Sample records for light scattering characterization

  1. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi-elastic light scattering for characterization of polymersomes: comparison with classical techniques.

    PubMed

    Till, Ugo; Gaucher-Delmas, Mireille; Saint-Aguet, Pascale; Hamon, Glenn; Marty, Jean-Daniel; Chassenieux, Christophe; Payré, Bruno; Goudounèche, Dominique; Mingotaud, Anne-Françoise; Violleau, Frédéric

    2014-12-01

    Polymersomes formed from amphiphilic block copolymers, such as poly(ethyleneoxide-b-ε-caprolactone) (PEO-b-PCL) or poly(ethyleneoxide-b-methylmethacrylate), were characterized by asymmetrical flow field-flow fractionation coupled with quasi-elastic light scattering (QELS), multi-angle light scattering (MALS), and refractive index detection, leading to the determination of their size, shape, and molecular weight. The method was cross-examined with more classical ones, like batch dynamic and static light scattering, electron microscopy, and atomic force microscopy. The results show good complementarities between all the techniques; asymmetrical flow field-flow fractionation being the most pertinent one when the sample exhibits several different types of population.

  2. Characterization of single particle aerosols by elastic light scattering at multiple wavelengths

    NASA Astrophysics Data System (ADS)

    Lane, P. A.; Hart, M. B.; Jain, V.; Tucker, J. E.; Eversole, J. D.

    2018-03-01

    We describe a system to characterize individual aerosol particles using stable and repeatable measurement of elastic light scattering. The method employs a linear electrodynamic quadrupole (LEQ) particle trap. Charged particles, continuously injected by electrospray into this system, are confined to move vertically along the stability line in the center of the LEQ past a point where they are optically interrogated. Light scattered in the near forward direction was measured at three different wavelengths using time-division multiplexed collinear laser beams. We validated our method by comparing measured silica microsphere data for four selected diameters (0.7, 1.0, 1.5 and 2.0 μm) to a model of collected scattered light intensities based upon Lorenz-Mie scattering theory. Scattered light measurements at the different wavelengths are correlated, allowing us to distinguish and classify inhomogeneous particles.

  3. Scattering theory of stochastic electromagnetic light waves.

    PubMed

    Wang, Tao; Zhao, Daomu

    2010-07-15

    We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.

  4. Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures.

    PubMed

    Xu, Min; Wu, Tao T; Qu, Jianan Y

    2008-01-01

    A unified Mie and fractal model for light scattering by biological cells is presented. This model is shown to provide an excellent global agreement with the angular dependent elastic light scattering spectroscopy of cells over the whole visible range (400 to 700 nm) and at all scattering angles (1.1 to 165 deg) investigated. Mie scattering from the bare cell and the nucleus is found to dominate light scattering in the forward directions, whereas the random fluctuation of the background refractive index within the cell, behaving as a fractal random continuous medium, is found to dominate light scattering at other angles. Angularly dependent elastic light scattering spectroscopy aided by the unified Mie and fractal model is demonstrated to be an effective noninvasive approach to characterize biological cells and their internal structures. The acetowhitening effect induced by applying acetic acid on epithelial cells is investigated as an example. The changes in morphology and refractive index of epithelial cells, nuclei, and subcellular structures after the application of acetic acid are successfully probed and quantified using the proposed approach. The unified Mie and fractal model may serve as the foundation for optical detection of precancerous and cancerous changes in biological cells and tissues based on light scattering techniques.

  5. Scattered light characterization of FORTIS

    NASA Astrophysics Data System (ADS)

    McCandliss, Stephan R.; Carter, Anna; Redwine, Keith; Teste, Stephane; Pelton, Russell; Hagopian, John; Kutyrev, Alexander; Li, Mary J.; Moseley, S. Harvey

    2017-08-01

    We describe our efforts to build a Wide-Field Lyman alpha Geocoronal simulator (WFLaGs) for characterizing the end-to-end sensitivity of FORTIS (Far-UV Off Rowland-circle Telescope for Imaging and Spectroscopy) to scattered Lyman α emission from outside of the nominal (1/2 degree)2 field-of-view. WFLaGs is a 50 mm diameter F/1 aluminum parabolic collimator fed by a hollow cathode discharge lamp with a 80 mm clear MgF2 window housed in a vacuum skin. It creates emission over a 10 degree FOV. WFLaGS will allow us to validate and refine a recently developed scattered light model and verify our scatter light mitigation strategies, which will incorporate low scatter baffle materials, and possibly 3-d printed light traps, covering exposed scatter centers. We present measurements of scattering intensity of Lyman alpha as a function of angle with respect to the specular reflectance direction for several candidate baffle materials. Initial testing of WFLaGs will be described.

  6. Interferometric apparatus and method for detection and characterization of particles using light scattered therefrom

    DOEpatents

    Johnston, Roger G.

    1988-01-01

    Interferometric apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer.

  7. Apparatus and method for detection and characterization of particles using light scattered therefrom

    DOEpatents

    Johnston, R.G.

    1987-03-23

    Apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer. 13 figs.

  8. Metal Sorbing Vesicles: Light Scattering Characterization and Metal Sorbtion Behavior.

    NASA Astrophysics Data System (ADS)

    van Zanten, John Hollis

    1992-01-01

    The research described herein consisted of two parts: light scattering characterization of vesicles and kinetic investigations of metal sorbing vesicles. Static light scattering techniques can be used to determine the geometric size, shape and apparent molecular weight of phosphatidylcholine vesicles in aqueous suspension. A Rayleigh-Gans-Debye (RGD) approximation analysis of multiangle scattered light intensity data yields the size and degree of polydispersity of the vesicles in solution, while the Zimm plot technique provides the radius of gyration and apparent weight-average molecular weight. Together the RGD approximation and Zimm plots can be used to confirm the geometric shape of vesicles and can give a good estimate of the vesicle wall thickness in some cases. Vesicles varying from 40 to 115 nm in diameter have been characterized effectively. The static light scattering measurements indicate that, as expected, phosphatidylcholine vesicles in this size range scatter light as isotropic hollow spheres. Additionally, static and dynamic light scattering measurements have been made and compared with one another. The values for geometric radii determined by static light scattering typically agree with those estimated by dynamic light scattering to within a few percent. Interestingly however, dynamic measurements suggest that there is a significant degree of polydispersity present in the vesicle dispersions, while static measurements indicate near size monodisperse dispersions. Metal sorbing vesicles which harbor ionophores, such as antibiotic A23187 and synthetic carriers, in their bilayer membranes have been produced. These vesicles also encapsulate the chelating compound, nitrilotriacetate, to provide the driving force for metal ion uptake. Very dilute dispersions (on the order of 0.03% w/v) of these metal sorbing vesicles were capable of removing Cd ^{2+} and Pb^{2+ } from dilute aqueous solution (5 ppm and less) and concentrating these metal ions several hundred to more than a thousand fold in the vesicle interior in a few minutes time. Synthetic ionophores were found to preferentially transport Pb^{2+} over Cd^{2+}, thus suggesting that engineered vesicle dispersions can be used as selective separations media. The effect of ionophore concentration, solution pH, solution ionic strength, initial metal ion concentration and vesicle concentration have been investigated.

  9. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model

    PubMed Central

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. PMID:24156077

  10. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model.

    PubMed

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.

  11. Low angle light scattering analysis: a novel quantitative method for functional characterization of human and murine platelet receptors.

    PubMed

    Mindukshev, Igor; Gambaryan, Stepan; Kehrer, Linda; Schuetz, Claudia; Kobsar, Anna; Rukoyatkina, Natalia; Nikolaev, Viacheslav O; Krivchenko, Alexander; Watson, Steve P; Walter, Ulrich; Geiger, Joerg

    2012-07-01

    Determinations of platelet receptor functions are indispensable diagnostic indicators of cardiovascular and hemostatic diseases including hereditary and acquired receptor defects and receptor responses to drugs. However, presently available techniques for assessing platelet function have some disadvantages, such as low sensitivity and the requirement of large sample sizes and unphysiologically high agonist concentrations. Our goal was to develop and initially characterize a new technique designed to quantitatively analyze platelet receptor activation and platelet function on the basis of measuring changes in low angle light scattering. We developed a novel technique based on low angle light scattering registering changes in light scattering at a range of different angles in platelet suspensions during activation. The method proved to be highly sensitive for simultaneous real time detection of changes in size and shape of platelets during activation. Unlike commonly-used methods, the light scattering method could detect platelet shape change and aggregation in response to nanomolar concentrations of extracellular nucleotides. Furthermore, our results demonstrate that the advantages of the light scattering method make it a choice method for platelet receptor monitoring and for investigation of both murine and human platelets in disease models. Our data demonstrate the suitability and superiority of this new low angle light scattering method for comprehensive analyses of platelet receptors and functions. This highly sensitive, quantitative, and online detection of essential physiological, pathophysiological and pharmacological-response properties of human and mouse platelets is a significant improvement over conventional techniques.

  12. Use of dynamic light scattering and small-angle X-ray scattering to characterize new surfactants in solution conditions for membrane-protein crystallization

    PubMed Central

    Dahani, Mohamed; Barret, Laurie-Anne; Raynal, Simon; Jungas, Colette; Pernot, Pétra; Polidori, Ange; Bonneté, Françoise

    2015-01-01

    The structural and interactive properties of two novel hemifluorinated surfactants, F2H9-β-M and F4H5-β-M, the syntheses of which were based on the structure and hydrophobicity of the well known dodecyl-β-maltoside (DD-β-M), are described. The shape of their micellar assemblies was characterized by small-angle X-ray scattering and their intermicellar inter­actions in crystallizing conditions were measured by dynamic light scattering. Such information is essential for surfactant phase-diagram determination and membrane-protein crystallization. PMID:26144228

  13. Microemulsion characterization by the use of a noninvasive backscatter fiber optic probe

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Dhadwal, Harbans S.; Cheung, H. M.; Meyer, William V.

    1993-01-01

    This paper demonstrates the utility of a noninvasive backscatter fiber optic probe for dynamic light-scattering characterization of a microemulsion comprising sodium dodecyl sulfate/1-butanol/ brine/heptane. The fiber probe, comprising two optical fibers precisely positioned in a stainless steel body, is a miniaturized and efficient self-beating dynamic light-scattering system. Accuracy of particle size estimation is better than +/- 2 percent.

  14. Optical characterization of fritted glass for architectural applications

    NASA Astrophysics Data System (ADS)

    Jonsson, Jacob C.; Rubin, Michael D.; Nilsson, Annica M.; Jonsson, Andreas; Roos, Arne

    2009-04-01

    Fritted glass is commonly used as a light diffusing element in modern buildings. Traditionally it has been used for aesthetic purposes but it can also be used for energy savings by incorporating it in novel daylighting systems? To answer such questions the light scattering properties must be properly characterized. This paper contains measurements of different varieties of fritted glass, ranging from the simplest direct-hemispherical measurements to angle-resolved goniometer measurements. Modeling the light scattering to obtain the full bidirectional scattering distribution function (BSDF) extends the measured data, making it useful in simulation programs such as Window 6 and Radiance. Surface profilometry results and SEM micrographs are included to demonstrate the surface properties of the samples studied.

  15. Super-resolved calibration-free flow cytometric characterization of platelets and cell-derived microparticles in platelet-rich plasma.

    PubMed

    Konokhova, Anastasiya I; Chernova, Darya N; Moskalensky, Alexander E; Strokotov, Dmitry I; Yurkin, Maxim A; Chernyshev, Andrei V; Maltsev, Valeri P

    2016-02-01

    Importance of microparticles (MPs), also regarded as extracellular vesicles, in many physiological processes and clinical conditions motivates one to use the most informative and precise methods for their characterization. Methods based on individual particle analysis provide statistically reliable distributions of MP population over characteristics. Although flow cytometry is one of the most powerful technologies of this type, the standard forward-versus-side-scattering plots of MPs and platelets (PLTs) overlap considerably because of similarity of their morphological characteristics. Moreover, ordinary flow cytometry is not capable of measurement of size and refractive index (RI) of MPs. In this study, we 1) employed the potential of the scanning flow cytometer (SFC) for identification and characterization of MPs from light scattering; 2) suggested the reference method to characterize MP morphology (size and RI) with high precision; and 3) determined the lowest size of a MP that can be characterized from light scattering with the SFC. We equipped the SFC with 405 and 488 nm lasers to measure the light-scattering profiles and side scattering from MPs, respectively. The developed two-stage method allowed accurate separation of PLTs and MPs in platelet-rich plasma. We used two optical models for MPs, a sphere and a bisphere, in the solution of the inverse light-scattering problem. This solution provides unprecedented precision in determination of size and RI of individual spherical MPs-median uncertainties (standard deviations) were 6 nm and 0.003, respectively. The developed method provides instrument-independent quantitative information on MPs, which can be used in studies of various factors affecting MP population. © 2015 International Society for Advancement of Cytometry.

  16. Numerical Solution of Light Scattered from and Transmitted through a Rough Dielectric Surface with Applications to Periodic Roughness and Isolated Structures

    NASA Technical Reports Server (NTRS)

    Sun, Wenbo; Videnn, Gorden; Lin, Bing; Hu, Yongxiang

    2007-01-01

    Light scattering and transmission by rough surfaces are of considerable interest in a variety of applications including remote sensing and characterization of surfaces. In this work, the finite-difference time domain technique is applied to calculate the scattered and transmitted electromagnetic fields of an infinite periodic rough surface. The elements of Mueller matrix for scattered light are calculated by an integral of the near fields over a significant number of periods of the surface. The normalized Mueller matrix elements of the scattered light and the spatial distribution of the transmitted flux for a monolayer of micron-sized dielectric spheres on a silicon substrate are presented. The numerical results show that the nonzero Mueller matrix elements of the system of the monolayer of dielectric spheres on a silicon substrate have specific maxima at some scattering angles. These maxima may be used in characterization of the feature of the system. For light transmitted through the monolayer of spheres, our results show that the transmitted energy focuses around the ray passing through centers of the spheres. At other locations, the transmitted flux is very small. The technique also may be used to calculate the perturbance of the electromagnetic field due to the presence of an isolated structure on the substrate.

  17. The characterization of sugar beet pectin using the EcoSEC® GPC system coupled to multi-angle light scattering, quasi-elastic light scattering, and differential viscometry

    USDA-ARS?s Scientific Manuscript database

    The need to increase the use of low valued co-products derived from the processing of sugar beets has prompted the investigation of the structure of the pectin extracted from sugar beet pulp. The characterization of sugar beet pectin is essential as it has the potential to be used in the production ...

  18. Charactrisation of particle assemblies by 3D cross correlation light scattering and diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Scheffold, Frank

    2014-08-01

    To characterize the structural and dynamic properties of soft materials and small particles, information on the relevant mesoscopic length scales is required. Such information is often obtained from traditional static and dynamic light scattering (SLS/DLS) experiments in the single scattering regime. In many dense systems, however, these powerful techniques frequently fail due to strong multiple scattering of light. Here I will discuss some experimental innovations that have emerged over the last decade. New methods such as 3D static and dynamic light scattering (3D LS) as well as diffusing wave spectroscopy (DWS) can cover a much extended range of experimental parameters ranging from dilute polymer solutions, colloidal suspensions to extremely opaque viscoelastic emulsions.

  19. Strain-induced three-photon effects

    NASA Astrophysics Data System (ADS)

    Jeong, Jae-Woo; Shin, Sung-Chul; Lyubchanskii, I. L.; Varyukhin, V. N.

    2000-11-01

    Strain-induced three-photon effects such as optical second-harmonic generation and hyper-Rayleigh light scattering, characterized by electromagnetic radiation at the double frequency of an incident light, are phenomenologically investigated by adopting a nonlinear photoelastic interaction. The relations between the strain and the nonlinear optical susceptibility for crystal surfaces with point symmetries of 4mm and 3m are described by a symmetry analysis of the nonlinear photoelastic tensor. We theoretically demonstrate a possibility of determining the strain components by measuring the rotational anisotropy of radiation at the second-harmonic frequency. Hyper-Rayleigh light scattering by dislocation strain is also described using a nonlinear photoelastic tensor. The angular dependencies of light scattered at the double frequency of an incident light for different scattering geometries are analyzed.

  20. Light scattering properties of self-organized nanostructured substrates for thin-film solar cells.

    PubMed

    Mennucci, C; Del Sorbo, S; Pirotta, S; Galli, M; Andreani, L C; Martella, C; Giordano, M C; Buatier de Mongeot, F

    2018-06-01

    We investigate the scattering properties of novel kinds of nano-textured substrates, fabricated in a self-organized fashion by defocused ion beam sputtering. These substrates provide strong and broadband scattering of light and can be useful for applications in thin-film solar cells. In particular, we characterize the transmitted light in terms of haze and angle-resolved scattering, and we compare our results with those obtained for the commonly employed Asahi-U texture. The results indicate that the novel substrate has better scattering properties compared to reference Asahi-U substrates. We observe super-Lambertian light scattering behavior in selected spectral and angular regions due to the peculiar morphology of the nano-textured interface, which combines high aspect ratio pseudo random structures with a one-dimensional periodic pattern. The enhancement of light absorption observed in a prototype thin film semiconductor absorber grown on nano-textured glass with respect to an Asahi-U substrate further confirms the superior light trapping properties of the novel substrate.

  1. Application of support vector regression for optimization of vibration flow field of high-density polyethylene melts characterized by small angle light scattering

    NASA Astrophysics Data System (ADS)

    Xian, Guangming

    2018-03-01

    In this paper, the vibration flow field parameters of polymer melts in a visual slit die are optimized by using intelligent algorithm. Experimental small angle light scattering (SALS) patterns are shown to characterize the processing process. In order to capture the scattered light, a polarizer and an analyzer are placed before and after the polymer melts. The results reported in this study are obtained using high-density polyethylene (HDPE) with rotation speed at 28 rpm. In addition, support vector regression (SVR) analytical method is introduced for optimization the parameters of vibration flow field. This work establishes the general applicability of SVR for predicting the optimal parameters of vibration flow field.

  2. Lateral scattered light used to study laser light propagation in turbid media phantoms

    NASA Astrophysics Data System (ADS)

    Valdes, Claudia; Solarte, Efrain

    2010-02-01

    Laser light propagation in soft tissues is important because of the growing biomedical applications of lasers and the need to optically characterize the biological media. Following previous developments of the group, we have developed low cost models, Phantoms, of soft tissue. The process was developed in a clean room to avoid the medium contamination. Each model was characterized by measuring the refractive index, and spectral reflectance and transmittance. To study the laser light propagation, each model was illuminated with a clean beam of laser light, using sources such as He-Ne (632nm) and DPSSL (473 nm). Laterally scattered light was imaged and these images were digitally processed. We analyzed the intensity distribution of the scattered radiation in order to obtain details of the beam evolution in the medium. Line profiles taken from the intensity distribution surface allow measuring the beam spread, and to find expressions for the longitudinal (along the beam incident direction) and transversal (across the beam incident direction) intensities distributions. From these behaviors, the radiation penetration depth and the total coefficient of extinction have been determined. The multiple scattering effects were remarkable, especially for the low wavelength laser beam.

  3. Light scattering properties of new materials for glazing applications

    NASA Astrophysics Data System (ADS)

    Bergkvist, Mikael; Roos, Arne

    1991-12-01

    Several new materials are available for glazing applications, many of which require careful optical characterization, especially with regards to light scattering. Measuring scattering requires special equipment and is inherently difficult. An integrating sphere can be used for the total and diffuse components but great care must be taken in interpreting the instrument readings. Angular resolved scattering measurements are necessary for a complete characterization, and this is difficult for low levels of scattering. In this paper, measurements on electrically switchable NCAP materials and thick panes of aerogel are reported. The NCAP films switch reversibly from a translucent, scattering state to a transparent, clear state with the application of an ac-voltage. Airglass has a porous SiO2 structure with a refractive index n equals 1.04 and a very low heat transfer coefficient. Integrated scattering measurements were performed in the wavelength range 300 to 2500 nm on a Beckman 5240 spectrophotometer equipped with a 198851 integrating sphere. In this instrument we can measure the total and diffuse components of the reflectance or transmittance separately. The angular distribution of the scattered light was measured in a scatterometer, which can perform scattering measurements in the wavelength range 400-1100 nm in both transmittance and reflectance mode with variable angle of incidence.

  4. Scattered Light Polarimetry of Exoplanets

    NASA Astrophysics Data System (ADS)

    Wiktorowicz, S.

    2014-12-01

    The last decade has witnessed an explosion in atmospheric characterization of spatially unresolved exoplanets using transmission spectra of transiting planets, but understanding has been hampered by degeneracies resolvable through blue optical observations. Here, scattered light is more important than the Wien tail of re-radiated thermal emission. Therefore, the next frontier in exoplanet characterization lies in the direct detection of scattered light. The polarization state of starlight scattered by a planetary atmosphere distinguishes it from the direct light from the host star, and the inherently differential nature of polarimetry reduces systematic effects to the point where ground-based detections are possible. Furthermore, polarimetry is uniquely sensitive to the size distribution, shape, and chemical composition of atmospheric cloud particles as well as to the scattering optical depth. I will review the current state of exoplanet polarimetry, which is dominated not by photon noise but by non-Gaussian systematic effects. Ground-based detection of order ten exoplanet photons relative to the host star's million requires dense orbital phase coverage and therefore long observing programs. However, variability inherent in the host star, interstellar medium, Earth's atmosphere, the telescope, and the instrument at all timescales must be measured and subtracted in order to definitively uncover scattered light from the exoplanet. While polarimetry is in principle sensitive to exoplanets regardless of orbital inclination, repeated observations of transiting exoplanet systems during secondary eclipse events are required to measure the polarimetric variability of the system that cannot be due to the planet. The emergence of scattered light polarimetry as a robust tool for the study of exoplanet atmospheres, and eventually surfaces, therefore requires diligent attention to the role of systematic effects.

  5. Optical characterization limits of nanoparticle aggregates at different wavelengths using approximate Bayesian computation

    NASA Astrophysics Data System (ADS)

    Eriçok, Ozan Burak; Ertürk, Hakan

    2018-07-01

    Optical characterization of nanoparticle aggregates is a complex inverse problem that can be solved by deterministic or statistical methods. Previous studies showed that there exists a different lower size limit of reliable characterization, corresponding to the wavelength of light source used. In this study, these characterization limits are determined considering a light source wavelength range changing from ultraviolet to near infrared (266-1064 nm) relying on numerical light scattering experiments. Two different measurement ensembles are considered. Collection of well separated aggregates made up of same sized particles and that of having particle size distribution. Filippov's cluster-cluster algorithm is used to generate the aggregates and the light scattering behavior is calculated by discrete dipole approximation. A likelihood-free Approximate Bayesian Computation, relying on Adaptive Population Monte Carlo method, is used for characterization. It is found that when the wavelength range of 266-1064 nm is used, successful characterization limit changes from 21-62 nm effective radius for monodisperse and polydisperse soot aggregates.

  6. Submicron Protein Particle Characterization using Resistive Pulse Sensing and Conventional Light Scattering Based Approaches.

    PubMed

    Barnett, Gregory V; Perhacs, Julia M; Das, Tapan K; Kar, Sambit R

    2018-02-08

    Characterizing submicron protein particles (approximately 0.1-1μm) is challenging due to a limited number of suitable instruments capable of monitoring a relatively large continuum of particle size and concentration. In this work, we report for the first time the characterization of submicron protein particles using the high size resolution technique of resistive pulse sensing (RPS). Resistive pulse sensing, dynamic light scattering and size-exclusion chromatography with in-line multi-angle light scattering (SEC-MALS) are performed on protein and placebo formulations, polystyrene size standards, placebo formulations spiked with silicone oil, and protein formulations stressed via freeze-thaw cycling, thermal incubation, and acid treatment. A method is developed for monitoring submicron protein particles using RPS. The suitable particle concentration range for RPS is found to be approximately 4 × 10 7 -1 × 10 11 particles/mL using polystyrene size standards. Particle size distributions by RPS are consistent with hydrodynamic diameter distributions from batch DLS and to radius of gyration profiles from SEC-MALS. RPS particle size distributions provide an estimate of particle counts and better size resolution compared to light scattering. RPS is applicable for characterizing submicron particles in protein formulations with a high degree of size polydispersity. Data on submicron particle distributions provide insights into particles formation under different stresses encountered during biologics drug development.

  7. Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen.

    PubMed

    Ye, Yiyang; Chen, Tupei; Zhen, Juyuan; Xu, Chen; Zhang, Jun; Li, Huakai

    2018-02-01

    The ability to selectively scatter green light is essential for an RGB transparent projection display, and this can be achieved by a silver-core, titania-shell nanostructure (Ag@TiO 2 ), based on the metallic nanoparticle's localized surface plasmon resonance. The ability to selectively scatter green light is shown in a theoretical design, in which structural optimization is included, and is then experimentally verified by characterization of a transparent film produced by dispersing such nanoparticles in a polymer matrix. A visual assessesment indicates that a high-quality green image can be clearly displayed on the transparent film. For completeness, a theoretical design for selective scattering of red light based on Ag@TiO 2 is also shown.

  8. Interpretation of light scattering and turbidity measurements in aggregated systems: effect of intra-cluster multiple-light scattering.

    PubMed

    Soos, Miroslav; Lattuada, Marco; Sefcik, Jan

    2009-11-12

    In this work we studied the effect of intracluster multiple-light scattering on the scattering properties of a population of fractal aggregates. To do so, experimental data of diffusion-limited aggregation for three polystyrene latexes with similar surface properties but different primary particle diameters (equal to 118, 420, and 810 nm) were obtained by static light scattering and by means of a spectrophotometer. In parallel, a population balance equation (PBE) model, which takes into account the effect of intracluster multiple-light scattering by solving the T-matrix and the mean-field version of T-matrix, was formulated and validated against time evolution of the root mean radius of gyration, , of the zero angle intensity of scattered light, I(0), and of the turbidity, tau. It was found that the mean-field version of the T-matrix theory is able to correctly predict the time evolution of all measured light scattering quantities for all sizes of primary particles without any adjustable parameter. The structure of the aggregates, characterized by fractal dimension, d(f), was independent of the primary particle size and equal to 1.7, which is in agreement with values found in literature. Since the mean-field version of the T-matrix theory used is rather complicated and requires advanced knowledge of cluster structure (i.e., the particle-particle correlation function), a simplified version of the light scattering model was proposed and tested. It was found that within the range of operating conditions investigated, the simplified version of the light scattering model was able to describe with reasonable accuracy the time evolution of all measured light scattering quantities of the cluster mass distribution (CMD) for all three sizes of primary particles and two values of the laser wavelength.

  9. Polarization Of Light In The Natural Environment

    NASA Astrophysics Data System (ADS)

    Coulson, Kinsell L.

    1990-01-01

    This paper provides a characterization of the fields of light polarization with which the optical designer or user of optical devices in the natural environment must be concerned. After a brief historical outline of the principal developments in polarization theory and observations during the last two centuries, the main emphasis is on the two primary processes responsible for the polarization of light in nature--scattering of light by particles of the atmosphere and reflection from soils, vegetation, snow, and water at the earth's surface. Finally, a seven minute film on polarization effects which can be seen in everyday surroundings will be shown. Scattering by atmospheric particles is responsible for high values of polarization in various atmospheric conditions and at certain scattering geometries. Such scattering particles include molecules of the atmospheric gases, aerosols of dust, haze, and air pollution, water droplets of fog and clouds, and the ice crystals of cirrus. It is seen that development of the theory of scattering by such particles has outstripped the measurements necessary for validation of the theory, a fact which points up the importance of symposia such as the present one. The reverse is true, however, for the polarizing properties of natural surfaces. Only in the case of still water is the theory of reflection adequate to characterize in a quantitative fashion the polarizing effects produced by the reflection of light from such natural surfaces. Polarization of light by reflection from vegetation is of prime importance in a remote sensing context, but much further work is needed to characterize vegetative reflectance for the purpose. The short film on polarization effects provides a good visualization technique and training aid for students interested in the field.

  10. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate.

    PubMed

    Israelsen, Nathan D; Wooley, Donald; Hanson, Cynthia; Vargis, Elizabeth

    2016-01-01

    Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to develop an optimized process for fabricating Raman-labeled nanoparticles for a SERS-based immunoassay on a polystyrene substrate. We have developed a method for fabricating SERS nanoparticle probes for use in a light scattering immunoassay on a polystyrene substrate. The light scattering profile of both spherical gold nanoparticle and gold nanorod SERS probes were characterized using Raman spectroscopy and optical absorbance spectroscopy. The effects of substrate interference and autofluorescence were reduced by selecting a Raman reporter with a strong light scattering response in a spectral region where interfering substrate emission peaks are minimized. Both spherical gold nanoparticles and gold nanorods SERS probes used in the immunoassay were detected at labeling concentrations in the low pM range. This analytical sensitivity falls within the typical dynamic range for direct labeling of cell-surface biomarkers using SERS probes. SERS nanoparticle probes were fabricated to produce a strong light scattering signal despite substrate interference. The optical extinction and inelastic light scattering of these probes was detected by optical absorbance spectroscopy and Raman spectroscopy, respectively. This immunoassay demonstrates the feasibility of analyzing strongly enhanced Raman signals on polystyrene, which is an inexpensive yet non-ideal Raman substrate. The assay sensitivity, which is in the low pM range, suggests that these SERS probe particles could be used for Raman labeling of cell or tissue samples in a polystyrene tissue culture plate. With continued development, this approach could be used for direct labeling of multiple cell surface biomarkers on strongly interfering substrate platforms.

  11. Probability density function formalism for optical coherence tomography signal analysis: a controlled phantom study.

    PubMed

    Weatherbee, Andrew; Sugita, Mitsuro; Bizheva, Kostadinka; Popov, Ivan; Vitkin, Alex

    2016-06-15

    The distribution of backscattered intensities as described by the probability density function (PDF) of tissue-scattered light contains information that may be useful for tissue assessment and diagnosis, including characterization of its pathology. In this Letter, we examine the PDF description of the light scattering statistics in a well characterized tissue-like particulate medium using optical coherence tomography (OCT). It is shown that for low scatterer density, the governing statistics depart considerably from a Gaussian description and follow the K distribution for both OCT amplitude and intensity. The PDF formalism is shown to be independent of the scatterer flow conditions; this is expected from theory, and suggests robustness and motion independence of the OCT amplitude (and OCT intensity) PDF metrics in the context of potential biomedical applications.

  12. Small angle light scattering characterization of single micrometric particles in microfluidic flows

    NASA Astrophysics Data System (ADS)

    Dannhauser, David; Romeo, Giovanni; Causa, Filippo; Netti, Paolo A.

    2013-04-01

    A CCD-camera based small angle light scattering (SALS) apparatus has been used to characterize single micrometric particles flowing in a micro-channel. The measured scattering vector spans the range 2x10-2 - 6:8x101μm-1. The incident laser light is collimated to a spot of about 50 μm in diameter at the sample position with a divergence lower than 0.045 rad. Such small collimated laser beam opens the possibility to perform on-line SALS of micron-sized particles flowing in micro-channels. By properly designing the micro-channel and using a viscoelastic liquid as suspending medium we are able to realize a precise 3D focusing of the target particles. The forward scattering emitted from the particle is collected by a lens with high numerical aperture. At the focal point of that lens a homemade beam stop is blocking the incident light. Finally, a second lens maps the scattered light on the CCD sensor, allowing to obtain far field images on short distances. Measurements with mono-disperse polystyrene particles, both in quiescent and in-flow conditions have been realized. Experiments in-flow allow to measure the single particle scattering. Results are validated by comparison with calculations based on the Lorenz-Mie theory. The quality of the measured intensity profiles confirms the possibility to use our apparatus in real multiplex applications, with particles down to 1 μm in radius.

  13. Parallel Measurements of Light Scattering and Characterization of Marine Particles in Water: An Evaluation of Methodology

    DTIC Science & Technology

    2008-01-01

    A second objective is to characterize variability in the volume scattering function and particle size distribution for various optical water types...volume scattering function (VSF) and the particle size distribution (PSD) • Analysis of in situ optical measurements and particle size distributions ...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY

  14. Broadband optical switch based on liquid crystal dynamic scattering.

    PubMed

    Geis, M W; Bos, P J; Liberman, V; Rothschild, M

    2016-06-27

    This work demonstrates a novel broadband optical switch, based on dynamic-scattering effect in liquid crystals (LCs). Dynamic-scattering-mode technology was developed for display applications over four decades ago, but was displaced in favor of the twisted-nematic LCs. However, with the recent development of more stable LCs, dynamic scattering provides advantages over other technologies for optical switching. We demonstrate broadband polarization-insensitive attenuation of light directly passing thought the cell by 4 to 5 orders of magnitude at 633 nm. The attenuation is accomplished by light scattering to higher angles. Switching times of 150 μs to 10% transmission have been demonstrated. No degradation of devices is found after hundreds of switching cycles. The light-rejection mechanism is due to scattering, induced by disruption of LC director orientation with dopant ion motion with an applied electric field. Angular dependence of scattering is characterized as a function of bias voltage.

  15. Analysis of hyperspectral scattering profiles using a generalized Gaussian distribution function for prediction of apple firmness and soluble solids content

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral scattering provides an effective means for characterizing light scattering in the fruit and is thus promising for noninvasive assessment of apple firmness and soluble solids content (SSC). A critical problem encountered in application of hyperspectral scattering technology is analyzing...

  16. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, June 23--September 21, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, C.; Hester, R.

    Summaries are given on the technical progress on three tasks of this project. Monomer and polymer synthesis discusses the preparation of 1(7-aminoheptyloxymethyl)naphthalene and poly(maleic anhydride-alt-ethyl vinyl ether). Task 2, Characterization of molecular structure, discusses terpolymer solution preparation, UV analysis, fluorescence analysis, low angle laser light scattering, and viscometry. The paper discusses the effects of hydrophobic groups, the effect of pH, the effect of electrolyte addition, and photophysical studies. Task 3, Solution properties, describes the factorial experimental design for characterizing polymer solutions by light scattering, the light scattering test model, orthogonal factorial test design, linear regression in coded space, confidence levelmore » for coded space test mode coefficients, coefficients of the real space test model, and surface analysis of the model equations.« less

  17. White light photothermal lens spectrophotometer for the determination of absorption in scattering samples.

    PubMed

    Marcano, Aristides; Alvarado, Salvador; Meng, Junwei; Caballero, Daniel; Moares, Ernesto Marín; Edziah, Raymond

    2014-01-01

    We developed a pump-probe photothermal lens spectrophotometer that uses a broadband arc-lamp and a set of interference filters to provide tunable, nearly monochromatic radiation between 370 and 730 nm as the pump light source. This light is focused onto an absorbing sample, generating a photothermal lens of millimeter dimensions. A highly collimated monochromatic probe light from a low-power He-Ne laser interrogates the generated lens, yielding a photothermal signal proportional to the absorption of light. We measure the absorption spectra of scattering dye solutions using the device. We show that the spectra are not affected by the presence of scattering, confirming that the method only measures the absorption of light that results in generation of heat. By comparing the photothermal spectra with the usual absorption spectra determined using commercial transmission spectrophotometers, we estimate the quantum yield of scattering of the sample. We discuss applications of the device for spectroscopic characterization of samples such as blood and gold nanoparticles that exhibit a complex behavior upon interaction with light.

  18. How Noniridescent Colors Are Generated by Quasi-ordered Structures of Bird Feathers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar

    2012-03-26

    We investigate the mechanism of structural coloration by quasi-ordered nanostructures in bird feather barbs. Small-angle X-ray scattering (SAXS) data reveal the structures are isotropic and have short-range order on length scales comparable to optical wavelengths. We perform angle-resolved reflection and scattering spectrometry to fully characterize the colors under directional and omni-directional illumination of white light. Under directional lighting, the colors change with the angle between the directions of illumination and observation. The angular dispersion of the primary peaks in the scattering/reflection spectra can be well explained by constructive interference of light that is scattered only once in the quasi-ordered structures.more » Using the Fourier power spectra of structure from the SAXS data we calculate optical scattering spectra and explain why the light scattering peak is the highest in the backscattering direction. Under omni-directional lighting, colors from the quasi-ordered structures are invariant with the viewing angle. The non-iridescent coloration results from the isotropic nature of structures instead of strong backscattering.« less

  19. Complete spatiotemporal characterization and optical transfer matrix inversion of a 420 mode fiber.

    PubMed

    Carpenter, Joel; Eggleton, Benjamin J; Schröder, Jochen

    2016-12-01

    The ability to measure a scattering medium's optical transfer matrix, the mapping between any spatial input and output, has enabled applications such as imaging to be performed through media which would otherwise be opaque due to scattering. However, the scattering of light occurs not just in space, but also in time. We complete the characterization of scatter by extending optical transfer matrix methods into the time domain, allowing any spatiotemporal input state at one end to be mapped directly to its corresponding spatiotemporal output state. We have measured the optical transfer function of a multimode fiber in its entirety; it consists of 420 modes in/out at 32768 wavelengths, the most detailed complete characterization of multimode waveguide light propagation to date, to the best of our knowledge. We then demonstrate the ability to generate any spatial/polarization state at the output of the fiber at any wavelength, as well as predict the temporal response of any spatial/polarization input state.

  20. Polarized Optical Scattering Measurements of Metallic Nanoparticles on a Thin Film Silicon Wafer

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Liu, Tze-An; Fu, Wei-En

    2009-09-01

    Light scattering has shown its powerful diagnostic capability to characterize optical quality surfaces. In this study, the theory of bidirectional reflectance distribution function (BRDF) was used to analyze the metallic nanoparticles' sizes on wafer surfaces. The BRDF of a surface is defined as the angular distribution of radiance scattered by the surface normalized by the irradiance incident on the surface. A goniometric optical scatter instrument has been developed to perform the BRDF measurements on polarized light scattering on wafer surfaces for the diameter and distribution measurements of metallic nanoparticles. The designed optical scatter instrument is capable of distinguishing various types of optical scattering characteristics, which are corresponding to the diameters of the metallic nanoparticles, near surfaces by using the Mueller matrix calculation. The metallic nanoparticle diameter of measurement is 60 nm on 2 inch thin film wafers. These measurement results demonstrate that the polarization of light scattered by metallic particles can be used to determine the size of metallic nanoparticles on silicon wafers.

  1. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials

    NASA Astrophysics Data System (ADS)

    Blanpied, Gary; Kumar, Sankaran; Dorroh, Dustin; Morgan, Craig; Blanpied, Isabelle; Sossong, Michael; McKenney, Shawn; Nelson, Beth

    2015-06-01

    Reported is a new method to apply cosmic-ray tomography in a manner that can detect and characterize not only dense assemblages of heavy nuclei (like Special Nuclear Materials, SNM) but also assemblages of medium- and light-atomic-mass materials (such as metal parts, conventional explosives, and organic materials). Characterization may enable discrimination between permitted contents in commerce and contraband (explosives, illegal drugs, and the like). Our Multi-Mode Passive Detection System (MMPDS) relies primarily on the muon component of cosmic rays to interrogate Volumes of Interest (VOI). Muons, highly energetic and massive, pass essentially un-scattered through materials of light atomic mass and are only weakly scattered by conventional metals used in industry. Substantial scattering and absorption only occur when muons encounter sufficient thicknesses of heavy elements characteristic of lead and SNM. Electrons are appreciably scattered by light elements and stopped by sufficient thicknesses of materials containing medium-atomic-mass elements (mostly metals). Data include simulations based upon GEANT and measurements in the HMT (Half Muon Tracker) detector in Poway, CA and a package scanner in both Poway and Socorro NM. A key aspect of the present work is development of a useful parameter, designated the "stopping power" of a sample. The low-density regime, comprising organic materials up to aluminum, is characterized using very little scattering but a strong variation in stopping power. The medium-to-high density regime shows a larger variation in scattering than in stopping power. The detection of emitted gamma rays is another useful signature of some materials.

  2. Hollow-fiber flow field-flow fractionation and multi-angle light scattering investigation of the size, shape and metal-release of silver nanoparticles in aqueous medium for nano-risk assessment.

    PubMed

    Marassi, Valentina; Casolari, Sonia; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Panzavolta, Silvia; Tofail, Syed A M; Ortelli, Simona; Delpivo, Camilla; Blosi, Magda; Costa, Anna Luisa

    2015-03-15

    Due to the increased use of silver nanoparticles in industrial scale manufacturing, consumer products and nanomedicine reliable measurements of properties such as the size, shape and distribution of these nano particles in aqueous medium is critical. These properties indeed affect both functional properties and biological impacts especially in quantifying associated risks and identifying suitable risk-mediation strategies. The feasibility of on-line coupling of a fractionation technique such as hollow-fiber flow field flow fractionation (HF5) with a light scattering technique such as MALS (multi-angle light scattering) is investigated here for this purpose. Data obtained from such a fractionation technique and its combination thereof with MALS have been compared with those from more conventional but often complementary techniques e.g. transmission electron microscopy, dynamic light scattering, atomic absorption spectroscopy, and X-ray fluorescence. The combination of fractionation and multi angle light scattering techniques have been found to offer an ideal, hyphenated methodology for a simultaneous size-separation and characterization of silver nanoparticles. The hydrodynamic radii determined by fractionation techniques can be conveniently correlated to the mean average diameters determined by multi angle light scattering and reliable information on particle morphology in aqueous dispersion has been obtained. The ability to separate silver (Ag(+)) ions from silver nanoparticles (AgNPs) via membrane filtration during size analysis is an added advantage in obtaining quantitative insights to its risk potential. Most importantly, the methodology developed in this article can potentially be extended to similar characterization of metal-based nanoparticles when studying their functional effectiveness and hazard potential. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Study on light scattering characterization for polishing surface of optical elements

    NASA Astrophysics Data System (ADS)

    Zhang, Yingge; Tian, Ailing; Wang, Chunhui; Wang, Dasen; Liu, Weiguo

    2017-02-01

    Based on the principle of bidirectional reflectance distribution function (BRDF), the relationship between the surface roughness and the spatial scattering distribution of the optical elements were studied. First, a series of optical components with different surface roughness was obtained by the traditional polishing processing, and measured by Talysurf CCI 3000. Secondly, the influences of different factors on the scattering characteristics were simulated and analyzed, such as different surface roughness, incident wavelength and incident angle. Finally, the experimental device was built, and the spatial distribution of scattered light was measured with the different conditions, and then the data curve variation was analyzed. It was shown that the experimental method was reliable by comparing the simulation and experimental results. Base on this to know, many studies on light scattering characteristics for optical element polishing surface can try later.

  4. Optical Radiation from Integer Quantum Hall States in Dirac Materials

    NASA Astrophysics Data System (ADS)

    Gullans, Michael; Taylor, Jacob; Ghaemi, Pouyan; Hafezi, Mohammad

    Quantum Hall systems exhibit topologically protected edge states, which can have a macroscopic spatial extent. Such edge states provide a unique opportunity to study a quantum emitter whose size far exceeds the wavelength of emitted light. To better understand this limit, we theoretically characterize the optical radiation from integer quantum Hall states in two-dimensional Dirac materials. We show that the scattered light from the bulk reflects the spatial profile of the wavefunctions, enabling spatial imaging of the disorder landscape. We find that the radiation from the edge states are characterized by the presence of large multipole moments in the far-field. This multipole radiation arises from the transfer of angular momentum from the electrons into the scattered light, enabling the generation of coherent light with high orbital angular momentum.

  5. Characterization of the angular memory effect of scattered light in biological tissues.

    PubMed

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-18

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.

  6. Characterization of the transport properties of channel delta-doped structures by light-modulated Shubnikov-de Haas measurements

    NASA Technical Reports Server (NTRS)

    Mena, R. A.; Schacham, S. E.; Haugland, E. J.; Alterovitz, S. A.; Young, P. G.; Bibyk, S. B.; Ringel, S. A.

    1995-01-01

    The transport properties of channel delta-doped quantum well structures were characterized by conventional Hall effect and light-modulated Shubnikov-de Haas (SdH) effect measurements. The large number of carriers that become available due to the delta-doping of the channel, leads to an apparent degeneracy in the well. As a result of this degeneracy, the carrier mobility remains constant as a function of temperature from 300 K down to 1.4 K. The large amount of impurity scattering, associated with the overlap of the charge carriers and the dopants, resulted in low carrier mobilities and restricted the observation of the oscillatory magneto-resistance used to characterize the two-dimensional electron gas (2DEG) by conventional SdH measurements. By light-modulating the carriers, we were able to observe the SdH oscillation at low magnetic fields, below 1.4 tesla, and derive a value for the quantum scattering time. Our results for the ratio of the transport and quantum scattering times are lower than those previously measured for similar structures using much higher magnetic fields.

  7. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited).

    PubMed

    Follett, R K; Delettrez, J A; Edgell, D H; Henchen, R J; Katz, J; Myatt, J F; Froula, D H

    2016-11-01

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10 21 cm -3 , which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  8. Quasi-Elastic Light Scattering in Ophthalmology

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.

    The eye is not just a "window to the soul"; it can also be a "window to the human body." The eye is built like a camera. Light which travels from the cornea to the retina traverses through tissues that are representative of nearly every tissue type and fluid type in the human body. Therefore, it is possible to diagnose ocular and systemic diseases through the eye. Quasi-elastic light scattering (QELS) also known as dynamic light scattering (DLS) is a laboratory technique routinely used in the characterization of macromolecular dispersions. QELS instrumentation has now become more compact, sensitive, flexible, and easy to use. These developments have made QELS/DLS an important tool in ophthalmic research where disease can be detected early and noninvasively before the clinical symptoms appear.

  9. Monitoring the Erosion of Hydrolytically-Degradable Nanogels via Multiangle Light Scattering Coupled to Asymmetrical Flow Field-Flow Fractionation

    PubMed Central

    Smith, Michael H.; South, Antoinette B.; Gaulding, Jeffrey C.; Lyon, L. Andrew

    2009-01-01

    We describe the synthesis and characterization of degradable nanogels that display bulk erosion under physiologic conditions (pH = 7.4, 37 °C). Erodible poly(N-isopropylmethacrylamide) nanogels were synthesized by copolymerization with N,O-(dimethacryloyl)hydroxylamine, a cross-linker previously used in the preparation of non-toxic and biodegradable bulk hydrogels. To monitor particle degradation, we employed multiangle light scattering and differential refractometry detection following asymmetrical flow field-flow fractionation. This approach allowed the detection of changes in nanogel molar mass and topology as a function of both temperature and pH. Particle erosion was evident from both an increase in nanogel swelling and a decrease in scattering intensity as a function of time. Following these analyses, the samples were recovered for subsequent characterization by direct particle tracking, which yields hydrodynamic size measurements and enables number density determination. Additionally, we confirmed the conservation of nanogel stimuli-responsivity through turbidity measurements. Thus, we have demonstrated the synthesis of degradable nanogels that erode under conditions and on timescales that are relevant for many drug delivery applications. The combined separation and light scattering detection method is demonstrated to be a versatile means to monitor erosion and should also find applicability in the characterization of other degradable particle constructs. PMID:20000662

  10. Electron-Beam-Lithographed Nanostructures as Reference Materials for Label-Free Scattered-Light Biosensing of Single Filoviruses.

    PubMed

    Agrawal, Anant; Majdi, Joseph; Clouse, Kathleen A; Stantchev, Tzanko

    2018-05-23

    Optical biosensors based on scattered-light measurements are being developed for rapid and label-free detection of single virions captured from body fluids. Highly controlled, stable, and non-biohazardous reference materials producing virus-like signals are valuable tools to calibrate, evaluate, and refine the performance of these new optical biosensing methods. To date, spherical polymer nanoparticles have been the only non-biological reference materials employed with scattered-light biosensing techniques. However, pathogens like filoviruses, including the Ebola virus, are far from spherical and their shape strongly affects scattered-light signals. Using electron beam lithography, we fabricated nanostructures resembling individual filamentous virions attached to a biosensing substrate (silicon wafer overlaid with silicon oxide film) and characterized their dimensions with scanning electron and atomic force microscopes. To assess the relevance of these nanostructures, we compared their signals across the visible spectrum to signals recorded from Ebola virus-like particles which exhibit characteristic filamentous morphology. We demonstrate the highly stable nature of our nanostructures and use them to obtain new insights into the relationship between virion dimensions and scattered-light signal.

  11. On the interpolation of light-scattering responses from irregularly shaped particles

    NASA Astrophysics Data System (ADS)

    Videen, Gorden; Zubko, Evgenij; Arnold, Jessica A.; MacCall, Benjamin; Weinberger, Alycia J.; Shkuratov, Yuriy; Muñoz, Olga

    2018-05-01

    Common particle characteristics needed for many applications may include size, eccentricity, porosity and refractive index. Determining such characteristics from scattered light is a primary goal of remote sensing. For other applications, like differentiating a hazardous particle from the natural background, information about higher fidelity particle characteristics may be required, including specific shape or chemical composition. While a complete characterization of a particle system from its scattered light through the inversion process remains unachievable, great strides have been made in providing information in the form of constraints on particle characteristics. Recent advances have been made in quantifying the characteristics of polydispersions of irregularly shaped particles by making comparisons of the light-scattering signals from model simulant particles. We show that when the refractive index is changed, the light-scattering characteristics from polydispersions of such particles behave monotonically over relatively large parameter ranges compared with those of monodisperse distributions of particles having regular shapes, like spheres, spheroids, etc. This allows for their properties to be interpolated, which results in a significant reduction of the computational load when performing inversions.

  12. Light scattering regimes along the optical axis in turbid media

    NASA Astrophysics Data System (ADS)

    Campbell, S. D.; O'Connell, A. K.; Menon, S.; Su, Q.; Grobe, R.

    2006-12-01

    We inject an angularly collimated laser beam into a scattering medium of a nondairy creamer-water solution and examine the distribution of the scattered light along the optical axis as a function of the source-detector spacing. The experimental and simulated data obtained from a Monte Carlo simulation suggest four regimes characterizing the transition from unscattered to diffusive light. We compare the data also with theoretical predictions based on a first-order scattering theory for regions close to the source, and with diffusionlike theories for larger source-detector spacings. We demonstrate the impact of the measurement process and the effect of the unavoidable absorption of photons by the detection fiber on the light distribution inside the medium. We show that the range of validity of these theories can depend on the experimental parameters such as the diameter and acceptance angle of the detection fiber.

  13. Effect of part thickness, glass fiber and crystallinity on light scattering during laser transmission welding of thermoplastics

    NASA Astrophysics Data System (ADS)

    Xu, Xin Feng; Parkinson, Alexander; Bates, Philip J.; Zak, Gene

    2015-12-01

    It is important to understand how laser energy scatters within the transparent component in order to predict and optimize the laser transmission welding process. This paper examines the influence of part thickness, glass fiber and crystallinity levels on the distribution of laser light after transmission through amorphous polycarbonate (PC) and semi-crystalline polymers such as polyamide 6 (PA6), polypropylene (PP), and polyethylene (PE). An experimental technique based on laser-scanned lines of progressively increasing power was used to assess the transmitted energy distribution. This distribution was characterized using a two-parameter model that captures scattered and un-scattered components of the laser beam. The results clearly show how the scattering is increased by increasing the numbers of interactions between laser light and phase boundaries either by increasing the particle concentration (i.e., glass fiber level and crystallinity) or increasing part thickness.

  14. Capillary-scale direct measurement of hemoglobin concentration of erythrocytes using photothermal angular light scattering.

    PubMed

    Kim, Uihan; Song, Jaewoo; Lee, Donghak; Ryu, Suho; Kim, Soocheol; Hwang, Jaehyun; Joo, Chulmin

    2015-12-15

    We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Application of asymmetric flow-field flow fractionation to the characterization of colloidal dispersions undergoing aggregation.

    PubMed

    Lattuada, Marco; Olivo, Carlos; Gauer, Cornelius; Storti, Giuseppe; Morbidelli, Massimo

    2010-05-18

    The characterization of complex colloidal dispersions is a relevant and challenging problem in colloidal science. In this work, we show how asymmetric flow-field flow fractionation (AF4) coupled to static light scattering can be used for this purpose. As an example of complex colloidal dispersions, we have chosen two systems undergoing aggregation. The first one is a conventional polystyrene latex undergoing reaction-limited aggregation, which leads to the formation of fractal clusters with well-known structure. The second one is a dispersion of elastomeric colloidal particles made of a polymer with a low glass transition temperature, which undergoes coalescence upon aggregation. Samples are withdrawn during aggregation at fixed times, fractionated with AF4 using a two-angle static light scattering unit as a detector. We have shown that from the analysis of the ratio between the intensities of the scattered light at the two angles the cluster size distribution can be recovered, without any need for calibration based on standard elution times, provided that the geometry and scattering properties of particles and clusters are known. The nonfractionated samples have been characterized also by conventional static and dynamic light scattering to determine their average radius of gyration and hydrodynamic radius. The size distribution of coalescing particles has been investigated also through image analysis of cryo-scanning electron microscopy (SEM) pictures. The average radius of gyration and the average hydrodynamic radius of the nonfractionated samples have been calculated and successfully compared to the values obtained from the size distributions measured by AF4. In addition, the data obtained are also in good agreement with calculations made with population balance equations.

  16. Structured light imaging system for structural and optical characterization of 3D tissue-simulating phantoms

    NASA Astrophysics Data System (ADS)

    Liu, Songde; Smith, Zach; Xu, Ronald X.

    2016-10-01

    There is a pressing need for a phantom standard to calibrate medical optical devices. However, 3D printing of tissue-simulating phantom standard is challenged by lacking of appropriate methods to characterize and reproduce surface topography and optical properties accurately. We have developed a structured light imaging system to characterize surface topography and optical properties (absorption coefficient and reduced scattering coefficient) of 3D tissue-simulating phantoms. The system consisted of a hyperspectral light source, a digital light projector (DLP), a CMOS camera, two polarizers, a rotational stage, a translation stage, a motion controller, and a personal computer. Tissue-simulating phantoms with different structural and optical properties were characterized by the proposed imaging system and validated by a standard integrating sphere system. The experimental results showed that the proposed system was able to achieve pixel-level optical properties with a percentage error of less than 11% for absorption coefficient and less than 7% for reduced scattering coefficient for phantoms without surface curvature. In the meanwhile, 3D topographic profile of the phantom can be effectively reconstructed with an accuracy of less than 1% deviation error. Our study demonstrated that the proposed structured light imaging system has the potential to characterize structural profile and optical properties of 3D tissue-simulating phantoms.

  17. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra tomore » show the improvements in plasma characterization.« less

  18. Biophysical interpretation and ex-vivo characterization of scattered light from tumor-associated breast stroma

    NASA Astrophysics Data System (ADS)

    Laughney, Ashley; Krishnaswamy, Venkat; Schwab, Mary; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.

    2009-02-01

    The purpose of this study was to extract scatter parameters related to tissue ultra-structures from freshly excised breast tissue and to assess whether evident changes in scatter across diagnostic categories is primarily influenced by variation in the composition of each tissues subtypes or by physical remodeling of the extra-cellular environment. Pathologists easily distinguish between epithelium, stroma and adipose tissues, so this classification was adopted for macroscopic subtype classification. Micro-sampling reflectance spectroscopy was used to characterize single-backscattered photons from fresh, excised tumors and normal reduction specimens with sub-millimeter resolution. Phase contrast microscopy (sub-micron resolution) was used to characterize forward-scattered light through frozen tissue from the DHMC Tissue Bank, representing normal, benign and malignant breast tissue, sectioned at 10 microns. The packing density and orientation of collagen fibers in the extracellular matrix (ECM) associated with invasive, normal and benign epithelium was evaluated using transmission electron microscopy (TEM). Regions of interest (ROIs) in the H&E stained tissues were identified for analysis, as outlined by a pathologist as the gold standard. We conclude that the scatter parameters associated with tumor specimens (Npatients=6, Nspecimens=13) significantly differs from that of normal reductions (Npatients=6, Nspecimens=10). Further, tissue subtypes may be identified by their scatter spectra at sub-micron resolution. Stromal tissue scatters significantly more than the epithelial cells embedded in its ECM and adipose tissue scatters much less. However, the scatter signature of the stroma at the sub-micron level is not particularly differentiating in terms of a diagnosis.

  19. A Tale of two Cities: Photoacoustic and Aethalometer Measurements Comparisons of Light Absorption in Mexico City and Las Vegas, NV, USA

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Marley, N. A.; Gaffney, J. S.

    2007-05-01

    As part of the Megacity Impacts on Regional and Global Environments, MIRAGE-Mex deployment to Mexico City in the period of 30 days, March 2006, a suite of photoacoustic spectrometers (PAS; W. Arnott & G. Paredes), nephelometer scattering, and aetholemeter absorption instruments (N. Marley & J.Gaffney) were installed to measure at ground level the light absorption and scattering by aerosols at the urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP). This IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed. The Las Vegas, NV site was located at East Charleston Street on January-February, 2003. In east Las Vegas typical westerly winds carry the city plume across the site. Comparisons of PAS aerosol light absorption and aetholemeter absorption measurements at 521 nm at both Las Vegas NV and Mexico City sites will be presented. We will also present a broad overview of the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the sites in relation to secondary aerosol formation.

  20. Improvement in Suppression of Pulsed Nd:YAG Laser Light With Iodine Absorption Cells for Filtered Rayleigh Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E

    1997-01-01

    Filtered Rayleigh scattering using iodine absorption cells is an effective technique for obtaining density, temperature, and velocity measurements in high speed confined flows. By tuning a single frequency laser to a strong iodine absorption line, stray scattered laser light can be greatly suppressed. For example, the minimum transmission predicted by an iodine absorption model calculation is less than 10(exp -5) at the 18788.44/cm line using a 200 mm absorption cell containing iodine vapor at 0.46 T. Measurements obtained by other researches using a CW Nd:YAG laser agree with the model calculations. However, measurements made by us and by others using Q-switched, injection-seeded, frequency doubled Nd:YAG lasers only show minimum transmission of about 3 x 10(exp -3). This greatly reduces the applicability of the filtered Rayleigh scattering technique using these lasers in experiments having large amounts of stray scattered laser light. The purposes of the present study are to characterize the spectrum of the excess light transmitted by the iodine cell and to make changes to the laser to reduce the transmitted laser light. Transmission data as a function of laser frequency for the iodine absorption line at 18788.44/cm are presented. A planar mirror Fabry-Perot interferometer was used to characterize the frequency spectrum of the light passed through the cell. Measurements taken with the laser tuned to the center of the iodine absorption line show the light transmitted through the iodine cell to have a component with a bandwidth of about 40 GHz. This is probably caused by other modes in the laser that exist in spite of the single frequency injection beam. A second broadband component was also observed, possibly caused by the laser flash lamps or by fluorescence. An intracavity etalon was installed in the laser oscillator cavity to suppress the 40 GHz component. Measurements taken with the etalon tuned to the injection frequency showed a reduction in the transmitted laser light. This improvement allows the iodine cell to block significantly more of the stray laser light in filtered Rayleigh scattering experiments. Examples are given of filtered Rayleigh scattering measurements showing the effect of the etalon on measurements taken in a Mach 3 flow in the NASA Lewis 4 inch by 10 inch supersonic wind tunnel.

  1. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Franz J. T.; Will, Stefan, E-mail: stefan.will@fau.de; Erlangen Graduate School in Advanced Optical Technologies

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiationmore » signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.« less

  2. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence.

    PubMed

    Huber, Franz J T; Altenhoff, Michael; Will, Stefan

    2016-05-01

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.

  3. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence

    NASA Astrophysics Data System (ADS)

    Huber, Franz J. T.; Altenhoff, Michael; Will, Stefan

    2016-05-01

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.

  4. Optical characterization of synthetic faceted gem materials grown from hydrothermal solutions

    NASA Astrophysics Data System (ADS)

    Lu, Taijin; Shigley, James E.

    1998-10-01

    Various non-destructive optical characterization techniques have been used to characterize and identify synthetic gem materials grown from hydrothermal solutions, to include ruby, sapphire, emerald, amethyst and ametrine (amethyst-citrine), from their natural counterparts. The ability to observe internal features, such as inclusions, dislocations, twins, color bands, and growth zoning in gem materials is strongly dependent on the observation techniques and conditions, since faceted gemstones have many polished surfaces which can reflect and scatter light in various directions which can make observation difficult. However, diagnostic gemological properties of these faceted synthetic gem materials can be obtained by choosing effective optical characterization methods, and by modifying optical instruments. Examples of some of the distinctive features of synthetic amethyst, ametrine, pink quartz, ruby and emerald are presented to illustrate means of optical characterization of gemstones. The ability to observe defects by light scattering techniques is discussed.

  5. Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield

    NASA Astrophysics Data System (ADS)

    Gordienko, E.; Fedorov, A.; Radiuk, E.; Mechinsky, V.; Dosovitskiy, G.; Vashchenkova, E.; Kuznetsova, D.; Retivov, V.; Dosovitskiy, A.; Korjik, M.; Sandu, R.

    2018-04-01

    This work reports on a process of preparation of garnet phosphor powders and a technique for light yield evaluation of strongly light scattering samples. Powders of scintillation compounds could be used as individual materials or as samples for express tests of scintillation properties. However, estimation of their light yield (LY) is complicated by strong light scattering of this kind of materials. Ce3+-activated yttrium-aluminum and gallium-gadolinium-aluminum garnet phosphor powders, Y3Al5O12 (YAG:Ce) and Gd3Ga3Al2O12 (GGAG:Ce), were obtained using a modified coprecipitation technique. Ga tends to residue in mother liquor in ammonia media, but the modification allows to avoid the loss of components. We propose an approach for sample preparation and LY measurement setup with alpha particles excitation, allowing to decrease light scattering influence and to estimate a light yield of powder samples. This approach is used to evaluate the obtained powders.

  6. Enhanced coupling of light into a turbid medium through microscopic interface engineering

    PubMed Central

    Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.

    2017-01-01

    There are many optical detection and sensing methods used today that provide powerful ways to diagnose, characterize, and study materials. For example, the measurement of spontaneous Raman scattering allows for remote detection and identification of chemicals. Many other optical techniques provide unique solutions to learn about biological, chemical, and even structural systems. However, when these systems exist in a highly scattering or turbid medium, the optical scattering effects reduce the effectiveness of these methods. In this article, we demonstrate a method to engineer the geometry of the optical interface of a turbid medium, thereby drastically enhancing the coupling efficiency of light into the material. This enhanced optical coupling means that light incident on the material will penetrate deeper into (and through) the medium. It also means that light thus injected into the material will have an enhanced interaction time with particles contained within the material. These results show that, by using the multiple scattering of light in a turbid medium, enhanced light–matter interaction can be achieved; this has a direct impact on spectroscopic methods such as Raman scattering and fluorescence detection in highly scattering regimes. Furthermore, the enhanced penetration depth achieved by this method will directly impact optical techniques that have previously been limited by the inability to deposit sufficient amounts of optical energy below or through highly scattering layers. PMID:28701381

  7. Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning

    DOE PAGES

    Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David

    2015-11-04

    We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less

  8. Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David

    We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less

  9. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    DOEpatents

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  10. Morphology effect on the light scattering and dynamic response of polymer network liquid crystal phase modulator.

    PubMed

    Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Jiancheng, Zeng; Dayong, Zhang; Yongquan, Luo

    2014-06-16

    Polymer network liquid crystal (PNLC) was one of the most potential liquid crystal for submillisecond response phase modulation, which was possible to be applied in submillisecond response phase only spatial light modulator. But until now the light scattering when liquid crystal director was reoriented by external electric field limited its phase modulation application. Dynamic response of phase change when high voltage was applied was also not elucidated. The mechanism that determines the light scattering was studied by analyzing the polymer network morphology by SEM method. Samples were prepared by varying the polymerization temperature, UV curing intensity and polymerization time. The morphology effect on the dynamic response of phase change was studied, in which high voltage was usually applied and electro-striction effect was often induced. The experimental results indicate that the polymer network morphology was mainly characterized by cross linked single fibrils, cross linked fibril bundles or even both. Although the formation of fibril bundle usually induced large light scattering, such a polymer network could endure higher voltage. In contrast, although the formation of cross linked single fibrils induced small light scattering, such a polymer network cannot endure higher voltage. There is a tradeoff between the light scattering and high voltage endurance. The electro-optical properties such as threshold voltage and response time were taken to verify our conclusion. For future application, the monomer molecular structure, the liquid crystal solvent and the polymerization conditions should be optimized to generate optimal polymer network morphology.

  11. Analysis of scattering statistics and governing distribution functions in optical coherence tomography.

    PubMed

    Sugita, Mitsuro; Weatherbee, Andrew; Bizheva, Kostadinka; Popov, Ivan; Vitkin, Alex

    2016-07-01

    The probability density function (PDF) of light scattering intensity can be used to characterize the scattering medium. We have recently shown that in optical coherence tomography (OCT), a PDF formalism can be sensitive to the number of scatterers in the probed scattering volume and can be represented by the K-distribution, a functional descriptor for non-Gaussian scattering statistics. Expanding on this initial finding, here we examine polystyrene microsphere phantoms with different sphere sizes and concentrations, and also human skin and fingernail in vivo. It is demonstrated that the K-distribution offers an accurate representation for the measured OCT PDFs. The behavior of the shape parameter of K-distribution that best fits the OCT scattering results is investigated in detail, and the applicability of this methodology for biological tissue characterization is demonstrated and discussed.

  12. Characterization of nanoparticles of lidocaine in w/o microemulsions using small-angle neutron scattering and dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Kiselev, M. A.; Hoell, A.; Neubert, R. H. H.

    2004-08-01

    Microemulsions (MEs) are of special interest because a variety of Reactants can be introduced into the nanometer-sized aqueous domains, leading to materials with controlled size and shape [1,2]. In the past few years, significant research has been conducted in the reverse ME-mediated synthesis of organic nanoparticles [3,4]. In this study, a w/o ME medium was employed for the synthesis of lidocaine by direct precipitation in w/o microemulsion systems: water/isopropylpalmitat/Tween80/Span80. The particle size as well as the location of nanoparticles in the ME droplet were characterized by means of dynamic light scattering (DLS) and small angle neutron scattering (SANS). It is observed that lidocaine precipitated in the aqueous cores because of its insolubility in water. Hydrodynamic radius and gyration radius of microemulsion droplets were estimated as ~15 nm and ~4.50 nm from DLS and SANS respectively. Furthermore, different size parameters obtained by DLS and SANS experiments were compared

  13. Noninvasive identification of subcellular organization and nuclear morphology features associated with leukemic cells using light-scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsiao, Austin; Hunter, Martin; Greiner, Cherry; Gupta, Sharad; Georgakoudi, Irene

    2011-03-01

    Leukemia is the most common and deadly cancer among children and one of the most prevalent cancers among adults. Improvements in its diagnosis and monitoring of leukemic patients could have a significant impact in their long-term treatment. We demonstrate that light-scattering spectroscopy (LSS)-based approaches could serve as a tool to achieve this goal. Specifically, we characterize the light scattering properties of leukemic (NALM-6) cells and compare them to those of normal lymphocytes and granulocytes in the 440-710 nm range, over +/-4 deg about the exact backscattering direction. We find that the LSS spectra are well described by an inverse power-law wavelength dependence, with a power exponent insensitive to the scattering angle but significantly higher for leukemic cells than for normal leukocytes. This is consistent with differences in the subcellular morphology of these cells, detected in differential interference contrast images. Furthermore, the residual light-scattering signal, extracted after subtracting the inverse power-law fit from the data, can be analyzed assuming a Gaussian distribution of spherical scatterers using Mie theory. This analysis yields scatterer sizes that are consistent with the diameters of cell nuclei and allows the detection of the larger nuclei of NALM-6 cells compared to those of lymphocytes and granulocytes.

  14. Computational modeling and experimental characterization of bacterial microcolonies for rapid detection using light scattering

    NASA Astrophysics Data System (ADS)

    Bai, Nan

    A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have been performed to reveal the time dependent nature of scattering patterns. The experimental work has been compared with simulation results and demonstrated the feasibility of extending this technique for microcolony identification. Lastly, a quantitative phase imaging technique based on the phase gradient driven intensity variation has been studied and implemented to render the 2D phase map of the colony sample.

  15. Differential dynamic microscopy to characterize Brownian motion and bacteria motility

    NASA Astrophysics Data System (ADS)

    Germain, David; Leocmach, Mathieu; Gibaud, Thomas

    2016-03-01

    We have developed a lab module for undergraduate students, which involves the process of quantifying the dynamics of a suspension of microscopic particles using Differential Dynamic Microscopy (DDM). DDM is a relatively new technique that constitutes an alternative method to more classical techniques such as dynamic light scattering (DLS) or video particle tracking (VPT). The technique consists of imaging a particle dispersion with a standard light microscope and a camera and analyzing the images using a digital Fourier transform to obtain the intermediate scattering function, an autocorrelation function that characterizes the dynamics of the dispersion. We first illustrate DDM in the textbook case of colloids under Brownian motion, where we measure the diffusion coefficient. Then we show that DDM is a pertinent tool to characterize biological systems such as motile bacteria.

  16. Aerosol Light Absorption and Scattering in Mexico City: Comparison With Las Vegas, NV, and Los Angeles, CA.

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Gaffney, J. S.; Marley, N. A.; Campbell, D.; Fujita, E.

    2007-12-01

    Aerosol light scattering and absorption measurements were deployed in and near Mexico City in March 2006 as part of the Megacity Impacts on Regional and Global Environments (MIRAGE). The primary site in Mexico City was an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP). Similar campaigns were held in Las Vegas, NV in January-February, 2003; and Los Angeles, CA at numerous sites during all seasons from 2003 through 2007. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions. The photoacoustic instrument (PAS) used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In Mexico City the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed probably as a consequence of secondary aerosol formation. We will present the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site and compare with Las Vegas diurnal variation. Mexico City 'breaths' more during the course of the day than Las Vegas, Nevada in part because the latitude of Mexico City resulted in more direct solar radiation. Further insight on the meteorological connections and population dynamics will be discussed.

  17. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  18. Studying the local structure of liquid in chloro- and alkyl-substituted benzene derivatives via the molecular scattering of light

    NASA Astrophysics Data System (ADS)

    Kargin, I. D.; Lanshina, L. V.; Abramovich, A. I.

    2017-09-01

    The coefficients of scattering and the depolarization of scattered light are measured in liquid benzene, chlorobenzene, o-dichlorobenzene, o-chlorotoluene, toluene, and o-xylene in the temperature range of 293‒368 K at a wavelength of 546 nm. Isothermic compressibility, internal pressure, and the functions of radial and orientational correlation are calculated for these liquids in the indicated temperature range, using the classical theory of molecular light scattering. We show that the local structure of these liquids is determined by orthogonal contacts between benzene rings (the T-configuration) and stacked (S-type) configurations. T-configurations predominate in benzene, chlorobenzene, and o-chlorotoluene, while toluene, o-xylene, and o-dichlorobenzene are characterized by S-configurations. It is also shown that the local structures of these liquids are reorganized in a certain temperature range.

  19. Nanocrystals of [Cu3(btc)2] (HKUST-1): a combined time-resolved light scattering and scanning electron microscopy study.

    PubMed

    Zacher, Denise; Liu, Jianing; Huber, Klaus; Fischer, Roland A

    2009-03-07

    The formation of [Cu(3)(btc)(2)] (HKUST-1; btc = 1,3,5-benzenetricarboxylate) nanocrystals from a super-saturated mother solution at room temperature was monitored by time-resolved light scattering (TLS); the system is characterized by a rapid growth up to a size limit of 200 nm within a few minutes, and the size and shape of the crystallites were also determined by scanning electron microscopy (SEM).

  20. View From a Megacity: Aerosol Light Absorption and Scattering at Four Sites in and Near Mexico City.

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Gaffney, J. S.; Marley, N. A.

    2006-12-01

    As part of the Megacity Impacts on Regional and Global Environments, MIRAGE-Mex deployment to Mexico City in the period of 30 days, March 2006, a suite of photoacoustic spectrometers (PAS) were installed to measure at ground level the light absorption and scattering by aerosols at four sites: an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP), a suburban site at the Technological University of Tecamac, a rural site at "La Biznaga" ranch, and a site at the Paseo de Cortes (altitude 3,810 meters ASL) in the rural area above Amecameca in the State of Mexico, on the saddle between the volcanoes Popocatepetl and Iztaccihuatl. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions while the other sites provided characterization of the plume, mixed in with any local sources. The second and third sites are north of Mexico City, and the fourth site is south. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Instruments at the second and third sites operate at 870 nm, and the one at the fourth site at 780 nm. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 40 and 250 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed. Comparisons with TSI nephelometer scattering and Aetholemeter absorption measurements at the T0 site will be presented. We will present a broad overview of the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site. Insight on the dynamical connections will be discussed.

  1. Debris Disk Dust Characterization through Spectral Types: Deep Visible-Light Imaging of Nine Systems

    NASA Astrophysics Data System (ADS)

    Choquet, Elodie

    2017-08-01

    We propose STIS coronagraphy of 9 debris disks recently seen in the near-infrared from our re-analysis of archival NICMOS data. STIS coronagraphy will provide complementary visible-light images that will let us characterize the disk colors needed to place constraints on dust grain sizes, albedos, and anisotropy of scattering of these disks. With 3 times finer angular resolution and much better sensitivity, our STIS images will dramatically surpass the NICMOS discovery images, and will more clearly reveal disk local structures, cleared inner regions, and test for large-scale asymmetries in the dust distributions possibly triggered by associated planets in these systems. The exquisite sensitivity to visible-light scattering by submicron particles uniquely offered by STIS coronagraphy will let us detect and spatially characterize the diffuse halo of dust blown out of the systems by the host star radiative pressure. Our sample includes disks around 3 low-mass stars, 3 solar-type stars, and 3 massive A stars; together with our STIS+NICMOS imaging of 6 additional disks around F and G stars, our sample covers the full range of spectral types and will let us perform a comparative study of dust distribution properties as a function of stellar mass and luminosity. Our sample makes up more than 1/3 of all debris disks imaged in scattered light to date, and will offer the first homogeneous characterization of the visible-light to near-IR properties of debris disk systems over a large range of spectral types. Our program will let us analyze how the dynamical balance is affected by initial conditions and star properties, and how it may be perturbed by gas drag or planet perturbations.

  2. Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field

    DTIC Science & Technology

    2008-03-01

    ENY/08-M22 Abstract Filtered Rayleigh Scattering (FRS) is a non-intrusive, laser -based flow characterization technique that consists of a narrow...linewidth laser , a molecular absorption filter, and a high resolution camera behind the filter to record images. Gases of different species have...different molecular scattering cross-sections that become apparent as they pass through the interrogating laser light source, and this difference is

  3. Molecular characterization of multivalent bioconjugates by size-exclusion chromatography with multiangle laser light scattering.

    PubMed

    Pollock, Jacob F; Ashton, Randolph S; Rode, Nikhil A; Schaffer, David V; Healy, Kevin E

    2012-09-19

    The degree of substitution and valency of bioconjugate reaction products are often poorly judged or require multiple time- and product-consuming chemical characterization methods. These aspects become critical when analyzing and optimizing the potency of costly polyvalent bioactive conjugates. In this study, size-exclusion chromatography with multiangle laser light scattering was paired with refractive index detection and ultraviolet spectroscopy (SEC-MALS-RI-UV) to characterize the reaction efficiency, degree of substitution, and valency of the products of conjugation of either peptides or proteins to a biopolymer scaffold, i.e., hyaluronic acid (HyA). Molecular characterization was more complete compared to estimates from a protein quantification assay, and exploitation of this method led to more accurate deduction of the molecular structures of polymer bioconjugates. Information obtained using this technique can improve macromolecular engineering design principles and help to better understand multivalent macromolecular interactions in biological systems.

  4. Molecular characterization of multivalent bioconjugates by size-exclusion chromatography (SEC) with multi-angle laser light scattering (MALS)

    PubMed Central

    Pollock, Jacob F.; Ashton, Randolph S.; Rode, Nikhil A.; Schaffer, David V.; Healy, Kevin E.

    2013-01-01

    The degree of substitution and valency of bioconjugate reaction products are often poorly judged or require multiple time- and product- consuming chemical characterization methods. These aspects become critical when analyzing and optimizing the potency of costly polyvalent bioactive conjugates. In this study, size-exclusion chromatography with multi-angle laser light scattering was paired with refractive index detection and ultraviolet spectroscopy (SEC-MALS-RI-UV) to characterize the reaction efficiency, degree of substitution, and valency of the products of conjugation of either peptides or proteins to a biopolymer scaffold, i.e., hyaluronic acid (HyA). Molecular characterization was more complete compared to estimates from a protein quantification assay, and exploitation of this method led to more accurate deduction of the molecular structures of polymer bioconjugates. Information obtained using this technique can improve macromolecular engineering design principles and better understand multivalent macromolecular interactions in biological systems. PMID:22794081

  5. Colorimetry and magnitudes of asteroids

    NASA Technical Reports Server (NTRS)

    Bowell, E.; Lumme, K.

    1979-01-01

    In the present paper, 1500 UBV observations are analyzed by a new rather general multiple scattering theory which provided clear insight into previously poorly-recognized optical nature of asteroid surfaces. Thus, phase curves are shown to consist of a surface-texture controlled component, due to singly scattered light, and a component due to multiple scattering. Phase curve shapes can be characterized by a single parameter, the multiple scattering factor, Q. As Q increases, the relative importance of the opposition effect diminishes. Asteroid surfaces are particulate and strikingly similar to texture, being moderately porous and moderately rough on a scale greater than the wavelength of light. In concequence, Q (and also the phase coefficient) correlate well with geometric albedo, and there exists a purely photometric means of determining albedos and diameters.

  6. The STIS CCD Spectroscopic Line Spread Functions

    NASA Technical Reports Server (NTRS)

    Gull, T.; Lindler, D.; Tennant, D.; Bowers, C.; Grady, C.; Hill, R. S.; Malumuth, E.

    2002-01-01

    We characterize the spectroscopic line spread functions of the spectroscopic CCD modes for high contrast objects. Our long range goal is to develop tools that accurately extract spectroscopic information of faint, point or extended sources in the vicinity of bright, point sources at separations approaching the realizable angular limits of HST with STIS. Diffracted and scattered light due to the HST optics, and scattered light effects within the STIS are addressed. Filter fringing, CCD fringing, window reflections, and scattering within the detector and other effects are noted. We have obtained spectra of several reference stars, used for flux calibration or for coronagraphic standards, that have spectral distributions ranging from very red to very blue. Spectra of each star were recorded with the star in the aperture and with the star blocked by either the F1 or F2 fiducial. Plots of the detected starlight along the spatial axis of the aperture are provided for four stars. With the star in the aperture, the line spread function is quite noticeable. Placing the star behind one of the fiducials cuts the scattered light and the diffracted light, is detectable even out to 1OOOOA. When the star is placed behind either fiducial, the scattered and diffracted light components, at three arcseconds displacement from the star, are below lop6 the peak of the star at wavelengths below 6000A; at the same angular distance, scattered light does contaminate the background longward of 6000A up to a level of 10(exp -5).

  7. Resonant soft X-ray scattering for polymer materials

    DOE PAGES

    Liu, Feng; Brady, Michael A.; Wang, Cheng

    2016-04-16

    Resonant Soft X-ray Scattering (RSoXS) was developed within the last few years, and the first dedicated resonant soft X-ray scattering beamline for soft materials was constructed at the Advanced Light Source, LBNL. RSoXS combines soft X-ray spectroscopy with X-ray scattering and thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Using RSoXS to characterize multi-length scale soft materials with heterogeneous chemical structures, we have demonstrated that soft X-ray scattering is a unique complementary technique to conventional hard X-ray and neutron scattering. Its unique chemical sensitivity, large accessible size scale, molecular bondmore » orientation sensitivity with polarized X-rays, and high coherence have shown great potential for chemically specific structural characterization for many classes of materials.« less

  8. Development and characterization of adjustable refractive index scattering epoxy acrylate polymer layers

    NASA Astrophysics Data System (ADS)

    Eiselt, Thomas; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas

    2016-09-01

    This work presents different polymer diffusing films for optical components. In optical applications it is sometimes important to have a film with an adjusted refractive index, scattering properties and a low surface roughness. These diffusing films can be used to increase the efficiency of optical components like organic light emitting diodes (OLEDs). In this study three different epoxy acrylate mixtures containing Syntholux 291 EA, bisphenol a glycerolate dimethacrylate, Sartomer SR 348 L are characterized and optimized with different additives. The adjustable refractive index of the material is achieved with a chemical doping by 9-vinylcarbazole. Titanium nanoparticles in the mixtures generate light scattering and increase the refractive index additionally. To prevent sedimentation and agglomeration of these nanoparticles, a stabilization agent [2-(2-methoxyethoxy)ethoxy]acetic acid is added to the mixture. Other ingredients are a UV-starter and thermal starter for the radical polymerization. A high power stirrer (ultraturrax) is used to mix and disperse all chemical substances together to a homogenous mixture. The viscosity behavior of the mixtures is an important property for the selection of the production method and gets characterized. After the mixing, the monomer mixture is applied on glass substrates by blade coating or screen printing. To initiate the chain growing (polymerization) the produced films are irradiated for 10 minutes long with UV light (UV LED Spot Hönle, 405 nm). After this step a final post bake from the layers in the oven (150°C, 30 min.) is operated. Light transmission measurements (UV-Vis) of the polymer matrix and roughness measurements complement the characterization.

  9. Ultraviolet light propagation under low visibility atmospheric conditions and its application to aircraft landing aid.

    PubMed

    Lavigne, Claire; Durand, Gérard; Roblin, Antoine

    2006-12-20

    Light scattering in the atmosphere by particles and molecules gives rise to an aureole surrounding the source image that tends to reduce the contrast of the source with respect to the background. However, UV scattering phase functions of the haze droplets present a very important forward peak. The spreading of a detected signal in the UV is not as important as in the case of a clear atmosphere where Rayleigh scattering predominates. This physical property has to be taken into account to evaluate the potential of UV radiation as an aircraft landing aid under low visibility conditions. Different results characterizing UV runway lights, simulations of UV radiation propagation in the atmosphere, and the use of a simple detection algorithm applied to one particular sensor are presented.

  10. Dynamic light scattering study on vesicles of Netaine-Cholesterol system

    NASA Astrophysics Data System (ADS)

    Alenaizi, R.; Radiman, S.; Mohamed, F.; Rahman, I. Abdul

    2014-09-01

    The morphology of vesicles system with defined particle size and shape is one of interest in our technical applications. Here we have used dynamic light scattering technique and transmission electron microscopy for structural characterization of N-dimethylglycine Betaine with 5-cholesten-3β-ol vesicles in aqueous solutions. An isotropic one phase region is found in the very diluted regions depending on Betaine/Cholesterol ratio. The isotropic region was stable for more than 3 months at room temperature, with monodispersed unilamellar vesicles ˜ 300nm.

  11. Optical Scattering Characterization for the Glennan Microsystems Microscale Particulate Classifier

    NASA Technical Reports Server (NTRS)

    Lock, James A.

    2002-01-01

    Small sensors that are tolerant to mechanically and thermally harsh environments present the possibility for in-situ particle characterization in propulsion, industrial, and planetary science applications. Under a continuing grant from the Glennan Microsystems Initiative to the Microgravity Fluids Physics Branch of the NASA-Glenn Research Center, a Microscale Particle Classifier (MiPAC) instrument is being developed. The MiPAC instrument will be capable of determining the size distribution of airborne particles from about 1 nm to 30 micrometers, and will provide partial information as to the concentration, charge state, shape, and structure of the particles, while being an order of magnitude smaller in size and lighter in weight than presently commercially available instruments. The portion of the instrument that will characterize the nm-range particles will employ electrical mobility techniques and is being developed under a separate grant to Prof. David Pui of the University of Minnesota. The portion of the instrument that will characterize the micrometer-size particles such as dirt, pollens, spores, molds, soot, and combustion aerosols will use light scattering techniques. The development of data analysis techniques to be employed in the light scattering portion of the instrument is covered by this grant.

  12. Dynamic light scattering and X-ray photoelectron spectroscopy characterization of PEGylated polymer nanocarriers: internal structure and surface properties.

    PubMed

    Celasco, Edvige; Valente, Ilaria; Marchisio, Daniele L; Barresi, Antonello A

    2014-07-22

    In this work, nanospheres and nanocapsules are precipitated in confined impinging jet mixers through solvent displacement and characterized. Acetone and water are used as the solvent and antisolvent, respectively, together with polymethoxypolyethylene glycol cyanoacrylate-co-hexadecylcyanoacrylate and Miglyol as the copolymer and oil, respectively. Characterization is performed with dynamic light scattering, with electrophoretic measurements, and for the first time with X-ray photoelectron spectroscopy. Results show that the presence of polyethylene glycol chains seems to be more pronounced on the surface of nanospheres than on that of nanocapsules. The thickness of the copolymer layer in nanocapsules ranges from 1 to 10 nm, depending on the value of the oil:copolymer mass ratio. Fast dilution is confirmed to have a positive effect in suppressing aggregation but can induce further copolymer precipitation.

  13. Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility.

    PubMed

    Ross, J S; Datte, P; Divol, L; Galbraith, J; Froula, D H; Glenzer, S H; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manuel, A M; Molander, W; Montgomery, D S; Moody, J D; Swadling, G; Weaver, J

    2016-11-01

    An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ 0 = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10 20 cm -3 while a 3ω probe will be used for plasma densities of ∼1 × 10 19 cm -3 . The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).

  14. Shaping the light for the investigation of depth-extended scattering media

    NASA Astrophysics Data System (ADS)

    Osten, W.; Frenner, K.; Pedrini, G.; Singh, A. K.; Schindler, J.; Takeda, M.

    2018-02-01

    Scattering media are an ongoing challenge for all kind of imaging technologies including coherent and incoherent principles. Inspired by new approaches of computational imaging and supported by the availability of powerful computers, spatial light modulators, light sources and detectors, a variety of new methods ranging from holography to time-of-flight imaging, phase conjugation, phase recovery using iterative algorithms and correlation techniques have been introduced and applied to different types of objects. However, considering the obvious progress in this field, several problems are still matter of investigation and their solution could open new doors for the inspection and application of scattering media as well. In particular, these open questions include the possibility of extending the 2d-approach to the inspection of depth-extended objects, the direct use of a scattering media as a simple tool for imaging of complex objects and the improvement of coherent inspection techniques for the dimensional characterization of incoherently radiating spots embedded in scattering media. In this paper we show our recent findings in coping with these challenges. First we describe how to explore depth-extended objects by means of a scattering media. Afterwards, we extend this approach by implementing a new type of microscope making use of a simple scatter plate as a kind of flat and unconventional imaging lens. Finally, we introduce our shearing interferometer in combination with structured illumination for retrieving the axial position of fluorescent light emitting spots embedded in scattering media.

  15. Characterization of diffraction gratings scattering in uv and ir for space applications

    NASA Astrophysics Data System (ADS)

    Achour, Sakina; Kuperman-Le Bihan, Quentin; Etcheto, Pierre

    2017-09-01

    The use of Bidirectional Scatter Distribution Function (BSDF) in space industry and especially when designing telescopes is a key feature. Indeed when speaking about space industry, one can immediately think about stray light issues. Those important phenomena are directly linked to light scattering. Standard BSDF measurement goniophotometers often have a resolution of about 0.1° and are mainly working in or close to the visible spectrum. This resolution is far too loose to characterize ultra-polished surfaces. Besides, wavelength range of BSDF measurements for space projects needs to be done far from visible range. How can we measure BSDF of ultra-polished surfaces and diffraction gratings in the UV and IR range with high resolution? We worked on developing a new goniophometer bench in order to be able to characterize scattering of ultra-polished surfaces and diffraction gratings used in everyday space applications. This ten meters long bench was developed using a collimated beam approach as opposed to goniophotometer using focused beam. Sources used for IR characterization were CO2 (10.6?m) and Helium Neon (3.39?m) lasers. Regarding UV sources, a collimated and spatially filtered UV LED was used. The detection was ensure by a photomultiplier coupled with synchronous detection as well as a MCT InSb detector. The so-built BSDF measurement instrument allowed us to measure BSDF of ultra-polished surfaces as well as diffraction gratings with an angular resolution of 0.02° and a dynamic of 1013 in the visible range. In IR as well as in UV we manage to get 109 with same angular resolution of 0.02°. The 1m arm and translation stages allows us to measure samples up to 200mm. Thanks to such a device allowing ultra-polished materials as well as diffraction gratings scattering characterization, it is possible to implement those BSDF measurements into simulation software and predict stray light issues. This is a big help for space industry engineers to apprehend stray light due to surface finishes and to delete those effects before the whole project is done. We are now thinking of possible improvement on our optical bench to try to get dynamic in IR and UV similar to what we have in visible range (e.g. 1013).

  16. Monte Carlo based investigation of berry phase for depth resolved characterization of biomedical scattering samples

    NASA Astrophysics Data System (ADS)

    Baba, J. S.; Koju, V.; John, D.

    2015-03-01

    The propagation of light in turbid media is an active area of research with relevance to numerous investigational fields, e.g., biomedical diagnostics and therapeutics. The statistical random-walk nature of photon propagation through turbid media is ideal for computational based modeling and simulation. Ready access to super computing resources provide a means for attaining brute force solutions to stochastic light-matter interactions entailing scattering by facilitating timely propagation of sufficient (>107) photons while tracking characteristic parameters based on the incorporated physics of the problem. One such model that works well for isotropic but fails for anisotropic scatter, which is the case for many biomedical sample scattering problems, is the diffusion approximation. In this report, we address this by utilizing Berry phase (BP) evolution as a means for capturing anisotropic scattering characteristics of samples in the preceding depth where the diffusion approximation fails. We extend the polarization sensitive Monte Carlo method of Ramella-Roman, et al., to include the computationally intensive tracking of photon trajectory in addition to polarization state at every scattering event. To speed-up the computations, which entail the appropriate rotations of reference frames, the code was parallelized using OpenMP. The results presented reveal that BP is strongly correlated to the photon penetration depth, thus potentiating the possibility of polarimetric depth resolved characterization of highly scattering samples, e.g., biological tissues.

  17. Monte Carlo based investigation of Berry phase for depth resolved characterization of biomedical scattering samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Justin S; John, Dwayne O; Koju, Vijay

    The propagation of light in turbid media is an active area of research with relevance to numerous investigational fields, e.g., biomedical diagnostics and therapeutics. The statistical random-walk nature of photon propagation through turbid media is ideal for computational based modeling and simulation. Ready access to super computing resources provide a means for attaining brute force solutions to stochastic light-matter interactions entailing scattering by facilitating timely propagation of sufficient (>10million) photons while tracking characteristic parameters based on the incorporated physics of the problem. One such model that works well for isotropic but fails for anisotropic scatter, which is the case formore » many biomedical sample scattering problems, is the diffusion approximation. In this report, we address this by utilizing Berry phase (BP) evolution as a means for capturing anisotropic scattering characteristics of samples in the preceding depth where the diffusion approximation fails. We extend the polarization sensitive Monte Carlo method of Ramella-Roman, et al.,1 to include the computationally intensive tracking of photon trajectory in addition to polarization state at every scattering event. To speed-up the computations, which entail the appropriate rotations of reference frames, the code was parallelized using OpenMP. The results presented reveal that BP is strongly correlated to the photon penetration depth, thus potentiating the possibility of polarimetric depth resolved characterization of highly scattering samples, e.g., biological tissues.« less

  18. Femtosecond coherent emission from GaAs bulk microcavities

    NASA Astrophysics Data System (ADS)

    Gurioli, Massimo; Bogani, Franco; Ceccherini, Simone; Colocci, Marcello; Beltram, Fabio; Sorba, Lucia

    1999-02-01

    The emission from a λ/2 GaAs bulk microcavity resonantly excited by femtosecond pulses has been characterized by using an interferometric correlation technique. It is found that the emission is dominated by the coherent signal due to light elastically scattered by disorder, and that scattering is predominantly originated from the lower polariton branch.

  19. Consequences of on-line dialysis on polyelectrolyte molar masses determined by size-exclusion chromatography with light scattering detection.

    PubMed

    Radke, Wolfgang

    2016-02-01

    Size-exclusion chromatography with light scattering detection experiments conducted on poly(acrylic acid) neutralized to different degrees or using hydroxides with different counterions suggest that the same counterion and degree of neutralization is observed at the detector, irrespective of salt concentration, degree of neutralization and counterion at the time of injection. This strongly supports that during the chromatographic experiment the counterions of the polyelectrolyte are exchanged with those of the eluent, resulting in an effective dialysis of the polyelectrolyte solution during the size-exclusion chromatography experiment. Consequently, the refractive index increment determined by a refractive index detector equals the refractive index increment obtained after excessive dialysis against the pure eluent. Therefore, the species detected and characterized by light scattering coupled to size-exclusion chromatography are not identical to the species injected into the chromatographic system. Despite this structural change during the chromatographic experiments, the correct molar mass for the injected species is obtained by size-exclusion chromatography with light scattering detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dust grain characterization — Direct measurement of light scattering

    NASA Astrophysics Data System (ADS)

    BartoÅ, P.; Pavlů, J.

    2018-01-01

    Dust grains play a key role in dusty plasma since they interact with the plasma we can use them to study plasma itself. The grains are illuminated by visible light (e.g., a laser sheet) and the situation is captured with camera. Despite of simplicity, light scattering on similar-to-wavelength sized grains is complex phenomenon. Interaction of the electromagnetic wave with material has to be computed with respect to Maxwell equations — analytic solution is nowadays available only for several selected shapes like sphere, coated sphere, or infinite cylinder. Moreover, material constants needed for computations are usually unknown. For computation result verification and material constant determination, we designed and developed a device directly measur­ing light scattering profiles. Single dust grains are trapped in the ultrasonic field (so called "acoustic levitation") and illuminated by the laser beam. Scattered light is then measured by a photodiode mounted on rotating platform. Synchronous detection is employed for a noise reduction. This setup brings several benefits against conventional methods: (1) it works in the free air, (2) the measured grain is captured for a long time, and (3) the grain could be of arbitrary shape.

  1. Investigating the real translucency of the endodontic fiber posts

    NASA Astrophysics Data System (ADS)

    Camilotti, Fernando; Bonardi, Cláudia; Somer, Aloisi; Novatski, Andressa; Szesz, Anna Luiza; Loguércio, Alessandro Dourado; Kniphoff da Cruz, Gerson

    2018-02-01

    Researchers have been investigating the light intensity scattered by a translucent fiber post with application in dentistry by different methods. In this work, we introduce a new system capable to record a light scattered profile, step-by-step, as a function of the length of the translucent fiber post. To support our studies, an extensive characterization of the system was carried out and this is presented and discussed here. The system was implemented using the phase sensitive detection. The equipment measures the light scattered without the need of any preparing parts and the fiber post is fixed directly in the fiber post holder becoming ready for measurement. Measures can be recorded with a spatial resolution smaller than 0.01 mm throughout the length of the fiber post being investigated. The system was implemented by using a photomultiplier tube that improves sensitivity for the optical detection. The recorded result is a signal directly proportional to the scattered light and it allows us to obtain a normalized profile that can be used as a map of the scattered light of the fiber post in study. Furthermore, we are able to demonstrate a low intensity of light in the tip region of the fiber post, along with the dependency of the light attenuation with the fiber post body volume and shape. This new system will certainly contribute to achieve better results in fiber post designing and in restoration of endodontic treated teeth because it provides a more well-founded choice of the fiber post to be used, and of the time of exposure to the curing light.

  2. Engineered disorder and light propagation in a planar photonic glass

    PubMed Central

    Romanov, Sergei G.; Orlov, Sergej; Ploss, Daniel; Weiss, Clemens K.; Vogel, Nicolas; Peschel, Ulf

    2016-01-01

    The interaction of light with matter strongly depends on the structure of the latter at wavelength scale. Ordered systems interact with light via collective modes, giving rise to diffraction. In contrast, completely disordered systems are dominated by Mie resonances of individual particles and random scattering. However, less clear is the transition regime in between these two extremes, where diffraction, Mie resonances and near-field interaction between individual scatterers interplay. Here, we probe this transitional regime by creating colloidal crystals with controlled disorder from two-dimensional self-assembly of bidisperse spheres. Choosing the particle size in a way that the small particles are transparent in the spectral region of interest enables us to probe in detail the effect of increasing positional disorder on the optical properties of the large spheres. With increasing disorder a transition from a collective optical response characterized by diffractive resonances to single particles scattering represented by Mie resonances occurs. In between these extremes, we identify an intermediate, hopping-like light transport regime mediated by resonant interactions between individual spheres. These results suggest that different levels of disorder, characterized not only by absence of long range order but also by differences in short-range correlation and interparticle distance, exist in colloidal glasses. PMID:27277521

  3. Feasibility for direct rapid energy dispersive X-ray fluorescence (EDXRF) and scattering analysis of complex matrix liquids by partial least squares.

    PubMed

    Angeyo, K H; Gari, S; Mustapha, A O; Mangala, J M

    2012-11-01

    The greatest challenge to material characterization by XRF technique is encountered in direct trace analysis of complex matrices. We exploited partial least squares (PLS) in conjunction with energy dispersive X-ray fluorescence and scattering (EDXRFS) spectrometry to rapidly (200 s) analyze lubricating oils. The PLS-EDXRFS method affords non-invasive quality assurance (QA) analysis of complex matrix liquids as it gave optimistic results for both heavy- and low-Z metal additives. Scatter peaks may further be used for QA characterization via the light elements. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Mature red blood cells: from optical model to inverse light-scattering problem.

    PubMed

    Gilev, Konstantin V; Yurkin, Maxim A; Chernyshova, Ekaterina S; Strokotov, Dmitry I; Chernyshev, Andrei V; Maltsev, Valeri P

    2016-04-01

    We propose a method for characterization of mature red blood cells (RBCs) morphology, based on measurement of light-scattering patterns (LSPs) of individual RBCs with the scanning flow cytometer and on solution of the inverse light-scattering (ILS) problem for each LSP. We considered a RBC shape model, corresponding to the minimal bending energy of the membrane with isotropic elasticity, and constructed an analytical approximation, which allows rapid simulation of the shape, given the diameter and minimal and maximal thicknesses. The ILS problem was solved by the nearest-neighbor interpolation using a preliminary calculated database of 250,000 theoretical LSPs. For each RBC in blood sample we determined three abovementioned shape characteristics and refractive index, which also allows us to calculate volume, surface area, sphericity index, spontaneous curvature, hemoglobin concentration and content.

  5. Mature red blood cells: from optical model to inverse light-scattering problem

    PubMed Central

    Gilev, Konstantin V.; Yurkin, Maxim A.; Chernyshova, Ekaterina S.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.

    2016-01-01

    We propose a method for characterization of mature red blood cells (RBCs) morphology, based on measurement of light-scattering patterns (LSPs) of individual RBCs with the scanning flow cytometer and on solution of the inverse light-scattering (ILS) problem for each LSP. We considered a RBC shape model, corresponding to the minimal bending energy of the membrane with isotropic elasticity, and constructed an analytical approximation, which allows rapid simulation of the shape, given the diameter and minimal and maximal thicknesses. The ILS problem was solved by the nearest-neighbor interpolation using a preliminary calculated database of 250,000 theoretical LSPs. For each RBC in blood sample we determined three abovementioned shape characteristics and refractive index, which also allows us to calculate volume, surface area, sphericity index, spontaneous curvature, hemoglobin concentration and content. PMID:27446656

  6. Brillouin Light Scattering by Magnetic Quasivortices in Cavity Optomagnonics

    NASA Astrophysics Data System (ADS)

    Osada, A.; Gloppe, A.; Hisatomi, R.; Noguchi, A.; Yamazaki, R.; Nomura, M.; Nakamura, Y.; Usami, K.

    2018-03-01

    A ferromagnetic sphere can support optical vortices in the form of whispering gallery modes and magnetic quasivortices in the form of magnetostatic modes with nontrivial spin textures. These vortices can be characterized by their orbital angular momenta. We experimentally investigate Brillouin scattering of photons in the whispering gallery modes by magnons in the magnetostatic modes, zeroing in on the exchange of the orbital angular momenta between the optical vortices and magnetic quasivortices. We find that the conservation of the orbital angular momentum results in different nonreciprocal behavior in the Brillouin light scattering. New avenues for chiral optics and optospintronics can be opened up by taking the orbital angular momenta as a new degree of freedom for cavity optomagnonics.

  7. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-07-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  8. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-01-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  9. System for characterizing semiconductor materials and photovoltaic device

    DOEpatents

    Sopori, B.L.

    1996-12-03

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline material in a manner that distinguishes dislocation pits from grain boundaries includes a first laser of a first wavelength for illuminating a wide spot on the surface of the material, a second laser of a second relatively shorter wavelength for illuminating a relatively narrower spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate raster mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. A reflectance measurement of the piece of material is obtained by adding together the signals from the optical detection devices. In the case where the piece of material includes a photovoltaic device, the current induced in the device by the illuminating light can be measured with a current sensing amplifier after the light integrating sphere is moved away from the device. 22 figs.

  10. System for characterizing semiconductor materials and photovoltaic device

    DOEpatents

    Sopori, Bhushan L.

    1996-01-01

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline material in a manner that distinguishes dislocation pits from grain boundaries includes a first laser of a first wavelength for illuminating a wide spot on the surface of the material, a second laser of a second relatively shorter wavelength for illuminating a relatively narrower spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate raster mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. A reflectance measurement of the piece of material is obtained by adding together the signals from the optical detection devices. In the case where the piece of material includes a photovoltaic device, the current induced in the device by the illuminating light can be measured with a current sensing amplifier after the light integrating sphere is moved away from the device.

  11. Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification

    PubMed Central

    Desroches, Joannie; Jermyn, Michael; Mok, Kelvin; Lemieux-Leduc, Cédric; Mercier, Jeanne; St-Arnaud, Karl; Urmey, Kirk; Guiot, Marie-Christine; Marple, Eric; Petrecca, Kevin; Leblond, Frédéric

    2015-01-01

    A detailed characterization study is presented of a Raman spectroscopy system designed to maximize the volume of resected cancer tissue in glioma surgery based on in vivo molecular tissue characterization. It consists of a hand-held probe system measuring spectrally resolved inelastically scattered light interacting with tissue, designed and optimized for in vivo measurements. Factors such as linearity of the signal with integration time and laser power, and their impact on signal to noise ratio, are studied leading to optimal data acquisition parameters. The impact of ambient light sources in the operating room is assessed and recommendations made for optimal operating conditions. In vivo Raman spectra of normal brain, cancer and necrotic tissue were measured in 10 patients, demonstrating that real-time inelastic scattering measurements can distinguish necrosis from vital tissue (including tumor and normal brain tissue) with an accuracy of 87%, a sensitivity of 84% and a specificity of 89%. PMID:26203368

  12. Characterization of the global structure of low methoxyl pectin in solution

    USDA-ARS?s Scientific Manuscript database

    Low methoxyl citrus pectin (LMP) and amidated low methoxyl pectin (LMAP) were characterized by high performance size exclusion chromatography (HPSEC) with online light scattering (LS), intrinsic viscosity ('w), differential refractive index (dRI) and ultra violet detection (UV), by amino acid anal...

  13. Improvements to the MST Thomson Scattering Diagnostic

    NASA Astrophysics Data System (ADS)

    Adams, D. T.; Borchardt, M. T.; den Hartog, D. J.; Holly, D. J.; Kile, T.; Kubala, S. Z.; Jacobson, C. M.; Thomas, M. A.; Wallace, J. P.; Young, W. C.; MST Thomson Scattering Team

    2017-10-01

    Multiple upgrades to the MST Thomson Scattering diagnostic have been implemented to expand capabilities of the system. In the past, stray laser light prevented electron density measurements everywhere and temperature measurements for -z/a >0.75. To mitigate stray light, a new laser beamline is being commissioned that includes a longer entrance flight tube, close-fitting apertures, and baffles. A polarizer has been added to the collection optics to further reduce stray light. An absolute density calibration using Rayleigh scattering in argon will be performed. An insertable integrating sphere will provide a full-system spectral calibration as well as maps optical fibers to machine coordinates. Reduced transmission of the collection optics due to coatings from plasma-surface interactions is regularly monitored to inform timely replacements of the first lens. Long-wavelength filters have been installed to better characterize non-Maxwellian electron distribution features. Previous work has identified residual photons not described by a Maxwellian distribution during m =0 magnetic bursts. Further effort to characterize the distribution function will be described. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences program under Award No. DE-FC02-05ER54814.

  14. A review of exosome separation techniques and characterization of B16-F10 mouse melanoma exosomes with AF4-UV-MALS-DLS-TEM.

    PubMed

    Petersen, Kevin E; Manangon, Eliana; Hood, Joshua L; Wickline, Samuel A; Fernandez, Diego P; Johnson, William P; Gale, Bruce K

    2014-12-01

    Exosomes participate in cancer metastasis, but studying them presents unique challenges as a result of their small size and purification difficulties. Asymmetrical field flow fractionation with in-line ultraviolet absorbance, dynamic light scattering, and multi-angle light scattering was applied to the size separation and characterization of non-labeled B16-F10 exosomes from an aggressive mouse melanoma cell culture line. Fractions were collected and further analyzed using batch mode dynamic light scattering, transmission electron microscopy and compared with known size standards. Fractogram peak positions and computed radii show good agreement between samples and across fractions. Ultraviolet absorbance fractograms in combination with transmission electron micrographs were able to resolve subtle heterogeneity of vesicle retention times between separate batches of B16-F10 exosomes collected several weeks apart. Further, asymmetrical field flow fractionation also effectively separated B16-F10 exosomes into vesicle subpopulations by size. Overall, the flow field flow fractionation instrument combined with multiple detectors was able to rapidly characterize and separate exosomes to a degree not previously demonstrated. These approaches have the potential to facilitate a greater understanding of exosome function by subtype, as well as ultimately allow for "label-free" isolation of large scale clinical exosomes for the purpose of developing future exosome-based diagnostics and therapeutics.

  15. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles

    PubMed Central

    Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland

    2017-01-01

    For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. PMID:27639623

  16. A review of exosome separation techniques and characterization of B16-F10 mouse melanoma exosomes with AF4-UV-MALS-DLS-TEM

    PubMed Central

    Manangon, Eliana; Hood, Joshua L.; Wickline, Samuel A.; Fernandez, Diego P.; Johnson, William P.; Gale, Bruce K.

    2015-01-01

    Exosomes participate in cancer metastasis, but studying them presents unique challenges as a result of their small size and purification difficulties. Asymmetrical field flow fractionation with in-line ultraviolet absorbance, dynamic light scattering, and multi-angle light scattering was applied to the size separation and characterization of non-labeled B16-F10 exosomes from an aggressive mouse melanoma cell culture line. Fractions were collected and further analyzed using batch mode dynamic light scattering, transmission electron microscopy and compared with known size standards. Fractogram peak positions and computed radii show good agreement between samples and across fractions. Ultraviolet absorbance fractograms in combination with transmission electron micrographs were able to resolve subtle heterogeneity of vesicle retention times between separate batches of B16-F10 exosomes collected several weeks apart. Further, asymmetrical field flow fractionation also effectively separated B16-F10 exosomes into vesicle subpopulations by size. Overall, the flow field flow fractionation instrument combined with multiple detectors was able to rapidly characterize and separate exosomes to a degree not previously demonstrated. These approaches have the potential to facilitate a greater understanding of exosome function by subtype, as well as ultimately allow for “label-free” isolation of large scale clinical exosomes for the purpose of developing future exosome-based diagnostics and therapeutics. PMID:25084738

  17. Aerosol Light Absorption and Scattering at Four Sites in and Near Mexico City: Comparison with Las Vegas, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Miranda, G. P.; Gaffney, J. S.; Marley, N. A.

    2007-05-01

    Four photoacoustic spectrometers (PAS) for aerosol light scattering and absorption measurements were deployed in and near Mexico City in March 2006 as part of the Megacity Impacts on Regional and Global Environments (MIRAGE). The four sites included: an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP); a suburban site at the Technological University of Tecamac; a rural site at "La Biznaga" ranch; and a site at the Paseo de Cortes (altitude 3,810 meters ASL) in the rural area above Amecameca in the State of Mexico, on the saddle between the volcanoes Popocatepetl and Iztaccihuatl. A similar campaign was held in Las Vegas, Nevada, USA in January-February, 2003. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions while the other sites provided characterization of the plume, mixed in with any local sources. The second and third sites are north of Mexico City, and the fourth site is south. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Instruments at the second and third sites operate at 870 nm, and the one at the fourth site at 780 nm. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed probably as a consequence of secondary aerosol formation. Comparisons with TSI nephelometer scattering at the T0 site will be presented. We will present the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site and compare with Las Vegas diurnal variation. Mexico City 'breaths' more during the course of the day than Las Vegas, Nevada in part because the latitude of Mexico City resulted in more direct solar radiation. Further insight on the meteorological connections will be discussed.

  18. Through-transmission laser welding of glass fibre composite: Experimental light scattering identification

    NASA Astrophysics Data System (ADS)

    Cosson, Benoit; Asséko, André Chateau Akué; Dauphin, Myriam

    2018-05-01

    The purpose of this paper is to develop a cost-effective, efficient and quick to implement experimental optical method in order to predict the optical properties (extinction coefficient) of semi-transparent polymer composites. The extinction coefficient takes into account the effects due to the absorption and the scattering phenomena in a semi-transparent component during the laser processes, i.e. TTLW (through-transmission laser welding). The present method used a laser as light source and a reflex camera equipped with a macro lens as a measurement device and is based on the light transmission measurement through different thickness samples. The interaction between the incident laser beam and the semi-transparent composite is exanimated. The results are presented for the case of a semi-transparent composite reinforced with the unidirectional glass fiber (UD). A numerical method, ray tracing, is used to validate the experimental results. The ray tracing method is appropriate to characterize the light-scattering phenomenon in semi-transparent materials.

  19. Distance within colloidal dimers probed by rotation-induced oscillations of scattered light.

    PubMed

    van Vliembergen, Roland W L; van IJzendoorn, Leo J; Prins, Menno W J

    2016-01-25

    Aggregation processes of colloidal particles are of broad scientific and technological relevance. The earliest stage of aggregation, when dimers appear in an ensemble of single particles, is very important to characterize because it opens routes for further aggregation processes. Furthermore, it represents the most sensitive phase of diagnostic aggregation assays. Here, we characterize dimers by rotating them in a magnetic field and by recording the angle dependence of light scattering. At small scattering angles, the scattering cross section can be approximated by the total cross-sectional area of the dimer. In contrast, at scattering angles around 90 degrees, we reveal that the dependence of the scattering cross section on the dimer angle shows a series of peaks per single 2π rotation of the dimers. These characteristics originate from optical interactions between the two particles, as we have verified with two-particle Mie scattering simulations. We have studied in detail the angular positions of the peaks. It appears from simulations that the influence of particle size polydispersity, Brownian rotation and refractive index on the angular positions of the peaks is relatively small. However, the angular positions of the peaks strongly depend on the distance between the particles. We find a good correspondence between measured data and calculations for a gap of 180 nm between particles having a diameter of 1 micrometer. The experiment and simulations pave the way for extracting distance-specific data from ensembles of dimerizing colloidal particles, with application for sensitive diagnostic aggregation assays.

  20. Prize for Industrial Applications of Physics Talk: The Inverse Scattering Problem and the role of measurements in its solution

    NASA Astrophysics Data System (ADS)

    Wyatt, Philip

    2009-03-01

    The electromagnetic inverse scattering problem suggests that if a homogeneous and non-absorbing object be illuminated with a monochromatic light source and if the far field scattered light intensity is known at sufficient scattering angles, then, in principle, one could derive the dielectric structure of the scattering object. In general, this is an ill-posed problem and methods must be developed to regularize the search for unique solutions. An iterative procedure often begins with a model of the scattering object, solves the forward scattering problem using this model, and then compares these calculated results with the measured values. Key to any such solution is instrumentation capable of providing adequate data. To this end, the development of the first laser based absolute light scattering photometers is described together with their continuing evolution and some of the remarkable discoveries made with them. For particles much smaller than the wavelength of the incident light (e.g. macromolecules), the inverse scattering problems are easily solved. Among the many solutions derived with this instrumentation are the in situ structure of bacterial cells, new drug delivery mechanisms, the development of new vaccines and other biologicals, characterization of wines, the possibility of custom chemotherapy, development of new polymeric materials, identification of protein crystallization conditions, and a variety discoveries concerning protein interactions. A new form of the problem is described to address bioterrorist threats. Over the many years of development and refinement, one element stands out as essential for the successes that followed: the R and D teams were always directed and executed by physics trained theorists and experimentalists. 14 Ph. D. physicists each made his/her unique contribution to the development of these evolving instruments and the interpretation of their results.

  1. Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility

    DOE PAGES

    Ross, J. S.; Datte, P.; Divol, L.; ...

    2016-07-28

    An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. Here, we report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ 0 = 210 nm) will be used to Thomson scatter from electron plasma densities of ~5 × 10 20more » cm -3 while a 3ω probe will be used for plasma densities of ~1 × 10 19 cm -3. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).« less

  2. Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, J. S., E-mail: ross36@llnl.gov; Datte, P.; Divol, L.

    2016-11-15

    An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ{sub 0} = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10{sup 20} cm{supmore » −3} while a 3ω probe will be used for plasma densities of ∼1 × 10{sup 19} cm{sup −3}. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).« less

  3. Label-free tomographic reconstruction of optically thick structures using GLIM (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kandel, Mikhail E.; Kouzehgarani, Ghazal N.; Ngyuen, Tan H.; Gillette, Martha U.; Popescu, Gabriel

    2017-02-01

    Although the contrast generated in transmitted light microscopy is due to the elastic scattering of light, multiple scattering scrambles the image and reduces overall visibility. To image both thin and thick samples, we turn to gradient light interference microscopy (GLIM) to simultaneously measure morphological parameters such as cell mass, volume, and surfaces as they change through time. Because GLIM combines multiple intensity images corresponding to controlled phase offsets between laterally sheared beams, incoherent contributions from multiple scattering are implicitly cancelled during the phase reconstruction procedure. As the interfering beams traverse near identical paths, they remain comparable in power and interfere with optimal contrast. This key property lets us obtain tomographic parameters from wide field z-scans after simple numerical processing. Here we show our results on reconstructing tomograms of bovine embryos, characterizing the time-lapse growth of HeLa cells in 3D, and preliminary results on imaging much larger specimen such as brain slices.

  4. Feasibility of interstitial diffuse optical tomography using cylindrical diffusing fiber for prostate PDT

    PubMed Central

    Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C.

    2013-01-01

    Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1/cm2) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT. PMID:23629149

  5. Utilizing dynamic light scattering as a process analytical technology for protein folding and aggregation monitoring in vaccine manufacturing.

    PubMed

    Yu, Zhou; Reid, Jennifer C; Yang, Yan-Ping

    2013-12-01

    Protein aggregation is a common challenge in the manufacturing of biological products. It is possible to minimize the extent of aggregation through timely measurement and in-depth characterization of aggregation. In this study, we demonstrated the use of dynamic light scattering (DLS) to monitor inclusion body (IB) solubilization, protein refolding, and aggregation near the production line of a recombinant protein-based vaccine candidate. Our results were in good agreement with those measured by size-exclusion chromatography. DLS was also used to characterize the mechanism of aggregation. As DLS is a quick, nonperturbing technology, it can potentially be used as an at-line process analytical technology to ensure complete IB solubilization and aggregate-free refolding. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Raman microspectrometer combined with scattering microscopy and lensless imaging for bacteria identification

    NASA Astrophysics Data System (ADS)

    Strola, S. A.; Schultz, E.; Allier, C. P.; DesRoches, B.; Lemmonier, J.; Dinten, J.-M.

    2013-03-01

    In this paper, we report on a compact prototype capable both of lensfree imaging, Raman spectrometry and scattering microscopy from bacteria samples. This instrument allows high-throughput real-time characterization without the need of markers, making it potentially suitable to field label-free biomedical and environmental applications. Samples are illuminated from above with a focused-collimated 532nm laser beam and can be x-y-z scanned. The bacteria detection is based on emerging lensfree imaging technology able to localize cells of interest over a large field-of-view of 24mm2. Raman signal and scattered light are then collected by separate measurement arms simultaneously. In the first arm the emission light is fed by a fiber into a prototype spectrometer, developed by Tornado Spectral System based on Tornado's High Throughput Virtual Slit (HTVS) novel technology. The enhanced light throughput in the spectral region of interest (500-1800 cm-1) reduces Raman acquisition time down to few seconds, thus facilitating experimental protocols and avoiding the bacteria deterioration induced by laser thermal heating. Scattered light impinging in the second arm is collected onto a charge-coupled-device. The reconstructed image allows studying the single bacteria diffraction pattern and their specific structural features. The characterization and identification of different bacteria have been performed to validate and optimize the acquisition system and the component setup. The results obtained demonstrate the benefits of these three techniques combination by providing the precise bacteria localization, their chemical composition and a morphology description. The procedure for a rapid identification of particular pathogen bacteria in a sample is illustrated.

  7. Multilayered phantoms with tunable optical properties for a better understanding of light/tissue interactions

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Vignoud, Séverine; Lavaud, Jonathan; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Light/tissue interactions, like diffuse reflectance, endogenous fluorescence and Raman scattering, are a powerful means for providing skin diagnosis. Instrument calibration is an important step. We thus developed multilayered phantoms for calibration of optical systems. These phantoms mimic the optical properties of biological tissues such as skin. Our final objective is to better understand light/tissue interactions especially in the case of confocal Raman spectroscopy. The phantom preparation procedure is described, including the employed method to obtain a stratified object. PDMS was chosen as the bulk material. TiO2 was used as light scattering agent. Dye and ink were adopted to mimic, respectively, oxy-hemoglobin and melanin absorption spectra. By varying the amount of the incorporated components, we created a material with tunable optical properties. Monolayer and multilayered phantoms were designed to allow several characterization methods. Among them, we can name: X-ray tomography for structural information; Diffuse Reflectance Spectroscopy (DRS) with a homemade fibered bundle system for optical characterization; and Raman depth profiling with a commercial confocal Raman microscope for structural information and for our final objective. For each technique, the obtained results are presented and correlated when possible. A few words are said on our final objective. Raman depth profiles of the multilayered phantoms are distorted by elastic scattering. The signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties, obtained here with DRS, is crucial to properly correct Raman depth profiles. Thus, it would be permitted to consider quantitative studies on skin for drug permeation follow-up or hydration assessment, for instance.

  8. Few-mode fiber detection for tissue characterization in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Eugui, Pablo; Lichtenegger, Antonia; Augustin, Marco; Harper, Danielle J.; Fialová, Stanislava; Wartak, Andreas; Hitzenberger, Christoph K.; Baumann, Bernhard

    2017-07-01

    A few-mode fiber based detection for OCT systems is presented. The capability of few-mode fibers for delivering light through different fiber paths enables the application of these fibers for angular scattering tissue character- ization. Since the optical path lengths traveled in the fiber change between the fiber modes, the OCT image information will be reconstructed at different depth positions, separating the directly backscattered light from the light scattered at other angles. Using the proposed method, the relation between the angle of reflection from the sample and the respective modal intensity distribution was investigated. The system was demonstrated for imaging ex-vivo brain tissue samples of patients with Alzheimer's disease.

  9. Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning

    PubMed Central

    Ryu, Jihee; Jang, Mooseok; Eom, Tae Joong; Yang, Changhuei; Chung, Euiheon

    2016-01-01

    Variable light focusing is the ability to flexibly select the focal distance of a lens. This feature presents technical challenges, but is significant for optical interrogation of three-dimensional objects. Numerous lens designs have been proposed to provide flexible light focusing, including zoom, fluid, and liquid-crystal lenses. Although these lenses are useful for macroscale applications, they have limited utility in micron-scale applications due to restricted modulation range and exacting requirements for fabrication and control. Here, we present a holographic focusing method that enables variable light focusing without any physical modification to the lens element. In this method, a scattering layer couples low-angle (transverse wave vector) components into a full angular spectrum, and a digital optical phase conjugation (DOPC) system characterizes and plays back the wavefront that focuses through the scattering layer. We demonstrate micron-scale light focusing and patterning over a wide range of focal distances of 22–51 mm. The interferometric nature of the focusing scheme also enables an aberration-free scattering lens. The proposed method provides a unique variable focusing capability for imaging thick specimens or selective photoactivation of neuronal networks. PMID:27049442

  10. Size fractionation and size characterization of nanoemulsions of lipid droplets and large unilamellar lipid vesicles by asymmetric-flow field-flow fractionation/multi-angle light scattering and dynamic light scattering.

    PubMed

    Vezočnik, Valerija; Rebolj, Katja; Sitar, Simona; Ota, Katja; Tušek-Žnidarič, Magda; Štrus, Jasna; Sepčić, Kristina; Pahovnik, David; Maček, Peter; Žagar, Ema

    2015-10-30

    Asymmetric-flow field-flow fractionation technique coupled to a multi-angle light-scattering detector (AF4-MALS) was used together with dynamic light-scattering (DLS) in batch mode and transmission electron microscopy (TEM) to study the size characteristics of the trioleoylglycerol lipid droplets covered by a monolayer of sphingomyelin and cholesterol, in water phase. These lipid droplet nanoemulsions (LD) were formed by ultrasonication. In parallel, the size characteristics of large unilamellar lipid vesicles (LUV) prepared by extrusion and composed of sphingomyelin and cholesterol were determined. LD and LUV were prepared at two different molar ratios (1/1, 4/1) of sphingomyelin and cholesterol. In AF4-MALS, various cross-flow conditions and mobile phase compositions were tested to optimize the separation of LD or LUV particles. The particle radii, R, as well as the root-mean-square radii, Rrms, of LD and LUV were determined by AF4-MALS, whereas the hydrodynamic radii, Rh, were obtained by DLS. TEM visualization revealed round shape particles of LD and LUV. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Light scattering techniques for the characterization of optical components

    NASA Astrophysics Data System (ADS)

    Hauptvogel, M.; Schröder, S.; Herffurth, T.; Trost, M.; von Finck, A.; Duparré, A.; Weigel, T.

    2017-11-01

    The rapid developments in optical technologies generate increasingly higher and sometimes completely new demands on the quality of materials, surfaces, components, and systems. Examples for such driving applications are the steadily shrinking feature sizes in semiconductor lithography, nanostructured functional surfaces for consumer optics, and advanced optical systems for astronomy and space applications. The reduction of surface defects as well as the minimization of roughness and other scatter-relevant irregularities are essential factors in all these areas of application. Quality-monitoring for analysing and improving those properties must ensure that even minimal defects and roughness values can be detected reliably. Light scattering methods have a high potential for a non-contact, rapid, efficient, and sensitive determination of roughness, surface structures, and defects.

  12. Development and characterization of adjustable refractive index scattering epoxy acrylate polymer layers

    NASA Astrophysics Data System (ADS)

    Eiselt, Thomas; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas

    2017-03-01

    Several polymer films for improved optical properties in optoelectronic devices are presented. In such optical applications, it is sometimes important to have a film with an adjusted refractive index, scattering properties, and a low surface roughness. These diffusing films can be used to increase the efficiency of optoelectronic components, such as organic light-emitting diodes. Three different epoxy acrylate mixtures containing Syntholux 291 EA, bisphenol A glycerolate dimethacrylate, and Sartomer SR 348 L are characterized and optimized with different additives. The adjustable refractive index of the material is achieved by chemical doping using 9-vinylcarbazole. Titanium nanoparticles in the mixtures generate light scattering and increase the refractive index additionally. A high-power stirrer is used to mix and disperse all chemical substances together to a homogenous mixture. The viscosity behavior of the mixtures is an important property for the selection of the production method and, therefore, the viscosity measurement results are presented. After the mixing, the monomer mixture is applied on glass substrates by screen printing. To initiate polymerization, the produced films are irradiated for 10 min with ultraviolet radiation and heat. Transmission measurements of the polymer matrix and roughness measurements complement the characterization.

  13. Optical, Physical and Chemical Properties of Tar Balls Observed During the Yosemite Aerosol Characterization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, Jenny L.; Malm, W. C.; Laskin, Alexander

    2005-11-09

    The Yosemite Aerosol Characterization Study of summer 2002 (YACS) occurred during an active fire season in the western U. S., and provided an opportunity to investigate many unresolved issues related to the radiative effects of biomass burning aerosols. Single particle analysis was performed on field collected aerosol samples using an array of electron microscopy techniques. Amorphous carbon spheres, or “tar balls”, were present in samples collected during episodes of high particle light scattering coefficients that occurred during the peak of a smoke/haze event. The highest concentrations of light-absorbing carbon from a dual-wavelength aethalometer (λ = 370 and 880 nm) occurredmore » during periods when the particles were predominantly tar balls, indicating they do absorb light in the UV and near-IR range of the solar spectrum. Closure experiments of mass concentrations and light scattering coefficients during periods dominated by tar balls did not require any distinct assumptions of organic carbon molecular weight correction factors, density, or refractive index compared to periods dominated by other types of organic carbon aerosols. Measurements of the hygroscopic behavior of tar balls using an environmental SEM indicate that tar balls do not exhibit deliquescence, but do uptake some water at high (~83 %) relative humidity. The ability of tar balls to efficiently scatter and absorb light, and to absorb water has important implications for their role in regional haze and climate fence.« less

  14. Space Object Classification and Characterization Via Multiple Model Adaptive Estimation

    DTIC Science & Technology

    2014-07-14

    BRDF ) which models light distribution scattered from the surface due to the incident light. The BRDF at any point on the surface is a function of two...uu B vu B nu obs I u sun I u I hu (b) Reflection Geometry Fig. 2: Reflection Geometry and Space Object Shape Model of the BRDF is ρdiff(i...Space Object Classification and Characterization Via Multiple Model Adaptive Estimation Richard Linares Director’s Postdoctoral Fellow Space Science

  15. Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies.

    PubMed

    Steelman, Zachary A; Eldridge, Will J; Weintraub, Jacob B; Wax, Adam

    2017-12-01

    The refractive index (RI) of biological materials is a fundamental parameter for the optical characterization of living systems. Numerous light scattering technologies are grounded in a quantitative knowledge of the refractive index at cellular and subcellular scales. Recent work in quantitative phase microscopy (QPM) has called into question the widely held assumption that the index of the cell nucleus is greater than that of the cytoplasm, a result which disagrees with much of the current literature. In this work, we critically examine the measurement of the nuclear and whole-cell refractive index using QPM, validating that nuclear refractive index is lower than that of cytoplasm in four diverse cell lines and their corresponding isolated nuclei. We further examine Mie scattering and phase-wrapping as potential sources of error in these measurements, finding they have minimal impact. Finally, we use simulation to examine the effects of incorrect RI assumptions on nuclear morphology measurements using angle-resolved scattering information. Despite an erroneous assumption of the nuclear refractive index, accurate measurement of nuclear morphology was maintained, suggesting that light scattering modalities remain effective. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Key functional role of the optical properties of coral skeletons in coral ecology and evolution.

    PubMed

    Enríquez, Susana; Méndez, Eugenio R; Hoegh-Guldberg, Ove; Iglesias-Prieto, Roberto

    2017-04-26

    Multiple scattering of light on coral skeleton enhances light absorption efficiency of coral symbionts and plays a key role in the regulation of their internal diffuse light field. To understand the dependence of this enhancement on skeleton meso- and macrostructure, we analysed the scattering abilities of naked coral skeletons for 74 Indo-Pacific species. Sensitive morphotypes to thermal and light stress, flat-extraplanate and branching corals, showed the most efficient structures, while massive-robust species were less efficient. The lowest light-enhancing scattering abilities were found for the most primitive colonial growth form: phaceloid. Accordingly, the development of highly efficient light-collecting structures versus the selection of less efficient but more robust holobionts to cope with light stress may constitute a trade-off in the evolution of modern symbiotic scleractinian corals, characterizing two successful adaptive solutions. The coincidence of the most important structural modifications with epitheca decline supports the importance of the enhancement of light transmission across coral skeleton in modern scleractinian diversification, and the central role of these symbioses in the design and optimization of coral skeleton. Furthermore, the same ability that lies at the heart of the success of symbiotic corals as coral-reef-builders can also explain the 'Achilles's heel' of these symbioses in a warming ocean. © 2017 The Author(s).

  17. Molecular characterization of branched polysaccharides from Tremella fuciformis by asymmetrical flow field-flow fractionation and size exclusion chromatography.

    PubMed

    Wu, Ding-Tao; Deng, Yong; Zhao, Jing; Li, Shao-Ping

    2017-11-01

    To accurately characterize branched polysaccharides with high molecular weights from medicinal and edible mushrooms and identify the limitations of size exclusion chromatography, molecular characteristics of polysaccharides from Tremella fuciformis were determined and compared by asymmetrical flow field-flow fractionation coupled with multiangle laser light scattering and refractive index detection, and size exclusion chromatography coupled with multiangle laser light scattering and refractive index detection, respectively. Results showed that molecular weights of three batches of T. fuciformis polysaccharides were determined as 2.167 × 10 6 (TF1), 2.334 × 10 6 (TF2), and 2.435 × 10 6  Da (TF3) by size exclusion chromatography, and 3.432 × 10 6 (TF1), 3.739 × 10 6 (TF2), and 3.742 × 10 6  Da (TF3) by asymmetrical flow field-flow fractionation, as well as 3.469 × 10 6  Da (TF1) by off-line multiangle laser light scattering, respectively. Results suggested that size exclusion chromatography was unable to accurately characterize T. fuciformis polysaccharides, which may be due to its limitations such as shear degradation and abnormal coelution. Compared to size exclusion chromatography, asymmetrical flow field-flow fractionation could be a better technique for the molecular characterization of branched polysaccharides with high molecular weights from medicinal and edible mushrooms, as well as from other natural resources. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Spectroscopy of scattered light for the characterization of micro and nanoscale objects in biology and medicine.

    PubMed

    Turzhitsky, Vladimir; Qiu, Le; Itzkan, Irving; Novikov, Andrei A; Kotelev, Mikhail S; Getmanskiy, Michael; Vinokurov, Vladimir A; Muradov, Alexander V; Perelman, Lev T

    2014-01-01

    The biomedical uses for the spectroscopy of scattered light by micro and nanoscale objects can broadly be classified into two areas. The first, often called light scattering spectroscopy (LSS), deals with light scattered by dielectric particles, such as cellular and sub-cellular organelles, and is employed to measure their size or other physical characteristics. Examples include the use of LSS to measure the size distributions of nuclei or mitochondria. The native contrast that is achieved with LSS can serve as a non-invasive diagnostic and scientific tool. The other area for the use of the spectroscopy of scattered light in biology and medicine involves using conducting metal nanoparticles to obtain either contrast or electric field enhancement through the effect of the surface plasmon resonance (SPR). Gold and silver metal nanoparticles are non-toxic, they do not photobleach, are relatively inexpensive, are wavelength-tunable, and can be labeled with antibodies. This makes them very promising candidates for spectrally encoded molecular imaging. Metal nanoparticles can also serve as electric field enhancers of Raman signals. Surface enhanced Raman spectroscopy (SERS) is a powerful method for detecting and identifying molecules down to single molecule concentrations. In this review, we will concentrate on the common physical principles, which allow one to understand these apparently different areas using similar physical and mathematical approaches. We will also describe the major advancements in each of these areas, as well as some of the exciting recent developments.

  19. Spectro-Polarimetry of Fine-Grained Ice and Dust Surfaces Measured in the Laboratory to Study Solar System Objects and Beyond

    NASA Astrophysics Data System (ADS)

    Poch, O.; Cerubini, R.; Pommerol, A.; Thomas, N.; Schmid, H. M.; Potin, S.; Beck, P.; Schmitt, B.; Brissaud, O.; Carrasco, N.; Szopa, C.; Buch, A.

    2017-12-01

    The polarization of the light is very sensitive to the size, morphology, porosity and composition of the scattering particles. As a consequence, polarimetric observations could significantly complement observations performed in total light intensity, providing additional constraints to interpret remote sensing observations of Solar System and extra-solar objects. This presentation will focus on measurements performed in the laboratory on carefully characterized surface samples, providing reference data that can be used to test theoretical models and predict or interpret spectro-polarimetric observations. Using methods developed in the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern, we produce well-characterized and reproducible surfaces made of water ice particles having different grain sizes and porosities, as well as mineral/organic dusts, pure or mixed together, as analogues of planetary or small bodies surfaces. These surface samples are illuminated with a randomly polarized light source simulating the Sun. The polarization of their scattered light is measured at multiple phase angles and wavelengths, allowing to study the shape of the polarimetric phase curves and their spectral dependence, with two recently developed setups: The POLarimeter for Icy Samples (POLICES), at the University of Bern, allows the measurement of the weak polarization of ice surfaces from 400 to 800 nm, with direct application to icy satellites. Using a precision Stokes polarimeter, this setup is also used to study the spectral variations of circular polarization in the light scattered by biotic versus abiotic surfaces. The Spectrogonio radiometer with cHanging Angles for Detection Of Weak Signals (SHADOWS), at IPAG (University of Grenoble Alpes), measures linear polarization spectra from 0.35 to 5 μm in the light scattered by dark meteorite powders or icy samples, with application to primitive objects of the Solar System (asteroids, comets).

  20. Development for equipment of the milk macromolecules content detection

    NASA Astrophysics Data System (ADS)

    Ding, Guochao; Li, Weimin; Shang, Tingyi; Xi, Yang; Gao, Yunli; Zhou, Zhen

    Developed an experimental device for rapid and accurate detection of milk macromolecular content. This device developed based on laser scattered through principle, the principle use of the ingredients of the scattered light and transmitted light ratio characterization of macromolecules. Peristaltic pump to achieve automatic input and output of the milk samples, designing weak signal detection amplifier circuit for detecting the ratio with ICL7650. Real-time operating system μC / OS-II is the core design of the software part of the whole system. The experimental data prove that the device can achieve a fast real-time measurement of milk macromolecules.

  1. Contamination study

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry; Herren, Kenneth A.

    1990-09-01

    The time dependence of the angular reflectance from molecularly contaminated optical surfaces in the Vacuum Ultraviolet (VUV) is measured. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using non-coherent VUV sources with the predominant wavelengths being the Krypton resonance lines at 1236 and 1600 A. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (Bidirectional Reflectance Distribution Functions) experiment is described and details of the ongoing program to characterize optical materials exposed to the space environment is reported.

  2. Diffusing-wave polarimetry for tissue diagnostics

    NASA Astrophysics Data System (ADS)

    Macdonald, Callum; Doronin, Alexander; Peña, Adrian F.; Eccles, Michael; Meglinski, Igor

    2014-03-01

    We exploit the directional awareness of circularly and/or elliptically polarized light propagating within media which exhibit high numbers of scattering events. By tracking the Stokes vector of the detected light on the Poincaŕe sphere, we demonstrate its applicability for characterization of anisotropy of scattering. A phenomenological model is shown to have an excellent agreement with the experimental data and with the results obtained by the polarization tracking Monte Carlo model, developed in house. By analogy to diffusing-wave spectroscopy we call this approach diffusing-wave polarimetry, and illustrate its utility in probing cancerous and non-cancerous tissue samplesin vitro for diagnostic purposes.

  3. Light-scattering properties of a Venetian blind slat used for daylighting applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsson, Annica M.; Jonsson, Jacob C.

    2010-12-15

    The low cost, simplicity, and aesthetic appearance of external and internal shading devices, make them commonly used for daylighting and glare-control applications. Shading devices, such as Venetian blinds, screens, and roller shades, generally exhibit light scattering and/or light redirecting properties. This requires the bi-directional scattering distribution function (BSDF) of the material to be known in order to accurately predict the daylight distribution and energy flow through the fenestration system. Acquiring the complete BSDF is not a straightforward task, and to complete the process it is often required that a model is used to complement the measured data. In this project,more » a Venetian blind slat with a white top surface and a brushed aluminum bottom surface was optically characterized. A goniophotometer and an integrating sphere spectrophotometer were used to determine the angle resolved and hemispherical reflectance of the sample, respectively. The acquired data were fitted to a scattering model providing one Lambertian and one angle dependent description of the surface properties. These were used in combination with raytracing to obtain the complete BSDFs of the Venetian blind system. (author)« less

  4. Testing and Characterization of a Prototype Telescope for the Evolved Laser Interferometer Space Antenna (eLISA)

    NASA Technical Reports Server (NTRS)

    Sankar, S.; Livas, J.

    2016-01-01

    We describe our efforts to fabricate, test and characterize a prototype telescope for the eLISA mission. Much of our work has centered on the modeling and measurement of scattered light performance. This work also builds on a previous demonstration of a high dimensional stability metering structure using particular choices of materials and interfaces. We will discuss ongoing plans to merge these two separate demonstrations into a single telescope design demonstrating both stray light and dimensional stability requirements simultaneously.

  5. Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties.

    PubMed

    Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi

    2011-02-01

    Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.

  6. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles.

    PubMed

    Urey, Carlos; Weiss, Victor U; Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland

    2016-11-20

    For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Characterization of Propylene Glycol-Mitigated Freeze/Thaw Agglomeration of a Frozen Liquid nOMV Vaccine Formulation by Static Light Scattering and Micro-Flow Imaging.

    PubMed

    Mensch, Christopher D; Davis, Harrison B; Blue, Jeffrey T

    2015-01-01

    The purpose of this work was to investigate the susceptibility of an aluminum adjuvant and an aluminum-adjuvanted native outer membrane vesicle (nOMV) vaccine formulation to freeze/thaw-induced agglomeration using static light scattering and micro-flow Imaging analysis; and to evaluate the use of propylene glycol as a vaccine formulation excipient by which freeze/thaw-induced agglomeration of a nOMV vaccine formulation could be mitigated. Our results indicate that including 7% v/v propylene glycol in an nOMV containing aluminum adjuvanted vaccine formulation, mitigates freeze/thaw-induced agglomeration. We evaluated the effect of freeze-thawing on an aluminum adjuvant and an aluminum adjuvanted native outer membrane vesicle (nOMV) vaccine formulation. Specifically, we characterized the freeze/thaw-induced agglomeration through the use of static light scattering, micro-flow imaging, and cryo-electron microscopy analysis. Further, we evaluated the use of 0-9% v/v propylene glycol as an excipient which could be included in the formulation for the purpose of mitigating the agglomeration induced by freeze/thaw. The results indicate that using 7% v/v propylene glycol as a formulation excipient is effective at mitigating agglomeration of the nOMV vaccine formulation, otherwise induced by freeze-thawing. © PDA, Inc. 2015.

  8. Characterization of seed nuclei in glucagon aggregation using light scattering methods and field-flow fractionation

    PubMed Central

    Hoppe, Cindy C; Nguyen, Lida T; Kirsch, Lee E; Wiencek, John M

    2008-01-01

    Background Glucagon is a peptide hormone with many uses as a therapeutic agent, including the emergency treatment of hypoglycemia. Physical instability of glucagon in solution leads to problems with the manufacture, formulation, and delivery of this pharmaceutical product. Glucagon has been shown to aggregate and form fibrils and gels in vitro. Small oligomeric precursors serve to initiate and nucleate the aggregation process. In this study, these initial aggregates, or seed nuclei, are characterized in bulk solution using light scattering methods and field-flow fractionation. Results High molecular weight aggregates of glucagon were detected in otherwise monomeric solutions using light scattering techniques. These aggregates were detected upon initial mixing of glucagon powder in dilute HCl and NaOH. In the pharmaceutically relevant case of acidic glucagon, the removal of aggregates by filtration significantly slowed the aggregation process. Field-flow fractionation was used to separate aggregates from monomeric glucagon and determine relative mass. The molar mass of the large aggregates was shown to grow appreciably over time as the glucagon solutions gelled. Conclusion The results of this study indicate that initial glucagon solutions are predominantly monomeric, but contain small quantities of large aggregates. These results suggest that the initial aggregates are seed nuclei, or intermediates which catalyze the aggregation process, even at low concentrations. PMID:18613970

  9. Spatially resolved scatter measurement of diffractive micromirror arrays.

    PubMed

    Sicker, Cornelius; Heber, Jörg; Berndt, Dirk

    2016-06-01

    Spatial light modulators (SLMs) support flexible system concepts in modern optics and especially phase-only SLMs such as micromirror arrays (MMAs) appear attractive for many applications. In order to achieve a precise phase modulation, which is crucial for optical performance, careful characterization and calibration of SLM devices is required. We examine an intensity-based measurement concept, which promises distinct advantages by means of a spatially resolved scatter measurement that is combined with the MMA's diffractive principle. Measurements yield quantitative results, which are consistent with measurements of micromirror roughness components, by white-light interferometry. They reveal relative scatter as low as 10-4, which corresponds to contrast ratios up to 10,000. The potential of the technique to resolve phase changes in the subnanometer range is experimentally demonstrated.

  10. Light scattering by dust and anthropogenic aerosol at a remote site in the Negev desert, Israel

    NASA Astrophysics Data System (ADS)

    Andreae, Tracey W.; Andreae, Meinrat O.; Ichoku, Charles; Maenhaut, Willy; Cafmeyer, Jan; Karnieli, Arnon; Orlovsky, Leah

    2002-01-01

    We investigated aerosol optical properties, mass concentration, and chemical composition over a 2 year period at a remote site in the Negev desert, Israel (Sde Boker, 30° 51'N, 34° 47'E, 470 m above sea level). Light-scattering measurements were made at three wavelengths (450, 550, and 700 nm), using an integrating nephelometer, and included the separate determination of the backscatter fraction. Aerosol coarse and fine fractions were collected with stacked filter units; mass concentrations were determined by weighing, and the chemical composition by proton-induced X-ray emission and instrumental neutron activation analysis. The total scattering coefficient at 550 nm showed a median of 66.7 Mm-1(mean value 75.2 Mm-1, standard deviation 41.7 Mm-1) typical of moderately polluted continental air masses. Values of 1000 Mm-1and higher were encountered during severe dust storm events. During the study period, 31 such dust events were detected. In addition to high scattering levels, they were characterized by a sharp drop in the Ångström coefficient (i.e., the spectral dispersion of the light scattering) to values near zero. Mass-scattering efficiencies were obtained by a multivariate regression of the scattering coefficients on dust, sulfate, and residual components. An analysis of the contributions of these components to the total scattering observed showed that anthropogenic aerosol accounted for about 70% of scattering. The rest was dominated by the effect of the large dust events mentioned above and of small dust episodes typically occurring during midafternoon.

  11. Nanoparticle Tracking Analysis for Determination of Hydrodynamic Diameter, Concentration, and Zeta-Potential of Polyplex Nanoparticles.

    PubMed

    Wilson, David R; Green, Jordan J

    2017-01-01

    Nanoparticle tracking analysis (NTA) is a recently developed nanoparticle characterization technique that offers certain advantages over dynamic light scattering for characterizing polyplex nanoparticles in particular. Dynamic light scattering results in intensity-weighted average measurements of nanoparticle characteristics. In contrast, NTA directly tracks individual particles, enabling concentration measurements as well as the direct determination of number-weighted particle size and zeta-potential. A direct number-weighted assessment of nanoparticle characteristics is particularly useful for polydisperse samples of particles, including many varieties of gene delivery particles that can be prone to aggregation. Here, we describe the synthesis of poly(beta-amino ester)/deoxyribonucleic acid (PBAE/DNA) polyplex nanoparticles and their characterization using NTA to determine hydrodynamic diameter, zeta-potential, and concentration. Additionally, we detail methods of labeling nucleic acids with fluorophores to assess only those polyplex nanoparticles containing plasmids via NTA. Polymeric gene delivery of exogenous plasmid DNA has great potential for treating a wide variety of diseases by inducing cells to express a gene of interest.

  12. Low-temperature fabrication and characterization of a symmetric hybrid organic–inorganic slab waveguide for evanescent light microscopy

    NASA Astrophysics Data System (ADS)

    Agnarsson, Björn; Mapar, Mokhtar; Sjöberg, Mattias; Alizadehheidari, Mohammadreza; Höök, Fredrik

    2018-06-01

    Organic and inorganic solid materials form the building blocks for most of today’s high-technological instruments and devices. However, challenges related to dissimilar material properties have hampered the synthesis of thin-film devices comprised of both organic and inorganic films. We here give a detailed description of a carefully optimized processing protocol used for the construction of a three-layered hybrid organic–inorganic waveguide-chip intended for combined scattering and fluorescence evanescent-wave microscopy in aqueous environments using conventional upright microscopes. An inorganic core layer (SiO2 or Si3N4), embedded symmetrically in an organic cladding layer (CYTOP), aids simple, yet efficient in-coupling of light, and since the organic cladding layer is refractive index matched to water, low stray-light (background) scattering of the propagating light is ensured. Another major advantage is that the inorganic core layer makes the chip compatible with multiple well-established surface functionalization schemes that allows for a broad range of applications, including detection of single lipid vesicles, metallic nanoparticles or cells in complex environments, either label-free—by direct detection of scattered light—or by use of fluorescence excitation and emission. Herein, focus is put on a detailed description of the fabrication of the waveguide-chip, together with a fundamental characterization of its optical properties and performance, particularly in comparison with conventional epi illumination. Quantitative analysis of images obtained from both fluorescence and scattering intensities from surface-immobilized polystyrene nanoparticles in suspensions of different concentrations, revealed enhanced signal-to-noise and signal-to-background ratios for the waveguide illumination compared to the epi-illumination.

  13. Do protein crystals nucleate within dense liquid clusters?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maes, Dominique, E-mail: dommaes@vub.ac.be; Vorontsova, Maria A.; Potenza, Marco A. C.

    2015-06-27

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10{sup −3} of the solution. According to the two-step mechanism of nucleation, the protein-rich clustersmore » serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in lysozyme and glucose isomerase solutions are locations for crystal nucleation.« less

  14. Noninvasive diagnosis of early caries with polarization-sensitive optical coherence tomography (PS-OCT)

    NASA Astrophysics Data System (ADS)

    Everett, Matthew J.; Colston, Bill W., Jr.; Sathyam, Ujwal S.; Da Silva, Luiz B.; Fried, Daniel; Featherstone, John D. B.

    1999-05-01

    There is no diagnostic technology presently available utilizing non-ionizing radiation that can image the state of demineralization of dental enamel in vivo for the detection, characterization and monitoring of early, incipient caries lesions. In this study, a Polarization Sensitive Optical Coherence Tomography (PS-OCT) system was evaluated for its potential for the non-invasive diagnosis of early carious lesions. We demonstrated clear discrimination in PS-OCT imags between regions of normal and demineralized enamel in bovine enamel blocks containing well-characterized artificial lesions. Moreover, high-resolution, cross- sectional images were acquired that clearly discriminate between the normal and carious regions of extracted human teeth. Regions that appeared to be demineralized in the PS- OCT imags were verified using histological thin sections examined under polarized light. The PS-OCT system discriminates between normal and carious regions by measuring the state of polarization of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. The demineralized regions of enamel have a large scattering coefficient, thus depolarizing the incident light. This initial study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions.

  15. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    DOE PAGES

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; ...

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materialsmore » systems.« less

  16. In situ measurement of inelastic light scattering in natural waters

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda < 510nm is negligible for the whole water column, and this percentage increases with depth at /lambda > 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to macrophytes, have been measured and have been found to vary with time possibly due to nonphotochemical quenching and photoinhibition.

  17. Analysis of phase conjugation in a turbid medium

    NASA Astrophysics Data System (ADS)

    Hollmann, Joseph L.; Cantero, Sergio; Tseng, Snow; DiMarzio, Charles A.

    2014-03-01

    The ability to focus light in most tissue degrades quickly with depth due to high optical scattering. Recently, researchers have found they can concentrate light tightly despite these scattering effects by using a guidestar and optical phase conjugation to focus light to greater distances in tissue. An optical or probe signal is transmitted through a scattering medium and its resulting wavefront is detected. The wavefront is then conjugated and utilized as a new optical source or delivery wave that focuses back to the guidestar's location with minimal scattering. The power in the delivery wave may be greatly increased for enhanced energy delivery at the focus. Modulation by an ultrasound (US) beam may be utilized to generate the guidestar dynamically and allow for US-resolution at depths of several millimeters. The delivery wave is successful at focusing light back at the guidestar because it creates constructive interference at the desired focus. However, if the phases of the field contributions change, we expect the delivered power at the focus to be reduced. This paper will analyze the robustness of this method when the probe beam is at one wavelength and the delivery wave is at another. This will allow us to characterize the deleterious effects of varying the phase contributions at the focus.

  18. Characterizing Giant Exoplanets through Multiwavelength Transit Observations: KELT-9b

    NASA Astrophysics Data System (ADS)

    Gardner, Cristilyn N.; Cole, Jackson L.; Garver, Bethany R.; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David J.; Rivera, Daniel I.; Kasper, David; Jang-Condell, Hannah; Kobulnicky, Henry A.; Dale, Daniel A.

    2018-01-01

    Multiwavelength observations of host stellar light scattered through an exoplanet's atmosphere during a transit characterizes exoplanetary parameters. Using the Wyoming Infrared Observatory 2.3-meter telescope, we observed primary transits of KELT-9b in the ugriz Sloan filters. We present an analysis of the phase-folded transit observations of KELT-9b using a Bayesian statistical approach. By plotting the transit depth as a function of wavelength, our preliminary results are indicative of scattering in the atmosphere surrounding KELT-9b. This work is supported by the National Science Foundation under REU grant AST 1560461 and PAARE grant AST 1559559.

  19. Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas

    2015-04-14

    X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.

  20. Investigating the Spectral Dependence of Biomass Burning Aerosol Optical Properties

    NASA Astrophysics Data System (ADS)

    Odwuor, A.; Corr, C.; Pusede, S.

    2016-12-01

    Aerosol optical properties, such as light absorption and scattering, are important for understanding how aerosols affect the global radiation budget and for comparison with data gathered from remote sensing. It has been established that the optical properties of aerosols are wavelength dependent, although some remote sensing measurements do not consider this. Airborne measurements of these optical properties were used to calculate the absorption Angstrom exponent, a parameter that characterizes the wavelength dependence of light absorption by aerosols, and single scattering albedo, which measures the relative magnitude of light scattering to total extinction (scattering and absorption combined). Aerosols produced by biomass burning in Saskatchewan, Canada in July 2008 and a forest fire in Southern California, U.S. in June 2016 were included in this analysis. These wildfires were sampled by the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) and NASA Student Airborne Research Program (SARP) missions, respectively. Aerosol absorption was measured using a particle soot photometer (PSAP) at 470, 532 and 660 nm. Scattering was measured using a 3-wavelength (450, 550 and 700 nm) nephelometer. Absorption Angstrom exponents were calculated at 470 and 660 nm and single scattering albedos were calculated at 450 and 550 nm. Results of this study indicate that disregarding the wavelength dependence of organic aerosol can understate the positive radiative forcing (warming) associated with aerosol absorption.

  1. Wide Field Lyman alpha Geocoronal Simulator (WFLaGS) for the Far-uv Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS)

    NASA Astrophysics Data System (ADS)

    Carter, Anna; McCandliss, Stephan R.; Redwine, Keith; Pelton, Russell

    2017-01-01

    At 23:52 on 17 December 2015 FORTIS (36.312 UG) was launched from the White Sands Missile Range in New Mexico on a mission to observe hydrogen emission and absorption features superimposed on the stellar continua of hot star formation regions in the spiral galaxy NGC 1365. Unfortunately scattered geocoronal Lyα from well outside our nominal (1/2 degree)2 field-of-view (FOV) overwhelmed the signal from the target. Post-flight analysis of the observed scattered light levels, in comparison to a wide-FOV model of the light scattered from various surfaces in the optical train, produced good agreement. Suppression of this scatter is the highest priority for the FORTIS return to flight effort. Our analysis pointed to the need for development of a Wide Field Lyα Geocoronal Simulator (WFLaGS) with a 10○ FOV to fully characterize the end-to-end response of FORTIS to off-axis illumination. Previous end-to-end testing was performed with a vacuum UV collimator with only a limited FOV, ≈ 100”. The development of WFLaGS will allow us to validate our scattered light model and verify our mitigation strategies, which will incorporate low scatter materials, and possibly 3-d printed light traps, covering exposed scatter centers. The design of WFLaGs, consisting of a 50mm diameter F/1 aluminum parabolic collimator and a hydrogen discharge lamp with an ~ 80mm clear MgF2 window is described, along with our initial turn-on tests. This work is supported by NASA grants to John Hopkins University, NNX11AG54G and NNX14AI78G.

  2. Phase-coherent elastic scattering of electromagnetic waves from a random array of resonant dielectric ridges on a dielectric substrate: Weak roughness limit

    NASA Astrophysics Data System (ADS)

    Danila, B.; McGurn, A. R.

    2005-03-01

    A theoretical discussion is given of the diffuse scattering of p -polarized electromagnetic waves from a vacuum-dielectric interface characterized by a one-dimensional disorder in the form of parallel, Gaussian shaped, dielectric ridges positioned at random on a planar semi-infinite dielectric substrate. The parameters of the surface roughness are chosen so that the surface is characterized as weakly rough with a low ridge concentration. The emphasis is on phase coherent features in the speckle pattern of light scattered from the surface. These features are determined from the intensity-intensity correlation function of the speckle pattern and are studied as functions of the frequency of light for frequencies near the dielectric frequency resonances of the ridge material. In the first part of the study, the ridges on the substrate are taken to be identical, made from either GaAs, NaF, or ZnS. The substrate for all cases is CdS. In a second set of studies, the heights and widths of the ridges are statistically distributed. The effects of these different types of randomness on the scattering from the random array of dielectric ridges is determined near the dielectric resonance frequency of the ridge material. The work presented is an extension of studies [A. B. McGurn and R. M. Fitzgerald, Phys. Rev. B 65, 155414 (2002)] that originally treated only the differential reflection coefficient of the diffuse scattering of light (not speckle correlation functions) from a system of identical ridges. The object of the present work is to demonstrate the effects of the dielectric frequency resonances of the ridge materials on the phase coherent features found in the speckle patterns of the diffusely scattered light. The dielectric frequency resonances are shown to enhance the observation of the weak localization of electromagnetic surface waves at the random interface. The frequencies treated in this work are in the infrared. Previous weak localization studies have concentrated mainly on the visible and ultraviolet.

  3. Visualization of the evaporation of a diesel spray using combined Mie and Rayleigh scattering techniques

    NASA Astrophysics Data System (ADS)

    Adam, Anne; Leick, Philippe; Bittlinger, Gerd; Schulz, Christof

    2009-09-01

    Evaporating Diesel sprays are studied by laser Rayleigh scattering measurements in an optically accessible high-pressure/high-temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a Diesel engine during injection. n-Decane is injected into the vessel using a state-of-the-art near-production three-hole nozzle. Global images of the distributions of the liquid and vapor phases of the injected fuel are obtained using a combined Schlieren and Mie scattering setup. More details about the evaporation are revealed when the spray is illuminated by a laser light sheet: laser light can be scattered by molecules in the gas phase (Rayleigh scattering) or comparably large fuel droplets (Mie scattering). The former is seen in regions where the fuel has completely evaporated, and the latter is dominant in regions with high droplet concentrations. Studying the polarization of the signal light allows the distinction of three different regions in the spray that are characterized by a moderate, low or negligible concentration of liquid fuel droplets. The characteristics of fuel evaporation are investigated for different observation times after the start of injection, chamber conditions and injection pressures. For the quantification of the fuel concentration measurements based on Rayleigh scattering, a calibration method that uses propane as a reference gas is presented and tested. At high ambient temperatures, the accuracy of the concentration measurements is limited by pyrolysis of the fuel molecules.

  4. Cellulosic nanowhiskers. Theory and application of light scattering from polydisperse spheroids in the Rayleigh-Gans-Debye regime.

    PubMed

    Braun, Birgit; Dorgan, John R; Chandler, John P

    2008-04-01

    Mathematical treatment of light scattering within the Rayleigh-Gans-Debye limit for spheroids with polydispersity in both length and diameter is developed and experimentally tested using cellulosic nanowhiskers (CNW). Polydispersity indices are obtained by fitting the theoretical formfactor to experimental data. Good agreement is achieved using a polydispersity of 2.3 for the length, independent of the type of acid used. Diameter polydispersities are 2.1 and 3.0 for sulfuric and hydrochloric acids, respectively. These polydispersities allow the determination of average dimensions from the z-average mean-square radius (z) and the weight-average molecular weight (M w) easily obtained from Berry plots. For cotton linter hydrolyzed by hydrochloric acid, the average length and diameter are 244 and 22 nm. This compares to average length and diameter of 272 and 13 nm for sulfuric acid. This study establishes a new light-scattering methodology as a quick and robust tool for size characterization of polydisperse spheroidal nanoparticles.

  5. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces.

    PubMed

    Schein, Perry; Ashcroft, Colby K; O'Dell, Dakota; Adam, Ian S; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-08-15

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically "pushing" a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques.

  6. Scattered light in a DMD based multi-object spectrometer

    NASA Astrophysics Data System (ADS)

    Fourspring, Kenneth D.; Ninkov, Zoran; Kerekes, John P.

    2010-07-01

    The DMD (Digital Micromirror Device) has an important future in both ground and space based multi-object spectrometers. A series of laboratory measurements have been performed to determine the scattered light properties of a DMD. The DMD under test had a 17 μm pitch and 1 μm gap between adjacent mirrors. Prior characterization of this device has focused on its use in DLP (TI Digital Light Processing) projector applications in which a whole pixel is illuminated by a uniform collimated source. The purpose of performing these measurements is to determine the limiting signal to noise ratio when utilizing the DMD as a slit mask in a spectrometer. The DMD pixel was determined to scatter more around the pixel edge and central via, indicating the importance of matching the telescope point spread function to the DMD. Also, the generation of DMD tested here was determined to have a significant mirror curvature. A maximum contrast ratio was determined at several wavelengths. Further measurements are underway on a newer generation DMD device, which has a smaller mirror pitch and likely different scatter characteristics. A previously constructed instrument, RITMOS (RIT Multi-Object Spectrometer) will be used to validate these scatter models and signal to noise ratio predications through imaging a star field.

  7. Radiation of the high-order plasmonic modes of large gold nanospheres excited by surface plasmon polaritons.

    PubMed

    Chen, Jing-Dong; Xiang, Jin; Jiang, Shuai; Dai, Qiao-Feng; Tie, Shao-Long; Lan, Sheng

    2018-05-17

    Large metallic nanoparticles with sizes comparable to the wavelength of light are expected to support high-order plasmon modes exhibiting resonances in the visible to near infrared spectral range. However, the radiation behavior of high-order plasmon modes, including scattering spectra and radiation patterns, remains unexplored. Here, we report on the first observation and characterization of the high-order plasmon modes excited in large gold nanospheres by using the surface plasmon polaritons generated on the surface of a thin gold film. The polarization-dependent scattering spectra were measured by inserting a polarization analyzer in the collection channel and the physical origins of the scattering peaks observed in the scattering spectra were clearly identified. More interestingly, the radiation of electric quadrupoles and octupoles was resolved in both frequency and spatial domains. In addition, the angular dependences of the radiation intensity for all plasmon modes were extracted by fitting the polarization-dependent scattering spectra with multiple Lorentz line shapes. A significant enhancement of the electric field was found in the gap plasmon modes and it was employed to generate hot-electron intraband luminescence. Our findings pave the way for exploiting the high-order plasmon modes of large metallic nanoparticles in the manipulation of light radiation and light-matter interaction.

  8. Cotton fiber quality characterization with light scattering and fourier transform infrared techniques.

    PubMed

    Thomasson, J A; Manickavasagam, S; Mengüç, M P

    2009-03-01

    Fiber quality measurement is critical to assessing the value of a bale of cotton for various textile purposes. An instrument that could measure numerous cotton quality properties by optical means could be made simpler and faster than current fiber quality measurement instruments, and it might be more amenable to on-line measurement at processing facilities. To that end, a laser system was used to investigate cotton fiber samples with respect to electromagnetic scattering at various wavelengths, polarization angles, and scattering angles. A Fourier transform infrared (FT-IR) instrument was also used to investigate the transmission of electromagnetic energy at various mid-infrared wavelengths. Cotton samples were selected to represent a wide range of micronaire values. Varying the wavelength of the laser at a fixed polarization resulted in little variation in scattered light among the cotton samples. However, varying the polarization at a fixed wavelength produced notable variation, indicating that polarization might be used to differentiate among cotton samples with respect to certain fiber properties. The FT-IR data in the 12 to 22 microm range produced relatively large differences in the amount of scattered light among all samples, and FT-IR data at certain combinations of fixed wavelengths were highly linearly related to certain measures of cotton quality including micronaire.

  9. Determination of the absolute molecular weight averages and molecular weight distributions of alginates used as ice cream stabilizers by using multiangle laser light scattering measurements.

    PubMed

    Turquois, T; Gloria, H

    2000-11-01

    High-performance size exclusion chromatography with multiangle laser light scattering detection (HPSEC-MALLS) was used for characterizing complete molecular weight distributions for a range of commercial alginates used as ice cream stabilizers. For the samples investigated, molecular weight averages were found to vary between 115 000 and 321 700 g/mol and polydispersity indexes varied from 1. 53 to 3.25. These samples displayed a high content of low molecular weights. Thus, the weight percentage of material below 100 000 g/mol ranged between 6.9 and 54.4%.

  10. Scattering and the Point Spread Function of the New Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Schreur, Julian J.

    1996-01-01

    Preliminary design work on the New Generation Space Telescope (NGST) is currently under way. This telescope is envisioned as a lightweight, deployable Cassegrain reflector with an aperture of 8 meters, and an effective focal length of 80 meters. It is to be folded into a small-diameter package for launch by an Atlas booster, and unfolded in orbit. The primary is to consist of an octagon with a hole at the center, and with eight segments arranged in a flower petal configuration about the octagon. The comers of the petal-shaped segments are to be trimmed so that the package will fit atop the Atlas booster. This mirror, along with its secondary will focus the light from a point source into an image which is spread from a point by diffraction effects, figure errors, and scattering of light from the surface. The distribution of light in the image of a point source is called a point spread function (PSF). The obstruction of the incident light by the secondary mirror and its support structure, the trimmed corners of the petals, and the grooves between the segments all cause the diffraction pattern characterizing an ideal point spread function to be changed, with the trimmed comers causing the rings of the Airy pattern to become broken up, and the linear grooves causing diffraction spikes running radially away from the central spot, or Airy disk. Any figure errors the mirror segments may have, or any errors in aligning the petals with the central octagon will also spread the light out from the ideal point spread function. A point spread function for a mirror the size of the NGST and having an incident wavelength of 900 nm is considered. Most of the light is confined in a circle with a diameter of 0.05 arc seconds. The ring pattern ranges in intensity from 10(exp -2) near the center to 10(exp -6) near the edge of the plotted field, and can be clearly discerned in a log plot of the intensity. The total fraction of the light scattered from this point spread function is called the total integrated scattering (TIS), and the fraction remaining is called the Strehl ratio. The angular distribution of the scattered light is called the angle resolved scattering (ARS), and it shows a strong spike centered on a scattering angle of zero, and a broad , less intense distribution at larger angles. It is this scattered light, and its effect on the point spread function which is the focus of this study.

  11. Dynamic light scattering for the characterization and counting of extracellular vesicles: a powerful noninvasive tool

    NASA Astrophysics Data System (ADS)

    Palmieri, Valentina; Lucchetti, Donatella; Gatto, Ilaria; Maiorana, Alessandro; Marcantoni, Margherita; Maulucci, Giuseppe; Papi, Massimiliano; Pola, Roberto; De Spirito, Marco; Sgambato, Alessandro

    2014-09-01

    Extracellular vesicles (EVs) are cell-to-cell shuttles that have recently drawn interest both as drug delivery platforms and disease biomarkers. Despite the increasingly recognized relevance of these vesicles, their detection, and characterization still have several technical drawbacks. In this paper, we accurately assess the size distribution and concentration of EVs by using a high-throughput non-perturbative technique such as Dynamic Light Scattering (DLS). The vesicle radii distribution, as further confirmed by Atomic Force Microscopy experiments, ranges from 10 to 80 nm and appears very asymmetric towards larger radii with a main peak at roughly 30 nm. By combining DLS and Bradford assay, we also demonstrate the feasibility of recovering the concentration and its distribution of proteins contained inside vesicles. The sensitivity of our approach allows to detect protein concentrations as low as 0.01 mg/ml.

  12. Optical Sensors Using Stimulated Brillouin Scattering

    NASA Technical Reports Server (NTRS)

    Christensen, Caleb A (Inventor); Zavriyev, Anton (Inventor)

    2017-01-01

    A method for enhancing a sensitivity of an optical sensor having an optical cavity counter-propagates beams of pump light within the optical cavity to produce scattered light based on Stimulated Brillouin Scattering (SBS). The properties of the pump light are selected to generate fast-light conditions for the scattered light, such that the scattered light includes counter-propagating beams of fast light. The method prevents the pump light from resonating within the optical cavity, while allowing the scattered light to resonate within the optical cavity. At least portions of the scattered light are interfered outside of the optical cavity to produce a beat note for a measurement of the optical sensor. The disclosed method is particularly applicable to optical gyroscopes.

  13. Nanoparticle Synthesis, Characterization, and Ecotoxicity: A Research-Based Set of Laboratory Experiments for a General Chemistry Course

    ERIC Educational Resources Information Center

    Amaris, Zoe N.; Freitas, Daniel N.; Mac, Karen; Gerner, Kyle T.; Nameth, Catherine; Wheeler, Korin E.

    2017-01-01

    A series of laboratory experiments were developed to introduce first-year chemistry students to nanoscience through a green chemistry approach. Students made and characterized the stability of silver nanoparticles using two different methods: UV-visible spectroscopy and dynamic light scattering. They then assessed the ecotoxicity of silver…

  14. Cavity-Enhanced Raman Spectroscopy for Food Chain Management

    PubMed Central

    Sandfort, Vincenz; Goldschmidt, Jens; Wöllenstein, Jürgen

    2018-01-01

    Comprehensive food chain management requires the monitoring of many parameters including temperature, humidity, and multiple gases. The latter is highly challenging because no low-cost technology for the simultaneous chemical analysis of multiple gaseous components currently exists. This contribution proposes the use of cavity enhanced Raman spectroscopy to enable online monitoring of all relevant components using a single laser source. A laboratory scale setup is presented and characterized in detail. Power enhancement of the pump light is achieved in an optical resonator with a Finesse exceeding 2500. A simulation for the light scattering behavior shows the influence of polarization on the spatial distribution of the Raman scattered light. The setup is also used to measure three relevant showcase gases to demonstrate the feasibility of the approach, including carbon dioxide, oxygen and ethene. PMID:29495501

  15. Studying Dust Scattering Halos with Galactic X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Beeler, Doreen; Corrales, Lia; Heinz, Sebastian

    2018-01-01

    Dust is an important part of the interstellar medium (ISM) and contributes to the formation of stars and planets. Since the advent of modern X-ray telescopes, Galactic X-ray point sources have permitted a closer look at all phases of the ISM. Interstellar metals from oxygen to iron — in both gas and dust form — are responsible for absorption and scattering of X-ray light. Dust scatters the light in a forward direction and creates a diffuse halo image surrounding many bright Galactic X-ray binaries. We use all the bright X-ray point sources available in the Chandra HETG archive to study dust scattering halos from the local ISM. We have described a data analysis pipeline using a combination of the data reduction software CIAO and Python. We compare our results from Chandra HETG and ACIS-I observations of a well studied dust scattering halo around GX 13+1, in order to characterize any systematic errors associated with the HETG data set. We describe how our data products will be used to measure ISM scaling relations for X-ray extinction, dust abundance, and dust-to-metal ratios.

  16. Coherent Detector for Near-Angle Scattering and Polarization Characterization of Telescope Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Chipman, Russell A.; Daugherty, Brian J.; McClain, Stephen C.

    2012-01-01

    A report discusses the difficulty of measuring scattering properties of coated mirrors extremely close to the specular reflection peak. A prototype Optical Hetero dyne Near-angle Scatterometer (OHNS) was developed. Light from a long-coherence-length (>150 m) 532-nm laser is split into two arms. Acousto-optic modulators frequency shift the sample and reference beams, establishing a fixed beat frequency between the beams. The sample beam is directed at very high f/# onto a mirror sample, and the point spread function (PSF) formed after the mirror sample is scanned with a pinhole. This light is recombined by a non-polarizing beam splitter and measured through heterodyne detection with a spectrum analyzer. Polarizers control the illuminated and analyzed polarization states, allowing the polarization dependent scatter to be measured. The bidirectional reflective or scattering distribution function is normally measured through use of a scattering goniometer instrument. The instrumental beam width (collection angle span) over which the scatterometer responds is typically many degrees. The OHNS enables measurement at angles as small as the first Airy disk diameter.

  17. Ocular forward light scattering and corneal backward light scattering in patients with dry eye.

    PubMed

    Koh, Shizuka; Maeda, Naoyuki; Ikeda, Chikako; Asonuma, Sanae; Mitamura, Hayato; Oie, Yoshinori; Soma, Takeshi; Tsujikawa, Motokazu; Kawasaki, Satoshi; Nishida, Kohji

    2014-09-18

    To evaluate ocular forward light scattering and corneal backward light scattering in patients with dry eye. Thirty-five eyes in 35 patients with dry eye and 20 eyes of 20 healthy control subjects were enrolled. The 35 dry eyes were classified into two groups according to whether superficial punctate keratopathy in the central 6-mm corneal zone (cSPK) was present or not. Ocular forward light scattering was quantified with a straylight meter. Corneal backward light scattering from the anterior, middle, and posterior corneal parts was assessed with a corneal densitometry program using the Scheimpflug imaging system. Both dry eye groups had significantly higher intraocular forward light scattering than the control group (both P<0.05). The dry eye group with cSPK had significantly higher values in anterior and total corneal backward light scattering than the other two groups. Moderate positive correlations were observed between the cSPK score and corneal backward light scattering from the anterior cornea (R=0.60, P<0.001) and corneal backward light scattering from the total cornea (R=0.54, P<0.001); however, no correlation was found between cSPK score and ocular forward light scattering (R=0.01, P=0.932). Ocular forward light scattering and corneal backward light scattering from the anterior cornea were greater in dry eyes than in normal eyes. Increased corneal backward light scattering in dry eye at least partially results from cSPK overlying the optical zone. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  18. Modeling experimental plasma diagnostics in the FLASH code: Thomson scattering

    NASA Astrophysics Data System (ADS)

    Weide, Klaus; Flocke, Norbert; Feister, Scott; Tzeferacos, Petros; Lamb, Donald

    2017-10-01

    Spectral analysis of the Thomson scattering of laser light sent into a plasma provides an experimental method to quantify plasma properties in laser-driven plasma experiments. We have implemented such a synthetic Thomson scattering diagnostic unit in the FLASH code, to emulate the probe-laser propagation, scattering and spectral detection. User-defined laser rays propagate into the FLASH simulation region and experience scattering (change in direction and frequency) based on plasma parameters. After scattering, the rays propagate out of the interaction region and are spectrally characterized. The diagnostic unit can be used either during a physics simulation or in post-processing of simulation results. FLASH is publicly available at flash.uchicago.edu. U.S. DOE NNSA, U.S. DOE NNSA ASC, U.S. DOE Office of Science and NSF.

  19. Effects of multiple scattering on radiative properties of soot fractal aggregates

    NASA Astrophysics Data System (ADS)

    Yon, Jérôme; Liu, Fengshan; Bescond, Alexandre; Caumont-Prim, Chloé; Rozé, Claude; Ouf, François-Xavier; Coppalle, Alexis

    2014-01-01

    The in situ optical characterization of smokes composed of soot particles relies on light extinction, angular static light scattering (SLS), or laser induced incandescence (LII). These measurements are usually interpreted by using the Rayleigh-Debye-Gans theory for Fractal Aggregates (RDG-FA). RDG-FA is simple to use but it completely neglects the impact of multiple scattering (MS) within soot aggregates. In this paper, based on a scaling approach that takes into account MS effects, an extended form of the RDG-FA theory is proposed in order to take into account these effects. The parameters of this extended theory and their dependency on the number of primary sphere inside the aggregate (1

  20. Laboratory Measurements of Single-Particle Polarimetric Spectrum

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).

  1. Characterization of biomass burning aerosols produced in the laboratory with a light-scattering aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Adler, G. A.; Coggon, M.; De Gouw, J. A.; Franchin, A.; Gilman, J.; Koss, A.; Krechmer, J. E.; Lamb, K.; Manfred, K.; Roberts, J. M.; Schwarz, J. P.; Sekimoto, K.; Selimovic, V.; Stockwell, C.; Wagner, N.; Warneke, C.; Washenfelder, R. A.; Womack, C.; Yokelson, R. J.; Yuan, B.

    2017-12-01

    During the 2016 NOAA FIREX project at the Missoula Fire Sciences Laboratory, small fires of known fuel type and properties were ignited to characterize their direct emissions with a large variety of new sampling methods. Two types of experiments were employed: sampling smoke directly from the exhaust stack throughout the lifecycle of the fires (stack burns) or sampling when the exhaust vent was closed to fill the room with smoke (room burns). For both types of burns, photo-oxidation chambers were at times used to mimic aging in the atmosphere. During all these experiments, we measured the non-refractory components of the smoke particles using an Aerodyne compact time-of-flight aerosol mass spectrometer (AMS) with a light scattering module and diluted the sample line as little as possible (usually by a factor of 10) without overwhelming our instrument. For the stack burns, our AMS was placed near the top of the exhaust stack to capture the composition and size distribution during the rapidly changing stages of the fires. We found that the chemical composition of the aerosols varied with fuel type and combustion conditions on time scales of a few minutes as the fuels went through different stages of heating and combustion. For the room burns, we obtained additional measurements with the light-scattering module aimed at understanding how well smoke particles are measured with the AMS, along with characterization of their physical properties. We will present a summary of our results, with connections to their relevance for constraining model treatments of fire emissions on the atmosphere.

  2. Differential dynamic microscopy of bidisperse colloidal suspensions.

    PubMed

    Safari, Mohammad S; Poling-Skutvik, Ryan; Vekilov, Peter G; Conrad, Jacinta C

    2017-01-01

    Research tasks in microgravity include monitoring the dynamics of constituents of varying size and mobility in processes such as aggregation, phase separation, or self-assembly. We use differential dynamic microscopy, a method readily implemented with equipment available on the International Space Station, to simultaneously resolve the dynamics of particles of radius 50 nm and 1 μm in bidisperse aqueous suspensions. Whereas traditional dynamic light scattering fails to detect a signal from the larger particles at low concentrations, differential dynamic microscopy exhibits enhanced sensitivity in these conditions by accessing smaller wavevectors where scattering from the large particles is stronger. Interference patterns due to scattering from the large particles induce non-monotonic decay of the amplitude of the dynamic correlation function with the wavevector. We show that the position of the resulting minimum contains information on the vertical position of the particles. Together with the simple instrumental requirements, the enhanced sensitivity of differential dynamic microscopy makes it an appealing alternative to dynamic light scattering to characterize samples with complex dynamics.

  3. Optical-Based Artificial Palpation Sensors for Lesion Characterization

    PubMed Central

    Lee, Jong-Ha; Kim, Yoon Nyun; Ku, Jeonghun; Park, Hee-Jun

    2013-01-01

    Palpation techniques are widely used in medical procedures to detect the presence of lumps or tumors in the soft breast tissues. Since these procedures are very subjective and depend on the skills of the physician, it is imperative to perform detailed a scientific study in order to develop more efficient medical sensors to measure and generate palpation parameters. In this research, we propose an optical-based, artificial palpation sensor for lesion characterization. This has been developed using a multilayer polydimethylsiloxane optical waveguide. Light was generated at the critical angle to reflect totally within the flexible and transparent waveguide. When a waveguide was compressed by an external force, its contact area would deform and cause the light to scatter. The scattered light was captured by a high-resolution camera and saved as an image format. To test the performance of the proposed system, we used a realistic tissue phantom with embedded hard inclusions. The experimental results show that the proposed sensor can detect inclusions and provide the relative value of size, depth, and Young's modulus of an inclusion. PMID:23966198

  4. Comparison on electrically pumped random laser actions of hydrothermal and sputtered ZnO films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Canxing; Jiang, Haotian; Li, Yunpeng

    2013-10-07

    Random lasing (RL) in polycrystalline ZnO films is an intriguing research subject. Here, we have comparatively investigated electrically pumped RL behaviors of two metal-insulator-semiconductor structured devices using the hydrothermal and sputtered ZnO films as the semiconductor components, i.e., the light-emitting layers, respectively. It is demonstrated that the device using the hydrothermal ZnO film exhibits smaller threshold current and larger output optical power of the electrically pumped RL. The morphological characterization shows that the hydrothermal ZnO film is somewhat porous and is much rougher than the sputtered one, suggesting that in the former stronger multiple light scattering can occur. Moreover, themore » photoluminescence characterization indicates that there are fewer defects in the hydrothermal ZnO film than in the sputtered one, which means that the photons can pick up larger optical gain through stimulated emission in the hydrothermal ZnO film. Therefore, it is believed that the stronger multiple light scattering and larger optical gain contribute to the improved performance of the electrically pumped RL from the device using the hydrothermal ZnO film.« less

  5. SAXS Combined with UV-vis Spectroscopy and QELS: Accurate Characterization of Silver Sols Synthesized in Polymer Matrices.

    PubMed

    Bulavin, Leonid; Kutsevol, Nataliya; Chumachenko, Vasyl; Soloviov, Dmytro; Kuklin, Alexander; Marynin, Andrii

    2016-12-01

    The present work demonstrates a validation of small-angle X-ray scattering (SAXS) combining with ultra violet and visible (UV-vis) spectroscopy and quasi-elastic light scattering (QELS) analysis for characterization of silver sols synthesized in polymer matrices. Polymer matrix internal structure and polymer chemical nature actually controlled the sol size characteristics. It was shown that for precise analysis of nanoparticle size distribution these techniques should be used simultaneously. All applied methods were in good agreement for the characterization of size distribution of small particles (less than 60 nm) in the sols. Some deviations of the theoretical curves from the experimental ones were observed. The most probable cause is that nanoparticles were not entirely spherical in form.

  6. Using Light Scattering to Track, Characterize and Manipulate Colloids

    NASA Astrophysics Data System (ADS)

    van Oostrum, P. D. J.

    2011-03-01

    A new technique is developed to analyze in-line Digital Holographic Microscopy images, making it possible to characterize, and track colloidal particles in three dimensions at unprecedented accuracy. We took digital snapshots of the interference pattern between the light scattered by micrometer particles and the unaltered portion of a laser beam that was used to illuminate dilute colloidal dispersions on a light microscope in transmission mode. We numerically fit Mie-theory for the light-scattering by micrometer sized particles to these experimental in-line holograms. The fit values give the position in three dimensions with an accuracy of a few nanometers in the lateral directions and several tens of nanometers in the axial direction. The individual particles radii and refractive indices could be determined to within tens of nanometers and a few hundredths respectively. By using a fast CCD camera, we can track particles with millisecond resolution in time which allows us to study dynamical properties such as the hydrodynamic radius and the sedimentation coefficient. The scattering behavior of the particles that we use to track and characterize colloidal particles makes it possible to exert pico-Newton forces on them close to a diffraction limited focus. When these effects are used to confine colloids in space, this technique is called Optical Tweezers. Both by numerical calculations and by experiments, we explore the possibilities of optical tweezers in soft condensed matter research. Using optical tweezers we placed multiple particles in interesting configurations to measure the interaction forces between them. The interaction forces were Yukawa-like screened charge repulsions. Careful timing of the blinking of time-shared optical tweezers and of the recording of holographic snapshots, we were able to measure interaction forces with femto-Newton accuracy from an analysis of (driven) Brownian motion. Forces exerted by external fields such as electric fields and gravity were measured as well. We induced electric dipoles in colloidal particles by applying radio frequency electric fields. Dipole induced strings of particles were formed and made permanent by van der Waals attractions or thermal annealing. Such colloidal strings form colloidal analogues of charged and un-charged (bio-) polymers. The diffusion and bending behavior of such strings was probed using DHM and optical tweezers.

  7. Effects of molecular asymmetry of optically active molecules on the polarization properties of multiply scattered light

    NASA Astrophysics Data System (ADS)

    Vitkin, I. Alex; Laszlo, Richard D.; Whyman, Claire L.

    2002-02-01

    The use of polarized light for investigation of optically turbid systems has generated much recent interest since it has been shown that multiple scattering does not fully scramble the incident polarization states. It is possible under some conditions to measure polarization signals in diffusely scattered light, and use this information to characterize the structure or composition of the turbid medium. Furthermore, the idea of quantitative detection of optically active (chiral) molecules contained in such a system is attractive, particularly in clinical medicine where it may contribute to the development of a non-invasive method of glucose sensing in diabetic patients. This study uses polarization modulation and synchronous detection in the perpendicular and in the exact backscattering orientations to detect scattered light from liquid turbid samples containing varying amounts of L and D (left and right) isomeric forms of a chiral sugar. Polarization preservation increased with chiral concentrations in both orientations. In the perpendicular orientation, the optical rotation of the linearly polarized fraction also increased with the concentration of chiral solute, but in different directions for the two isomeric forms. There was no observed optical rotation in the exact backscattering geometry for either isomer. The presence of the chiral species is thus manifest in both detection directions, but the sense of the chiral asymmetry is not resolvable in retroreflection. The experiments show that useful information may be extracted from turbid chiral samples using polarized light.

  8. A Theory of Exoplanet Transits with Light Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D., E-mail: tydrobin@ucsc.edu

    Exoplanet transit spectroscopy enables the characterization of distant worlds, and will yield key results for NASA's James Webb Space Telescope . However, transit spectra models are often simplified, omitting potentially important processes like refraction and multiple scattering. While the former process has seen recent development, the effects of light multiple scattering on exoplanet transit spectra have received little attention. Here, we develop a detailed theory of exoplanet transit spectroscopy that extends to the full refracting and multiple scattering case. We explore the importance of scattering for planet-wide cloud layers, where the relevant parameters are the slant scattering optical depth, themore » scattering asymmetry parameter, and the angular size of the host star. The latter determines the size of the “target” for a photon that is back-mapped from an observer. We provide results that straightforwardly indicate the potential importance of multiple scattering for transit spectra. When the orbital distance is smaller than 10–20 times the stellar radius, multiple scattering effects for aerosols with asymmetry parameters larger than 0.8–0.9 can become significant. We provide examples of the impacts of cloud/haze multiple scattering on transit spectra of a hot Jupiter-like exoplanet. For cases with a forward and conservatively scattering cloud/haze, differences due to multiple scattering effects can exceed 200 ppm, but shrink to zero at wavelength ranges corresponding to strong gas absorption or when the slant optical depth of the cloud exceeds several tens. We conclude with a discussion of types of aerosols for which multiple scattering in transit spectra may be important.« less

  9. Diffraction scattering computed tomography: a window into the structures of complex nanomaterials

    PubMed Central

    Birkbak, M. E.; Leemreize, H.; Frølich, S.; Stock, S. R.

    2015-01-01

    Modern functional nanomaterials and devices are increasingly composed of multiple phases arranged in three dimensions over several length scales. Therefore there is a pressing demand for improved methods for structural characterization of such complex materials. An excellent emerging technique that addresses this problem is diffraction/scattering computed tomography (DSCT). DSCT combines the merits of diffraction and/or small angle scattering with computed tomography to allow imaging the interior of materials based on the diffraction or small angle scattering signals. This allows, e.g., one to distinguish the distributions of polymorphs in complex mixtures. Here we review this technique and give examples of how it can shed light on modern nanoscale materials. PMID:26505175

  10. Tissue polarimetry: concepts, challenges, applications, and outlook.

    PubMed

    Ghosh, Nirmalya; Vitkin, I Alex

    2011-11-01

    Polarimetry has a long and successful history in various forms of clear media. Driven by their biomedical potential, the use of the polarimetric approaches for biological tissue assessment has also recently received considerable attention. Specifically, polarization can be used as an effective tool to discriminate against multiply scattered light (acting as a gating mechanism) in order to enhance contrast and to improve tissue imaging resolution. Moreover, the intrinsic tissue polarimetry characteristics contain a wealth of morphological and functional information of potential biomedical importance. However, in a complex random medium-like tissue, numerous complexities due to multiple scattering and simultaneous occurrences of many scattering and polarization events present formidable challenges both in terms of accurate measurements and in terms of analysis of the tissue polarimetry signal. In order to realize the potential of the polarimetric approaches for tissue imaging and characterization/diagnosis, a number of researchers are thus pursuing innovative solutions to these challenges. In this review paper, we summarize these and other issues pertinent to the polarized light methodologies in tissues. Specifically, we discuss polarized light basics, Stokes-Muller formalism, methods of polarization measurements, polarized light modeling in turbid media, applications to tissue imaging, inverse analysis for polarimetric results quantification, applications to quantitative tissue assessment, etc.

  11. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Bennett N., E-mail: bennett.walker@fda.hhs.gov; Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993; James, Robert H.

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearlymore » 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.« less

  12. Invisibility cloaking in the diffusive-light limit (presentation video)

    NASA Astrophysics Data System (ADS)

    Schittny, Robert; Kadic, Muamer; Wegener, Martin

    2014-09-01

    Albert Einstein's theory of relativity imposes stringent limitations to making macroscopic objects invisible with respect to electromagnetic light waves propagating in vacuum. These limitations are not relevant though for propagation of light in diffusive media like fog or milk because the effective energy speed is significantly lower than in vacuum due to multiple scattering events. Here, by exploiting the close mathematical analogy between the electrostatic or near-field limit of optics on the one hand and light diffusion on the other hand, we design, fabricate, and characterize simple core-shell cloaking structures for diffusive light propagation in cylindrical and spherical geometry.

  13. Characterization of magnetic nanoparticle by dynamic light scattering

    PubMed Central

    2013-01-01

    Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS. PMID:24011350

  14. Optical detection and characterization of ice crystals in LACIS

    NASA Astrophysics Data System (ADS)

    Kiselev, Alexei; Clauß, Tina; Niedermeier, Dennis; Hartmann, Susan; Wex, Heike; Stratmann, Frank

    2010-05-01

    Tropospheric ice and mixed phase clouds are an integral part of the earth system and their microphysical and radiative properties are strongly coupled e.g. through the complexities of the ice nucleation process. Therefore the investigation of influences of different aerosol particles which act as ice nuclei (IN) on the freezing behaviour of cloud droplets is important and still poses unresolved questions. The Leipzig Aerosol and Cloud Interaction Simulator (LACIS) is used to investigate the IN activity of different natural and artificial aerosol particles (mineral dust, soot etc.) in heterogeneous freezing processes (immersion or deposition freezing). A critical part of LACIS is the particle detection system allowing for size-resolved counting of activated seed particles and discrimination between ice crystals and water droplets. Recently, two instruments have been developed to provide these measurements at the LACIS facility. The Thermally-stabilized Optical Particle Spectrometer (TOPS) is measuring the particle size based on the intensity of light scattered by individual particles into a near-forward (15° to 45°) direction. Two symmetrical forward scattering channels allow for optical determination of the sensing volume, thus reducing the coincidence counting error and the edge zone effect. The backscatter channel (162° to 176°) equipped with a rotatable cross polarizer allows for establishing the change in linear polarization state of the scattered light. The backscatter elevation angle is limited so that the linear depolarization of light scattered by spherical particles of arbitrary size is zero. Any detectable signal in the depolarization channel can be therefore attributed to non-spherical particles (ice crystals). With consideration of the signal in the backscatter channel the separate counting of water drops and ice particle is possible. The Leipzig Ice Scattering Apparatus (LISA) is a modified version of the Small Ice Detector (SID3), developed at the Science and Technology Research Institute at the University of Hertfordshire, UK. The SID instruments have been developed primarily as wing-mounted systems for airborne studies of cloud ice particles. SID3 records the forward scattered light pattern with high angular resolution using an intensified CCD (780 by 582 pixels) at a rate of 20 images per second. In addition to the SID3 capabilities, LISA is able to measure the circular depolarization ratio in the range of scattering angles from 166° to 172°. Whereas particle size, shape and orientation are characterized by the angular distribution of forward-scattered light, the measured value of the circular depolarization can be used to validate the existing theoretical models of light scattering by irregular particles (RTDF, GSVM, T-Matrix, DDA). The first measurements done at the LACIS facility have demonstrated a promising sensitivity of LISA's depolarization channel to the shape of ice crystals. Results showed an increase of the mean circular depolarization ratio from 1.5 (characteristic for the liquid water droplets above 3 µm) to 2.5 for the "just frozen" almost-spherical droplets in the same size range. The presentation will describe details of instruments set up and present some exemplary results from experiments carried out at LACIS and AIDA (KIT) facilities.

  15. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    NASA Astrophysics Data System (ADS)

    Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun

    2014-05-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  16. Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF

    DOE PAGES

    Lindsay, Lucas R.

    2016-11-08

    Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance viamore » modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where values of isotopically pure systems ( 6LiH, 7Li 2H and 6LiF) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This work provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.« less

  17. Femtosecond resolution of soft mode dynamics in structural phase transitions

    NASA Technical Reports Server (NTRS)

    Dougherty, Thomas P.; Wiederrecht, Gary P.; Nelson, Keith A.; Garrett, Mark H.; Jensen, Hans P.; Warde, Cardinal

    1992-01-01

    The microscopic pathway along which ions or molecules in a crystal move during structural phase transition can often be described in terms of a collective vibrational mode of the lattice. In many cases, this mode, called a 'soft' phonon mode because of its characteristically low frequency near the phase transition temperature, is difficult to characterize through conventional frequency-domain spectroscopies such as light or neutron scattering. A femtosecond time-domain analog of light-scattering spectroscopy called impulsive stimulated Raman scattering (ISRS) has been used to examine the soft modes of two perovskite ferroelectric crystals. The low-frequency lattice dynamics of KNbO3 and BaTiO3 are clarified in a manner that permits critical evaluation of microscopic models for their ferroelectric transitions. The results illustrate the advantages of ISRS over conventional Raman spectroscopy of low-frequency, heavily damped soft modes.

  18. Portable sample preparation and analysis system for micron and sub-micron particle characterization using light scattering and absorption spectroscopy

    DOEpatents

    Stark, Peter C [Los Alamos, NM; Zurek, Eduardo [Barranquilla, CO; Wheat, Jeffrey V [Fort Walton Beach, FL; Dunbar, John M [Santa Fe, NM; Olivares, Jose A [Los Alamos, NM; Garcia-Rubio, Luis H [Temple Terrace, FL; Ward, Michael D [Los Alamos, NM

    2011-07-26

    There is provided a method and device for remote sampling, preparation and optical interrogation of a sample using light scattering and light absorption methods. The portable device is a filtration-based device that removes interfering background particle material from the sample matrix by segregating or filtering the chosen analyte from the sample solution or matrix while allowing the interfering background particles to be pumped out of the device. The segregated analyte is then suspended in a diluent for analysis. The device is capable of calculating an initial concentration of the analyte, as well as diluting the analyte such that reliable optical measurements can be made. Suitable analytes include cells, microorganisms, bioparticles, pathogens and diseases. Sample matrixes include biological fluids such as blood and urine, as well as environmental samples including waste water.

  19. Infrastructure development for radioactive materials at the NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, D. J.; Weidner, R.; Ghose, S. K.

    2018-02-01

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  20. Infrastructure development for radioactive materials at the NSLS-II

    DOE PAGES

    Sprouster, David J.; Weidner, R.; Ghose, S. K.; ...

    2017-11-04

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this paper, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. Finally, we describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  1. Stress Wave Scattering: Friend or Enemy of Non Destructive Testing of Concrete?

    NASA Astrophysics Data System (ADS)

    Aggelis, Dimitrios G.; Shiotani, Tomoki; Philippidis, Theodore P.; Polyzos, Demosthenes

    Cementitious materials are by definition inhomogeneous containing cement paste, sand, aggregates as well as air voids. Wave propagation in such a material is characterized by scattering phenomena. Damage in the form of micro or macro cracks certainly enhances scattering influence. Its most obvious manifestation is the velocity variation with frequency and excessive attenuation. The influence becomes stronger with increased mis-match of elastic properties of constituent materials and higher crack content. Therefore, in many cases of large concrete structures, field application of stress waves is hindered since attenuation makes the acquisition of reliable signals troublesome. However, measured wave parameters, combined with investigation with scattering theory can reveal much about the internal condition and supply information that cannot be obtained in any other way. The size and properties of the scatterers leave their signature on the dispersion and attenuation curves making thus the characterization more accurate in case of damage assessment, repair evaluation as well as composition inspection. In this paper, three indicative cases of scattering influence are presented. Namely, the interaction of actual distributed damage, as well as the repair material injected in an old concrete structure with the wave parameters. Other cases are the influence of light plastic inclusions in hardened mortar and the influence of sand and water content in the examination of fresh concrete. In all the above cases, scattering seems to complicate the propagation behavior but also offers the way for a more accurate characterization of the quality of the material.

  2. Isolation and initial structural characterization of a 27 kDa protein from Zingiber officinale

    NASA Astrophysics Data System (ADS)

    Rasheed, Saima; Malik, Shoaib Ahmad; Falke, Sven; Arslan, Ali; Fazel, Ramin; Schlüter, Hartmut; Betzel, Christian; Choudhary, M. Iqbal

    2018-03-01

    Zingiber officinale Roscoe (Ginger) is a widely used traditional medicinal plant (for different ailments such as arthritis, constipation, and hypertension). This article describes the isolation and characterization of a so far unknown protein from ginger rhizomes applying ion exchange, affinity, size-exclusion chromatography, small angle X-ray scattering (SAXS), and mass spectrometry techniques. One-dimensional Coomassie-stained SDS-PAGE was performed under non-reducing conditions, showing one band corresponding to approx. 27 kDa. Dynamic light scattering (DLS) analysis of the protein solution revealed monodispersity and a monomeric state of the purified protein. Circular dichroism (CD) spectroscopy strongly indicated a β-sheet-rich protein, and disordered regions. MALDI-TOF-MS, and LC-MS/MS analysis resulted in the identification of 27.29 kDa protein, having 32.13% and 25.34% sequence coverage with Zingipain-1 and 2, respectively. The monomeric state and molecular weight were verified by small angle X-ray scattering (SAXS) studies. An elongated ab-initio model was calculated based on the scattering intensity distribution.

  3. Phenotypic and functional characterization of earthworm coelomocyte subsets: Linking light scatter-based cell typing and imaging of the sorted populations.

    PubMed

    Engelmann, Péter; Hayashi, Yuya; Bodó, Kornélia; Ernszt, Dávid; Somogyi, Ildikó; Steib, Anita; Orbán, József; Pollák, Edit; Nyitrai, Miklós; Németh, Péter; Molnár, László

    2016-12-01

    Flow cytometry is a common approach to study invertebrate immune cells including earthworm coelomocytes. However, the link between light-scatter- and microscopy-based phenotyping remains obscured. Here we show, by means of light scatter-based cell sorting, both subpopulations (amoebocytes and eleocytes) can be physically isolated with good sort efficiency and purity confirmed by downstream morphological and cytochemical applications. Immunocytochemical analysis using anti-EFCC monoclonal antibodies combined with phalloidin staining has revealed antigenically distinct, sorted subsets. Screening of lectin binding capacity indicated wheat germ agglutinin (WGA) as the strongest reactor to amoebocytes. This is further evidenced by WGA inhibition assays that suggest high abundance of N-acetyl-d-glucosamine in amoebocytes. Post-sort phagocytosis assays confirmed the functional differences between amoebocytes and eleocytes, with the former being in favor of bacterial engulfment. This study has proved successful in linking flow cytometry and microscopy analysis and provides further experimental evidence of phenotypic and functional heterogeneity in earthworm coelomocyte subsets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Hermite scatterers in an ultraviolet sky

    NASA Astrophysics Data System (ADS)

    Parker, Kevin J.

    2017-12-01

    The scattering from spherical inhomogeneities has been a major historical topic in acoustics, optics, and electromagnetics and the phenomenon shapes our perception of the world including the blue sky. The long wavelength limit of ;Rayleigh scattering; is characterized by intensity proportional to k4 (or λ-4) where k is the wavenumber and λ is the wavelength. With the advance of nanotechnology, it is possible to produce scatterers that are inhomogeneous with material properties that are functions of radius r, such as concentric shells. We demonstrate that with proper choice of material properties linked to the Hermite polynomials in r, scatterers can have long wavelength scattering behavior of higher powers: k8, k16, and higher. These ;Hermite scatterers; could be useful in providing unique signatures (or colors) to regions where they are present. If suspended in air under white light, the back-scattered spectrum would be shifted from blue towards violet and then ultraviolet as the higher order Hermite scatterers were illuminated.

  5. Non-label bioimaging utilizing scattering lights

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomonobu M.; Ichimura, Taro; Fujita, Hideaki

    2017-04-01

    Optical microscopy is an indispensable tool for medical and life sciences. Especially, the microscopes utilized with scattering light offer a detailed internal observation of living specimens in real time because of their non-labeling and non-invasive capability. We here focus on two kinds of scattering lights, Raman scattering light and second harmonic generation light. Raman scattering light includes the information of all the molecular vibration modes of the molecules, and can be used to distinguish types and/or state of cell. Second harmonic generation light is derived from electric polarity of proteins in the specimen, and enables to detect their structural change. In this conference, we would like to introduce our challenges to extract biological information from those scattering lights.

  6. Organic electroluminescent devices having improved light extraction

    DOEpatents

    Shiang, Joseph John [Niskayuna, NY

    2007-07-17

    Organic electroluminescent devices having improved light extraction include a light-scattering medium disposed adjacent thereto. The light-scattering medium has a light scattering anisotropy parameter g in the range from greater than zero to about 0.99, and a scatterance parameter S less than about 0.22 or greater than about 3.

  7. Sugar apple-shaped TiO2 hierarchical spheres for highly efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lei, Bing-Xin; Zeng, Li-Li; Zhang, Ping; Qiao, He-Kang; Sun, Zhen-Fan

    2014-05-01

    The sugar apple-shaped TiO2 hierarchical spheres are prepared by a facile hydrothermal method using polyethylene glycol 600 as stabilized reagent, (NH4)2TiF6 and urea as starting materials at 180 °C. The characterizations show that the TiO2 hierarchical sphere has well-defined pyramid-shaped crystal facets. The as-prepared TiO2 hierarchical spheres are crystalline of the anatase phase, with a diameter of about 2-4 μm and a surface area of 36.846 m2 g-1. The optical investigation evidences that the sugar apple-shaped TiO2 hierarchical sphere film exhibits a prominent light scattering effect at a wavelength range of 600-800 nm due to the unique hierarchical morphology. Furthermore, the sugar apple-shaped TiO2 hierarchical spheres are deposited as the scattering layer to balance the dye adsorption and light scattering effect in DSSCs and a 7.20% solar energy conversion efficiency is demonstrated, indicating an improvement compared with the P25 cell (6.68%). Based on the optical and electrochemical investigations, the high conversion efficiency is mainly due to the effective suppression of the back reaction of the injected electron with the I3- in the electrolyte and excellent light scattering ability.

  8. Quantitative Assessment of Ultrastructure and Light Scatter in Mouse Corneal Debridement Wounds

    PubMed Central

    Boote, Craig; Du, Yiqin; Morgan, Sian; Harris, Jonathan; Kamma-Lorger, Christina S.; Hayes, Sally; Lathrop, Kira L.; Roh, Danny S.; Burrow, Michael K.; Hiller, Jennifer; Terrill, Nicholas J.; Funderburgh, James L.; Meek, Keith M.

    2012-01-01

    Purpose. The mouse has become an important wound healing model with which to study corneal fibrosis, a frequent complication of refractive surgery. The aim of the current study was to quantify changes in stromal ultrastructure and light scatter that characterize fibrosis in mouse corneal debridement wounds. Methods. Epithelial debridement wounds, with and without removal of basement membrane, were produced in C57BL/6 mice. Corneal opacity was measured using optical coherence tomography, and collagen diameter and matrix order were quantified by x-ray scattering. Electron microscopy was used to visualize proteoglycans. Quantitative PCR (Q-PCR) measured mRNA transcript levels for several quiescent and fibrotic markers. Results. Epithelial debridement without basement membrane disruption produced a significant increase in matrix disorder at 8 weeks, but minimal corneal opacity. In contrast, basement membrane penetration led to increases in light scatter, matrix disorder, and collagen diameter, accompanied by the appearance of abnormally large proteoglycans in the subepithelial stroma. This group also demonstrated upregulation of several quiescent and fibrotic markers 2 to 4 weeks after wounding. Conclusions. Fibrotic corneal wound healing in mice involves extensive changes to collagen and proteoglycan ultrastructure, consistent with deposition of opaque scar tissue. Epithelial basement membrane penetration is a deciding factor determining the degree of ultrastructural changes and resulting opacity. PMID:22467580

  9. Scattering and Absorption Properties of Biomaterials for Dental Restorative Applications

    NASA Astrophysics Data System (ADS)

    Fernandez-Oliveras, A.; Rubiño, M.; Pérez, M. M.

    2013-08-01

    The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittance and reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to optically characterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively study them. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertainty associated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor were also considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lower associated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completely different for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the optical properties of the zirconia ceramic compared with those of the dental-resin composites.

  10. Apparatus for measuring particle properties

    DOEpatents

    Rader, Daniel J.; Castaneda, Jaime N.; Grasser, Thomas W.; Brockmann, John E.

    1998-01-01

    An apparatus for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle's size can be determined from the intensity of the light scattered. The particle's velocity can be determined from the elapsed time between various intensities of the light scattered.

  11. Photopolarimetric properties of leaf and vegetation covers over a wide range of measurement directions

    NASA Astrophysics Data System (ADS)

    Sun, Zhongqiu; Peng, Zhiyan; Wu, Di; Lv, Yunfeng

    2018-02-01

    The optical scattering property of the target is the essential signal for passive remote sensing applications. To deepen our understanding of the light reflected from vegetation, we present results of photopolarimetric laboratory measurements from single leaf and two vegetation covers (planophile and erectophile) over a wide range of viewing directions. The bidirectional polarized reflectance factor (BPRF) was used to characterize the polarization property of our samples. We observed positive and negative polarization (-BPRFQ) of all samples in the forward scattering and backward scattering directions, respectively. Based on the comparison of the BPRF among single leaf, planophile vegetation and erectophile vegetation, our measurements demonstrate that the orientation of the leaf is a key factor in describing the amount of polarization in the forward scattering direction. Our measurements also validated certain model results stating that (1) specular reflection generates a portion of polarization in the forward scattering direction and diffuses scattering of polarized light in all hemisphere directions, (2) BPRFU is anti-symmetric in the principal plane from a recent study in which the authors simulated the polarized reflectance of vegetation cover using the vector radiative transfer theory. These photopolarimetric measurement results, which can be completely explained by the theoretical results, are useful in remote sensing applications to vegetation.

  12. Injectable and microporous scaffold of densely-packed, growth factor-encapsulating chitosan microgels.

    PubMed

    Riederer, Michael S; Requist, Brennan D; Payne, Karin A; Way, J Douglas; Krebs, Melissa D

    2016-11-05

    In this work, an emulsion crosslinking method was developed to produce chitosan-genipin microgels which acted as an injectable and microporous scaffold. Chitosan was characterized with respect to pH by light scattering and aqueous titration. Microgels were characterized with swelling, light scattering, and rheometry of densely-packed microgel solutions. The results suggest that as chitosan becomes increasingly deprotonated above the pKa, repulsive forces diminish and intermolecular attractions cause pH-responsive chain aggregation; leading to microgel-microgel aggregation as well. The microgels with the most chitosan and least cross-linker showed the highest yield stress and a storage modulus of 16kPa when condensed as a microgel paste at pH 7.4. Two oppositely-charged growth factors could be encapsulated into the microgels and endothelial cells were able to proliferate into the 3D microgel scaffold. This work motivates further research on the applications of the chitosan microgel scaffold as an injectable and microporous scaffold in regenerative medicine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Light-scattering flow cytometry for identification and characterization of blood microparticles

    NASA Astrophysics Data System (ADS)

    Konokhova, Anastasiya I.; Yurkin, Maxim A.; Moskalensky, Alexander E.; Chernyshev, Andrei V.; Tsvetovskaya, Galina A.; Chikova, Elena D.; Maltsev, Valeri P.

    2012-05-01

    We describe a novel approach to study blood microparticles using the scanning flow cytometer, which measures light scattering patterns (LSPs) of individual particles. Starting from platelet-rich plasma, we separated spherical microparticles from non-spherical plasma constituents, such as platelets and cell debris, based on similarity of their LSP to that of sphere. This provides a label-free method for identification (detection) of microparticles, including those larger than 1 μm. Next, we rigorously characterized each measured particle, determining its size and refractive index including errors of these estimates. Finally, we employed a deconvolution algorithm to determine size and refractive index distributions of the whole population of microparticles, accounting for largely different reliability of individual measurements. Developed methods were tested on a blood sample of a healthy donor, resulting in good agreement with literature data. The only limitation of this approach is size detection limit, which is currently about 0.5 μm due to used laser wavelength of 0.66 μm.

  14. Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations

    NASA Astrophysics Data System (ADS)

    Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.

    2016-11-01

    Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.*

  15. Tip-Enhanced Raman Scattering Microscopy: A Step toward Nanoscale Control of Intrinsic Molecular Properties

    NASA Astrophysics Data System (ADS)

    Yano, Taka-aki; Hara, Masahiko

    2018-06-01

    Tip-enhanced Raman scattering microscopy, a family of scanning probe microscopy techniques, has been recognized as a powerful surface analytical technique with both single-molecule sensitivity and angstrom-scale spatial resolution. This review covers the current status of tip-enhanced Raman scattering microscopy in surface and material nanosciences, including a brief history, the basic principles, and applications for the nanoscale characterization of a variety of nanomaterials. The focus is on the recent trend of combining tip-enhanced Raman scattering microscopy with various external stimuli such as pressure, voltage, light, and temperature, which enables the local control of the molecular properties and functions and also enables chemical reactions to be induced on a nanometer scale.

  16. PHIPS-HALO: the airborne particle habit imaging and polar scattering probe - Part 2: Characterization and first results

    NASA Astrophysics Data System (ADS)

    Schnaiter, Martin; Järvinen, Emma; Abdelmonem, Ahmed; Leisner, Thomas

    2018-01-01

    The novel aircraft optical cloud probe PHIPS-HALO has been developed to establish clarity regarding the fundamental link between the microphysical properties of single atmospheric ice particles and their appropriated angular light scattering function. After final improvements were implemented in the polar nephelometer part and the acquisition software of PHIPS-HALO, the instrument was comprehensively characterized in the laboratory and was deployed in two aircraft missions targeting cirrus and Arctic mixed-phase clouds. This work demonstrates the proper function of the instrument under aircraft conditions and highlights the uniqueness, quality, and limitations of the data that can be expected from PHIPS-HALO in cloud-related aircraft missions.

  17. Here Be Dragons: Characterization of ACS/WFC Scattered Light Anomalies

    NASA Astrophysics Data System (ADS)

    Porterfield, B.; Coe, D.; Gonzaga, S.; Anderson, J.; Grogin, N.

    2016-11-01

    We present a study characterizing scattered light anomalies that occur near the edges of Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) images. We inspected all 8,573 full-frame ACS/WFC raw images with exposure times longer than 350 seconds obtained in the F606W and F814W filters from 2002 to October 2013. We visually identified two particular scattered light artifacts known as "dragon's breath" and edge glow. Using the 2MASS point source catalog and Hubble Guide Star Catalog (GSC II), we identified the stars that caused these artifacts. The stars are all located in narrow bands ( 3" across) just outside the ACS/WFC field of view (2" - 16" away). We provide a map of these risky areas around the ACS/WFC detectors - users should avoid positioning bright stars in these regions when designing ACS/WFC imaging observations. We also provide interactive webpages which display all the image artifacts we identified, allowing users to see examples of the severity of artifacts they might expect for a given stellar magnitude at a given position relative to the ACS/WFC field of view. On average, 10th (18th) magnitude stars produce artifacts about 1,000 (100) pixels long. But the severity of these artifacts can vary strongly with small positional shifts (∼ 1"). The results are similar for both filters (F606W and F814W) when expressed in total fluence, or flux multiplied by exposure time.

  18. Molar mass characterization of sodium carboxymethyl cellulose by SEC-MALLS.

    PubMed

    Shakun, Maryia; Maier, Helena; Heinze, Thomas; Kilz, Peter; Radke, Wolfgang

    2013-06-05

    Two series of sodium carboxymethyl celluloses (NaCMCs) derived from microcrystalline cellulose (Avicel samples) and cotton linters (BWL samples) with average degrees of substitution (DS) ranging from DS=0.45 to DS=1.55 were characterized by size exclusion chromatography with multi-angle laser light scattering detection (SEC-MALLS) in 100 mmol/L aqueous ammonium acetate (NH4OAc) as vaporizable eluent system. The application of vaporizable NH4OAc allows future use of the eluent system in two-dimensional separations employing evaporative light scattering detection (ELSD). The losses of samples during filtration and during the chromatographic experiment were determined. The scaling exponent as of the relation [Formula: see text] was approx. 0.61, showing that NaCMCs exhibit an expanded coil conformation in solution. No systematic dependencies of as on DS were observed. The dependences of molar mass on SEC-elution volume for samples of different DS can be well described by a common calibration curve, which is of advantage, as it allows the determination of molar masses of unknown samples by using the same calibration curve, irrespective of the DS of the NaCMC sample. Since no commercial NaCMC standards are available, correction factors were determined allowing converting a pullulan based calibration curve into a NaCMC calibration using the broad calibration approach. The weight average molar masses derived using the so established calibration curve closely agree with the ones determined by light scattering, proving the accuracy of the correction factors determined. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Optical characterization of a light guide for the polymerization of root canal fillers: preliminary results

    NASA Astrophysics Data System (ADS)

    Munin, Egberto; Lupato Conrado, Luis A.; Alves, Leandro P.; Zangaro, Renato A.

    2004-05-01

    The sealing cements used in endodontics are commonly of the type activated by chemical reactions. During polymerization, mechanical contractions are not uncommon, leading to non-perfect sealing or treatment failure. Photopolymerizable cements usually presents superior performance as compared to those chemically activated. However, difficulties in carrying-up the light to difficult-to-reach regions like the dental apex preclude those material of being accepted in the dental office routine. Recently, a novel technique for the light curing of photopolymerizable cements in endodontic applications has been proposed. Such a technique makes use of a polymeric light guide to deliver the curing light to the apex region, for a single step polymerization of the canal filler. For this work, a 28 mm long polymer light-guide, has been produced. The polymer surface was roughened to produce light scattering and allow the light to escape from the guide. The light scattering profile along the body of the guide is an important property for the proposed application. We used an integrating sphere to measure the irradiation profile for the proposed endodontic device. It was found that the experimental data for the amount of light coupled into the integrating sphere as a function of the length of the cone inside the sphere fits to a double exponential model.

  20. In situ characterization of nanoparticles using Rayleigh scattering

    DOE PAGES

    Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto

    2017-01-10

    Here, we report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C 60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle populationmore » from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols.« less

  1. In situ Characterization of Nanoparticles Using Rayleigh Scattering

    PubMed Central

    Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto

    2017-01-01

    We report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle population from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols. PMID:28071715

  2. In situ characterization of nanoparticles using Rayleigh scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto

    Here, we report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C 60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle populationmore » from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols.« less

  3. Scatter Measurements Made With Ultraviolet Light

    NASA Astrophysics Data System (ADS)

    Anthon, Erik W.

    1985-09-01

    The quality of optical surfaces is generally evaluated by how much light (normally visible light) is scattered by the surface. Most optical glasses and many coating materials are completely opaque to ultraviolet light (253.7 nm). Ultraviolet light tends to scatter much more than visible light. Scatter measurements made with ultraviolet light are therefore very sensitive and the scatter from second surfaces and from the interior (bulk) of the optical material is eliminated by the opacity. A novel scattermeter that operates with ultraviolet light has been developed. The construction and operation of this scattermeter will be described. Cleaning soon becomes the limiting factor when measuring the surfaces with very low level of scatter. Sensitivity to repeated cleaning has been investigated. Different surfaces are compared and uniformity of surfaces is measured by mapping a surface area with an x-y stage. Polished glass surfaces generally have much higher scatter than natural glass surfaces (fire polished, drawn or floated surfaces). Very low scatter levels have been found on thin drawn glass.

  4. Time-dependent photon migration imaging

    NASA Astrophysics Data System (ADS)

    Sevick, Eva M.; Wang, NaiGuang; Chance, Britton

    1992-02-01

    Recently, the application of both time- and frequency-resolved fluorescence techniques for the determination of photon migration characteristics in strongly scattering media has been used to characterize the optical properties in strongly scattering media. Specifically, Chance and coworkers have utilized measurement of photon migration characteristics to determine tissue hemoglobin absorbance and ultimately oxygenation status in homogeneous tissues. In this study, we present simulation results and experimental measurements for both techniques to show the capacity of time-dependent photon migration characteristics to image optically obscure absorbers located in strongly scattering media. The applications of time-dependent photon imaging in the biomedical community include imaging of light absorbing hematomas, tumors, hypoxic tissue volumes, and other tissue abnormalities. Herein, we show that the time-resolved parameter of mean photon path length, , and the frequency- resolved parameter of phase-shift, (theta) , can be used similarly to obtain three dimensional information of absorber position from two-dimensional measurements. Finally, we show that unlike imaging techniques that monitor the intensity of light without regard to the migration characteristics, the resolution of time-dependent photon migration measurements is enhanced by tissue scattering, further potentiating their use for biomedical imaging.

  5. Dual wavelength multiple-angle light scattering system for cryptosporidium detection

    NASA Astrophysics Data System (ADS)

    Buaprathoom, S.; Pedley, S.; Sweeney, S. J.

    2012-06-01

    A simple, dual wavelength, multiple-angle, light scattering system has been developed for detecting cryptosporidium suspended in water. Cryptosporidium is a coccidial protozoan parasite causing cryptosporidiosis; a diarrheal disease of varying severity. The parasite is transmitted by ingestion of contaminated water, particularly drinking-water, but also accidental ingestion of bathing-water, including swimming pools. It is therefore important to be able to detect these parasites quickly, so that remedial action can be taken to reduce the risk of infection. The proposed system combines multiple-angle scattering detection of a single and two wavelengths, to collect relative wavelength angle-resolved scattering phase functions from tested suspension, and multivariate data analysis techniques to obtain characterizing information of samples under investigation. The system was designed to be simple, portable and inexpensive. It employs two diode lasers (violet InGaN-based and red AlGaInP-based) as light sources and silicon photodiodes as detectors and optical components, all of which are readily available. The measured scattering patterns using the dual wavelength system showed that the relative wavelength angle-resolved scattering pattern of cryptosporidium oocysts was significantly different from other particles (e.g. polystyrene latex sphere, E.coli). The single wavelength set up was applied for cryptosporidium oocysts'size and relative refractive index measurement and differential measurement of the concentration of cryptosporidium oocysts suspended in water and mixed polystyrene latex sphere suspension. The measurement results showed good agreement with the control reference values. These results indicate that the proposed method could potentially be applied to online detection in a water quality control system.

  6. Exploring the feasibility of focusing CW light through a scattering medium into closely spaced twin peaks via numerical solutions of Maxwell’s equations

    NASA Astrophysics Data System (ADS)

    Tseng, Snow H.; Chang, Shih-Hui

    2018-04-01

    Here we present a numerical simulation to analyze the effect of scattering on focusing light into closely-spaced twin peaks. The pseudospectral time-domain (PSTD) is implemented to model continuous-wave (CW) light propagation through a scattering medium. Simulations show that CW light can propagate through a scattering medium and focus into closely-spaced twin peaks. CW light of various wavelengths focusing into twin peaks with sub-diffraction spacing is simulated. In advance, light propagation through scattering media of various number densities is simulated to decipher the dependence of CW light focusing phenomenon on the scattering medium. The reported simulations demonstrate the feasibility of focusing CW light into twin peaks with sub-diffraction dimensions. More importantly, based upon numerical solutions of Maxwell’s equations, research findings show that the sub-diffraction focusing phenomenon can be achieved with scarce or densely-packed scattering media.

  7. Applications of thermal-gradients method for the optimization of α-amylase crystallization conditions based on dynamic and static light scattering data

    NASA Astrophysics Data System (ADS)

    Delboni, L. F.; Iulek, J.; Burger, R.; da Silva, A. C. R.; Moreno, A.

    2002-02-01

    The expression, purification, crystallization, and characterization by X-ray diffraction of α-amylase are described here. Dynamic and static light scattering methods with a temperature controller was used to optimize the crystallization conditions of α-amylase from Bacillus stearothermophilus an important enzyme in many fields of industrial activity. After applying thermal gradients for growing crystals, X-ray cryo-crystallographic methods were employed for the data collection. Crystals grown by these thermal-gradients diffracted up to a maximum resolution of 3.8 Å, which allowed the determination of the unit cell constants as follows: a=61.7 Å, b=86.7 Å, c=92.2 Å and space group C222 (or C222 1).

  8. Fluorescence spectral properties of stomach tissues with pathology

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Lahina, M. A.

    2012-05-01

    Steady-state fluorescence and diffuse reflection spectra are measured for in vivo normal and pathological (chronic atrophic and ulcerating defects, malignant neoplasms) stomach mucous lining tissues. The degree of distortion of the fluorescence spectra is estimated taking light scattering and absorption into account. A combination of Gauss and Lorentz functions is used to decompose the fluorescence spectra. Potential groups of fluorophores are determined and indices are introduced to characterize the dynamics of their contributions to the resultant spectra as pathologies develop. Reabsorption is found to quench the fluorescence of structural proteins by as much as a factor of 3, while scattering of the light can increase the fluorescence intensity of flavin and prophyrin groups by as much as a factor of 2.

  9. Retrievals of Aerosol and Cloud Particle Microphysics Using Polarization and Depolarization Techniques

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael; Hansen, James E. (Technical Monitor)

    2001-01-01

    The recent availability of theoretical techniques for computing single and multiple scattering of light by realistic polydispersions of spherical and nonspherical particles and the strong dependence of the Stokes scattering matrix on particle size, shape, and refractive index make polarization and depolarization measurements a powerful particle characterization tool. In this presentation I will describe recent applications of photopolarimetric and lidar depolarization measurements to remote sensing characterization of tropospheric aerosols, polar stratospheric clouds (PSCs), and contrails. The talk will include (1) a short theoretical overview of the effects of particle microphysics on particle single-scattering characteristics; (2) the use of multi-angle multi-spectral photopolarimetry to retrieve the optical thickness, size distribution, refractive index, and number concentration of tropospheric aerosols over the ocean surface; and (3) the application of the T-matrix method to constraining the PSC and contrail particle microphysics using multi-spectral measurements of lidar backscatter and depolarization.

  10. Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements.

    PubMed

    Dam, Jan S; Yavari, Nazila; Sørensen, Søren; Andersson-Engels, Stefan

    2005-07-10

    We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton--Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.

  11. Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells

    NASA Astrophysics Data System (ADS)

    Park, Yongkeun; Diez-Silva, Monica; Fu, Dan; Popescu, Gabriel; Choi, Wonshik; Barman, Ishan; Suresh, Subra; Feld, Michael S.

    2010-03-01

    We present the light scattering of individual Plasmodium falciparum-parasitized human red blood cells (Pf-RBCs), and demonstrate progressive alterations to the scattering signal arising from the development of malaria-inducing parasites. By selectively imaging the electric fields using quantitative phase microscopy and a Fourier transform light scattering technique, we calculate the light scattering maps of individual Pf-RBCs. We show that the onset and progression of pathological states of the Pf-RBCs can be clearly identified by the static scattering maps. Progressive changes to the biophysical properties of the Pf-RBC membrane are captured from dynamic light scattering.

  12. The Direct Detection and Characterization of M-dwarf Planets Using Light Echoes

    NASA Astrophysics Data System (ADS)

    Sparks, William B.; White, Richard L.; Lupu, Roxana E.; Ford, Holland C.

    2018-02-01

    Exoplanets orbiting M-dwarf stars are a prime target in the search for life in the universe. M-dwarf stars are active, with powerful flares that could adversely impact prospects for life, though there are counter-arguments. Here, we turn flaring to advantage and describe ways in which it can be used to enhance the detectability of planets, in the absence of transits or a coronagraph, significantly expanding the accessible discovery and characterization space. Flares produce brief bursts of intense luminosity, after which the star dims. Due to the light travel time between the star and planet, the planet receives the high-intensity pulse, which it re-emits through scattering (a light echo) or intrinsic emission when the star is much fainter, thereby increasing the planet’s detectability. The planet’s light-echo emission can potentially be discriminated from that of the host star by means of a time delay, Doppler shift, spatial shift, and polarization, each of which can improve the contrast of the planet to the star. Scattered light can reveal the albedo spectrum of the planet to within a size scale factor, and is likely to be polarized. Intrinsic emission mechanisms include fluorescent pumping of multiple molecular hydrogen and neutral oxygen lines by intense Lyα and Lyβ flare emission, recombination radiation of ionized and photodissociated species, and atmospheric processes such as terrestrial upper atmosphere airglow and near-infrared hydroxyl emission. We discuss the feasibility of detecting light echoes and find that light echo detection is possible under favorable circumstances.

  13. On a partial differential equation method for determining the free energies and coexisting phase compositions of ternary mixtures from light scattering data.

    PubMed

    Ross, David S; Thurston, George M; Lutzer, Carl V

    2008-08-14

    In this paper we present a method for determining the free energies of ternary mixtures from light scattering data. We use an approximation that is appropriate for liquid mixtures, which we formulate as a second-order nonlinear partial differential equation. This partial differential equation (PDE) relates the Hessian of the intensive free energy to the efficiency of light scattering in the forward direction. This basic equation applies in regions of the phase diagram in which the mixtures are thermodynamically stable. In regions in which the mixtures are unstable or metastable, the appropriate PDE is the nonlinear equation for the convex hull. We formulate this equation along with continuity conditions for the transition between the two equations at cloud point loci. We show how to discretize this problem to obtain a finite-difference approximation to it, and we present an iterative method for solving the discretized problem. We present the results of calculations that were done with a computer program that implements our method. These calculations show that our method is capable of reconstructing test free energy functions from simulated light scattering data. If the cloud point loci are known, the method also finds the tie lines and tie triangles that describe thermodynamic equilibrium between two or among three liquid phases. A robust method for solving this PDE problem, such as the one presented here, can be a basis for optical, noninvasive means of characterizing the thermodynamics of multicomponent mixtures.

  14. Apparatus for measuring particle properties

    DOEpatents

    Rader, D.J.; Castaneda, J.N.; Grasser, T.W.; Brockmann, J.E.

    1998-08-11

    An apparatus is described for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle`s size can be determined from the intensity of the light scattered. The particle`s velocity can be determined from the elapsed time between various intensities of the light scattered. 11 figs.

  15. Evaluation of paraxial forward scattering from intraocular lens with increased surface light scattering using goniophotometry and Hartmann-Shack wavefront aberrometry.

    PubMed

    Minami, Keiichiro; Maruyama, Yoko; Mihashi, Toshifumi; Miyata, Kazunori; Oshika, Tetsuro

    2017-03-01

    To evaluate the influence of increases in light scattering on intraocular lens (IOL) surfaces on paraxial forward scattering using goniophotometry and Hartmann-Shack wavefront aberrometry. Surface light scattering was reproduced experimentally by acceleratedly aging 4 intraocular lenses by 0, 3, 5, and 10 years each. Light scattering from both IOL surfaces was measured using Scheimpflug photography. The paraxial forward scattering from the aged IOLs was measured using a goniophotometer with a halogen light source (wavelength: 350-850 nm) and telecentric optics, and changes in the maximum intensity and full width at 10% of maximum intensity (FW10%) were evaluated. The influences on the retina image were examined using a Hartmann-Shack aberrometer (wavelength: 840 nm). The contrast and difference from the point spread function of the central centroids were evaluated. The mean surface light scattering from both IOL surfaces ranged from 30.0 to 118.3 computer compatible tape (CCT) and increased with each aging year. Evaluations using the goniophotometer and the Hartmann-Shack aberrometer showed no significant change in the paraxial forward scattering with the aging year (P > .45, Kruskal-Wallis test), and no association with the surface light scattering intensity was found (P > .75, Spearman rank correlation). This experimental study using aged IOLs demonstrated that surface light scattering does not influence paraxial forward scattering.

  16. Laser Light Scattering with Multiple Scattering Suppression Used to Measure Particle Sizes

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Tin, Padetha; Lock, James A.; Cannell, David S.; Smart, Anthony E.; Taylor, Thomas W.

    1999-01-01

    Laser light scattering is the technique of choice for noninvasively sizing particles in a fluid. The members of the Advanced Technology Development (ATD) project in laser light scattering at the NASA Lewis Research Center have invented, tested, and recently enhanced a simple and elegant way to extend the concentration range of this standard laboratory particle-sizing technique by several orders of magnitude. With this technique, particles from 3 nm to 3 mm can be measured in a solution. Recently, laser light scattering evolved to successfully size particles in both clear solutions and concentrated milky-white solutions. The enhanced technique uses the property of light that causes it to form tall interference patterns at right angles to the scattering plane (perpendicular to the laser beam) when it is scattered from a narrow laser beam. Such multiple-scattered light forms a broad fuzzy halo around the focused beam, which, in turn, forms short interference patterns. By placing two fiber optics on top of each other and perpendicular to the laser beam (see the drawing), and then cross-correlating the signals they produce, only the tall interference patterns formed by singly scattered light are detected. To restate this, unless the two fiber optics see the same interference pattern, the scattered light is not incorporated into the signal. With this technique, only singly scattered light is seen (multiple-scattered light is rejected) because only singly scattered light has an interference pattern tall enough to span both of the fiber-optic pickups. This technique is simple to use, easy to align, and works at any angle. Placing a vertical slit in front of the signal collection fibers enhanced this approach. The slit serves as an optical mask, and it significantly shortens the time needed to collect good data by selectively masking out much of the unwanted light before cross-correlation is applied.

  17. Molecular Weight and Molecular Weight Distributions in Synthetic Polymers.

    ERIC Educational Resources Information Center

    Ward, Thomas Carl

    1981-01-01

    Focuses on molecular weight and molecular weight distributions (MWD) and models for predicting MWD in a pedagogical way. In addition, instrumental methods used to characterize MWD are reviewed with emphasis on physical chemistry of each, including end-group determination, osmometry, light scattering, solution viscosity, fractionation, and…

  18. Low-resolution mapping of the effective attenuation coefficient of the human head: a multidistance approach applied to high-density optical recordings

    PubMed Central

    Chiarelli, Antonio M.; Maclin, Edward L.; Low, Kathy A.; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele

    2017-01-01

    Abstract. Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source–detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked. PMID:28466026

  19. Low-resolution mapping of the effective attenuation coefficient of the human head: a multidistance approach applied to high-density optical recordings.

    PubMed

    Chiarelli, Antonio M; Maclin, Edward L; Low, Kathy A; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele

    2017-04-01

    Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source-detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked.

  20. Bacterial Identification Using Light Scattering Measurements: a Preliminary Report

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.

    1971-01-01

    The light scattering properties of single bacterial cells were examined as a possible means of identification. Three species were studied with streptococcus faecalis exhibiting a unique pattern; the light-scattering traces for staphylococcus aureus and escherichia coli were quite similar although differences existed. Based on preliminary investigations, the light scattering approach appeared promising with additional research needed to include a wide variety of bacterial species, computer capability to handle and analyze data, and expansion of light scattering theory to include bacterial cells.

  1. Evolution of the transfer function characterization of surface scatter phenomena

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus    o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log   o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.

  2. Anisotropic light scattering of individual sickle red blood cells.

    PubMed

    Kim, Youngchan; Higgins, John M; Dasari, Ramachandra R; Suresh, Subra; Park, YongKeun

    2012-04-01

    We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.

  3. A New Generation Fiber Optic Probe: Characterization of Biological Fluids, Protein Crystals and Ophthalmic Diseases

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.

    1996-01-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluids experiments in a microgravity environment has been applied to characterize particulate dispersions/suspensions in various challenging environments which have been hitherto impossible. The probe positioned in front of a sample delivers a low power light (few nW - 3mW) from a laser and guides the light which is back scattered by the suspended particles through a receiving optical fiber to a photo detector and to a digital correlator. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions. It has been applied to characterize various biological fluids, protein crystals, and ophthalmic diseases.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, A E; Potapov, V T; Gorshkov, B G

    We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)

  5. Design and characterization of a dead-time regime enhanced early photon projection imaging system

    NASA Astrophysics Data System (ADS)

    Sinha, L.; Fogarty, M.; Zhou, W.; Giudice, A.; Brankov, J. G.; Tichauer, K. M.

    2018-04-01

    Scattering of visible and near-infrared light in biological tissue reduces spatial resolution for imaging of tissues thicker than 100 μm. In this study, an optical projection imaging system is presented and characterized that exploits the dead-time characteristics typical of photon counting modules based on single photon avalanche diodes (SPADs). With this system, it is possible to attenuate the detection of more scattered late-arriving photons, such that detection of less scattered early-arriving photons can be enhanced with increased light intensity, without being impeded by the maximum count rate of the SPADs. The system has the potential to provide transmittance-based anatomical information or fluorescence-based functional information (with slight modification in the instrumentation) of biological samples with improved resolution in the mesoscopic domain (0.1-2 cm). The system design, calibration, stability, and performance were evaluated using simulation and experimental phantom studies. The proposed system allows for the detection of very-rare early-photons at a higher frequency and with a better signal-to-noise ratio. The experimental results demonstrated over a 3.4-fold improvement in the spatial resolution using early photon detection vs. conventional detection, and a 1000-fold improvement in imaging time using enhanced early detection vs. conventional early photon detection in a 4-mm thick phantom with a tissue-equivalent absorption coefficient of μa = 0.05 mm-1 and a reduced scattering coefficient of μs' = 5 mm-1.

  6. A study of the polarization of light scattered by vegetation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Woessner, P. N.

    1985-01-01

    This study was undertaken in order to better understand the factors that govern the polarization of light scattered from vegetation and soils. The intensity and polarization of light scattered by clover and grass in vivo and soil were measured at a number of different angles of incidence and reflectance. Both individual leaves and natural patches of leaves were measured. The light transmitted through the leaves was found to be negatively polarized. The light scattered from the upper leaf surface was found to be positively polarized in a manner which could be accounted for qualitatively but not quantitatively by the Fresnel reflection coefficients modified by a shadowing function of the form cos sup2 (g/2), where g is the phase angle. Findings indicate that the polarization of light scattered by vegetation is a more complex process than previously thought, and that besides the surface-scattered component of light, the volume-scattered and multiply-scattered components also contribute significantly to the polarization.

  7. Narrowly peaked forward light scattering on particulate media: II. Angular spreading of light scattered by polystyrene microspheres

    NASA Astrophysics Data System (ADS)

    Turcu, Ioan; Bratfalean, Radu; Neamtu, Silvia

    2008-07-01

    The adequacy of the effective phase function (EPF) used to describe the light scattered at small angles was tested on aqueous suspensions of polystyrene microspheres. Angular resolved light scattering measurements were performed on two types of latex suspension, which contained polystyrene spheres of 3 µm and 5 µm diameters, respectively. The experimental data were fitted with two EPF approximants. If the polystyrene spheres are at least 3 µm in diameter the quasi-ballistic light scattering process can be described relatively well by the EPF in a small angular range centered in the forward direction. The forward light scattering by macroscopic samples containing microspheres can be modeled relatively well if the true Mie single particle scattering phase function is replaced by a simpler Henyey-Greenstein dependence having the same width at half-height as the first scattering lobe.

  8. A study on independently using static and dynamic light scattering methods to determine the coagulation rate

    NASA Astrophysics Data System (ADS)

    Zhou, Hongwei; Xu, Shenghua; Mi, Li; Sun, Zhiwei; Qin, Yanming

    2014-09-01

    Absolute coagulation rate constants were determined by independently, instead of simultaneously, using static and dynamic light scattering with the requested optical factors calculated by T-matrix method. The aggregating suspensions of latex particles with diameters of 500, 700, and 900 nm, that are all beyond validity limit of the traditional Rayleigh-Debye-Gans approximation, were adopted. The results from independent static and dynamic light scattering measurements were compared with those by simultaneously using static and dynamic light scattering; and three of them show good consistency. We found, theoretically and experimentally, that for independent static light scattering measurements there are blind scattering angles at that the scattering measurements become impossible and the number of blind angles increases rapidly with particle size. For independent dynamic light scattering measurements, however, there is no such a blind angle at all. A possible explanation of the observed phenomena is also presented.

  9. Instrumentation on Multi-Scaled Scattering of Bio-Macromolecular Solutions

    PubMed Central

    Chu, Benjamin; Fang, Dufei; Mao, Yimin

    2015-01-01

    The design, construction and initial tests on a combined laser light scattering and synchrotron X-ray scattering instrument can cover studies of length scales from atomic sizes in Angstroms to microns and dynamics from microseconds to seconds are presented. In addition to static light scattering (SLS), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD), the light scattering instrument is being developed to carry out studies in mildly turbid solutions, in the presence of multiple scattering. Three-dimensional photon cross correlation function (3D-PCCF) measurements have been introduced to couple with synchrotron X-ray scattering to study the structure, size and dynamics of macromolecules in solution. PMID:25946340

  10. Multi-peaks scattering of light in glasses

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.; Vostrikova, L. I.

    2018-04-01

    Investigations of the multi-peaks scattering of the laser light on the micro-scale susceptibility gratings with small periodicities photo-induced in the various glass materials are presented. The observed pictures of the multi-peaks scattering of light in oxide samples show that the efficiencies of the processes of scattering can vary for the different chemical compositions. Experimental results are in agreement with the proposed theory of light scattering.

  11. Development and characterization of high refractive index and high scattering acrylate polymer layers

    NASA Astrophysics Data System (ADS)

    Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas

    2016-11-01

    In this work, we develop a wet-processable scattering layer exhibiting a high refractive index that can be used in organic light-emitting diodes for light outcoupling purposes. The composite layers contain an acrylate casting resin, benzylmethacrylate, and phenanthrene, which is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements, the polymerized samples require a planar surface without air bubbles. To produce flat samples, a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet, and another glass plate is developed. Glue clamps are used to hold the construction together. The refractive index of the samples can be increased from 1.565 to 1.585 at 20°C at a wavelength of 589 nm following the addition of 20 wt% phenanthrene. A master mixture with a high refractive index is taken for further experiments. Nanoscaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. Most of the presented layers present the expected haze of over 50%.

  12. Diffusing Wave Spectroscopy Used to Study Foams

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Durian, Douglas J.

    2000-01-01

    The white appearance of familiar objects such as clouds, snow, milk, or foam is due to the random scattering of light by the sample. As we all know, pure water is clear and easily passes a beam of light. However, tiny water droplets, such as those in a cloud, scatter light because the air and water droplet have different indexes of refraction. When many droplets, or scattering sites, are present, the incident light is scattered in random directions and the sample takes on a milky white appearance. In a glass of milk, the scattering is due to small colloidal particles. The white appearance of shaving cream, or foam, is due to the scattering of light at the water-bubble interface. Diffusing wave spectroscopy (DWS) is a laser light-scattering technique used to noninvasively probe the particle dynamics in systems that strongly scatter light. The technique takes advantage of the diffuse nature of light, which is reflected or transmitted from samples such as foams, dense colloidal suspensions (such as paint and milk), emulsions, liquid crystals, sandpiles, and even biological tissues.

  13. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atay, Safinur; Gercel-Taylor, Cicek; Kesimer, Mehmet

    Exosomes represent an important intercellular communication vehicle, mediating events essential for the decidual microenvironment. While we have demonstrated exosome induction of pro-inflammatory cytokines, to date, no extensive characterization of trophoblast-derived exosomes has been provided. Our objective was to provide a morphologic and proteomic characterization of these exosomes. Exosomes were isolated from the conditioned media of Swan71 human trophoblast cells by ultrafiltration and ultracentrifugation. These were analyzed for density (sucrose density gradient centrifugation), morphology (electron microscopy), size (dynamic light scattering) and protein composition (Ion Trap mass spectrometry and western immunoblotting). Based on density gradient centrifugation, microvesicles from Sw71 cells exhibit amore » density between 1.134 and 1.173 g/ml. Electron microscopy demonstrated that microvesicles from Sw71 cells exhibit the characteristic cup-shaped morphology of exosomes. Dynamic light scattering showed a bell-shaped curve, indicating a homogeneous population with a mean size of 165 nm {+-} 0.5 nm. Ion Trap mass spectrometry demonstrated the presence of exosome marker proteins (including CD81, Alix, cytoskeleton related proteins, and Rab family). The MS results were confirmed by western immunoblotting. Based on morphology, density, size and protein composition, we defined the release of exosomes from extravillous trophoblast cells and provide their first extensive characterization. This characterization is essential in furthering our understanding of 'normal' early pregnancy.« less

  14. Further Evaluation of Spray Characterization of Sprayers Typically Used in Vector Control

    DTIC Science & Technology

    2012-01-01

    E1260. Standard test method for determining liquid drop size characteristics in a spray using optical nonimaging light-scattering instru- ments...The time that the spray cloud was directed through the optical path of the laser varied between sprayers depending on the width of the spray plume

  15. Spray Characterization of Ultra-Low-Volume Sprayers Typically Used in Vector Control

    DTIC Science & Technology

    2009-01-01

    Standard test method for determining liquid drop size characteristics in a spray using optical nonimaging light-scattering instruments. An- nual book of...cloud was directed through the optical path of the laser varied between sprayers, depending on the width of the spray 1 Mention of a trademark

  16. Functionalized bioinspired microstructured optical fiber pores for applications in chemical vapor sensing

    NASA Astrophysics Data System (ADS)

    Calkins, Jacob A.

    Chemical vapor sensing for defense, homeland security, environmental, and agricultural application is a challenge, which due combined requirements of ppt sensitivity, high selectivity, and rapid response, cannot be met using conventional analytical chemistry techniques. New sensing approaches and platforms are necessary in order to make progress in this rapidly evolving field. Inspired by the functionalized nanopores on moth sensilla hairs that contribute to the high selectivity and sensitivity of this biological system, a chemical vapor sensor based on the micro to nanoscale pores in microstructured optical fibers (MOFs) was designed. This MOF based chemical vapor sensor design utilizes MOF pores functionalized with organic self-assembled monolayers (SAMs) for selectivity and separations and a gold plasmonic sensor for detection and discrimination. Thin well-controlled gold films in MOF pores are critical components for the fabrication of structured plasmonic chemical vapor sensors. Thermal decomposition of dimethyl Au(II) trifluoroacetylacetonate dissolved in near-critical CO2 was used to deposit gold island films within the MOF pores. Using a 3mercatopropyltrimethoxysilane adhesion layer, continuous gold thin films as thin as 20--30 nm were deposited within MOF pores as small as 500 nm in diameter. The gold island films proved to be SERS active and were used to detect 900 ppt 2,4 DNT vapor in high pressure nitrogen and 6 ppm benzaldehyde. MOF based waveguide Raman (WGR), which can probe the air/silica interface between a waveguiding core and surrounding pores, was developed to detect and characterize SAMs and other thin films deposited in micro to nanoscale MOF pores. MOF based WGR was used to characterize an octadecyltrichlorosilane (OTS) SAM deposited in 1.6 mum diameter pores iv to demonstrate that the SAM was well-formed, uniform along the pore length, and only a single layer. MOF based WGR was used to detect a human serum albumin monolayer deposited on the OTS SAM and monitor in-situ the combustion of an OTS SAM in high pressure oxygen. Light scattering, an optical characterization technique that provides ellipsometric data from micro to nanoscale cylinders, was developed in order to characterize highly smooth wires and MOF pores. Clean, bare gold wires etched from MOF pore templates were found to have angle dependent Psi and Delta values that agree with numerically calculated and finite element modeled values over the full angular 340° collection range. Light scattering was shown to be sensitive to ellipticities in the cross-section of silica, gold, and silicon wires down to 1%. Using alkanethiol SAMs deposited on gold wires, light scattering was demonstrated to be able to detect films as thin as 1.5 nm, and able to distinguish between a decanethiol (1.5 nm) and an octadecanethiol SAM (2.7 mn). The high sensitivity of light scattering will allow it to characterize SAMs and thin films on the inner surfaces of MOF pores. WGR and light scattering provide the analytical tools that will allow for the further development of organic SAMs and thin films within MOF pores for analyte selectivity and chromatographic separations. This high selectivity combined with the sensitivity of a 3-dimensional nanostructured gold plasmonic sensor allows for the fabrication of a chemical vapor sensor inspired by the field performance of moth sensilla hairs.

  17. Optical memory effect from polarized Laguerre-Gaussian light beam in light-scattering turbid media

    NASA Astrophysics Data System (ADS)

    Shumyatsky, Pavel; Milione, Giovanni; Alfano, Robert R.

    2014-06-01

    Propagation effects of polarized Laguerre-Gaussian light with different orbital angular momentum (L) in turbid media are described. The optical memory effect in scattering media consisting of small and large size (compared to the wavelength) scatterers is investigated for scattered polarized light. Imaging using polarized laser modes with a varying orbital strength L-parameter was performed. The backscattered image quality (contrast) was enhanced by more than an order of magnitude using circularly polarized light when the concentration of scatterers was close to invisibility of the object.

  18. Combining experiment and optical simulation in coherent X-ray nanobeam characterization of Si/SiGe semiconductor heterostructures

    DOE PAGES

    Tilka, J. A.; Park, J.; Ahn, Y.; ...

    2016-07-06

    Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less

  19. Light scattering and backscattering by particles suspended in the Baltic Sea in relation to the mass concentration of particles and the proportions of their organic and inorganic fractions

    NASA Astrophysics Data System (ADS)

    Woźniak, Sławomir B.; Sagan, Sławomir; Zabłocka, Monika; Stoń-Egiert, Joanna; Borzycka, Karolina

    2018-06-01

    The empirical relationships were examined of spectral characteristics of light scattering and backscattering by particles suspended in seawater in relation to the dry mass concentration of particles and the bulk proportions of their organic and inorganic fractions. The analyses were based on empirical data collected in the surface waters of the southern and central Baltic Sea at different times of the year. It was found that the average scattering and backscattering coefficients, normalized to the dry mass concentration of particles for all our Baltic Sea data (i.e. mass-specific optical coefficients), were characterized by large coefficients of variation (CV) of the order of 30% at all the visible light wavelengths analysed. At wavelength 555 nm the average mass-specific scattering coefficient was ca 0.75 m2 g- 1 (CV = 31%); the corresponding value for backscattering was 0.0072 m2 g- 1 (CV = 29%). The analyses confirmed that some of the observed variations could be explained by changes in the proportions of organic and inorganic fractions of suspended matter. The average organic fraction in all the samples was as high as 83% of the total dry mass concentration but in individual cases it varied between < 50% and up to 100%. Simple, two-variable parameterizations of scattering and backscattering coefficients were derived as functions of the organic and inorganic fraction concentrations. The statistical relationship between the backscattering ratio and the ratio of the organic fraction to the total dry mass of suspended matter was also found: this can be used in practical interpretations of in situ optical measurements. In addition, the variability in particle size distributions recorded with a Coulter counter indicated its potentially highly significant influence on the light scattering properties of particles suspended in Baltic Sea waters.

  20. Stimulated concentration (diffusion) light scattering on nanoparticles in a liquid suspension

    NASA Astrophysics Data System (ADS)

    Burkhanov, I. S.; Krivokhizha, S. V.; Chaikov, L. L.

    2016-06-01

    A nonlinear growth of the light scattering intensity has been observed and the frequency shift of the spectral line of scattered light has been measured in light backscattered in suspensions of diamond and latex nanoparticles in water. The shift corresponds to the HWHM of the line of spontaneous scattering on particles. We may conclude that there exists stimulated concentration (diffusion) light scattering on variations of the particle concentration, which is also called the stimulated Mie scattering. In a fibre probe scheme, the growth of the shift of the scattered spectral line is observed with an increase in the exciting beam power. The variation of the frequency shift with an increase in the exciting power is explained by convection in liquid.

  1. Looking for Dust-Scattering Light Echoes

    NASA Astrophysics Data System (ADS)

    Mills, Brianna; Heinz, Sebastian; Corrales, Lia

    2018-01-01

    Galactic X-ray transient sources such as neutron stars or black holes sometimes undergo an outburst in X-rays. Ring structures have been observed around three such sources, produced by the X-ray photons being scattered by interstellar dust grains along our line of sight. These dust-scattering light echoes have proven to be a useful tool for measuring and constraining Galactic distances, mapping the dust structure of the Milky Way, and determining the dust composition in the clouds producing the echo. Detectable light echoes require a sufficient quantity of dust along our line of sight, as well as bright, short-lived Galactic X-ray flares. Using data from the Monitor of All-Sky X-ray Image (MAXI) on-board the International Space Station, we ran a peak finding algorithm in Python to look for characteristic flare events. Each flare was characterized by its fluence, the integrated flux of the flare over time. We measured the distribution of flare fluences to show how many observably bright flares were recorded by MAXI. This work provides a parent set for dust echo searches in archival X-ray data and will inform observing strategies with current and future X-ray missions such as Athena and Lynx.

  2. Fining of Red Wine Monitored by Multiple Light Scattering.

    PubMed

    Ferrentino, Giovanna; Ramezani, Mohsen; Morozova, Ksenia; Hafner, Daniela; Pedri, Ulrich; Pixner, Konrad; Scampicchio, Matteo

    2017-07-12

    This work describes a new approach based on multiple light scattering to study red wine clarification processes. The whole spectral signal (1933 backscattering points along the length of each sample vial) were fitted by a multivariate kinetic model that was built with a three-step mechanism, implying (1) adsorption of wine colloids to fining agents, (2) aggregation into larger particles, and (3) sedimentation. Each step is characterized by a reaction rate constant. According to the first reaction, the results showed that gelatin was the most efficient fining agent, concerning the main objective, which was the clarification of the wine, and consequently the increase in its limpidity. Such a trend was also discussed in relation to the results achieved by nephelometry, total phenols, ζ-potential, color, sensory, and electronic nose analyses. Also, higher concentrations of the fining agent (from 5 to 30 g/100 L) or higher temperatures (from 10 to 20 °C) sped up the process. Finally, the advantage of using the whole spectral signal vs classical univariate approaches was demonstrated by comparing the uncertainty associated with the rate constants of the proposed kinetic model. Overall, multiple light scattering technique showed a great potential for studying fining processes compared to classical univariate approaches.

  3. Frequency mismatch in stimulated scattering processes: An important factor for the transverse distribution of scattered light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Tao; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900; Zheng, Jian, E-mail: jzheng@ustc.edu.cn

    2016-06-15

    A 2D cylindrically symmetric model with inclusion of both diffraction and self-focus effects is developed to deal with the stimulated scattering processes of a single hotspot. The calculated results show that the transverse distribution of the scattered light is sensitive to the longitudinal profiles of the plasma parameters. The analysis of the evolution of the scattered light indicates that it is the frequency mismatch of coupling due to the inhomogeneity of plasmas that determines the transverse distribution of the scattered light.

  4. Applying machine learning methods for characterization of hexagonal prisms from their 2D scattering patterns - an investigation using modelled scattering data

    NASA Astrophysics Data System (ADS)

    Salawu, Emmanuel Oluwatobi; Hesse, Evelyn; Stopford, Chris; Davey, Neil; Sun, Yi

    2017-11-01

    Better understanding and characterization of cloud particles, whose properties and distributions affect climate and weather, are essential for the understanding of present climate and climate change. Since imaging cloud probes have limitations of optical resolution, especially for small particles (with diameter < 25 μm), instruments like the Small Ice Detector (SID) probes, which capture high-resolution spatial light scattering patterns from individual particles down to 1 μm in size, have been developed. In this work, we have proposed a method using Machine Learning techniques to estimate simulated particles' orientation-averaged projected sizes (PAD) and aspect ratio from their 2D scattering patterns. The two-dimensional light scattering patterns (2DLSP) of hexagonal prisms are computed using the Ray Tracing with Diffraction on Facets (RTDF) model. The 2DLSP cover the same angular range as the SID probes. We generated 2DLSP for 162 hexagonal prisms at 133 orientations for each. In a first step, the 2DLSP were transformed into rotation-invariant Zernike moments (ZMs), which are particularly suitable for analyses of pattern symmetry. Then we used ZMs, summed intensities, and root mean square contrast as inputs to the advanced Machine Learning methods. We created one random forests classifier for predicting prism orientation, 133 orientation-specific (OS) support vector classification models for predicting the prism aspect-ratios, 133 OS support vector regression models for estimating prism sizes, and another 133 OS Support Vector Regression (SVR) models for estimating the size PADs. We have achieved a high accuracy of 0.99 in predicting prism aspect ratios, and a low value of normalized mean square error of 0.004 for estimating the particle's size and size PADs.

  5. Airborne particle characterization by spatial scattering and fluorescence

    NASA Astrophysics Data System (ADS)

    Barton, John; Hirst, Edwin; Kaye, Paul; Saunders, Spencer; Clark, Don

    1999-11-01

    Several workers have reported the development of systems which allow the measurement of intrinsic fluorescence from particles irradiated with ultra-violet radiation. The fluorescence data are frequently recorded in conjunction with other parameters such as particle size, measured either as a function of optical scatter or as an aerodynamic size. The motivation for this work has been principally the detection of bioaerosols within an ambient environment. Previous work by the authors has shown that an analysis of the scattering profile of a particle, i.e.: the spatial distribution of light scattered by the particle carried in a sample air-stream, can provide an effective means of particle characterization and classification in terms of both size and shape parameters. Current work is aimed at the simultaneous recording of both spatial scattering and fluorescence data from individual particles with a view to substantially enhanced discrimination of biological aerosols. A prototype instrument has recently been completed which employs a cw 266 nm laser source to produce both elastic (spatial scattering) and inelastic (fluorescence) signals from individual airborne particles. The instrument incorporates a custom designed high-gain multi- pixel hybrid photodiode (HPD) to record the spatial scattering data and a single photomultiplier to record total fluorescence from the illuminated particle. Recorded data are processed to allow the classification of airborne particles on the basis of size, shape, and fluorescence for both biological and non- biological aerosols.

  6. Intraocular light scatter, reflections, fluorescence and absorption: what we see in the slit lamp.

    PubMed

    van den Berg, Thomas J T P

    2018-01-01

    Much knowledge has been collected over the past 20 years about light scattering in the eye- in particular in the eye lens- and its visual effect, called straylight. It is the purpose of this review to discuss how these insights can be applied to understanding the slit lamp image. The slit lamp image mainly results from back scattering, whereas the effects on vision result mainly from forward scatter. Forward scatter originates from particles of about wavelength size distributed throughout the lens. Most of the slit lamp image originates from small particle scatter (Rayleigh scatter). For a population of middle aged lenses it will be shown that both these scatter components remove around 10% of the light from the direct beam. For slit lamp observation close to the reflection angles, zones of discontinuity (Wasserspalten) at anterior and posterior parts of the lens show up as rough surface reflections. All these light scatter effects increase with age, but the correlations with age, and also between the different components, are weak. For retro-illumination imaging it will be argued that the density or opacity seen in areas of cortical or posterior subcapsular cataract show up because of light scattering, not because of light loss. NOTES: (1) Light scatter must not be confused with aberrations. Light penetrating the eye is divided into two parts: a relatively small part is scattered, and removed from the direct beam. Most of the light is not scattered, but continues as the direct beam. This non-scattered part is the basis for functional imaging, but its quality is under the control of aberrations. Aberrations deflect light mainly over small angles (<1°), whereas light scatter is important because of the straylight effects over large angles (>1°), causing problems like glare and hazy vision. (2) The slit lamp image in older lenses and nuclear cataract is strongly influenced by absorption. However, this effect is greatly exaggerated by the light path lengths concerned. This obviates proper judgement of the functional importance of absorption, and hinders the appreciation of the Rayleigh nature of what is seen in the slit lamp image. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  7. Fiberoptic spectrophotometer

    DOEpatents

    Tans, Petrus P.; Lashof, Daniel A.

    1986-01-01

    A device for determining the relative composition of a sample of a gas by comparison of the Raman-scattered light of the sample with that of a known gas comprising: a means for passing a single light source through the unknown and the known gases, choppers to alternate the Raman-scattered light into a common light detection and measuring system, optical fiber networks for spatially mixing the resulting Raman scattered light from each sample and directing the mixed light to selective detectors, and a compiler to record the light intensity of each wavelength of Raman-scattered light as a function of the sample from which it originated.

  8. Co-elution effects can influence molar mass determination of large macromolecules with asymmetric flow field-flow fractionation coupled to multiangle light scattering.

    PubMed

    Perez-Rea, Daysi; Zielke, Claudia; Nilsson, Lars

    2017-07-14

    Starch and hence, amylopectin is an important biomacromolecule in both the human diet as well as in technical applications. Therefore, accurate and reliable analytical methods for its characterization are needed. A suitable method for analyzing macromolecules with ultra-high molar mass, branched structure and high polydispersity is asymmetric flow field-flow fractionation (AF4) in combination with multiangle light scattering (MALS) detection. In this paper we illustrate how co-elution of low quantities of very large analytes in AF4 may cause disturbances in the MALS data which, in turn, causes an overestimation of the size. Furthermore, it is shown how pre-injection filtering of the sample can improve the results. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Role of Minerogenic Particles in Light Scattering in Lakes and a River in Central New York

    DTIC Science & Technology

    2007-09-10

    calibration protocol. Corrections for differences in the ten samples for both elemental and morphometric pure-water absorption and attenuation due to tem...PA’>, (6) Morphometric characterization of particles by SAX is based on a "rotating chord" algorithm, which pro- where N,,, is the number of...to characterize individual minerogenic par- nous versus autochthonous) is essential information ticles both compositionally and morphometrically for

  10. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    PubMed Central

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  11. Static and dynamic light scattering by red blood cells: A numerical study.

    PubMed

    Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard; Fedosov, Dmitry A

    2017-01-01

    Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods-multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring.

  12. Static and dynamic light scattering by red blood cells: A numerical study

    PubMed Central

    Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard

    2017-01-01

    Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods—multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring. PMID:28472125

  13. Development of wide-angle 2D light scattering static cytometry

    NASA Astrophysics Data System (ADS)

    Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao

    2016-10-01

    We have recently developed a 2D light scattering static cytometer for cellular analysis in a label-free manner, which measures side scatter (SSC) light in the polar angular range from 79 to 101 degrees. Compared with conventional flow cytometry, our cytometric technique requires no fluorescent labeling of the cells, and static cytometry measurements can be performed without flow control. In this paper we present an improved label-free static cytometer that can obtain 2D light scattering patterns in a wider angular range. By illuminating the static microspheres on chip with a scanning optical fiber, wide-angle 2D light scattering patterns of single standard microspheres with a mean diameter of 3.87 μm are obtained. The 2D patterns of 3.87 μm microspheres contain both large-angle forward scatter (FSC) and SSC light in the polar angular range from 40 to 100 degrees, approximately. Experimental 2D patterns of 3.87 μm microspheres are in good agreement with Mie theory simulated ones. The wide-angle light scattering measurements may provide a better resolution for particle analysis as compared with the SSC measurements. Two dimensional light scattering patterns of HL-60 human acute leukemia cells are obtained by using our static cytometer. Compared with SSC 2D light scattering patterns, wide-angle 2D patterns contain richer information of the HL-60 cells. The obtaining of 2D light scattering patterns in a wide angular range could help to enhance the capabilities of our label-free static cytometry for cell analysis.

  14. The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers.

    PubMed

    Schoenfeld, Andreas A; Poppinga, Daniela; Harder, Dietrich; Doerner, Karl-Joachim; Poppe, Bjoern

    2014-07-07

    Optical experiments and theoretical considerations have been undertaken in order to understand the causes of the 'orientation effect' and the 'parabola effect', the artefacts impairing the desired light absorption measurement on radiochromic EBT3 films with flatbed scanners. EBT3 films exposed to doses up to 20.9 Gy were scanned with an Epson Expression 10000XL flatbed scanner in landscape and portrait orientation. The horizontally and vertically polarized light components of the scanner were determined, and another Epson Expression 10000XL flatbed scanner was disassembled to examine its optical components. The optical properties of exposed and unexposed EBT3 films were studied with incident polarized and unpolarized white light, and the transmitted red light was investigated for its polarization and scattering properties including the distribution of the scattering angles. Neutral density filters were studied for comparison. Guidance was sought from the theory of light scattering from rod-like macromolecular structures. The drastic dose-dependent variation of the transmitted total light current as function of the orientation of front and rear polarizers, interpreted by light scattering theory, shows that the radiation-induced polymerization of the monomers of EBT3 films produces light scattering oscillators preferably polarized at right angles with the coating direction of the film. The directional distribution of the scattered light is partly anisotropic, with a preferred scattering plane at right angles with the coating direction, indicating light scattering from stacks of coherently vibrating oscillators piled up along the monomer crystals. The polyester carrier film also participates in these effects. The 'orientation' and 'parabola' artefacts due to flatbed scanning of radiochromic films can be explained by the interaction of the polarization-dependent and anisotropic light scattering from exposed and unexposed EBT3 films with the quantitative difference between the scanner's horizontally and vertically polarized light supply and with the limited directional acceptance of the scanner's light recording system.

  15. Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator.

    PubMed

    Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu

    2015-09-01

    In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.

  16. Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator

    NASA Astrophysics Data System (ADS)

    Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu

    2015-09-01

    In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.

  17. Improved Optics For Quasi-Elastic Light Scattering

    NASA Technical Reports Server (NTRS)

    Cheung, Harry Michael

    1995-01-01

    Improved optical train devised for use in light-scattering measurements of quasi-elastic light scattering (QELS) and laser spectroscopy. Measurements performed on solutions, microemulsions, micellular solutions, and colloidal dispersions. Simultaneous measurements of total intensity and fluctuations in total intensity of light scattered from sample at various angles provides data used, in conjunction with diffusion coefficients, to compute sizes of particles in sample.

  18. Study of ZnO nanoparticles: Antibacterial property and light depolarization property using light scattering tool

    NASA Astrophysics Data System (ADS)

    Roy, Sanchita; Barua, Nilakshi; Buragohain, Alak K.; Ahmed, Gazi A.

    2013-03-01

    Investigations on treatment of ZnO nanoparticles on Staphylococcus aureus MTCC 737 strain was essentially made by using standard biochemical method. The anti-microbial assay against S. aureus, and time kill assay revealed the anti-bacterial activity of ZnO nanoparticles. We have substantiated this property of ZnO nanoparticles and light depolarization property by using light scattering tool. Light scattering measurements were carried out for ZnO, S. aureus, and ZnO treated S. aureus as a function of scattering angle at 543.5 and 632.8 nm wavelengths. This was done in order to find the scattering profile of the consequent product after the action of ZnO nanoparticles on bacteria by means of light scattering tool. S. aureus treated with ZnO nanoparticles showed closer agreement of the scattering profiles at both the wavelengths, however, the scattering profiles of ZnO nanoparticles and untreated S. aureus significantly varied for the two different laser wavelengths. It was also observed that there was higher intensity of scattering from all S. aureus treated with ZnO particles compared to the untreated ones. In our work, we have studied ZnO nanoparticles and the possibility of observing its anti-bacterial activity by using light scattering tool.

  19. Design of fiber optic probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  20. Light scattering and light transmittance of cadaver eye-explanted intraocular lenses of different materials.

    PubMed

    Morris, Caleb; Werner, Liliana; Barra, Daniel; Liu, Erica; Stallings, Shannon; Floyd, Anne

    2014-01-01

    To evaluate light scattering and light transmittance in cadaver eye-explanted intraocular lenses (IOLs) manufactured from different materials. John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. Experimental study. Forty-nine pseudophakic cadaver eyes were selected according to IOL material/type and implantation duration, and the IOLs were explanted. Hydrophobic acrylic, hydrophilic acrylic, poly(methyl methacrylate) (PMMA), and silicone IOLs were included. Gross and light microscopy was performed for all IOLs. Light scattering was measured with an EAS 1000 Scheimpflug camera, and light transmittance was assessed using a Lambda 35 UV/Vis spectrophotometer (single-beam configuration with an RSA PE-20 integrating sphere). Analyses were performed at room temperature in the hydrated state and compared with analyses of controls. The highest levels of surface light scattering were measured for 3-piece hydrophobic acrylic, which was also the IOL type with the longest implantation duration among the Acrysof hydrophobic acrylic IOLs. Hydrophilic acrylic, PMMA, and silicone IOLs exhibited relatively low light-scattering levels. The lowest light-scattering levels were observed with PMMA IOLs (1-piece looped and 3-piece) and plate silicone IOLs, which represent the IOL types with the longest implantation duration in this series. Light transmittance values measured for all IOL types appeared to be similar to the values of the corresponding control IOLs. The phenomenon of surface light scattering (nanoglistenings) is more particularly related to hydrophobic acrylic IOLs and increases with implantation time. No significant effect of surface light scattering on IOL light transmittance was found. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Engineered surface scatterers in edge-lit slab waveguides to improve light delivery in algae cultivation.

    PubMed

    Ahsan, Syed Saad; Pereyra, Brandon; Jung, Erica E; Erickson, David

    2014-10-20

    Most existing photobioreactors do a poor job of distributing light uniformly due to shading effects. One method by which this could be improved is through the use of internal wave-guiding structures incorporating engineered light scattering schemes. By varying the density of these scatterers, one can control the spatial distribution of light inside the reactor enabling better uniformity of illumination. Here, we compare a number of light scattering schemes and evaluate their ability to enhance biomass accumulation. We demonstrate a design for a gradient distribution of surface scatterers with uniform lateral scattering intensity that is superior for algal biomass accumulation, resulting in a 40% increase in the growth rate.

  2. Ex vivo optical characterization of in vivo grown tissues on dummy sensor implants using double integrating spheres measurement

    NASA Astrophysics Data System (ADS)

    Sharma, Sandeep; Goodarzi, Mohammad; Aernouts, Ben; Gellynck, Karolien; Vlaminck, Lieven; Bockstaele, Ronny; Cornelissen, Maria; Ramon, Herman; Saeys, Wouter

    2014-05-01

    Near infrared spectroscopy offers a promising technological platform for continuous glucose monitoring in the human body. NIR measurements can be performed in vivo with an implantable single-chip based optical NIR sensor. However, the application of NIR spectroscopy for accurate estimation of the analyte concentration in highly scattering biological systems still remains a challenge. For instance, a thin tissue layer may grow in the optical path of the sensor. As most biological tissues allow only a small fraction of the collimated light to pass, this might result in a large reduction of the light throughput. To quantify the effect of presence of a thin tissue layer in the optical path, the bulk optical properties of tissue samples grown on sensor dummies which had been implanted for several months in goats were characterized using Double Integrating Spheres and unscattered transmittance measurements. The measured values of diffuse reflectance, diffuse transmittance and collimated transmittance were used as input to Inverse Adding-Doubling algorithm to estimate the bulk optical properties of the samples. The estimates of absorption and scattering coefficients were then used to calculate the light attenuation through a thin tissue layer. Based on the lower reduction in unscattered transmittance and higher absorptivity of glucose molecules, the measurement in the combination band was found to be the better option for the implantable sensor. As the tissues were found to be highly forward scattering with very low unscattered transmittance, the diffuse transmittance measurement based sensor configuration was recommended for the implantable glucose sensor.

  3. Polar nephelometer for atmospheric particulate studies

    NASA Technical Reports Server (NTRS)

    Hansen, M. Z.; Evans, W. H.

    1980-01-01

    A polar nephelometer for use in studying atmospheric aerosols was developed. The nephelometer detects molecular scatter from air and measures scattering from very clean air using pure molecular scattering for calibration. A compact system using a folded light path with an air cooled argon laser for the light source was designed. A small, sensitive detector unit permits easy angular rotation for changing the scattering angle. A narrow detector field of view of + or - 1/4 degree of scattering along with a single wavelength of incident light is used to minimize uncertainties in the scattering theory. The system is automated for data acquisition of the scattering matrix elements over an angular range from 2 degrees to 178 degrees of scattering. Both laser output and detector sensitivity are monitored to normalize the measured light scattering.

  4. Vegetable Oil-Loaded Nanocapsules: Innovative Alternative for Incorporating Drugs for Parenteral Administration.

    PubMed

    Venturinil, C G; Bruinsmann, A; Oliveira, C P; Contri, R V; Pohlmann, A R; Guterres, S S

    2016-02-01

    An innovative nanocapsule formulation for parenteral administration using selected vegetable oils (mango, jojoba, pequi, oat, annatto, calendula, and chamomile) was developed that has the potential to encapsulate various drugs. The vegetable oil-loaded nanocapsules were prepared by interfacial deposition and compared with capric/caprylic triglyceride-loaded lipid core nanocapsules. The major objective was to investigate the effect of vegetable oils on particle size distribution and physical stability and to determine the hemolytic potential of the nanocapsules, considering their applicability for intravenous administration. Taking into account the importance of accurately determining particle size for the selected route of administration, different size characterization techniques were employed, such as Laser Diffraction, Dynamic Light Scattering, Multiple Light Scattering, Nanoparticle Tracking Analysis, and Transmission Electronic Microscopy. Laser diffraction studies indicated that the mean particle size of all nanocapsules was below 300 nm. For smaller particles, the laser diffraction and multiple light scattering data were in agreement (D[3,2]-130 nm). Dynamic light scattering and nanoparticle tracking analysis, two powerful techniques that complement each other, exhibited size values between 180 and 259 nm for all nanoparticles. Stability studies demonstrated a tendency of particle creaming for jojoba-nanocapsules and sedimentation for the other nanoparticles; however, no size variation occurred over 30 days. The hemolysis test proved the hemocompatibility of all nanosystems, irrespective of the type of oil. Although all developed nanocapsules presented the potential for parenteral administration, jojoba oil-loaded nanocapsules were selected as the most promising nanoformulation due to their low average size and high particle size homogeneity.

  5. Changes in hemodynamics and light scattering during cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Li, Pengcheng; Yang, Yuanyuan; Luo, Qingming

    2005-01-01

    Cortical spreading depression (CSD) has been known to play an important role in the mechanism of migraine, stroke and brain injure. Optical imaging of intrinsic signals has been shown a powerful method for characterizing the spatial and temporal pattern of the propagation of CSD. However, the possible physiological mechanisms underlying the intrinsic optical signal (IOS) during CSD still remain incompletely understood. In this study, a spectroscopic recording of the change in optical intrinsic signal during CSD was performed and an analysis method based on the modified Beer-Lambert law was used to estimate the changes in the concentration of HbO2 and Hb, and changes in light scattering from the spectra data. The CSD were induced by pinprick in 10 α-chloralose/urethane anesthetized Sprague-Dawley rats. In all experiments, four-phasic changes in optical reflectance were observed at 450 nm ~ 570 nm, and triphasic changes in optical reflectance were observed in the range of 570 nm ~750 nm. But at 750 nm ~ 850 nm, only biphasic changes of optical signal were detected. Converting the spectra data to the changes in light scattering and concentration of Hb and HbO2, we found that the CSD induced an initial increase in concentration of HbO2 (amplitude: 9.0+/-3.7%), which was 26.2+/-18.6 s earlier than the onset of increase of Hb concentration. Furthermore, the concentration of HbO2 showed a four-phasic change, whereas the concentration of Hb only showed a biphasic change. For the changes in light scattering during CSD, a triphasic change was observed.

  6. Near Infrared Light Scattering Changes Following Acute Brain Injury

    PubMed Central

    Highton, David; Tachtsidis, Ilias; Tucker, Alison; Elwell, Clare; Smith, Martin

    2018-01-01

    Acute brain injury (ABI) is associated with changes in near infrared light absorption reflecting haemodynamic and metabolic status via changes in cerebral oxygenation (haemoglobin oxygenation and cytochrome-c-oxidase oxidation). Light scattering has not been comprehensively investigated following ABI and may be an important confounding factor in the assessment of chromophore concentration changes, and/or a novel non-invasive optical marker of brain tissue morphology, cytostructure, hence metabolic status. The aim of this study is to characterize light scattering following adult ABI. Time resolved spectroscopy was performed as a component of multimodal neuromonitoring in critically ill brain injured patients. The scattering coefficient (μ′s), absorption coefficient and cerebral haemoglobin oxygen saturation (SO2) were derived by fitting the time resolved data. Cerebral infarction was subsequently defined on routine clinical imaging. In total, 21 patients with ABI were studied. Ten patients suffered a unilateral frontal infarction, and mean μ′s was lower over infarcted compared to non-infarcted cortex (injured 6.9/cm, non-injured 8.2/cm p = 0.002). SO2 did not differ significantly between the two sides (injured 69.3 %, non-injured 69.0 % p = 0.7). Cerebral infarction is associated with changes in μ′s which might be a novel marker of cerebral injury and will interfere with quantification of haemoglobin/cytochrome c oxidase concentration. Although further work combining optical and physiological analysis is required to elucidate the significance of these results, μ′s may be uniquely placed as a non-invasive biomarker of cerebral energy failure as well as gross tissue changes. PMID:26782205

  7. Multiple-Fiber-Optic Probe For Light-Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh; Ansari, Rafat R.

    1996-01-01

    Multiple-fiber-optical probe developed for use in measuring light scattered at various angles from specimens of materials. Designed for both static and dynamic light-scattering measurements of colloidal dispersions. Probe compact, rugged unit containing no moving parts and remains stationary during operation. Not restricted to operation in controlled, research-laboratory environment. Positioned inside or outside light-scattering chamber. Provides simultaneous measurements at small angular intervals over range of angles, made to include small scattering angles by orienting probe in appropriate direction.

  8. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering

    NASA Astrophysics Data System (ADS)

    Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik

    2018-05-01

    The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.

  9. Biological cell classification by multiangle light scattering

    DOEpatents

    Salzman, G.C.; Crowell, J.M.; Mullaney, P.F.

    1975-06-03

    The specification is directed to an apparatus and method for detecting light scattering from a biological cell. Light, preferably from a coherent source of radiation, intercepts an individual biological cell in a stream of cells passing through the beam. Light scattered from the cell is detected at a selected number of angles between 0 and 90/sup 0/ to the longitudinal axis of the beam with a circular array of light responsive elements which produce signals representative of the intensity of light incident thereon. Signals from the elements are processed to determine the light-scattering pattern of the cell and therefrom its identity.

  10. Fiberoptic spectrophotometer

    DOEpatents

    Tans, P.P.; Lashof, D.A.

    1986-12-23

    A device is described for determining the relative composition of a sample of a gas by comparison of the Raman-scattered light of the sample with that of a known gas comprising: a means for passing a single light source through the unknown and the known gases, choppers to alternate the Raman-scattered light into a common light detection and measuring system, optical fiber networks for spatially mixing the resulting Raman scattered light from each sample and directing the mixed light to selective detectors, and a compiler to record the light intensity of each wavelength of Raman-scattered light as a function of the sample from which it originated. 6 figs.

  11. The theory behind the full scattering profile

    NASA Astrophysics Data System (ADS)

    Feder, Idit; Duadi, Hamootal; Fixler, Dror

    2018-02-01

    Optical methods for extracting properties of tissues are commonly used. These methods are non-invasive, cause no harm to the patient and are characterized by high speed. The human tissue is a turbid media hence it poses a challenge for different optical methods. In addition the analysis of the emitted light requires calibration for achieving accuracy information. Most of the methods analyze the reflected light based on their phase and amplitude or the transmitted light. We suggest a new optical method for extracting optical properties of cylindrical tissues based on their full scattering profile (FSP), which means the angular distribution of the reemitted light. The FSP of cylindrical tissues is relevant for biomedical measurement of fingers, earlobes or pinched tissues. We found the iso-pathlength (IPL) point, a point on the surface of the cylinder medium where the light intensity remains constant and does not depend on the reduced scattering coefficient of the medium, but rather depends on the spatial structure and the cylindrical geometry. However, a similar behavior was also previously reported in reflection from a semi-infinite medium. Moreover, we presented a linear dependency between the radius of the tissue and the point's location. This point can be used as a self-calibration point and thus improve the accuracy of optical tissue measurements. This natural phenomenon has not been investigated before. We show this phenomenon theoretically, based on the diffusion theory, which is supported by our simulation results using Monte Carlo simulation.

  12. Prediction of the light scattering patterns from bacteria colonies by a time-resolved reaction-diffusion model and the scalar diffraction theory

    NASA Astrophysics Data System (ADS)

    Bae, Euiwon; Bai, Nan; Aroonnual, Amornrat; Bhunia, Arun K.; Robinson, J. Paul; Hirleman, E. Daniel

    2009-05-01

    In order to maximize the utility of the optical scattering technology in the area of bacterial colony identification, it is necessary to have a thorough understanding of how bacteria species grow into different morphological aggregation and subsequently function as distinctive optical amplitude and phase modulators to alter the incoming Gaussian laser beam. In this paper, a 2-dimentional reaction-diffusion (RD) model with nutrient concentration, diffusion coefficient, and agar hardness as variables is investigated to explain the correlation between the various environmental parameters and the distinctive morphological aggregations formed by different bacteria species. More importantly, the morphological change of the bacterial colony against time is demonstrated by this model, which is able to characterize the spatio-temporal patterns formed by the bacteria colonies over their entire growth curve. The bacteria population density information obtained from the RD model is mathematically converted to the amplitude/phase modulation factor used in the scalar diffraction theory which predicts the light scattering patterns for bacterial colonies. The conclusions drawn from the RD model combined with the scalar diffraction theory are useful in guiding the design of the optical scattering instrument aiming at bacteria colony detection and classification.

  13. Angular-dependent light scattering from cancer cells in different phases of the cell cycle.

    PubMed

    Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong

    2017-10-10

    Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements. Angular-dependent light scattering measurements of cancer cells arrested in the G1, S, and G2 phases have been performed. Based on integral calculations for scattering intensities from 5° to 10° and from 110° to 150°, conclusions have been reached. Clearly, the sizes of the cancer cells in different phases of the cell cycle dominated the forward scatter. Accompanying the increase of cell size with the progression of the cell cycle, the forward scattering intensity also increased. Meanwhile, the DNA content of cancer cells in every phase of the cell cycle is responsible for light scattering at large scatter angles. The higher the DNA content of cancer cells was, the greater the positive effect on the high-scattering intensity. As expected, understanding the relationships between the light scattering from cancer cells and cell cycles will aid in the development of cancer diagnoses. Also, it may assist in the guidance of antineoplastic drugs clinically.

  14. Asymmetric Flow-Field Flow Fractionation (AF4) of Aqueous C60 Aggregates with Dynamic Light Scattering Size and LC-MS

    EPA Science Inventory

    Current methods for the size determination of nanomaterials in aqueous suspension include dynamic or static light scattering and electron or atomic force microscopy techniques. Light scattering techniques are limited by poor resolution and the scattering intensity dependence on p...

  15. Noncontact and Wide-Field Characterization of the Absorption and Scattering Properties of Apple Fruit Using Spatial-Frequency Domain Imaging

    NASA Astrophysics Data System (ADS)

    Hu, Dong; Fu, Xiaping; He, Xueming; Ying, Yibin

    2016-12-01

    Spatial-frequency domain imaging (SFDI), as a noncontact, low-cost and wide-field optical imaging technique, offers great potential for agro-product safety and quality assessment through optical absorption (μa) and scattering (μ) property measurements. In this study, a laboratory-based SFDI system was constructed and developed for optical property measurement of fruits and vegetables. The system utilized a digital light projector to generate structured, periodic light patterns and illuminate test samples. The diffuse reflected light was captured by a charge coupled device (CCD) camera with the resolution of 1280 × 960 pixels. Three wavelengths (460, 527, and 630 nm) were selected for image acquisition using bandpass filters in the system. The μa and μ were calculated in a region of interest (ROI, 200 × 300 pixels) via nonlinear least-square fitting. Performance of the system was demonstrated through optical property measurement of ‘Redstar’ apples. Results showed that the system was able to acquire spatial-frequency domain images for demodulation and calculation of the μa and μ. The calculated μa of apple tissue experiencing internal browning (IB) were much higher than healthy apple tissue, indicating that the SFDI technique had potential for IB tissue characterization.

  16. Optical artefact characterization and correction in volumetric scintillation dosimetry

    PubMed Central

    Robertson, Daniel; Hui, Cheukkai; Archambault, Louis; Mohan, Radhe; Beddar, Sam

    2014-01-01

    The goals of this study were (1) to characterize the optical artefacts affecting measurement accuracy in a volumetric liquid scintillation detector, and (2) to develop methods to correct for these artefacts. The optical artefacts addressed were photon scattering, refraction, camera perspective, vignetting, lens distortion, the lens point spread function, stray radiation, and noise in the camera. These artefacts were evaluated by theoretical and experimental means, and specific correction strategies were developed for each artefact. The effectiveness of the correction methods was evaluated by comparing raw and corrected images of the scintillation light from proton pencil beams against validated Monte Carlo calculations. Blurring due to the lens and refraction at the scintillator tank-air interface were found to have the largest effect on the measured light distribution, and lens aberrations and vignetting were important primarily at the image edges. Photon scatter in the scintillator was not found to be a significant source of artefacts. The correction methods effectively mitigated the artefacts, increasing the average gamma analysis pass rate from 66% to 98% for gamma criteria of 2% dose difference and 2 mm distance to agreement. We conclude that optical artefacts cause clinically meaningful errors in the measured light distribution, and we have demonstrated effective strategies for correcting these optical artefacts. PMID:24321820

  17. Photovoltaic Performance Characterization of Textured Silicon Solar Cells Using Luminescent Down-Shifting Eu-Doped Phosphor Particles of Various Dimensions.

    PubMed

    Ho, Wen-Jeng; Deng, Yu-Jie; Liu, Jheng-Jie; Feng, Sheng-Kai; Lin, Jian-Cheng

    2017-01-01

    This paper reports on efforts to enhance the photovoltaic performance of textured silicon solar cells through the application of a layer of Eu-doped silicate phosphor with particles of various dimensions using the spin-on film technique. We examined the surface profile and dimensions of the Eu-doped phosphors in the silicate layer using optical microscopy with J-image software. Optical reflectance, photoluminescence, and external quantum efficiency were used to characterize the luminescent downshifting (LDS) and light scattering of the Eu-doped silicate phosphor layer. Current density-voltage curves under AM 1.5G simulation were used to confirm the contribution of LDS and light scattering produced by phosphor particles of various dimensions. Experiment results reveal that smaller phosphor particles have a more pronounced effect on LDS and a slight shading of incident light. The application of small Eu-doped phosphor particles increased the conversion efficiency by 9.2% (from 12.56% to 13.86%), far exceeding the 5.6% improvement (from 12.54% to 13.32%) achieved by applying a 250 nm layer of SiO₂ and the 4.5% improvement (from 12.37% to 12.98%) observed in cells with large Eu-doped phosphor particles.

  18. Photovoltaic Performance Characterization of Textured Silicon Solar Cells Using Luminescent Down-Shifting Eu-Doped Phosphor Particles of Various Dimensions

    PubMed Central

    Ho, Wen-Jeng; Deng, Yu-Jie; Liu, Jheng-Jie; Feng, Sheng-Kai; Lin, Jian-Cheng

    2017-01-01

    This paper reports on efforts to enhance the photovoltaic performance of textured silicon solar cells through the application of a layer of Eu-doped silicate phosphor with particles of various dimensions using the spin-on film technique. We examined the surface profile and dimensions of the Eu-doped phosphors in the silicate layer using optical microscopy with J-image software. Optical reflectance, photoluminescence, and external quantum efficiency were used to characterize the luminescent downshifting (LDS) and light scattering of the Eu-doped silicate phosphor layer. Current density-voltage curves under AM 1.5G simulation were used to confirm the contribution of LDS and light scattering produced by phosphor particles of various dimensions. Experiment results reveal that smaller phosphor particles have a more pronounced effect on LDS and a slight shading of incident light. The application of small Eu-doped phosphor particles increased the conversion efficiency by 9.2% (from 12.56% to 13.86%), far exceeding the 5.6% improvement (from 12.54% to 13.32%) achieved by applying a 250 nm layer of SiO2 and the 4.5% improvement (from 12.37% to 12.98%) observed in cells with large Eu-doped phosphor particles. PMID:28772384

  19. Raman spectroscopy for cancer detection and characterization in metastasis models

    NASA Astrophysics Data System (ADS)

    Koga, Shigehiro; Oshima, Yusuke; Sato, Mitsunori; Ishimaru, Kei; Yoshida, Motohira; Yamamoto, Yuji; Matsuno, Yusuke; Watanabe, Yuji

    2017-02-01

    Raman spectroscopy provides a wealth of diagnostic information to the surgeon with in situ cancer detection and label-free histopathology in clinical practice. Raman spectroscopy is a developing optical technique which can analyze biological tissues with light scattering. The difference in frequencies between the incident light and the scattering light are called Raman shifts, which correspond to the vibrational energy of the molecular bonds. Raman spectrum gives information about the molecular structure and composition in biological specimens. We had been previously reported that Raman spectroscopy could distinguish various histological types of human lung cancer cells from normal cells in vitro. However, to identify and detect cancer diagnostic biomarkers in vivo on Raman spectroscopy is still challenging, because malignancy can be characterized not only by the cancer cells but also by the environmental factors including immune cells, stroma cells, secretion vesicles and extracellular matrix. Here we investigate morphological and molecular dynamics in both cancer cells and their environment in xenograft models and spontaneous metastasis models using Raman spectroscopy combined with fluorescence microscopy and photoluminescence imaging. We are also constructing a custom-designed Raman spectral imaging system for both in vitro and in vivo assay of tumor tissues to reveal the metastasis process and to evaluate therapeutic effects of anti-cancer drugs and their drug delivery toward the clinical application of the technique.

  20. Characterizing string-of-pearls colloidal silica by multidetector hydrodynamic chromatography and comparison to multidetector size-exclusion chromatography, off-line multiangle static light scattering, and transmission electron microscopy.

    PubMed

    Brewer, Amandaa K; Striegel, André M

    2011-04-15

    The string-of-pearls-type morphology is ubiquitous, manifesting itself variously in proteins, vesicles, bacteria, synthetic polymers, and biopolymers. Characterizing the size and shape of analytes with such morphology, however, presents a challenge, due chiefly to the ease with which the "strings" can be broken during chromatographic analysis or to the paucity of information obtained from the benchmark microscopy and off-line light scattering methods. Here, we address this challenge with multidetector hydrodynamic chromatography (HDC), which has the ability to determine, simultaneously, the size, shape, and compactness and their distributions of string-of-pearls samples. We present the quadruple-detector HDC analysis of colloidal string-of-pearls silica, employing static multiangle and quasielastic light scattering, differential viscometry, and differential refractometry as detection methods. The multidetector approach shows a sample that is broadly polydisperse in both molar mass and size, with strings ranging from two to five particles, but which also contains a high concentration of single, unattached "pearls". Synergistic combination of the various size parameters obtained from the multiplicity of detectors employed shows that the strings with higher degrees of polymerization have a shape similar to the theory-predicted shape of a Gaussian random coil chain of nonoverlapping beads, while the strings with lower degrees of polymerization have a prolate ellipsoidal shape. The HDC technique is contrasted experimentally with multidetector size-exclusion chromatography, where, even under extremely gentle conditions, the strings still degraded during analysis. Such degradation is shown to be absent in HDC, as evidenced by the fact that the molar mass and radius of gyration obtained by HDC with multiangle static light scattering detection (HDC/MALS) compare quite favorably to those determined by off-line MALS analysis under otherwise identical conditions. The multidetector HDC results were also comparable to those obtained by transmission electron microscopy (TEM). Unlike off-line MALS or TEM, however, multidetector HDC is able to provide complete particle analysis based on the molar mass, size, shape, and compactness and their distributions for the entire sample population in less than 20 min. © 2011 American Chemical Society

  1. Low hygroscopicity of ambient fresh carbonaceous aerosols from pyrotechnics smoke

    DOE PAGES

    Carrico, Christian M.; Gomez, Samantha Laray; Dubey, Manvendra Krishna; ...

    2018-01-31

    Pyrotechnics (fireworks) displays are common for many cultures worldwide, with Independence Day celebrations occurring annually on July 4th as the most notable in the U.S. Given an episodic nature, fireworks aerosol properties are poorly characterized. Here we report observations of optical properties of fresh smoke emissions from Independence Day fireworks smoke sampled at Los Alamos National Laboratory, New Mexico U.S.A. on 4–5 July 2016. Aerosol optical properties were measured with a photoacoustic extinctiometer (PAX, DMT, Inc., Model 870 nm) at low RH < 30% and a humidity controlled nephelometry system (Ecotech, Inc., 450 nm Aurora). ‘Dry’ light scattering coefficient (σsp)more » increased from background < 15 Mm –1 reaching 120 Mm –1 (450 nm) as a 2-min event peak, while the absorption coefficient increased from background of 0.5–4.4 Mm –1 (870 nm). The event peak occurred at 00:35 on 5 July 2016, ~3 h after local fireworks events, and decreased to background by 04:00 on 5 July 2016, showing well mixed aerosol properties. A notable result is that the aerosol hygroscopic response, as characterized by the ratio of wet to dry light scattering or f(RH = 85%), declined to 1.02 at the peak fireworks influence from a background ~1.7. Strong wavelength dependence of light scattering with Ångström exponent ~2.2 throughout the event showed a size distribution dominated by sub-micrometer particles. Likewise, single scattering albedo at 870 nm remained constant throughout the event with ω = 0.86 ± 0.03, indicating light absorbing carbon, though not dominant, was mixed with organic carbon. Subsequent laboratory testing with ground-level sparklers showed that pyrotechnics smoke can generate a strong hygroscopic response, however. As confirmed with chemical analysis, the chemistry of the fireworks was key to defining the hygroscopic response. As a result, sparkler smoke was dominated by salt species such as hygroscopic potassium chloride while it lacked the black powder explosives in aerial fireworks that contribute organic and elemental carbon to its non-hygroscopic smoke.« less

  2. Low hygroscopicity of ambient fresh carbonaceous aerosols from pyrotechnics smoke

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrico, Christian M.; Gomez, Samantha Laray; Dubey, Manvendra Krishna

    Pyrotechnics (fireworks) displays are common for many cultures worldwide, with Independence Day celebrations occurring annually on July 4th as the most notable in the U.S. Given an episodic nature, fireworks aerosol properties are poorly characterized. Here we report observations of optical properties of fresh smoke emissions from Independence Day fireworks smoke sampled at Los Alamos National Laboratory, New Mexico U.S.A. on 4–5 July 2016. Aerosol optical properties were measured with a photoacoustic extinctiometer (PAX, DMT, Inc., Model 870 nm) at low RH < 30% and a humidity controlled nephelometry system (Ecotech, Inc., 450 nm Aurora). ‘Dry’ light scattering coefficient (σsp)more » increased from background < 15 Mm –1 reaching 120 Mm –1 (450 nm) as a 2-min event peak, while the absorption coefficient increased from background of 0.5–4.4 Mm –1 (870 nm). The event peak occurred at 00:35 on 5 July 2016, ~3 h after local fireworks events, and decreased to background by 04:00 on 5 July 2016, showing well mixed aerosol properties. A notable result is that the aerosol hygroscopic response, as characterized by the ratio of wet to dry light scattering or f(RH = 85%), declined to 1.02 at the peak fireworks influence from a background ~1.7. Strong wavelength dependence of light scattering with Ångström exponent ~2.2 throughout the event showed a size distribution dominated by sub-micrometer particles. Likewise, single scattering albedo at 870 nm remained constant throughout the event with ω = 0.86 ± 0.03, indicating light absorbing carbon, though not dominant, was mixed with organic carbon. Subsequent laboratory testing with ground-level sparklers showed that pyrotechnics smoke can generate a strong hygroscopic response, however. As confirmed with chemical analysis, the chemistry of the fireworks was key to defining the hygroscopic response. As a result, sparkler smoke was dominated by salt species such as hygroscopic potassium chloride while it lacked the black powder explosives in aerial fireworks that contribute organic and elemental carbon to its non-hygroscopic smoke.« less

  3. Low hygroscopicity of ambient fresh carbonaceous aerosols from pyrotechnics smoke

    NASA Astrophysics Data System (ADS)

    Carrico, Christian M.; Gomez, Samantha L.; Dubey, Manvendra K.; Aiken, Allison C.

    2018-04-01

    Pyrotechnics (fireworks) displays are common for many cultures worldwide, with Independence Day celebrations occurring annually on July 4th as the most notable in the U.S. Given an episodic nature, fireworks aerosol properties are poorly characterized. Here we report observations of optical properties of fresh smoke emissions from Independence Day fireworks smoke sampled at Los Alamos National Laboratory, New Mexico U.S.A. on 4-5 July 2016. Aerosol optical properties were measured with a photoacoustic extinctiometer (PAX, DMT, Inc., Model 870 nm) at low RH < 30% and a humidity controlled nephelometry system (Ecotech, Inc., 450 nm Aurora). 'Dry' light scattering coefficient (σsp) increased from background < 15 Mm-1 reaching 120 Mm-1 (450 nm) as a 2-min event peak, while the absorption coefficient increased from background of 0.5-4.4 Mm-1 (870 nm). The event peak occurred at 00:35 on 5 July 2016, ∼3 h after local fireworks events, and decreased to background by 04:00 on 5 July 2016, showing well mixed aerosol properties. A notable result is that the aerosol hygroscopic response, as characterized by the ratio of wet to dry light scattering or f(RH = 85%), declined to 1.02 at the peak fireworks influence from a background ∼1.7. Strong wavelength dependence of light scattering with Ångström exponent ∼2.2 throughout the event showed a size distribution dominated by sub-micrometer particles. Likewise, single scattering albedo at 870 nm remained constant throughout the event with ω = 0.86 ± 0.03, indicating light absorbing carbon, though not dominant, was mixed with organic carbon. Subsequent laboratory testing with ground-level sparklers showed that pyrotechnics smoke can generate a strong hygroscopic response, however. As confirmed with chemical analysis, the chemistry of the fireworks was key to defining the hygroscopic response. Sparkler smoke was dominated by salt species such as hygroscopic potassium chloride while it lacked the black powder explosives in aerial fireworks that contribute organic and elemental carbon to its non-hygroscopic smoke.

  4. Direct AFM observation of an opening event of a DNA cuboid constructed via a prism structure.

    PubMed

    Endo, Masayuki; Hidaka, Kumi; Sugiyama, Hiroshi

    2011-04-07

    A cuboid structure was constructed using a DNA origami design based on a square prism structure. The structure was characterized by atomic force microscopy (AFM) and dynamic light scattering. The real-time opening event of the cuboid was directly observed by high-speed AFM.

  5. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters.

    PubMed

    György, Bence; Módos, Károly; Pállinger, Eva; Pálóczi, Krisztina; Pásztói, Mária; Misják, Petra; Deli, Mária A; Sipos, Aron; Szalai, Anikó; Voszka, István; Polgár, Anna; Tóth, Kálmán; Csete, Mária; Nagy, György; Gay, Steffen; Falus, András; Kittel, Agnes; Buzás, Edit I

    2011-01-27

    Numerous diseases, recently reported to associate with elevated microvesicle/microparticle (MP) counts, have also long been known to be characterized by accelerated immune complex (IC) formation. The goal of this study was to investigate the potential overlap between parameters of protein complexes (eg, ICs or avidin-biotin complexes) and MPs, which might perturb detection and/or isolation of MPs. In this work, after comprehensive characterization of MPs by electron microscopy, atomic force microscopy, dynamic light-scattering analysis, and flow cytometry, for the first time, we drive attention to the fact that protein complexes, especially insoluble ICs, overlap in biophysical properties (size, light scattering, and sedimentation) with MPs. This, in turn, affects MP quantification by flow cytometry and purification by differential centrifugation, especially in diseases in which IC formation is common, including not only autoimmune diseases, but also hematologic disorders, infections, and cancer. These data may necessitate reevaluation of certain published data on patient-derived MPs and contribute to correct the clinical laboratory assessment of the presence and biologic functions of MPs in health and disease.

  6. Integrated Raman and angular scattering of single biological cells

    NASA Astrophysics Data System (ADS)

    Smith, Zachary J.

    2009-12-01

    Raman, or inelastic, scattering and angle-resolved elastic scattering are two optical processes that have found wide use in the study of biological systems. Raman scattering quantitatively reports on the chemical composition of a sample by probing molecular vibrations, while elastic scattering reports on the morphology of a sample by detecting structure-induced coherent interference between incident and scattered light. We present the construction of a multimodal microscope platform capable of gathering both elastically and inelastically scattered light from a 38 mum2 region in both epi- and trans-illumination geometries. Simultaneous monitoring of elastic and inelastic scattering from a microscopic region allows noninvasive characterization of a living sample without the need for exogenous dyes or labels. A sample is illuminated either from above or below with a focused 785 nm TEM00 mode laser beam, with elastic and inelastic scattering collected by two separate measurement arms. The measurements may be made either simultaneously, if identical illumination geometries are used, or sequentially, if the two modalities utilize opposing illumination paths. In the inelastic arm, Stokes-shifted light is dispersed by a spectrograph onto a CCD array. In the elastic scattering collection arm, a relay system images the microscope's back aperture onto a CCD detector array to yield an angle-resolved elastic scattering pattern. Post-processing of the inelastic scattering to remove fluorescence signals yields high quality Raman spectra that report on the sample's chemical makeup. Comparison of the elastically scattered pupil images to generalized Lorenz-Mie theory yields estimated size distributions of scatterers within the sample. In this thesis we will present validations of the IRAM instrument through measurements performed on single beads of a few microns in size, as well as on ensembles of sub-micron particles of known size distributions. The benefits and drawbacks of the epi- and trans-illumination modalities are also discussed. In addition, transilluminated Raman and elastic-scattering spectra were obtained from several biological test-cases, including Streptococcus pneumoniae, baker's yeast, and single human immune cells. Both the Raman and elastic-scattering channels extract information from these samples that are well in line with their known characteristics from the literature. Finally, we report on an experiment in which CD8+ T lymphocytes were stimulated by exposure to the antigens staphylococcal enterotoxin B and phorbol myristate acetate. Clear chemical and morphological differences were observed between the activated and unactivated cells, with the results correlating well to analysis performed on parallel samples using fluorescent stains and a flow cytometer.

  7. Detection of Objects Hidden in Highly Scattering Media Using Time-Gated Imaging Methods

    NASA Technical Reports Server (NTRS)

    Galland, Pierre A.; Wang, L.; Liang, X.; Ho, P. P.; Alfano, R. R.

    2000-01-01

    Non-intrusive and non-invasive optical imaging techniques has generated great interest among researchers for their potential applications to biological study, device characterization, surface defect detection, and jet fuel dynamics. Non-linear optical parametric amplification gate (NLOPG) has been used to detect back-scattered images of objects hidden in diluted Intralipid solutions. To directly detect objects hidden in highly scattering media, the diffusive component of light needs to be sorted out from early arrived ballistic and snake photons. In an optical imaging system, images are collected in transmission or back-scattered geometry. The early arrival photons in the transmission approach, always carry the direct information of the hidden object embedded in the turbid medium. In the back-scattered approach, the result is not so forth coming. In the presence of a scattering host, the first arrival photons in back-scattered approach will be directly photons from the host material. In the presentation, NLOPG was applied to acquire time resolved back-scattered images under the phase matching condition. A time-gated amplified signal was obtained through this NLOPG process. The system's gain was approximately 100 times. The time-gate was achieved through phase matching condition where only coherent photons retain their phase. As a result, the diffusive photons, which were the primary contributor to the background, were removed. With a large dynamic range and high resolution, time-gated early light imaging has the potential for improving rocket/aircraft design by determining jets shape and particle sizes. Refinements to these techniques may enable drop size measurements in the highly scattering, optically dense region of multi-element rocket injectors. These types of measurements should greatly enhance the design of stable, and higher performing rocket engines.

  8. Characterization of random scattering media and related information retrieval

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu

    There has been substantial interest in optical imaging in and through random media in applications as diverse as environmental sensing and tumor detection. The rich scatter environment also leads to multiple paths or channels, which may provide higher capacity for communication. Coherent light passing through random media produces an intensity speckle pattern when imaged, as a result of multiple scatter and the imaging optics. When polarized coherent light is used, the speckle pattern is sensitive to the polarization state, depending on the amount of scatter, and such measurements provide information about the random medium. This may form the basis for enhanced imaging of random media and provide information on the scatterers themselves. Second and third order correlations over laser scan frequency are shown to lead to the ensemble averaged temporal impulse response, with sensitivity to the polarization state in the more weakly scattering regime. A new intensity interferometer is introduced that provides information about two signals incident on a scattering medium. The two coherent beams, which are not necessarily overlapping, interfere in a scattering medium. A sinusoidal modulation in the second order intensity correlation with laser scan frequency is shown to be related to the relative delay of the two incident beams. An intensity spatial correlation over input position reveals that decorrelation occurs over a length comparable to the incident beam size. Such decorrelation is also related to the amount of scatter. Remarkably, with two beams incident at different angles, the intensity correlation over the scan position has a sinusoidal modulation that is related to the incidence angle difference between the two input beams. This spatial correlation over input position thus provides information about input wavevectors.

  9. Light Scattering by Marine Particles: Modeling with Non-spherical Shapes

    DTIC Science & Technology

    2009-01-01

    1491−1499, 1994. Gordon, H.R. and Tao Du, Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi...from Emiliania huxleyi, Applied Optics, (2009). van de Hulst, H.C., 1957. Light Scattering by Small Particles, Wiley. Xu, Yu-lin, and Bo A.S...G.C. Boynton, Light scattering by coccoliths detached from Emiliania huxleyi, Applied Optics, (2009). [submitted, in revision] 6 m = 1.05

  10. Determination of morphological parameters of biological cells by analysis of scattered-light distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, D.E.

    1979-11-01

    The extraction of morphological parameters from biological cells by analysis of light-scatter patterns is described. A light-scattering measurement system has been designed and constructed that allows one to visually examine and photographically record biological cells or cell models and measure the light-scatter pattern of an individual cell or cell model. Using a laser or conventional illumination, the imaging system consists of a modified microscope with a 35 mm camera attached to record the cell image or light-scatter pattern. Models of biological cells were fabricated. The dynamic range and angular distributions of light scattered from these models was compared to calculatedmore » distributions. Spectrum analysis techniques applied on the light-scatter data give the sought after morphological cell parameters. These results compared favorably to shape parameters of the fabricated cell models confirming the mathematical model procedure. For nucleated biological material, correct nuclear and cell eccentricity as well as the nuclear and cytoplasmic diameters were determined. A method for comparing the flow equivalent of nuclear and cytoplasmic size to the actual dimensions is shown. This light-scattering experiment provides baseline information for automated cytology. In its present application, it involves correlating average size as measured in flow cytology to the actual dimensions determined from this technique. (ERB)« less

  11. Influence of surface light scattering in hydrophobic acrylic intraocular lenses on laser beam transmittance.

    PubMed

    Shiraya, Tomoyasu; Kato, Satoshi; Minami, Keiichiro; Miyata, Kazunori

    2017-02-01

    The aim of this study was to experimentally examine the changes in the transmittances of photocoagulation lasers when surface light scattering increases in AcrySof intraocular lenses (IOLs). SA60AT IOLs (Alcon) were acceleratingly aging for 0, 3, 5, and 10 years to simulate surface light scattering, and the surface light-scattering intensities of both IOL surfaces were measured using a Scheimpflug photographer. The powers of laser beams that passed from a laser photocoagulator through the aged IOLs were measured at 532, 577, and 647 nm. Changes in the laser power and transmittance with the years of aging and the intensities of surface light scattering were examined. Although the intensity of surface light scattering increased with the years of aging, the laser power did not change with the years of aging (P > 0.30, Kruskal-Wallis test). There were no significant changes in the laser transmittance with the years of aging or the laser wavelength (P > 0.30 and 0.57, respectively). The intensity of surface light scattering revealed no significant association with the laser transmittance at any wavelength (P > 0.37, liner regression). The increases in the surface light scattering of the AcrySof IOLs would not influence retinal photocoagulation treatments for up to 10 years after implantation.

  12. A high rigor temperature, not sarcomere length, determines light scattering properties and muscle colour in beef M. sternomandibularis meat and muscle fibres.

    PubMed

    Hughes, J; Clarke, F; Purslow, P; Warner, R

    2018-05-18

    Beef meat colour is impacted by both myoglobin status and the light scattering properties of the muscle, and the specific causative scattering elements of the latter are still unknown. We hypothesize that stretching muscles during rigor will generate a structure which favours light scattering, by increasing the length of the I-band (longer sarcomeres) and that a high rigor temperature will cause protein reconfiguration, changing the muscle structure and promoting light scattering. Muscle fibre fragments were isolated from four beef M. sternomandibularis and subjected to stretching (plus, minus) and three incubation temperatures (5, 15, 35 °C). Reflectance confocal laser scanning microscopy (rCLSM) revealed sarcomere stretching alone was not solely responsible for light scattering development. A high rigor temperature (35 °C) was more favourable for light scattering. Stretching and taking muscle into rigor at 35 °C promoted transverse shrinkage of muscle fibres and increased light scattering and could be applied post-mortem (PM) to reduce the occurrence of problematic dark meat. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  13. Polarized light scattering as a probe for changes in chromosome structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, Daniel Benjamin

    1993-10-01

    Measurements and calculations of polarized light scattering are applied to chromosomes. Calculations of the Mueller matrix, which completely describes how the polarization state of light is altered upon scattering, are developed for helical structures related to that of chromosomes. Measurements of the Mueller matrix are presented for octopus sperm heads, and dinoflagellates. Comparisons of theory and experiment are made. A working theory of polarized light scattering from helices is developed. The use of the first Born approximation vs the coupled dipole approximation are investigated. A comparison of continuous, calculated in this work, and discrete models is also discussed. By comparingmore » light scattering measurements with theoretical predictions the average orientation of DNA in an octopus sperm head is determined. Calculations are made for the Mueller matrix of DNA plectonemic helices at UV, visible and X-ray wavelengths. Finally evidence is presented that the chromosomes of dinoflagellates are responsible for observed differential scattering of circularly-polarized light. This differential scattering is found to vary in a manner that is possibly correlated to the cell cycle of the dinoflagellates. It is concluded that by properly choosing the wavelength probe polarized light scattering can provide a useful tool to study chromosome structure.« less

  14. Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Wang, Jiahong; Nan, Fan; Bu, Chenghao; Yu, Zhenhua; Liu, Wei; Guo, Shishang; Hu, Hao; Zhao, Xing-Zhong

    2014-01-01

    Upconversion materials have been employed as energy relay materials in dye sensitized solar cells (DSCs) to broaden the range of light absorption. However, the origin of the enhancements can be induced by both upconversion and size-dependent light scattering effects. To clarify the role of the upconversion material in the photoelectrode of DSCs, an upconversion induced device was realized here, which has the size-dependent light scattering effect eliminated via the application of NaYF4:Er3+, Yb3+@SiO2 upconversion nanoparticles (β-NYEY@SiO2 UCNPs). An enhancement of 6% in efficiency was observed for the device. This demonstration provided an insight into the possible further employment of upconversion in DSCs.Upconversion materials have been employed as energy relay materials in dye sensitized solar cells (DSCs) to broaden the range of light absorption. However, the origin of the enhancements can be induced by both upconversion and size-dependent light scattering effects. To clarify the role of the upconversion material in the photoelectrode of DSCs, an upconversion induced device was realized here, which has the size-dependent light scattering effect eliminated via the application of NaYF4:Er3+, Yb3+@SiO2 upconversion nanoparticles (β-NYEY@SiO2 UCNPs). An enhancement of 6% in efficiency was observed for the device. This demonstration provided an insight into the possible further employment of upconversion in DSCs. Electronic supplementary information (ESI) available: Details of preparations and characterizations; the TEM images, EDX measurements, XRD measurements and upconversion emission spectrum of bared β-NYEY nanocrystals; SEM and AFM images of the photoelectrode with different concentrations of β-NYEY nanocrystals; J-V characteristics, EIS measurements and fitted EIS parameters of the DSCs based on five different photoelectrodes. See DOI: 10.1039/c3nr04315k

  15. Quantitative assessment of submicron scale anisotropy in tissue multifractality by scattering Mueller matrix in the framework of Born approximation

    NASA Astrophysics Data System (ADS)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya

    2018-04-01

    A number of tissue-like disordered media exhibit local anisotropy of scattering in the scaling behavior. Scaling behavior contains wealth of fractal or multifractal properties. We demonstrate that the spatial dielectric fluctuations in a sample of biological tissue exhibit multifractal anisotropy. Multifractal anisotropy encoded in the wavelength variation of the light scattering Mueller matrix and manifesting as an intriguing spectral diattenuation effect. We developed an inverse method for the quantitative assessment of the multifractal anisotropy. The method is based on the processing of relevant Mueller matrix elements in Fourier domain by using Born approximation, followed by the multifractal analysis. The approach promises for probing subtle micro-structural changes in biological tissues associated with the cancer and precancer, as well as for non-destructive characterization of a wide range of scattering materials.

  16. Nano-Se: Cheap and easy-to-obtain novel material for all-dielectric nano-photonics

    NASA Astrophysics Data System (ADS)

    Ivanova, A. K.; Ionin, A. A.; Khmel'nitskii, R. A.; Klevkov, Yu. K.; Kudryashov, S. I.; Levchenko, A. O.; Mel'nik, N. N.; Nastulyavichus, A. A.; Rudenko, A. A.; Saraeva, I. N.; Smirnov, N. A.; Zayarny, D. A.; Gonchukov, S. A.; Tolordava, E. R.; Baranov, A. N.

    2017-09-01

    Milligram-per-second production of selenium nanoparticles in water sols was realized through few W, kHz-rate nanosecond laser ablation of a solid selenium pellet. High-yield particle formation mechanism and ultimate mass-removal yield were elucidated by optical profilometry and scanning electron microscopy characterization of crater depths and topographies. Deposited particles were inspected by scanning electron microscopy, while optical transmission Raman and dynamic light scattering spectroscopy characterized their hydrosols.

  17. Double-layered liquid crystal light shutter for control of absorption and scattering of the light incident to a transparent display device

    NASA Astrophysics Data System (ADS)

    Huh, Jae-Won; Yu, Byeong-Hun; Shin, Dong-Myung; Yoon, Tae-Hoon

    2015-03-01

    Recently, a transparent display has got much attention as one of the next generation display devices. Especially, active studies on a transparent display using organic light-emitting diodes (OLEDs) are in progress. However, since it is not possible to obtain black color using a transparent OLED, it suffers from poor visibility. This inevitable problem can be solved by using a light shutter. Light shutter technology can be divided into two types; light absorption and scattering. However, a light shutter based on light absorption cannot block the background image perfectly and a light shutter based on light scattering cannot provide black color. In this work we demonstrate a light shutter using two liquid crystal (LC) layers, a light absorption layer and a light scattering layer. To realize a light absorption layer and a light scattering layer, we use the planar state of a dye-doped chiral nematic LC (CNLC) cell and the focal-conic state of a long-pitch CNLC cell, respectively. The proposed light shutter device can block the background image perfectly and show black color. We expect that the proposed light shutter can increase the visibility of a transparent display.

  18. Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.

    1998-12-01

    We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.

  19. Laser light scattering from wood samples soaked in water or in benzyl benzoate

    NASA Astrophysics Data System (ADS)

    Simonaho, S.-P.; Tolonen, Y.; Rouvinen, J.; Silvennoinen, R.

    Laser light scattering from Scots pine (Pinus Sylvesteris L.) wood samples soaked in two different liquids, which were tap water and benzyl benzoate, has been experimentally investigated. Differences in the characteristics of the scattering pattern as function of the soaking time as well as the moisture effect in the orientation of scattering pattern has been experimentally investigated. The wood samples soaked in the test liquids altered the laser light scattering in along and across the grain directions. No correlation between the content of the water in the wood sample and the orientation of laser light scattering pattern was observed.

  20. Light-triggered self-assembly of triarylamine-based nanospheres

    NASA Astrophysics Data System (ADS)

    Moulin, Emilie; Niess, Frédéric; Fuks, Gad; Jouault, Nicolas; Buhler, Eric; Giuseppone, Nicolas

    2012-10-01

    Tailored triarylamine units modified with terpyridine ligands were coordinated to Zn2+ ions and characterized as discrete dimeric entities. Interestingly, when these complexes were subsequently irradiated with simple visible light in chloroform, they readily self-assembled into monodisperse spheres with a mean diameter of 160 nm.Tailored triarylamine units modified with terpyridine ligands were coordinated to Zn2+ ions and characterized as discrete dimeric entities. Interestingly, when these complexes were subsequently irradiated with simple visible light in chloroform, they readily self-assembled into monodisperse spheres with a mean diameter of 160 nm. Electronic supplementary information (ESI) available: Synthetic procedures and products' characterization (2-4 and 6-9). 1H NMR titration of compound 6 by Zn(OTf)2 to form complex 7. Kinetic measurements by UV-Vis-NIR spectroscopy. Transmission electron microscopy imaging for complexes 8 and 9. UV-Vis-NIR for an Fe2+ analogue of complex 7. Dynamic light scattering and time autocorrelation function for self-assembly of complexes 7-9. Copies of 1H and 13C NMR spectra for compounds 2-4 and 6. See DOI: 10.1039/c2nr32168h

  1. Light scatter on the surface of AcrySof intraocular lenses: part I. Analysis of lenses retrieved from pseudophakic postmortem human eyes.

    PubMed

    Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David J

    2008-01-01

    To investigate the cause of light scatter measured on the surface of AcrySof intraocular lenses (Alcon Laboratories, Inc., Fort Worth, TX) retrieved from pseudophakic postmortem human eyes. Ten intraocular lenses (Alcon AcrySofModel MA60BM) were retrieved postmortem and analyzed for light scatter before and after removal of surface-bound biofilms. Six of the 10 lenses exhibited light scatter that was clearly above baseline levels. In these 6 lenses, both peak and average pixel density were reduced by approximately 80% after surface cleaning. The current study demonstrates that a coating deposited in vivo on the lens surface is responsible for the light scatter observed when incident light is applied.

  2. Fiber optic light-scattering measurement system for evaluation of embryo viability: light-scattering characteristics from live mouse embryo

    NASA Astrophysics Data System (ADS)

    Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto

    1997-06-01

    We measured angular distribution of the light scattering from live mouse embryo with 632.8nm in wavelength to evaluate the embryo viability. We aim to measure the mitochondrial density in human embryo which have relation to the embryo viability. We have constructed the light scattering measurement system to detect the mitochondrial density non-invasively. We have employed two optical fibers for the illumination and sensing to change the angle between these fibers. There were two dips on the scattering angular distribution from the embryo. These dips existed on 30 and 85 deg. We calculated the scattering angular pattern by Mie theory to fit the measured scattering estimated scattering size and density. The best fitting was obtained when the particle size and density were 0.9 micrometers and 1010 particles per ml, respectively. These values coincided with the approximated values of mitochondrial in the embryo. The measured light scattering may mainly originated from mitochondria in spite of the existence of the various scattering particles in the embryo. Since our simple scattering measurement may offer the mitochondrial density in the embryo, it might become the practical method of human embryo on in vitro fertilization-embryo transfer.

  3. Size-dependent longitudinal plasmon resonance wavelength and extraordinary scattering properties of Au nanobipyramids.

    PubMed

    Wang, Wenhao; Yu, Peng; Zhong, Zhiqin; Tong, Xin; Liu, Tianji; Li, Yanbo; Ashalley, Eric; Chen, Huanyang; Wu, Jiang; Wang, Zhiming

    2018-08-31

    Au nanobipyramids (NBPs) with sharp tips and narrow plasmon linewidths are ideal candidates for plasmonic applications. In this paper, we investigated the influencing factors of longitudinal plasmon resonance wavelength (LPRW) and scattering properties of single Au NBP by simulation. Compared with the volume, we establish the aspect ratio (length/width) as the dominant factor that affects the LPRW of Au NBPs. Plasmonic nanoparticles have been widely used for light-trapping enhancement in photovoltaics. To give a profound understanding of the superior light harvesting properties of Au NBPs, the near-field localization effect and far-field scattering mechanism of Au NBPs were investigated. Under the light injection at LPRW, the tip area shows near-field enhancement and the maximum scattering intensity appears on the side area of the waist owing to the remarkable optical absorption near the tips. Additionally, we confirm the fraction of light scattered into the substrate and angular distribution of the light scattered by the Au NBPs. The fraction of light scattered into the substrate reaches up to 97% from 400-1100 nm and preserves a broadband spectrum. This suggests that the NBP has a predominant forward scattering and reduced backward scattering. The excellent plasmonic scattering properties of Au NBPs are promising in photovoltaic devices and photothermal therapy.

  4. A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate

    NASA Astrophysics Data System (ADS)

    Huffman, Donald R.; Swanson, Benjamin E.; Huffman, J. Alex

    2016-08-01

    We describe a novel, low-cost instrument to acquire both elastic and inelastic (fluorescent) scattering spectra from individual supermicron-size particles in a multi-particle collection on a microscope slide. The principle of the device is based on a slitless spectroscope that is often employed in astronomy to determine the spectra of individual stars in a star cluster but had not been applied to atmospheric particles. Under excitation, most commonly by either a 405 nm diode laser or a UV light-emitting diode (LED), fluorescence emission spectra of many individual particles can be determined simultaneously. The instrument can also acquire elastic scattering spectra from particles illuminated by a white-light source. The technique also provides the ability to detect and rapidly estimate the number fraction of fluorescent particles that could contaminate a collection of non-fluorescent material, even without analyzing full spectra. Advantages and disadvantages of using black-and-white cameras compared to color cameras are given. The primary motivation for this work has been to develop an inexpensive technique to characterize fluorescent biological aerosol particles, especially particles such as pollen and mold spores that can cause allergies. An example of an iPhone-enabled device is also shown as a means for collecting data on biological aerosols at lower cost or by utilizing citizen scientists for expanded data collection.

  5. Photovoltaic structures having a light scattering interface layer and methods of making the same

    DOEpatents

    Liu, Xiangxin; Compaan, Alvin D.; Paudel, Naba Raj

    2015-10-13

    Photovoltaic (PV) cell structures having an integral light scattering interface layer configured to diffuse or scatter light prior to entering a semiconductor material and methods of making the same are described.

  6. Methods and apparatus for transparent display using scattering nanoparticles

    DOEpatents

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2017-06-14

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  7. Light scatter on the surface of AcrySof intraocular lenses: part II. Analysis of lenses following hydrolytic stability testing.

    PubMed

    Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David

    2008-01-01

    To investigate the surface light scatter and optical quality of AcrySof lenses (Alcon Laboratories, Inc., Fort Worth, TX) following simulated aging of 20 years. AcrySof lenses were exposed to exaggerated thermal conditions to simulate up to 20 years of aging and were tested for surface light scatter and optical quality (modulation transfer function). There were no significant differences from baseline for either the surface light scatter or optical quality of the lenses over time. The current study demonstrated that surface light scatter on AcrySof lenses did not increase under conditions simulating 20 years of aging. Because the simulated aging environment contained no protein, this work indirectly supports the finding that surface light scatter is due to the deposition of a biomaterial on the lens surface rather than changes in the material. Optical performance integrity of the test lenses was maintained under severe environmental conditions.

  8. Effective phase function of light scattered at small angles by polydisperse particulate media

    NASA Astrophysics Data System (ADS)

    Turcu, I.

    2008-06-01

    Particles with typical dimensions higher than the light wavelength and relative refraction indexes close to one, scatter light mainly in the forward direction where the scattered light intensity has a narrow peak. For particulate media accomplishing these requirements the light scattered at small angles in a far-field detecting set-up can be described analytically by an effective phase function (EPF) even in the multiple scattering regime. The EPF model which was built for monodispersed systems has been extended to polydispersed media. The main ingredients consist in the replacement of the single particle phase function and of the optical thickness with their corresponding averaged values. Using a Gamma particle size distribution (PSD) as a testing model, the effect of polydispersity was systematically investigated. The increase of the average radius or/and of the PSD standard deviation leads to the decrease of the angular spreading of the small angle scattered light.

  9. Methods and apparatus for transparent display using scattering nanoparticles

    DOEpatents

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2016-05-10

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  10. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre

    PubMed Central

    Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut

    2014-01-01

    Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s−1 and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638

  11. Novel Optical Technique Developed and Tested for Measuring Two-Point Velocity Correlations in Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Goldburg, Walter I.

    2002-01-01

    A novel technique for characterizing turbulent flows was developed and tested at the NASA Glenn Research Center. The work is being done in collaboration with the University of Pittsburgh, through a grant from the NASA Microgravity Fluid Physics Program. The technique we are using, Homodyne Correlation Spectroscopy (HCS), is a laser-light-scattering technique that measures the Doppler frequency shift of light scattered from microscopic particles in the fluid flow. Whereas Laser Doppler Velocimetry gives a local (single-point) measurement of the fluid velocity, the HCS technique measures correlations between fluid velocities at two separate points in the flow at the same instant of time. Velocity correlations in the flow field are of fundamental interest to turbulence researchers and are of practical importance in many engineering applications, such as aeronautics.

  12. Development and characterization of nanostructured mists with potential for actively targeting poorly water-soluble compounds into the lungs.

    PubMed

    Nesamony, Jerry; Kalra, Ashish; Majrad, Mohamed S; Boddu, Sai Hanuman Sagar; Jung, Rose; Williams, Frederick E; Schnapp, Alaina M; Nauli, Surya M; Kalinoski, Andrea L

    2013-10-01

    To formulate nanoemulsions (NE) with potential for delivering poorly water-soluble drugs to the lungs. A self nanoemulsifying composition consisting of cremophor RH 40, PEG 400 and labrafil M 2125 CS was selected after screening potential excipients. The solubility of carbamazepine, a poorly water-soluble drug, was tested in the formulation components. Oil-in-water (o/w) NEs were characterized using dynamic light scattering, electrophoretic light scattering, transmission electron microscopy (TEM) and differential scanning calorimetry. NEs were nebulized into a mist using a commercial nebulizer and characterized using laser diffraction and TEM. An aseptic method was developed for preparing sterile NEs. Biocompatibility of the formulation was evaluated on NIH3T3 cells using MTT assay. In vitro permeability of the formulation was tested in zebra fish eggs, HeLa cells, and porcine lung tissue. NEs had neutrally charged droplets of less than 20 nm size. Nebulized NEs demonstrated an o/w nanostructure. The mist droplets were of size less than 5 μm. Sterility testing and cytotoxicity results validated that the NE was biocompatible and sterile. In vitro tests indicated oil nanodroplets penetrating intracellularly through biological membranes. The nanoemulsion mist has the potential for use as a pulmonary delivery system for poorly water-soluble drugs.

  13. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  14. Nano-scale imaging and spectroscopy of plasmonic systems, thermal near-fields, and phase separation in complex oxides

    NASA Astrophysics Data System (ADS)

    Jones, Andrew C.

    Optical spectroscopy represents a powerful characterization technique with the ability to directly interact with the electronic, spin, and lattice excitations in matter. In addition, through implementation of ultrafast techniques, further insight into the real-time dynamics of elementary interactions can be gained. However, the resolution of far-field microscopy techniques is restricted by the diffraction limit setting a spatial resolution limit in the 100s nm to micron range for visible and IR light, respectively. This resolution is too coarse for the characterization of mesoscopic phenomena in condensed matter physics. The development of experimental techniques with nanoscale resolution and sensitivity to optical fields has been a long standing obstacle to the characterization of condensed matter systems on their natural length scales. This dissertation focuses on the fundamental near-field optical properties of surfaces and nanoscale systems as well as the utilization of nano-optical techniques, specifically apertureless scattering-type Scanning Near-field Optical Microscopy (s-SNOM), to characterize said optical properties with nanometer scale resolution. First, the s-SNOM characterization of the field enhancement associated with the localized surface plasmon resonances on metallic structures is discussed. With their ability to localize light, plasmonic nano-structures are promising candidate systems to serve as molecular sensors and nano-photonic devices; however, it is well known that particle morphology and the plasmon resonance alone do not uniquely reflect the details of the local field distribution. Here, I demonstrate the use interferometric s-SNOM for imaging of the near-fields associated with plasmonic resonances of crystalline triangular silver nano-prisms in the visible spectral range. I subsequently show the extension of the concept of a localized plasmon into the mid-IR spectral range with the characterization of near-fields of silver nano-rods. Strong spatial field variation on lengths scales as short as 20 nm is observed associated with the dipolar and quadrupolar modes of both systems with details sensitively depending on the nanoparticle structure and environment. In light of recent publications predicting distinct spectral characteristics of thermal electromagnetic near-fields, I demonstrate the extension of s-SNOM techniques through the implementation of a heated atomic force microscope (AFM) tip acting as its own intrinsic light source for the characterization of thermal near-fields. Here, I detail the spectrally distinct and orders of magnitude enhanced resonant spectral near-field energy density associated with vibrational, phonon, and phonon-polariton modes. Modeling the thermal light scattering by the AFM, the scattering cross-section for thermal light may be related to the electromagnetic local density of states (EM-LDOS) above a surface. Lastly, the unique capability of s-SNOM techniques to characterize phase separation phenomena in correlated electron systems is discussed. This measurement capability provides new microscopic insight into the underlying mechanisms of the rich phase transition behavior exhibited by these materials. As a specific example, the infrared s-SNOM mapping of the metal-insulator transition and the associated nano-domain formation in individual VO2 micro-crystals subject to substrate stress is presented. Our results have important implications for the interpretation of the investigations of conventional polycrystalline thin films where the mutual interaction of constituent crystallites may affect the nature of phase separation processes.

  15. Evolution of circular and linear polarization in scattering environments

    DOE PAGES

    van der Laan, John D.; Wright, Jeremy Benjamin; Scrymgeour, David A.; ...

    2015-12-02

    This study quantifies the polarization persistence and memory of circularly polarized light in forward-scattering and isotropic (Rayleigh regime) environments; and for the first time, details the evolution of both circularly and linearly polarized states through scattering environments. Circularly polarized light persists through a larger number of scattering events longer than linearly polarized light for all forward-scattering environments; but not for scattering in the Rayleigh regime. Circular polarization’s increased persistence occurs for both forward and backscattered light. The simulated environments model polystyrene microspheres in water with particle diameters of 0.1 μm, 2.0 μm, and 3.0 μm. The evolution of the polarizationmore » states as they scatter throughout the various environments are illustrated on the Poincaré sphere after one, two, and ten scattering events.« less

  16. Light scattering by marine algae: two-layer spherical and nonspherical models

    NASA Astrophysics Data System (ADS)

    Quirantes, Arturo; Bernard, Stewart

    2004-11-01

    Light scattering properties of algae-like particles are modeled using the T-matrix for coated scatterers. Two basic geometries have been considered: off-centered coated spheres and centered spheroids. Extinction, scattering and absorption efficiencies, plus scattering in the backward plane, are compared to simpler models like homogeneous (Mie) and coated (Aden-Kerker) models. The anomalous diffraction approximation (ADA), of widespread use in the oceanographic light-scattering community, has also been used as a first approximation, for both homogeneous and coated spheres. T-matrix calculations show that some light scattering values, such as extinction and scattering efficiencies, have little dependence on particle shape, thus reinforcing the view that simpler (Mie, Aden-Kerker) models can be applied to infer refractive index (RI) data from absorption curves. The backscattering efficiency, on the other hand, is quite sensitive to shape. This calls into question the use of light scattering techniques where the phase function plays a pivotal role, and can help explain the observed discrepancy between theoretical and experimental values of the backscattering coefficient in observed in oceanic studies.

  17. A Study of Brownian Motion Using Light Scattering

    ERIC Educational Resources Information Center

    Clark, Noel A.; Lunacek, Joseph H.

    1969-01-01

    Describes an apparatus designed to investigate molecular motion by means of light scattering. Light from a He-Ne laser is focused into a cell containing a suspension of polystyrene spheres. The scattered light, collected on the photosurface of a photomultiplier tube, is analyzed. The apparatus won first prize in Demonstration Lecture Apparatus in…

  18. Protein aggregation studied by forward light scattering and light transmission analysis

    NASA Astrophysics Data System (ADS)

    Penzkofer, A.; Shirdel, J.; Zirak, P.; Breitkreuz, H.; Wolf, E.

    2007-12-01

    The aggregation of the circadian blue-light photo-receptor cryptochrome from Drosophila melanogaster (dCry) is studied by transmission and forward light scattering measurement in the protein transparent wavelength region. The light scattering in forward direction is caused by Rayleigh scattering which is proportional to the degree of aggregation. The light transmission through the samples in the transparent region is reduced by Mie light scattering in all directions. It depends on the degree of aggregation and the monomer volume fill factor of the aggregates (less total scattering with decreasing monomer volume fill factor of protein globule) allowing a distinction between tightly packed protein aggregation (monomer volume fill factor 1) and loosely packed protein aggregation (monomer volume fill factor less than 1). An increase in aggregation with temperature, concentration, and blue-light exposure is observed. At a temperature of 4 °C and a protein concentration of less than 0.135 mM no dCry aggregation was observed, while at 24 °C and 0.327 mM gelation occurred (loosely packed aggregates occupying the whole solution volume).

  19. Statistical-thermodynamic model for light scattering from eye lens protein mixtures

    NASA Astrophysics Data System (ADS)

    Bell, Michael M.; Ross, David S.; Bautista, Maurino P.; Shahmohamad, Hossein; Langner, Andreas; Hamilton, John F.; Lahnovych, Carrie N.; Thurston, George M.

    2017-02-01

    We model light-scattering cross sections of concentrated aqueous mixtures of the bovine eye lens proteins γB- and α-crystallin by adapting a statistical-thermodynamic model of mixtures of spheres with short-range attractions. The model reproduces measured static light scattering cross sections, or Rayleigh ratios, of γB-α mixtures from dilute concentrations where light scattering intensity depends on molecular weights and virial coefficients, to realistically high concentration protein mixtures like those of the lens. The model relates γB-γB and γB-α attraction strengths and the γB-α size ratio to the free energy curvatures that set light scattering efficiency in tandem with protein refractive index increments. The model includes (i) hard-sphere α-α interactions, which create short-range order and transparency at high protein concentrations, (ii) short-range attractive plus hard-core γ-γ interactions, which produce intense light scattering and liquid-liquid phase separation in aqueous γ-crystallin solutions, and (iii) short-range attractive plus hard-core γ-α interactions, which strongly influence highly non-additive light scattering and phase separation in concentrated γ-α mixtures. The model reveals a new lens transparency mechanism, that prominent equilibrium composition fluctuations can be perpendicular to the refractive index gradient. The model reproduces the concave-up dependence of the Rayleigh ratio on α/γ composition at high concentrations, its concave-down nature at intermediate concentrations, non-monotonic dependence of light scattering on γ-α attraction strength, and more intricate, temperature-dependent features. We analytically compute the mixed virial series for light scattering efficiency through third order for the sticky-sphere mixture, and find that the full model represents the available light scattering data at concentrations several times those where the second and third mixed virial contributions fail. The model indicates that increased γ-γ attraction can raise γ-α mixture light scattering far more than it does for solutions of γ-crystallin alone, and can produce marked turbidity tens of degrees celsius above liquid-liquid separation.

  20. Apparatus and method for qualitative and quantitative measurements of optical properties of turbid media using frequency-domain photon migration

    DOEpatents

    Tromberg, B.J.; Tsay, T.T.; Berns, M.W.; Svaasand, L.O.; Haskell, R.C.

    1995-06-13

    Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid. 14 figs.

  1. Apparatus and method for qualitative and quantitative measurements of optical properties of turbid media using frequency-domain photon migration

    DOEpatents

    Tromberg, Bruce J.; Tsay, Tsong T.; Berns, Michael W.; Svaasand, Lara O.; Haskell, Richard C.

    1995-01-01

    Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid.

  2. Characterization of light scattering in nematic droplet-polymer films

    NASA Astrophysics Data System (ADS)

    Kinugasa, Naoki; Yano, Yuichi; Takigawa, Akio; Kawahara, Hideo

    1992-06-01

    The optical properties of nematic droplet-polymer films were studied both in the on and off state using Lambert-Beer''s law to characterize their scattering phenomena. For the preparation of the devices, NCAP process was employed with the different diameter, distribution, shape, and density of nematic droplets. Their cell thickness and refractive indices concerning the birefringence of liquid crystals were also controlled. The results showed that the scattering phenomena of nematic droplet-polymer films were likely caused by two types of features. One, related to the surface area of nematic droplets, was the difference of the refractive indices in the interface between liquid crystals and polymer matrix. The other, related to the liquid crystal volume inside the nematic droplets, was the birefringence of liquid crystals. Considering such relations, the extinction coefficient of Lambert-Beer''s law could be described by the sum of the area in the interface multiplied by the difference of the refractive indices between two materials and the liquid crystal volume multiplied by their birefringence. Furthermore, it was found their parallel transmittance in the off state and haze ratio in the on state were well characterized by such extinction coefficient of Lambert-Beer''s law.

  3. Light scattering from an atomic gas under conditions of quantum degeneracy

    NASA Astrophysics Data System (ADS)

    Porozova, V. M.; Gerasimov, L. V.; Havey, M. D.; Kupriyanov, D. V.

    2018-05-01

    Elastic light scattering from a macroscopic atomic sample existing in the Bose-Einstein condensate phase reveals a unique physical configuration of interacting light and matter waves. However, the joint coherent dynamics of the optical excitation induced by an incident photon is influenced by the presence of incoherent scattering channels. For a sample of sufficient length the excitation transports as a polariton wave and the propagation Green's function obeys the scattering equation which we derive. The polariton dynamics could be tracked in the outgoing channel of the scattered photon as we show via numerical solution of the scattering equation for one-dimensional geometry. The results are analyzed and compared with predictions of the conventional macroscopic Maxwell theory for light scattering from a nondegenerate atomic sample of the same density and size.

  4. An analysis of scattered light in low dispersion IUE spectra

    NASA Technical Reports Server (NTRS)

    Basri, G.; Clarke, J. T.; Haisch, B. M.

    1985-01-01

    A detailed numerical simulation of light scattering from the low-resolution grating in the short wavelength spectrograph of the IUE Observatory was developed, in order to quantitatively analyze the effects of scattering on both continuum and line emission spectra. It is found that: (1) the redistribution of light by grating scattering did not appreciably alter either the shape or the absolute flux level of continuum spectra for A-F stars; (2) late-type stellar continua showed a tendency to flatten when observed in scattered light toward the shorter wavelengths; and (3) the effect of grating scattering on emission lines is to decrease measured line intensities by an increasing percentage toward the shorter wavelengths. The spectra obtained from scattering experiments for solar-type and late type stars are reproduced in graphic form.

  5. Characteristics of angular cross correlations studied by light scattering from two-dimensional microsphere films

    NASA Astrophysics Data System (ADS)

    Schroer, M. A.; Gutt, C.; Grübel, G.

    2014-07-01

    Recently the analysis of scattering patterns by angular cross-correlation analysis (CCA) was introduced to reveal the orientational order in disordered samples with special focus to future applications on x-ray free-electron laser facilities. We apply this CCA approach to ultra-small-angle light-scattering data obtained from two-dimensional monolayers of microspheres. The films were studied in addition by optical microscopy. This combined approach allows to calculate the cross-correlations of the scattering patterns, characterized by the orientational correlation function Ψl(q), as well as to obtain the real-space structure of the monolayers. We show that CCA is sensitive to the orientational order of monolayers formed by the microspheres which are not directly visible from the scattering patterns. By mixing microspheres of different radii the sizes of ordered monolayer domains is reduced. For these samples it is shown that Ψl(q) quantitatively describes the degree of hexagonal order of the two-dimensional films. The experimental CCA results are compared with calculations based on the microscopy images. Both techniques show qualitatively similar features. Differences can be attributed to the wave-front distortion of the laser beam in the experiment. This effect is discussed by investigating the effect of different wave fronts on the cross-correlation analysis results. The so-determined characteristics of the cross-correlation analysis will be also relevant for future x-ray-based studies.

  6. A confocal scanning laser ophthalmoscope for retinal vessel oximetry

    NASA Astrophysics Data System (ADS)

    Lompado, Arthur

    Measurement of a person's blood oxygen saturation has long been recognized as a useful metric for the characterizing ailments ranging from chronic respiratory disorders to acute, potentially life threatening, traumas. The ubiquity of oxygen saturation monitors in the medical field, including portable pulse oximeters and laboratory based CO-oximeters, is a testament to the importance of this technique. The work presented here documents the design, fabrication and development of a unique type of oxygen saturation monitor, a confocal scanning retinal vessel oximeter, with the potential to expand the usefulness of the present devices. A large part of the knowledge base required to construct the instrument comes from the consideration of light scattering by red blood cells in a blood vessel. Therefore, a substantial portion of this work is devoted to the process of light scattering by whole human blood and its effects on the development of a more accurate oximeter. This light scattering effect has been both measured and modeled stochastically to determine its contribution to the measured oximeter signal. It is shown that, although well accepted in the published literature, the model only correlates marginally to the measurements due to inherent limitations imposed by the model assumptions. Nonetheless, enough material has been learned about the scattering to allow development of a mathematical model for the interaction of light with blood in a vessel, and this knowledge has been applied to the data reduction of the present oximeter. This data reduction technique has been tested in a controlled experiment employing a model eye with a blood filled mock retinal vessel. It will be shown that the presently developed technique exhibited strong correlation between the known blood oxygen saturation and that calculated by the new system.

  7. Flow Cytometry of Spinach Chloroplasts 1

    PubMed Central

    Schröder, Wolfgang P.; Petit, Patrice X.

    1992-01-01

    Intact spinach (Spinacia oleracea) chloroplasts, thylakoid membranes, and inside-out or right-side-out thylakoid vesicles have been characterized by flow cytometry with respect to forward angle light scatter, right angle light scatter, and chlorophyll fluorescence. Analysis of intact chloroplasts with respect to forward light scatter and the chlorophyll fluorescence parameter revealed the presence of truly “intact” and “disrupted” chloroplasts. The forward light scatter parameter, normally considered to reflect object size, was instead found to reflect the particle density. One essential advantage of flow cytometry is that additional parameters such as Ricinus communis agglutinin (linked to fluorescein isothiocyanate) fluorescence can be determined through logical conditions placed on bit-maps, amounting to an analytical purification procedure. In the present case, chloroplast subpopulations with fully preserved envelopes, thylakoid membrane, and inside-out or right-side-out thylakoid membranes vesicles can be distinguished. Flow cytometry is also a useful tool to address the question of availability of glycosyl moities on the membrane surfaces if one keeps in mind that organelle-to-organelle interactions could be partially mediated through a recognition process. A high specific binding of R. communis agglutinin and peanut lectin to the chloroplast envelope was detected. This showed that galactose residues were exposed and accessible to specific lectins on the chloroplast surface. No exposed glucose, fucose, or mannose residues could be detected by the appropriate lectins. Ricin binding to the intact chloroplasts caused a strong aggregation. Disruption of these aggregates by resuspension or during passage in the flow cytometer induced partial breakage of the chloroplasts. Only minor binding of R. communis agglutinin and peanut lectin to the purified thylakoid membranes was detected; the binding was found to be low for both inside-out and right-side-out vesicles of the thylakoid membranes. Images Figure 1 Figure 1 Figure 1 PMID:16653090

  8. Enhanced dye-sensitized solar cells performance using anatase TiO2 mesocrystals with the Wulff construction of nearly 100% exposed {101} facets as effective light scattering layer.

    PubMed

    Zhou, Yu; Wang, Xinyu; Wang, Hai; Song, Yeping; Fang, Liang; Ye, Naiqing; Wang, Linjiang

    2014-03-28

    Anatase TiO2 mesocrystals with a Wulff construction of nearly 100% exposed {101} facets were successfully synthesized by a facile, green solvothermal method. Their morphology, and crystal structure are characterized by powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Accordingly, a possible growth mechanism of anatase TiO2 mesocrystals is elucidated in this work. The as-prepared single anatase TiO2 mesocrystal's mean center diameter is about 500 nm, and the length is about 1 μm. They exhibit high light adsorbance, high reflectance and low transmittance in the visible region due to the unique nearly 100% exposed {101} facets. When utilized as the scattering layer in dye-sensitized solar cells (DSSCs), such mesocrystals effectively enhanced light harvesting and led to an increase of the photocurrent of the DSSCs. As a result, by using an anatase TiO2 mesocrystal film as a scattering overlayer of a compact commercial P25 TiO2 nanoparticle film, the double layered DSSCs show a power conversion efficiency of 7.23%, indicating a great improvement compared to the DSSCs based on a P25 film (5.39%) and anatase TiO2 mesocrystal films, respectively. The synergetic effect of P25 and the mesocrystals as well as the latters unique feature of a Wulff construction of nearly 100% exposed (101) facets are probably responsible for the enhanced photoelectrical performance. In particular, we explore the possibility of the low surface area and exposed {101} facets as an efficient light scattering layer of DSSCs. Our work suggests that anatase TiO2 mesocrystals with the Wulff construction is a promising candidate as a superior scattering material for high-performance DSSCs.

  9. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    PubMed

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject.

  10. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry.

    PubMed

    Schmidt, Bjørn; Loeschner, Katrin; Hadrup, Niels; Mortensen, Alicja; Sloth, Jens J; Koch, Christian Bender; Larsen, Erik H

    2011-04-01

    An analytical platform coupling asymmetric flow field-flow fractionation (AF(4)) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass concentration of nanoparticles (NPs) in aqueous suspension. Mixtures of three polystyrene (PS) NPs between 20 and 100 nm in diameter and mixtures of three gold (Au) NPs between 10 and 60 nm in diameter were separated by AF(4). The geometric diameters of the separated PS NPs and the hydrodynamic diameters of the Au and PS NPs were determined online by MALS and DLS, respectively. The three separated Au NPs were quantified by ICPMS and recovered at 50-95% of the injected masses, which ranged between approximately 8-80 ng of each nanoparticle size. Au NPs adhering to the membrane in the separation channel was found to be a major cause for incomplete recoveries. The lower limit of detection (LOD) ranged between 0.02 ng Au and 0.4 ng Au, with increasing LOD by increasing nanoparticle diameter. The analytical platform was applied to characterization of Au NPs in livers of rats, which were dosed with 10 nm, 60 nm, or a mixture of 10 and 60 nm nanoparticles by intravenous injection. The homogenized livers were solubilized in tetramethylammonium hydroxide (TMAH), and the recovery of Au NPs from the livers amounted to 86-123% of their total Au content. In spite of successful stabilization with bovine serum albumin even in alkaline medium, separation of the Au NPs by AF(4) was not possible due to association with undissolved remains of the alkali-treated liver tissues as demonstrated by electron microscopy images.

  11. Polysaccharide characterization by hollow-fiber flow field-flow fractionation with on-line multi-angle static light scattering and differential refractometry.

    PubMed

    Pitkänen, Leena; Striegel, André M

    2015-02-06

    Accurate characterization of the molar mass and size of polysaccharides is an ongoing challenge, oftentimes due to architectural diversity but also to the broad molar mass (M) range over which a single polysaccharide can exist and to the ultra-high M of many polysaccharides. Because of the latter, many of these biomacromolecules experience on-column, flow-induced degradation during analysis by size-exclusion and, even, hydrodynamic chromatography (SEC and HDC, respectively). The necessity for gentler fractionation methods has, to date, been addressed employing asymmetric flow field-flow fractionation (AF4). Here, we introduce the coupling of hollow-fiber flow field-flow fractionation (HF5) to multi-angle static light scattering (MALS) and differential refractometry (DRI) detection for the analysis of polysaccharides. In HF5, less stresses are placed on the macromolecules during separation than in SEC or HDC, and HF5 can offer a higher sensitivity, with less propensity for system overloading and analyte aggregation, than generally found in AF4. The coupling to MALS and DRI affords the determination of absolute, calibration-curve-independent molar mass averages and dispersities. Results from the present HF5/MALS/DRI experiments with dextrans, pullulans, and larch arabinogalactan were augmented with hydrodynamic radius (RH) measurements from off-line quasi-elastic light scattering (QELS) and by RH distribution calculations and fractogram simulations obtained via a finite element analysis implementation of field-flow fractionation theory by commercially available software. As part of this study, we have investigated analyte recovery in HF5 and also possible reasons for discrepancies between calculated and simulated results vis-à-vis experimentally determined data. Published by Elsevier B.V.

  12. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography

    PubMed Central

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject. PMID:26943121

  13. Data Analysis Techniques for Ligo Detector Characterization

    NASA Astrophysics Data System (ADS)

    Valdes Sanchez, Guillermo A.

    Gravitational-wave astronomy is a branch of astronomy which aims to use gravitational waves to collect observational data about astronomical objects and events such as black holes, neutron stars, supernovae, and processes including those of the early universe shortly after the Big Bang. Einstein first predicted gravitational waves in the early century XX, but it was not until Septem- ber 14, 2015, that the Laser Interferometer Gravitational-Wave Observatory (LIGO) directly ob- served the first gravitational waves in history. LIGO consists of two twin detectors, one in Livingston, Louisiana and another in Hanford, Washington. Instrumental and sporadic noises limit the sensitivity of the detectors. Scientists conduct Data Quality studies to distinguish a gravitational-wave signal from the noise, and new techniques are continuously developed to identify, mitigate, and veto unwanted noise. This work presents the application of data analysis techniques, such as Hilbert-Huang trans- form (HHT) and Kalman filtering (KF), in LIGO detector characterization. We investigated the application of HHT to characterize the gravitational-wave signal of the first detection, we also demonstrated the functionality of HHT identifying noise originated from light being scattered by perturbed surfaces, and we estimated thermo-optical aberration using KF. We put particular attention to the scattering origin application, for which a tool was developed to identify disturbed surfaces originating scattering noise. The results reduced considerably the time to search for the scattering surface and helped LIGO commissioners to mitigate the noise.

  14. Determination of optical coefficients of biological tissue from a single integrating-sphere

    NASA Astrophysics Data System (ADS)

    Zhang, Lianshun; Shi, Aijuan; Lu, Hongguang

    2012-01-01

    The detection of interactions between light and tissue can be used to characterize the optical properties of the tissue. The development is described of a method that determines optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. The experimental system incorporated a DH-2000 deuterium tungsten halogen light source, a USB4000-VIS-NIR miniature fiber optic spectrometer and an integrating-sphere. Fat emulsion and ink were used to mimic the scattering and absorbing properties of tissue in the tested sample. The measured optical reflectance spectrums with different scattering and absorbing properties were used to train a back-propagation neural network (BPNN). Then the neural network (BPNN) was used to determine the optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. Tests on tissue-simulation phantoms showed the relative errors of this technique to be 7% for the reduced scattering coefficient and 15% for the absorption coefficients. The optical properties of human skin were also measured in vivo.

  15. In vivo diagnosis of skin cancer using polarized and multiple scattered light spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartlett, Matthew Allen

    This thesis research presents the development of a non-invasive diagnostic technique for distinguishing between skin cancer, moles, and normal skin using polarized and multiple scattered light spectroscopy. Polarized light incident on the skin is single scattered by the epidermal layer and multiple scattered by the dermal layer. The epidermal light maintains its initial polarization while the light from the dermal layer becomes randomized and multiple scattered. Mie theory was used to model the epidermal light as the scattering from the intercellular organelles. The dermal signal was modeled as the diffusion of light through a localized semi-homogeneous volume. These models were confirmed using skin phantom experiments, studied with in vitro cell cultures, and applied to human skin for in vivo testing. A CCD-based spectroscopy system was developed to perform all these experiments. The probe and the theory were tested on skin phantoms of latex spheres on top of a solid phantom. We next extended our phantom study to include in vitro cells on top of the solid phantom. Optical fluorescent microscope images revealed at least four distinct scatterers including mitochondria, nucleoli, nuclei, and cell membranes. Single scattering measurements on the mammalian cells consistently produced PSD's in the size range of the mitochondria. The clinical portion of the study consisted of in vivo measurements on cancer, mole, and normal skin spots. The clinical study combined the single scattering model from the phantom and in vitro cell studies with the diffusion model for multiple scattered light. When parameters from both layers were combined, we found that a sensitivity of 100% and 77% can be obtained for detecting cancers and moles, respectively, given the number of lesions examined.

  16. External occulter edge scattering control using metamaterials for exoplanet detection

    NASA Astrophysics Data System (ADS)

    Bendek, Eduardo A.; Sirbu, Dan; Liu, Zhaowei; Martin, Stefan; Lu, Dylan

    2015-09-01

    Direct imaging of earth-like exoplanets in the Habitable Zone of sun-like stars requires image contrast of ~10^10 at angular separations of around a hundred milliarcseconds. One approach for achieving this performance is to fly a starshade at a long distance in front of the telescope, shading the telescope from the direct starlight, but allowing planets around the star to be seen. The starshade is positioned so that sunlight falls on the surface away from the telescope, so the sun does not directly illuminate it. However, sunlight scattered from the starshade edge can enter the telescope, raising the background light level and potentially preventing the starshade from delivering the required contrast. As a result, starshade edge design has been identified as one of the highest priority technology gaps for external occulter missions in the NASAs Exoplanet Exploration Program Technology Plan 2013. To reduce the sunlight edge scatter to an acceptable level, the edge Radius Of Curvature (ROC) should be 1μm or less (commercial razor blades have ROC of a few hundred nanometer). This poses a challenging manufacturing requirement and may make the occulter difficult to handle. In this paper we propose an alternative approach to controlling the edge scattering by applying a flexible metamaterial to the occulter edge. Metamaterials are artificially structured materials, which have been designed to display properties not found in natural materials. Metamaterials can be designed to direct the scatter at planned incident angles away from the space telescope, thereby directly decreasing the contaminating background light. Reduction of the background light translates into shorter integration time to characterize a target planet and therefore improves the efficiency of the observations. As an additional benefit, metamaterials also have potential to produce increased tolerance to edge defects.

  17. Polarization of Light from Leaves Measured from 0.5 - 1.6 mm

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Ustin, S. L.; Daughtry, C. S. T.; Walthal, C. L.; Greenberg, J. A.

    2006-01-01

    The light scattered by plant canopies depends in part on the light scattering/absorbing properties of the leaves. Insights into these properties gained at the leaf scale are necessary ultimately to accomplish the region and global scale environmental goals of the EOS era. While this scattered light may be described by the four components of the Stokes vector, (intensity, magnitude of line= polarization, angle of plane of linear polarization, and magnitude of circular polarization), significant progress has been achieved toward understanding only the first component, the intensity of the scattered light. Recent research shows that the magnitude of the linearly polarized light may be a significant part of the light scattered by some canopies. Thus, consideration of the second component may be necessary to obtain an unambiguous understanding of the canopy processes. We measured the intensity and the linear polarization of the light scattered by single leaves, testing the hypothesis that the polarization of the light scattered by each leaf was attributable to properties of the surfaces of the leaf and specifically did not depend upon the properties of the interior of the leaf. This research extends previous investigations limited to the single leaves of approximately 20 species typically found in the area of Lafayette, Indiana, to the leaves of 30 species representing monocots, dicots and ferns from six continents.

  18. Low-coherence enhanced backscattering of light: characteristics and applications for colon cancer screening

    NASA Astrophysics Data System (ADS)

    Kim, Young L.; Pradhan, Prabhakar; Turzhitsky, Vladimir M.; Subramanian, Hariharan; Liu, Yang; Wali, Ramesh K.; Roy, Hemant K.; Backman, Vadim

    2007-02-01

    The phenomenon of enhanced backscattering (EBS) of light, also known as coherent backscattering (CBS) of light, is a spectacular manifestation of self-interference effects in elastic light scattering, which gives rise to an enhanced scattered intensity in the backward direction. Although EBS has been the object of intensive investigation in non-biological media over the last two decades, there have been only a few attempts to explore EBS for tissue characterization and diagnosis. We have recently made progress in the EBS measurements of biological tissue by taking advantage of lowcoherence (or partially coherent) illumination, which is referred to as low-coherence EBS (LEBS) of light. LEBS possess novel and intriguing properties such as speckle reduction, self-averaging effect, broadening of the EBS width, depth-selectivity, double scattering, and circular polarization memory effect. After we review the current state of research on LEBS, we discuss how these characteristics apply for early cancer detection, especially in colorectal cancer (CRC), which is the second leading cause of cancer mortality in the United States. Although colonoscopy remains the gold standard for CRC screening, resource constraints and potential complications make it impractical to perform colonoscopy on the entire population at risk (age > 50). Thus, identifying patients who are most likely to benefit from colonoscopy is of paramount importance. We demonstrate that LEBS measurements in easily accessible colonoscopically normal mucosa (e.g., in the rectum of the colon) can be used for predicting the risk of CRC, and thus LEBS has the potential to serve as accurate markers of the risk of neoplasia elsewhere in the colon.

  19. Predicting scattering scanning near-field optical microscopy of mass-produced plasmonic devices

    NASA Astrophysics Data System (ADS)

    Otto, Lauren M.; Burgos, Stanley P.; Staffaroni, Matteo; Ren, Shen; Süzer, Özgün; Stipe, Barry C.; Ashby, Paul D.; Hammack, Aeron T.

    2018-05-01

    Scattering scanning near-field optical microscopy enables optical imaging and characterization of plasmonic devices with nanometer-scale resolution well below the diffraction limit. This technique enables developers to probe and understand the waveguide-coupled plasmonic antenna in as-fabricated heat-assisted magnetic recording heads. In order to validate and predict results and to extract information from experimental measurements that is physically comparable to simulations, a model was developed to translate the simulated electric field into expected near-field measurements using physical parameters specific to scattering scanning near-field optical microscopy physics. The methods used in this paper prove that scattering scanning near-field optical microscopy can be used to determine critical sub-diffraction-limited dimensions of optical field confinement, which is a crucial metrology requirement for the future of nano-optics, semiconductor photonic devices, and biological sensing where the near-field character of light is fundamental to device operation.

  20. Modeling of the Autofluorescence Spectra of the Crystalline Lens with Cataract Taking into Account Light Scattering

    NASA Astrophysics Data System (ADS)

    Shapovalov, K. A.; Salmin, V. V.; Lazarenko, V. I.; Gar‧kavenko, V. V.

    2017-05-01

    The model of the autofluorescence spectrum formation of a crystalline lens taking into account light scattering was presented. Cross sections of extinction, scattering and absorption were obtained numerically for models of normal crystalline lens and cataract according to the Mie theory for polydisperse systems. To validate the model, data on the autofluorescence spectra of the normal lens and cataracts were obtained using an experimental ophthalmologic spectrofluorometer with excitation by UV light emitting diodes. In the framework of the model, the influence of the lens light scattering on the shape of the luminescence spectrum was estimated. It was found that the changes in the fluorescence spectrum of lenses with cataracts can be completely interpreted by the light scattering.

  1. Contribution of double scattering to structural coloration in quasiordered nanostructures of bird feathers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar

    2010-07-28

    We measured the polarization- and angle-resolved optical scattering and reflection spectra of the quasiordered nanostructures in the bird feather barbs. In addition to the primary peak that originates from single scattering, we observed a secondary peak which exhibits depolarization and distinct angular dispersion. We explained the secondary peak in terms of double scattering, i.e., light is scattered successively twice by the structure. The two sequential single-scattering events are considered uncorrelated. Using the Fourier power spectra of the nanostructures obtained from the small-angle x-ray scattering experiment, we calculated the double scattering of light in various directions. The double-scattering spectrum is broadermore » than the single-scattering spectrum, and it splits into two subpeaks at larger scattering angle. The good agreement between the simulation results and the experimental data confirms that double scattering of light makes a significant contribution to the structural color.« less

  2. Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers

    PubMed Central

    Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-01-01

    This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems. PMID:26606898

  3. For the depolarization of linearly polarized light by smoke particles

    NASA Astrophysics Data System (ADS)

    Sun, Wenbo; Liu, Zhaoyan; Videen, Gorden; Fu, Qiang; Muinonen, Karri; Winker, David M.; Lukashin, Constantine; Jin, Zhonghai; Lin, Bing; Huang, Jianping

    2013-06-01

    The CALIPSO satellite mission consistently measures volume (including molecule and particulate) light depolarization ratio of ∼2% for smoke, compared to ∼1% for marine aerosols and ∼15% for dust. The observed ∼2% smoke depolarization ratio comes primarily from the nonspherical habits of particles in the smoke at certain particle sizes. In this study, the depolarization of linearly polarized light by small sphere aggregates and irregular Gaussian-shaped particles is studied, to reveal the physics between the depolarization of linearly polarized light and smoke aerosol shape and size. It is found that the depolarization ratio curves of Gaussian-deformed spheres are very similar to sphere aggregates in terms of scattering-angle dependence and particle size parameters when particle size parameter is smaller than 1.0π. This demonstrates that small randomly oriented nonspherical particles have some common depolarization properties as functions of scattering angle and size parameter. This may be very useful information for characterization and active remote sensing of smoke particles using polarized light. We also show that the depolarization ratio from the CALIPSO measurements could be used to derive smoke aerosol particle size. From the calculation results for light depolarization ratio by Gaussian-shaped smoke particles and the CALIPSO-measured light depolarization ratio of ∼2% for smoke, the mean particle size of South-African smoke is estimated to be about half of the 532nm wavelength of the CALIPSO lidar.

  4. Laser light scattering review

    NASA Technical Reports Server (NTRS)

    Schaetzel, Klaus

    1989-01-01

    Since the development of laser light sources and fast digital electronics for signal processing, the classical discipline of light scattering on liquid systems experienced a strong revival plus an enormous expansion, mainly due to new dynamic light scattering techniques. While a large number of liquid systems can be investigated, ranging from pure liquids to multicomponent microemulsions, this review is largely restricted to applications on Brownian particles, typically in the submicron range. Static light scattering, the careful recording of the angular dependence of scattered light, is a valuable tool for the analysis of particle size and shape, or of their spatial ordering due to mutual interactions. Dynamic techniques, most notably photon correlation spectroscopy, give direct access to particle motion. This may be Brownian motion, which allows the determination of particle size, or some collective motion, e.g., electrophoresis, which yields particle mobility data. Suitable optical systems as well as the necessary data processing schemes are presented in some detail. Special attention is devoted to topics of current interest, like correlation over very large lag time ranges or multiple scattering.

  5. Coherent Multiple Light Scattering in Ultracold Atomic Rb

    NASA Astrophysics Data System (ADS)

    Kulatunga, Pasad; Sukenik, C. I.; Balik, Salim; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.

    2003-05-01

    Wave transport in mesoscopic systems can be strongly influenced by coherent multiple scattering,which can lead to novel magneto-optic, transmission, and backscattering effects of light in atomic vapors. Although related to traditional studies of radiation trapping, in ultracold vapors negligible frequency or phase redistribution takes place in the scattering, and high-order coherent light scattering occurs. Among other things, this leads to enhancement of the influence of otherwise small non-resonant terms in the scattering amplitudes. We report investigation of multiple coherent light scattering from ultracold Rb atoms confined in a magneto-optic trap (MOT). In experimental studies, measurements are made of the angular, spectral, and polarization-dependent coherent backscattering profile of a low-intensity probe beam tuned near the F = 3 - F' = 4 hyperfine transition. The influence of higher probe beam intensity is also studied. In a theoretical study of angular intensity enhancement of backscattered light, we consider scattering orders up to 10 and a realistic and asymmetric Gaussian atom distribution in the MOT. Supported by NSF, NATO, and RFBR.

  6. Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time Domain Technique

    NASA Technical Reports Server (NTRS)

    Sun, W.; Nousiainen, T.; Fu, Q.; Loeb, N. G.; Videen, G.; Muinonen, K.

    2003-01-01

    The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.

  7. Bidirectional scattering of light from tree leaves

    NASA Technical Reports Server (NTRS)

    Brakke, Thomas W.; Smith, James A.; Harnden, Joann M.

    1989-01-01

    A laboratory goniometer consisting of an He-Ne laser (632.8 nm), vertical leaf holder, and silicon photovoltaic detector was used to measure the bidirectional scattering (both transmittance and reflectance) of red oak and red maple. The illumination angles were 0, 30, and 60 deg, and the scattering was recorded approximately every 10 deg in the principal plane. The scattering profiles obtained show the non-Lambertian characteristics of the scattering, particularly for the off-nadir illumination directions. The transmitted light was more isotropic than the reflected light.

  8. Measurement of elastic light scattering from two optically trapped microspheres and red blood cells in a transparent medium.

    PubMed

    Kinnunen, Matti; Kauppila, Antti; Karmenyan, Artashes; Myllylä, Risto

    2011-09-15

    Optical tweezers can be used to manipulate small objects and cells. A trap can be used to fix the position of a particle during light scattering measurements. The places of two separately trapped particles can also be changed. In this Letter we present elastic light scattering measurements as a function of scattering angle when two trapped spheres are illuminated with a He-Ne laser. This setup is suitable for trapping noncharged homogeneous spheres. We also demonstrate measurement of light scattering patterns from two separately trapped red blood cells. Two different illumination schemes are used for both samples.

  9. Laser Rayleigh and Raman Diagnostics for Small Hydrogen/oxygen Rockets

    NASA Technical Reports Server (NTRS)

    Degroot, Wilhelmus A.; Zupanc, Frank J.

    1993-01-01

    Localized velocity, temperature, and species concentration measurements in rocket flow fields are needed to evaluate predictive computational fluid dynamics (CFD) codes and identify causes of poor rocket performance. Velocity, temperature, and total number density information have been successfully extracted from spectrally resolved Rayleigh scattering in the plume of small hydrogen/oxygen rockets. Light from a narrow band laser is scattered from the moving molecules with a Doppler shifted frequency. Two components of the velocity can be extracted by observing the scattered light from two directions. Thermal broadening of the scattered light provides a measure of the temperature, while the integrated scattering intensity is proportional to the number density. Spontaneous Raman scattering has been used to measure temperature and species concentration in similar plumes. Light from a dye laser is scattered by molecules in the rocket plume. Raman spectra scattered from major species are resolved by observing the inelastically scattered light with linear array mounted to a spectrometer. Temperature and oxygen concentrations have been extracted by fitting a model function to the measured Raman spectrum. Results of measurements on small rockets mounted inside a high altitude chamber using both diagnostic techniques are reported.

  10. Impact of absorptivity and wavelength on the optical properties of aggregates with sintering necks

    NASA Astrophysics Data System (ADS)

    Bao, Yujia; Huang, Yong; He, Beichen

    2018-04-01

    In this paper, we constructed sintered aggregates based on the particle superposition model and apply the ball-necking factor η to characterize the sintering degree. The impact of the absorptivity characterized by the complex refractive index m and the wavelength of the incident light λ on the optical properties of aggregates with different η were compared and investigated. The results indicate that for different m and λ, the light scattering characteristics exhibit regular changes in the values, the peak locations and the size trends. Further, the deviation of 1 - S22/S11 caused by various η is noteworthy and considerable so that it can be used as a probe sensor parameter in the detection of the sintered aggregates configuration.

  11. Stand-alone scattering optical device using holographic photopolymer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Jongchan; Lee, KyeoReh; Park, YongKeun

    2016-03-01

    When a light propagates through highly disordered medium, its optical parameters such as amplitude, phase and polarization states are completely scrambled because of multiple scattering events. Since the multiple scattering is a fundamental optical process that contains extremely high degrees of freedom, optical information of a transmitted light is totally mingled. Until recently, the presence of multiple scattering in an inhomogeneous medium is considered as a major obstacle when manipulating a light transmitting through the medium. However, a recent development of wavefront shaping techniques enable us to control the propagation of light through turbid media; a light transmitting through a turbid medium can be effectively controlled by modulating the spatial profile of the incident light using spatial light modulator. In this work, stand-alone scattering optical device is proposed; a holographic photopolymer film, which is much economic compared to the other digital spatial light modulators, is used to record and reconstruct permanent wavefront to generate optical field behind a scattering medium. By employing our method, arbitrary optical field can be generated since the scattering medium completely mixes all the optical parameters which allow us to access all the optical information only by modulating spatial phase profile of the impinging wavefront. The method is experimentally demonstrated in both the far-field and near-field regime where it shows promising fidelity and stability. The proposed stand-alone scattering optical device will opens up new avenues for exploiting the randomness inherent in disordered medium.

  12. NASA Laser Light Scattering Advanced Technology Development Workshop, 1988

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Editor)

    1989-01-01

    The major objective of the workshop was to explore the capabilities of existing and prospective laser light scattering hardware and to assess user requirements and needs for a laser light scattering instrument in a reduced gravity environment. The workshop addressed experimental needs and stressed hardware development.

  13. Utility of light scatter in the morphological analysis of sperm

    EPA Science Inventory

    We were able to differentiate the morphologically diverse sperm nuclei of four animal species by using an Ortho flow cytometer to detect the forward light scatter from a red (helium-neon) laser. Cytograms depicting the axial light loss and forward red scatter signals revealed uni...

  14. Light Scattering by Marine Particles: Modeling with Non-spherical Shapes

    DTIC Science & Technology

    2011-09-30

    coccoliths detached from Emiliania huxleyi, Limnology and Oceanography, 46, 1438−1454, 2001. Gordon, H.R., T.J. Smyth, W.M. Balch, and G.C. Boynton...Light scattering by coccoliths detached from Emiliania huxleyi, Applied Optics, (2009). PUBLICATIONS H.R. Gordon, Light scattering by randomly

  15. The development of a tunable, single-frequency ultraviolet laser source for UV filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Finkelstein, N.; Gambogi, J.; Lempert, Walter R.; Miles, Richard B.; Rines, G. A.; Finch, A.; Schwarz, R. A.

    1995-01-01

    We present the development of a flexible, high power, narrow line width, tunable ultraviolet source for diagnostic application. By frequency tripling the output of a pulsed titanium-sapphire laser, we achieve broadly tunable (227-360 nm) ultraviolet light with high quality spatial and spectral resolution. We also present the characterization of a mercury vapor cell which provides a narrow band, sharp edge absorption filter at 253.7 nm. These two components form the basis for the extension of the Filtered Rayleigh Scattering technique into the ultraviolet. The UV-FRS system is comprised of four pieces: a single frequency, cw tunable Ti:Sapphire seeding source; a high-powered pulsed Ti:Sapphire oscillator; a third harmonic generator system; and an atomic mercury vapor filter. In this paper we discuss the development and characterization of each of these elements.

  16. Plasmonic superfocusing on metallic tips for near-field optical imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Neacsu, Catalin C.; Olmon, Rob; Berweger, Samuel; Kappus, Alexandria; Kirchner, Friedrich; Ropers, Claus; Saraf, Lax; Raschke, Markus B.

    2008-03-01

    Realization of localized light sources through nonlocal excitation is important in the context of plasmon photonics, molecular sensing, and in particular near-field optical techniques. Here, the efficient conversion of propagating surface plasmons, launched on the shaft of a scanning probe tip, into localized plasmon at the apex provides a true nanoconfined light source. Focused ion beam milling is used to generate periodic surface nanostructures on the tip shaft that allow for tailoring the plasmon excitation. Using ultrashort visible and mid-IR transients the dynamics of the propagation and subsequent scattered emission is characterized. The strong field enhancement and spatial field confinement at the apex is demonstrated studying the coupling of the tip in near-field interaction with a flat sample surface. It is used in scattering near-field spectroscopic imaging (s-SNOM) to probe surface nanostructures with spatial resolution down to 10 nm.

  17. Graphene as a local probe to investigate near-field properties of plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Wasserroth, Sören; Bisswanger, Timo; Mueller, Niclas S.; Kusch, Patryk; Heeg, Sebastian; Clark, Nick; Schedin, Fredrik; Gorbachev, Roman; Reich, Stephanie

    2018-04-01

    Light interacting with metallic nanoparticles creates a strongly localized near-field around the particle that enhances inelastic light scattering by several orders of magnitude. Surface-enhanced Raman scattering describes the enhancement of the Raman intensity by plasmonic nanoparticles. We present an extensive Raman characterization of a plasmonic gold nanodimer covered with graphene. Its two-dimensional nature and energy-independent optical properties make graphene an excellent material for investigating local electromagnetic near-fields. We show the localization of the near-field of the plasmonic dimer by spatial Raman measurements. Energy- and polarization-dependent measurements reveal the local near-field resonance of the plasmonic system. To investigate the far-field resonance we perform dark-field spectroscopy and find that near-field and far-field resonance energies differ by 170 meV, much more than expected from the model of a damped oscillator (40 meV).

  18. Photocurrent mapping of near-field optical antenna resonances

    NASA Astrophysics Data System (ADS)

    Barnard, Edward S.; Pala, Ragip A.; Brongersma, Mark L.

    2011-09-01

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (~50 nm) and wavelength-scale (~1 µm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models.

  19. Apparatus and method for sensing motion in a microelectro-mechanical system

    DOEpatents

    Dickey, Fred M.; Holswade, Scott C.

    1999-01-01

    An apparatus and method are disclosed for optically sensing motion in a microelectromechanical system (also termed a MEMS device) formed by surface micromachining or LIGA. The apparatus operates by reflecting or scattering a light beam off a corrugated surface (e.g. gear teeth or a reference feature) of a moveable member (e.g. a gear, rack or linkage) within the MEMS device and detecting the reflected or scattered light. The apparatus can be used to characterize a MEMS device, measuring one or more performance characteristic such as spring and damping coefficients, torque and friction, or uniformity of motion of the moveable member. The apparatus can also be used to determine the direction and extent of motion of the moveable member; or to determine a particular mechanical state that a MEMS device is in. Finally, the apparatus and method can be used for providing feedback to the MEMS device to improve performance and reliability.

  20. Advances in atmospheric light scattering theory and remote-sensing techniques

    NASA Astrophysics Data System (ADS)

    Videen, Gorden; Sun, Wenbo; Gong, Wei

    2017-02-01

    This issue focuses especially on characterizing particles in the Earth-atmosphere system. The significant role of aerosol particles in this system was recognized in the mid-1970s [1]. Since that time, our appreciation for the role they play has only increased. It has been and continues to be one of the greatest unknown factors in the Earth-atmosphere system as evidenced by the most recent Intergovernmental Panel on Climate Change (IPCC) assessments [2]. With increased computational capabilities, in terms of both advanced algorithms and in brute-force computational power, more researchers have the tools available to address different aspects of the role of aerosols in the atmosphere. In this issue, we focus on recent advances in this topical area, especially the role of light scattering and remote sensing. This issue follows on the heels of four previous topical issues on this subject matter that have graced the pages of this journal [3-6].

  1. Virtual gonio-spectrophotometer for validation of BRDF designs

    NASA Astrophysics Data System (ADS)

    Mihálik, Andrej; Ďurikovič, Roman

    2011-10-01

    Measurement of the appearance of an object consists of a group of measurements to characterize the color and surface finish of the object. This group of measurements involves the spectral energy distribution of propagated light measured in terms of reflectance and transmittance, and the spatial energy distribution of that light measured in terms of the bidirectional reflectance distribution function (BRDF). In this article we present the virtual gonio-spectrophotometer, a device that measures flux (power) as a function of illumination and observation. Virtual gonio-spectrophotometer measurements allow the determination of the scattering profile of specimens that can be used to verify the physical characteristics of the computer model used to simulate the scattering profile. Among the characteristics that we verify is the energy conservation of the computer model. A virtual gonio-spectrophotometer is utilized to find the correspondence between industrial measurements obtained from gloss meters and the parameters of a computer reflectance model.

  2. Scatter metrology of photovoltaic textured surfaces

    NASA Astrophysics Data System (ADS)

    Stover, John C.; Hegstrom, Eric L.

    2010-09-01

    In recent years it has become common practice to texture many of the layered surfaces making up photovoltaic cells in order to increase light absorption and efficiency. Profilometry has been used to characterize the texture, but this is not satisfactory for in-line production systems which move surfaces too fast for that measurement. Scatterometry has been used successfully to measure roughness for many years. Its advantages include low cost, non-contact measurement and insensitivity to vibration; however, it also has some limitations. This paper presents scatter measurements made on a number of photovoltaic samples using two different scatterometers. It becomes clear that in many cases the surface roughness exceeds the optical smoothness limit (required to calculate surface statistics from scatter), but it is also clear that scatter measurement is a fast, sensitive indicator of texture and can be used to monitor whether design specifications are being met. A third key point is that there is a lot of surface dependent information available in the angular variations of the measured scatter. When the surface is inspected by integrating the scatter signal (often called a "Haze" measurement) this information is lost.

  3. Infrared singularities of scattering amplitudes in perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becher, Thomas; Neubert, Matthias

    2013-11-01

    An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficientsmore » of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.« less

  4. Observation of the Second Harmonic in Thomson Scattering from Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Babzien, Marcus; Ben-Zvi, Ilan; Kusche, Karl; Pavlishin, Igor V.; Pogorelsky, Igor V.; Siddons, David P.; Yakimenko, Vitaly; Cline, David; Zhou, Feng; Hirose, Tachishige; Kamiya, Yoshio; Kumita, Tetsuro; Omori, Tsunehiko; Urakawa, Junji; Yokoya, Kaoru

    2006-02-01

    A free relativistic electron in an electromagnetic field is a pure case of a light-matter interaction. In the laboratory environment, this interaction can be realized by colliding laser pulses with electron beams produced from particle accelerators. The process of single photon absorption and reemission by the electron, so-called linear Thomson scattering, results in radiation that is Doppler shifted into the x-ray and γ-ray regions. At elevated laser intensity, nonlinear effects should come into play when the transverse motion of the electrons induced by the laser beam is relativistic. In the present experiment, we achieved this condition and characterized the second harmonic of Thomson x-ray scattering using the counterpropagation of a 60 MeV electron beam and a subterawatt CO2 laser beam.

  5. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis

    NASA Astrophysics Data System (ADS)

    Gann, E.; Young, A. T.; Collins, B. A.; Yan, H.; Nasiatka, J.; Padmore, H. A.; Ade, H.; Hexemer, A.; Wang, C.

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (˜285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition.

  6. Observation of the second harmonic in Thomson scattering from relativistic electrons.

    PubMed

    Babzien, Marcus; Ben-Zvi, Ilan; Kusche, Karl; Pavlishin, Igor V; Pogorelsky, Igor V; Siddons, David P; Yakimenko, Vitaly; Cline, David; Zhou, Feng; Hirose, Tachishige; Kamiya, Yoshio; Kumita, Tetsuro; Omori, Tsunehiko; Urakawa, Junji; Yokoya, Kaoru

    2006-02-10

    A free relativistic electron in an electromagnetic field is a pure case of a light-matter interaction. In the laboratory environment, this interaction can be realized by colliding laser pulses with electron beams produced from particle accelerators. The process of single photon absorption and reemission by the electron, so-called linear Thomson scattering, results in radiation that is Doppler shifted into the x-ray and gamma-ray regions. At elevated laser intensity, nonlinear effects should come into play when the transverse motion of the electrons induced by the laser beam is relativistic. In the present experiment, we achieved this condition and characterized the second harmonic of Thomson x-ray scattering using the counterpropagation of a 60 MeV electron beam and a subterawatt CO2 laser beam.

  7. The distribution of the scattered laser light in laser-plate-target coupling

    NASA Astrophysics Data System (ADS)

    Xiao-bo, Nie; Tie-qiang, Chang; Dong-xian, Lai; Shen-ye, Liu; Zhi-jian, Zheng

    1997-04-01

    Theoretical and experimental studies of the angular distributions of scattered laser light in laser-Au-plate-target coupling are reported. A simple model that describes three-dimensional plasmas and scattered laser light is presented. The approximate shape of critical density surface has been given and the three-dimensional laser ray tracing is applied in the model. The theoretical results of the model are consistent with the experimental data for the scattered laser light in the polar angle range of 25° to 145° from the laser beam.

  8. Light scattering by magnons in whispering gallery mode cavities

    NASA Astrophysics Data System (ADS)

    Sharma, Sanchar; Blanter, Yaroslav M.; Bauer, Gerrit E. W.

    2017-09-01

    Brillouin light scattering is an established technique to study magnons, the elementary excitations of a magnet. Its efficiency can be enhanced by cavities that concentrate the light intensity. Here, we theoretically study inelastic scattering of photons by a magnetic sphere that supports optical whispering gallery modes in a plane normal to the magnetization. Magnons with low angular momenta scatter the light in the forward direction with a pronounced asymmetry in the Stokes and the anti-Stokes scattering strength, consistent with earlier studies. Magnons with large angular momenta constitute Damon-Eschbach modes which are shown to inelastically reflect light. The reflection spectrum contains either a Stokes or anti-Stokes peak, depending on the direction of the magnetization, a selection rule that can be explained by the chirality of the Damon-Eshbach magnons. The controllable energy transfer can be used to manage the thermodynamics of the magnet by light.

  9. Polarized scattered light from self-luminous exoplanets. Three-dimensional scattering radiative transfer with ARTES

    NASA Astrophysics Data System (ADS)

    Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.

    2017-11-01

    Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron-sized cloud particles as a result of forward scattering. The presence of a cold or hot circumplanetary disk may also produce a detectable degree of polarization (≲1%) even with a uniform cloud layer in the atmosphere.

  10. Study of Fabry-Perot Etalon Stability and Tuning for Spectroscopic Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Mielke-Fagan, Amy F.; Elam, Kristie A.

    2010-01-01

    The Fabry-Perot interferometer is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating flow properties such as gas velocity and temperature. Rayleigh scattered light from a focused laser beam can be directly imaged through a solid Fabry-Perot etalon onto a CCD detector to provide the spectral content of the scattered light. The spatial resolution of the measurements is governed by the locations of interference fringes. The location of the fringes can be changed by altering the etalon?s physical characteristics, such as thickness and index of refraction. For a fused silica solid etalon the physical properties can be adjusted by changing the etalon temperature; hence changing the order of the interference pattern and the physical fringe locations. Controlling the temperature of the etalon can provide for a slow time-response spatial scanning method for this type of etalon system. A custom designed liquid crystal Fabry-Perot (LCFP) can provide for a fast time-response method of scanning the etalon system. Voltage applied to the liquid crystal interface sets the etalon?s properties allowing Rayleigh measurements to be acquired at varying spatial locations across the image of the laser beam over a very short time period. A standard fused silica etalon and a tunable LCFP etalon are characterized to select the system that is best suited for Rayleigh scattering measurements in subsonic and supersonic flow regimes. A frequency-stabilized laser is used to investigate the apparent frequency stability and temperature sensitivity of the etalon systems. Frequency stability and temperature sensitivity data of the fused silica and LCFP etalon systems are presented in this paper, along with measurements of the LCFP etalon?s tuning capabilities. Rayleigh scattering velocity measurements with both etalon systems are presented, in an effort to determine which etalon is better suited to provide optical flow measurements of velocity, temperature, and density.

  11. A case study of highly time-resolved evolution of aerosol chemical composition and optical properties during severe haze pollution in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Cheng, Z.; Lou, S.

    2017-12-01

    Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local emissions, region transports and meteorological changes in the pollution period.

  12. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Glena, Richard E.; Featherstone, John D. B.; Seka, Wolf

    1995-03-01

    The light-scattering properties of dental enamel and dentin were measured at 543, 632, and 1053 nm. Angularly resolved scattering distributions for these materials were measured from 0 deg to 180 deg using a rotating goniometer. Surface scattering was minimized by immersing the samples in an index-matching bath. The scattering and absorption coefficients and the scattering phase function were deduced by comparing the measured scattering data with angularly resolved Monte Carlo light-scattering simulations. Enamel and dentin were best represented by a linear combination of a highly forward-peaked Henyey-Greenstein (HG) phase function and an isotropic phase function. Enamel weakly scatters light between 543 nm and 1.06 mu m, with the scattering coefficient ( mu s) ranging from mu s = 15 to 105 cm-1. The phase function is a combination of a HG function with g = 0.96 and a 30-60% isotropic phase function. For enamel, absorption is negligible. Dentin scatters strongly in the visible and near IR ( mu s approximately equals 260 cm-1) and absorbs weakly ( mu a approximately equals 4 cm-1). The scattering phase function for dentin is described by a HG function with g = 0.93 and a very weak isotropic scattering component ( approximately 2%).

  13. CHARACTERIZATION OF SUB-MICRON AQUEOUS IRON(III) COLLOIDS FORMED IN THE PRESENCE OF PHOSPHATE BY SEDIMENTATION FIELD FLOW FRACTIONATION WITH MULTI-ANGLE LASER LIGHT SCATTERING DETECTION

    EPA Science Inventory

    Iron colloids play a major role in the water chemistry of natural watersheds and of engineered drinking water distribution systems. Phosphate is frequently added to distribution systems to control corrosion problems, so iron-phosphate colloids may form through reaction of iron in...

  14. Characterization of Nanoparticle Aggregation in Biologically Relevant Fluids

    NASA Astrophysics Data System (ADS)

    McEnnis, Kathleen; Lahann, Joerg

    Nanoparticles (NPs) are often studied as drug delivery vehicles, but little is known about their behavior in blood once injected into animal models. If the NPs aggregate in blood, they will be shunted to the liver or spleen instead of reaching the intended target. The use of animals for these experiments is costly and raises ethical questions. Typically dynamic light scattering (DLS) is used to analyze aggregation behavior, but DLS cannot be used because the components of blood also scatter light. As an alternative, a method of analyzing NPs in biologically relevant fluids such as blood plasma has been developed using nanoparticle tracking analysis (NTA) with fluorescent filters. In this work, NTA was used to analyze the aggregation behavior of fluorescent polystyrene NPs with different surface modifications in blood plasma. It was expected that different surface chemistries on the particles will change the aggregation behavior. The effect of the surface modifications was investigated by quantifying the percentage of NPs in aggregates after addition to blood plasma. The use of this characterization method will allow for better understanding of particle behavior in the body, and potential problems, specifically aggregation, can be addressed before investing in in vivo studies.

  15. Biophysical characterization of influenza virus subpopulations using field flow fractionation and multiangle light scattering: correlation of particle counts, size distribution and infectivity.

    PubMed

    Wei, Ziping; McEvoy, Matt; Razinkov, Vladimir; Polozova, Alla; Li, Elizabeth; Casas-Finet, Jose; Tous, Guillermo I; Balu, Palani; Pan, Alfred A; Mehta, Harshvardhan; Schenerman, Mark A

    2007-09-01

    Adequate biophysical characterization of influenza virions is important for vaccine development. The influenza virus vaccines are produced from the allantoic fluid of developing chicken embryos. The process of viral replication produces a heterogeneous mixture of infectious and non-infectious viral particles with varying states of aggregation. The study of the relative distribution and behavior of different subpopulations and their inter-correlation can assist in the development of a robust process for a live virus vaccine. This report describes a field flow fractionation and multiangle light scattering (FFF-MALS) method optimized for the analysis of size distribution and total particle counts. The FFF-MALS method was compared with several other methods such as transmission electron microscopy (TEM), atomic force microscopy (AFM), size exclusion chromatography followed by MALS (SEC-MALS), quantitative reverse transcription polymerase chain reaction (RT Q-PCR), median tissue culture dose (TCID(50)), and the fluorescent focus assay (FFA). The correlation between the various methods for determining total particle counts, infectivity and size distribution is reported. The pros and cons of each of the analytical methods are discussed.

  16. Online size-exclusion high-performance liquid chromatography light scattering and differential refractometry methods to determine degree of polymer conjugation to proteins and protein-protein or protein-ligand association states.

    PubMed

    Kendrick, B S; Kerwin, B A; Chang, B S; Philo, J S

    2001-12-15

    Characterizing the solution structure of protein-polymer conjugates and protein-ligand interactions is important in fields such as biotechnology and biochemistry. Size-exclusion high-performance liquid chromatography with online classical light scattering (LS), refractive index (RI), and UV detection offers a powerful tool in such characterization. Novel methods are presented utilizing LS, RI, and UV signals to rapidly determine the degree of conjugation and the molecular mass of the protein conjugate. Baseline resolution of the chromatographic peaks is not required; peaks need only be sufficiently separated to represent relatively pure fractions. An improved technique for determining the polypeptide-only mass of protein conjugates is also described. These techniques are applied to determining the degree of erythropoietin glycosylation, the degree of polyethylene glycol conjugation to RNase A and brain-derived neurotrophic factor, and the solution association states of these molecules. Calibration methods for the RI, UV, and LS detectors will also be addressed, as well as online methods to determine protein extinction coefficients and dn/dc values both unconjugated and conjugated protein molecules. (c)2001 Elsevier Science.

  17. Brillouin light scattering studies on the mechanical properties of ultrathin, porous low-K dielectric films

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Sooryakumar, R.; King, Sean

    2010-03-01

    Low K dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric material for interconnects in state of the art integrated circuits. To further reduce interconnect resistance-capacitance (RC) delays, additional reductions in the K for these low-K materials is being pursued by the introduction of controlled levels of porosity. The main challenge for porous low-K dielectrics is the substantial reduction in mechanical properties that is accompanied by the increased pore volume content needed to reduce K. We report on the application of the nondestructive Brillouin light scattering technique to monitor and characterize the mechanical properties of these porous films at thicknesses well below 200 nm that are pertinent to present applications. Observation of longitudinal and transverse standing wave acoustic resonances and the dispersion that accompany their transformation into traveling waves with finite in-plane wave vectors provides for the principal elastic constants that completely characterize the mechanical properties of these porous films. The mode amplitudes of the standing waves, their variation within the film, and the calculated Brillouin intensities account for most aspects of the spectra. The resulting elastic constants are compared with corresponding values obtained from other experimental techniques.

  18. Brillouin light scattering studies of the mechanical properties of ultrathin low-k dielectric films

    NASA Astrophysics Data System (ADS)

    Link, A.; Sooryakumar, R.; Bandhu, R. S.; Antonelli, G. A.

    2006-07-01

    In an effort to reduce RC time delays that accompany decreasing feature sizes, low-k dielectric films are rapidly emerging as potential replacements for silicon dioxide (SiO2) at the interconnect level in integrated circuits. The main challenge in low-k materials is their substantially weaker mechanical properties that accompany the increasing pore volume content needed to reduce k. We show that Brillouin light scattering is an excellent nondestructive technique to monitor and characterize the mechanical properties of these porous films at thicknesses well below 200nm that are pertinent to present applications. Observation of longitudinal and transverse standing wave acoustic resonances and the dispersion that accompany their transformation into traveling waves with finite in-plane wave vectors provides for a direct measure of the principal elastic constants that completely characterize the mechanical properties of these ultrathin films. The mode amplitudes of the standing waves, their variation within the film, and the calculated Brillouin intensities account for most aspects of the spectra. We further show that the values obtained by this method agree well with other experimental techniques such as nanoindentation and picosecond laser ultrasonics.

  19. Submicrometer Particle Sizing by Multiangle Light Scattering following Fractionation

    PubMed

    Wyatt

    1998-01-01

    The acid test for any particle sizing technique is its ability to determine the differential number fraction size distribution of a simple, well-defined sample. The very best characterized polystyrene latex sphere standards have been measured extensively using transmission electron microscope (TEM) images of a large subpopulation of such samples or by means of the electrostatic classification method as refined at the National Institute of Standards and Technology. The great success, in the past decade, of on-line multiangle light scattering (MALS) detection combined with size exclusion chromatography for the measurement of polymer mass and size distributions suggested, in the early 1990s, that a similar attack for particle characterization might prove useful as well. At that time, fractionation of particles was achievable by capillary hydrodynamic chromatography (CHDF) and field flow fractionation (FFF) methods. The latter has proven most useful when combined with MALS to provide accurate differential number fraction size distributions for a broad range of particle classes. The MALS/FFF combination provides unique advantages and precision relative to FFF, photon correlation spectroscopy, and CHDF techniques used alone. For many classes of particles, resolution of the MALS/FFF combination far exceeds that of TEM measurements. Copyright 1998 Academic Press. Copyright 1998Academic Press

  20. Study of Light Scattering in the Human Eye

    NASA Astrophysics Data System (ADS)

    Perez, I. Kelly; Bruce, N. C.; Valdos, L. R. Berriel

    2008-04-01

    In this paper we present a numerical model of the human eye to be used in studies of the scattering of light in different components of the eye's optical system. Different parts of the eye are susceptible to produce scattering for different reasons; age, illness or injury. For example, cataracts can appear in the human lens or injuries or fungi can appear on the cornea. The aim of the study is to relate the backscattered light, which is what doctors measure or detect, to the forward scattered light, which is what affects the patient's vision. We present the model to be used, the raytrace procedure and some preliminary results for the image on the retina without scattering.

  1. Weak scattering of scalar and electromagnetic random fields

    NASA Astrophysics Data System (ADS)

    Tong, Zhisong

    This dissertation encompasses several studies relating to the theory of weak potential scattering of scalar and electromagnetic random, wide-sense statistically stationary fields from various types of deterministic or random linear media. The proposed theory is largely based on the first Born approximation for potential scattering and on the angular spectrum representation of fields. The main focus of the scalar counterpart of the theory is made on calculation of the second-order statistics of scattered light fields in cases when the scattering medium consists of several types of discrete particles with deterministic or random potentials. It is shown that the knowledge of the correlation properties for the particles of the same and different types, described with the newly introduced pair-scattering matrix, is crucial for determining the spectral and coherence states of the scattered radiation. The approach based on the pair-scattering matrix is then used for solving an inverse problem of determining the location of an "alien" particle within the scattering collection of "normal" particles, from several measurements of the spectral density of scattered light. Weak scalar scattering of light from a particulate medium in the presence of optical turbulence existing between the scattering centers is then approached using the combination of the Born's theory for treating the light interaction with discrete particles and the Rytov's theory for light propagation in extended turbulent medium. It is demonstrated how the statistics of scattered radiation depend on scattering potentials of particles and the power spectra of the refractive index fluctuations of turbulence. This theory is of utmost importance for applications involving atmospheric and oceanic light transmission. The second part of the dissertation includes the theoretical procedure developed for predicting the second-order statistics of the electromagnetic random fields, such as polarization and linear momentum, scattered from static media. The spatial distribution of these properties of scattered fields is shown to be substantially dependent on the correlation and polarization properties of incident fields and on the statistics of the refractive index distribution within the scatterers. Further, an example is considered which illustrates the usefulness of the electromagnetic scattering theory of random fields in the case when the scattering medium is a thin bio-tissue layer with the prescribed power spectrum of the refractive index fluctuations. The polarization state of the scattered light is shown to be influenced by correlation and polarization states of the illumination as well as by the particle size distribution of the tissue slice.

  2. Faraday effect on stimulated Raman scattering in the linear region

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Li, B.; Xiang, J.; Cao, L. H.; Zheng, C. Y.; Hao, L.

    2018-04-01

    The paper presents the effect of Faraday rotation on stimulated Raman scattering (SRS). When light propagates along the magnetic field upon plasma, Faraday rotation occurs. The rotation angle can be expressed as {{d}}θ /{{d}}{s}=2.93× {10}-4B\\tfrac{{n}e/{n}c}{\\sqrt{1-{n}e/{n}c}} {cm}}-1 approximately, where θ is the rotation angle and s is distance, n e is the electron density, n c is the critical density and B is magnetic field in unit of Gauss. Both the incident light and Raman light have Faraday effects. The angle between the polarization directions of incident light and Raman light changes with position. The driven force of electron plasma wave also reduces, and then SRS scattering level is reduced. Faraday rotation effect can increase the laser intensity threshold of Raman scattering, even if the magnetic field strength is small. The circularly polarized light incident case is also compared with that of the linearly polarized light incident. The Raman scattering level of linearly polarized light is much smaller than that of circularly polarized light in the magnetized plasma. The difference between linearly and circularly polarized lights is also discussed.

  3. Light scattering and transmission measurement using digital imaging for online analysis of constituents in milk

    NASA Astrophysics Data System (ADS)

    Jain, Pranay; Sarma, Sanjay E.

    2015-05-01

    Milk is an emulsion of fat globules and casein micelles dispersed in an aqueous medium with dissolved lactose, whey proteins and minerals. Quantification of constituents in milk is important in various stages of the dairy supply chain for proper process control and quality assurance. In field-level applications, spectrophotometric analysis is an economical option due to the low-cost of silicon photodetectors, sensitive to UV/Vis radiation with wavelengths between 300 - 1100 nm. Both absorption and scattering are witnessed as incident UV/Vis radiation interacts with dissolved and dispersed constituents in milk. These effects can in turn be used to characterize the chemical and physical composition of a milk sample. However, in order to simplify analysis, most existing instrument require dilution of samples to avoid effects of multiple scattering. The sample preparation steps are usually expensive, prone to human errors and unsuitable for field-level and online analysis. This paper introduces a novel digital imaging based method of online spectrophotometric measurements on raw milk without any sample preparation. Multiple LEDs of different emission spectra are used as discrete light sources and a digital CMOS camera is used as an image sensor. The extinction characteristic of samples is derived from captured images. The dependence of multiple scattering on power of incident radiation is exploited to quantify scattering. The method has been validated with experiments for response with varying fat concentrations and fat globule sizes. Despite of the presence of multiple scattering, the method is able to unequivocally quantify extinction of incident radiation and relate it to the fat concentrations and globule sizes of samples.

  4. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates.

    PubMed

    Chen, Shuming; Kwok, Hoi Sing

    2010-01-04

    Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost-effective method to rough the substrates and hence to scatter the light. By simply sand-blasting the edges and back-side surface of the glass substrates, a 20% improvement of forward efficiency has been demonstrated. Moreover, due to scattering effect, a constant color over all viewing angles and uniform light pattern with Lambertian distribution has been obtained. This simple and cost-effective method may be suitable for mass production of large-area OLEDs for lighting applications.

  5. System for diffusing light from an optical fiber or light guide

    DOEpatents

    Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [

    2008-06-10

    A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.

  6. A Scattered Light Correction to Color Images Taken of Europa by the Galileo Spacecraft: Initial Results

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Valenti, M.

    2009-12-01

    Jupiter's moon Europa likely possesses an ocean of liquid water beneath its icy surface, but estimates of the thickness of the surface ice shell vary from a few kilometers to tens of kilometers. Color images of Europa reveal the existence of a reddish, non-ice component associated with a variety of geological features. The composition and origin of this material is uncertain, as is its relationship to Europa's various landforms. Published analyses of Galileo Near Infrared Mapping Spectrometer (NIMS) observations indicate the presence of highly hydrated sulfate compounds. This non-ice material may also bear biosignatures or other signs of biotic material. Additional spectral information from the Galileo Solid State Imager (SSI) could further elucidate the nature of the surface deposits, particularly when combined with information from the NIMS. However, little effort has been focused on this approach because proper calibration of the color image data is challenging, requiring both skill and patience to process the data and incorporate the appropriate scattered light correction. We are currently working to properly calibrate the color SSI data. The most important and most difficult issue to address in the analysis of multispectral SSI data entails using thorough calibrations and a correction for scattered light. Early in the Galileo mission, studies of the Galileo SSI data for the moon revealed discrepancies of up to 10% in relative reflectance between images containing scattered light and images corrected for scattered light. Scattered light adds a wavelength-dependent low-intensity brightness factor to pixels across an image. For example, a large bright geological feature located just outside the field of view of an image will scatter extra light onto neighboring pixels within the field of view. Scattered light can be seen as a dim halo surrounding an image that includes a bright limb, and can also come from light scattered inside the camera by dirt, edges, and the interfaces of lenses. Because of the wavelength dependence of this effect, a scattered light correction must be performed on any SSI multispectral dataset before quantitative spectral analysis can be done. The process involves using a point-spread function for each filter that helps determine the amount of scattered light expected for a given pixel based on its location and the model attenuation factor for that pixel. To remove scattered light for a particular image taken through a particular filter, the Fourier transform of the attenuation function, which is the point spread function for that filter, is convolved with the Fourier transform of the image at the same wavelength. The result is then filtered for noise in the frequency domain, and then transformed back to the spatial domain. This results in a version of the original image that would have been taken without the scattered light contribution. We will report on our initial results from this calibration.

  7. Light collection optimization for composite photoanode in dye-sensitized solar cells: Towards higher efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, X. Z.; Shen, W. Z., E-mail: wzshen@sjtu.edu.cn; Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, and Key Laboratory of Artificial Structures and Quantum Control

    2015-06-14

    Composite photoanode comprising nanoparticles and one-dimensional (1D) nanostructure is a promising alternative to conventional photoanode for dye-sensitized solar cells (DSCs). Besides fast electron transport channels, the 1D nanostructure also plays as light scattering centers. Here, we theoretically investigate the light scattering properties of capsule-shaped 1D nanostructure and their influence on the light collection of DSCs. It is found that the far-field light scattering of a single capsule depends on its volume, shape, and orientation: capsules with bigger equivalent spherical diameter, smaller aspect ratio, and horizontal orientation demonstrate stronger light scattering especially at large scattering angle. Using Monte Carlo approach, wemore » simulated and optimized the light harvesting efficiency of the cell. Two multilayer composite photoanodes containing orderly or randomly oriented capsules are proposed. DSCs composed of these two photoanodes are promising for higher efficiencies because of their efficient light collection and superior electron collection. These results will provide practical guidance to the design and optimization of the photoanodes for DSCs.« less

  8. Refraction in Exoplanet Transit Observations

    NASA Astrophysics Data System (ADS)

    Dalba, Paul

    2018-01-01

    Before an exoplanet transit, atmospheric refraction bends light into the line of sight of an observer. The refracted light forms a stellar mirage---a distorted secondary image of the host star---that causes flux increases before transit ingress and after transit egress. The extent of this flux increase provides clues as to the composition and structure of the exoplanetary atmosphere. Here, I model the stellar mirages produced by a comprehensive set of stellar, orbital, planetary, and atmospheric parameters. Refracted light offers unprecedented atmospheric characterization opportunities for cold, long-period gas giant exoplanets. At visible wavelengths, opacity from Rayleigh scattering presents a substantial challenge to detecting stellar mirages for most exoplanets with orbital distances less than 6 AU. Based on physical parameters, I derive a criterion that determines if refracted light will significantly influence observations of a specific exoplanetary system with application to the high-precision Kepler data set. I also investigate the potential for refracted light to identify non-transiting exoplanets and serve as a novel means of out-of-transit atmospheric characterization. The atmospheric lensing events produced by non-transiting exoplanets are more detectable than the corresponding flux increases for transiting exoplanets. Compared to visible light observations, those at red to near-infrared wavelengths are more likely to detect refracted light in an exoplanet atmosphere. With upcoming exoplanet discovery and characterization missions in mind, I consider science cases that are uniquely enabled by photometric and spectroscopic observations of refracted light in exoplanetary systems.

  9. Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes

    NASA Astrophysics Data System (ADS)

    O'Brien, S. A.; Harvey, A.; Griffin, A.; Donnelly, T.; Mulcahy, D.; Coleman, J. N.; Donegan, J. F.; McCloskey, D.

    2017-11-01

    Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter—the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.

  10. Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes.

    PubMed

    O'Brien, S A; Harvey, A; Griffin, A; Donnelly, T; Mulcahy, D; Coleman, J N; Donegan, J F; McCloskey, D

    2017-11-24

    Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter-the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.

  11. Study of light scattering using C-Quant® in patients with Fuchs' endothelial dystrophy: A pilot study.

    PubMed

    Castaño-Martín, B; Gros-Otero, J; Martínez, J; Teus, M

    2017-11-01

    The purpose of this study was to determine the light scattering in patients with Fuchs' endothelial dystrophy without clinically significant corneal oedema, and evaluate its relationship with endothelial cell count, corneal thickness, and corneal biomechanical parameters. The values of light scattering were measured by C-Quant ® (Oculus Optikgeräte GmbH, Germany) in 32 eyes of 17 patients diagnosed with Fuchs' endothelial dystrophy without clinically significant corneal oedema. Corneal biomechanical properties were determined using ORA (ocular response) and Corvis ST ® (tonometry). A light scattering value outside the normal range was observed in 93.8% of eyes studied. No statistically significant association (P>.05) was found between the values of the measured light scattering by C-Quant ® and endothelial count, pachymetry, or corneal biomechanical properties. In this study, changes were found in the values of light scattering values of patients with corneal Fuchs' endothelial dystrophy. This change does not appear to correlate significantly with disease severity. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Velocity Distributions of Interplanetary Dust Derived from Astronomical Sky Spectra

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Ali, S.; Cosby, P. C.; Slanger, T. G.

    2001-11-01

    Characterization of interplanetary dust is important for understanding the creation by accretion of planets and moons, the development of planetary atmospheres, and, potentially, for the initiation of prebiotic chemistry. The recent COBE mission has provided a profile in ecliptic coordinates of the distribution of interplanetary dust particles through their thermal infrared emission. Additional information about interplanetary dust can be extracted from its visible spectrum of scattered sunlight, called Zodiacal Light. Night sky spectra taken at large-aperture telescopes using high-resolution echelle spectrographs reveal Fraunhofer absorption features in the Zodiacal Light spectrum of scattered sunlight, a nuisance in subtraction from the spectrum of the extraterrestrial object under investigation. We are analyzing the intensity modulations and Doppler shifts of solar Fraunhofer absorption lines in the Zodiacal Light component of sky spectra, donated by collaborating astronomers using Keck/HIRES and other high-performance astronomical facilities. Our objectives include velocity distributions of interplanetary dust and improved separation of terrestrial and extraterrestrial sources in sky spectra. Participation of S. Ali was made possible by a grant from the NSF Physics Research Experiences for Undergraduates (REU) program.

  13. Characterization of a protein conjugate using an asymmetrical-flow field-flow fractionation and a size-exclusion chromatography with multi-detection system.

    PubMed

    Rebolj, Katja; Pahovnik, David; Zagar, Ema

    2012-09-04

    In this study we present detailed characterization of a protein-PEG conjugate using two separation techniques, that is, asymmetrical-flow field-flow fractionation (AF4) and size-exclusion chromatography (SEC), which were online coupled to a series of successively connected detectors: an ultraviolet, a multiangle light-scattering, a quasi-elastic light-scattering, and a refractive-index detector (UV-MALS(QELS)-RI). Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used as a complementary characterization technique. The results of AF4 as well as SEC on two columns connected in series, with both separation techniques coupled to a multidetection system, indicate the uniform molar mass and chemical composition of the conjugate, that is, the molar ratio of protein to PEG is 1/1, the presence of minute amounts of residual unreacted protein and the aggregates with the same chemical composition as that of the conjugate. Since the portion of aggregated species is smaller in the acetate buffer solution containing 5% sorbitol than in the acetate buffer solution with 200-mM sodium chloride, the former buffer solution is more suitable for conjugate storage. The separation using only one SEC column results in poorly resolved peaks of the PEGylated protein conjugate and the aggregates, whereas MALDI-TOF MS analysis reveal the presence of the residual protein, but not the aggregates.

  14. Characterization of Gd loaded chitosan-TPP nanohydrogels by a multi-technique approach combining dynamic light scattering (DLS), asymetrical flow-field-flow-fractionation (AF4) and atomic force microscopy (AFM) and design of positive contrast agents for molecular resonance imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Rigaux, G.; Gheran, C. V.; Callewaert, M.; Cadiou, C.; Voicu, S. N.; Dinischiotu, A.; Andry, M. C.; Vander Elst, L.; Laurent, S.; Muller, R. N.; Berquand, A.; Molinari, M.; Huclier-Markai, S.; Chuburu, F.

    2017-02-01

    Chitosan CS—tripolyphosphate TPP/hyaluronic acid HA nanohydrogels loaded with gadolinium chelates (GdDOTA ⊂ CS-TPP/HA NGs) synthesized by ionic gelation were designed for lymph node (LN) MRI. In order to be efficiently drained to LNs, nanogels (NGs) needed to exhibit a diameter ϕ < 100 nm. For that, formulation parameters were tuned, using (i) CS of two different molecular weights (51 and 37 kDa) and (ii) variable CS/TPP ratio (2 < CS/TPP < 8). Characterization of NG size distribution by dynamic light scattering (DLS) and asymetrical flow-field-flow-fractionation (AF4) showed discrepancies since DLS diameters were consistently above 200 nm while AF4 showed individual nano-objects with ϕ < 100 nm. Such a difference could be correlated to the presence of aggregates inherent to ionic gelation. This point was clarified by atomic force microscopy (AFM) in liquid mode which highlighted the main presence of individual nano-objects in nanosuspensions. Thus, combination of DLS, AF4 and AFM provided a more precise characterization of GdDOTA ⊂ CS-TPP/HA nanohydrogels which, in turn, allowed to select formulations leading to NGs of suitable mean sizes showing good MRI efficiency and negligible toxicity.

  15. Characterizing Protein Complexes with UV absorption, Light Scattering, and Refractive Index Detection.

    NASA Astrophysics Data System (ADS)

    Trainoff, Steven

    2009-03-01

    Many modern pharmaceuticals and naturally occurring biomolecules consist of complexes of proteins and polyethylene glycol or carbohydrates. In the case of vaccine development, these complexes are often used to induce or amplify immune responses. For protein therapeutics they are used to modify solubility and function, or to control the rate of degradation and elimination of a drug from the body. Characterizing the stoichiometry of these complexes is an important industrial problem that presents a formidable challenge to analytical instrument designers. Traditional analytical methods, such as using florescent tagging, chemical assays, and mass spectrometry perturb the system so dramatically that the complexes are often destroyed or uncontrollably modified by the measurement. A solution to this problem consists of fractionating the samples and then measuring the fractions using sequential non-invasive detectors that are sensitive to different components of the complex. We present results using UV absorption, which is primarily sensitive to the protein fraction, Light Scattering, which measures the total weight average molar mass, and Refractive Index detection, which measures the net concentration. We also present a solution of the problem inter-detector band-broadening problem that has heretofore made this approach impractical. Presented will be instrumentation and an analysis method that overcome these obstacles and make this technique a reliable and robust way of non-invasively characterizing these industrially important compounds.

  16. POlarized Light Angle Reflectance Instrument I Polarized Incidence (POLAR:I)

    NASA Technical Reports Server (NTRS)

    Sarto, Anthony W.; Woldemar, Christopher M.; Vanderbilt, V. C.

    1989-01-01

    The light scattering properties of leaves are used as input data for models which mathematically describe the transport of photons within plant canopies. Polarization measurements may aid in the investigation of these properties. This paper describes an instrument for rapidly determining the bidirectional light scattering properties of leaves illuminated by linearly polarized light. Results for one species, magnolia, show large differences in the bidirectional light scattering properties depending whether or not the electric vector E is parallel to the foliage surface.

  17. Micro-LiDAR velocity, temperature, density, concentration sensor

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A. (Inventor); Danehy, Paul M. (Inventor)

    2010-01-01

    A light scatter sensor includes a sensor body in which are positioned a plurality of optical fibers. The sensor body includes a surface, in one end of each of the optical fibers terminates at the surface of the sensor body. One of the optical fibers is an illumination fiber for emitting light. A plurality of second optical fibers are collection fibers for collecting scattered light signals. A light sensor processor is connected to the collection fibers to detect the scattered light signals.

  18. Imaging, scattering, and spectroscopic systems for biomedical optics: Tools for bench top and clinical applications

    NASA Astrophysics Data System (ADS)

    Cottrell, William J.

    Optical advances have had a profound impact on biology and medicine. The capabilities range from sensing biological analytes to whole animal and subcellular imaging and clinical therapies. The work presented in this thesis describes three independent and multifunctional optical systems, which explore clinical therapy at the tissue level, biological structure at the cell/organelle level, and the function of underlying fundamental cellular processes. First, we present a portable clinical instrument for delivering delta-aminolevulinic acid photodynamic therapy (ALA-PDT) while performing noninvasive spectroscopic monitoring in vivo. Using an off-surface probe, the instrument delivered the treatment beam to a user-defined field on the skin and performed reflectance and fluorescence spectroscopies at two regions within this field. The instrument was used to monitor photosensitizer fluorescence photobleaching, fluorescent photoproduct kinetics, and blood oxygen saturation during a clinical ALA-PDT trial on superficial basal cell carcinoma (sBCC). Protoporphyrin IX and photoproduct fluorescence excited by the 632.8 nm PDT treatment laser was collected between 665 and 775 nm. During a series of brief treatment interruptions at programmable time points, white-light reflectance spectra between 475 and 775 nm were acquired. Fluorescence spectra were corrected for the effects of absorption and scattering, informed by the reflectance measurements, and then decomposed into known fluorophore contributions in real time using a robust singular-value decomposition fitting routine. Reflectance spectra additionally provided information on hemoglobin oxygen saturation. We next describe the incorporation of this instrument into clinical trials at Roswell Park Cancer Institute (Buffalo, NY). In this trial we examined the effects of light irradiance on photodynamic efficiency and pain. The rate of singlet-oxygen production depends on the product of irradiance and photosensitizer and oxygen concentrations. High irradiance and/or photosensitizer levels cause inefficient treatment from oxygen depletion in preclinical models. This trial established the irradiance-dependence of patient tolerability to ALA-PDT of sBCC and a pain-threshold irradiance, below which patients did not experience significant pain or require anesthetic. The irradiance-dependence of sensitizer photobleaching was also used to determine an optimal irradiance that maximized treatment efficiency. The optimal fluence at a single low irradiance is yet to be determined. We additionally report the design, construction, and initial characterization of two optical systems used for cellular scattering measurements: a forward scattering white-light spectroscopy system used to characterize lysosomal refractive index and a multifunctional scattering and fluorescence microscope that exploited an angle-resolved forward-scattering geometry. The multifunctional scattering and fluorescence microscope employed brightfield, Fourier-filtered darkfield, direct imaging of the Fourier plane, angle-resolved scattering, and white-light scattering spectroscopy while preserving a fluorescence imaging channel. Lastly, we report on the development of a microscope-based system used for high-powered, focal laser photolysis. This system was used with cell-permeable caged messenger molecules and analyte specific fluorophores to provide local stimulation of intact cells and subsequent analyte monitoring. This provided a high-precision, non-invasive means for studying Ca2+ dynamics between cell types and between sub-cellular regions within a single cell type. The resulting studies compared the mechanisms underlying the Ca2+ signal globalization in these individual exocrine cell types and under regional messenger release.

  19. Relationship between light scattering and absorption due to cytochrome c oxidase reduction during loss of tissue viability in brains of rats

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2008-02-01

    We performed simultaneous measurement of light scattering and absorption due to reduction of cytochrome c oxidase as intrinsic optical signals that are related to morphological characteristics and energy metabolism, respectively, for rat brains after oxygen/glucose deprivation by saline infusion. To detect change in light scattering, we determined the wavelength that was the most insensitive to change in light absorption due to the reduction of cytochrome c oxidase on the basis of multiwavelength analysis of diffuse reflectance data set for each rat. Then the relationships between scattering signal and absorption signals related to the reductions of heme aa 3 (605 nm) and CuA (830 nm) in cytochrome c oxidase were examined. Measurements showed that after starting saline infusion, the reduction of heme aa 3 started first; thereafter triphasic, large scattering change occurred (200-300 s), during which the reduction of CuA started. Despite such complex behaviors of IOSs, almost linear correlations were seen between the scattering signal and the heme aa 3-related absorption signal, while a relatively large animal-to-animal variation was observed in the correlation between the scattering signal and CuA-related absorption signal. Transmission electron microscopic observation revealed that dendritic swelling and mitochondrial deformation occurred in the cortical surface tissue after the triphasic scattering change. These results suggest that mitochondrial energy failure accompanies morphological alteration in the brain tissue and results in change in light scattering; light scattering will become an important indicator of tissue viability in brain.

  20. Bright-White Beetle Scales Optimise Multiple Scattering of Light

    NASA Astrophysics Data System (ADS)

    Burresi, Matteo; Cortese, Lorenzo; Pattelli, Lorenzo; Kolle, Mathias; Vukusic, Peter; Wiersma, Diederik S.; Steiner, Ullrich; Vignolini, Silvia

    2014-08-01

    Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure.

  1. Assessment of ultrasound modulation of near infrared light on the quantification of scattering coefficient.

    PubMed

    Singh, M Suheshkumar; Yalavarthy, Phaneendra K; Vasu, R M; Rajan, K

    2010-07-01

    To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms. A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model based numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations.

  2. Numerical analysis of dysplasia-associated changes in depth-dependent light scattering profile of cervical epithelium

    NASA Astrophysics Data System (ADS)

    Arifler, Dizem; MacAulay, Calum; Follen, Michele; Guillaud, Martial

    2013-06-01

    Dysplastic progression is known to be associated with changes in morphology and internal structure of cells. A detailed assessment of the influence of these changes on cellular scattering response is needed to develop and optimize optical diagnostic techniques. In this study, we first analyzed a set of quantitative histopathologic images from cervical biopsies and we obtained detailed information on morphometric and photometric features of segmented epithelial cell nuclei. Morphometric parameters included average size and eccentricity of the best-fit ellipse. Photometric parameters included optical density measures that can be related to dielectric properties and texture characteristics of the nuclei. These features enabled us to construct realistic three-dimensional computational models of basal, parabasal, intermediate, and superficial cell nuclei that were representative of four diagnostic categories, namely normal (or negative for dysplasia), mild dysplasia, moderate dysplasia, and severe dysplasia or carcinoma in situ. We then employed the finite-difference time-domain method, a popular numerical tool in electromagnetics, to compute the angle-resolved light scattering properties of these representative models. Results indicated that a high degree of variability can characterize a given diagnostic category, but scattering from moderately and severely dysplastic or cancerous nuclei was generally observed to be stronger compared to scattering from normal and mildly dysplastic nuclei. Simulation results also pointed to significant intensity level variations among different epithelial depths. This suggests that intensity changes associated with dysplastic progression need to be analyzed in a depth-dependent manner.

  3. Scattering rings in optically anisotropic porous silicon

    NASA Astrophysics Data System (ADS)

    Oton, C. J.; Gaburro, Z.; Ghulinyan, M.; Pancheri, L.; Bettotti, P.; Negro, L. Dal; Pavesi, L.

    2002-12-01

    We report the observation of strongly anisotropic scattering of laser light at oblique incidence on a (100)-oriented porous silicon layer. The scattered light forms cones tangent to the incident and reflected beams. The conical pattern is caused by scattering on the vertical walls of pores, which are straight along the layer thickness. The light cone defines structured light rings onto a screen normal to the cone axis. We explain the various structures by optical anisotropy of porous silicon. For the sample under analysis, we directly measure from the ring patterns a value of Δn/nord=8% of positive birefringence.

  4. Light propagation in dentin: influence of microstructure on anisotropy.

    PubMed

    Kienle, Alwin; Forster, Florian K; Diebolder, Rolf; Hibst, Raimund

    2003-01-21

    We investigated the dependence of light propagation in human dentin on its microstructure. The main scatterers in dentin are the tubules, the shape of which can be approximated as long cylinders. We calculated the scattering of electromagnetic waves by an infinitely long cylinder and applied the results in a Monte Carlo code that simulates the light propagation in a dentin slab considering multi-scattering. The theory was compared with goniometric measurements. A pronounced anisotropic scattering pattern was found experimentally and theoretically. In addition, intensity peaks were measured which are shown to be caused by light diffraction by the tubules.

  5. Light scattering from normal and cervical cancer cells.

    PubMed

    Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong

    2017-04-20

    The light scattering characteristic plays a very important role in optic imaging and diagnostic applications. For optical detection of the cell, cell scattering characteristics have an extremely vital role. In this paper, we use the finite-difference time-domain (FDTD) algorithm to simulate the propagation and scattering of light in biological cells. The two-dimensional scattering cell models were set up based on the FDTD algorithm. The cell models of normal cells and cancerous cells were established, and the shapes of organelles, such as mitochondria, were elliptical. Based on these models, three aspects of the scattering characteristics were studied. First, the radar cross section (RCS) distribution curves of the corresponding cell models were calculated, then corresponding relationships between the size and the refractive index of the nucleus and light scattering information were analyzed in the three periods of cell canceration. The values of RCS increase positively with the increase of the nucleo-cytoplasmic ratio in the cancerous process when the scattering angle ranges from 0° to 20°. Second, the effect of organelles in the scattering was analyzed. The peak value of the RCS of cells with mitochondria is higher than the cells without mitochondria when the scattering angle ranges from 20° to 180°. Third, we demonstrated that the influence of cell shape is important, and the impact was revealed by the two typical ideal cells: round cells and oval cells. When the scattering angle ranges from 0° to 80°, the peak values and the frequencies of the appearance of the peaks from the two models are roughly similar. It can be concluded that: (1) the size of the nuclei and the change of the refractive index of cells have a certain impact on light scattering information of the whole cell; (2) mitochondria and other small organelles contribute to the cell light scattering characteristics in the larger scattering angle area; and (3) the change of the cell shape significantly influences the value of scattering peak and the deviation of scattering peak position. The results of the numerical simulation will guide subsequent experiments and early diagnosis of cervical cancer.

  6. Fiber optic probe for light scattering measurements

    DOEpatents

    Nave, Stanley E.; Livingston, Ronald R.; Prather, William S.

    1995-01-01

    A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  7. Fiber optic probe for light scattering measurements

    DOEpatents

    Nave, S.E.; Livingston, R.R.; Prather, W.S.

    1993-01-01

    This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  8. The Use of Cellulose Nanocrystals for Potential Application in Topical Delivery of Hydroquinone.

    PubMed

    Taheri, Azade; Mohammadi, Mina

    2015-07-01

    Nanotechnology-based drug delivery systems can enhance drug permeation through the skin and improve the drug stability. The biodegradability and biocompatibility of cellulose nanocrystals have made these nanoparticles good candidates to use in biomedical applications. The hyperpigmentation is a common skin disorder that could be caused by number of reasons such as sun exposure and pregnancy. Hydroquinone could inhibit the production of melanin and eliminate the discolorations of skin. This study is aimed at introducing cellulose nanocrystals as suitable carriers for drug delivery to skin. Prepared cellulose nanocrystals were characterized by dynamic light scattering and atomic force microscopy. The size of cellulose nanocrystals determined using dynamic light scattering was 301 ± 10 nm. Hydroquinone-cellulose nanocrystal complex was prepared by incubating of hydroquinone solution in cellulose nanocrystals suspension. The size of hydroquinone-cellulose nanocrystal complex determined using dynamic light scattering was 310 ± 10 nm. The hydroquinone content of the hydroquinone-cellulose complex was determined using UV/vis spectroscopy. Hydroquinone was bound to cellulose nanocrystals representing 79.3 ± 2% maximum binding efficiency when 1.1 mg hydroquinone was added to 1 mL of cellulose nanocrystals suspension (2 mg cellulose nanocrystal). The hydroquinone-cellulose nanocrystal complex showed an approximately sustained release profile of hydroquinone. Approximately, 80% of bound hydroquinone released in 4 h. © 2014 John Wiley & Sons A/S.

  9. Ultraviolet radiation cataract: dose dependence

    NASA Astrophysics Data System (ADS)

    Soderberg, Per G.; Loefgren, Stefan

    1994-07-01

    Current safety limits for cataract development after acute exposure to ultraviolet radiation (UVR) are based on experiments analyzing experimental data with a quantal, effect-no effect, dose-response model. The present study showed that intensity of forward light scattering is better described with a continuous dose-response model. It was found that 3, 30 and 300 kJ/m2UVR300nm induces increased light scattering within 6 h. For all three doses the intensity of forward light scattering was constant after 6 h. The intensity of forward light scattering was proportional to the log dose of UVR300nm. There was a slight increase of the intensity of forward light scattering on the contralateral side in animals that received 300 kJ/m2. Altogether 72 Sprague-Dawley male rats were included. Half of the rats were exposed in vivo on one side to UVR300nm. The other half was kept as a control group, receiving the same treatment as exposed rats but without delivery of UVR300nm to the eye. Subgroups of the rats received either of the three doses. Rats were sacrificed at varying intervals after the exposure. The lenses were extracted and the forward light scattering was estimated. It is concluded that intensity of forward light scattering in the lens after exposure to UVR300nm should be described with a continuous dose-reponse model.

  10. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak.

    PubMed

    Berni, L A; Albuquerque, B F C

    2010-12-01

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esférico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.

  11. Accurate Size and Size-Distribution Determination of Polystyrene Latex Nanoparticles in Aqueous Medium Using Dynamic Light Scattering and Asymmetrical Flow Field Flow Fractionation with Multi-Angle Light Scattering

    PubMed Central

    Kato, Haruhisa; Nakamura, Ayako; Takahashi, Kayori; Kinugasa, Shinichi

    2012-01-01

    Accurate determination of the intensity-average diameter of polystyrene latex (PS-latex) by dynamic light scattering (DLS) was carried out through extrapolation of both the concentration of PS-latex and the observed scattering angle. Intensity-average diameter and size distribution were reliably determined by asymmetric flow field flow fractionation (AFFFF) using multi-angle light scattering (MALS) with consideration of band broadening in AFFFF separation. The intensity-average diameter determined by DLS and AFFFF-MALS agreed well within the estimated uncertainties, although the size distribution of PS-latex determined by DLS was less reliable in comparison with that determined by AFFFF-MALS. PMID:28348293

  12. Synthesis and characterization of PEG-P(MAA-SS-VCL) nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, L. L.; Yang, K.; Mu, R. H.; Zhang, N.; Su, L.

    2016-07-01

    The PEG-P(MAA-SS-VCL) nanoparticles were obtained using disulfide containing dimethacrylate (SS) as cross-linking agent, using polyethylene glycol methyl acrylate (PEGMA), N-Vinyl-ε-caprolactam (VCL), and methacrylic acid (MAA) as monomers via homogeneous polymerization in aqueous. The PEG-P(MAA-SS-VCL) nanoparticles were characterized by FT-IR and TGA. The particle size and morphology variation in different environments were detected by dynamic light scattering (DLS) and scanning electron microscopy (SEM). It is the very method that PEG-P(MAA-SS-VCL) nanoparticles can be obtained in this study.

  13. Holographic Characterization of Colloidal Fractal Aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Cheong, Fook Chiong; Ruffner, David B.; Zhong, Xiao; Ward, Michael D.; Grier, David G.

    In-line holographic microscopy images of micrometer-scale fractal aggregates can be interpreted with the Lorenz-Mie theory of light scattering and an effective-sphere model to obtain each aggregate's size and the population-averaged fractal dimension. We demonstrate this technique experimentally using model fractal clusters of polystyrene nanoparticles and fractal protein aggregates composed of bovine serum albumin and bovine pancreas insulin. This technique can characterize several thousand aggregates in ten minutes and naturally distinguishes aggregates from contaminants such as silicone oil droplets. Work supported by the SBIR program of the NSF.

  14. Literature survey for suppression of scattered light in large space telescopes

    NASA Technical Reports Server (NTRS)

    Tifft, W. G.; Fannin, B. B.

    1973-01-01

    A literature survey is presented of articles dealing with all aspects of predicting, measuring, and controlling unwanted scattered (stray) light. The survey is divided into four broad classifications: (1) existing baffle/telescope designs; (2) computer programs for the analysis/design of light suppression systems; (3) the mechanism, measurement, and control of light scattering; and (4) the advantages and problems introduced by the space environment for the operation of diffraction-limited optical systems.

  15. Atomic oxygen effects on thin film space coatings studied by spectroscopic ellipsometry, atomic force microscopy, and laser light scattering

    NASA Technical Reports Server (NTRS)

    Synowicki, R. A.; Hale, Jeffrey S.; Woollam, John A.

    1992-01-01

    The University of Nebraska is currently evaluating Low Earth Orbit (LEO) simulation techniques as well as a variety of thin film protective coatings to withstand atomic oxygen (AO) degradation. Both oxygen plasma ashers and an electron cyclotron resonance (ECR) source are being used for LEO simulation. Thin film coatings are characterized by optical techniques including Variable Angle Spectroscopic Ellipsometry, Optical spectrophotometry, and laser light scatterometry. Atomic Force Microscopy (AFM) is also used to characterize surface morphology. Results on diamondlike carbon (DLC) films show that DLC degrades with simulated AO exposure at a rate comparable to Kapton polyimide. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights.

  16. Mesoporous multi-shelled ZnO microspheres for the scattering layer of dye sensitized solar cell with a high efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Weiwei; Mei, Chao; Zeng, Xianghua, E-mail: xhzeng@yzu.edu.cn

    2016-03-14

    Both light scattering and dye adsorbing are important for the power conversion efficiency PCE performance of dye sensitized solar cell (DSSC). Nanostructured scattering layers with a large specific surface area are regarded as an efficient way to improve the PCE by increasing dye adsorbing, but excess adsorbed dye will hinder light scattering and light penetration. Thus, how to balance the dye adsorbing and light penetration is a key problem to improve the PCE performance. Here, multiple-shelled ZnO microspheres with a mesoporous surface are fabricated by a hydrothermal method and are used as scattering layers on the TiO{sub 2} photoanode ofmore » the DSSC in the presence of N719 dye and iodine–based electrolyte, and the results reveal that the DSSCs based on triple shelled ZnO microsphere with a mesoporous surface exhibit an enhanced PCE of 7.66%, which is 13.0% higher than those without the scattering layers (6.78%), indicating that multiple-shelled microspheres with a mesoporous surface can ensure enough light scattering between the shells, and a favorable concentration of the adsorbed dye can improve the light penetration. These results may provide a promising pathway to obtain the high efficient DSSCs.« less

  17. Experimental light scattering by positionally-controlled small particles — Implications for Planetary Science

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Penttilä, A.; Maconi, G.; Kassamakov, I.; Martikainen, J.; Markkanen, J.; Vaisanen, T.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Electromagnetic scattering is a fundamental physical process that allows inferring characteristics of an object studied remotely. This possibility is enhanced by obtaining the light-scattering response at multiple wavelengths and viewing geometries, i.e., by considering a wider range of the phase angle (the angle between the incident light and the light reflected from the object) in the experiment. Within the ERC Advanced Grant project SAEMPL (http://cordis.europa.eu/project/rcn/107666_en.html) we have assembled an interdisciplinary group of scientists to develop a fully automated, 3D scatterometer that can measure scattered light at different wavelengths from small particulate samples. The setup comprises: (a) the PXI Express platform to synchronously record data from several photomultiplier tubes (PMTs); (b) a motorized rotation stage to precisely control the azimuthal angle of the PMTs around 360°; and (c) a versatile light source, whose wavelength, polarization, intensity, and beam shape can be precisely controlled. An acoustic levitator is used to hold the sample without touching it. The device is the first of its kind, since it measures controlled spectral angular scattering including all polarization effects, for an arbitrary object in the µm-cm size scale. It permits a nondestructive, disturbance-free measurement with control of the orientation and location of the scattering object. To demonstrate our approach we performed detailed measurements of light scattered by a Chelyabinsk LL5 chondrite particle, derived from the light-colored lithology sample of the meteorite. These measurements are cross-validated against the modeled light-scattering characteristics of the sample, i.e., the intensity and the degree of linear polarization of the reflected light, calculated with state-of-the-art electromagnetic techniques (see Muinonen et al., this meeting). We demonstrate a unique non-destructive approach to derive the optical properties of small grain samples which facilitates research on highly valuable planetary materials, such as samples returned from space missions or rare meteorites.

  18. Analysis of the scattering performance of human retinal tissue layers

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Gao, Zhisan; Ye, Haishui; Yuan, Qun

    2017-02-01

    Human retina is different from other ocular tissues, such as cornea, crystalline lens and vitreous because of high scattering performance. As an anisotropic tissue, we cannot neglect its impact on the polarization state of the scattered light. In this paper, Mie scattering and radiative transfer theory are applied to analyze the polarization state of backscattered light from four types of retinal tissues, including neural retina, retinal pigment epithelial (RPE), choroid and sclera. The results show that the most backscattered zones in different depths have almost the same electrical fields of Jones vector, which represents the polarization state of light, whether neural retina layer is under normal incidence or oblique incidence. Very little change occurs in the polarization of backscattered light compared to that of the incident light. Polarization distribution of backward scattered light from neural retina layer doesn't make apparent effects on polarization phase shifting in spectral domain OCT because its thickness is far less than photon mean free path, while other retinal tissues do not meet this rule.

  19. Study of resonance light scattering for remote optical probing

    NASA Technical Reports Server (NTRS)

    Penney, C. M.; Morey, W. W.; St. Peters, R. L.; Silverstein, S. D.; Lapp, M.; White, D. R.

    1973-01-01

    Enhanced scattering and fluorescence processes in the visible and UV were investigated which will enable improved remote measurements of gas properties. The theoretical relationship between scattering and fluorescence from an isolated molecule in the approach to resonance is examined through analysis of the time dependence of re-emitted light following excitation of pulsed incident light. Quantitative estimates are developed for the relative and absolute intensities of fluorescence and resonance scattering. New results are obtained for depolarization of scattering excited by light at wavelengths within a dissociative continuum. The experimental work was performed in two separate facilities. One of these utilizes argon and krypton lasers, single moded by a tilted etalon, and a 3/4 meter double monochromator. This facility was used to determine properties of the re-emission from NO2, I2 and O3 excited by visible light. The second facility involves a narrow-line dye laser, and a 3/4 meter single monochromator. The dye laser produces pulsed light with 5 nsec pulse duration and 0.005 nm spectral width.

  20. FDTD scattered field formulation for scatterers in stratified dispersive media.

    PubMed

    Olkkonen, Juuso

    2010-03-01

    We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.

  1. A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves

    PubMed Central

    Vukusic, P.; Kelly, R.; Hooper, I.

    2008-01-01

    Broadband optical reflectors generally function through coherent scattering from systems comprising one of three designs: overlapped; chirped; or chaotic multilayer reflectors. For each, the requirement to scatter a broad band of wavelengths is met through the presence of a variation in nanostructural periodicity running perpendicular to the systems' outer surfaces. Consequently, the requisite total thickness of the multilayer can often be in excess of 50 μm. Here, we report the discovery and the microwave-assisted characterization of a natural system that achieves excellent optical broadband reflectivity but that is less than 1 μm thick. This system, found on the wing scales of the butterfly Argyrophorus argenteus, comprises a distinctive variation in periodicity that runs parallel to the reflecting surface, rather than perpendicular to it. In this way, the requirement for an extensively thick system is removed. PMID:19042180

  2. Process for sensing defects on a smooth cylindrical interior surface in tubing

    DOEpatents

    Dutton, G. Wayne

    1987-11-17

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90.degree. by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle.

  3. Process for sensing defects on a smooth cylindrical interior surface in tubing

    DOEpatents

    Dutton, G.W.

    1987-11-17

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90[degree] by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle. 6 figs.

  4. Process and apparatus for sensing defects on a smooth cylindrical surface in tubing

    DOEpatents

    Dutton, G.W.

    1985-08-05

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90/sup 0/ by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle.

  5. Light scattering properties of kidney epithelial cells and nuclei

    NASA Astrophysics Data System (ADS)

    Vitol, Elina A.; Kurzweg, Timothy P.; Nabet, Bahram

    2006-02-01

    Enlargement of mammalian cells nuclei due to the cancerous inflammation can be detected early through noninvasive optical techniques. We report on the results of cellular experiments, aimed towards the development of a fiber optic endoscopic probe used for precancerous detection of Barrett's esophagus. We previously presented white light scattering results from tissue phantoms (polystyrene polybead microspheres). In this paper, we discuss light scattering properties of epithelial MDCK (Madine-Darby Canine Kidney) cells and cell nuclei suspensions. A bifurcated optical fiber is used for experimental illumination and signal detection. The resulting scattering spectra from the cells do not exhibit the predicted Mie theory oscillatory behavior inherent to ideally spherical scatterers, such as polystyrene microspheres. However, we are able to demonstrate that the Fourier transform spectra of the cell suspensions are well correlated with the Fourier transform spectra of cell nuclei, concluding that the dominate scatterer in the backscattering region is the nucleus. This correlation experimentally illustrates that in the backscattering region, the cell nuclei are the main scatterer in the cells of the incident light.

  6. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  7. Determination of wood grain direction from laser light scattering pattern

    NASA Astrophysics Data System (ADS)

    Simonaho, Simo-Pekka; Palviainen, Jari; Tolonen, Yrjö; Silvennoinen, Raimo

    2004-01-01

    Laser light scattering patterns from the grains of wood are investigated in detail to gain information about the characteristics of scattering patterns related to the direction of the grains. For this purpose, wood samples of Scots pine ( Pinus sylvestris L.) and silver birch ( Betula pubescens) were investigated. The orientation and shape of the scattering pattern of laser light in wood was found to correlate well with the direction of grain angles in a three-dimensional domain. The proposed method was also experimentally verified.

  8. Defect mapping system

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities.

  9. Defect mapping system

    DOEpatents

    Sopori, B.L.

    1995-04-11

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. 20 figures.

  10. Lattice QCD Calculation of Hadronic Light-by-Light Scattering.

    PubMed

    Green, Jeremy; Gryniuk, Oleksii; von Hippel, Georg; Meyer, Harvey B; Pascalutsa, Vladimir

    2015-11-27

    We perform a lattice QCD calculation of the hadronic light-by-light scattering amplitude in a broad kinematical range. At forward kinematics, the results are compared to a phenomenological analysis based on dispersive sum rules for light-by-light scattering. The size of the pion pole contribution is investigated for momenta of typical hadronic size. The presented numerical methods can be used to compute the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. Our calculations are carried out in two-flavor QCD with the pion mass in the range of 270-450 MeV and contain so far only the diagrams with fully connected quark lines.

  11. Locally-enhanced light scattering by a monocrystalline silicon wafer

    NASA Astrophysics Data System (ADS)

    Ma, Li; Zhang, Pan; Li, Zhen-Hua; Liu, Chun-Xiang; Li, Xing; Zhan, Zi-Jun; Ren, Xiao-Rong; He, Chang-Wei; Chen, Chao; Cheng, Chuan-Fu

    2018-03-01

    We study the optical properties of light scattering by a monocrystalline silicon wafer, by using transparent material to replicate its surface structure and illuminating a fabricated sample with a laser source. The experimental results show that the scattering field contains four spots of concentrated intensity with high local energy, and these spots are distributed at the four vertices of a square with lines of intensity linking adjacent spots. After discussing simulations of and theory about the formation of this light scattering, we conclude that the scattering field is formed by the effects of both geometrical optics and physical optics. Moreover, we calculate the central angle of the spots in the light field, and the result indicates that the locally-enhanced intensity spots have a definite scattering angle. These results may possibly provide a method for improving energy efficiency within mono-Si based solar cells.

  12. Fiber optic light-scattering measurement system for evaluation of embryo viability: model experiment

    NASA Astrophysics Data System (ADS)

    Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto

    1996-05-01

    We evaluated the particle density detectability and particle size detectivity of our fiber-optic light-scattering measurement system. In order to prevent the multiple pregnancy on current in vitro fertilization-embryo transfer, we have aimed to develop a new quantitative and non- invasive method to select a single viable human embryo. We employed the measurement of mitochondria localization in an embryo, which may have the correlation with development ability. We applied the angular distribution measurement of the light-scattering intensity from the embryo to obtain the information originated from the mitochondria. The latex spheres with a diameter of 1.0 micrometers were used to simulate the scattering intensity of the mitochondria. The measurement probes of our system consisted of two fibers for illumination and sensing. They were arranged at a right angle to a microscope optical axis to measure the angular distribution of the light-scattering intensity. We observed that the light-scattering intensity increased monotonically in the range from 106 to 1010 particles per ml. Since the mitochondria density in a human embryo corresponded to 2.5 X 107 per ml in the measurement chamber, we may measure the mitochondria density in the human embryo. The angular dependence of light-scattering intensity changed with the sphere diameters. This result showed the possibility of the selective measurement of the mitochondria density in the embryo in spite of the presence of the other cell organelle. We think that our light-scattering measurement system might be applicable to the evaluation method for the embryo viability.

  13. Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization--prospects and limitations demonstrated on Au nanoparticles.

    PubMed

    Hagendorfer, Harald; Kaegi, Ralf; Traber, Jacqueline; Mertens, Stijn F L; Scherrers, Roger; Ludwig, Christian; Ulrich, Andrea

    2011-11-14

    In this work we discuss about the method development, applicability and limitations of an asymmetric flow field flow fractionation (A4F) system in combination with a multi-detector setup consisting of UV/vis, light scattering, and inductively coupled plasma mass spectrometry (ICPMS). The overall aim was to obtain a size dependent-, element specific-, and quantitative method appropriate for the characterization of metallic engineered nanoparticle (ENP) dispersions. Thus, systematic investigations of crucial method parameters were performed by employing well characterized Au nanoparticles (Au-NPs) as a defined model system. For good separation performance, the A4F flow-, membrane-, and carrier conditions were optimized. To obtain reliable size information, the use of laser light scattering based detectors was evaluated, where an online dynamic light scattering (DLS) detector showed good results for the investigated Au-NP up to a size of 80 nm in hydrodynamic diameter. To adapt large sensitivity differences of the various detectors, as well as to guarantee long term stability and minimum contamination of the mass spectrometer a split-flow concept for coupling ICPMS was evaluated. To test for reliable quantification, the ICPMS signal response of ionic Au standards was compared to that of Au-NP. Using proper stabilization with surfactants, no difference for concentrations of 1-50 μg Au L(-1) in the size range from 5 to 80 nm for citrate stabilized dispersions was observed. However, studies using different A4F channel membranes showed unspecific particle-membrane interaction resulting in retention time shifts and unspecific loss of nanoparticles, depending on the Au-NP system as well as membrane batch and type. Thus, reliable quantification and discrimination of ionic and particular species was performed using ICPMS in combination with ultracentrifugation instead of direct quantification with the A4F multi-detector setup. Figures of merit were obtained, by comparing the results from the multi detector approach outlined above, with results from batch-DLS and transmission electron microscopy (TEM). Furthermore, validation performed with certified NIST Au-NP showed excellent agreement. The developed methods show potential for characterization of other commonly used and important metallic engineered nanoparticles. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Standoff determination of the particle size and concentration of small optical depth clouds based on double scattering measurements: concept and experimental validation with bioaerosols.

    PubMed

    Roy, Gilles; Roy, Nathalie

    2008-03-20

    A multiple-field-of-view (MFOV) lidar is used to characterize size and optical depth of low concentration of bioaerosol clouds. The concept relies on the measurement of the forward scattered light by using the background aerosols at various distances at the back of a subvisible cloud. It also relies on the subtraction of the background aerosol forward scattering contribution and on the partial attenuation of the first-order backscattering. The validity of the concept developed to retrieve the effective diameter and the optical depth of low concentration bioaerosol clouds with good precision is demonstrated using simulation results and experimental MFOV lidar measurements. Calculations are also done to show that the method presented can be extended to small optical depth cloud retrieval.

  15. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis.

    PubMed

    Gann, E; Young, A T; Collins, B A; Yan, H; Nasiatka, J; Padmore, H A; Ade, H; Hexemer, A; Wang, C

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (∼285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition. © 2012 American Institute of Physics

  16. Mapping crystal defects with a digital scanning ultramicroscope

    NASA Astrophysics Data System (ADS)

    Springer, John M., Jr.; Silberman, Enrique; Kroes, Roger L.; Reiss, Don

    1991-12-01

    A computer controlled scanning ultramicroscope has been built to assist in the characterization of transparent crystals. The device measures the scattering of a focused He-Ne laser beam by crystalline defects. As an XYZ translation table moves the crystal under the ultramicroscope, the scattered light is measured by a photodetector whose output is digitized and recorded. From this data, contour maps or 3-D perspective plots of the scattering regions of the crystal can be generated to assist in finding patterns of defects which might be correlated with perturbations in the growth process. The verified resolution of the present instrument is about 1 micrometers , which is limited by the minimum step of the stepper-motor driven translation stages, optical diffraction effects, and the sensitivity of the detector at the laser light frequency. The instrument was used to build a database of defects patterns in commercial laboratory grown triglycine sulphate (TGS) crystals, and to map defects in a TGS crystal grown from aqueous solution during the flight of Spacelab 3. This crystal shows indications of a reduction both in the generation of defects at the seed-new growth interface and in their propagation into the new crystal.

  17. Mapping crystal defects with a digital scanning ultramicroscope

    NASA Astrophysics Data System (ADS)

    Springer, J. M.; Silberman, E.; Kroes, Roger; Reiss, D.

    A computer controlled scanning ultramicroscope has been built to assist in the characterization of transparent crystals. The device measures the scattering of a focused He-Ne laser beam by crystalline defects. As an XYZ translation table moves the crystal under the ultramicroscope, the scattered light is measured by a photodetector whose output is digitized and recorded. From this data, contour maps or three dimensional perspective plots of the scattering regions of the crystal can be generated to assist in finding patterns of defects which might be correlated with perturbations in the growth process. The verified resolution of the present instrument is about 1 micrometer, which is limited by the minimum step of the stepper-motor driven translation stages, optical diffraction effects and the sensitivity of the detector at the laser light frequency. The instrument was used to build a database of defects patterns in commercial laboratory grown triglycine sulphate (TGS) crystals, and to map defects in a TGS crystal grown from aqueous solution during the flight of Spacelab 3. This crystal shows indications of a reduction both in the generation of defects at the seed-new growth interface and in their propagation into the new crystal.

  18. Comparison of measured and computed phase functions of individual tropospheric ice crystals

    NASA Astrophysics Data System (ADS)

    Stegmann, Patrick G.; Tropea, Cameron; Järvinen, Emma; Schnaiter, Martin

    2016-07-01

    Airplanes passing the incuda (lat. anvils) regions of tropical cumulonimbi-clouds are at risk of suffering an engine power-loss event and engine damage due to ice ingestion (Mason et al., 2006 [1]). Research in this field relies on optical measurement methods to characterize ice crystals; however the design and implementation of such methods presently suffer from the lack of reliable and efficient means of predicting the light scattering from ice crystals. The nascent discipline of direct measurement of phase functions of ice crystals in conjunction with particle imaging and forward modelling through geometrical optics derivative- and Transition matrix-codes for the first time allow us to obtain a deeper understanding of the optical properties of real tropospheric ice crystals. In this manuscript, a sample phase function obtained via the Particle Habit Imaging and Polar Scattering (PHIPS) probe during a measurement campaign in flight over Brazil will be compared to three different light scattering codes. This includes a newly developed first order geometrical optics code taking into account the influence of the Gaussian beam illumination used in the PHIPS device, as well as the reference ray tracing code of Macke and the T-matrix code of Kahnert.

  19. Mg2+-induced DNA compaction, condensation, and phase separation in gene delivery vehicles based on zwitterionic phospholipids: a dynamic light scattering and surface-enhanced Raman spectroscopic study.

    PubMed

    Süleymanoğlu, Erhan

    2017-12-01

    Despite the significant efforts towards applying improved non-destructive and label-free measurements of biomolecular structures of lipid-based gene delivery vectors, little is achieved in terms of their structural relevance in gene transfections. Better understanding of structure-activity relationships of lipid-DNA complexes and their gene expression efficiencies thus becomes an essential issue. Raman scattering offers a complimentary measurement technique for following the structural transitions of both DNA and lipid vesicles employed for their transfer. This work describes the use of SERS coupled with light scattering approaches for deciphering the bioelectrochemical phase formations between nucleic acids and lipid vesicles within lipoplexes and their surface parameters that could influence both the uptake of non-viral gene carriers and the endocytic routes of interacting cells. As promising non-viral alternatives of currently employed risky viral systems or highly cytotoxic cationic liposomes, complexations of both nucleic acids and zwitterionic lipids in the presence of Mg 2+ were studied applying colloidal Ag nanoparticles. It is shown that the results could be employed in further conformational characterizations of similar polyelectrolyte gene delivery systems.

  20. Recent progress in distributed fiber optic sensors.

    PubMed

    Bao, Xiaoyi; Chen, Liang

    2012-01-01

    Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.

  1. Detection of sub-MeV dark matter with three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Zurek, Kathryn M.; Grushin, Adolfo G.; Ilan, Roni; Griffin, Sinéad M.; Liu, Zhen-Fei; Weber, Sophie F.; Neaton, Jeffrey B.

    2018-01-01

    We propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of O (meV ) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculate the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.

  2. Recent Progress in Distributed Fiber Optic Sensors

    PubMed Central

    Bao, Xiaoyi; Chen, Liang

    2012-01-01

    Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices. PMID:23012508

  3. Mapping crystal defects with a digital scanning ultramicroscope

    NASA Technical Reports Server (NTRS)

    Springer, J. M.; Silberman, E.; Kroes, Roger; Reiss, D.

    1991-01-01

    A computer controlled scanning ultramicroscope has been built to assist in the characterization of transparent crystals. The device measures the scattering of a focused He-Ne laser beam by crystalline defects. As an XYZ translation table moves the crystal under the ultramicroscope, the scattered light is measured by a photodetector whose output is digitized and recorded. From this data, contour maps or three dimensional perspective plots of the scattering regions of the crystal can be generated to assist in finding patterns of defects which might be correlated with perturbations in the growth process. The verified resolution of the present instrument is about 1 micrometer, which is limited by the minimum step of the stepper-motor driven translation stages, optical diffraction effects and the sensitivity of the detector at the laser light frequency. The instrument was used to build a database of defects patterns in commercial laboratory grown triglycine sulphate (TGS) crystals, and to map defects in a TGS crystal grown from aqueous solution during the flight of Spacelab 3. This crystal shows indications of a reduction both in the generation of defects at the seed-new growth interface and in their propagation into the new crystal.

  4. Microscopic Imaging and Spectroscopy with Scattered Light

    PubMed Central

    Boustany, Nada N.; Boppart, Stephen A.; Backman, Vadim

    2012-01-01

    Optical contrast based on elastic scattering interactions between light and matter can be used to probe cellular structure and dynamics, and image tissue architecture. The quantitative nature and high sensitivity of light scattering signals to subtle alterations in tissue morphology, as well as the ability to visualize unstained tissue in vivo, has recently generated significant interest in optical scatter based biosensing and imaging. Here we review the fundamental methodologies used to acquire and interpret optical scatter data. We report on recent findings in this field and present current advances in optical scatter techniques and computational methods. Cellular and tissue data enabled by current advances in optical scatter spectroscopy and imaging stand to impact a variety of biomedical applications including clinical tissue diagnosis, in vivo imaging, drug discovery and basic cell biology. PMID:20617940

  5. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  6. Anisotropic Light Scattering from Ferrofluids

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Vaishnava, Prem; Naik, Ratna; Lawes, Gavin; Tackett, Ron; Sudakar, C.

    2008-03-01

    We have investigated the light scattering in DC magnetic fields from aqueous suspensions of Fe3O4 nanoparticles coated with tetra methyl ammonium hydroxide and γ-Fe2O3 nanoparticles embedded in alginate hydrogel. For Fe3O4 ferrofluid, anomalous light scattering behavior was observed when light propagated both parallel and perpendicular to the magnetic fields. This behavior is attributed to the alignment and aggregation of the nanoparticles in chain-like structures. A very different light scattering behavior was observed for γ-Fe2O3 alginate sample where, under the similar conditions, the application of the magnetic field produced no structured change in scattering. We attribute this difference to the absence of chain-like structures and constrained mobility of iron nanoparticles in the alginate sample. The observation is in agreement with our relaxation and dissipative heating results^1 where both samples exhibited Neel relaxation but only the Fe3O4 ferrofluid showed Brownian relaxation. The results suggest that Brownian relaxation and nanoparticle mobility are important for producing non-linear light scattering in such systems. ^1P.P. Vaishnava, R. Tackett, A. Dixit, C. Sudakar, R. Naik, and G. Lawes, J. Appl. Phys. 102, 063914 (2007).

  7. Stray light modeling of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    NASA Astrophysics Data System (ADS)

    Rohrbach, Scott O.; Irvin, Ryan G.; Seals, Lenward T.; Skelton, Dennis L.

    2016-09-01

    This paper describes an integrated stray light model of each Science Instrument (SI) in the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) and the Optical Telescope Element Simulator (OSIM), the light source used to characterize the performance of ISIM in cryogenic-vacuum tests at the Goddard Space Flight Center (GSFC). We present three cases where this stray light model was integral to solving questions that arose during the testing campaign - 1) ghosting and coherent diffraction from hardware surfaces in the Near Infrared Imager and Slitless Spectrograph (NIRISS) GR700XD grism mode, 2) ghost spots in the Near Infrared Camera (NIRCam) GRISM modes, and 3) scattering from knife edges of the NIRCam focal plane array masks.

  8. Transfer the multiscale texture of crystalline Si onto thin-film micromorph cell by UV nanoimprint for light trapping

    NASA Astrophysics Data System (ADS)

    Liu, Daiming; Wang, Qingkang; Wang, Qing

    2018-05-01

    Surface texturing is of great significance in light trapping for solar cells. Herein, the multiscale texture, consisting of microscale pyramids and nanoscale porous arrangement, was fabricated on crystalline Si by KOH etching and Ag-assisted HF etching processes and subsequently replicated onto glass with high fidelity by UV nanoimprint method. Light trapping of the multiscale texture was studied by spectral (reflectance, haze ratio) characterizations. Results reveal the multiscale texture provides the broadband reflection reducing, the highlighted light scattering and the additional self-cleaning behaviors. Compared with bare cell, the multiscale textured micromorph cell achieves a 4% relative increase in power conversion efficiency. This surface texturing route paves a promising way for developing low-cost, large-scale and high-efficiency solar applications.

  9. A Framework for Testing Scientific Software: A Case Study of Testing Amsterdam Discrete Dipole Approximation Software

    NASA Astrophysics Data System (ADS)

    Shao, Hongbing

    Software testing with scientific software systems often suffers from test oracle problem, i.e., lack of test oracles. Amsterdam discrete dipole approximation code (ADDA) is a scientific software system that can be used to simulate light scattering of scatterers of various types. Testing of ADDA suffers from "test oracle problem". In this thesis work, I established a testing framework to test scientific software systems and evaluated this framework using ADDA as a case study. To test ADDA, I first used CMMIE code as the pseudo oracle to test ADDA in simulating light scattering of a homogeneous sphere scatterer. Comparable results were obtained between ADDA and CMMIE code. This validated ADDA for use with homogeneous sphere scatterers. Then I used experimental result obtained for light scattering of a homogeneous sphere to validate use of ADDA with sphere scatterers. ADDA produced light scattering simulation comparable to the experimentally measured result. This further validated the use of ADDA for simulating light scattering of sphere scatterers. Then I used metamorphic testing to generate test cases covering scatterers of various geometries, orientations, homogeneity or non-homogeneity. ADDA was tested under each of these test cases and all tests passed. The use of statistical analysis together with metamorphic testing is discussed as a future direction. In short, using ADDA as a case study, I established a testing framework, including use of pseudo oracles, experimental results and the metamorphic testing techniques to test scientific software systems that suffer from test oracle problems. Each of these techniques is necessary and contributes to the testing of the software under test.

  10. Thin optical display panel

    DOEpatents

    Veligdan, James Thomas

    1997-01-01

    An optical display includes a plurality of optical waveguides each including a cladding bound core for guiding internal display light between first and second opposite ends by total internal reflection. The waveguides are stacked together to define a collective display thickness. Each of the cores includes a heterogeneous portion defining a light scattering site disposed longitudinally between the first and second ends. Adjacent ones of the sites are longitudinally offset from each other for forming a longitudinal internal image display over the display thickness upon scattering of internal display light thereagainst for generating a display image. In a preferred embodiment, the waveguides and scattering sites are transparent for transmitting therethrough an external image in superposition with the display image formed by scattering the internal light off the scattering sites for defining a heads up display.

  11. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berni, L. A.; Albuquerque, B. F. C.

    2010-12-15

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esferico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contributemore » to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.« less

  12. Gustav Mie and the evolving subject of light scattering by particles

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.; Travis, Larry D.

    2009-03-01

    The year 2008 marks the centenary of the seminal paper by Gustav Mie on light scattering by homogeneous spherical particles. With more than 3,800 citations, Mie's paper has been among the most influential physics publications of the twentieth century. It has affected profoundly the development of a great variety of science disciplines including atmospheric radiation, meteorological optics, remote sensing, aerosol physics, nanoscience, astrophysics, and biomedical optics. Mie's paper represented a fundamental advancement over the earlier publications by Ludvig Lorenz in that it was explicitly based on the Maxwell equations, gave the final solution in a convenient and closed form suitable for practical computations, and imparted physical reality to the abstract concept of electromagnetic scattering. The Mie solution anticipated such general concepts as far-field scattering and the Sommerfeld-Silver-Müller boundary conditions at infinity as well as paved the way to such important extensions as the separation of variables method for spheroids and the T-matrix method. Among illustrative uses of the Mie solution are the explanation of the spectacular optical displays caused by cloud and rain droplets, the detection of sulfuric acid particles in the atmosphere of Venus from Earth-based polarimetry, and optical particle characterization based on measurements of morphology-dependent resonances. Yet there is no doubt that the full practical potential of the Mie theory is still to be revealed.

  13. Silver nanoparticles (AgNPs) as a contrast agent for imaging of animal tissue using swept-source optical coherence tomography (SSOCT)

    NASA Astrophysics Data System (ADS)

    Mondal, Indranil; Raj, Shipra; Roy, Poulomi; Poddar, Raju

    2018-01-01

    We present noninvasive three-dimensional depth-resolved imaging of animal tissue with a swept-source optical coherence tomography system at 1064 nm center wavelength and silver nanoparticles (AgNPs) as a potential contrast agent. A swept-source laser light source is used to enable an imaging rate of 100 kHz (100 000 A-scans s-1). Swept-source optical coherence tomography is a new variant of the optical coherence tomography (OCT) technique, offering unique advantages in terms of sensitivity, reduction of motion artifacts, etc. To enhance the contrast of an OCT image, AgNPs are utilized as an exogeneous contrast agent. AgNPs are synthesized using a modified Tollens method and characterization is done by UV-vis spectroscopy, dynamic light scattering, scanning electron microscopy and energy dispersive x-ray spectroscopy. In vitro imaging of chicken breast tissue, with and without the application of AgNPs, is performed. The effect of AgNPs is studied with different exposure times. A mathematical model is also built to calculate changes in the local scattering coefficient of tissue from OCT images. A quantitative estimation of scattering coefficient and contrast is performed for tissues with and without application of AgNPs. Significant improvement in contrast and increase in scattering coefficient with time is observed.

  14. Multiple scattering contribution to the diffuse light of a night sky: A model which embraces all orders of scattering

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav

    2018-02-01

    The mechanism in which multiple scattering influences the radiance of a night sky has been poorly quantified until recently, or even completely unknown from the theoretical point of view. In this paper, the relative contribution of higher-scattering radiances to the total sky radiance is treated analytically for all orders of scattering, showing that a fast and accurate numerical solution to the problem exists. Unlike a class of ray tracing codes in which CPU requirements increase tremendously with each new scattering mode, the solution developed here requires the same processor time for each scattering mode. This allows for rapid estimation of higher-scattering radiances and residual error that is otherwise unknown if these radiances remain undetermined. Such convergence testing is necessary to guarantee accuracy and the stability of the numerical predictions. The performance of the method developed here is demonstrated in a set of numerical experiments aiming to uncover the relative importance of higher-scattering radiances at different distances from a light source. We have shown, that multiple scattering effects are generally low if distance to the light source is below 30 km. At large distances the multiple scattering can become important at the dark sky elements situated opposite to the light source. However, the brightness at this part of sky is several orders of magnitude smaller than that of a glowing dome of light over a city, so we do not expect that a partial increase or even doubling the radiance of otherwise dark sky elements can noticeably affect astronomical observations or living organisms (including humans). Single scattering is an appropriate approximation to the sky radiance of a night sky in the vast majority of cases.

  15. Whole field reflectance optical tomography

    NASA Astrophysics Data System (ADS)

    Carbone, Nicolás A.; García, Héctor A.; di Rocco, Héctor O.; Iriarte, Daniela I.; Pomarico, Juan A.; Ranea Sandoval, Héctor F.

    2011-08-01

    Optical imaging through highly scattering media such as biological tissues is a topic of intense research, especially for biomedical applications. Diverse optical systems are currently under study and development for displaying the functional imaging of the brain and for the detection of breast tumors. From the theoretical point of view, a suitable description of light propagation in tissues involves the Radiative Transfer Equation, which considers the energetic aspects of light propagation. However, this equation cannot be solved analytically in a closed form and the Diffusion Approximation is normally used. Experimentally it is possible to use Transmission or Reflection geometries and Time Resolved, Frequency Modulated or CW sources. Each configuration has specific advantages and drawbacks, depending on the desired application. In the present contribution, we investigate the reflected light images registered by a CCD camera when scattering and absorbing inhomogeneities are located at different depths inside turbid media. This configuration is of particular interest for the detection and optical characterization of changes in blood flow in organs, as well as for the detection and characterization of inclusions in those cases for which the transmission slab geometry is not well suited. Images are properly normalized to the background intensity and allow analyzing relative large areas (typically 5 × 5 cm2) of the tissue. We tested the proposal using Numerical Monte Carlo simulations implemented in a Graphic Processing Unit (Video accelerating Card). Calculations are thus several orders of magnitude faster than those run in CPU. Experimental results in phantoms are also given.

  16. Simulating propagation of coherent light in random media using the Fredholm type integral equation

    NASA Astrophysics Data System (ADS)

    Kraszewski, Maciej; Pluciński, Jerzy

    2017-06-01

    Studying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g. Radiative Transfer Theory and Monte Carlo methods) but they do not treat coherence properties of light directly. Some variations of these methods allows to predict behavior of coherent light but only for an averaged realization of the scattering medium. This limits their application in studying many physical phenomena connected to a specific distribution of scattering particles (e.g. laser speckle). In general, numerical simulation of coherent light propagation in a specific realization of random medium is a time- and memory-consuming problem. The goal of the presented research was to develop new efficient method for solving this problem. The method, presented in our earlier works, is based on solving the Fredholm type integral equation, which describes multiple light scattering process. This equation can be discretized and solved numerically using various algorithms e.g. by direct solving the corresponding linear equations system, as well as by using iterative or Monte Carlo solvers. Here we present recent development of this method including its comparison with well-known analytical results and a finite-difference type simulations. We also present extension of the method for problems of multiple scattering of a polarized light on large spherical particles that joins presented mathematical formalism with Mie theory.

  17. Particle measurement systems and methods

    DOEpatents

    Steele, Paul T [Livermore, CA

    2011-10-04

    A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.

  18. Observation of two-beam collective scattering phenomena in a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Dimitrova, Ivana; Lunden, William; Amato-Grill, Jesse; Jepsen, Niklas; Yu, Yichao; Messer, Michael; Rigaldo, Thomas; Puentes, Graciana; Weld, David; Ketterle, Wolfgang

    2017-11-01

    Different regimes of collective light scattering are observed when an elongated Bose-Einstein condensate is pumped by two noninterfering beams counterpropagating along its long axis. In the limit of small Rayleigh scattering rates, the presence of a second pump beam suppresses superradiance, whereas at large Rayleigh scattering rates it lowers the effective threshold power for collective light scattering. In the latter regime, the quench dynamics of the two-beam system are oscillatory, compared to monotonic in the single-beam case. In addition, the dependence on power, detuning, and atom number is explored. The observed features of the two-beam system qualitatively agree with the recent theoretical prediction of a supersolid crystalline phase of light and matter at large Rayleigh scattering rates.

  19. Wavelet transform fast inverse light scattering analysis for size determination of spherical scatterers

    PubMed Central

    Ho, Derek; Kim, Sanghoon; Drake, Tyler K.; Eldridge, Will J.; Wax, Adam

    2014-01-01

    We present a fast approach for size determination of spherical scatterers using the continuous wavelet transform of the angular light scattering profile to address the computational limitations of previously developed sizing techniques. The potential accuracy, speed, and robustness of the algorithm were determined in simulated models of scattering by polystyrene beads and cells. The algorithm was tested experimentally on angular light scattering data from polystyrene bead phantoms and MCF-7 breast cancer cells using a 2D a/LCI system. Theoretical sizing of simulated profiles of beads and cells produced strong fits between calculated and actual size (r2 = 0.9969 and r2 = 0.9979 respectively), and experimental size determinations were accurate to within one micron. PMID:25360350

  20. Detection of internal structure by scattered light intensity: Application to kidney cell sorting

    NASA Technical Reports Server (NTRS)

    Goolsby, C. L.; Kunze, M. E.

    1985-01-01

    Scattered light measurements in flow cytometry were sucessfully used to distinguish cells on the basis of differing morphology and internal structure. Differences in scattered light patterns due to changes in internal structure would be expected to occur at large scattering angles. Practically, the results of these calculations suggest that in experimental situations an array of detectors would be useful. Although in general the detection of the scattered light intensity at several intervals within the 10 to 60 region would be sufficient, there are many examples where increased sensitivity could be acheived at other angles. The ability to measure at many different angular intervals would allow the experimenter to empirically select the optimum intervals for the varying conditions of cell size, N/C ratio, granule size and internal structure from sample to sample. The feasibility of making scattered light measurements at many different intervals in flow cytometry was demonstrated. The implementation of simplified versions of these techniques in conjunction with independant measurements of cell size could potentially improve the usefulness of flow cytometry in the study of the internal structure of cells.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenfeld, A; Poppinga, D; Poppe, B

    Purpose: This study aims to investigate the optical properties of radiochromic EBT3 films on exposure to polarized incident light. Methods: An optical table setup was used to investigate the properties of exposed and unexposed EBT3 films. The films were placed with their long side horizontally and illuminated with polarized incident white light. The polarization of light with the electrical vector pointing vertically is referred to as 0°, accordingly horizontal orientation corresponds to 90°. The light transmission was measured depending on the polarization angle of the incident light and the polarization of a polarizer in front of the detector. Secondly, themore » scattering properties of exposed and unexposed films were measured by placing a plane convex lens behind the films and a screen in its focal plane. Thereby, the distribution of the scattering angles appears as an intensity map on the screen. The distributions of scattering angles caused by EBT3 films and by neutral density filters were compared. Results: EBT3 films show a strong dependence of the light transmission on the polarization of the incident light. With both polarizers parallel, a peak transmission was found at 90° orientation of the polarizers. With the rear polarizer at right angles with the front polarizer, peak transmissions were found at front polarizer orientations 45° and 135°. The scattering appears to be anisotropic with a preference direction parallel to the long side of the film. The portion of scattered light and the half value scattering angle both increase with the dose on the film. Conclusion: EBT3 films show dose dependent changes in polarized light transmission and anisotropic light scattering. These effects impair the light absorption measurements on exposed films performed with commercial flatbed scanners and are causing the well-known artifacts of radiochromic film dosimetry with flatbed scanners, the “orientation effect” and the “parabola effect”.« less

  2. Development of a multispectral light-scatter sensor for bacterial colonies

    USDA-ARS?s Scientific Manuscript database

    We report a multispectral elastic-light-scatter instrument that can simultaneously detect three-wavelength scatter patterns and associated optical densities from individual bacterial colonies, overcoming the limits of the single-wavelength predecessor. Absorption measurements on liquid bacterial sam...

  3. Apparatus and method for spectroscopic analysis of scattering media

    DOEpatents

    Strobl, Karlheinz; Bigio, Irving J.; Loree, Thomas R.

    1994-01-01

    Apparatus and method for spectroscopic analysis of scattering media. Subtle differences in materials have been found to be detectable from plots of intensity as a function of wavelength of collected emitted and scattered light versus wavelength of excitation light.

  4. Direct Detection of Polarized, Scattered Light from Exoplanets

    NASA Astrophysics Data System (ADS)

    Laughlin, Gregory

    We propose to radically advance the state of exoplanet characterization, which lags dramatically behind exoplanet discovery. We propose to directly detect scattered light from the atmospheres of close-in, highly eccentric, and extended/non-spherical exoplanets and thereby determine the following: orbital inclination (and therefore masses free of the M sin i mass ambiguity), geometric albedo, presence or lack of hazes and cloud layers, and scattering particle size and composition. Such measurements are crucial to the understanding of exoplanet atmospheres, because observations with NASA s Hubble, Spitzer, and Kepler space telescopes present the following questions: 1) Do exoplanets have highly reflective haze layers? 2) How does the upper atmospheric composition differ between exoplanets with and without thermal inversions? 3) What are the optical manifestations of the extreme heating of highly eccentric exoplanets? 4) Are the atmospheres of certain exoplanets truly escaping their Roche lobes? Using the POLISH2 polarimeter developed by the Postdoctoral Associate (Wiktorowicz) for the Lick 3-m telescope, we propose to monitor the linear polarization state of exoplanet host stars at the part per million level. POLISH2 consistently delivers nearly photon shot noise limited measurements with this precision. In addition, the simultaneous full-Stokes measurements of POLISH2 and the equatorial mount of the Lick 3-m telescope ensure that systematic effects are mitigated to the part per million level. Indeed, we find the accuracy of the POLISH2 polarimeter to be 0.1 parts per million. This instrument and telescope represent the highest precision polarimeter in the world for exoplanet research. We present potential detection of polarized, scattered light from the HD 189733b, Tau Boo b, and WASP-12b exoplanets. We propose to observe hot Jupiters on circular orbits, highly eccentric exoplanets, exoplanets with extended or non-spherical scattering surfaces, and 55 Cnc e, the super-Earth with the highest expected polarimetric signal-to- noise ratio. These exoplanets should all produce detectable polarization, and they present unique opportunities to study the atmospheres of wildly different exoplanets. Extending the PI s (Laughlin) Monte Carlo ray-tracing code, and utilizing the Co-I s (Fortney) experience in modeling exoplanet atmospheres, we propose to fund a graduate student to model the polarization data obtained from POLISH2 and invert the above variables. This is because they affect the amplitude and shape of the periodic variability in the polarization state of light from the system. Indeed, the discovery of spherical, sulfuric acid droplets suspended in the Venusian atmosphere was made forty years ago with Mie scattering models to fit polarimetric measurements. The PI s ray-tracing code, which has been used to model the rapid heating of the eccentric HD 80606b exoplanet, currently includes Rayleigh scattering and alkali metal absorption in a self-consistent manner. The direct detection of exoplanets as well as characterization of their atmospheric compositions and structure is directly related to the goals of the Origins program and to the NASA 2010 Science Plan, which emphasizes exploration of exoplanets and exoplanetary systems.

  5. Features in the speckle correlations of light scattered from volume-disordered dielectric media

    NASA Astrophysics Data System (ADS)

    Malyshkin, V.; McGurn, A. R.; Maradudin, A. A.

    1999-03-01

    A diagrammatic perturbation theory approach, based on a scalar wave treatment, is used to study the scattering of light of frequency ω from a volume disordered dielectric medium. The dielectric medium is described by a position-dependent dielectric constant of the form ɛ(r-->)=ɛ(ω)+δɛ(r-->), where ɛ(ω) does not depend on r-->, and δɛ(r-->) is a zero-mean Gaussian random process defined by <δɛ(r-->)δɛ(r-->')>=σ2 exp(-\\|r-->-r-->'\\|2/a2), where the angle brackets denote an average over the ensemble of realizations of δɛ(r-->), a is the correlation length of the disorder, and σ is the root mean square deviation of the dielectric constant from its average value ɛ(ω). The speckle correlation function C(q-->,k-->\\|q-->',k-->')=<[I(q-->\\|k-->)-\\|k-->)>][I(q-->'\\|k-->')-'\\|k-->')]> where I(q-->\\|k-->) is proportional to the differential-scattering coefficient for the scattering of light of incident wave vector k--> into light of wave vector q--> is computed. In these calculations the contributions associated with both ladder and maximally crossed diagrams are summed in a Feynman diagram treatment of the speckle correlator, in the approximation that only s-wave-scattering terms are retained. Results are presented for the differential-scattering coefficient of light scattered from the disordered medium, which displays the phenomenon of enhanced backscattering, and for the correlator C in the approximation where C=C(1)+C(10)+C(1.5). The contribution C(1) is proportional to δ(q-->-k-->-q-->'+k-->') and describes the memory and time-reversed memory effects. C(10) is proportional to δ(q-->-k-->+q-->'-k-->'), while C(1.5) is unrestricted in its dependence on q-->,k-->,q-->',k-->'. The latter two contributions have recently been treated in the scattering of light from randomly rough surfaces, but have not been previously treated in the scattering of light by volume disordered media. A number of peaks associated with resonant processes are observed in C(1.5) considered as a function of the wave vectors of the incident and scattered light.

  6. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, R.B.

    1991-09-10

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch. 11 figures.

  7. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, Russell B.

    1991-01-01

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch.

  8. Structure Formation in Salt-Free Solutions of Amphiphilic Sulfonated Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Bockstaller, Michael; Koehler, Werner

    2000-03-01

    Self-assembled systems have long attracted attention due to their practical importance in many technical and biological fields. Dodecyl-substituted poly(para-phenylen)sulfonates (abbreviated PPPS) are highly charged polyelectrolytes which in the uncharged state have been investigated extensively and an intrinsic persistence length of 15 nm has been reported. Due to their hydrophobic side chains, PPPS are compatible with water only as micellar aggregates and tend to form supramolecular structures even at concentrations as low as 10-5mol_mon.units/l. Because of the rodlike conformation of PPPS, this self-assembly leads to aggregates of anisotropic shape. Therefore, depolarized light scattering was employed to yield complementary information about structure and dynamics of these complex fluids. Aqueous solutions of PPPS at room temperature undergo a structural transition at a critical concentration of c_crit.=0.016 g/l. This transition is characterized by a strong increase of scattered intensity in forward direction and dynamic depolarized scattering. Above c_crit. the cylindrical micelles (L=310 nm, d=3.1 nm, N_radial=12) self assembly into large ellipsoidal clusters of size in the μ m range. Due to the strong increase of depolarized scattered intensity there has to be a preferential orientation of the micelles inside those clusters, which thus represent a lyotropic mesophase. By combining static and dynamic light scattering for the low q-range as well as small angle x-ray scattering for the higher q-range it is possible to determine size and shape of each aggregation step. Decreasing the molecular weight of the PPPS has profound influence on the micellar length and hence on c_crit. which is close to the overlap concentration (c ~ 1/L^3) allowing for the observation of the polyelectrolyte effect.

  9. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument

    Treesearch

    Kristin Lewis; William P. Arnott; Hans Moosmuller; Cyle E. Wold

    2008-01-01

    A dual-wavelength photoacoustic instrument operating at 405 and 870 nm was used during the 2006 Fire Lab at Missoula Experiment to measure light scattering and absorption by smoke from the combustion of a variety of biomass fuels. Simultaneous measurements of aerosol light scattering by reciprocal nephelometry within the instrument's acoustic resonator accompany...

  10. Light Scattering by Marine Particles: Modeling with Non-Spherical Shapes

    DTIC Science & Technology

    2011-04-15

    scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi. Limnology and Oceanography, 46. 1438— 1454,2001. H.R...application to coccoliths detached from Emiliania huxleyi," Limnol. Oceanogr. 46, 1438-1454 (2001). 5. H.R.Gordon, "Backscattering of light from...by coccoliths detached from Emiliania huxleyi," Applied Optics, 48, 6059-6073 (2009). Light scattering by coccoliths detached from Emiliania

  11. Polypyrrole coated phase-change contrast agents for sono-photoacoustic imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, David S.; Yoon, Soon Joon; Matula, Thomas J.; O'Donnell, Matthew; Pozzo, Lilo D.

    2017-03-01

    A new light and sound sensitive nanoemulsion contrast agent is presented. The agents feature a low boiling point liquid perfluorocarbon core and a broad light spectrum absorbing polypyrrole (PPy) polymer shell. The PPy coated nanoemulsions can reversibly convert from liquid to gas phase upon cavitation of the liquid perfluorocarbon core. Cavitation can be initiated using a sufficiently high intensity acoustic pulse or from heat generation due to light absorption from a laser pulse. The emulsions can be made between 150 and 350 nm in diameter and PPy has a broad optical absorption covering both the visible spectrum and extending into the near-infrared spectrum (peak absorption 1053 nm). The size, structure, and optical absorption properties of the PPy coated nanoemulsions were characterized and compared to PPy nanoparticles (no liquid core) using dynamic light scattering, ultraviolet-visible spectrophotometry, transmission electron microscopy, and small angle X-ray scattering. The cavitation threshold and signal intensity were measured as a function of both acoustic pressure and laser fluence. Overlapping simultaneous transmission of an acoustic and laser pulse can significantly reduce the activation energy of the contrast agents to levels lower than optical or acoustic activation alone. We also demonstrate that simultaneous light and sound cavitation of the agents can be used in a new sono-photoacoustic imaging method, which enables greater sensitivity than traditional photoacoustic imaging.

  12. Polarized Light Scattering from Perfect and Perturbed Surfaces and Fundamental Scattering Systems

    DTIC Science & Technology

    1992-02-29

    ob- one frequency, an extension of it to multiple-field interac- served in the elastically scattered light emitted from glass tions would follow the...that 8. V CeIll . A. A. Maradudin, A. M. Marvin, and A. R. McGurn, can explain only gross scattering features. It is inde "Some aspects of light...and a surface of index n a 10.0 - 0.01. Such a surface could be made with a series of 1/4-wave dielectric layers on a glass substrate. It Is more

  13. Optimization of surface morphology and scattering properties of TCO/AIT textured glass front electrode for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Addonizio, M. L.; Fusco, L.; Antonaia, A.; Cominale, F.; Usatii, I.

    2015-12-01

    Aluminium induced texture (AIT) method has been used for obtaining highly textured glass substrate suitable for silicon based thin film solar cell technology. Wet etch step parameters of AIT process have been varied and effect of different etchants and different etching times on morphological and optical properties has been analyzed. The resulting morphology features (shape, size distribution, inclination angle) have been optimized in order to obtain the best scattering properties. ZnO:Ga (GZO) films have been deposited by sputtering technique on AIT-processed glass. Two different ZnO surface morphologies have been obtained, strongly depending on the underlying glass substrate morphology induced by different etching times. Very rough and porous texture (σrms ∼ 150 nm) was obtained on glass etched 2 min showing cauliflower-like structure, whereas a softer texture (σrms ∼ 78 nm) was obtained on glass etched 7 min giving wider and smoother U-shaped craters. The effect of different glass textures on optical confinement has been tested in amorphous silicon based p-i-n devices. Devices fabricated on GZO/high textured glass showed a quantum efficiency enhancement due to both an effective light trapping phenomenon and an effective anti-reflective optical behaviour. Short etching time produce smaller cavities (<1 μm) with deep U-shape characterized by high roughness, high inclination angle and low autocorrelation length. This surface morphology promoted a large light scattering phenomenon, as evidenced by haze value and by angular resolved scattering (ARS) behaviour, into a large range of diffraction angles, giving high probability of effective light trapping inside a PV device.

  14. High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation.

    PubMed

    Wilson, Robert H; Crouzet, Christian; Torabzadeh, Mohammad; Bazrafkan, Afsheen; Farahabadi, Maryam H; Jamasian, Babak; Donga, Dishant; Alcocer, Juan; Zaher, Shuhab M; Choi, Bernard; Akbari, Yama; Tromberg, Bruce J

    2017-10-01

    Quantifying rapidly varying perturbations in cerebral tissue absorption and scattering can potentially help to characterize changes in brain function caused by ischemic trauma. We have developed a platform for rapid intrinsic signal brain optical imaging using macroscopically structured light. The device performs fast, multispectral, spatial frequency domain imaging (SFDI), detecting backscattered light from three-phase binary square-wave projected patterns, which have a much higher refresh rate than sinusoidal patterns used in conventional SFDI. Although not as fast as "single-snapshot" spatial frequency methods that do not require three-phase projection, square-wave patterns allow accurate image demodulation in applications such as small animal imaging where the limited field of view does not allow single-phase demodulation. By using 655, 730, and 850 nm light-emitting diodes, two spatial frequencies ([Formula: see text] and [Formula: see text]), three spatial phases (120 deg, 240 deg, and 360 deg), and an overall camera acquisition rate of 167 Hz, we map changes in tissue absorption and reduced scattering parameters ([Formula: see text] and [Formula: see text]) and oxy- and deoxyhemoglobin concentration at [Formula: see text]. We apply this method to a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) to quantify hemodynamics and scattering on temporal scales ([Formula: see text]) ranging from tens of milliseconds to minutes. We observe rapid concurrent spatiotemporal changes in tissue oxygenation and scattering during CA and following CPR, even when the cerebral electrical signal is absent. We conclude that square-wave SFDI provides an effective technical strategy for assessing cortical optical and physiological properties by balancing competing performance demands for fast signal acquisition, small fields of view, and quantitative information content.

  15. Light Scattering Analysis of Irregularly Shaped Dust Particles: A Study Using 3-Dimensional Reconstructions from Focused Ion-Beam (FIB) Tomography and Q-Space Analysis

    NASA Astrophysics Data System (ADS)

    Ortiz-Montalvo, D. L.; Conny, J. M.

    2017-12-01

    We study the scattering properties of irregularly shaped ambient dust particles. The way in which they scatter and absorb light has implications for aerosol optical remote sensing and aerosol radiative forcing applications. However, understanding light scattering and absorption by non-spherical particles can be very challenging. We used focused ion-beam scanning electron microscopy and energy-dispersive x-ray spectroscopy (FIB-SEM-EDS) to reconstruct three-dimensional (3-D) configurations of dust particles collected from urban and Asian sources. The 3-D reconstructions were then used in a discrete dipole approximation method (DDA) to determine their scattering properties for a range of shapes, sizes, and refractive indices. Scattering properties where obtained using actual-shapes of the particles, as well as, (theoretical) equivalently-sized geometrical shapes like spheres, ellipsoids, cubes, rectangular prisms, and tetrahedrons. We use Q-space analysis to interpret the angular distribution of the scattered light obtained for each particle. Q-space analysis has been recently used to distinguish scattering by particles of different shapes, and it involves plotting the scattered intensity versus the scattering wave vector (q or qR) on a log-log scale, where q = 2ksin(θ/2), k = 2π/λ, and R = particle effective radius. Results from a limited number of particles show that when Q-space analysis is applied, common patterns appear that agree with previous Q-space studies done on ice crystals and other irregularly shaped particles. More specifically, we found similar Q-space regimes including a forward scattering regime of constant intensity when qR < 1, followed by the Guinier regime when qR ≈ 1, which is then followed by a complex power law regime with a -3 slope regime, a transition regime, and then a -4 slope regime. Currently, Q-space comparisons between actual- and geometric shapes are underway with the objective of determining which geometric shape best represents the angular distribution and magnitude of the scattered light. Current work also focuses on the effects of the imaginary part of the refractive index on the light scattering of our dust particles.

  16. Bio-inspired, colorful, flexible, defrostable light-scattering hybrid films for the effective distribution of LED light.

    PubMed

    An, Seongpil; Jo, Hong Seok; Kim, Yong Il; Song, Kyo Yong; Kim, Min-Woo; Lee, Kyu Bum; Yarin, Alexander L; Yoon, Sam S

    2017-07-06

    Bioluminescent jellyfish has a unique structure derived from fiber/polymer interfaces that is advantageous for effective light scattering in the dark, deep sea water. Herein, we demonstrate the fabrication of bio-inspired hybrid films by mimicry of the jellyfish's structure, leading to excellent light-scattering performance and defrosting capability. A haze value reaching 59.3% and a heating temperature of up to 292 °C were achieved with the films. Accordingly, the developed surface constitutes an attractive optical device for lighting applications, especially for street or vehicle luminaries for freezing Arctic-climate countries. The morphological details of the hybrid films were revealed by scanning electron microscopy. The light-scattering properties of these films were examined by ultraviolet-visible-infrared spectrophotometry and anti-glare effect analyses. The defrosting performance of the hybrid films was evaluated via heating tests and infra-red observations.

  17. Competitive Self-Assembly Manifests Supramolecular Darwinism in Soft-Oxometalates

    NASA Astrophysics Data System (ADS)

    Das, Santu; Kumar, Saurabh; Mallick, Apabrita; Roy, Soumyajit

    2015-09-01

    Topological transformation manifested in inorganic materials shows manifold possibilities. In our present work, we show a clear topological transformation in a soft-oxometalate (SOM) system which was formed from its polyoxometalate (POM) precursor [PMo12@Mo72Fe30]. This topological transformation was observed due to time dependent competitive self-assembly of two different length scale soft-oxometalate moieties formed from this two-component host-guest reaction. We characterized different morphologies by scanning electron microscopy, electron dispersive scattering spectroscopy, dynamic light scattering, horizontal attenuated total reflection-infrared spectroscopy and Raman spectroscopy. The predominant structure is selected by its size in a sort of supramolecular Darwinian competition in this process and is described here.

  18. Plasmonics and SERS activity of post-transition metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bezerra, A. G.; Machado, T. N.; Woiski, T. D.; Turchetti, D. A.; Lenz, J. A.; Akcelrud, L.; Schreiner, W. H.

    2018-05-01

    Nanoparticles of the post-transition metals, In, Sn, Pb, and Bi, and of the metalloid Sb were produced by laser ablation synthesis in solution (LASiS) and tested for localized surface plasmon resonances (LSPR) and surface-enhanced Raman scattering (SERS). The nanoparticles were characterized by UV-Vis optical absorption, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Several organic and biological molecules were tested, and SERS activity was demonstrated for all tested nanoparticles and molecules. The Raman enhancement factor for each nanoparticle class and molecule was experimentally determined. The search for new plasmonic nanostructures is important mainly for life sciences-related applications and this study expands the range of SERS active systems.

  19. Correlation transfer and diffusion of ultrasound-modulated multiply scattered light.

    PubMed

    Sakadzić, Sava; Wang, Lihong V

    2006-04-28

    We develop a temporal correlation transfer equation (CTE) and a temporal correlation diffusion equation (CDE) for ultrasound-modulated multiply scattered light. These equations can be applied to an optically scattering medium with embedded optically scattering and absorbing objects to calculate the power spectrum of light modulated by a nonuniform ultrasound field. We present an analytical solution based on the CDE and Monte Carlo simulation results for light modulated by a cylinder of ultrasound in an optically scattering slab. We further validate with experimental measurements the numerical calculations for an actual ultrasound field. The CTE and CDE are valid for moderate ultrasound pressures and on a length scale comparable with the optical transport mean-free path. These equations should be applicable to a wide spectrum of conditions for ultrasound-modulated optical tomography of soft biological tissues.

  20. Light-scattering changes caused by RBC aggregation: physical basis for new approach to noninvasive blood count

    NASA Astrophysics Data System (ADS)

    Shvartsman, Leonid D.; Fine, Ilya

    2001-06-01

    We develop theoretical models of light transmission through whole blood considering RBC aggregation. RBC aggregates are considered to be the main centers of scattering in red/near- infrared spectral region. In pulsatile blood flow the periodic changes of aggregate geometry cause oscillations of light scattering. Thus scattering-assisted mechanism has to be taken into account in pulse oximeter calibration. In case of over-systolic vessel occlusion the size of aggregates grows, and the light transmission rises. Light diffraction on a single scatterer makes the transmission growth non- monotonic for certain spectral range. For the most typical set of aggregate parameters this range corresponds to wavelengths below 760 nm, and this prediction fits well both in vivo and in vitro experimental results. This spectral range depends on the refraction index mismatch and the geometry of aggregates. Both of them may be affected by the chemistry of blood. For instance, changes of glucose and hemoglobin have different effect on light transmission time response. Consequently, their content may be determined from time evolution of optical transmission.

Top