits, thereby increasing their performance relative to neighbors. We hypothesized that trait adjustment should also occur in response to influences of the biotic environment, in particular different plant diversity of the community. We used 12 legume species as a model and assessed their variation in morphological, physiological, life-history and performance traits in experimental grasslands of different plant species (1, 2, 4, 8, 16 and 60) and functional group (1-4) numbers. Mean trait values and their variation in response to plant diversity varied among legume species and from trait to trait. The tall-growing Onobrychis viciifolia showed little trait variation in response to increasing plant diversity, whereas the species with shorter statures responded in apparently adaptive ways. The formation of longer shoots with elongated internodes, increased biomass allocation to supporting tissue at the cost of leaf mass, reduced branching, higher specific leaf areas and lower foliar δ(13)C values indicated increasing efforts for light acquisition in more diverse communities. Although leaf nitrogen concentrations and shoot biomass:nitrogen ratios were not affected by increasing plant diversity, foliar δ(15)N values of most legumes decreased and the application of the (15)N natural abundance method suggested that they became more reliant on symbiotic N(2) fixation. Some species formed fewer inflorescences and delayed flowering with increasing community diversity. The observed variation in functional traits generally indicated strategies of legumes to optimize light and nutrient capturing, but they were largely species-dependent and only partly attributable to increasing canopy height and community biomass with increasing plant diversity. Thus, the analysis of individual plant species and their adjustment to growth conditions in communities of increasing plant diversity is essential to get a deeper insight into the mechanisms behind biodiversity-ecosystem functioning relationships.

  3. The influence of light on temperature preference in Drosophila

    PubMed Central

    Head, Lauren M.; Tang, Xin; Hayley, Sean E.; Goda, Tadahiro; Umezaki, Yujiro; Chang, Elaine C.; Leslie, Jennifer R.; Fujiwara, Mana; Garrity, Paul A.; Hamada, Fumika N.

    2015-01-01

    Ambient light affects multiple physiological functions and behaviors, such as circadian rhythms, sleep-wake activities, and development from flies to mammals [1–6]. Mammals exhibit a higher body temperature when exposed to acute light compared to when they are exposed to dark, but the underlying mechanisms are largely unknown [7–10]. The body temperature of small ecotherms, such as Drosophila, rely on the temperature of their surrounding environment and these animals exhibit a robust temperature preference behavior [11–13]. Here, we demonstrate that Drosophila prefer a one-degree higher temperature when exposed to acute light rather than dark. This acute light response, light dependent temperature preference (LDTP), was observed regardless of the time of day, suggesting that LDTP is regulated separately from the circadian clock. However, screening of eye and circadian clock mutants suggests that the circadian clock neurons, posterior dorsal neurons 1 (DN1ps) and pigment-dispersing factor receptor (pdfr) play a role in LDTP. To further investigate the role of DN1ps in LDTP, pdfr in DN1ps was knocked down, resulting in an abnormal LDTP. The phenotype of the pdfr mutant was sufficiently rescued by expressing pdfr in DN1ps, indicating that pdfr expression in DN1ps is responsible for LDTP. These results suggest that light positively influences temperature preference via the circadian clock neurons, DN1ps, which may result from the integration of light and temperature information. Given that both Drosophila and mammals respond to acute light by increasing their body temperature, the effect of acute light on temperature regulation may be conserved evolutionarily between flies and humans. PMID:25866391

  4. FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in Arabidopsis

    PubMed Central

    2018-01-01

    Plant development is affected by the integration of light and phytohormones, including jasmonates (JAs). To address the molecular mechanisms of possible interactions between blue light and JA signaling in Arabidopsis thaliana, we used molecular and transgenic approaches to understand the regulatory relationships between FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT1 (JAR1) and the blue-light photoreceptor cryptochrome1 (CRY1). FIN219 overexpression in the wild type resulted in a short-hypocotyl phenotype under blue light. However, FIN219 overexpression in cry1, cry2 and cry1cry2 double mutant backgrounds resulted in phenotypes similar to their respective mutant backgrounds, which suggests that FIN219 function may require blue light photoreceptors. Intriguingly, FIN219 overexpression in transgenic plants harboring ectopic expression of the C terminus of CRY1 (GUS-CCT1), which exhibits a hypersensitive short-hypocotyl phenotype in all light conditions including darkness, led to a rescued phenotype under all light conditions except red light. Further expression studies showed mutual suppression between FIN219 and CRY1 under blue light. Strikingly, FIN219 overexpression in GUS-CCT1 transgenic lines (FIN219-OE/GUS-CCT1) abolished GUS-CCT1 fusion protein under blue light, whereas GUS-CCT1 fusion protein was stable in the fin219-2 mutant background (fin219-2/GUS-CCT1). Moreover, FIN219 strongly interacted with COP1 under blue light, and methyl JA (MeJA) treatment enhanced the interaction between FIN219 and GUS-CCT1 under blue light. Furthermore, FIN219 level affected GUS-CCT1 seedling responses such as anthocyanin accumulation and bacterial resistance under various light conditions and MeJA treatment. Thus, FIN219/JAR1 and CRY1 antagonize each other to modulate photomorphogenic development of seedlings and stress responses in Arabidopsis. PMID:29561841

  5. FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in Arabidopsis.

    PubMed

    Chen, Huai-Ju; Fu, Tsu-Yu; Yang, Shao-Li; Hsieh, Hsu-Liang

    2018-03-01

    Plant development is affected by the integration of light and phytohormones, including jasmonates (JAs). To address the molecular mechanisms of possible interactions between blue light and JA signaling in Arabidopsis thaliana, we used molecular and transgenic approaches to understand the regulatory relationships between FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT1 (JAR1) and the blue-light photoreceptor cryptochrome1 (CRY1). FIN219 overexpression in the wild type resulted in a short-hypocotyl phenotype under blue light. However, FIN219 overexpression in cry1, cry2 and cry1cry2 double mutant backgrounds resulted in phenotypes similar to their respective mutant backgrounds, which suggests that FIN219 function may require blue light photoreceptors. Intriguingly, FIN219 overexpression in transgenic plants harboring ectopic expression of the C terminus of CRY1 (GUS-CCT1), which exhibits a hypersensitive short-hypocotyl phenotype in all light conditions including darkness, led to a rescued phenotype under all light conditions except red light. Further expression studies showed mutual suppression between FIN219 and CRY1 under blue light. Strikingly, FIN219 overexpression in GUS-CCT1 transgenic lines (FIN219-OE/GUS-CCT1) abolished GUS-CCT1 fusion protein under blue light, whereas GUS-CCT1 fusion protein was stable in the fin219-2 mutant background (fin219-2/GUS-CCT1). Moreover, FIN219 strongly interacted with COP1 under blue light, and methyl JA (MeJA) treatment enhanced the interaction between FIN219 and GUS-CCT1 under blue light. Furthermore, FIN219 level affected GUS-CCT1 seedling responses such as anthocyanin accumulation and bacterial resistance under various light conditions and MeJA treatment. Thus, FIN219/JAR1 and CRY1 antagonize each other to modulate photomorphogenic development of seedlings and stress responses in Arabidopsis.

  6. On- and off-response ERGs elicited by sawtooth stimuli in normal subjects and glaucoma patients.

    PubMed

    Pangeni, Gobinda; Lämmer, Robert; Tornow, Ralf P; Horn, Folkert K; Kremers, Jan

    2012-06-01

    The aim of this study is to measure the on- and off-responses and their response asymmetries elicited by sawtooth stimuli in normal subjects and glaucoma patients. Furthermore, the correlation between the ERGs and other functional and structural parameters are investigated. Full-field stimuli were produced using a Ganzfeld bowl with Light Emitting Diodes (LEDs) as light sources. On- and off-response ERGs were recorded from 17 healthy subjects, 12 pre-perimetric and 15 perimetric glaucoma patients using 4-Hz luminance rapid-on and rapid-off sawtooth stimuli (white light; mean luminance 55 cd/m(2)) at 100% contrast. The on- and off-responses were added to study response asymmetries. In addition, flash ERGs were elicited by red stimuli (200 cd/m(2)) on a blue background (10 cd/m(2)). The mean deviations (MD) of the visual field defects were obtained by standard automated perimetry. The retinal nerve fibre layer thickness (RNFLT) was measured with Spectral Domain Optical Coherence Tomography (SOCT). We studied the correlation between ERG response amplitudes, visual field mean deviation (MDs) and RNFLT values. The on-responses showed an initial negative (N-on) followed by a positive (P-on), a late positive (LP-on) and a late negative responses (LN-on). The off-responses showed an initial positive (P-off) a late positive (LP-off) and a late negative response (LN-off). The addition of on- and off-responses revealed an initial positive (P-add) and a late negative response (LN-add). The on-response components (N-on, P-on and LN-on) in the glaucoma patients were relatively similar to those of the control subjects. However, the LP-on was significantly elevated (p = 0.03) in perimetric patients. The LP-off was significantly elevated (p < 0.001), and the amplitude of LN-off was significantly reduced in perimetric patients (p = 0.02). The LN-add amplitude was significantly reduced (p < 0.001) and delayed (p = 0.03) in perimetric patients. The amplitudes of the LN-off and LN-add ERG components were significantly correlated with the PhNR in the flash ERG (LN-off: p = 0.01; LN-add: p < 0.001) and with RNFLT (LN-off: p = 0.006; LN-add: p = 0.001). On- and off-response ERGs and their response asymmetries, elicited by sawtooth stimuli, are altered in the glaucoma patients. The late components are affected. Changes in the late negative components are correlated with structural and other functional changes.

  7. Light signaling to the zebrafish circadian clock by Cryptochrome 1a

    PubMed Central

    Tamai, T. Katherine; Young, Lucy C.; Whitmore, David

    2007-01-01

    Zebrafish tissues and cells have the unusual feature of not only containing a circadian clock, but also being directly light-responsive. Several zebrafish genes are induced by light, but little is known about their role in clock resetting or the mechanism by which this might occur. Here we show that Cryptochrome 1a (Cry1a) plays a key role in light entrainment of the zebrafish clock. Intensity and phase response curves reveal a strong correlation between light induction of Cry1a and clock resetting. Overexpression studies show that Cry1a acts as a potent repressor of clock function and mimics the effect of constant light to “stop” the circadian oscillator. Yeast two-hybrid analysis demonstrates that the Cry1a protein interacts directly with specific regions of core clock components, CLOCK and BMAL, blocking their ability to fully dimerize and transactivate downstream targets, providing a likely mechanism for clock resetting. A comparison of entrainment of zebrafish cells to complete versus skeleton photoperiods reveals that clock phase is identical under these two conditions. However, the amplitude of the core clock oscillation is much higher on a complete photoperiod, as are the levels of light-induced Cry1a. We believe that Cry1a acts on the core clock machinery in both a continuous and discrete fashion, leading not only to entrainment, but also to the establishment of a high-amplitude rhythm and even stopping of the clock under long photoperiods. PMID:17785416

  8. Electrowetting-actuated optical switch based on total internal reflection.

    PubMed

    Liu, Chao; Wang, Di; Yao, Li-Xiao; Li, Lei; Wang, Qiong-Hua

    2015-04-01

    In this paper we demonstrate a liquid optical switch based on total internal reflection. Two indium tin oxide electrodes are fabricated on the bottom substrate. A conductive liquid (Liquid 1) is placed on one side of the chamber and surrounded by a density-matched silicone oil (Liquid 2). In initial state, when the light beam illuminates the interface of the two liquids, it just meets the conditions of total internal reflection. The light is totally reflected by Liquid 2, and the device shows light-off state. When we apply a voltage to the other side of the indium tin oxide electrode, Liquid 1 stretched towards this side of the substrate and the curvature of the liquid-liquid interface changes. The light beam is refracted by Liquid 1 and the device shows light-on state. So the device can achieve the functions of an optical switch. Because the light beam can be totally reflected by the liquid, the device can attain 100% light intensity attenuation. Our experiments show that the response time from light-on (off) to light-off (on) are 130 and 132 ms, respectively. The proposed optical switch has potential applications in variable optical attenuators, information displays, and light shutters.

  9. Optically Tunable Resistive-Switching Memory in Multiferroic Heterostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Ming; Ni, Hao; Xu, Xiaoke; Qi, Yaping; Li, Xiaomin; Gao, Ju

    2018-04-01

    Electronic phase separation has been used to realize exotic functionalities in complex oxides with external stimuli, such as magnetic field, electric field, current, light, strain, etc. Using the Nd0.7Sr0.3MnO3/0.7 Pb (Mg1 /3Nb2 /3)O3-0 .3 PbTiO3 multiferroic heterostructure as a model system, we investigate the electric field and light cocontrol of phase separation in resistive switching. The electric-field-induced nonvolatile electroresistance response is achieved at room temperature using reversible ferroelastic domain switching, which can be robustly modified on illumination of light. Moreover, the electrically controlled ferroelastic strain can effectively enhance the visible-light-induced photoresistance effect. These findings demonstrate that the electric-field- and light-induced effects strongly correlate with each other and are essentially driven by electronic phase separation. Our work opens a gate to design electrically tunable multifunctional storage devices based on multiferroic heterostructures by adding light as an extra control parameter.

  10. Dose-response relationships for resetting of human circadian clock by light

    NASA Technical Reports Server (NTRS)

    Boivin, D. B.; Duffy, J. F.; Kronauer, R. E.; Czeisler, C. A.

    1996-01-01

    Since the first report in unicells, studies across diverse species have demonstrated that light is a powerful synchronizer which resets, in an intensity-dependent manner, endogenous circadian pacemakers. Although it is recognized that bright light (approximately 7,000 to 13,000 lux) is an effective circadian synchronizer in humans, it is widely believed that the human circadian pacemaker is insensitive to ordinary indoor illumination (approximately 50-300 lux). It has been proposed that the relationship between the resetting effect of light and its intensity follows a compressive nonlinear function, such that exposure to lower illuminances still exerts a robust effect. We therefore undertook a series of experiments which support this hypothesis and report here that light of even relatively low intensity (approximately 180 lux) significantly phase-shifts the human circadian pacemaker. Our results clearly demonstrate that humans are much more sensitive to light than initially suspected and support the conclusion that they are not qualitatively different from other mammals in their mechanism of circadian entrainment.

  11. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression

    NASA Technical Reports Server (NTRS)

    Zeitzer, J. M.; Dijk, D. J.; Kronauer, R.; Brown, E.; Czeisler, C.

    2000-01-01

    Ocular exposure to early morning room light can significantly advance the timing of the human circadian pacemaker. The resetting response to such light has a non-linear relationship to illuminance. The dose-response relationship of the human circadian pacemaker to late evening light of dim to moderate intensity has not been well established. Twenty-three healthy young male and female volunteers took part in a 9 day protocol in which a single experimental light exposure6.5 h in duration was given in the early biological night. The effects of the light exposure on the endogenous circadian phase of the melatonin rhythm and the acute effects of the light exposure on plasma melatonin concentration were calculated. We demonstrate that humans are highly responsive to the phase-delaying effects of light during the early biological night and that both the phase resetting response to light and the acute suppressive effects of light on plasma melatonin follow a logistic dose-response curve, as do many circadian responses to light in mammals. Contrary to expectations, we found that half of the maximal phase-delaying response achieved in response to a single episode of evening bright light ( approximately 9000 lux (lx)) can be obtained with just over 1 % of this light (dim room light of approximately 100 lx). The same held true for the acute suppressive effects of light on plasma melatonin concentrations. This indicates that even small changes in ordinary light exposure during the late evening hours can significantly affect both plasma melatonin concentrations and the entrained phase of the human circadian pacemaker.

  12. Characterization of spectral and intensity changes with measurement geometry in various light guides used in scintillation dosimetry.

    PubMed

    Simiele, Eric A; DeWerd, Larry A

    2018-05-24

    To characterize response changes of various light guides used in megavoltage (MV) photon beam scintillation dosimetry as a function of irradiation conditions. Particular emphasis was placed on quantifying the impact of response changes on the Čerenkov light ratio (CLR). Intensity and spectral response measurements as a function of dose, depth, and fiber-beam angle were performed with a commercial scintillation detector stripped of its scintillation material and five different custom-made light guides. The core materials of the light guides investigated consisted of polymethyl methacrylate (PMMA), low- and high-hydroxyl content silica, and polystyrene. Dose levels ranging from 50 monitor units (MU) to 1000 MU, depths ranging from 1 to 20 cm, and fiber-beam angles ranging from 10° to 90° were investigated. All measurements were performed at a photon beam energy of 6 MV. The CLR was calculated by taking the ratio of the responses in the blue to green spectral regions. There was no significant change in the CLR measured with the modified commercial scintillation detector as a function of delivered dose. In addition, increases in the CLR as functions of depth and fiber-beam angle were observed where the maximum changes were 4.2% and 3.6%, respectively. The spectrum measurements showed no observable changes in spectral shape with depth except for the low-hydroxyl content silica fiber. Variations in the measured spectral shape with fiber-beam angle were observed for all fibers investigated. The magnitude of the changes in the spectral shape varied with fiber type, where the silica fibers exhibited the largest changes and the plastic fibers exhibited the smallest changes. Increases in the CLR were observed for the silica fibers with depth and for all fibers with fiber-beam angle. The plastic fibers showed no significant change in the CLR as a function of depth. Increases of 3.1% and 9.5% in the CLR were observed for the high- and low-hydroxyl content silica fibers, respectively, over the range of depths investigated. Variations of 2.3%, 6.1%, 5.1% and 11.9% were observed for the PMMA, polystyrene, high-hydroxyl, and low-hydroxyl content silica fiber CLR values as a function of fiber-beam angle, respectively. The insignificant change in the CLR with delivered dose indicates that a single CLR value over the investigated dose range is sufficient for accurate Čerenkov subtraction. Variations in the stem-effect spectrum shape can occur with changes in irradiation geometry. The magnitude of the changes are governed by the fiber construction and the optical properties of the fiber. The observed spectral shape changes can be explained by a combination of variations in optical path length through the fiber and the fiber fluorescent signal contribution to the stem-effect. These spectral shape variations directly influence the calculated CLR values. This work confirms that careful characterization of scintillation detectors is important as changes in the stem-effect spectrum can cause changes in the CLR. If the CLR changes between the reference and measurement conditions, this could result in an incorrect stem-effect subtraction and reduced measurement accuracy. © 2018 American Association of Physicists in Medicine.

  13. Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina

    PubMed Central

    Jin, Nan Ge; Chuang, Alice Z; Masson, Philippe J; Ribelayga, Christophe P

    2015-01-01

    Key points Rod photoreceptors play a key role in vision in dim light; in the mammalian retina, although rods are anatomically connected or coupled by gap junctions, a type of electrical synapse, the functional importance and regulation of rod coupling has remained elusive. We have developed a new technique in the mouse: perforated patch-clamp recording of rod inner segments in isolated intact retinae maintained by superfusion. We find that rod electrical coupling is controlled by a circadian clock and dopamine, and is weak during the day and stronger at night. The results also indicate that the signal-to-noise ratio for a dim light response is increased at night because of coupling. Our observations will provide a framework for understanding the daily variations in human vision as well as the basis of specific retinal malfunctions. Abstract Rod single-photon responses are critical for vision in dim light. Electrical coupling via gap junction channels shapes the light response properties of vertebrate photoreceptors, but the regulation of rod coupling and its impact on the single-photon response have remained unclear. To directly address these questions, we developed a perforated patch-clamp recording technique and recorded from single rod inner segments in isolated intact neural mouse retinae, maintained by superfusion. Experiments were conducted at different times of the day or under constant environmental conditions, at different times across the circadian cycle. We show that rod electrical coupling is regulated by a circadian clock and dopamine, so that coupling is weak during the day and strong at night. Altogether, patch-clamp recordings of single-photon responses in mouse rods, tracer coupling, receptive field measurements and pharmacological manipulations of gap junction and dopamine receptor activity provide compelling evidence that rod coupling is modulated in a circadian manner. These data are consistent with computer modelling. At night, single-photon responses are smaller due to coupling, but the signal-to-noise ratio for a dim (multiphoton) light response is increased at night because of signal averaging between coupled rods. PMID:25616058

  14. Protection against methanol-induced retinal toxicity by LED photostimulation

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Wong-Riley, Margaret T. T.; Eells, Janis T.

    2002-06-01

    We have initiated experiments designed to test the hypothesis that 670-nm Light-Emitting Diode (LED) exposure will attenuate formate-induced retinal dysfunction in a rodent model of methanol toxicity. Methanol intoxication produces toxic injury to the retina. The toxic metabolite formed in methanol intoxication is formic acid, a mitochondrial toxin known to inhibit cytochrome oxidase activity. 670-nm LED light has been hypothesized to act by stimulating cytochrome oxidase activity. To test this hypothesis, one group of animals was intoxicated with methanol, a second group was intoxicated with methanol and LED-treated and a third group was untreated. LED treatment (670 nm for 1 min 45 seconds equals 50 mW/cm2, 4 joules/cm2) was administered at 5, 25, and 50 hours after the initial dose of methanol. At 72 hours of methanol intoxication, retinal function was assessed by measurement of ERG responses and retinas were prepared for histologic analysis. ERG responses recorded in methanol-intoxicated animals revealed profound attenuation of both rod-dominated and UV-cone mediated responses. In contrast, methanol- intoxicated animals exposed to LED treatment exhibited a nearly complete recovery of rod-dominated ERG responses and a slight improvement of UV-cone mediated ERG responses. LED treatment also protected the retina against the histopathologic changes produced by formate in methanol intoxication. These data provide evidence that LED phototherapy protects the retina against the cytotoxic actions of formate and are consistent with the hypothesis that LED photostimulation improves mitochondrial respiratory chain function.

  15. Regional entropy of functional imaging signals varies differently in sensory and cognitive systems during propofol-modulated loss and return of behavioral responsiveness.

    PubMed

    Liu, Xiaolin; Lauer, Kathryn K; Ward, B Douglas; Roberts, Christopher J; Liu, Suyan; Gollapudy, Suneeta; Rohloff, Robert; Gross, William; Xu, Zhan; Chen, Shanshan; Wang, Lubin; Yang, Zheng; Li, Shi-Jiang; Binder, Jeffrey R; Hudetz, Anthony G

    2018-05-08

    The level and richness of consciousness depend on information integration in the brain. Altered interregional functional interactions may indicate disrupted information integration during anesthetic-induced unconsciousness. How anesthetics modulate the amount of information in various brain regions has received less attention. Here, we propose a novel approach to quantify regional information content in the brain by the entropy of the principal components of regional blood oxygen-dependent imaging signals during graded propofol sedation. Fifteen healthy individuals underwent resting-state scans in wakeful baseline, light sedation (conscious), deep sedation (unconscious), and recovery (conscious). Light sedation characterized by lethargic behavioral responses was associated with global reduction of entropy in the brain. Deep sedation with completely suppressed overt responsiveness was associated with further reductions of entropy in sensory (primary and higher sensory plus orbital prefrontal cortices) but not high-order cognitive (dorsal and medial prefrontal, cingulate, parietotemporal cortices and hippocampal areas) systems. Upon recovery of responsiveness, entropy was restored in the sensory but not in high-order cognitive systems. These findings provide novel evidence for a reduction of information content of the brain as a potential systems-level mechanism of reduced consciousness during propofol anesthesia. The differential changes of entropy in the sensory and high-order cognitive systems associated with losing and regaining overt responsiveness are consistent with the notion of "disconnected consciousness", in which a complete sensory-motor disconnection from the environment occurs with preserved internal mentation.

  16. Differences and similarities in the photoregulation of gibberellin metabolism between rice and dicots.

    PubMed

    Hirose, Fumiaki; Inagaki, Noritoshi; Takano, Makoto

    2013-03-01

    In rice seedlings, elongation of leaf sheaths is suppressed by light stimuli. The response is mediated by two classes of photoreceptors, phytochromes and cryptochromes. However, it remains unclear how these photoreceptors interact in the process. Our recent study using phytochrome mutants and novel cryptochrome RNAi lines revealed that cryptochromes and phytochromes function cooperatively, but independently to reduce active GA contents in seedlings in visible light. Blue light captured by cryptochrome 1 (cry1a and cry1b) induces robust expression of GA 2-oxidase genes (OsGA2ox4-7). In parallel, phytochrome B with auxiliary action of phytochrome A mediates repression of GA 20-oxidase genes (OsGA20ox2 and OsGA20ox4). The independent effects cumulatively reduce active GA contents, leading to a suppression of leaf sheath elongation. These regulatory mechanisms are distinct from phytochrome B function in dicots. We discuss reasons why the distinct system appeared in rice, and advantages of the rice system in early photomorphogenesis.

  17. Broad Thorny Ganglion Cells: A Candidate for Visual Pursuit Error Signaling in the Primate Retina

    PubMed Central

    Manookin, Michael B.; Neitz, Jay; Rieke, Fred

    2015-01-01

    Functional analyses exist only for a few of the morphologically described primate ganglion cell types, and their correlates in other mammalian species remain elusive. Here, we recorded light responses of broad thorny cells in the whole-mounted macaque retina. They showed ON-OFF-center light responses that were strongly suppressed by stimulation of the receptive field surround. Spike responses were delayed compared with parasol ganglion cells and other ON-OFF cells, including recursive bistratified ganglion cells and A1 amacrine cells. The receptive field structure was shaped by direct excitatory synaptic input and strong presynaptic and postsynaptic inhibition in both ON and OFF pathways. The cells responded strongly to dark or bright stimuli moving either in or out of the receptive field, independent of the direction of motion. However, they did not show a maintained spike response either to a uniform background or to a drifting plaid pattern. These properties could be ideally suited for guiding movements involved in visual pursuit. The functional characteristics reported here permit the first direct cross-species comparison of putative homologous ganglion cell types. Based on morphological similarities, broad thorny ganglion cells have been proposed to be homologs of rabbit local edge detector ganglion cells, but we now show that the two cells have quite distinct physiological properties. Thus, our data argue against broad thorny cells as the homologs of local edge detector cells. PMID:25834063

  18. Quantum efficiency measurements of eROSITA pnCCDs

    NASA Astrophysics Data System (ADS)

    Ebermayer, Stefanie; Andritschke, Robert; Elbs, Johannes; Meidinger, Norbert; Strüder, Lothar; Hartmann, Robert; Gottwald, Alexander; Krumrey, Michael; Scholze, Frank

    2010-07-01

    For the eROSITA X-ray telescope, which is planned to be launched in 2012, detectors were developed and fabricated at the MPI Semiconductor Laboratory. The fully depleted, back-illuminated pnCCDs have an ultrathin pn-junction to improve the low-energy X-ray response function and quantum efficiency. The device thickness of 450 μm is fully sensitive to X-ray photons yielding high quantum efficiency of more than 90% at photon energies of 10 keV. An on-chip filter is deposited on top of the entrance window to suppress visible and UV light which would interfere with the X-ray observations. The pnCCD type developed for the eROSITA telescope was characterized in terms of quantum efficiency and spectral response function. The described measurements were performed in 2009 at the synchrotron radiation sources BESSY II and MLS as cooperation between the MPI Semiconductor Laboratory and the Physikalisch-Technische Bundesanstalt (PTB). Quantum efficiency measurements over a wide range of photon energies from 3 eV to 11 keV as well as spectral response measurements are presented. For X-ray energies from 3 keV to 10 keV the quantum efficiency of the CCD including on-chip filter is shown to be above 90% with an attenuation of visible light of more than five orders of magnitude. A detector response model is described and compared to the measurements.

  19. Comparison on driving fatigue related hemodynamics activated by auditory and visual stimulus

    NASA Astrophysics Data System (ADS)

    Deng, Zishan; Gao, Yuan; Li, Ting

    2018-02-01

    As one of the main causes of traffic accidents, driving fatigue deserves researchers' attention and its detection and monitoring during long-term driving require a new technique to realize. Since functional near-infrared spectroscopy (fNIRS) can be applied to detect cerebral hemodynamic responses, we can promisingly expect its application in fatigue level detection. Here, we performed three different kinds of experiments on a driver and recorded his cerebral hemodynamic responses when driving for long hours utilizing our device based on fNIRS. Each experiment lasted for 7 hours and one of the three specific experimental tests, detecting the driver's response to sounds, traffic lights and direction signs respectively, was done every hour. The results showed that visual stimulus was easier to cause fatigue compared with auditory stimulus and visual stimulus induced by traffic lights scenes was easier to cause fatigue compared with visual stimulus induced by direction signs in the first few hours. We also found that fatigue related hemodynamics caused by auditory stimulus increased fastest, then traffic lights scenes, and direction signs scenes slowest. Our study successfully compared audio, visual color, and visual character stimulus in sensitivity to cause driving fatigue, which is meaningful for driving safety management.

  20. Modulation of Phototropic Responsiveness in Arabidopsis through Ubiquitination of Phototropin 1 by the CUL3-Ring E3 Ubiquitin Ligase CRL3NPH3[W

    PubMed Central

    Roberts, Diana; Pedmale, Ullas V.; Morrow, Johanna; Sachdev, Shrikesh; Lechner, Esther; Tang, Xiaobo; Zheng, Ning; Hannink, Mark; Genschik, Pascal; Liscum, Emmanuel

    2011-01-01

    Plant phototropism is an adaptive response to changes in light direction, quantity, and quality that results in optimization of photosynthetic light harvesting, as well as water and nutrient acquisition. Though several components of the phototropic signal response pathway have been identified in recent years, including the blue light (BL) receptors phototropin1 (phot1) and phot2, much remains unknown. Here, we show that the phot1-interacting protein NONPHOTOTROPIC HYPOCOTYL3 (NPH3) functions as a substrate adapter in a CULLIN3-based E3 ubiquitin ligase, CRL3NPH3. Under low-intensity BL, CRL3NPH3 mediates the mono/multiubiquitination of phot1, likely marking it for clathrin-dependent internalization from the plasma membrane. In high-intensity BL, phot1 is both mono/multi- and polyubiquitinated by CRL3NPH3, with the latter event targeting phot1 for 26S proteasome-mediated degradation. Polyubiquitination and subsequent degradation of phot1 under high-intensity BL likely represent means of receptor desensitization, while mono/multiubiquitination-stimulated internalization of phot1 may be coupled to BL-induced relocalization of hormone (auxin) transporters. PMID:21990941

Top