Singh, M Suheshkumar; Yalavarthy, Phaneendra K; Vasu, R M; Rajan, K
2010-07-01
To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms. A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model based numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations.
NASA Astrophysics Data System (ADS)
Yuan, Zhen; Li, Xiaoqi; Xi, Lei
2014-06-01
Biomedical photoacoustic tomography (PAT), as a potential imaging modality, can visualize tissue structure and function with high spatial resolution and excellent optical contrast. It is widely recognized that the ability of quantitatively imaging optical absorption and scattering coefficients from photoacoustic measurements is essential before PAT can become a powerful imaging modality. Existing quantitative PAT (qPAT), while successful, has been focused on recovering absorption coefficient only by assuming scattering coefficient a constant. An effective method for photoacoustically recovering optical scattering coefficient is presently not available. Here we propose and experimentally validate such a method for quantitative scattering coefficient imaging using photoacoustic data from one-wavelength illumination. The reconstruction method developed combines conventional PAT with the photon diffusion equation in a novel way to realize the recovery of scattering coefficient. We demonstrate the method using various objects having scattering contrast only or both absorption and scattering contrasts embedded in turbid media. The listening-to-light-scattering method described will be able to provide high resolution scattering imaging for various biomedical applications ranging from breast to brain imaging.
Nondestructive Method For Measuring The Scattering Coefficient Of Bulk Material
NASA Astrophysics Data System (ADS)
Groenhuis, R. A. J.; ten Bosch, J. J.
1981-05-01
During demineralization and remineralization of dental enamel its structure changes resulting in a change of the absorption and scattering coefficients of the enamel. By measuring these coefficients during demineralization and remineralization these processes can be monitored in a non-destructive way. For this purpose an experimental arrangement was made: a fibre illuminates a spot on the sample with monochromatic light with a wave-length between 400 nm and 700 nm; a photomultiplier measures the luminance of the light back-scattered by the sample as a function of the distance from the measuring snot to the spot of illumination. In a Monte Carlo-model this luminance is simulated using the same geometry given the scattering and absorption coefficients in a sample. Then the scattering and absorption coefficients in the sample are determined by selecting the theoretical curve fitting the experimental one. Scattering coefficients below 10 mm-1 and absorption coefficients obtained with this method on calibration samples correspond well with those obtained with another method. Scattering coefficients above 10 mm-1 (paper samples) were measured ton low. This perhaps is caused by the anisotropic structure of paper sheets. The method is very suitable to measure the scattering and absorption coefficients of bulk materials.
Xu, Chang; Ye, Hui; Shen, Jian-Dong; Sun, Hong-Liang; Hong, Sheng-Mao; Jiao, Li; Huang, Kan
2014-12-01
In order to evaluate the influence of particle scattering on visibility, light scattering coefficient, particle concentrations and meteorological factor were simultaneously monitored from July 2011 to June 2012 in Hangzhou. Daily scattering coefficients ranged from 108.4 to 1 098.1 Mm(-1), with an annual average concentration of 428.6 Mm(-1) ± 200.2 Mm(-1). Seasonal variation of scattering coefficients was significant, with the highest concentrations observed in autumn and winter and the lowest in summer. It was found there were two peaks for the average diurnal variations of the scattering coefficient, which could be observed at 08:00 and 21:00. The scattering efficiencies of PM2.5 and PM10 were 7.6 m2 x g(-1) and 4.4 m2 x g(-1), respectively. The particle scattering was about 90.2 percent of the total light extinction. The scattering coefficients were 684.4 Mm(-1) ± 218.1 Mm(-1) and 1 095.4 Mm(-1) ± 397.7 Mm(-1) in hazy and heavy hazy days, respectively, which were 2.6 and 4.2 times as high as in non-hazy weather, indicating that particle scattering is the main factor for visibility degradation and the occurrence of hazy weather in Hangzhou.
NASA Astrophysics Data System (ADS)
Hohmann, Martin; Lengenfelder, B.; Kanawade, R.; Klämpfl, F.; Schmidt, Michael
2015-12-01
Coherent light propagating through turbid media is attenuated due to scattering and absorption. The decrease of the intensity of the coherent light is described by the attenuation coefficient. The measured decay of the coherent light through turbid media with optical coherence tomography (OCT) can be used to reconstruct the attenuation coefficient. Since most of the OCT systems work in the near-infrared region, they are the optical window from 800-1400 nm in tissue. Hence, the most part of the attenuation coefficient is caused due to the scattering. Therefore, deriving the attenuation coefficient is one way to get an approximation of the scattering coefficient which is difficult to access even up to day. Moreover, OCT measurements are one of the few possibilities to derive physical properties with micrometre resolution of the media under investigation.
A review of light-scattering techniques for the study of colloids in natural waters
Rees, T.F.
1987-01-01
In order to understand the movement of colloidal materials in natural waters, we first need to have a means of quantifying their physical characteristics. This paper reviews three techniques which utilize light-scattering phenomena to measure the translational diffusion coefficient, the rotational diffusion coefficient, and the electrophoretic mobility of colloids suspended in water. Primary emphasis is to provide sufficient theoretical detail so that hydrologists can evaluate the utility of photon correlation spectrometry, electrophoretic light scattering, and electric birefringence analysis. ?? 1987.
Improved Optics For Quasi-Elastic Light Scattering
NASA Technical Reports Server (NTRS)
Cheung, Harry Michael
1995-01-01
Improved optical train devised for use in light-scattering measurements of quasi-elastic light scattering (QELS) and laser spectroscopy. Measurements performed on solutions, microemulsions, micellular solutions, and colloidal dispersions. Simultaneous measurements of total intensity and fluctuations in total intensity of light scattered from sample at various angles provides data used, in conjunction with diffusion coefficients, to compute sizes of particles in sample.
LASER BIOLOGY AND MEDICINE: Light scattering study of rheumatoid arthritis
NASA Astrophysics Data System (ADS)
Beuthan, J.; Netz, U.; Minet, O.; Klose, Annerose D.; Hielscher, A. H.; Scheel, A.; Henniger, J.; Müller, G.
2002-11-01
The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient μs, absorption coefficient μa, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the finger cross section. Model tests of the quality of this reconstruction method show good results.
Airborne Polarized Lidar Detection of Scattering Layers in the Ocean
NASA Astrophysics Data System (ADS)
Vasilkov, Alexander P.; Goldin, Yury A.; Gureev, Boris A.; Hoge, Frank E.; Swift, Robert N.; Wright, C. Wayne
2001-08-01
A polarized lidar technique based on measurements of waveforms of the two orthogonal-polarized components of the backscattered light pulse is proposed to retrieve vertical profiles of the seawater scattering coefficient. The physical rationale for the polarized technique is that depolarization of backscattered light originating from a linearly polarized laser beam is caused largely by multiple small-angle scattering from particulate matter in seawater. The magnitude of the small-angle scattering is determined by the scattering coefficient. Therefore information on the vertical distribution of the scattering coefficient can be derived potentially from measurements of the timedepth dependence of depolarization in the backscattered laser pulse. The polarized technique was verified by field measurements conducted in the Middle Atlantic Bight of the western North Atlantic Ocean that were supported by in situ measurements of the beam attenuation coefficient. The airborne polarized lidar measured the timedepth dependence of the backscattered laser pulse in two orthogonal-polarized components. Vertical profiles of the scattering coefficient retrieved from the timedepth depolarization of the backscattered laser pulse were compared with measured profiles of the beam attenuation coefficient. The comparison showed that retrieved profiles of the scattering coefficient clearly reproduce the main features of the measured profiles of the beam attenuation coefficient. Underwater scattering layers were detected at depths of 2025 m in turbid coastal waters. The improvement in dynamic range afforded by the polarized lidar technique offers a strong potential benefit for airborne lidar bathymetric applications.
Light scattering study of rheumatoid arthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beuthan, J; Netz, U; Minet, O
The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient {mu}{sub s}, absorption coefficient {mu}{sub a}, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the fingermore » cross section. Model tests of the quality of this reconstruction method show good results. (laser biology and medicine)« less
Dynamic Light Scattering Study of Pig Vitreous Body
NASA Astrophysics Data System (ADS)
Matsuura, Toyoaki; Idota, Naokazu; Hara, Yoshiaki; Annaka, Masahiko
The phase behaviors and dynamical properties of pig vitreous body were studied by macroscopic observation of swelling behavior and dynamic light scattering under various conditions. From the observations of the dynamics of light scattered by the pig vitreous body under physiological condition, intensity autocorrelation functions that revealed two diffusion coefficients, D fast and D slow were obtained. We developed the theory for describing the density fluctuation of the entities in the vitreous gel system with sodium hyaluronate filled in the meshes of collagen fiber network. The dynamics of collagen and sodium hyaluronate explains two relaxation modes of the fluctuation. The diffusion coefficient of collagen obtained from D fast and D slow is very close to that in aqueous solution, which suggests the vitreous body is in the swollen state. Divergent behavior in the measured total scattered light intensities and diffusion coefficients upon varying the concentration of salt (NaCl and CaCl2) was observed. Namely, a slowing down of the dynamic modes accompanied by increased “static” scattered intensities was observed. This is indicative of the occurrence of a phase transition upon salt concentration.
Zerrad, M; Soriano, G; Ghabbach, A; Amra, C
2013-02-11
We show how disordered media allow to increase the local degree of polarization (DOP) of an arbitrary (partial) polarized incident beam. The role of cross-scattering coefficients is emphasized, together with the probability density functions (PDF) of the scattering DOP. The average DOP of scattering is calculated versus the incident illumination DOP.
Spectral Dependence of the Scattering Coefficient in Case 1 and Case 2 Waters
NASA Astrophysics Data System (ADS)
Gould, Richard W., Jr.; Arnone, Robert A.; Martinolich, Paul M.
1999-04-01
An approximate linear relationship between the scattering coefficient and the wavelength of light in the visible is found in case 1 and case 2 waters. From this relationship, we estimate scattering at an unknown wavelength from scattering at a single measured wavelength. This approximation is based on measurements in a 1.5-m-thick surface layer collected with an AC9 instrument at 63 stations in the Arabian Sea, northern Gulf of Mexico, and coastal North Carolina. The light-scattering coefficient at 412 nm ranged from 0.2 to 15.1 m 1 in these waters, and the absorption coefficient at 412 nm ranged from 0.2 to 4.0 m 1 . A separate data set for 100 stations from Oceanside, California, and Chesapeake Bay, Virginia, was used to validate the relationship. Although the Oceanside waters were considerably different from the developmental data set (based on absorption-to-scattering ratios and single-scattering albedos), the average error between modeled and measured scattering values was 6.0% for the entire test data set over all wavelengths (without regard to sign). The slope of the spectral scattering relationship decreases progressively from high-scattering, turbid waters dominated by suspended sediments to lower-scattering, clear waters dominated by phytoplankton.
Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths
NASA Astrophysics Data System (ADS)
Fried, Daniel; Glena, Richard E.; Featherstone, John D. B.; Seka, Wolf
1995-03-01
The light-scattering properties of dental enamel and dentin were measured at 543, 632, and 1053 nm. Angularly resolved scattering distributions for these materials were measured from 0 deg to 180 deg using a rotating goniometer. Surface scattering was minimized by immersing the samples in an index-matching bath. The scattering and absorption coefficients and the scattering phase function were deduced by comparing the measured scattering data with angularly resolved Monte Carlo light-scattering simulations. Enamel and dentin were best represented by a linear combination of a highly forward-peaked Henyey-Greenstein (HG) phase function and an isotropic phase function. Enamel weakly scatters light between 543 nm and 1.06 mu m, with the scattering coefficient ( mu s) ranging from mu s = 15 to 105 cm-1. The phase function is a combination of a HG function with g = 0.96 and a 30-60% isotropic phase function. For enamel, absorption is negligible. Dentin scatters strongly in the visible and near IR ( mu s approximately equals 260 cm-1) and absorbs weakly ( mu a approximately equals 4 cm-1). The scattering phase function for dentin is described by a HG function with g = 0.93 and a very weak isotropic scattering component ( approximately 2%).
Point-spread imaging for measurement of skin translucency and scattering.
Jiang, Zhi-xing; Kaplan, Peter D
2008-08-01
The translucency of skin has long been identified as an important cue for healthy and youthful looking skin. There is currently no universal definition for skin translucency let alone a measurement method. We propose that skin translucency is the light scattering beneath skin surface. We demonstrate the use of polarization gated point spreading imaging for non-invasive, in vivo measurement of the translucency and the reduced scattering coefficient m's of skin. We developed a polarization-gated point-spread imaging system to measure the spread of the incident pencil-thin laser beam on the skin. Skin translucency was calculated as the spread of the laser beam. From the measurement of the shift of the light diffuse center from the light injection point, the reduced scattering coefficient m's of the skin was calculated. We validated the measurement technique with milk as an in vitro model for skin. The measured m's of milk solution was found to be linearly proportional to the milk concentration, in agreement with Beer's law. The calculated translucency decreased as the milk concentration increased or as the reduced scattering coefficient m's increased. It was also found that the translucency decreased as the absorption coefficient of the milk solution increased. The measured translucency of a set of custom made clay tiles correlated well with the consumer perception of the incremental ranking of the translucency. In vivo measurement of skin translucency and the reduced scattering coefficient m's were carried out on several volunteers. The measured reduced scattering coefficient m's was in agreement with those in the literature. The measured skin translucency for different skin ethnicities of Caucasian, North Asian, South Asian and African American were in line with the expectation that skin translucency decreases as the skin color gets darker.
Atmospheric aerosols: Their Optical Properties and Effects (supplement)
NASA Technical Reports Server (NTRS)
1976-01-01
A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.
Theory of scattering of electromagnetic waves of the microwave range in a turbid medium
NASA Astrophysics Data System (ADS)
Konstantinov, O. V.; Matveentsev, A. V.
2013-02-01
The coefficient of extinction of electromagnetic waves of the microwave range due to their scattering from clusters suspended in an amorphous medium and responsible for turbidity is calculated. Turbidity resembles the case when butter clusters transform water into milk. In the case under investigation, the clusters are conductors (metallic or semiconducting). The extinction coefficient is connected in a familiar way with the cross section of light scattering from an individual cluster. A new formula is derived for the light scattering cross section in the case when damping of oscillations of an electron is due only to spontaneous emission of light quanta. In this case, the resonant scattering cross section for light can be very large. It is shown that this can be observed only in a whisker nanocluster. In addition, the phonon energy on a whisker segment must be higher than the photon energy, which is close to the spacing between the electron energy levels in the cluster.
Models of filter-based particle light absorption measurements
NASA Astrophysics Data System (ADS)
Hamasha, Khadeejeh M.
Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model allows for studying very general cases of particles of various sizes embedded on arbitrary filter media. Application of this model to the Reno Aerosol Optics Study (Laboratory data) shows that the aerosol light absorption coefficients are about half of the Aethalometer attenuation coefficients, and there is a reasonable agreement between the model calculated absorption coefficients at 521 nm and the measured photoacoustic absorption coefficients at 532 nm. For ambient data obtained during the Las Vegas study, it shows that the model absorption coefficients at 521 nm are larger than the photoacoustic coefficients at 532 nm. Use of the 2-stream model shows that particle penetration depth into the filter has a strong influence on the interpretation of filter-based aerosol light absorption measurements. This is likely explanation for the difference found between model results for filter-based aerosol light absorption and those from photoacoustic measurements for ambient and laboratory aerosol.
Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C.
2013-01-01
Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1/cm2) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT. PMID:23629149
NASA Astrophysics Data System (ADS)
Weniger, Kirsten K.; Muller, Gerhard J.
2005-03-01
In order to achieve esthetic dental restorations, there should be no visible difference between restorative material and treated teeth. This requires a match of the optical properties of both restorative material and natural teeth. These optical properties are determined by absorption and scattering of light emerging not only on the surface but also inside the material. Investigating different dental composites in several shades, a method has been developed to calculate the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g and reduced scattering coefficient μs'. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer, followed by inverse Monte Carlo simulations. Determination of optical properties is more precise and comprehensive than with the previously used Kubelka Munk theory because scattering can be looked at separated into pure scattering with the scattering coefficient μs and its direction with the anisotropy factor g. Moreover the use of the inverse Monte Carlo simulation not only minimizes systematic errors and considers the scattering phase function, but also takes into account the measuring geometry. The compilation of a data pool of optical parameters now enables the application of further calculation models as a basis for optimization of the composition of new materials. For example, a prediction of the general color impression for multiple layers can be carried out as well as the calculation of the wavelength dependent penetration depths of light with regard to photo polymerization. Further applications are possible in the area of laser ablation.
NASA Astrophysics Data System (ADS)
Woźniak, Sławomir B.; Sagan, Sławomir; Zabłocka, Monika; Stoń-Egiert, Joanna; Borzycka, Karolina
2018-06-01
The empirical relationships were examined of spectral characteristics of light scattering and backscattering by particles suspended in seawater in relation to the dry mass concentration of particles and the bulk proportions of their organic and inorganic fractions. The analyses were based on empirical data collected in the surface waters of the southern and central Baltic Sea at different times of the year. It was found that the average scattering and backscattering coefficients, normalized to the dry mass concentration of particles for all our Baltic Sea data (i.e. mass-specific optical coefficients), were characterized by large coefficients of variation (CV) of the order of 30% at all the visible light wavelengths analysed. At wavelength 555 nm the average mass-specific scattering coefficient was ca 0.75 m2 g- 1 (CV = 31%); the corresponding value for backscattering was 0.0072 m2 g- 1 (CV = 29%). The analyses confirmed that some of the observed variations could be explained by changes in the proportions of organic and inorganic fractions of suspended matter. The average organic fraction in all the samples was as high as 83% of the total dry mass concentration but in individual cases it varied between < 50% and up to 100%. Simple, two-variable parameterizations of scattering and backscattering coefficients were derived as functions of the organic and inorganic fraction concentrations. The statistical relationship between the backscattering ratio and the ratio of the organic fraction to the total dry mass of suspended matter was also found: this can be used in practical interpretations of in situ optical measurements. In addition, the variability in particle size distributions recorded with a Coulter counter indicated its potentially highly significant influence on the light scattering properties of particles suspended in Baltic Sea waters.
A study of the polarization of light scattered by vegetation. M.S. Thesis
NASA Technical Reports Server (NTRS)
Woessner, P. N.
1985-01-01
This study was undertaken in order to better understand the factors that govern the polarization of light scattered from vegetation and soils. The intensity and polarization of light scattered by clover and grass in vivo and soil were measured at a number of different angles of incidence and reflectance. Both individual leaves and natural patches of leaves were measured. The light transmitted through the leaves was found to be negatively polarized. The light scattered from the upper leaf surface was found to be positively polarized in a manner which could be accounted for qualitatively but not quantitatively by the Fresnel reflection coefficients modified by a shadowing function of the form cos sup2 (g/2), where g is the phase angle. Findings indicate that the polarization of light scattered by vegetation is a more complex process than previously thought, and that besides the surface-scattered component of light, the volume-scattered and multiply-scattered components also contribute significantly to the polarization.
Koyama, Tatsuya; Iwasaki, Atsushi; Ogoshi, Yosuke; Okada, Eiji
2005-04-10
A practical and adequate approach to modeling light propagation in an adult head with a low-scattering cerebrospinal fluid (CSF) region by use of diffusion theory was investigated. The diffusion approximation does not hold in a nonscattering or low-scattering regions. The hybrid radiosity-diffusion method was adopted to model the light propagation in the head with a nonscattering region. In the hybrid method the geometry of the nonscattering region is acquired as a priori information. In reality, low-level scattering occurs in the CSF region and may reduce the error caused by the diffusion approximation. The partial optical path length and the spatial sensitivity profile calculated by the finite-element method agree well with those calculated by the Monte Carlo method in the case in which the transport scattering coefficient of the CSF layer is greater than 0.3 mm(-1). Because it is feasible to assume that the transport scattering coefficient of a CSF layer is 0.3 mm(-1), it is practical to adopt diffusion theory to the modeling of light propagation in an adult head as an alternative to the hybrid method.
NASA Astrophysics Data System (ADS)
Koyama, Tatsuya; Iwasaki, Atsushi; Ogoshi, Yosuke; Okada, Eiji
2005-04-01
A practical and adequate approach to modeling light propagation in an adult head with a low-scattering cerebrospinal fluid (CSF) region by use of diffusion theory was investigated. The diffusion approximation does not hold in a nonscattering or low-scattering regions. The hybrid radiosity-diffusion method was adopted to model the light propagation in the head with a nonscattering region. In the hybrid method the geometry of the nonscattering region is acquired as a priori information. In reality, low-level scattering occurs in the CSF region and may reduce the error caused by the diffusion approximation. The partial optical path length and the spatial sensitivity profile calculated by the finite-element method agree well with those calculated by the Monte Carlo method in the case in which the transport scattering coefficient of the CSF layer is greater than 0.3 mm^-1. Because it is feasible to assume that the transport scattering coefficient of a CSF layer is 0.3 mm^-1, it is practical to adopt diffusion theory to the modeling of light propagation in an adult head as an alternative to the hybrid method.
NASA Astrophysics Data System (ADS)
Cambra-López, María; Winkel, Albert; Mosquera, Julio; Ogink, Nico W. M.; Aarnink, André J. A.
2015-06-01
The objective of this study was to compare co-located real-time light scattering devices and equivalent gravimetric samplers in poultry and pig houses for PM10 mass concentration, and to develop animal-specific calibration factors for light scattering samplers. These results will contribute to evaluate the comparability of different sampling instruments for PM10 concentrations. Paired DustTrak light scattering device (DustTrak aerosol monitor, TSI, U.S.) and PM10 gravimetric cyclone sampler were used for measuring PM10 mass concentrations during 24 h periods (from noon to noon) inside animal houses. Sampling was conducted in 32 animal houses in the Netherlands, including broilers, broiler breeders, layers in floor and in aviary system, turkeys, piglets, growing-finishing pigs in traditional and low emission housing with dry and liquid feed, and sows in individual and group housing. A total of 119 pairs of 24 h measurements (55 for poultry and 64 for pigs) were recorded and analyzed using linear regression analysis. Deviations between samplers were calculated and discussed. In poultry, cyclone sampler and DustTrak data fitted well to a linear regression, with a regression coefficient equal to 0.41, an intercept of 0.16 mg m-3 and a correlation coefficient of 0.91 (excluding turkeys). Results in turkeys showed a regression coefficient equal to 1.1 (P = 0.49), an intercept of 0.06 mg m-3 (P < 0.0001) and a correlation coefficient of 0.98. In pigs, we found a regression coefficient equal to 0.61, an intercept of 0.05 mg m-3 and a correlation coefficient of 0.84. Measured PM10 concentrations using DustTraks were clearly underestimated (approx. by a factor 2) in both poultry and pig housing systems compared with cyclone pre-separators. Absolute, relative, and random deviations increased with concentration. DustTrak light scattering devices should be self-calibrated to investigate PM10 mass concentrations accurately in animal houses. We recommend linear regression equations as animal-specific calibration factors for DustTraks instead of manufacturer calibration factors, especially in heavily dusty environments such as animal houses.
Light scattering by dust and anthropogenic aerosol at a remote site in the Negev desert, Israel
NASA Astrophysics Data System (ADS)
Andreae, Tracey W.; Andreae, Meinrat O.; Ichoku, Charles; Maenhaut, Willy; Cafmeyer, Jan; Karnieli, Arnon; Orlovsky, Leah
2002-01-01
We investigated aerosol optical properties, mass concentration, and chemical composition over a 2 year period at a remote site in the Negev desert, Israel (Sde Boker, 30° 51'N, 34° 47'E, 470 m above sea level). Light-scattering measurements were made at three wavelengths (450, 550, and 700 nm), using an integrating nephelometer, and included the separate determination of the backscatter fraction. Aerosol coarse and fine fractions were collected with stacked filter units; mass concentrations were determined by weighing, and the chemical composition by proton-induced X-ray emission and instrumental neutron activation analysis. The total scattering coefficient at 550 nm showed a median of 66.7 Mm-1(mean value 75.2 Mm-1, standard deviation 41.7 Mm-1) typical of moderately polluted continental air masses. Values of 1000 Mm-1and higher were encountered during severe dust storm events. During the study period, 31 such dust events were detected. In addition to high scattering levels, they were characterized by a sharp drop in the Ångström coefficient (i.e., the spectral dispersion of the light scattering) to values near zero. Mass-scattering efficiencies were obtained by a multivariate regression of the scattering coefficients on dust, sulfate, and residual components. An analysis of the contributions of these components to the total scattering observed showed that anthropogenic aerosol accounted for about 70% of scattering. The rest was dominated by the effect of the large dust events mentioned above and of small dust episodes typically occurring during midafternoon.
Chiarelli, Antonio M.; Maclin, Edward L.; Low, Kathy A.; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele
2017-01-01
Abstract. Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source–detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked. PMID:28466026
Chiarelli, Antonio M; Maclin, Edward L; Low, Kathy A; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele
2017-04-01
Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source-detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked.
Propagation of laser beams in scattering media.
Zuev, V E; Kabanov, M V; Savelev, B A
1969-01-01
Experimental investigations have been undertaken of some aspects of the propagation of helium-neon gas laser radiation at lambda = 0.63 micro for different scattering media (artificial water fogs, wood smokes, model media). It has been shown that the attenuation coefficients practically coincide when coherent and incoherent radiation is scattered. The applicability limits of Bouguer-Beer's law for describing the attenuation of radiation in scattering media are investigated and the intensity of multiple forward-scattered light for different geometrical parameters of the source and radiation receiver are measured. The applicability of single scattering theory formulas for describing forward-scattered light intensity are discussed.
Optical properties of nasal septum cartilage
NASA Astrophysics Data System (ADS)
Bagratashvili, Nodar V.; Sviridov, Alexander P.; Sobol, Emil N.; Kitai, Moishe S.
1998-05-01
Optical parameters (scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g) of hyaline cartilage were studied for the first time. Optical properties of human and pig nasal septum cartilage, and of bovine ear cartilage were examined using a spectrophotometer with an integrating sphere, and an Optical Multi-Channel Analyser. We measured total transmission Tt, total reflection Rt, and on-axis transmission Ta for light propagating through cartilage sample, over the visible spectral range (14000 - 28000 cm-1). It is shown that transmission and reflection spectra of human, pig and bovine cartilage are rather similar. It allows us to conclude that the pig cartilage can be used for in-vivo studies instead of human cartilage. The data obtained were treated by means of the one-dimensional diffusion approximation solution of the optical transport equation. We have found scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g by the iterative comparison of measured and calculated Tt, Rt and Ta values for human and pig cartilage. We found, in particular, that for 500 nm irradiation s equals 37,6 plus or minus 3.5 cm-1, g equals 0,56 plus or minus 0.05, k approximately equals 0,5 plus or minus 0.3 cm-1. The above data were used in Monte Carlo simulation for spatial intensity profile of light scattered by a cartilage sample. The computed profile was very similar to the profile measured using an Optical Multi-Channel Analyzer (OMA).
Laser induced heat source distribution in bio-tissues
NASA Astrophysics Data System (ADS)
Li, Xiaoxia; Fan, Shifu; Zhao, Youquan
2006-09-01
During numerical simulation of laser and tissue thermal interaction, the light fluence rate distribution should be formularized and constituted to the source term in the heat transfer equation. Usually the solution of light irradiative transport equation is given in extreme conditions such as full absorption (Lambert-Beer Law), full scattering (Lubelka-Munk theory), most scattering (Diffusion Approximation) et al. But in specific conditions, these solutions will induce different errors. The usually used Monte Carlo simulation (MCS) is more universal and exact but has difficulty to deal with dynamic parameter and fast simulation. Its area partition pattern has limits when applying FEM (finite element method) to solve the bio-heat transfer partial differential coefficient equation. Laser heat source plots of above methods showed much difference with MCS. In order to solve this problem, through analyzing different optical actions such as reflection, scattering and absorption on the laser induced heat generation in bio-tissue, a new attempt was made out which combined the modified beam broaden model and the diffusion approximation model. First the scattering coefficient was replaced by reduced scattering coefficient in the beam broaden model, which is more reasonable when scattering was treated as anisotropic scattering. Secondly the attenuation coefficient was replaced by effective attenuation coefficient in scattering dominating turbid bio-tissue. The computation results of the modified method were compared with Monte Carlo simulation and showed the model provided reasonable predictions of heat source term distribution than past methods. Such a research is useful for explaining the physical characteristics of heat source in the heat transfer equation, establishing effective photo-thermal model, and providing theory contrast for related laser medicine experiments.
Label-free hyperspectral dark-field microscopy for quantitative scatter imaging
NASA Astrophysics Data System (ADS)
Cheney, Philip; McClatchy, David; Kanick, Stephen; Lemaillet, Paul; Allen, David; Samarov, Daniel; Pogue, Brian; Hwang, Jeeseong
2017-03-01
A hyperspectral dark-field microscope has been developed for imaging spatially distributed diffuse reflectance spectra from light-scattering samples. In this report, quantitative scatter spectroscopy is demonstrated with a uniform scattering phantom, namely a solution of polystyrene microspheres. A Monte Carlo-based inverse model was used to calculate the reduced scattering coefficients of samples of different microsphere concentrations from wavelength-dependent backscattered signal measured by the dark-field microscope. The results are compared to the measurement results from a NIST double-integrating sphere system for validation. Ongoing efforts involve quantitative mapping of scattering and absorption coefficients in samples with spatially heterogeneous optical properties.
Determination of optical coefficients of biological tissue from a single integrating-sphere
NASA Astrophysics Data System (ADS)
Zhang, Lianshun; Shi, Aijuan; Lu, Hongguang
2012-01-01
The detection of interactions between light and tissue can be used to characterize the optical properties of the tissue. The development is described of a method that determines optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. The experimental system incorporated a DH-2000 deuterium tungsten halogen light source, a USB4000-VIS-NIR miniature fiber optic spectrometer and an integrating-sphere. Fat emulsion and ink were used to mimic the scattering and absorbing properties of tissue in the tested sample. The measured optical reflectance spectrums with different scattering and absorbing properties were used to train a back-propagation neural network (BPNN). Then the neural network (BPNN) was used to determine the optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. Tests on tissue-simulation phantoms showed the relative errors of this technique to be 7% for the reduced scattering coefficient and 15% for the absorption coefficients. The optical properties of human skin were also measured in vivo.
Sensitivity of light interaction computer model to the absorption properties of skin
NASA Astrophysics Data System (ADS)
Karsten, A. E.; Singh, A.
2011-06-01
Light based treatments offer major benefits to patients. Many of the light based treatments or diagnostic techniques need to penetrate the skin to reach the site of interest. Human skin is a highly scattering medium and the melanin in the epidermal layer of the skin is a major absorber of light in the visible and near infrared wavelength bands. The effect of increasing absorption in the epidermis is tested on skin simulating phantoms as well as on a computer model. Changing the absorption coefficient between 0.1 mm-1 and 1.0 mm-1 resulted in a decrease of light reaching 1 mm into the sample. Transmission through a 1 mm thick sample decreased from 48% to 13% and from 31% to 2% for the different scattering coefficients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, C.; Hester, R.
Summaries are given on the technical progress on three tasks of this project. Monomer and polymer synthesis discusses the preparation of 1(7-aminoheptyloxymethyl)naphthalene and poly(maleic anhydride-alt-ethyl vinyl ether). Task 2, Characterization of molecular structure, discusses terpolymer solution preparation, UV analysis, fluorescence analysis, low angle laser light scattering, and viscometry. The paper discusses the effects of hydrophobic groups, the effect of pH, the effect of electrolyte addition, and photophysical studies. Task 3, Solution properties, describes the factorial experimental design for characterizing polymer solutions by light scattering, the light scattering test model, orthogonal factorial test design, linear regression in coded space, confidence levelmore » for coded space test mode coefficients, coefficients of the real space test model, and surface analysis of the model equations.« less
Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.
Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z
2014-08-14
The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.
Kong, Steven H; Shore, Joel D
2007-03-01
We study the propagation of light through a medium containing isotropic scattering and absorption centers. With a Monte Carlo simulation serving as the benchmark solution to the radiative transfer problem of light propagating through a turbid slab, we compare the transmission and reflection density computed from the telegrapher's equation, the diffusion equation, and multiple-flux theories such as the Kubelka-Munk and four-flux theories. Results are presented for both normally incident light and diffusely incident light. We find that we can always obtain very good results from the telegrapher's equation provided that two parameters that appear in the solution are set appropriately. We also find an interesting connection between certain solutions of the telegrapher's equation and solutions of the Kubelka-Munk and four-flux theories with a small modification to how the phenomenological parameters in those theories are traditionally related to the optical scattering and absorption coefficients of the slab. Finally, we briefly explore how well the theories can be extended to the case of anisotropic scattering by multiplying the scattering coefficient by a simple correction factor.
Relationship between the Kubelka-Munk scattering and radiative transfer coefficients.
Thennadil, Suresh N
2008-07-01
The relationship between the Kubelka-Munk (K-M) and the transport scattering coefficient is obtained through a semi-empirical approach. This approach gives the same result as that given by Gate [Appl. Opt.13, 236 (1974)] when the incident beam is diffuse. This result and those given by Star et al. [Phys. Med. Biol.33, 437 (1988)] and Brinkworth [Appl. Opt.11, 1434 (1972)] are compared with the exact solution of the radiative transfer equation over a large range of optical properties. It is found that the latter expressions, which include an absorption component, do not give accurate results over the range considered. Using the semi-empirical approach, the relationship between the K-M and the transport scattering coefficient is derived for the case where the incident light is collimated. It is shown that although the K-M equation is derived based on diffuse incident light, it can also represent very well the reflectance from a slab of infinite thickness when the incident light is collimated. However, in this case the relationship between the coefficients has to include a function that is dependent on the anisotropy factor. Analysis indicates that the K-M transform achieves the objective of obtaining a measure that gives the ratio of absorption to scattering effects for both diffuse and collimated incident beams over a large range of optical properties.
Siderius, Daniel W; Krekelberg, William P; Roberts, Christopher J; Shen, Vincent K
2012-05-07
Protein-protein interactions in solution may be quantified by the osmotic second virial coefficient (OSVC), which can be measured by various experimental techniques including light scattering. Analysis of Rayleigh light scattering measurements from such experiments requires identification of a scattering volume and the thermodynamic constraints imposed on that volume, i.e., the statistical mechanical ensemble in which light scattering occurs. Depending on the set of constraints imposed on the scattering volume, one can obtain either an apparent OSVC, A(2,app), or the true thermodynamic OSVC, B(22)(osm), that is rigorously defined in solution theory [M. A. Blanco, E. Sahin, Y. Li, and C. J. Roberts, J. Chem. Phys. 134, 225103 (2011)]. However, it is unclear to what extent A(2,app) and B(22)(osm) differ, which may have implications on the physical interpretation of OSVC measurements from light scattering experiments. In this paper, we use the multicomponent hard-sphere model and a well-known equation of state to directly compare A(2,app) and B(22)(osm). Our results from the hard-sphere equation of state indicate that A(2,app) underestimates B(22)(osm), but in a systematic manner that may be explained using fundamental thermodynamic expressions for the two OSVCs. The difference between A(2,app) and B(22)(osm) may be quantitatively significant, but may also be obscured in experimental application by statistical uncertainty or non-steric interactions. Consequently, the two OSVCs that arise in the analysis of light scattering measurements do formally differ, but in a manner that may not be detectable in actual application.
Chan, Kenneth H; Fried, Daniel
2018-06-01
The enamel scattering coefficient decreases markedly with increasing wavelength from the visible to the near-infrared (NIR). However, beyond 1300 nm, the scattering coefficient is difficult to measure, and it is not known whether light scattering continues to decrease significantly at longer wavelengths. It is hypothesized that water absorption is a major contributor to the contrast between sound and demineralized enamel beyond 1300 nm since deeply penetrating photons in sound enamel are likely absorbed by water. Reflectance images of demineralization on tooth surfaces were acquired at wavelengths near 1450, 1860, 1880, and 1950 nm. The magnitude of water absorption is similar at 1450 and 1880 nm but varies markedly between 1860, 1880, and 1950 nm. Multispectral comparisons of lesion contrast provide insight into the mechanism responsible for higher contrast at longer NIR wavelengths. The highest contrast was at 1950 nm; however, the markedly higher contrast at 1880 compared to 1450 nm and similar contrast between 1860 and 1880 nm suggests that the enamel scattering coefficient continues to decrease beyond 1300 nm, and that reduced light scattering in sound enamel is most responsible for the higher lesion contrast at longer NIR wavelengths. This has important implications for the choice of wavelengths for caries detection and diagnostic devices, including the performance of optical coherence tomography beyond 1300 nm. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyawali, Madhu S.; Arnott, W. Patrick; Zaveri, Rahul A.
2012-03-08
We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 Januarymore » 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM{sub 2.5} and PM{sub 10} (particulate matter with aerodynamic diameters less than 2.5 {mu}m and 10 {mu}m, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO{sub 2}). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.« less
NASA Technical Reports Server (NTRS)
Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.;
2012-01-01
We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.
Light scattering by marine algae: two-layer spherical and nonspherical models
NASA Astrophysics Data System (ADS)
Quirantes, Arturo; Bernard, Stewart
2004-11-01
Light scattering properties of algae-like particles are modeled using the T-matrix for coated scatterers. Two basic geometries have been considered: off-centered coated spheres and centered spheroids. Extinction, scattering and absorption efficiencies, plus scattering in the backward plane, are compared to simpler models like homogeneous (Mie) and coated (Aden-Kerker) models. The anomalous diffraction approximation (ADA), of widespread use in the oceanographic light-scattering community, has also been used as a first approximation, for both homogeneous and coated spheres. T-matrix calculations show that some light scattering values, such as extinction and scattering efficiencies, have little dependence on particle shape, thus reinforcing the view that simpler (Mie, Aden-Kerker) models can be applied to infer refractive index (RI) data from absorption curves. The backscattering efficiency, on the other hand, is quite sensitive to shape. This calls into question the use of light scattering techniques where the phase function plays a pivotal role, and can help explain the observed discrepancy between theoretical and experimental values of the backscattering coefficient in observed in oceanic studies.
Optical properties of size-resolved particles at a Hong Kong urban site during winter
NASA Astrophysics Data System (ADS)
Gao, Yuan; Lai, Senchao; Lee, Shun-Cheng; Yau, Pui Shan; Huang, Yu; Cheng, Yan; Wang, Tao; Xu, Zheng; Yuan, Chao; Zhang, Yingyi
2015-03-01
Visibility degradation in Hong Kong is related to the city's serious air pollution problems. To investigate the aerosols' optical properties and their relationship with the chemical composition and size distribution of the particles, a monitoring campaign was conducted at an urban site in the early winter period (from October to December, 2010). The particle light scattering coefficient (Bsp) and absorption coefficient (Bap) were measured. Two collocated Micro-Orifice Uniform Deposit Impactor samplers (MOUDI110, MSP, USA) with nominal 50% cut-off aerodynamic diameters of 18, 10, 5.6, 3.2, 1.8, 1, 0.56, 0.32, 0.18, 0.1, and 0.056 μm were used to collect size-resolved particle samples. The average Bsp and Bap were 201.96 ± 105.82 Mm- 1 and 39.91 ± 19.16 Mm- 1, with an average single scattering albedo (ωo) of 0.82 ± 0.07. The theoretical method of light extinction calculation was used to determine the extinction of the size-resolved particulate matters (PM). The reconstructed light scattering coefficient correlated well with the measured scattering value in the Hong Kong urban area. Droplet mode (0.56-1.8 μm) particles contributed most to the particle light extinction (~ 69%). Organic matter, ammonium sulphate and elemental carbon were the key components causing visibility degradation in the droplet (0.56-1.8 μm) and condensation (0.1-0.56 μm) size ranges. Five sources contributing to particle light extinction have been identified using positive matrix factorisation (PMF). Traffic/engine exhausts and secondary aerosols accounted for ~ 36% and ~ 32% of particle light extinction, respectively, followed by sea salt (15%). The remaining sources, soil/fugitive dust and tire dust, contributed by ~ 10% and 7%, respectively, to particle light extinction.
NASA Astrophysics Data System (ADS)
Cosson, Benoit; Asséko, André Chateau Akué; Dauphin, Myriam
2018-05-01
The purpose of this paper is to develop a cost-effective, efficient and quick to implement experimental optical method in order to predict the optical properties (extinction coefficient) of semi-transparent polymer composites. The extinction coefficient takes into account the effects due to the absorption and the scattering phenomena in a semi-transparent component during the laser processes, i.e. TTLW (through-transmission laser welding). The present method used a laser as light source and a reflex camera equipped with a macro lens as a measurement device and is based on the light transmission measurement through different thickness samples. The interaction between the incident laser beam and the semi-transparent composite is exanimated. The results are presented for the case of a semi-transparent composite reinforced with the unidirectional glass fiber (UD). A numerical method, ray tracing, is used to validate the experimental results. The ray tracing method is appropriate to characterize the light-scattering phenomenon in semi-transparent materials.
Static and dynamic light scattering by red blood cells: A numerical study.
Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard; Fedosov, Dmitry A
2017-01-01
Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods-multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring.
Static and dynamic light scattering by red blood cells: A numerical study
Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard
2017-01-01
Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods—multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring. PMID:28472125
Features in the speckle correlations of light scattered from volume-disordered dielectric media
NASA Astrophysics Data System (ADS)
Malyshkin, V.; McGurn, A. R.; Maradudin, A. A.
1999-03-01
A diagrammatic perturbation theory approach, based on a scalar wave treatment, is used to study the scattering of light of frequency ω from a volume disordered dielectric medium. The dielectric medium is described by a position-dependent dielectric constant of the form ɛ(r-->)=ɛ(ω)+δɛ(r-->), where ɛ(ω) does not depend on r-->, and δɛ(r-->) is a zero-mean Gaussian random process defined by <δɛ(r-->)δɛ(r-->')>=σ2 exp(-\\|r-->-r-->'\\|2/a2), where the angle brackets denote an average over the ensemble of realizations of δɛ(r-->), a is the correlation length of the disorder, and σ is the root mean square deviation of the dielectric constant from its average value ɛ(ω). The speckle correlation function C(q-->,k-->\\|q-->',k-->')=<[I(q-->\\|k-->)-\\|k-->)>][I(q-->'\\|k-->')-'\\|k-->')]> where I(q-->\\|k-->) is proportional to the differential-scattering coefficient for the scattering of light of incident wave vector k--> into light of wave vector q--> is computed. In these calculations the contributions associated with both ladder and maximally crossed diagrams are summed in a Feynman diagram treatment of the speckle correlator, in the approximation that only s-wave-scattering terms are retained. Results are presented for the differential-scattering coefficient of light scattered from the disordered medium, which displays the phenomenon of enhanced backscattering, and for the correlator C in the approximation where C=C(1)+C(10)+C(1.5). The contribution C(1) is proportional to δ(q-->-k-->-q-->'+k-->') and describes the memory and time-reversed memory effects. C(10) is proportional to δ(q-->-k-->+q-->'-k-->'), while C(1.5) is unrestricted in its dependence on q-->,k-->,q-->',k-->'. The latter two contributions have recently been treated in the scattering of light from randomly rough surfaces, but have not been previously treated in the scattering of light by volume disordered media. A number of peaks associated with resonant processes are observed in C(1.5) considered as a function of the wave vectors of the incident and scattered light.
NASA Astrophysics Data System (ADS)
Giannopoulou, A.; Aletras, A. J.; Pharmakakis, N.; Papatheodorou, G. N.; Yannopoulos, S. N.
2007-11-01
We report a dynamic light scattering study on protein suspensions of bovine lens homogenates at conditions (pH and ionic strength) similar to the physiological ones. Light scattering data were collected at two temperatures, 20 and 37°C, over a wide range of concentrations from the very dilute limit up to the dense regime approaching the physiological lens concentration. A comparison with experimental data from intact bovine lenses was advanced, revealing differences between dispersions and lenses at similar concentrations. In the dilute regime, two scattering entities were detected and identified with the long-time self-diffusion modes of α-crystallins and their aggregates, which naturally exist in lens nucleus. Upon increasing protein concentration, significant changes in time correlation function were observed starting at ˜75mgml-1, where a new mode originating from collective diffusive motions becomes visible. Self-diffusion coefficients are temperature insensitive, whereas the collective diffusion coefficient depends strongly on temperature revealing a reduction of the net repulsive interparticle forces with decreasing temperature. While there are no rigorous theoretical approaches on particle diffusion properties for multicomponent, nonideal hard sphere polydispersed systems, as the suspensions studied here, a discussion of the volume fraction dependence of the long-time self-diffusion coefficient in the context of existing theoretical approaches was undertaken. This study is purported to provide some insight into the complex light scattering pattern of intact lenses and the interactions between the constituent proteins that are responsible for lens transparency. This would lead to understand basic mechanisms of specific protein interactions that lead to lens opacification (cataract) under pathological conditions.
NASA Astrophysics Data System (ADS)
Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmüller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W. A.; Green, M. C.; Watson, J. G.; Chow, J. C.
2011-09-01
We present the first laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet (UV) wavelength (i.e. 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA';s acoustic resonator. Absorption and scattering measurements were carried out for various laboratory-generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Exact T-matrix method calculations were used to model the absorption and scattering characteristics of fractal-like agglomerates of different compactness and varying number of monomers. With these calculations, we attempted to estimate the number of monomers and fractal dimension of laboratory generated kerosene soot. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009, and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 μm and 10 μm, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Ångström exponent of absorption (AEA), and Ångström exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.
Haltrin, V I
1998-06-20
A self-consistent variant of the two-flow approximation that takes into account strong anisotropy of light scattering in seawater of finite depth and arbitrary turbidity is presented. To achieve an appropriate accuracy, this approach uses experimental dependencies between downward and total mean cosines. It calculates irradiances, diffuse attenuation coefficients, and diffuse reflectances in waters with arbitrary values of scattering, backscattering, and attenuation coefficients. It also takes into account arbitrary conditions of illumination and reflection from the bottom with the Lambertian albedo. This theory can be used for the calculation of apparent optical properties in both open and coastal oceanic waters, lakes, and rivers. It can also be applied to other types of absorbing and scattering medium such as paints, photographic emulsions, and biological tissues.
Paper area density measurement from forward transmitted scattered light
Koo, Jackson C.
2001-01-01
A method whereby the average paper fiber area density (weight per unit area) can be directly calculated from the intensity of transmitted, scattered light at two different wavelengths, one being a non-absorpted wavelength. Also, the method makes it possible to derive the water percentage per fiber area density from a two-wavelength measurement. In the optical measuring technique optical transmitted intensity, for example, at 2.1 microns cellulose absorption line is measured and compared with another scattered, optical transmitted intensity reference in the nearby spectrum region, such as 1.68 microns, where there is no absorption. From the ratio of these two intensities, one can calculate the scattering absorption coefficient at 2.1 microns. This absorption coefficient at this wavelength is, then, experimentally correlated to the paper fiber area density. The water percentage per fiber area density can be derived from this two-wavelength measurement approach.
FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer.
Kim, Jun-Whee; Jang, Ji-Hyang; Oh, Min-Cheol; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jae-Hyun; Lee, Jeong-Ik
2014-01-13
The light extraction efficiency of OLEDs with a nano-sized random scattering layer (RSL-OLEDs) was analyzed using the Finite Difference Time Domain (FDTD) method. In contrast to periodic diffraction patterns, the presence of an RSL suppresses the spectral shift with respect to the viewing angle. For FDTD simulation of RSL-OLEDs, a planar light source with a certain spatial and temporal coherence was incorporated, and the light extraction efficiency with respect to the fill factor of the RSL and the absorption coefficient of the material was investigated. The design results were compared to the experimental results of the RSL-OLEDs in order to confirm the usefulness of FDTD in predicting experimental results. According to our FDTD simulations, the light confined within the ITO-organic waveguide was quickly absorbed, and the absorption coefficients of ITO and RSL materials should be reduced in order to obtain significant improvement in the external quantum efficiency (EQE). When the extinction coefficient of ITO was 0.01, the EQE in the RSL-OLED was simulated to be enhanced by a factor of 1.8.
Light distribution modulated diffuse reflectance spectroscopy.
Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao
2016-06-01
Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation.
Light distribution modulated diffuse reflectance spectroscopy
Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao
2016-01-01
Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931
Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters
NASA Astrophysics Data System (ADS)
Safari, Mohammad S.; Vorontsova, Maria A.; Poling-Skutvik, Ryan; Vekilov, Peter G.; Conrad, Jacinta C.
2015-10-01
Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10-5. With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90∘. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.
NASA Astrophysics Data System (ADS)
Niu, Chun-Yang; Qi, Hong; Huang, Xing; Ruan, Li-Ming; Tan, He-Ping
2016-11-01
A rapid computational method called generalized sourced multi-flux method (GSMFM) was developed to simulate outgoing radiative intensities in arbitrary directions at the boundary surfaces of absorbing, emitting, and scattering media which were served as input for the inverse analysis. A hybrid least-square QR decomposition-stochastic particle swarm optimization (LSQR-SPSO) algorithm based on the forward GSMFM solution was developed to simultaneously reconstruct multi-dimensional temperature distribution and absorption and scattering coefficients of the cylindrical participating media. The retrieval results for axisymmetric temperature distribution and non-axisymmetric temperature distribution indicated that the temperature distribution and scattering and absorption coefficients could be retrieved accurately using the LSQR-SPSO algorithm even with noisy data. Moreover, the influences of extinction coefficient and scattering albedo on the accuracy of the estimation were investigated, and the results suggested that the reconstruction accuracy decreased with the increase of extinction coefficient and the scattering albedo. Finally, a non-contact measurement platform of flame temperature field based on the light field imaging was set up to validate the reconstruction model experimentally.
NASA Astrophysics Data System (ADS)
Liu, Songde; Smith, Zach; Xu, Ronald X.
2016-10-01
There is a pressing need for a phantom standard to calibrate medical optical devices. However, 3D printing of tissue-simulating phantom standard is challenged by lacking of appropriate methods to characterize and reproduce surface topography and optical properties accurately. We have developed a structured light imaging system to characterize surface topography and optical properties (absorption coefficient and reduced scattering coefficient) of 3D tissue-simulating phantoms. The system consisted of a hyperspectral light source, a digital light projector (DLP), a CMOS camera, two polarizers, a rotational stage, a translation stage, a motion controller, and a personal computer. Tissue-simulating phantoms with different structural and optical properties were characterized by the proposed imaging system and validated by a standard integrating sphere system. The experimental results showed that the proposed system was able to achieve pixel-level optical properties with a percentage error of less than 11% for absorption coefficient and less than 7% for reduced scattering coefficient for phantoms without surface curvature. In the meanwhile, 3D topographic profile of the phantom can be effectively reconstructed with an accuracy of less than 1% deviation error. Our study demonstrated that the proposed structured light imaging system has the potential to characterize structural profile and optical properties of 3D tissue-simulating phantoms.
Study of coherent reflectometer for imaging internal structures of highly scattering media
NASA Astrophysics Data System (ADS)
Poupardin, Mathieu; Dolfi, Agnes
1996-01-01
Optical reflectometers are potentially useful tools for imaging internal structures of turbid media, particularly of biological media. To get a point by point image, an active imaging system has to distinguish light scattered from a sample volume and light scattered by other locations in the media. Operating this discrimination of light with reflectometers based on coherence can be realized in two ways: assuring a geometric selection or a temporal selection. In this paper we present both methods, showing in each case the influence of the different parameters on the size of the sample volume under the assumption of single scattering. We also study the influence on the detection efficiency of the coherence loss of the incident light resulting from multiple scattering. We adapt a model, first developed for atmospheric lidar in turbulent atmosphere, to get an analytical expression of this detection efficiency in the function of the optical coefficients of the media.
Shamjad, P M; Tripathi, S N; Aggarwal, S G; Mishra, S K; Joshi, Manish; Khan, Arshad; Sapra, B K; Ram, Kirpa
2012-08-07
The quantification of the radiative impacts of light absorbing ambient black carbon (BC) particles strongly depends on accurate measurements of BC mass concentration and absorption coefficient (β(abs)). In this study, an experiment has been conducted to quantify the influence of hygroscopic growth of ambient particles on light absorption. Using the hygroscopic growth factor (i.e., Zdanovskii-Stokes-Robinson (ZSR) approach), a model has been developed to predict the chemical composition of particles based on measurements, and the absorption and scattering coefficients are derived using a core-shell assumption with light extinction estimates based on Mie theory. The estimated optical properties agree within 7% for absorption coefficient and 30% for scattering coefficient with that of measured values. The enhancement of absorption is found to vary according to the thickness of the shell and BC mass, with a maximum of 2.3 for a shell thickness of 18 nm for the particles. The findings of this study underline the importance of considering aerosol-mixing states while calculating their radiative forcing.
NASA Astrophysics Data System (ADS)
Zhu, W.; Cheng, Z.; Lou, S.
2017-12-01
Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local emissions, region transports and meteorological changes in the pollution period.
Globally Convergent Numerical Methods for Coefficient Inverse Problems
2008-09-23
backgrounds. Probing radiations are usually thought as electric and acoustic waves for the first two applications and light originated by lasers in...fundamental laws of physics. Electric , acoustic or light scattering properties of both unknown targets and the backgrounds are described by coefficients of...with the back-reflected data here, Army applications are quite feasible. The 2-D inverse problem of the determination of the unknown electric
An empirical correction for moderate multiple scattering in super-heterodyne light scattering.
Botin, Denis; Mapa, Ludmila Marotta; Schweinfurth, Holger; Sieber, Bastian; Wittenberg, Christopher; Palberg, Thomas
2017-05-28
Frequency domain super-heterodyne laser light scattering is utilized in a low angle integral measurement configuration to determine flow and diffusion in charged sphere suspensions showing moderate to strong multiple scattering. We introduce an empirical correction to subtract the multiple scattering background and isolate the singly scattered light. We demonstrate the excellent feasibility of this simple approach for turbid suspensions of transmittance T ≥ 0.4. We study the particle concentration dependence of the electro-kinetic mobility in low salt aqueous suspension over an extended concentration regime and observe a maximum at intermediate concentrations. We further use our scheme for measurements of the self-diffusion coefficients in the fluid samples in the absence or presence of shear, as well as in polycrystalline samples during crystallization and coarsening. We discuss the scope and limits of our approach as well as possible future applications.
NASA Astrophysics Data System (ADS)
Li, Lei; Yu, Long; Yang, Kecheng; Li, Wei; Li, Kai; Xia, Min
2018-04-01
The multiangle dynamic light scattering (MDLS) technique can better estimate particle size distributions (PSDs) than single-angle dynamic light scattering. However, determining the inversion range, angular weighting coefficients, and scattering angle combination is difficult but fundamental to the reconstruction for both unimodal and multimodal distributions. In this paper, we propose a self-adapting regularization method called the wavelet iterative recursion nonnegative Tikhonov-Phillips-Twomey (WIRNNT-PT) algorithm. This algorithm combines a wavelet multiscale strategy with an appropriate inversion method and could self-adaptively optimize several noteworthy issues containing the choices of the weighting coefficients, the inversion range and the optimal inversion method from two regularization algorithms for estimating the PSD from MDLS measurements. In addition, the angular dependence of the MDLS for estimating the PSDs of polymeric latexes is thoroughly analyzed. The dependence of the results on the number and range of measurement angles was analyzed in depth to identify the optimal scattering angle combination. Numerical simulations and experimental results for unimodal and multimodal distributions are presented to demonstrate both the validity of the WIRNNT-PT algorithm and the angular dependence of MDLS and show that the proposed algorithm with a six-angle analysis in the 30-130° range can be satisfactorily applied to retrieve PSDs from MDLS measurements.
NASA Astrophysics Data System (ADS)
Karabutov, Aleksander A.; Pelivanov, Ivan M.; Podymova, N. B.; Skipetrov, S. E.
1999-12-01
A method, based on the optoacoustic effect for determination of the spatial distribution of the light intensity in turbid media and of the optical characteristics of such media was proposed (and implemented experimentally). A temporal profile of the pressure of a thermo-optically excited acoustic pulse was found to be governed by the absorption coefficient and by the spatial distribution of the light intensity in the investigated medium. The absorption coefficient and the reduced light-scattering coefficient of model turbid water-like media were measured by the optoacoustic method. The results of a direct determination of the spatial light-intensity distribution agreed with a theoretical calculation made in the diffusion approximation.
Muthukumar, M.
2012-01-01
Polyelectrolyte chains are well known to be strongly correlated even in extremely dilute solutions in the absence of additional strong electrolytes. Such correlations result in severe difficulties in interpreting light scattering measurements in the determination of the molecular weight, radius of gyration, and the second virial coefficient of charged macromolecules at lower ionic strengths from added strong electrolytes. By accounting for charge-regularization of the polyelectrolyte by the counterions, we present a theory of the apparent molecular weight, second virial coefficient, and the intermolecular structure factor in dilute polyelectrolyte solutions in terms of concentrations of the polymer and the added strong electrolyte. The counterion adsorption of the polyelectrolyte chains to differing levels at different concentrations of the strong electrolyte can lead to even an order of magnitude discrepancy in the molecular weight inferred from light scattering measurements. Based on counterion-mediated charge regularization, the second virial coefficient of the polyelectrolyte and the interchain structure factor are derived self-consistently. The effect of the interchain correlations, dominating at lower salt concentrations, on the inference of the radius of gyration and on molecular weight is derived. Conditions for the onset of nonmonotonic scattering wave vector dependence of scattered intensity upon lowering the electrolyte concentration and interpretation of the apparent radius of gyration are derived in terms of the counterion adsorption mechanism. PMID:22830728
Xu, Min
2017-01-01
Biological tissue has a complex structure and exhibits rich spectroscopic behavior. There has been no tissue model until now that has been able to account for the observed spectroscopy of tissue light scattering and its anisotropy. Here we present, for the first time, a plum pudding random medium (PPRM) model for biological tissue which succinctly describes tissue as a superposition of distinctive scattering structures (plum) embedded inside a fractal continuous medium of background refractive index fluctuation (pudding). PPRM faithfully reproduces the wavelength dependence of tissue light scattering and attributes the “anomalous” trend in the anisotropy to the plum and the powerlaw dependence of the reduced scattering coefficient to the fractal scattering pudding. Most importantly, PPRM opens up a novel venue of quantifying the tissue architecture and microscopic structures on average from macroscopic probing of the bulk with scattered light alone without tissue excision. We demonstrate this potential by visualizing the fine microscopic structural alterations in breast tissue (adipose, glandular, fibrocystic, fibroadenoma, and ductal carcinoma) deduced from noncontact spectroscopic measurement. PMID:28663913
Appearance benefits of skin moisturization.
Jiang, Z-X; DeLaCruz, J
2011-02-01
Skin hydration is essential for skin health. Moisturized skin is generally regarded as healthy and healthy looking. It is thus speculated that there may be appearance benefits of skin moisturization. This means that there are corresponding changes in the optical properties when skin is moisturized. The appearance of the skin is the result of light reflection, scattering and absorption at various skin layers of the stratum corneum, epidermis, dermis and beyond. The appearance benefits of skin moisturization are likely primarily due to the changes in the optical properties of the stratum corneum. We hypothesize that the major optical effect of skin moisturization is the decrease of light scattering at the skin surface, i.e., the stratum corneum. This decrease of surface scattering corresponds to an increase of light penetration into the deeper layers of the skin. An experiment was conducted to measure the corresponding change in skin spectral reflectance, the skin scattering coefficient and skin translucency with a change in skin hydration. In the experiment, skin hydration was decreased with the topical application of acetone and alcohol and increased with the topical application of known moisturizers and occlusives such as PJ. It was found that both the skin spectral reflectance and the skin scattering coefficient increased when the skin was dehydrated and decreased when the skin was hydrated. Skin translucency increased as the skin became moisturized. The results agree with the hypothesis that there is less light scattering at the skin surface and more light penetration into the deeper skin layers when the skin is moisturized. As a result, the skin appears darker, more pinkish and more translucent. © 2010 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Ishizuka, Tomohiro; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2015-07-01
We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green, blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. We performed simultaneous recordings of spectral diffuse reflectance images and of the electrophysiological signals for in vivo exposed rat brain during the cortical spreading depression evoked by the topical application of KCl. Changes in the total hemoglobin concentration and the tissue oxygen saturation imply the temporary change in cerebral blood flow during CSD. Change in the reduced scattering coefficient was observed before the profound increase in the total hemoglobin concentration, and its occurrence was synchronized with the negative dc shift of the local field potential.
Analytical model of diffuse reflectance spectrum of skin tissue
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.; Firago, V. A.; Sobchuk, A. N.
2014-01-01
We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions.
Airborne Cavity Ring-Down Measurement of Aerosol Extinction and Scattering During the Aerosol IOP
NASA Technical Reports Server (NTRS)
Strawa, A. W.; Ricci, K.; Provencal, R.; Schmid, B.; Covert, D.; Elleman, R.; Arnott, P.
2003-01-01
Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Min-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects.= We present comparisons between the Cadenza measurements and those friom a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.
Scattering and Absorption Properties of Biomaterials for Dental Restorative Applications
NASA Astrophysics Data System (ADS)
Fernandez-Oliveras, A.; Rubiño, M.; Pérez, M. M.
2013-08-01
The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittance and reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to optically characterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively study them. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertainty associated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor were also considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lower associated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completely different for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the optical properties of the zirconia ceramic compared with those of the dental-resin composites.
Photon diffusion coefficient in scattering and absorbing media.
Pierrat, Romain; Greffet, Jean-Jacques; Carminati, Rémi
2006-05-01
We present a unified derivation of the photon diffusion coefficient for both steady-state and time-dependent transport in disordered absorbing media. The derivation is based on a modal analysis of the time-dependent radiative transfer equation. This approach confirms that the dynamic diffusion coefficient is given by the random-walk result D = cl(*)/3, where l(*) is the transport mean free path and c is the energy velocity, independent of the level of absorption. It also shows that the diffusion coefficient for steady-state transport, often used in biomedical optics, depends on absorption, in agreement with recent theoretical and experimental works. These two results resolve a recurrent controversy in light propagation and imaging in scattering media.
Method for Calculating the Optical Diffuse Reflection Coefficient for the Ocular Fundus
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2016-07-01
We have developed a method for calculating the optical diffuse reflection coefficient for the ocular fundus, taking into account multiple scattering of light in its layers (retina, epithelium, choroid) and multiple refl ection of light between layers. The method is based on the formulas for optical "combination" of the layers of the medium, in which the optical parameters of the layers (absorption and scattering coefficients) are replaced by some effective values, different for cases of directional and diffuse illumination of the layer. Coefficients relating the effective optical parameters of the layers and the actual values were established based on the results of a Monte Carlo numerical simulation of radiation transport in the medium. We estimate the uncertainties in retrieval of the structural and morphological parameters for the fundus from its diffuse reflectance spectrum using our method. We show that the simulated spectra correspond to the experimental data and that the estimates of the fundus parameters obtained as a result of solving the inverse problem are reasonable.
NASA Astrophysics Data System (ADS)
Akolkar, A.; Petrasch, J.; Finck, S.; Rahmatian, N.
2018-02-01
An inverse analysis of the phosphor layer of a commercially available, conformally coated, white LED is done based on tomographic and spectrometric measurements. The aim is to determine the radiative transfer coefficients of the phosphor layer from the measurements of the finished device, with minimal assumptions regarding the composition of the phosphor layer. These results can be used for subsequent opto-thermal modelling and optimization of the device. For this purpose, multiple integrating sphere and gonioradiometric measurements are done to obtain statistical bounds on spectral radiometric values and angular color distributions for ten LEDs belonging to the same color bin of the product series. Tomographic measurements of the LED package are used to generate a tetrahedral grid of the 3D LED geometry. A radiative transfer model using Monte Carlo Ray Tracing in the tetrahedral grid is developed. Using a two-wavelength model consisting of a blue emission wavelength and a yellow, Stokes-shifted re-emission wavelength, the angular color distribution of the LED is simulated over wide ranges of the absorption and scattering coefficients of the phosphor layer, for the blue and yellow wavelengths. Using a two-step, iterative space search, combinations of the radiative transfer coefficients are obtained for which the simulations are consistent with the integrating sphere and gonioradiometric measurements. The results show an inverse relationship between the scattering and absorption coefficients of the phosphor layer for blue light. Scattering of yellow light acts as a distribution and loss mechanism for yellow light and affects the shape of the angular color distribution significantly, especially at larger viewing angles. The spread of feasible coefficients indicates that measured optical behavior of the LEDs may be reproduced using a range of combinations of radiative coefficients. Given that coefficients predicted by the Mie theory usually must be corrected in order to reproduce experimental results, these results indicate that a more complete model of radiative transfer in phosphor layers is required.
Measurements of the absorption coefficient of stratospheric aerosols
NASA Technical Reports Server (NTRS)
Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.
1981-01-01
The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.
NASA Astrophysics Data System (ADS)
Duadi, Hamootal; Fixler, Dror
2015-05-01
Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Incident light on the skin travels into the underlying layers and is in part reflected back to the surface, in part transferred and in part absorbed. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. We have previously shown that examining the full scattering profile (angular distribution of exiting photons) provides more comprehensive information when measuring from a cylindrical tissue. Furthermore, an isobaric point was found which is not dependent on changes in the reduced scattering coefficient. The angle corresponding to this isobaric point depends on the tissue diameter. We investigated the role of multiple scattering and absorption on the full scattering profile of a cylindrical tissue. First, we define the range in which multiple scattering occurs for different tissue diameters. Next, we examine the role of the absorption coefficient in the attenuation of the full scattering profile. We demonstrate that the absorption linearly influences the intensity at each angle of the full scattering profile and, more importantly, the absorption does not change the position of the isobaric point. The findings of this work demonstrate a realistic model for optical tissue measurements such as NIR spectroscopy, PPG, and pulse oximetery.
NASA Astrophysics Data System (ADS)
Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A.; Lee, Jonghwan; Boas, David A.
2018-02-01
Dynamic Light Scattering-Optical Coherence Tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained 3D volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile, and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of 0.1 to 0.5 × 10-6 mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.
NASA Astrophysics Data System (ADS)
Suheshkumar Singh, M.; Rajan, K.; Vasu, R. M.
2011-05-01
Scattering of coherent light from scattering particles causes phase shift to the scattered light. The interference of unscattered and scattered light causes the formation of speckles. When the scattering particles, under the influence of an ultrasound (US) pressure wave, vibrate, the phase shift fluctuates, thereby causing fluctuation in speckle intensity. We use the laser speckle contrast analysis (LSCA) to reconstruct a map of the elastic property (Young's modulus) of soft tissue-mimicking phantom. The displacement of the scatters is inversely related to the Young's modulus of the medium. The elastic properties of soft biological tissues vary, many fold with malignancy. The experimental results show that laser speckle contrast (LSC) is very sensitive to the pathological changes in a soft tissue medium. The experiments are carried out on a phantom with two cylindrical inclusions of sizes 6mm in diameter, separated by 8mm between them. Three samples are made. One inclusion has Young's modulus E of 40kPa. The second inclusion has either a Young's modulus E of 20kPa, or scattering coefficient of μs'=3.00mm-1 or absorption coefficient of μa=0.03mm-1. The optical absorption (μa), reduced scattering (μs') coefficient, and the Young's modulus of the background are μa=0.01mm-1, μs'=1.00mm-1 and 12kPa, respectively. The experiments are carried out on all three phantoms. On a phantom with two inclusions of Young's modulus of 20 and 40kPa, the measured relative speckle image contrasts are 36.55% and 63.72%, respectively. Experiments are repeated on phantoms with inclusions of μa=0.03mm-1, E =40kPa and μs'=3.00mm-1. The results show that it is possible to detect inclusions with contrasts in optical absorption, optical scattering, and Young's modulus. Studies of the variation of laser speckle contrast with ultrasound driving force for various values of μa, μs', and Young's modulus of the tissue mimicking medium are also carried out.
Laser scattering by transcranial rat brain illumination
NASA Astrophysics Data System (ADS)
Sousa, Marcelo V. P.; Prates, Renato; Kato, Ilka T.; Sabino, Caetano P.; Suzuki, Luis C.; Ribeiro, Martha S.; Yoshimura, Elisabeth M.
2012-06-01
Due to the great number of applications of Low-Level-Laser-Therapy (LLLT) in Central Nervous System (CNS), the study of light penetration through skull and distribution in the brain becomes extremely important. The aim is to analyze the possibility of precise illumination of deep regions of the rat brain, measure the penetration and distribution of red (λ = 660 nm) and Near Infra-Red (NIR) (λ = 808 nm) diode laser light and compare optical properties of brain structures. The head of the animal (Rattus Novergicus) was epilated and divided by a sagittal cut, 2.3 mm away from mid plane. This section of rat's head was illuminated with red and NIR lasers in points above three anatomical structures: hippocampus, cerebellum and frontal cortex. A high resolution camera, perpendicularly positioned, was used to obtain images of the brain structures. Profiles of scattered intensities in the laser direction were obtained from the images. There is a peak in the scattered light profile corresponding to the skin layer. The bone layer gives rise to a valley in the profile indicating low scattering coefficient, or frontal scattering. Another peak in the region related to the brain is an indication of high scattering coefficient (μs) for this tissue. This work corroborates the use of transcranial LLLT in studies with rats which are subjected to models of CNS diseases. The outcomes of this study point to the possibility of transcranial LLLT in humans for a large number of diseases.
Optical readout of displacements of nanowires along two mutually perpendicular directions
NASA Astrophysics Data System (ADS)
Fu, Chenghua
2017-05-01
Nanowires are good force transducers due to their low mass. The singleness of the direction of the motion detection in a certain system is an existing limitation, and to overcome the limitation is the key point in this article. Optical methods, such as polarized light interferometry and light scattering, are generally used for detecting the displacement of nanowires. Typically, either light interference or light scattering is considered when relating the displacement of a nanowire with the photodetector's measurements. In this work, we consider both the light interference along the optical axis and light scattering perpendicular to the optical axis of a micro-lens fiber optic interferometer. Identifying the displacement along the two directions and the corresponding vibration conversion efficiency coefficients for the nanowire is a significant part of our study. Our analysis shows that the optimal working point of the micro-lens fiber optic interferometer can realize the detection of displacement along the optical axis without the disturbance coming from the motion perpendicular to the optical axis, and vice versa. We use Mie scattering theory to calculate the scattering light for the reason that the size of the nanowire is comparable to the wavelength of light. Our results could provide a guide for optical readout experiments of the displacement of nanowires.
Effects of digital phase-conjugate light intensity on time-reversal imaging through animal tissue.
Toda, Sogo; Kato, Yuji; Kudo, Nobuki; Shimizu, Koichi
2018-04-01
For transillumination imaging of animal tissues, we have attempted to suppress the scattering effect in a turbid medium using the time-reversal principle of phase-conjugate light. We constructed a digital phase-conjugate system to enable intensity modulation and phase modulation. Using this system, we clarified the effectiveness of the intensity information for restoration of the original light distribution through a turbid medium. By varying the scattering coefficient of the medium, we clarified the limit of time-reversal ability with intensity information of the phase-conjugate light. Experiment results demonstrated the applicability of the proposed technique to animal tissue.
NASA Astrophysics Data System (ADS)
Yokokawa, Takumi; Nishidate, Izumi
2016-04-01
We investigate a method to evaluate light-scattering properties and chromophore concentrations in human skin tissue through diffuse reflectance spectroscopy using the reflectance signals acquired at isosbestic wavelengths of hemoglobin (420, 450, 500, and 585 nm). In the proposed method, Monte Carlo simulation-based empirical formulas are used to specify the scattering parameters of skin tissue, such as the scattering amplitude a and the scattering power b, as well as the concentration of melanin C m and the total blood concentration C tb. The use of isosbestic wavelengths of hemoglobin enables the values of C m, C tb, a, and b to be estimated independently of the oxygenation of hemoglobin. The spectrum of the reduced scattering coefficient is reconstructed from the scattering parameters. Experiments using in vivo human skin tissues were performed to confirm the feasibility of the proposed method for evaluating the changes in scattering properties and chromophore concentrations in skin tissue. The experimental results revealed that light scattering is significantly reduced by the application of a glycerol solution, which indicates an optical clearing effect due to osmotic dehydration and the matching of the refractive indices of scatterers in the epidermis.
Illien, Bertrand; Ying, Ruifeng
2009-05-11
New static light scattering (SLS) equations for dilute binary solutions are derived. Contrarily to the usual SLS equations [Carr-Zimm (CZ)], the new equations have no need for the experimental absolute Rayleigh ratio of a reference liquid and solely rely on the ratio of scattered intensities of solutions and solvent. The new equations, which are based on polarizability equations, take into account the usual refractive index increment partial differential n/partial differential rho(2) complemented by the solvent specific polarizability and a term proportional to the slope of the solution density rho versus the solute mass concentration rho(2) (density increment). Then all the equations are applied to 21 (macro)molecules with a wide range of molar mass (0.2
Binzoni, T; Leung, T S; Rüfenacht, D; Delpy, D T
2006-01-21
Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware.
Light Absorption of Stratospheric Aerosols: Long-Term Trend and Contribution by Aircraft
NASA Technical Reports Server (NTRS)
Pueschel , R. F.; Gore, Waren J. Y. (Technical Monitor)
1997-01-01
Measurements of aerosol light-absorption coefficients are useful for studies of radiative transfer and heating rates. Ogren appears to have published the first light- absorption coefficients in the stratosphere in 1981, followed by Clarke in 1983 and Pueschel in 1992. Because most stratospheric soot appears to be due to aircraft operations, application of an aircraft soot aerosol emission index to projected fuel consumption suggests a threefold increase of soot loading and light absorption by 2025. Together, those four data sets indicate an increase in mid-visible light extinction at a rate of 6 % per year. This trend is similar to the increase per year of sulfuric acid aerosol and of commercial fleet size. The proportionality between stepped-up aircraft operations above the tropopause and increases in stratospheric soot and sulfuric acid aerosol implicate aircraft as a source of stratospheric pollution. Because the strongly light-absorbing soot and the predominantly light-scattering sulfuric acid aerosol increase at similar rates, however, the mid-visible stratospheric aerosol single scatter albedo is expected to remain constant and not approach a critical value of 0.98 at which stratospheric cooling could change to warming.
On iterative algorithms for quantitative photoacoustic tomography in the radiative transport regime
NASA Astrophysics Data System (ADS)
Wang, Chao; Zhou, Tie
2017-11-01
In this paper, we present a numerical reconstruction method for quantitative photoacoustic tomography (QPAT), based on the radiative transfer equation (RTE), which models light propagation more accurately than diffusion approximation (DA). We investigate the reconstruction of absorption coefficient and scattering coefficient of biological tissues. An improved fixed-point iterative method to retrieve the absorption coefficient, given the scattering coefficient, is proposed for its cheap computational cost; the convergence of this method is also proved. The Barzilai-Borwein (BB) method is applied to retrieve two coefficients simultaneously. Since the reconstruction of optical coefficients involves the solutions of original and adjoint RTEs in the framework of optimization, an efficient solver with high accuracy is developed from Gao and Zhao (2009 Transp. Theory Stat. Phys. 38 149-92). Simulation experiments illustrate that the improved fixed-point iterative method and the BB method are competitive methods for QPAT in the relevant cases.
Scott, David J; Patel, Trushar R; Winzor, Donald J
2013-04-15
Theoretical consideration is given to the effect of cosolutes (including buffer and electrolyte components) on the determination of second virial coefficients for proteins by small-angle X-ray scattering (SAXS)-a factor overlooked in current analyses in terms of expressions for a two-component system. A potential deficiency of existing practices is illustrated by reassessment of published results on the effect of polyethylene glycol concentration on the second virial coefficient for urate oxidase. This error reflects the substitution of I(0,c3,0), the scattering intensity in the limit of zero scattering angle and solute concentration, for I(0,0,0), the corresponding parameter in the limit of zero cosolute concentration (c3) as well. Published static light scattering results on the dependence of the apparent molecular weight of ovalbumin on buffer concentration are extrapolated to zero concentration to obtain the true value (M2) and thereby establish the feasibility of obtaining the analogous SAXS parameter, I(0,0,0), experimentally. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kundu, Sarathi; Pandit, Subhankar; Abbas, Sohrab; Aswal, V. K.; Kohlbrecher, J.
2018-02-01
Small angle neutron scattering study reveals that at pD ≈ 7.0, above the isoelectric point of the globular protein Bovine Serum Albumin (BSA), in the presence of different divalent ions (Mg2+, Ca2+, Sr2+ and Ba2+), the short-range attractive interaction remains nearly constant and the intermediate-range repulsive interaction decreases with increasing salt concentration up to a certain concentration value but after that remains unchanged. However, for the monovalent ion (Na+), repulsive interaction decreases gradually up to 1 M salt concentration. Dynamic light scattering study shows that for all ions, diffusion coefficient of BSA decreases with increasing salt concentration and then nearly saturates.
Colorimetry and magnitudes of asteroids
NASA Technical Reports Server (NTRS)
Bowell, E.; Lumme, K.
1979-01-01
In the present paper, 1500 UBV observations are analyzed by a new rather general multiple scattering theory which provided clear insight into previously poorly-recognized optical nature of asteroid surfaces. Thus, phase curves are shown to consist of a surface-texture controlled component, due to singly scattered light, and a component due to multiple scattering. Phase curve shapes can be characterized by a single parameter, the multiple scattering factor, Q. As Q increases, the relative importance of the opposition effect diminishes. Asteroid surfaces are particulate and strikingly similar to texture, being moderately porous and moderately rough on a scale greater than the wavelength of light. In concequence, Q (and also the phase coefficient) correlate well with geometric albedo, and there exists a purely photometric means of determining albedos and diameters.
NASA Astrophysics Data System (ADS)
Kargin, I. D.; Lanshina, L. V.; Abramovich, A. I.
2017-09-01
The coefficients of scattering and the depolarization of scattered light are measured in liquid benzene, chlorobenzene, o-dichlorobenzene, o-chlorotoluene, toluene, and o-xylene in the temperature range of 293‒368 K at a wavelength of 546 nm. Isothermic compressibility, internal pressure, and the functions of radial and orientational correlation are calculated for these liquids in the indicated temperature range, using the classical theory of molecular light scattering. We show that the local structure of these liquids is determined by orthogonal contacts between benzene rings (the T-configuration) and stacked (S-type) configurations. T-configurations predominate in benzene, chlorobenzene, and o-chlorotoluene, while toluene, o-xylene, and o-dichlorobenzene are characterized by S-configurations. It is also shown that the local structures of these liquids are reorganized in a certain temperature range.
A new Monte Carlo code for light transport in biological tissue.
Torres-García, Eugenio; Oros-Pantoja, Rigoberto; Aranda-Lara, Liliana; Vieyra-Reyes, Patricia
2018-04-01
The aim of this work was to develop an event-by-event Monte Carlo code for light transport (called MCLTmx) to identify and quantify ballistic, diffuse, and absorbed photons, as well as their interaction coordinates inside the biological tissue. The mean free path length was computed between two interactions for scattering or absorption processes, and if necessary scatter angles were calculated, until the photon disappeared or went out of region of interest. A three-layer array (air-tissue-air) was used, forming a semi-infinite sandwich. The light source was placed at (0,0,0), emitting towards (0,0,1). The input data were: refractive indices, target thickness (0.02, 0.05, 0.1, 0.5, and 1 cm), number of particle histories, and λ from which the code calculated: anisotropy, scattering, and absorption coefficients. Validation presents differences less than 0.1% compared with that reported in the literature. The MCLTmx code discriminates between ballistic and diffuse photons, and inside of biological tissue, it calculates: specular reflection, diffuse reflection, ballistics transmission, diffuse transmission and absorption, and all parameters dependent on wavelength and thickness. The MCLTmx code can be useful for light transport inside any medium by changing the parameters that describe the new medium: anisotropy, dispersion and attenuation coefficients, and refractive indices for specific wavelength.
Zhu, Li-Hua; Tao, Jun; Chen, Zhong-Ming; Zhao, Yue; Zhang, Ren-Jian; Cao, Jun-Ji
2012-01-01
Aerosol samples for PM2.5 were collected from 1st January to 31st January 2010, in Beijing. The concentrations of organic carbon, elemental carbon, water-solubile ions and soil elements of all particle samples were determined by thermal/optical carbon analyzer, ion chromatography and X-ray fluorescence spectrometer, respectively. The scattering coefficients (b(sp)), absorbing coefficients (b(ap)) and meteorological parameters for this period were also measured. Ambient light extinction coefficients were reconstructed by IMPROVE formula and were compared with measured light extinction coefficients. The results showed that the average mass concentration of PM2.5 was (144.3 +/- 89.1) microg x m(-3) during campaigning period. The average values of measured b(ap), b(sp) and extinction coefficient (b(ext)) were (67.4 +/- 54.3), (328.5 +/- 353.8) and (395.9 +/- 405.2) Mm(-1), respectively. IMPROVE formula is suitable for source apportionment of light extinction coefficient in campaign period. The average value of calculated b'(ext) was (611 +/- 503) Mm(-1) in January, 2010. The major contributors to ambient light extinction coefficients included (NH4) 2SO4 (24.6%), NH4NO3 (11.6%), OM (45.5%), EC (11.9%) and FS (6.4%), respectively.
Effects of surface roughness and absorption on light propagation in graded-profile waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danilenko, S S; Osovitskii, A N
2011-06-30
This paper examines the effects of surface roughness and absorption on laser light propagation in graded-profile waveguiding structures. We derive analytical expressions for the scattering and absorption coefficients of guided waves and analyse these coefficients in relation to parameters of the waveguiding structure and the roughness of its boundary. A new approach is proposed to measuring roughness parameters of precision dielectric surfaces. Experimental evidence is presented which supports the main conclusions of the theory. (integraled-optical waweguides)
The atmospheric transparency of Telescope Array experiment from LIDAR
NASA Astrophysics Data System (ADS)
Tomida, T.
2011-09-01
UV fluorescence light generated by an air shower is scattered and lost along the path of transmission to the telescope. The main scattering processes are Rayleigh scattering by molecules and scattering by aerosols in an atmosphere. In the Telescope Array Experiment, we make use of LIDAR (LIght Detection And Ranging), which observes the back-scattered light of laser. The LIDAR system is operated before the beginning and after the end of an FD observation, twice a night. The typical transparency of aerosols on clear night is obtained two years observation from September, 2007. The extinction coefficient of aerosols (αAS) at ground level are 0.040-0.013+0.036 km-1. The dependence of typical aerosols on height above ground level (1450 m a.s.l.) can be express by two exponential components as following: αAS(h) = 0.021 exp(-h/0.2)+0.019 exp(-h/1.9). The atmospheric transparency measured with the LIDAR system in TA site is discussed in this paper.
NASA Astrophysics Data System (ADS)
Mondal, Indranil; Raj, Shipra; Roy, Poulomi; Poddar, Raju
2018-01-01
We present noninvasive three-dimensional depth-resolved imaging of animal tissue with a swept-source optical coherence tomography system at 1064 nm center wavelength and silver nanoparticles (AgNPs) as a potential contrast agent. A swept-source laser light source is used to enable an imaging rate of 100 kHz (100 000 A-scans s-1). Swept-source optical coherence tomography is a new variant of the optical coherence tomography (OCT) technique, offering unique advantages in terms of sensitivity, reduction of motion artifacts, etc. To enhance the contrast of an OCT image, AgNPs are utilized as an exogeneous contrast agent. AgNPs are synthesized using a modified Tollens method and characterization is done by UV-vis spectroscopy, dynamic light scattering, scanning electron microscopy and energy dispersive x-ray spectroscopy. In vitro imaging of chicken breast tissue, with and without the application of AgNPs, is performed. The effect of AgNPs is studied with different exposure times. A mathematical model is also built to calculate changes in the local scattering coefficient of tissue from OCT images. A quantitative estimation of scattering coefficient and contrast is performed for tissues with and without application of AgNPs. Significant improvement in contrast and increase in scattering coefficient with time is observed.
Ma, Yingfang; Acosta, Diana M; Whitney, Jon R; Podgornik, Rudolf; Steinmetz, Nicole F; French, Roger H; Parsegian, V Adrian
2015-01-01
Composition-gradient multi-angle static light scattering (CG-MALS) is an emerging technique for the determination of intermolecular interactions via the second virial coefficient B22. With CG-MALS, detailed studies of the second virial coefficient can be carried out more accurately and effectively than with traditional methods. In addition, automated mixing, delivery and measurement enable high speed, continuous, fluctuation-free sample delivery and accurate results. Using CG-MALS we measure the second virial coefficient of bovine serum albumin (BSA) in aqueous solutions at various values of pH and ionic strength of a univalent salt (NaCl). The systematic variation of the second virial coefficient as a function of pH and NaCl strength reveals the net charge change and the isoelectric point of BSA under different solution conditions. The magnitude of the second virial coefficient decreases to 1.13 x 10(-5) ml*mol/g(2) near the isoelectric point of pH 4.6 and 25 mM NaCl. These results illuminate the role of fundamental long-range electrostatic and van der Waals forces in protein-protein interactions, specifically their dependence on pH and ionic strength.
Statistical-thermodynamic model for light scattering from eye lens protein mixtures
NASA Astrophysics Data System (ADS)
Bell, Michael M.; Ross, David S.; Bautista, Maurino P.; Shahmohamad, Hossein; Langner, Andreas; Hamilton, John F.; Lahnovych, Carrie N.; Thurston, George M.
2017-02-01
We model light-scattering cross sections of concentrated aqueous mixtures of the bovine eye lens proteins γB- and α-crystallin by adapting a statistical-thermodynamic model of mixtures of spheres with short-range attractions. The model reproduces measured static light scattering cross sections, or Rayleigh ratios, of γB-α mixtures from dilute concentrations where light scattering intensity depends on molecular weights and virial coefficients, to realistically high concentration protein mixtures like those of the lens. The model relates γB-γB and γB-α attraction strengths and the γB-α size ratio to the free energy curvatures that set light scattering efficiency in tandem with protein refractive index increments. The model includes (i) hard-sphere α-α interactions, which create short-range order and transparency at high protein concentrations, (ii) short-range attractive plus hard-core γ-γ interactions, which produce intense light scattering and liquid-liquid phase separation in aqueous γ-crystallin solutions, and (iii) short-range attractive plus hard-core γ-α interactions, which strongly influence highly non-additive light scattering and phase separation in concentrated γ-α mixtures. The model reveals a new lens transparency mechanism, that prominent equilibrium composition fluctuations can be perpendicular to the refractive index gradient. The model reproduces the concave-up dependence of the Rayleigh ratio on α/γ composition at high concentrations, its concave-down nature at intermediate concentrations, non-monotonic dependence of light scattering on γ-α attraction strength, and more intricate, temperature-dependent features. We analytically compute the mixed virial series for light scattering efficiency through third order for the sticky-sphere mixture, and find that the full model represents the available light scattering data at concentrations several times those where the second and third mixed virial contributions fail. The model indicates that increased γ-γ attraction can raise γ-α mixture light scattering far more than it does for solutions of γ-crystallin alone, and can produce marked turbidity tens of degrees celsius above liquid-liquid separation.
NASA Astrophysics Data System (ADS)
Qin, Jianwei; Lu, Renfu
2005-11-01
Absorption and reduced scattering coefficients are two fundamental optical properties for turbid biological materials. This paper presents the technique and method of using hyperspectral diffuse reflectance for fast determination of the optical properties of fruit and vegetable juices and milks. A hyperspectral imaging system was used to acquire spatially resolved steady-state diffuse reflectance over the spectral region between 530 and 900 nm from a variety of fruit and vegetable juices (citrus, grapefruit, orange, and vegetable) and milks with different fat levels (full, skim and mixed). The system collected diffuse reflectance in the source-detector separation range from 1.1 to 10.0 mm. The hyperspectral reflectance data were analyzed by using a diffusion theory model for semi-infinite homogeneous media. The absorption and reduced scattering coefficients of the fruit and vegetable juices and milks were extracted by inverse algorithms from the scattering profiles for wavelengths of 530-900 nm. Values of the absorption and reduced scattering coefficient at 650 nm were highly correlated to the fat content of the milk samples with the correlation coefficient of 0.990 and 0.989, respectively. The hyperspectral imaging technique can be extended to the measurement of other liquid and solid foods in which light scattering is dominant.
Tromberg, Bruce J [Irvine, CA; Berger, Andrew J [Rochester, NY; Cerussi, Albert E [Lake Forest, CA; Bevilacqua, Frederic [Costa Mesa, CA; Jakubowski, Dorota [Irvine, CA
2008-09-23
A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.
Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars.
She, C Y
2001-09-20
It is well known that scattering lidars, i.e., Mie, aerosol-wind, Rayleigh, high-spectral-resolution, molecular-wind, rotational Raman, and vibrational Raman lidars, are workhorses for probing atmospheric properties, including the backscatter ratio, aerosol extinction coefficient, temperature, pressure, density, and winds. The spectral structure of molecular scattering (strength and bandwidth) and its constituent spectra associated with Rayleigh and vibrational Raman scattering are reviewed. Revisiting the correct name by distinguishing Cabannes scattering from Rayleigh scattering, and sharpening the definition of each scattering component in the Rayleigh scattering spectrum, the review allows a systematic, logical, and useful comparison in strength and bandwidth between each scattering component and in receiver bandwidths (for both nighttime and daytime operation) between the various scattering lidars for atmospheric sensing.
NASA Astrophysics Data System (ADS)
Kurata, Tomohiro; Oda, Shigeto; Kawahira, Hiroshi; Haneishi, Hideaki
2016-12-01
We have previously proposed an estimation method of intravascular oxygen saturation (SO_2) from the images obtained by sidestream dark-field (SDF) imaging (we call it SDF oximetry) and we investigated its fundamental characteristics by Monte Carlo simulation. In this paper, we propose a correction method for scattering by the tissue and performed experiments with turbid phantoms as well as Monte Carlo simulation experiments to investigate the influence of the tissue scattering in the SDF imaging. In the estimation method, we used modified extinction coefficients of hemoglobin called average extinction coefficients (AECs) to correct the influence from the bandwidth of the illumination sources, the imaging camera characteristics, and the tissue scattering. We estimate the scattering coefficient of the tissue from the maximum slope of pixel value profile along a line perpendicular to the blood vessel running direction in an SDF image and correct AECs using the scattering coefficient. To evaluate the proposed method, we developed a trial SDF probe to obtain three-band images by switching multicolor light-emitting diodes and obtained the image of turbid phantoms comprised of agar powder, fat emulsion, and bovine blood-filled glass tubes. As a result, we found that the increase of scattering by the phantom body brought about the decrease of the AECs. The experimental results showed that the use of suitable values for AECs led to more accurate SO_2 estimation. We also confirmed the validity of the proposed correction method to improve the accuracy of the SO_2 estimation.
NASA Astrophysics Data System (ADS)
Cho, C.; Kim, S. W.; Sheridan, P. J.; Gustafsson, O.; Lee, M.; Yoon, S. C.
2016-12-01
Anthropogenic fine pollution and wind-blown mineral dust aerosols have a significant effect on the regional radiation budget by scattering or absorbing the solar radiation reaching the Earth's surface. We investigate the optical and physical properties of dust and pollution aerosols at Gosan Climate Observatory (GCO), Korea during Gosan Pollution Experiment 2014 (GOPOEX 2014; January 2014).Mean values of aerosol scattering coefficient and absorption coefficient during GOPOEX 2014 were 72 ± 86 Mm-1 and 6 ± 5 Mm-1 at 550 nm, respectively. Aerosol scattering coefficient and absorption coefficient during dust episodes were 245 ± 171 Mm-1 and 22 ± 13 Mm-1 at 550 nm, which were approximately 3.5 times greater than mean values during GOPOEX 2014. Values for scattering and absorption coefficient of pollution episodes were recorded as 153 ± 95 Mm-1 and 12 ± 7 Mm-1 at 550 nm. Therefore, single scattering albedo of pollution episodes (0.92 ± 0.02) was slightly higher than those of dust episodes (0.90 ± 0.03). This is because that pollutant aerosols include more scattering fraction such as SO42-, and NO3- in fine particulate matter emitted from industrial areas in the eastern coastal region of China while dust aerosols are transported from North China to Gosan.Aerosol optical properties are influenced by where the air mass is transported from, either South China or North China. The mean values of aerosol scattering coefficient and absorption coefficient when air mass was transported from South China were 136 ± 132 Mm-1 and 15 ± 14 Mm-1 at 550 nm whereas those from North China were 108 ± 112 Mm-1 and 8 ± 7 Mm-1 at 550 nm. Single scattering albedo are almost identical as 0.9 ± 0.03 for both air masses.Carbonaceous composition of aerosols, which occupy a considerable fraction of fine particulate matter, also depends on the origin of the air mass. Radiocarbon (14C) is a good indicator for distinguishing between fossil combustion and biomass combustion. Detailed source contribution based on radiocarbon measurements and its relationship to aerosol optical properties at GCO will be presented.
Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David
2017-11-10
Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.
Lateral scattered light used to study laser light propagation in turbid media phantoms
NASA Astrophysics Data System (ADS)
Valdes, Claudia; Solarte, Efrain
2010-02-01
Laser light propagation in soft tissues is important because of the growing biomedical applications of lasers and the need to optically characterize the biological media. Following previous developments of the group, we have developed low cost models, Phantoms, of soft tissue. The process was developed in a clean room to avoid the medium contamination. Each model was characterized by measuring the refractive index, and spectral reflectance and transmittance. To study the laser light propagation, each model was illuminated with a clean beam of laser light, using sources such as He-Ne (632nm) and DPSSL (473 nm). Laterally scattered light was imaged and these images were digitally processed. We analyzed the intensity distribution of the scattered radiation in order to obtain details of the beam evolution in the medium. Line profiles taken from the intensity distribution surface allow measuring the beam spread, and to find expressions for the longitudinal (along the beam incident direction) and transversal (across the beam incident direction) intensities distributions. From these behaviors, the radiation penetration depth and the total coefficient of extinction have been determined. The multiple scattering effects were remarkable, especially for the low wavelength laser beam.
Inter-DNA Attraction Mediated by Divalent Counterions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu Xiangyun; Andresen, Kurt; Kwok, Lisa W.
2007-07-20
Can nonspecifically bound divalent counterions induce attraction between DNA strands? Here, we present experimental evidence demonstrating attraction between short DNA strands mediated by Mg{sup 2+} ions. Solution small angle x-ray scattering data collected as a function of DNA concentration enable model independent extraction of the second virial coefficient. As the [Mg{sup 2+}] increases, this coefficient turns from positive to negative reflecting the transition from repulsive to attractive inter-DNA interaction. This surprising observation is corroborated by independent light scattering experiments. The dependence of the observed attraction on experimental parameters including DNA length provides valuable clues to its origin.
The 1979 Southeastern Virginia Urban Plume Study. Volume 2: Data listings for NASA Cessna aircraft
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Lee, R. B., III; Mathis, J. J., Jr.
1981-01-01
The data reported are these measured onboard the NASA Langley chartered Cessna aircraft. Data include ozone, nitrogen oxides, light scattering coefficient, temperature, dewpoint, and aircraft altitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, T.M.; Pecora, R.
1988-03-24
The mutual diffusion coefficients of the water-rich region of the 2-butoxyethanol (BE)water system were measured by dynamic light scattering at 10, 25, and 40/sup 0/C. At mole fraction of BE greater than 0.02 (X/sub BE/ greater than or equal to 0.02), the results were in good agreement with the work of T. Kato. Below X/sub BE/ = 0.02 an anomalous diffusion region appeared with particles of apparent hydrodynamic radius of up to 1000 A being observed in agreement with the work of S. Kato et al. Further investigations using BE from different sources did not show the anomalous diffusion regionmore » and indicate that the possible presence of small amounts of contaminants in the BE is the source of this anomalous diffusion data« less
Light scattering properties of new materials for glazing applications
NASA Astrophysics Data System (ADS)
Bergkvist, Mikael; Roos, Arne
1991-12-01
Several new materials are available for glazing applications, many of which require careful optical characterization, especially with regards to light scattering. Measuring scattering requires special equipment and is inherently difficult. An integrating sphere can be used for the total and diffuse components but great care must be taken in interpreting the instrument readings. Angular resolved scattering measurements are necessary for a complete characterization, and this is difficult for low levels of scattering. In this paper, measurements on electrically switchable NCAP materials and thick panes of aerogel are reported. The NCAP films switch reversibly from a translucent, scattering state to a transparent, clear state with the application of an ac-voltage. Airglass has a porous SiO2 structure with a refractive index n equals 1.04 and a very low heat transfer coefficient. Integrated scattering measurements were performed in the wavelength range 300 to 2500 nm on a Beckman 5240 spectrophotometer equipped with a 198851 integrating sphere. In this instrument we can measure the total and diffuse components of the reflectance or transmittance separately. The angular distribution of the scattered light was measured in a scatterometer, which can perform scattering measurements in the wavelength range 400-1100 nm in both transmittance and reflectance mode with variable angle of incidence.
Diel Variations in Optical Properties of Micromonas pusilla, a Prasinophyte
NASA Technical Reports Server (NTRS)
DuRand, Michele D.; Green, Rebecca E.; Sosik, Heidi M.; Olson, Robert J.
2001-01-01
A laboratory experiment was conducted on cultures of Micromonas pusilla, a marine prasinophyte, to investigate how cell growth and division affect the optical properties over the light:dark cycle. Measurements were made of cell size and concentration, attenuation and absorption coefficients, flow cytometric light scattering (in forward and side directions), chlorophyll and carbon content. Refractive index was calculated using the anomalous diffraction approximation Cells were about 1.5 micrometers in diameter and exhibited phased division, with the major division burst occurring during the night. Typical diel variations were observed, with cells increasing in size and light scattering during the day as they photosynthesize and decreasing at night upon division. The cells were in ultradian growth, with more than one division per day, at a light level of 120 Mu-mol photons m/sq/sec. Since these cells are similar in size to small phytoplankton that are typically abundant in field samples, these results can be used in the interpretation of diel variations in light scattering in natural populations of phytoplankton.
Effects of aerosol species on atmospheric visibility in Kaohsiung City, Taiwan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang-Gai Lee; Chung-Shin Yuan; Jui-Cheng Chang
2005-07-01
Visibility data collected from Kaohsiung City, Taiwan, for the past two decades indicated that the air pollutants have significantly degraded visibility in recent years. During the study period, the seasonal mean visibilities in spring, summer, fall, and winter were only 5.4, 9.1, 8.2, and 3.4 km, respectively. To ascertain how urban aerosols influence the visibility, we conducted concurrent visibility monitoring and aerosol sampling in 1999 to identify the principal causes of visibility impairments in the region. In this study, ambient aerosols were sampled and analyzed for 11 constituents, including water-soluble ions and carbon materials, to investigate the chemical composition ofmore » Kaohsiung aerosols. Stepwise regression method was used to correlate the impact of aerosol species on visibility impairments. Both seasonal and diurnal variation patterns were found from the monitoring of visibility. Results showed that light scattering was attributed primarily to aerosols with sizes that range from 0.26 to 0.90 {mu}m, corresponding with the wavelength region of visible light, which accounted for {approximately} 72% of the light scattering coefficient. Sulfate was a dominant component that affected both the light scattering coefficient and the visibility in the region. On average, (NH{sub 4}){sup 2}SO{sub 4}, NH{sub 4}NO{sub 3}, total carbon, and fine particulate matter (PM2.5)-remainder contributed 53%, 17%, 16%, and 14% to total light scattering, respectively. An empirical regression model of visibility based on sulfate, elemental carbon, and humidity was developed, and the comparison indicated that visibility in an urban area could be properly simulated by the equation derived herein. 35 refs., 10 figs., 4 tabs.« less
NASA Technical Reports Server (NTRS)
Ibrahim, Amir; Gilerson, Alexander; Chowdhary, Jacek; Ahmed, Samir
2016-01-01
Remote sensing has mainly relied on measurements of scalar radiance and its spectral and angular features to retrieve micro- and macro-physical properties of aerosols/hydrosols. However, it is recognized that measurements that include the polarimetric characteristics of light provide more intrinsic information about particulate scattering. To take advantage of this, we used vector radiative transfer (VRT) simulations and developed an analytical relationship to retrieve the macro and micro-physical properties of the oceanic hydrosols. Specifically, we investigated the relationship between the observed degree of linear polarization (DoLP) and the ratio of attenuation-to- absorption coefficients (c/a) in water, from which the scattering coefficient can be readily computed (b equals c minus a), after retrieving a. This relationship was parameterized for various scattering geometries, including sensor zenith/azimuth angles relative to the Sun's principal plane, and for varying Sun zenith angles. An inversion method was also developed for the retrieval of the microphysical properties of hydrosols, such as the bulk refractive index and the particle size distribution. The DoLP vs c/a relationship was tested and validated against in-situ measurements of underwater light polarization obtained by a custom-built polarimeter and measurements of the coefficients a and c, obtained using an in-water WET (Western Environmental Technologies) Labs ac-s (attenuation coefficients In-Situ Spectrophotometer) instrument package. These measurements confirmed the validity of the approach, with retrievals of attenuation coefficients showing a high coefficient of determination depending on the wavelength. We also performed a sensitivity analysis of the DoLP at the Top of Atmosphere (TOA) over coastal waters showing the possibility of polarimetric remote sensing application for ocean color.
NASA Astrophysics Data System (ADS)
Gyawali, M. S.; Arnott, W. P.; Flowers, B. A.; Dubey, M. K.; Atkinson, D. B.; Song, C.; Zaveri, R. A.; Setyan, A.; Zhang, Q.; Mazzoleni, C.; Gorkowski, K.
2011-12-01
We present multispectral (355, 375, 405, 532, 870, 781, and 1047 nm) aerosol light absorption and scattering measurements for the 2010 Carbonaceous Aerosols and Radiative Effects (CARES) campaign in Sacramento, CA and the Sierra Nevada foothills. The short wavelength scattering at both sites gradually increased during the last 10 days of the campaign as diagnosed by a systematic increase in the Ångström exponent of scattering. The UV and near UV enhanced scattering was likely a consequence of the ultra and sub-micron aerosol which began to grow vigorously in the size range where scattering at shorter wavelengths begins to increase. Multispectral aerosol light absorption coefficients suggest the absence of short wavelength light absorption by brown carbon. Aerosol mass spectrometer data also shows the steady increase of secondary organic aerosol during the last 10 days of CARES. The time series of the measurements made between the two sites (T0 and T1) separated by the slope of the foothills are strikingly similar, except for isolated night time episodes of enhanced absorption at T0. This is possibly due to paving events or other nocturnal emissions markers
NASA Astrophysics Data System (ADS)
Badano, Aldo
1999-11-01
This thesis addresses the characterization of light scattering processes that degrade image quality in high performance electronic display devices for digital radiography. Using novel experimental and computational tools, we study the lateral diffusion of light in emissive display devices that causes extensive veiling glare and significant reduction of the physical contrast. In addition, we examine the deleterious effects of ambient light reflections that affect the contrast of low luminance regions, and superimpose unwanted structured signal. The analysis begins by introducing the performance limitations of the human visual system to define high fidelity requirements. It is noted that current devices severely suffer from image quality degradation due to optical transport processes. To model the veiling glare and reflectance characteristics of display devices, we introduce a Monte Carlo light transport simulation code, DETECT-II, that tracks individual photons through multiple scattering events. The simulation accounts for the photon polarization state at each scattering event, and provides descriptions for rough surfaces and thin film coatings. A new experimental method to measure veiling glare is described next, based on a conic collimated probe that minimizes contamination from bright areas. The measured veiling glare ratio is taken to be the luminance in the surrounding bright field divided by the luminance in the dark circle. We show that veiling glare ratios in the order of a few hundreds can be measured with an uncertainty of a few percent. The veiling glare response function is obtained by measuring the small spot contrast ratio of test patterns having varying dark spot radius. Using DETECT-II, we then estimate the ring response functions for a high performance medical imaging monitor of current design, and compare the predictions of the model with the experimentally measured response function. The data presented in this thesis demonstrate that although absorption in the faceplate of high performance monochrome cathode-ray tube monitors have reduced glare, a black matrix design is needed for high fidelity applications. For a high performance medical imaging monitor with anti-reflective coating, the glare ratio for a 1 cm diameter dark spot was measured to be 240. Finally, we introduce experimental techniques for measurements of specular and diffuse display reflectance, and we compare measured reflection coefficients with Monte Carlo estimates. A specular reflection coefficient of 0.0012, and a diffuse coefficient of 0.005 nits/lux are required to minimize degradation from ambient light in rooms with 100 lux illumination. In spite of having comparable reflection coefficients, the low maximum luminance of current devices worsens the effect of ambient light reflections when compared to radiographic film. Flat panel technologies with optimized designs can perform even better than film due to a thin faceplate, increased light absorption, and high brightness.
NASA Astrophysics Data System (ADS)
Pu, Yang; Chen, Jun; Wang, Wubao
2014-02-01
The scattering coefficient, μs, the anisotropy factor, g, the scattering phase function, p(θ), and the angular dependence of scattering intensity distributions of human cancerous and normal prostate tissues were systematically investigated as a function of wavelength, scattering angle and scattering particle size using Mie theory and experimental parameters. The Matlab-based codes using Mie theory for both spherical and cylindrical models were developed and applied for studying the light propagation and the key scattering properties of the prostate tissues. The optical and structural parameters of tissue such as the index of refraction of cytoplasm, size of nuclei, and the diameter of the nucleoli for cancerous and normal human prostate tissues obtained from the previous biological, biomedical and bio-optic studies were used for Mie theory simulation and calculation. The wavelength dependence of scattering coefficient and anisotropy factor were investigated in the wide spectral range from 300 nm to 1200 nm. The scattering particle size dependence of μs, g, and scattering angular distributions were studied for cancerous and normal prostate tissues. The results show that cancerous prostate tissue containing larger size scattering particles has more contribution to the forward scattering in comparison with the normal prostate tissue. In addition to the conventional simulation model that approximately considers the scattering particle as sphere, the cylinder model which is more suitable for fiber-like tissue frame components such as collagen and elastin was used for developing a computation code to study angular dependence of scattering in prostate tissues. To the best of our knowledge, this is the first study to deal with both spherical and cylindrical scattering particles in prostate tissues.
Light scattering of semitransparent sintered polytetrafluoroethylene films.
Li, Qinghe; Lee, Bong Jae; Zhang, Zhuomin M; Allen, David W
2008-01-01
Polytetrafluoroethylene (PTFE) is a strongly scattering material and has been regarded to have optical properties similar to biological tissues. In the present study, the bidirectional reflectance distribution function (BRDF) and the bidirectional transmittance distribution function (BTDF) of several PTFE films, with thicknesses from 0.11 to 10 mm, are measured using a laser scatterometer at the wavelength of 635 nm. The directional-hemispherical reflectance (R) and transmittance (T) were obtained by integrating BRDF and BTDF for normal incidence. Comparison of the ratio of the measured R and T with that calculated from the adding-doubling method allows the determination of the reduced scattering coefficient. Furthermore, the effect of surface scattering is investigated by measuring the polarization-dependent BRDF and BTDF at oblique incidence. By analyzing the measurement uncertainty of BTDF in the near-normal observation angles at normal incidence, the present authors found that the scattering coefficient of PTFE should exceed 1200 cm(-1), which is much greater than that of biological tissues. On the other hand, the absorption coefficient of PTFE must be less than 0.01 cm(-1), much smaller than that of biological tissues, a necessary condition to achieve R > or =0.98 with a 10-mm-thick slab.
Ultrafast image-based dynamic light scattering for nanoparticle sizing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Wu; Zhang, Jie; Liu, Lili
An ultrafast sizing method for nanoparticles is proposed, called as UIDLS (Ultrafast Image-based Dynamic Light Scattering). This method makes use of the intensity fluctuation of scattered light from nanoparticles in Brownian motion, which is similar to the conventional DLS method. The difference in the experimental system is that the scattered light by nanoparticles is received by an image sensor instead of a photomultiplier tube. A novel data processing algorithm is proposed to directly get correlation coefficient between two images at a certain time interval (from microseconds to milliseconds) by employing a two-dimensional image correlation algorithm. This coefficient has been provedmore » to be a monotonic function of the particle diameter. Samples of standard latex particles (79/100/352/482/948 nm) were measured for validation of the proposed method. The measurement accuracy of higher than 90% was found with standard deviations less than 3%. A sample of nanosilver particle with nominal size of 20 ± 2 nm and a sample of polymethyl methacrylate emulsion with unknown size were also tested using UIDLS method. The measured results were 23.2 ± 3.0 nm and 246.1 ± 6.3 nm, respectively, which is substantially consistent with the transmission electron microscope results. Since the time for acquisition of two successive images has been reduced to less than 1 ms and the data processing time in about 10 ms, the total measuring time can be dramatically reduced from hundreds seconds to tens of milliseconds, which provides the potential for real-time and in situ nanoparticle sizing.« less
Near Infrared Light Scattering Changes Following Acute Brain Injury
Highton, David; Tachtsidis, Ilias; Tucker, Alison; Elwell, Clare; Smith, Martin
2018-01-01
Acute brain injury (ABI) is associated with changes in near infrared light absorption reflecting haemodynamic and metabolic status via changes in cerebral oxygenation (haemoglobin oxygenation and cytochrome-c-oxidase oxidation). Light scattering has not been comprehensively investigated following ABI and may be an important confounding factor in the assessment of chromophore concentration changes, and/or a novel non-invasive optical marker of brain tissue morphology, cytostructure, hence metabolic status. The aim of this study is to characterize light scattering following adult ABI. Time resolved spectroscopy was performed as a component of multimodal neuromonitoring in critically ill brain injured patients. The scattering coefficient (μ′s), absorption coefficient and cerebral haemoglobin oxygen saturation (SO2) were derived by fitting the time resolved data. Cerebral infarction was subsequently defined on routine clinical imaging. In total, 21 patients with ABI were studied. Ten patients suffered a unilateral frontal infarction, and mean μ′s was lower over infarcted compared to non-infarcted cortex (injured 6.9/cm, non-injured 8.2/cm p = 0.002). SO2 did not differ significantly between the two sides (injured 69.3 %, non-injured 69.0 % p = 0.7). Cerebral infarction is associated with changes in μ′s which might be a novel marker of cerebral injury and will interfere with quantification of haemoglobin/cytochrome c oxidase concentration. Although further work combining optical and physiological analysis is required to elucidate the significance of these results, μ′s may be uniquely placed as a non-invasive biomarker of cerebral energy failure as well as gross tissue changes. PMID:26782205
NASA Astrophysics Data System (ADS)
Chen, Yin-Chu; Ferracane, Jack L.; Prahl, Scott A.
2005-03-01
Photo-cured dental composites are widely used in dental practices to restore teeth due to the esthetic appearance of the composites and the ability to cure in situ. However, their complex optical characteristics make it difficult to understand the light transport within the composites and to predict the depth of cure. Our previous work showed that the absorption and scattering coefficients of the composite changed after the composite was cured. The static Monte Carlo simulation showed that the penetration of radiant exposures differed significantly for cured and uncured optical properties. This means that a dynamic model is required for accurate prediction of radiant exposure in the composites. The purpose of this study was to develop and verify a dynamic Monte Carlo (DMC) model simulating light propagation in dental composites that have dynamic optical properties while photons are absorbed. The composite was divided into many small cubes, each of which had its own scattering and absorption coefficients. As light passed through the composite, the light was scattered and absorbed. The amount of light absorbed in each cube was calculated using Beer's Law and was used to determine the next optical properties in that cube. Finally, the predicted total reflectance and transmittance as well as the optical property during curing were verified numerically and experimentally. Our results showed that the model predicted values agreed with the theoretical values within 1% difference. The DMC model results are comparable with experimental results within 5% differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hand, Jenny L.; Malm, W. C.; Laskin, Alexander
2005-11-09
The Yosemite Aerosol Characterization Study of summer 2002 (YACS) occurred during an active fire season in the western U. S., and provided an opportunity to investigate many unresolved issues related to the radiative effects of biomass burning aerosols. Single particle analysis was performed on field collected aerosol samples using an array of electron microscopy techniques. Amorphous carbon spheres, or “tar balls”, were present in samples collected during episodes of high particle light scattering coefficients that occurred during the peak of a smoke/haze event. The highest concentrations of light-absorbing carbon from a dual-wavelength aethalometer (λ = 370 and 880 nm) occurredmore » during periods when the particles were predominantly tar balls, indicating they do absorb light in the UV and near-IR range of the solar spectrum. Closure experiments of mass concentrations and light scattering coefficients during periods dominated by tar balls did not require any distinct assumptions of organic carbon molecular weight correction factors, density, or refractive index compared to periods dominated by other types of organic carbon aerosols. Measurements of the hygroscopic behavior of tar balls using an environmental SEM indicate that tar balls do not exhibit deliquescence, but do uptake some water at high (~83 %) relative humidity. The ability of tar balls to efficiently scatter and absorb light, and to absorb water has important implications for their role in regional haze and climate fence.« less
NASA Astrophysics Data System (ADS)
Qi, Wenyuan; Zhang, Yuyin
2018-04-01
A three-color imaging technique was proposed for simultaneous measurements on distributions of fuel/air mixture temperature and fuel vapor/liquid concentrations in evaporating sprays. The idea is based on that the vapor concentration is proportional to the absorption of vapor to UV light, the liquid-phase concentration is related to the light extinction due to scattering of droplet to visible light, and the mixture temperature can be correlated to the absorbance ratio at two absorbing wavelengths or narrow bands. For verifying the imaging system, the molar absorption coefficients of p-xylene at the three narrow bands, which were centered respectively at 265, 289, and 532 nm with FWHM of 10 nm, were measured in a specially designed calibration chamber at different temperatures (423-606 K) and pressure of 3.6 bar. It was found that the ratio of the molar absorption coefficients of p-xylene at the two narrow bands centered at the two UV wavelengths is sensitive to the mixture temperature. On the other hand, the distributions of fuel vapor/liquid concentrations can be obtained by use of absorbance due to ultraviolet absorption of vapor and visible light scattering of droplets. Combining these two methods, a simultaneous measurement on distributions of mixture temperature and fuel vapor/liquid concentrations can be realized. In addition, the temperature field obtained from the ratio of the two absorbing narrow bands can be further used to improve the measurement accuracy of vapor/liquid concentrations, because the absorption coefficients depend on temperature. This diagnostic was applied to an evaporating spray inside a high-temperature and high-pressure constant volume chamber.
Image reconstruction through thin scattering media by simulated annealing algorithm
NASA Astrophysics Data System (ADS)
Fang, Longjie; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Zhang, Xicheng; Zhu, Jianhua
2018-07-01
An idea for reconstructing the image of an object behind thin scattering media is proposed by phase modulation. The optimized phase mask is achieved by modulating the scattered light using simulated annealing algorithm. The correlation coefficient is exploited as a fitness function to evaluate the quality of reconstructed image. The reconstructed images optimized from simulated annealing algorithm and genetic algorithm are compared in detail. The experimental results show that our proposed method has better definition and higher speed than genetic algorithm.
Peng, Feng; Effler, Steve W
2012-05-01
The relationship between the particulate scattering coefficient (b(p)) and the concentration of suspended particulate matter (SPM), as represented by the mass-specific scattering coefficient of particulates (b(p)*=b(p)/SPM), depends on particle size distribution (PSD). This dependence is quantified for minerogenic particle populations in this paper through calculations of b(p)* for common minerals as idealized populations (monodispersed spheres); contemporaneous measurements of b(p), SPM, and light-scattering attributes of mineral particles with scanning electron microscopy interfaced with automated image and x-ray analyses (SAX), for a connected stream-reservoir system where minerogenic particles dominate b(p); and estimates of b(p) and its size dependency (through SAX results-driven Mie theory calculations), particle volume concentration, and b(p)*. Modest changes in minerogenic PSDs are shown to result in substantial variations in b(p)*. Good closure of the SAX-based estimates of b(p) and particle volume concentration with bulk measurements is demonstrated. Converging relationships between b(p)* and particle size, developed from three approaches, were well described by power law expressions.
Effect of the scattering delay on time-dependent photon migration in turbid media.
Yaroslavsky, I V; Yaroslavsky, A N; Tuchin, V V; Schwarzmaier, H J
1997-09-01
We modified the diffusion approximation of the time-dependent radiative transfer equation to account for a finite scattering delay time. Under the usual assumptions of the diffusion approximation, the effect of the scattering delay leads to a simple renormalization of the light velocity that appears in the diffusion equation. Accuracy of the model was evaluated by comparison with Monte Carlo simulations in the frequency domain for a semi-infinite geometry. A good agreement is demonstrated for both matched and mismatched boundary conditions when the distance from the source is sufficiently large. The modified diffusion model predicts that the neglect of the scattering delay when the optical properties of the turbid material are derived from normalized frequency- or time-domain measurements should result in an underestimation of the absorption coefficient and an overestimation of the transport coefficient. These observations are consistent with the published experimental data.
Kinetics of red blood cell rouleaux formation studied by light scattering
NASA Astrophysics Data System (ADS)
Szołna-Chodór, Alicja; Bosek, Maciej; Grzegorzewski, Bronisław
2015-02-01
Red blood cell (RBC) rouleaux formation was experimentally studied using a light scattering technique. The suspensions of RBCs were obtained from the blood of healthy donors. Hematocrit of the samples was adjusted ranging from 1% to 4%. Measurements of the intensity of the coherent component of light scattered by the suspensions were performed and the scattering coefficient of the suspensions was determined. The number of RBCs per rouleaux was obtained using anomalous diffraction theory. The technique was used to show the effect of time, hematocrit, and sample thickness on the process. The number of cells per rouleaux first increases linearly, reaches a critical value at ˜3 cells per rouleaux, and then a further increase in the rouleaux size is observed. The kinetic constant of the rouleaux growth in the linear region is found to be independent of hematocrit. The aggregation rate increases as the sample thickness increases. The time at which the critical region appears strongly decreases as the hematocrit of the suspension increases.
Light focusing through a multiple scattering medium: ab initio computer simulation
NASA Astrophysics Data System (ADS)
Danko, Oleksandr; Danko, Volodymyr; Kovalenko, Andrey
2018-01-01
The present study considers ab initio computer simulation of the light focusing through a complex scattering medium. The focusing is performed by shaping the incident light beam in order to obtain a small focused spot on the opposite side of the scattering layer. MSTM software (Auburn University) is used to simulate the propagation of an arbitrary monochromatic Gaussian beam and obtain 2D distribution of the optical field in the selected plane of the investigated volume. Based on the set of incident and scattered fields, the pair of right and left eigen bases and corresponding singular values were calculated. The pair of right and left eigen modes together with the corresponding singular value constitute the transmittance eigen channel of the disordered media. Thus, the scattering process is described in three steps: 1) initial field decomposition in the right eigen basis; 2) scaling of decomposition coefficients for the corresponding singular values; 3) assembling of the scattered field as the composition of the weighted left eigen modes. Basis fields are represented as a linear combination of the original Gaussian beams and scattered fields. It was demonstrated that 60 independent control channels provide focusing the light into a spot with the minimal radius of approximately 0.4 μm at half maximum. The intensity enhancement in the focal plane was equal to 68 that coincided with theoretical prediction.
Coherent backscattering of light by complex random media of spherical scatterers: numerical solution
NASA Astrophysics Data System (ADS)
Muinonen, Karri
2004-07-01
Novel Monte Carlo techniques are described for the computation of reflection coefficient matrices for multiple scattering of light in plane-parallel random media of spherical scatterers. The present multiple scattering theory is composed of coherent backscattering and radiative transfer. In the radiative transfer part, the Stokes parameters of light escaping from the medium are updated at each scattering process in predefined angles of emergence. The scattering directions at each process are randomized using probability densities for the polar and azimuthal scattering angles: the former angle is generated using the single-scattering phase function, whereafter the latter follows from Kepler's equation. For spherical scatterers in the Rayleigh regime, randomization proceeds semi-analytically whereas, beyond that regime, cubic spline presentation of the scattering matrix is used for numerical computations. In the coherent backscattering part, the reciprocity of electromagnetic waves in the backscattering direction allows the renormalization of the reversely propagating waves, whereafter the scattering characteristics are computed in other directions. High orders of scattering (~10 000) can be treated because of the peculiar polarization characteristics of the reverse wave: after a number of scatterings, the polarization state of the reverse wave becomes independent of that of the incident wave, that is, it becomes fully dictated by the scatterings at the end of the reverse path. The coherent backscattering part depends on the single-scattering albedo in a non-monotonous way, the most pronounced signatures showing up for absorbing scatterers. The numerical results compare favourably to the literature results for nonabsorbing spherical scatterers both in and beyond the Rayleigh regime.
Zaman, Raiyan T; Rajaram, Narasimhan; Nichols, Brandon S; Rylander, Henry G; Wang, Tianyi; Tunnell, James W; Welch, Ashley J
2011-07-01
Light scattering in the normally white sclera prevents diagnostic imaging or delivery of a focused laser beam to a target in the underlying choroid layer. In this study, we examine optical clearing of the sclera and changes in blood flow resulting from the application of glycerol to the sclera of rabbits. Recovery dynamics are monitored after the application of saline. The speed of clearing for injection delivery is compared to the direct application of glycerol through an incision in the conjunctiva. Although, the same volume of glycerol was applied, the sclera cleared much faster (5 to 10 s) with the topical application of glycerol compared to the injection method (3 min). In addition, the direct topical application of glycerol spreads over a larger area in the sclera than the latter method. A diffuse optical spectroscopy system provided spectral analysis of the remitted light every two minutes during clearing and rehydration. Comparison of measurements to those obtained from phantoms with various absorption and scattering properties provided estimates of the absorption coefficient and reduced scattering coefficient of rabbit eye tissue.
NASA Astrophysics Data System (ADS)
Kugeiko, M. M.; Lisenko, S. A.
2008-07-01
An easily automated method for determining the real part of the refractive index of human blood erythrocytes in the range 0.3 1.2 μm is proposed. The method is operationally and metrologically reliable and is based on the measurement of the coefficients of light scattering from forward and backward hemisphere by two pairs of angles and on the use of multiple regression equations. An engineering solution for constructing a measurement system according to this method is proposed, which makes it possible to maximally reduce the calibration errors and effects of destabilizing factors.
NASA Astrophysics Data System (ADS)
Korchemkina, E. N.; Latushkin, A. A.; Lee, M. E.
2017-11-01
The methods of determination of concentration and scattering by suspended particles in seawater are compared. The methods considered include gravimetric measurements of the mass concentration of suspended matter, empirical and analytical calculations based on measurements of the light beam attenuation coefficient (BAC) in 4 spectral bands, calculation of backscattering by particles using satellite measurements in the visible spectral range. The data were obtained in two cruises of the R/V "Professor Vodyanitsky" in the deep-water part of the Black Sea in July and October 2016., Spatial distribution of scattering by marine particles according to satellite data is in good agreement with the contact measurements.
NASA Astrophysics Data System (ADS)
Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu
2018-06-01
Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.
NASA Astrophysics Data System (ADS)
Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu
2018-04-01
Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.
An analytical model for light backscattering by coccoliths and coccospheres of Emiliania huxleyi.
Fournier, Georges; Neukermans, Griet
2017-06-26
We present an analytical model for light backscattering by coccoliths and coccolithophores of the marine calcifying phytoplankter Emiliania huxleyi. The model is based on the separation of the effects of diffraction, refraction, and reflection on scattering, a valid assumption for particle sizes typical of coccoliths and coccolithophores. Our model results match closely with results from an exact scattering code that uses complex particle geometry and our model also mimics well abrupt transitions in scattering magnitude. Finally, we apply our model to predict changes in the spectral backscattering coefficient during an Emiliania huxleyi bloom with results that closely match in situ measurements. Because our model captures the key features that control the light backscattering process, it can be generalized to coccoliths and coccolithophores of different morphologies which can be obtained from size-calibrated electron microphotographs. Matlab codes of this model are provided as supplementary material.
NASA Astrophysics Data System (ADS)
Kiris, Tugba; Akbulut, Saadet; Kiris, Aysenur; Gucin, Zuhal; Karatepe, Oguzhan; Bölükbasi Ates, Gamze; Tabakoǧlu, Haşim Özgür
2015-03-01
In order to develop minimally invasive, fast and precise diagnostic and therapeutic methods in medicine by using optical methods, first step is to examine how the light propagates, scatters and transmitted through medium. So as to find out appropriate wavelengths, it is required to correctly determine the optical properties of tissues. The aim of this study is to measure the optical properties of both cancerous and normal ex-vivo pancreatic tissues. Results will be compared to detect how cancerous and normal tissues respond to different wavelengths. Double-integrating-sphere system and computational technique inverse adding doubling method (IAD) were used in the study. Absorption and reduced scattering coefficients of normal and cancerous pancreatic tissues have been measured within the range of 500-650 nm. Statistical significant differences between cancerous and normal tissues have been obtained at 550 nm and 630 nm for absorption coefficients. On the other hand; there were no statistical difference found for scattering coefficients at any wavelength.
NASA Technical Reports Server (NTRS)
Ricci, K.; Strawa, A. W.; Provencal, R.; Castaneda, R.; Bucholtz, A.; Schmid, B.
2004-01-01
Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300/Mm with an estimated precision of 0.1/Mm for 1550 nm light and 0.2/Mm for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects. We present comparisons between the Cadenza measurements and those from a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.
NASA Astrophysics Data System (ADS)
Ricci, K.; Strawa, A. W.; Provencal, R.; Castaneda, R.; Bucholtz, A.; Schmid, B.
2003-12-01
Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Mm-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects. We present comparisons between the Cadenza measurements and those from a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.
Optical properties of porous polylactide scaffolds
NASA Astrophysics Data System (ADS)
Yusupov, Vladimir I.; Sviridov, Alexander P.; Zhigarkov, Vyacheslav S.; Shubnyy, Andrey G.; Vorobieva, Nataliya N.; Churbanov, Semyon N.; Minaev, Nikita V.; Timashev, Peter S.; Rochev, Yury A.; Bagratashvili, Victor N.
2018-04-01
Light field intensity distribution in three-dimensional polylactide scaffolds after irradiation with low-intensity light from one side of the samples has been determined in the visible and near-infrared regions of the spectrum. Two different types of scaffolds manufactured by the methods of supercritical fluid foaming and surface selective laser sintering have been investigated. The problem is solved by numerical calculation according to the Monte Carlo method involving experimentally obtained information about effective optical parameters of the scaffold material. Information about intensity distribution of the incident light in the matrix volume is needed to assess the radiation level for the scaffold cells after photobiostimulation. It has been shown that the formation of the light field in case of strongly scattering media, such as polylactide scaffolds, is determined by anisotropy g and the scattering coefficient μs.
NASA Astrophysics Data System (ADS)
Zhang, Hui; Li, Zhifang; Li, Hui
2012-12-01
In order to study scattering properties of normal and cancerous tissues from human stomach, we collect images for human gastric specimens by using phase-contrast microscope. The images were processed by the way of mathematics morphology. The equivalent particle size distribution of tissues can be obtained. Combining with Mie scattering theory, the scattering properties of tissues can be calculated. Assume scattering of light in biological tissue can be seen as separate scattering events by different particles, total scattering properties can be equivalent to as scattering sum of particles with different diameters. The results suggest that scattering coefficient of the cancerous tissue is significantly higher than that of normal tissue. The scattering phase function is different especially in the backscattering area. Those are significant clinical benefits to diagnosis cancerous tissue
Light dosimetry for focused and defocused beam irradiation in multi-layered tissue models
NASA Astrophysics Data System (ADS)
Petrova, Kremena S.; Stoykova, Elena V.
2006-09-01
Treatment of acupuncture points, trigger points, joint inflammations in low level laser therapy as well as various applications of lasers for treatment of soft tissues in dental medicine, require irradiation by a narrow converging laser beam. The aim of this study is to compare light delivery produced by focused or defocused narrow beam irradiation in a multi-layered skin tissue model at increasing depth of the target. The task is solved by 3-D Monte-Carlo simulation for matched and mismatched refractive indices at the tissue/ambient medium interface. The modeled light beams have a circular cross-section at the tissue entrance with uniform or Gaussian intensity distribution. Three are the tissue models used in simulation : i) a bloodless skin layer; ii) a bloodless skin layer with embedded scattering object; iii) a skin layer with small blood vessels of varying size, which are modeled as infinite cylinders parallel to the tissue surface located at different depths. Optical properties (absorption coefficient, scattering coefficient, anisotropy factor, g, and index of refraction) of different tissue constituents are chosen from the literature.
Multi-Wavelength Measurement of Soot Optical Properties: Influence of Non-Absorbing Coatings
NASA Astrophysics Data System (ADS)
Freedman, Andrew; Renbaum-Wollf, Lindsay; Forestieri, Sara; Lambe, Andrew; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy
2015-04-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. Important in quantifying the direct radiative impacts of soot in climate models, and specifically of black carbon (BC), is the assumed BC refractive index and shape-dependent interaction of light with BC particles. The latter assumption carries significant uncertainty because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet many optical models such as Mie theory in particular, typically assume a spherical particle morphology. It remains unclear under what conditions this is an acceptable assumption. To investigate the ability of various optical models to reproduce observed BC optical properties, we obtained measurements of light absorption, scattering and extinction coefficients and thus single scattering albedo (SSA) of size-resolved soot particles. Measurements were made on denuded soot particles produced using both methane and ethylene as fuels. In addition, these soot particles were coated with dioctyl sebacate or sulfuric acid and the enhancement in the apparent mass absorption coefficient determined. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm. Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The results will be interpreted in light of both Mie theory which assumes spherical and uniform particles and Rayleigh-Debye-Gans (RDG) theory, which assumes that the absorption properties of soot are dictated by the individual spherules. For denuded soot, effective refractive indices will be determined.
NASA Astrophysics Data System (ADS)
Marlowe, Robert Lloyd
The dynamic light scattering technique of photon correlation spectroscopy has been used to investigate the dependence of the mutual diffusion coefficient of a macromolecular system upon concentration. The first part of the research was devoted to the design and construction of a single-clipping autocorrelator based on newly-developed integrated circuits. The resulting 128 channel instrument can perform real time autocorrelation for sample time intervals >(, )10 (mu)s, and batch processed autocorrelation for intervals down to 3 (mu)s. An improved design for a newer, all-digital autocorrelator is given. Homodyne light scattering experiments were then undertaken on monodisperse solutions of polystyrene spheres. The single-mode TEM(,oo) beam of an argon-ion laser ((lamda) = 5145 (ANGSTROM)) was used as the light source; all solutions were studied at room temperature. The scattering angle was varied from 30(DEGREES) to 110(DEGREES). Excellent agreement with the manufacturer's specification for the particle size was obtained from the photon correlation studies. Finally, aqueous solutions of the globular protein ovalbumin, ranging in concentration from 18.9 to 244.3 mg/ml, were illuminated under the same conditions of temperature and wavelength as before; the homodyne scattered light was detected at a fixed scattering angle of 30(DEGREES). The single-clipped photocount autocorrelation function was analyzed using the homodyne exponential integral method of Meneely et al. The resulting diffusion coefficients showed a general linear dependence upon concentration, as predicted by the generalized Stokes-Einstein equation. However, a clear peak in the data was evident at c (TURNEQ) 100 mg/ml, which could not be explained on the basis of a non -interacting particle theory. A semi-quantitative approach based on the Debye-Huckel theory of electrostatic interactions is suggested as the probable cause for the peak's rise, and an excluded volume effect for its decline.
Kitamura, Ryunosuke; Inagaki, Tetsuya; Tsuchikawa, Satoru
2016-02-22
The true absorption coefficient (μa) and reduced scattering coefficient (μ´s) of the cell wall substance in Douglas fir were determined using time-of-flight near infrared spectroscopy. Samples were saturated with hexane, toluene or quinolone to minimize the multiple reflections of light on the boundary between pore-cell wall substance in wood. μ´s exhibited its minimum value when the wood was saturated with toluene because the refractive index of toluene is close to that of the wood cell wall substance. The optical parameters of the wood cell wall substance calculated were μa = 0.030 mm(-1) and μ´s= 18.4 mm(-1). Monte Carlo simulations using these values were in good agreement with the measured time-resolved transmittance profiles.
[Correction of light refraction and reflection in medical transmission optical tomography].
Tereshchenko, S A; Potapov, D A
2002-01-01
The effects of light refraction and reflection on the quality of image reconstruction in medical transmission optical tomography of high-scattering media are considered. It has been first noted that light refraction not only distorts the geometric scheme of measurements, but may lead to the appearance of object areas that cannot be scanned. Some ways of decreasing the effect of refraction on the reconstruction of spatial distribution of the extinction coefficient are stated.
Attenuation of near-IR light through dentin at wavelengths from 1300–1650-nm
Chan, Andrew C.; Darling, Cynthia L.; Chan, Kenneth H.; Fried, Daniel
2014-01-01
Light scattering in dental enamel decreases markedly from the UV to the near-IR and recent studies employing near-IR transillumination and reflectance imaging including optical coherence tomography indicate that this wavelength region is ideally suited for imaging dental caries due to the high transparency of enamel. The opacity of dentin is an important factor in optimizing the contrast of demineralization in reflectance measurements. It also influences the contrast of occlusal lesions in transillumination. Light scattering in dentin is an order of magnitude larger than in enamel, it is highly anisotropic and has a different spectral light scattering dependence than enamel. The objective of this study was to measure the optical attenuation of near-IR light through dentin at near-IR wavelengths from 1300–1650-nm. In this study the collimated transmission of near-IR light through polished thin sections of dentin of 0.05 to 0.6 mm thickness was measured. Beer-Lambert plots show that the attenuation coefficients range in magnitude from 20 to 40 cm−1. Attenuation increased significantly with increasing wavelength and the increases were not entirely consistent with increased water absorption. PMID:24839373
Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy.
Farzam, Parisa; Zirak, Peyman; Binzoni, Tiziano; Durduran, Turgut
2013-08-01
The cardiac cycle related pulsatile behavior of the absorption and scattering coefficients of diffuse light and the corresponding alterations in hemoglobin concentrations in the human patella was studied. The pulsations in scattering is considerably smaller than absorption. The difference in amplitude of absorption coefficient pulsations for different wavelengths was translated to pulsations in oxygenated and deoxygenated hemoglobin, which leads to strong pulsations in the total hemoglobin concentration and oxygen saturation. The physiological origin of the observed signals was confirmed by applying a thigh-cuff. Moreover, we have investigated the optical and physiological properties of the patella bone and their changes in response to arterial cuff occlusion.
Kinetics of red blood cell rouleaux formation studied by light scattering.
Szolna-Chodór, Alicja; Bosek, Maciej; Grzegorzewski, Bronislaw
2015-02-01
Red blood cell (RBC) rouleaux formation was experimentally studied using a light scattering technique. The suspensions of RBCs were obtained from the blood of healthy donors. Hematocrit of the samples was adjusted ranging from 1% to 4%. Measurements of the intensity of the coherent component of light scattered by the suspensions were performed and the scattering coefficient of the suspensions was determined. The number of RBCs per rouleaux was obtained using anomalous diffraction theory. The technique was used to show the effect of time, hematocrit, and sample thickness on the process. The number of cells per rouleaux first increases linearly, reaches a critical value at ∼3 cells per rouleaux, and then a further increase in the rouleaux size is observed. The kinetic constant of the rouleaux growth in the linear region is found to be independent of hematocrit. The aggregation rate increases as the sample thickness increases. The time at which the critical region appears strongly decreases as the hematocrit of the suspension increases. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
Speckle dynamics under ergodicity breaking
NASA Astrophysics Data System (ADS)
Sdobnov, Anton; Bykov, Alexander; Molodij, Guillaume; Kalchenko, Vyacheslav; Jarvinen, Topias; Popov, Alexey; Kordas, Krisztian; Meglinski, Igor
2018-04-01
Laser speckle contrast imaging (LSCI) is a well-known and versatile approach for the non-invasive visualization of flows and microcirculation localized in turbid scattering media, including biological tissues. In most conventional implementations of LSCI the ergodic regime is typically assumed valid. However, most composite turbid scattering media, especially biological tissues, are non-ergodic, containing a mixture of dynamic and static centers of light scattering. In the current study, we examined the speckle contrast in different dynamic conditions with the aim of assessing limitations in the quantitative interpretation of speckle contrast images. Based on a simple phenomenological approach, we introduced a coefficient of speckle dynamics to quantitatively assess the ratio of the dynamic part of a scattering medium to the static one. The introduced coefficient allows one to distinguish real changes in motion from the mere appearance of static components in the field of view. As examples of systems with static/dynamic transitions, thawing and heating of Intralipid samples were studied by the LSCI approach.
NASA Astrophysics Data System (ADS)
Paredes-Miranda, G.; Arnott, W. P.; Moosmuller, H.
2010-12-01
The global trend toward urbanization and the resulting increase in city population has directed attention toward air pollution in megacities. A closely related question of importance for urban planning and attainment of air quality standards is how pollutant concentrations scale with city population. In this study, we use measurements of light absorption and light scattering coefficients as proxies for primary (i.e., black carbon; BC) and total (i.e., particulate matter; PM) pollutant concentration, to start addressing the following questions: What patterns and generalizations are emerging from our expanding data sets on urban air pollution? How does the per-capita air pollution vary with economic, geographic, and meteorological conditions of an urban area? Does air pollution provide an upper limit on city size? Diurnal analysis of black carbon concentration measurements in suburban Mexico City, Mexico, Las Vegas, NV, USA, and Reno, NV, USA for similar seasons suggests that commonly emitted primary air pollutant concentrations scale approximately as the square root of the urban population N, consistent with a simple 2-d box model. The measured absorption coefficient Babs is approximately proportional to the BC concentration (primary pollution) and thus scales with the square root of population (N). Since secondary pollutants form through photochemical reactions involving primary pollutants, they scale also with square root of N. Therefore the scattering coefficient Bsca, a proxy for PM concentration is also expected to scale with square root of N. Here we present light absorption and scattering measurements and data on meteorological conditions and compare the population scaling of these pollutant measurements with predictions from the simple 2-d box model. We find that these basin cities are connected by the square root of N dependence. Data from other cities will be discussed as time permits.
Skeletal light-scattering accelerates bleaching response in reef-building corals.
Swain, Timothy D; DuBois, Emily; Gomes, Andrew; Stoyneva, Valentina P; Radosevich, Andrew J; Henss, Jillian; Wagner, Michelle E; Derbas, Justin; Grooms, Hannah W; Velazquez, Elizabeth M; Traub, Joshua; Kennedy, Brian J; Grigorescu, Arabela A; Westneat, Mark W; Sanborn, Kevin; Levine, Shoshana; Schick, Mark; Parsons, George; Biggs, Brendan C; Rogers, Jeremy D; Backman, Vadim; Marcelino, Luisa A
2016-03-21
At the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is determined by unknown proportions of environmental history and the synergy of Symbiodinium- and coral-specific properties. Symbiodinium live within host tissues overlaying the coral skeleton, which increases light availability through multiple light-scattering, forming one of the most efficient biological collectors of solar radiation. Light-transport in the upper ~200 μm layer of corals skeletons (measured as 'microscopic' reduced-scattering coefficient, μ'(S,m)), has been identified as a determinant of excess light increase during bleaching and is therefore a potential determinant of the differential rate and severity of bleaching response among coral species. Here we experimentally demonstrate (in ten coral species) that, under thermal stress alone or combined thermal and light stress, low-μ'(S,m) corals bleach at higher rate and severity than high-μ'(S,m) corals and the Symbiodinium associated with low-μ'(S,m) corals experience twice the decrease in photochemical efficiency. We further modelled the light absorbed by Symbiodinium due to skeletal-scattering and show that the estimated skeleton-dependent light absorbed by Symbiodinium (per unit of photosynthetic pigment) and the temporal rate of increase in absorbed light during bleaching are several fold higher in low-μ'(S,m) corals. While symbionts associated with low-[Formula: see text] corals receive less total light from the skeleton, they experience a higher rate of light increase once bleaching is initiated and absorbing bodies are lost; further precipitating the bleaching response. Because microscopic skeletal light-scattering is a robust predictor of light-dependent bleaching among the corals assessed here, this work establishes μ'(S,m) as one of the key determinants of differential bleaching response.
Shi, Jingjin; Chen, Fei'er; Cai, Yunfei; Fan, Shichen; Cai, Jing; Chen, Renjie; Kan, Haidong; Lu, Yihan; Zhao, Zhuohui
2017-01-01
Portable direct-reading instruments by light-scattering method are increasingly used in airborne fine particulate matter (PM2.5) monitoring. However, there are limited calibration studies on such instruments by applying the gravimetric method as reference method in field tests. An 8-month sampling was performed and 96 pairs of PM2.5 data by both the gravimetric method and the simultaneous light-scattering real-time monitoring (QT-50) were obtained from July, 2015 to February, 2016 in Shanghai. Temperature and relative humidity (RH) were recorded. Mann-Whitney U nonparametric test and Spearman correlation were used to investigate the differences between the two measurements. Multiple linear regression (MLR) model was applied to set up the calibration model for the light-scattering device. The average PM2.5 concentration (median) was 48.1μg/m3 (min-max 10.4-95.8μg/m3) by the gravimetric method and 58.1μg/m3 (19.2-315.9μg/m3) by the light-scattering method, respectively. By time trend analyses, they were significantly correlated with each other (Spearman correlation coefficient 0.889, P<0.01). By MLR, the calibration model for the light-scattering instrument was Y(calibrated) = 57.45 + 0.47 × X(the QT - 50 measurements) - 0.53 × RH - 0.41 × Temp with both RH and temperature adjusted. The 10-fold cross-validation R2 and the root mean squared error of the calibration model were 0.79 and 11.43 μg/m3, respectively. Light-scattering measurements of PM2.5 by QT-50 instrument overestimated the concentration levels and were affected by temperature and RH. The calibration model for QT-50 instrument was firstly set up against the gravimetric method with temperature and RH adjusted.
Shi, Jingjin; Chen, Fei’er; Cai, Yunfei; Fan, Shichen; Cai, Jing; Chen, Renjie; Kan, Haidong; Lu, Yihan
2017-01-01
Background Portable direct-reading instruments by light-scattering method are increasingly used in airborne fine particulate matter (PM2.5) monitoring. However, there are limited calibration studies on such instruments by applying the gravimetric method as reference method in field tests. Methods An 8-month sampling was performed and 96 pairs of PM2.5 data by both the gravimetric method and the simultaneous light-scattering real-time monitoring (QT-50) were obtained from July, 2015 to February, 2016 in Shanghai. Temperature and relative humidity (RH) were recorded. Mann-Whitney U nonparametric test and Spearman correlation were used to investigate the differences between the two measurements. Multiple linear regression (MLR) model was applied to set up the calibration model for the light-scattering device. Results The average PM2.5 concentration (median) was 48.1μg/m3 (min-max 10.4–95.8μg/m3) by the gravimetric method and 58.1μg/m3 (19.2–315.9μg/m3) by the light-scattering method, respectively. By time trend analyses, they were significantly correlated with each other (Spearman correlation coefficient 0.889, P<0.01). By MLR, the calibration model for the light-scattering instrument was Y(calibrated) = 57.45 + 0.47 × X(the QT – 50 measurements) – 0.53 × RH – 0.41 × Temp with both RH and temperature adjusted. The 10-fold cross-validation R2 and the root mean squared error of the calibration model were 0.79 and 11.43 μg/m3, respectively. Conclusion Light-scattering measurements of PM2.5 by QT-50 instrument overestimated the concentration levels and were affected by temperature and RH. The calibration model for QT-50 instrument was firstly set up against the gravimetric method with temperature and RH adjusted. PMID:29121101
Spectrally enhanced image resolution of tooth enamel surfaces
NASA Astrophysics Data System (ADS)
Zhang, Liang; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.
2012-01-01
Short-wavelength 405 nm laser illumination of surface dental enamel using an ultrathin scanning fiber endoscope (SFE) produced enhanced detail of dental topography. The surfaces of human extracted teeth and artificial erosions were imaged with 405 nm, 444 nm, 532 nm, or 635 nm illumination lasers. The obtained images were then processed offline to compensate for any differences in the illumination beam diameters between the different lasers. Scattering and absorption coefficients for a Monte Carlo model of light propagation in dental enamel for 405 nm were scaled from published data at 532 nm and 633 nm. The value of the scattering coefficient used in the model was scaled from the coefficients at 532 nm and 633 nm by the inverse third power of wavelength. Simulations showed that the penetration depth of short-wavelength illumination is localized close to the enamel surface, while long-wavelength illumination travels much further and is backscattered from greater depths. Therefore, images obtained using short wavelength laser are not contaminated by the superposition of light reflected from enamel tissue at greater depths. Hence, the SFE with short-wavelength illumination may make it possible to visualize surface manifestations of phenomena such as demineralization, thus better aiding the clinician in the detection of early caries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larin, Kirill V; Ghosn, M G
The passive diffusion of drugs through the epithelial surfaces of an eye (the most widespread method for medical treatment of various diseases) is considered. The permeability of water and drugs through rabbit cornea was measured in the isolated cornea (separate from an eye) and in the whole cornea. The permeability coefficients of water and dexamethasone were estimated by the method of optical coherence tomography (OCT). Because multiple photon scattering introduces noise and distortions to the OCT signal, measurements were performed at depths up to 500 {mu}m where most likely single scattering of light occurs in cornea. It is shown thatmore » the permeability coefficients in the isolated and whole cornea strongly differ from each other. For example, the water permeability in the isolated and whole cornea is (7.09{+-}0.12)x10{sup -5} and (1.71{+-}0.51)x10{sup -5} cm s{sup -1}, respectively. (special issue devoted to multiple radiation scattering in random media)« less
Dam, Jan S; Yavari, Nazila; Sørensen, Søren; Andersson-Engels, Stefan
2005-07-10
We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton--Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.
2-Hydroxypropyltrimethylammonium xylan adsorption onto rod-like cellulose nanocrystal.
Sim, Jae Hyun; Dong, Shuping; Röemhild, Katrin; Kaya, Abdulaziz; Sohn, Daewon; Tanaka, Keiji; Roman, Maren; Heinze, Thomas; Esker, Alan R
2015-02-15
Chemical incompatibility and relatively weak interaction between lignocellulosic fibers and synthetic polymers have made studies of wood fiber-thermoplastic composite more challenging. In this study, adsorption of 2-hydroxypropyltrimethylammonium xylans onto rod-like cellulose nanocrystals are investigated by zeta-potential measurements, and polarized and depolarized dynamic light scattering as a factor for better understanding of lignocellulosic fibers and cellulose nanocrystals. Zeta-potential measurements show xylan derivative adsorption onto cellulose nanocrystals. Decay time distributions of the ternary system and binary system from dynamic light scattering show that aggregates exist in the binary system and they disappear in the ternary system. At low 2-hydroxypropyltrimethylammonium xylan concentrations relative to that of cellulose nanocrystal, xylan derivatives adsorbed onto some of the cellulose nanocrystal. Hence, more xylan derivatives adsorbed onto cellulose nanocrystal increased with increasing xylan derivative concentration. Also, the concentration dependence of the ratio of the rotational diffusion coefficient to the translational diffusion coefficient revealed a strong adsorptive interaction between xylan derivatives and the cellulose nanocrystals. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Henderson, Sammy W.; Frehlich, R. G.
1991-01-01
The performance and calibration of a focused, continuous wave, coherent detection CO2 lidar operated for the measurement of atmospheric backscatter coefficient, B(m), was examined. This instrument functions by transmitting infrared (10 micron) light into the atmosphere and collecting the light which is scattered in the rearward direction. Two distinct modes of operation were considered. In volume mode, the scattered light energy from many aerosols is detected simultaneously, whereas in the single particle mode (SPM), the scattered light energy from a single aerosol is detected. The analysis considered possible sources of error for each of these two cases, and also considered the conditions where each technique would have superior performance. The analysis showed that, within reasonable assumptions, the value of B(m) could be accurately measured by either the VM or the SPM method. The understanding of the theory developed during the analysis was also applied to a pulsed CO2 lidar. Preliminary results of field testing of a solid state 2 micron lidar using a CW oscillator is included.
Rayleigh-Brillouin light scattering spectroscopy of nitrous oxide (N2O)
NASA Astrophysics Data System (ADS)
Wang, Y.; Liang, K.; van de Water, W.; Marques, W.; Ubachs, W.
2018-02-01
High signal-to-noise and high-resolution light scattering spectra are measured for nitrous oxide (N2O) gas at an incident wavelength of 403.00 nm, at 90° scattering, at room temperature and at gas pressures in the range 0.5 - 4 bar. The resulting Rayleigh-Brillouin light scattering spectra are compared to a number of models describing in an approximate manner the collisional dynamics and energy transfer in this gaseous medium of this polyatomic molecular species. The Tenti-S6 model, based on macroscopic gas transport coefficients, reproduces the scattering profiles in the entire pressure range at less than 2% deviation at a similar level as does the alternative kinetic Grad's 6-moment model, which is based on the internal collisional relaxation as a decisive parameter. A hydrodynamic model fails to reproduce experimental spectra for the low pressures of 0.5-1 bar, but yields very good agreement ( < 1%) in the pressure range 2 - 4 bar. While these three models have a different physical basis the internal molecular relaxation derived can for all three be described in terms of a bulk viscosity of ηb ∼(6 ± 2) ×10-5 Pa · s. A 'rough-sphere' model, previously shown to be effective to describe light scattering in SF6 gas, is not found to be suitable, likely in view of the non-sphericity and asymmetry of the N-N-O structured linear polyatomic molecule.
Optical pathlengths in dental caries lesions
NASA Astrophysics Data System (ADS)
Mujat, Claudia; ten Bosch, Jaap J.; Dogariu, Aristide C.
2001-04-01
The average pathlength of light inside dental enamel and incipient lesions is measured and compared, in order to quantitatively confirm the prediction that incipient lesions have higher scattering coefficients that sound enamel. The technique used, called optical pathlength spectroscopy provides experimental access to the pathlength distribution of light inside highly scattering samples. This is desirable for complex biological materials, where current theoretical models are very difficult to apply. To minimize the effects of surface reflections the average pathlength is measured in wet sound enamel and white spots. We obtain values of 367 micrometers and 272 micrometers average pathlength for sound enamel and white spots respectively. We also investigate the differences between open and subsurface lesions, by measuring the change in the pathlength distribution of light as they go from dry to wet.
NASA Astrophysics Data System (ADS)
Esayan, G. L.; Krivoshlykov, S. G.
1989-08-01
A method of coherent states is used to describe the process of Rayleigh scattering in a multimode graded-index waveguide with a quadratic refractive-index profile. Explicit expressions are obtained for the coefficients representing excitation of Gaussian-Hermite backscattering modes in two cases of practical importance: excitation of a waveguide by an extended noncoherent light source and selective excitation of different modes at the entry to a waveguide. An analysis is also made of the coefficients of coupling between forward and backward modes. Explicit expressions for the coefficients representing capture of backscattered radiation by a waveguide are obtained for two special cases of excitation (extended light source and zeroth mode).
Light transfer in agar immobilized microalgae cell cultures
NASA Astrophysics Data System (ADS)
Kandilian, Razmig; Jesus, Bruno; Legrand, Jack; Pilon, Laurent; Pruvost, Jérémy
2017-09-01
This paper experimentally and theoretically investigates light transfer in agar-immobilized cell cultures. Certain biotechnological applications such as production of metabolites secreted by photosynthetic microorganisms require cells to be immobilized in biopolymers to minimize contamination and to facilitate metabolite recovery. In such applications, light absorption by cells is one of the most important parameters affecting cell growth or metabolite productivity. Modeling light transfer therein can aid design and optimize immobilized-cell reactors. In this study, Parachlorella kessleri cells with areal biomass concentrations ranging from 0.36 to 16.9 g/m2 were immobilized in 2.6 mm thick agar gels. The average absorption and scattering cross-sections as well as the scattering phase function of P. kessleri cells were measured. Then, the absorption and transport scattering coefficients of the agar gel were determined using an inverse method based on the modified two-flux approximation. The forward model was used to predict the normal-hemispherical transmittance and reflectance of the immobilized-cell films accounting for absorption and scattering by both microalgae and the agar gel. Good agreement was found between the measured and predicted normal-hemispherical transmittance and reflectance provided absorption and scattering by agar were taken into account. Moreover, good agreement was found between experimentally measured and predicted mean rate of photon absorption. Finally, optimal areal biomass concentration was determined to achieve complete absorption of the incident radiation.
Xu, Long; Zhang, Jingwen; Zhao, Hua; Sun, Haibin; Xu, Caixia
2017-09-01
Quasi-period cylindrical nanostructures with both diameters and intervals of about 100 nm are manufactured on the surfaces of Nd 3+ -doped lanthanum lead zirconate titanate ceramics by femtosecond laser irradiation under SF 6 atmosphere. A light-emission enhancement of more than 20 times is investigated, accompanied by an extremely long trailing-off time of light emission and lower threshold. A specific polarization state of the light emission is achieved and tuned by changing the incident regions of the pumping source. The increased absorption coefficient of the specimen is discussed based on multiple scattering and weak localization of light. In addition, both the scatterers provided by the laser-machined nanostructure and the recurrent photoinduced trapping and re-excitation process participated in the enhancement of the light emission. This Letter offers new insight to improve the luminescence property of laser materials, as well as to broaden the range of exploring the weak localization of light and random lasers.
NASA Astrophysics Data System (ADS)
Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas
2016-04-01
The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient measurement from the CAPS PM_{ssa (calculated as the difference from the measured extinction and scattering). The study was carried out in the laboratory with controlled particle generation systems. We used both light absorbing aerosols (Regal 400R pigment black from Cabot Corp. and colloidal graphite - Aquadag - from Agar Scientific) and purely scattering aerosols (ammonium sulphate and polystyrene latex spheres), covering single scattering albedo values from approximately 0.4 to 1.0. A new truncation angle correction for the CAPS PM_{ssa integrated sphere is proposed.
Characteristics of color optical shutter with dye-doped polymer network liquid crystal.
Lee, G H; Hwang, K Y; Jang, J E; Jin, Y W; Lee, S Y; Jung, J E
2011-03-01
The optical properties and the theoretical prediction of color optical shutter with dye-doped polymer network liquid crystal (PNLC) were investigated. The view-angle dependence of reflectance according to the bias conditions showed distinctive characteristics, which could be explained from the effects of dye absorption and path length. It was also shown that the thickness dependence of reflectance was strongly influenced by the light-scattering coefficient. Our experimental results matched up well with the theoretical prediction based on the light scattering of liquid crystals in polymer network and the absorption of dichroic dye. This work indicates potential to improve the optical device using dye-doped liquid crystal-polymer composite.
A New Approach to Galaxy Morphology. I. Analysis of the Sloan Digital Sky Survey Early Data Release
NASA Astrophysics Data System (ADS)
Abraham, Roberto G.; van den Bergh, Sidney; Nair, Preethi
2003-05-01
In this paper we present a new statistic for quantifying galaxy morphology based on measurements of the Gini coefficient of galaxy light distributions. This statistic is easy to measure and is commonly used in econometrics to measure how wealth is distributed in human populations. When applied to galaxy images, the Gini coefficient provides a quantitative measure of the inequality with which a galaxy's light is distributed among its constituent pixels. We measure the Gini coefficient of local galaxies in the Early Data Release of the Sloan Digital Sky Survey and demonstrate that this quantity is closely correlated with measurements of central concentration, but with significant scatter. This scatter is almost entirely due to variations in the mean surface brightness of galaxies. By exploring the distribution of galaxies in the three-dimensional parameter space defined by the Gini coefficient, central concentration, and mean surface brightness, we show that all nearby galaxies lie on a well-defined two-dimensional surface (a slightly warped plane) embedded within a three-dimensional parameter space. By associating each galaxy sample with the equation of this plane, we can encode the morphological composition of the entire SDSS g*-band sample using the following three numbers: {22.451, 5.366, 7.010}. The i*-band sample is encoded as {22.149, 5.373, and 7.627}.
NASA Astrophysics Data System (ADS)
Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong
2015-03-01
We investigated the performance of endoscopic diffuse optical spectroscopy probes with circular or linear fiber arrangements for tubular organ cancer detection. Probe performance was measured by penetration depth. A Monte Carlo model was employed to simulate light transport in the hollow cylinder that both emits and receives light from the inner boundary of the sample. The influence of fiber configurations and tissue optical properties on penetration depth was simulated. The results show that under the same condition, probes with circular fiber arrangement penetrate deeper than probes with linear fiber arrangement, and the difference between the two probes' penetration depth decreases with an increase in the 'distance between source and detector (SD)' and the radius of the probe. Other results show that the penetration depths and their differences both decrease with an increase in the absorption coefficient and the reduced scattering coefficient but remain constant with changes in the anisotropy factor. Moreover, the penetration depth was more affected by the absorption coefficient than the reduced scattering coefficient. It turns out that in NIR band, probes with linear fiber arrangements are more appropriate for diagnosing superficial cancers, whereas probes with circular fiber arrangements should be chosen for diagnosing adenocarcinoma. But in UV-VIS band, the two probe configurations exhibit nearly the same. These results are useful in guiding endoscopic diffuse optical spectroscopy-based diagnosis for esophageal, cervical, colorectal and other cancers.
An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements
NASA Technical Reports Server (NTRS)
Ross, H. Richard
1993-01-01
A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.
Extinction measurement of dense media by an optical coherence tomography technique
NASA Astrophysics Data System (ADS)
Ago, Tomoki; Iwai, Toshiaki; Yokota, Ryoko
2016-10-01
The optical coherence tomography will make progress as the next stage toward a spectroscopic analysis technique. The spectroscopic analysis is based on the Beer-Lambert law. The absorption and scattering coefficients even for the dense medium can be measured by the Beer-Lambert law because the OCT can detect only the light keeping the coherency which propagated rectilinearly and retro-reflected from scatters. This study is concerned with the quantitative verification of Beer-Lambert law in the OCT imaging.
Ultrasound modulation of bioluminescence generated inside a turbid medium
NASA Astrophysics Data System (ADS)
Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.
2017-03-01
In vivo bioluminescence imaging (BLI) has poor spatial resolution owing to strong light scattering by tissue, which also affects quantitative accuracy. This paper proposes a hybrid acousto-optic imaging platform that images bioluminescence modulated at ultrasound (US) frequency inside an optically scattering medium. This produces an US modulated light within the tissue that reduces the effects of light scattering and improves the spatial resolution. The system consists of a continuously excited 3.5 MHz US transducer applied to a tissue like phantom of known optical properties embedded with bio-or chemiluminescent sources that are used to mimic in vivo experiments. Scanning US over the turbid medium modulates the luminescent sources deep inside tissue at several US scan points. These modulated signals are recorded by a photomultiplier tube and lock-in detection to generate a 1D profile. Indeed, high frequency US enables small focal volume to improve spatial resolution, but this leads to lower signal-to-noise ratio. First experimental results show that US enables localization of a small luminescent source (around 2 mm wide) deep ( 20 mm) inside a tissue phantom having a scattering coefficient of 80 cm-1. Two sources separated by 10 mm could be resolved 20 mm inside a chicken breast.
Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus.
Santos, N C; Castanho, M A
1996-01-01
The tobacco mosaic virus is used as a model molecular assembly to illustrate the basic potentialities of light scattering techniques (both static and dynamic) to undergraduates. The work has two objectives: a pedagogic one (introducing light scattering to undergraduate students) and a scientific one (stabilization of the virus molecular assembly structure by the nucleic acid). Students are first challenged to confirm the stabilization of the cylindrical shape of the virus by the nucleic acid, at pH and ionic strength conditions where the coat proteins alone do not self-assemble. The experimental intramolecular scattering factor is compared with the theoretical ones for several model geometries. The data clearly suggest that the geometry is, in fact, a rod. Comparing the experimental values of gyration radius and hydrodynamic radius with the theoretical expectations further confirms this conclusion. Moreover, the rod structure is maintained over a wider range of pH and ionic strength than that valid for the coat proteins alone. The experimental values of the diffusion coefficient and radius of gyration are compared with the theoretical expectations assuming the dimensions detected by electron microscopy techniques. In fact, both values are in agreement (length approximately 300 nm, radius approximately 20 nm). PMID:8874039
Detection and Interpretation of Fluorescence Signals Generated by Excitable Cells and Tissues
NASA Astrophysics Data System (ADS)
Costantino, Anthony J.
Part 1: High-Sensitivity Amplifiers for Detecting Fluorescence . Monitoring electrical activity and Cai 2+ transients in biological tissues and individual cells increasingly utilizes optical sensors based on voltage-dependent and Cai 2+-dependent fluorescent dyes. However, achieving satisfactory signal-to-noise ratios (SNR) often requires increased illumination intensities and/or dye concentrations, which results in photo-toxicity, photo-bleaching and other adverse effects limiting the utility of optical recordings. The most challenging are the recordings from individual cardiac myocytes and neurons. Here we demonstrate that by optimizing a conventional transimpedance topology one can achieve a 10-20 fold increase of sensitivity with photodiode-based recording systems (dependent on application). We provide a detailed comparative analysis of the dynamic and noise characteristics of different transimpedance amplifier topologies as well as the example(s) of their practical implementation. Part 2: Light-Scattering Models for Interpretation of Fluorescence Data. Current interest in understanding light transport in cardiac tissue has been motivated in part by increased use of voltage-sensitive and Ca i2+-sensitive fluorescent probes to map electrical impulse propagation and Cai2+-transients in the heart. The fluorescent signals are recorded using such probes represent contributions from different layers of myocardial tissue and are greatly affected by light scattering. The interpretation of these signals thus requires deconvolution which would not be possible without detailed models of light transport in the respective tissue. Which involves the experimental measurements of the absorption, scattering, and anisotropy coefficients, mua, mu s, and g respectively. The aim of the second part of our thesis was to derive a new method for deriving these parameters from high spatial resolution measurements of forward-directed flux (FDF). To this end, we carried out high spatial resolution measurements of forward-directed flux (FDF) in intact and homogenized cardiac tissue, as well as in intralipid-based tissue phantoms. We demonstrated that in the vicinity of the illuminated surface, the FDF consistently manifested a fast decaying exponent with a space constant comparable to the decay rate of ballistic photons. Using a Monte Carlo model we obtained a simple empirical formula linking the rate of the fast exponent to the scattering coefficient, the anisotropy parameter g, and the numerical aperture of the probe. The estimates of scattering coefficient based on this formula were validated in tissue phantoms. The advantages of the new method are its simplicity and low-cost.
Atmospheric scattering effects on ground-based measurements of thermospheric winds
NASA Technical Reports Server (NTRS)
Abreu, V. J.; Schmitt, G. A.; Hays, P. B.; Meriwether, J. W., Jr.; Tepley, C. A.; Cogger, L. L.
1983-01-01
Convergent or divergent thermospheric wind patterns detected by ground-based Fabry-Perot interferometric measurements of the Doppler shifts of atomic lines are demonstrated to occur in the presence of strong intensity gradients and a scattering atmosphere. Consideration is given to the color shifts observed when sighting to the north or the south, and a numerical model is developed to describe the wind patterns which produce the recorded shifts. An account is taken of the direct and scattered components of the brightness, with the atmosphere treated as a single scattering layer with a reflecting surface underneath. A scattering coefficient is calculated, together with the line shape of the wavelength shifts. The scattered light is demonstrated, both through simulations and measurements taken near Calgary, Alberta, to produce convergence or divergence of the color shifts, depending on the line-of-sight of the viewing.
Spectroscopic method for determination of the absorption coefficient in brain tissue
NASA Astrophysics Data System (ADS)
Johansson, Johannes D.
2010-09-01
I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.
Acoustic dynamics of supercooled indomethacin probed by Brillouin light scattering.
De Panfilis, S; Pogna, E A A; Virga, A; Scopigno, T
2014-07-21
Acoustics dynamics of the molecular glass-former indomethacin (IMC) have been investigated by Brillouin light scattering (BLS) at GHz frequencies. Elastic response of the system has been tracked from the melting temperature down to the glass transition through the supercooled liquid. Both the structural arrest and the vibrational dynamics are described by modeling the experimentally determined dynamic structure factor within the framework of the Langevin equation, through a simplified choice of memory function which allows one to determine sound velocity and the acoustic attenuation coefficient as a function of temperature. The density fluctuation spectra in the glassy phase, as probed by BLS, are compared with time-domain results from photoacoustics experiments. The arising scenario is discussed in the context of current literature reporting inelastic X-ray scattering and BLS in platelet geometry. The link between the probed elastic properties and the non-ergodicity factor of the glass phase is finally scrutinized.
NASA Astrophysics Data System (ADS)
Paredes-Miranda, G.; Arnott, W. P.; Marley, N. A.; Gaffney, J. S.
2007-05-01
As part of the Megacity Impacts on Regional and Global Environments, MIRAGE-Mex deployment to Mexico City in the period of 30 days, March 2006, a suite of photoacoustic spectrometers (PAS; W. Arnott & G. Paredes), nephelometer scattering, and aetholemeter absorption instruments (N. Marley & J.Gaffney) were installed to measure at ground level the light absorption and scattering by aerosols at the urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP). This IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed. The Las Vegas, NV site was located at East Charleston Street on January-February, 2003. In east Las Vegas typical westerly winds carry the city plume across the site. Comparisons of PAS aerosol light absorption and aetholemeter absorption measurements at 521 nm at both Las Vegas NV and Mexico City sites will be presented. We will also present a broad overview of the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the sites in relation to secondary aerosol formation.
Czerwiński, M; Mroczka, J; Girasole, T; Gouesbet, G; Gréhan, G
2001-03-20
Our aim is to present a method of predicting light transmittances through dense three-dimensional layered media. A hybrid method is introduced as a combination of the four-flux method with coefficients predicted from a Monte Carlo statistical model to take into account the actual three-dimensional geometry of the problem under study. We present the principles of the hybrid method, some exemplifying results of numerical simulations, and their comparison with results obtained from Bouguer-Lambert-Beer law and from Monte Carlo simulations.
Design and characterization of a dead-time regime enhanced early photon projection imaging system
NASA Astrophysics Data System (ADS)
Sinha, L.; Fogarty, M.; Zhou, W.; Giudice, A.; Brankov, J. G.; Tichauer, K. M.
2018-04-01
Scattering of visible and near-infrared light in biological tissue reduces spatial resolution for imaging of tissues thicker than 100 μm. In this study, an optical projection imaging system is presented and characterized that exploits the dead-time characteristics typical of photon counting modules based on single photon avalanche diodes (SPADs). With this system, it is possible to attenuate the detection of more scattered late-arriving photons, such that detection of less scattered early-arriving photons can be enhanced with increased light intensity, without being impeded by the maximum count rate of the SPADs. The system has the potential to provide transmittance-based anatomical information or fluorescence-based functional information (with slight modification in the instrumentation) of biological samples with improved resolution in the mesoscopic domain (0.1-2 cm). The system design, calibration, stability, and performance were evaluated using simulation and experimental phantom studies. The proposed system allows for the detection of very-rare early-photons at a higher frequency and with a better signal-to-noise ratio. The experimental results demonstrated over a 3.4-fold improvement in the spatial resolution using early photon detection vs. conventional detection, and a 1000-fold improvement in imaging time using enhanced early detection vs. conventional early photon detection in a 4-mm thick phantom with a tissue-equivalent absorption coefficient of μa = 0.05 mm-1 and a reduced scattering coefficient of μs' = 5 mm-1.
Behavior of optical properties of coagulated blood sample at 633 nm wavelength
NASA Astrophysics Data System (ADS)
Morales Cruzado, Beatriz; Vázquez y Montiel, Sergio; Delgado Atencio, José Alberto
2011-03-01
Determination of tissue optical parameters is fundamental for application of light in either diagnostics or therapeutical procedures. However, in samples of biological tissue in vitro, the optical properties are modified by cellular death or cellular agglomeration that can not be avoided. This phenomena change the propagation of light within the biological sample. Optical properties of human blood tissue were investigated in vitro at 633 nm using an optical setup that includes a double integrating sphere system. We measure the diffuse transmittance and diffuse reflectance of the blood sample and compare these physical properties with those obtained by Monte Carlo Multi-Layered (MCML). The extraction of the optical parameters: absorption coefficient μa, scattering coefficient μs and anisotropic factor g from the measurements were carried out using a Genetic Algorithm, in which the search procedure is based in the evolution of a population due to selection of the best individual, evaluated by a function that compares the diffuse transmittance and diffuse reflectance of those individuals with the experimental ones. The algorithm converges rapidly to the best individual, extracting the optical parameters of the sample. We compare our results with those obtained by using other retrieve procedures. We found that the scattering coefficient and the anisotropic factor change dramatically due to the formation of clusters.
NASA Astrophysics Data System (ADS)
Croccolo, Fabrizio; Scheffold, Frank; Bataller, Henri
2013-04-01
We present preliminary near-field light scattering (NFS) data concerning the analysis of the static power spectrum and of the relaxation time constant as a function of the wave vector for non-equilibrium fluctuations (NEFs). The goal of these measurements is to obtain information about the Soret and the mass diffusion coefficients of a binary mixture undergoing thermodiffusion. In particular, we show how the interaction between NEFs and the gravity force gives rise to a critical wavelength that provides additional information about the Soret coefficient. We suggest that a quantitative analysis can be performed by means of this non-invasive optical technique. In our setup, the sample is monitored parallel to the imposed temperature gradient, thus being insensitive to the refractive index profile along the vertical axis, while at the same time we are able to detect the light scattered by the refractive index fluctuations in horizontal planes. We select a shadowgraph layout for the NFS setup due to the extremely small wave vectors we aim to analyze. From a double-frame differential analysis of the acquired images, we obtain both the static power spectrum and the dynamics of NEFs. As a proof-of-principle experiment, we present Soret and diffusion coefficient data on a liquid mixture of tetrahydronaphthalene/n-dodecane.
Oliveira, Patrícia D.; Michel, Ricardo C.; McBride, Alan J. A.; Moreira, Angelita S.; Lomba, Rosana F. T.; Vendruscolo, Claire T.
2013-01-01
The aim of this work was to evaluate the utilization of analysis of the distribution of relaxation time (DRT) using a dynamic light back-scattering technique as alternative method for the determination of the concentration regimes in aqueous solutions of biopolymers (xanthan, clairana and tara gums) by an analysis of the overlap (c*) and aggregation (c**) concentrations. The diffusion coefficients were obtained over a range of concentrations for each biopolymer using two methods. The first method analysed the behaviour of the diffusion coefficient as a function of the concentration of the gum solution. This method is based on the analysis of the diffusion coefficient versus the concentration curve. Using the slope of the curves, it was possible to determine the c* and c** for xanthan and tara gum. However, it was not possible to determine the concentration regimes for clairana using this method. The second method was based on an analysis of the DRTs, which showed different numbers of relaxation modes. It was observed that the concentrations at which the number of modes changed corresponded to the c* and c**. Thus, the DRT technique provided an alternative method for the determination of the critical concentrations of biopolymers. PMID:23671627
Partial-Wave Representations of Laser Beams for Use in Light-Scattering Calculations
NASA Technical Reports Server (NTRS)
Gouesbet, Gerard; Lock, James A.; Grehan, Gerard
1995-01-01
In the framework of generalized Lorenz-Mie theory, laser beams are described by sets of beam-shape coefficients. The modified localized approximation to evaluate these coefficients for a focused Gaussian beam is presented. A new description of Gaussian beams, called standard beams, is introduced. A comparison is made between the values of the beam-shape coefficients in the framework of the localized approximation and the beam-shape coefficients of standard beams. This comparison leads to new insights concerning the electromagnetic description of laser beams. The relevance of our discussion is enhanced by a demonstration that the localized approximation provides a very satisfactory description of top-hat beams as well.
Optical properties of phosphor-in-glass through modification of pore properties for LED packaging
NASA Astrophysics Data System (ADS)
Kim, Sunil; Kim, Hyungsun
2018-01-01
The volume and size of the voids present between the frit and the phosphor particles used before sintering determine the pore properties of the resulting phosphor-in-glass (PIG). The pores formed from the voids influence the path of the incident light, thus changing the optical properties of the PIG. Therefore, the trends observed for the shrinkage and the green and sintered densities of the PIG were investigated using SiO2-B2O3-ZnO-K2O glass frit of four sizes to understand the tendency for the pore size, porosity, and optical properties of PIG. It has been demonstrated that variation in the pore properties according to the particle size influences parameters defining the light scattering phenomenon, such as the scattering angle of the light and the scattering coefficient, as well as the color rendering index, correlated color temperature, and package efficacy. The results obtained for the variation in the optical properties with the frit size can be used as a reference to select the appropriate glass frit size to achieve the required optical properties for a light-emitting diode (LED) package.
Wahle, Chris W.; Ross, David S.; Thurston, George M.
2012-01-01
We mathematically design sets of static light scattering experiments to provide for model-independent measurements of ternary liquid mixing free energies to a desired level of accuracy. A parabolic partial differential equation (PDE), linearized from the full nonlinear PDE [D. Ross, G. Thurston, and C. Lutzer, J. Chem. Phys. 129, 064106 (2008)10.1063/1.2937902], describes how data noise affects the free energies to be inferred. The linearized PDE creates a net of spacelike characteristic curves and orthogonal, timelike curves in the composition triangle, and this net governs diffusion of information coming from light scattering measurements to the free energy. Free energy perturbations induced by a light scattering perturbation diffuse along the characteristic curves and towards their concave sides, with a diffusivity that is proportional to the local characteristic curvature radius. Consequently, static light scattering can determine mixing free energies in regions with convex characteristic curve boundaries, given suitable boundary data. The dielectric coefficient is a Lyapunov function for the dynamical system whose trajectories are PDE characteristics. Information diffusion is heterogeneous and system-dependent in the composition triangle, since the characteristics depend on molecular interactions and are tangent to liquid-liquid phase separation coexistence loci at critical points. We find scaling relations that link free energy accuracy, total measurement time, the number of samples, and the interpolation method, and identify the key quantitative tradeoffs between devoting time to measuring more samples, or fewer samples more accurately. For each total measurement time there are optimal sample numbers beyond which more will not improve free energy accuracy. We estimate the degree to which many-point interpolation and optimized measurement concentrations can improve accuracy and save time. For a modest light scattering setup, a sample calculation shows that less than two minutes of measurement time is, in principle, sufficient to determine the dimensionless mixing free energy of a non-associating ternary mixture to within an integrated error norm of 0.003. These findings establish a quantitative framework for designing light scattering experiments to determine the Gibbs free energy of ternary liquid mixtures. PMID:22830693
In situ measurement of inelastic light scattering in natural waters
NASA Astrophysics Data System (ADS)
Hu, Chuanmin
Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda < 510nm is negligible for the whole water column, and this percentage increases with depth at /lambda > 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to macrophytes, have been measured and have been found to vary with time possibly due to nonphotochemical quenching and photoinhibition.
NASA Technical Reports Server (NTRS)
Jefferies, S. M.; Duvall, T. L., Jr.
1991-01-01
A measurement of the intensity distribution in an image of the solar disk will be corrupted by a spatial redistribution of the light that is caused by the earth's atmosphere and the observing instrument. A simple correction method is introduced here that is applicable for solar p-mode intensity observations obtained over a period of time in which there is a significant change in the scattering component of the point spread function. The method circumvents the problems incurred with an accurate determination of the spatial point spread function and its subsequent deconvolution from the observations. The method only corrects the spherical harmonic coefficients that represent the spatial frequencies present in the image and does not correct the image itself.
Su, Jing-Wei; Lin, Yang-Hsien; Chiang, Chun-Ping; Lee, Jang-Ming; Hsieh, Chao-Mao; Hsieh, Min-Shu; Yang, Pei-Wen; Wang, Chen-Ping; Tseng, Ping-Huei; Lee, Yi-Chia; Sung, Kung-Bin
2015-01-01
The progression of epithelial precancers into cancer is accompanied by changes of tissue and cellular structures in the epithelium. Correlations between the structural changes and scattering coefficients of esophageal epithelia were investigated using quantitative phase images and the scattering-phase theorem. An ex vivo study of 14 patients demonstrated that the average scattering coefficient of precancerous epithelia was 37.8% higher than that of normal epithelia from the same patient. The scattering coefficients were highly correlated with morphological features including the cell density and the nuclear-to-cytoplasmic ratio. A high interpatient variability in scattering coefficients was observed and suggests identifying precancerous lesions based on the relative change in scattering coefficients. PMID:26504630
USDA-ARS?s Scientific Manuscript database
A rapid, effective technique applying vortex-assisted liquid–liquid microextraction (VALLME) prior to ultra high performance liquid chromatography-evaporating light scattering detectection/ mass spectroscopy (UHPLC-ELSD/MS) determination was developed for the analysis of four cucurbitane triterpenoi...
Effects of compression on human skin optical properties
NASA Astrophysics Data System (ADS)
Chan, Eric K.; Sorg, Brian S.; Protsenko, Dmitry E.; O'Neil, Michael P.; Motamedi, Massoud; Welch, Ashley J.
1997-08-01
Tissue optical properties are necessary parameters for prescribing light dosimetry in photomedicine. In many diagnostic or therapeutic applications where optical fiber probes are used, pressure is often applied to the tissue to reduce index mismatch and increase light transmittance. In this study, we have measured in vitro optical properties as a function of pressure with a visible-IR spectrophotometer. A spectral range of 400 - 1800 nm with a spectral resolution of 5 nm was used for all measurements. Skin specimens of two Hispanic donors and three caucasian donors were obtained from the tissue bank. Each specimen, sandwiched between microscope slides, was compressed by a spring-loaded apparatus. Then diffuse reflectance and transmittance of each sample were measured at no load and at approximately 0.1 and 1 kgf/cm2. Under compression, tissue thicknesses were reduced up to 78%. Generally, reflectance decreased while the overall transmittance increased under compression. The absorption and reduced scattering coefficients were calculated using the inverse adding doubling method. Compared with the no-load controls, there was an increase in the absorption and scattering coefficients among most of the compressed specimens.
Sun, Xiao-gang; Tang, Hong; Dai, Jing-min
2008-12-01
The problem of determining the particle size range in the visible-infrared region was studied using the independent model algorithm in the total scattering technique. By the analysis and comparison of the accuracy of the inversion results for different R-R distributions, the measurement range of particle size was determined. Meanwhile, the corrected extinction coefficient was used instead of the original extinction coefficient, which could determine the measurement range of particle size with higher accuracy. Simulation experiments illustrate that the particle size distribution can be retrieved very well in the range from 0. 05 to 18 microm at relative refractive index m=1.235 in the visible-infrared spectral region, and the measurement range of particle size will vary with the varied wavelength range and relative refractive index. It is feasible to use the constrained least squares inversion method in the independent model to overcome the influence of the measurement error, and the inverse results are all still satisfactory when 1% stochastic noise is added to the value of the light extinction.
Stability and morphology of Ag nanoplatelets probed by depolarized dynamic light scattering
NASA Astrophysics Data System (ADS)
Zimbone, M.; Contino, A.; Maccarrone, G.; Musumeci, P.; Lo Faro, M. J.; Calcagno, L.
2018-06-01
The stability of silver nanoplatelet (NP) suspensions prepared with different concentrations of trisodium citrate (TSC) was studied by depolarized dynamic light scattering (DDLS) and UV–vis spectrometry. The morphology of the nanoparticles, as well as the color and stability of the sols, are tuned by the concentration of the capping agent. The nanoparticles prepared with high TSC concentration (>10‑4 M) are blue triangular NPs showing a slight truncation of the tips with aging. When low TSC concentrations are used, the color of the sols changes from blue to yellow with aging time and a strong modification of the morphology occurs: the nanoparticle shape changes from triangular to spherical. Remarkably, they show a high degree of anisotropy. The aging process was followed by the UV–vis spectra and by measuring the rotational diffusion coefficient by DDLS, providing information on the nanoparticle size and shape evolution. The high intensity of depolarized signal and the high value of rotational diffusion coefficient suggest that the aging process increases the thickness and the roughness of the nanoparticles
NASA Astrophysics Data System (ADS)
Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David
2018-03-01
Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.
Zhang, Qiu-Ju; Liu, Bao-Sheng; Li, Gai-Xia; Han, Rong
2016-08-01
At different temperatures (298, 310 and 318 K), the interaction between gliclazide and bovine serum albumin (BSA) was investigated using fluorescence quenching spectroscopy, resonance light scattering spectroscopy and UV/vis absorption spectroscopy. The first method studied changes in the fluorescence of BSA on addition of gliclazide, and the latter two methods studied the spectral change in gliclazide while BSA was being added. The results indicated that the quenching mechanism between BSA and gliclazide was static. The binding constant (Ka ), number of binding sites (n), thermodynamic parameters, binding forces and Hill's coefficient were calculated at three temperatures. Values for the binding constant obtained using resonance light scattering and UV/vis absorption spectroscopy were much greater than those obtained from fluorescence quenching spectroscopy, indicating that methods monitoring gliclazide were more accurate and reasonable. In addition, the results suggest that other residues are involved in the reaction and the mode 'point to surface' existed in the interaction between BSA and gliclazide. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
A step forward in the study of the electroerosion by optical methods
NASA Astrophysics Data System (ADS)
Aparicio, R.; Gale, M. F. Ruiz; Hogert, E. N.; Landau, M. R.; Gaggioli, y. N. G.
2003-05-01
This work develops two theoretical models of surfaces to explain the behavior of the light scattered by samples that suffers some alteration. In a first model, it is evaluated the mean intensity scattered by the sample, analyzing the different curves obtained as function of the eroded/total surface ratio. The theoretical results are compared with those obtained experimentally. It can be seen that there exists a strong relation between the electroerosion level and the light scattered by the sample. A second model analyzes a surface with random changes in its roughness. A translucent surface with its roughness changing in a controlled way is studied. Then, the correlation coefficient variation as function of the roughness variation is determined by the transmission speckle correlation method. The obtained experimental values are compared with those obtained with this model. In summary, it can be shown that the first- and second-order statistics properties of the transmitted or reflected light by a sample with a variable topography can be taken account as a parameter to analyze these morphologic changes.
NASA Technical Reports Server (NTRS)
Chowdhary, Jacek; Cairns, Brian; Waquet, Fabien; Knobelspiesse, Kirk; Ottaviani, Matteo; Redemann, Jens; Travis, Larry; Mishchenko, Michael
2012-01-01
For remote sensing of aerosol over the ocean, there is a contribution from light scattered underwater. The brightness and spectrum of this light depends on the biomass content of the ocean, such that variations in the color of the ocean can be observed even from space. Rayleigh scattering by pure sea water, and Rayleigh-Gans type scattering by plankton, causes this light to be polarized with a distinctive angular distribution. To study the contribution of this underwater light polarization to multiangle, multispectral observations of polarized reflectance over ocean, we previously developed a hydrosol model for use in underwater light scattering computations that produces realistic variations of the ocean color and the underwater light polarization signature of pure sea water. In this work we review this hydrosol model, include a correction for the spectrum of the particulate scattering coefficient and backscattering efficiency, and discuss its sensitivity to variations in colored dissolved organic matter (CDOM) and in the scattering function of marine particulates. We then apply this model to measurements of total and polarized reflectance that were acquired over open ocean during the MILAGRO field campaign by the airborne Research Scanning Polarimeter (RSP). Analyses show that our hydrosol model faithfully reproduces the water-leaving contributions to RSP reflectance, and that the sensitivity of these contributions to Chlorophyll a concentration [Chl] in the ocean varies with the azimuth, height, and wavelength of observations. We also show that the impact of variations in CDOM on the polarized reflectance observed by the RSP at low altitude is comparable to or much less than the standard error of this reflectance whereas their effects in total reflectance may be substantial (i.e. up to >30%). Finally, we extend our study of polarized reflectance variations with [Chl] and CDOM to include results for simulated spaceborne observations.
The SASS scattering coefficient algorithm. [Seasat-A Satellite Scatterometer
NASA Technical Reports Server (NTRS)
Bracalente, E. M.; Grantham, W. L.; Boggs, D. H.; Sweet, J. L.
1980-01-01
This paper describes the algorithms used to convert engineering unit data obtained from the Seasat-A satellite scatterometer (SASS) to radar scattering coefficients and associated supporting parameters. A description is given of the instrument receiver and related processing used by the scatterometer to measure signal power backscattered from the earth's surface. The applicable radar equation used for determining scattering coefficient is derived. Sample results of SASS data processed through current algorithm development facility (ADF) scattering coefficient algorithms are presented which include scattering coefficient values for both water and land surfaces. Scattering coefficient signatures for these two surface types are seen to have distinctly different characteristics. Scattering coefficient measurements of the Amazon rain forest indicate the usefulness of this type of data as a stable calibration reference target.
NASA Astrophysics Data System (ADS)
Larin, Kirill V.; Ghosn, M. G.
2006-12-01
The passive diffusion of drugs through the epithelial surfaces of an eye (the most widespread method for medical treatment of various diseases) is considered. The permeability of water and drugs through rabbit cornea was measured in the isolated cornea (separate from an eye) and in the whole cornea. The permeability coefficients of water and dexamethasone were estimated by the method of optical coherence tomography (OCT). Because multiple photon scattering introduces noise and distortions to the OCT signal, measurements were performed at depths up to 500 μm where most likely single scattering of light occurs in cornea. It is shown that the permeability coefficients in the isolated and whole cornea strongly differ from each other. For example, the water permeability in the isolated and whole cornea is (7.09±0.12)×10-5 and (1.71±0.51)×10-5 cm s-1, respectively.
Effect of grain size on optical transmittance of birefringent polycrystalline ceramics
NASA Astrophysics Data System (ADS)
Wen, Tzu-Chien
Polycrystalline ceramics are increasingly used for fabricating windows and domes for the mid infra-red regime (3-5 mum) due to their superior durability as compared to glass and the lower cost of their fabrication and finishing relative to single crystals without significant compromise in optical properties. Due to the noncubic structure, MgF2 and Al2O3 are birefringent ceramics. Birefringence causes scatter of light at the grain boundaries and diminishes in-line transmittance and optical performance. This dissertation presents experimental results and analyses of the grain-size and wavelength dependence of the in-line transmittance of polycrystalline MgF2 and Al2O3. Chapter 2 presents experimental results and analyses of light transmission in polycrystalline MgF2 as a function of the mean grain size at different wavelengths. The scattering coefficient of polycrystalline MgF 2 increased linearly with the mean grain size and inversely with the square of the wavelength of light. These trends are consistent with theoretical models based on both a limiting form of the Raleigh-Gans-Debye theory of particle scattering and light retardation theories that take refractive-index variations along the light path. Chapter 3 investigates the applicability of particle light scattering theories to light attenuation in birefringent polycrystalline ceramics by measuring light transmittance in a model two-phase system. The system consisted of microspheres of silica dispersed in a solution of glycerol in water. It was found that RGD theory showed the systematic deviation for higher particle volume fraction (φ > 0.2) and larger particle size (d p > 1 mum). This result suggested that light scattering models based on single particle scattering are unlikely to provide viable physical explanation for the effect of grain size on light transmittance in birefringent polycrystalline ceramics due to the high volume fraction in dense polycrystalline ceramics. Chapter 4 analyses light transmission properties of polycrystalline Al 2O3 using theories of wave propagation in random media. Fully dense polycrystalline Al2O3 was fabricated using a pressure filtration method. By obtaining the Delta n2 measured from EBSD, the wave retardation theories of Raman and Viswanathan and Kahan et al. provided upper and lower bounds for the theoretical predictions of light transmittance as a function of mean intercept length.
An Accurate Analytic Approximation for Light Scattering by Non-absorbing Spherical Aerosol Particles
NASA Astrophysics Data System (ADS)
Lewis, E. R.
2017-12-01
The scattering of light by particles in the atmosphere is a ubiquitous and important phenomenon, with applications to numerous fields of science and technology. The problem of scattering of electromagnetic radiation by a uniform spherical particle can be solved by the method of Mie and Debye as a series of terms depending on the size parameter, x=2πr/λ, and the complex index of refraction, m. However, this solution does not provide insight into the dependence of the scattering on the radius of the particle, the wavelength, or the index of refraction, or how the scattering varies with relative humidity. Van de Hulst demonstrated that the scattering efficiency (the scattering cross section divided by the geometric cross section) of a non-absorbing sphere, over a wide range of particle sizes of atmospheric importance, depends not on x and m separately, but on the quantity 2x(m-1); this is the basis for the anomalous diffraction approximation. Here an analytic approximation for the scattering efficiency of a non-absorbing spherical particle is presented in terms of this new quantity that is accurate over a wide range of particle sizes of atmospheric importance and which readily displays the dependences of the scattering efficiency on particle radius, index of refraction, and wavelength. For an aerosol for which the particle size distribution is parameterized as a gamma function, this approximation also yields analytical results for the scattering coefficient and for the Ångström exponent, with the dependences of scattering properties on wavelength and index of refraction clearly displayed. This approximation provides insight into the dependence of light scattering properties on factors such as relative humidity, readily enables conversion of scattering from one index of refraction to another, and demonstrates the conditions under which the aerosol index (the product of the aerosol optical depth and the Ångström exponent) is a useful proxy for the number of cloud condensation nuclei.
NASA Astrophysics Data System (ADS)
Paredes-Miranda, G.; Arnott, W. P.; Gaffney, J. S.; Marley, N. A.; Campbell, D.; Fujita, E.
2007-12-01
Aerosol light scattering and absorption measurements were deployed in and near Mexico City in March 2006 as part of the Megacity Impacts on Regional and Global Environments (MIRAGE). The primary site in Mexico City was an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP). Similar campaigns were held in Las Vegas, NV in January-February, 2003; and Los Angeles, CA at numerous sites during all seasons from 2003 through 2007. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions. The photoacoustic instrument (PAS) used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In Mexico City the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed probably as a consequence of secondary aerosol formation. We will present the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site and compare with Las Vegas diurnal variation. Mexico City 'breaths' more during the course of the day than Las Vegas, Nevada in part because the latitude of Mexico City resulted in more direct solar radiation. Further insight on the meteorological connections and population dynamics will be discussed.
NASA Astrophysics Data System (ADS)
Orozco, D.; Delgado, R.; Hoff, R. M.
2013-12-01
In the ambient atmosphere, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH). Wet aerosols particles are larger than their dry equivalents, therefore they scatter more light. Quantitative knowledge of the RH effect and its influence on the light scattering coefficient on aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth. The DISCOVER-AQ campaign is focused in improving the interpretation and relation between satellite observations and surface conditions related to air quality. In the winter of 2013, this campaign was held in the San Joaquin Valley, California, where systematic and concurrent observations of column integrated surface, and vertically resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Different instruments such as particulate samplers, lidars, meteorological stations and airborne passive and active monitoring were coordinated to measure the aerosol structure of the San Joaquin Valley in a simultaneous fashion. A novel humidifier-dryer system for a TSI 3563 Nephelometer was implemented in the Penn State University NATIVE trailer located in Porterville California in order to measure the scattering coefficient σsp(λ) at three different wavelengths (λ=440, 550 and 700nm) in a RH range from 30 to 95%. The system was assembled by combining Nafion tubes to humidify and dry the aerosols and stepping motor valves to control the flow and the amount of humidity entering to the Nephelometer. Measurements in Porterville California reached dry scattering coefficient readings greater than 300Mm-1 at 550nm indicating the presence of a large amount of particles in the region. However, the ratio between scattering coefficients at high and low humidity, called the enhancement factor f(RH), showed relatively low hygroscopic growth in the aerosol particles, especially in comparison to a similar experiment conducted in 2012 in the Baltimore-Washington area. In average, during January and early February, the f(RH=85%) was 1.57×0.16 in the sampling site, which leads to the conclusion that the particle loading was dominated by black carbon and remnants of biomass burning. We refer to concurrent speciation measurements by Zhang et al. (private communication) in Fresno, during the study. The implications for sunphotometer measurements in DRAGON are discussed.
Thennadil, Suresh N; Chen, Yi-Chieh
2017-02-01
The usual approach for estimating bulk optical properties using an integrating sphere measurement setup is by acquiring spectra from three measurement modes namely collimated transmittance (T c ), total transmittance (T d ), and total diffuse reflectance (R d ), followed by the inversion of these measurements using the adding-doubling method. At high scattering levels, accurate acquisition of T c becomes problematic due to the presence of significant amounts of forward-scattered light in this measurement which is supposed to contain only unscattered light. In this paper, we propose and investigate the effectiveness of using alternative sets of integrating sphere measurements that avoid the use of T c and could potentially increase the upper limit of concentrations of suspensions at which bulk optical property measurements can be obtained in the visible-near-infrared (Vis-NIR) region of the spectrum. We examine the possibility of replacing T c with one or more reflectance measurements at different sample thicknesses. We also examine the possibility of replacing both the collimated (T c ) and total transmittance (T d ) measurements with reflectance measurements taken from different sample thicknesses. The analysis presented here indicates that replacing T c with a reflectance measurement can reduce the errors in the bulk scattering properties when scattering levels are high. When only multiple reflectance measurements are used, good estimates of the bulk optical properties can be obtained when the absorption levels are low. In addition, we examine whether there is any advantage in using three measurements instead of two to obtain the reduced bulk scattering coefficient and the bulk absorption coefficient. This investigation is made in the context of chemical and biological suspensions which have a much larger range of optical properties compared to those encountered with tissue.
NASA Astrophysics Data System (ADS)
Yang, YuFeng; Li, Ting
2018-02-01
The study of the relationship between transmittance visibility and PM2.5 concentration under the haze conditions has important theoretical significance for Free Space Optical communication (FSO). In this paper, the influence of PM2.5 concentration on the transmittance, attenuation coefficient and visibility was studied by light scattering theory, and the results by Mie theory and Monte Carlo method were analyzed. At the same time, the effect of PM2.5 particle size distribution on visibility was also analyzed, and the visibility calculated by light scattering method was compared with the visibility measured in Beijing from 2014 to 2016. The result shows that the higher PM2.5 concentration is the more obvious the multiple scattering effect is. When the mass concentration of PM2.5 is constant, the larger the geometric mean of the particle diameter is, the larger the visibility is. By comparing the visibility measured and the visibility calculated, we can see that when PM2.5 concentration is higher than 100μg/m3 , PM2.5 is the main factor affecting the visibility; and when PM2.5 concentration is lower than 100μg/m3, other factors (such as PM10, wind speed, air pressure and gas molecules) should also need to be considered.
Wave scattering in spatially inhomogeneous currents
NASA Astrophysics Data System (ADS)
Churilov, Semyon; Ermakov, Andrei; Stepanyants, Yury
2017-09-01
We analytically study a scattering of long linear surface waves on stationary currents in a duct (canal) of constant depth and variable width. It is assumed that the background velocity linearly increases or decreases with the longitudinal coordinate due to the gradual variation of duct width. Such a model admits an analytical solution of the problem in hand, and we calculate the scattering coefficients as functions of incident wave frequency for all possible cases of sub-, super-, and transcritical currents. For completeness we study both cocurrent and countercurrent wave propagation in accelerating and decelerating currents. The results obtained are analyzed in application to recent analog gravity experiments and shed light on the problem of hydrodynamic modeling of Hawking radiation.
NASA Astrophysics Data System (ADS)
Paramonov, L. E.
2012-05-01
Light scattering by isotropic ensembles of ellipsoidal particles is considered in the Rayleigh-Gans-Debye approximation. It is proved that randomly oriented ellipsoidal particles are optically equivalent to polydisperse randomly oriented spheroidal particles and polydisperse spherical particles. Density functions of the shape and size distributions for equivalent ensembles of spheroidal and spherical particles are presented. In the anomalous diffraction approximation, equivalent ensembles of particles are shown to also have equal extinction, scattering, and absorption coefficients. Consequences of optical equivalence are considered. The results are illustrated by numerical calculations of the angular dependence of the scattering phase function using the T-matrix method and the Mie theory.
During air cool process aerosol absorption detection with photothermal interferometry
NASA Astrophysics Data System (ADS)
Li, Baosheng; Xu, Limei; Huang, Junling; Ma, Fei; Wang, Yicheng; Li, Zhengqiang
2014-11-01
This paper studies the basic principle of laser photothermal interferometry method of aerosol particles absorption coefficient. The photothermal interferometry method with higher accuracy and lower uncertainty can directly measure the absorption coefficient of atmospheric aerosols and not be affected by scattered light. With Jones matrix expression, the math expression of a special polarization interferometer is described. This paper using folded Jamin interferometer, which overcomes the influence of vibration on measuring system. Interference come from light polarization beam with two orthogonal and then combine to one beam, finally aerosol absorption induced refractive index changes can be gotten with four beam of phase orthogonal light. These kinds of styles really improve the stability of system and resolution of the system. Four-channel detections interact with interference fringes, to reduce the light intensity `zero drift' effect on the system. In the laboratory, this device typical aerosol absorption index, it shows that the result completely agrees with actual value. After heated by laser, cool process of air also show the process of aerosol absorption. This kind of instrument will be used to monitor ambient aerosol absorption and suspended particulate matter chemical component. Keywords: Aerosol absorption coefficient; Photothermal interferometry; Suspended particulate matter.
Tian, Fenghua; Jenks, Christopher; Potter, Donald; Miles, Darryl; Raman, Lakshmi
Extracorporeal membrane oxygenation (ECMO) is a form of advanced cardiorespiratory support provided to critically ill patients with severe respiratory or cardiovascular failure. While children undergoing ECMO therapy have significant risk for neurological morbidity, currently there is a lack of reliable bedside tool to detect the neurologic events for patients on ECMO. This study assessed the feasibility of frequency-domain near-infrared spectroscopy (NIRS) for detection of intracranial complications during ECMO therapy. The frequency-domain NIRS device measured the absorption coefficient (µa) and reduced scattering coefficient (µs') at six cranial positions from seven pediatric patients (0-16 years) during ECMO support and five healthy controls (2-14 years). Regional abnormalities in both absorption and scattering were identified among ECMO patients. A main finding in this study is that the abnormalities in scattering appear to be associated with lower-than-normal µs' values in regional areas of the brain. Because light scattering originates from the intracellular structures (such as nuclei and mitochondria), a reduction in scattering primarily reflects loss or decreased density of the brain matter. The results from this study indicate a potential to use the frequency-domain NIRS as a safe and complementary technology for detection of intracranial complications during ECMO therapy.
Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitt, D.G.; Mlekoday, H.J.
1983-02-01
The reflection coefficient (sigma) and permeability (P) of urea and ethylene glycol were determined by fitting the equations of Kedem and Katchalsky (1958) to the change in light scattering produced by adding a permeable solute to a red cell suspension. The measurements incorporated three important modifications: (a) the injection artifact was eliminated by using echinocyte cells; (b) the use of an additional adjustable parameter (Km), the effective dissociation constant at the inner side of the membrane; (c) the light scattering is not directly proportional to cell volume (as is usually assumed) because refractive index and scattering properties of the cellmore » depend on the intracellular permeable solute concentration. This necessitates calibrating for known changes in refractive index (by the addition of dextran) and cell volume (by varying the NaCl concentration). The best fit was for sigma . 0.95, Po . 8.3 X 10(-4) cm/s, and Km . 100 mM for urea and sigma . 1.0, Po . 3.9 X 10(-4) cm/s, and Km . 30 mM for ethylene glycol. The effects of the inhibitors copper, phloretin, p-chloromercuriphenylsulfonate, and 5,5'-dithiobis (2-nitro) benzoic acid on the urea, ethylene glycol, and water permeability were determined. The results suggest that there are three separate, independent transport systems: one for water, one for urea and related compounds, and one for ethylene glycol and glycerol.« less
Simulation of a fast diffuse optical tomography system based on radiative transfer equation
NASA Astrophysics Data System (ADS)
Motevalli, S. M.; Payani, A.
2016-12-01
Studies show that near-infrared (NIR) light (light with wavelength between 700nm and 1300nm) undergoes two interactions, absorption and scattering, when it penetrates a tissue. Since scattering is the predominant interaction, the calculation of light distribution in the tissue and the image reconstruction of absorption and scattering coefficients are very complicated. Some analytical and numerical methods, such as radiative transport equation and Monte Carlo method, have been used for the simulation of light penetration in tissue. Recently, some investigators in the world have tried to develop a diffuse optical tomography system. In these systems, NIR light penetrates the tissue and passes through the tissue. Then, light exiting the tissue is measured by NIR detectors placed around the tissue. These data are collected from all the detectors and transferred to the computational parts (including hardware and software), which make a cross-sectional image of the tissue after performing some computational processes. In this paper, the results of the simulation of an optical diffuse tomography system are presented. This simulation involves two stages: a) Simulation of the forward problem (or light penetration in the tissue), which is performed by solving the diffusion approximation equation in the stationary state using FEM. b) Simulation of the inverse problem (or image reconstruction), which is performed by the optimization algorithm called Broyden quasi-Newton. This method of image reconstruction is faster compared to the other Newton-based optimization algorithms, such as the Levenberg-Marquardt one.
Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance.
Lee, ZhongPing; Carder, Kendall L; Du, KePing
2004-09-01
For optically deep waters, remote-sensing reflectance (r(rs)) is traditionally expressed as the ratio of the backscattering coefficient (b(b)) to the sum of absorption and backscattering coefficients (a + b(b)) that multiples a model parameter (g, or the so-called f'/Q). Parameter g is further expressed as a function of b(b)/(a + b(b)) (or b(b)/a) to account for its variation that is due to multiple scattering. With such an approach, the same g value will be derived for different a and b(b) values that provide the same ratio. Because g is partially a measure of the angular distribution of upwelling light, and the angular distribution from molecular scattering is quite different from that of particle scattering; g values are expected to vary with different scattering distributions even if the b(b)/a ratios are the same. In this study, after numerically demonstrating the effects of molecular and particle scatterings on the values of g, an innovative r(rs) model is developed. This new model expresses r(rs) in two separate terms: one governed by the phase function of molecular scattering and one governed by the phase function of particle scattering, with a model parameter introduced for each term. In this way the phase function effects from molecular and particle scatterings are explicitly separated and accounted for. This new model provides an analytical tool to understand and quantify the phase-function effects on r(rs), and a platform to calculate r(rs) spectrum quickly and accurately that is required for remote-sensing applications.
Differential dynamic microscopy to characterize Brownian motion and bacteria motility
NASA Astrophysics Data System (ADS)
Germain, David; Leocmach, Mathieu; Gibaud, Thomas
2016-03-01
We have developed a lab module for undergraduate students, which involves the process of quantifying the dynamics of a suspension of microscopic particles using Differential Dynamic Microscopy (DDM). DDM is a relatively new technique that constitutes an alternative method to more classical techniques such as dynamic light scattering (DLS) or video particle tracking (VPT). The technique consists of imaging a particle dispersion with a standard light microscope and a camera and analyzing the images using a digital Fourier transform to obtain the intermediate scattering function, an autocorrelation function that characterizes the dynamics of the dispersion. We first illustrate DDM in the textbook case of colloids under Brownian motion, where we measure the diffusion coefficient. Then we show that DDM is a pertinent tool to characterize biological systems such as motile bacteria.
Measurement of light transmission and fluence rate in mouse brain in vivo(Conference Presentation)
NASA Astrophysics Data System (ADS)
Macklin, John J.; Graves, Austin R.; Stujenske, Joseph M.; Hantman, Adam W.; Bittner, Katie C.
2017-02-01
Optogenetic experiments require light delivery, typically using fiber optics, to light-gated ion channels genetically targeted to specific brain regions. Understanding where light is—and isn't—in an illuminated brain can be a confounding factor in designing experiments and interpreting results. While the transmission of light, i.e. survival of forward-directed and forward-scattered light, has been extensively measured in vitro, light scattering can be significantly different in vivo due to blood flow and other factors. To measure irradiance in vivo, we constructed a pipette photodetector tipped with fluorescent quantum dots that function as a light transducer. The quantum dot fluorescence is collected by a waveguide and sent to a fiber-coupled spectrometer. The device has a small photo-responsive area ( 10 um x 15 um), enabling collection of micron-resolution irradiance profiles, and can be calibrated to determine irradiance with detection limits of 0.001 mW/mm2. The photodetector has the footprint of a micro-injection pipette, so can be inserted into almost any brain region with minimal invasiveness. With this detector, we determined transverse and axial irradiance profiles in mice across multiple brain regions at 5 source wavelengths spanning the visible spectrum. This profile data is compared to in vitro measurements obtained on tissue slices, and provides a means to derive scattering coefficients for specific brain regions in vivo. The detector is straightforward to fabricate and calibrate, is stable in air storage > 9 months, and can be easily installed in an electrophysiology setup, thereby enabling direct measurement of light spread under conditions used in optogenetics experiments.
NASA Astrophysics Data System (ADS)
Dolgos, G.; Martins, J.; Espinosa, R.; Dubovik, O.; Beyersdorf, A. J.; Ziemba, L. D.; Hair, J. W.
2013-12-01
Aerosols have a significant impact on the radiative balance and water cycle of our planet through influencing atmospheric radiation. Remote sensing of aerosols relies on scattering phase matrix information to retrieve aerosol properties with frequent global coverage, the assumed phase matrices must be validated by measurements. At the Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland, Baltimore County (UMBC) we developed a new technique to directly measure the aerosol phase function (P11), the degree of linear polarization of the scattered light (-P12/P11), and the volume scattering coefficient (SCAT). We designed and built a portable instrument called the Polarized Imaging Nephelometer (PI-Neph), shown in Figure 1 (a). The PI-Neph successfully participated in dozens of flights of the NASA Development and Evaluation of satellite ValidatiOn Tools by Experimenters (DEVOTE) project and the Deep Convective Clouds and Chemistry (DC3) project and the January and February deployment of the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (Discover-AQ) mission. The ambient aerosol enters the PI-Neph through an inlet and the sample is illuminated by laser light (wavelength of 532 nm); the scattered light is imaged by a stationary wide field of view camera in the scattering angle range of 2° to 178° (in some cases stray light limited the scattering angle range to 3° to 176°). Data for P11, P12, and SCAT were taken every 12 seconds, example datasets from DEVOTE of P11 times SCAT are shown on Figure 1 (b). The talk will highlight results from the three field deployments and will show microphysical retrievals from the scattering data. The size distribution and the average complex refractive index of the ambient aerosol ensemble can be retrieved from the data by an algorithm similar to that of AERONET, as illustrated in Figure 1 (c). Particle sphericity can potentially be retrieved as well, this will be investigated in the near future. The instrument will be applied to the validation of aerosol retrievals of AERONET and airborne polarimeters. The PI-Neph instrument has recently been upgraded to three wavelengths, and a second instrument was built as well. The LACO group is active in developing an advanced open path version of the Imaging Nephelometer that does not require an inlet but measures undisturbed particles under the aircraft wing. Figure 1. (a) The Polarized Imaging Nephelometer instrument inside the B200 aircraft of NASA Langley. (b) Phase function times volume scattering coefficient data from DEVOTE. (c) Retrievals of particle size distribution based on the data in panel (b).
NASA Technical Reports Server (NTRS)
Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.
2004-01-01
During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic matter, and dust found for the ACE Asia aerosol are comparable to values estimated for ACE 1, Aerosols99, and INDOEX. Unique to the ACE Asia aerosol was the large mass fractions of dust, the dominance of dust in controlling the aerosol optical properties, and the interaction of dust with soot aerosol.
Optical properties of biomimetic probes engineered from erythrocytes
NASA Astrophysics Data System (ADS)
Burns, Joshua M.; Saager, Rolf; Majaron, Boris; Jia, Wangcun; Anvari, Bahman
2017-01-01
Light-activated theranostic materials offer a potential platform for optical imaging and phototherapeutic applications. We have engineered constructs derived from erythrocytes, which can be doped with the FDA-approved near infrared (NIR) chromophore, indocyanine green (ICG). We refer to these constructs as NIR erythrocyte-mimicking transducers (NETs). Herein, we investigated the effects of changing the NETs mean diameter from micron- (≈4 μm) to nano- (≈90 nm) scale, and the ICG concentration utilized in the fabrication of NETs from 5 to 20 μM on the resulting absorption and scattering characteristics of the NETs. Our approach consisted of integrating sphere-based measurements of light transmittance and reflectance, and subsequent utilization of these measurements in an inverse adding-doubling algorithm to estimate the absorption (μ a) and reduced scattering (μ s‧) coefficients of these NETs. For a given NETs diameter, values of μ a increased over the approximate spectral band of 630-860 nm with increasing ICG concentration. Micron-sized NETs produced the highest peak value of μ a when using ICG concentrations of 10 and 20 μM, and showed increased values of μ s‧ as compared to nano-sized NETs. Spectral profiles of μ s‧ for these NETs showed a trend consistent with Mie scattering behavior for spherical objects. For all NETs investigated, changing the ICG concentration minimally affected the scattering characteristics. A Monte Carlo-based model of light distribution showed that the presence of these NETs enhanced the fluence levels within simulated blood vessels. These results provide important data towards determining the appropriate light dosimetry parameters for an intended light-based biomedical application of NETs.
Light distribution properties in spinal cord for optogenetic stimulation (Conference Presentation)
NASA Astrophysics Data System (ADS)
GÄ secka, Alicja; Bahdine, Mohamed; Lapointe, Nicolas; Rioux, Veronique; Perez-Sanchez, Jimena; Bonin, Robert P.; De Koninck, Yves; Côté, Daniel
2016-03-01
Optogenetics is currently one of the most popular technique in neuroscience. It enables cell-selective and temporally-precise control of neuronal activity. Good spatial control of the stimulated area and minimized tissue damage requires a specific knowledge about light scattering properties. Light propagation in cell cultures and brain tissue is relatively well documented and allows for a precise and reliable delivery of light to the neurons. In spinal cord, light must pass through highly organized white matter before reaching cell bodies present in grey matter, this heterogenous structure makes it difficult to predict the propagation pattern. In this work we investigate the light distribution properties through mouse and monkey spinal cord. The light propagation depends on a fibers orientation, leading to less deep penetration profile in the direction perpendicular to the fibers and lower attenuation in the direction parallel to the fibers. Additionally, the use of different illumination wavelengths results in variations of the attenuation coefficient. Next, we use Monte-Carlo simulation to study light transport. The model gives a full 3-D simulation of light distribution in spinal cord and takes into account different scattering properties related to the fibers orientation. These studies are important to estimate the minimum optical irradiance required at the fiber tip to effectively excite the optogenetic proteins in a desired region of spinal cord.
NASA Astrophysics Data System (ADS)
Nakazawa, Haruna; Doi, Marika; Ogawa, Emiyu; Arai, Tsunenori
2018-02-01
To avoid an instability of the optical coefficient measurement using sliced tissue preparation, we proposed the combination of light intensity measurement through an optical fiber puncturing into a bulk tissue varying field of view (FOV) and ray tracing calculation using Monte-Carlo method. The optical coefficients of myocardium such as absorption coefficient μa, scattering coefficient μs, and anisotropic parameter g are used in the myocardium optical propagation. Since optical coefficients obtained using thin sliced tissue could be instable because they are affected by dehydration and intracellular fluid effusion on the sample surface, variety of coefficients have been reported over individual optical differences of living samples. The proposed method which combined the experiment using the bulk tissue with ray tracing calculation were performed. In this method, a 200 μmΦ high-NA silica fiber installed in a 21G needle was punctured up to the bottom of the myocardial bulk tissue over 3 cm in thickness to measure light intensity changing the fiber-tip depth and FOV. We found that the measured attenuation coefficients decreased as the FOV increased. The ray trace calculation represented the same FOV dependence in above mentioned experimental result. We think our particular fiber punctured measurement using bulk tissue varying FOV with Inverse Monte-Carlo method might be useful to obtain the optical coefficients to avoid sample preparation instabilities.
NASA Astrophysics Data System (ADS)
Sakata, Yoshitaro; Terasaki, Nao; Sakai, Kazufumi; Nonaka, Kazuhiro
2016-03-01
Fine polishing techniques, such as chemical mechanical polishing (CMP), are important to glass substrate manufacturing. When these techniques involve mechanical interaction in the form of friction between the abrasive and the substrate surface during polishing, latent flaws may form on the product. Fine polishing induced latent flaws in glass substrates may become obvious during a subsequent cleaning process if the glass surface is eroded away by chemical interaction with a cleaning liquid. Thus, latent flaws reduce product yield. A novel technique (the stress-induced light scattering method; SILSM) which was combined with light scattering method and stress effects was proposed for inspecting surface to detect polishing induced latent flaws. This method is able to distinguish between latent flaws and tiny particles on the surface. In this method, an actuator deforms a sample inducing stress effects around the tip of a latent flaw caused by the deformation, which in turn changes the refractive index of the material around the tip of the latent flaw because of the photoelastic effect. A CCD camera detects this changed refractive index as variations in light-scattering intensity. In this study, the changes in reflection coefficients and polarization states after application of stress to a glass substrate were calculated and evaluated qualitatively using Jones matrix-like ellipsometry. As the results, it was shown that change in the polarization states around the tip of latent flaw were evaluated between before and after applied stress, qualitatively.
Low hygroscopicity of ambient fresh carbonaceous aerosols from pyrotechnics smoke
Carrico, Christian M.; Gomez, Samantha Laray; Dubey, Manvendra Krishna; ...
2018-01-31
Pyrotechnics (fireworks) displays are common for many cultures worldwide, with Independence Day celebrations occurring annually on July 4th as the most notable in the U.S. Given an episodic nature, fireworks aerosol properties are poorly characterized. Here we report observations of optical properties of fresh smoke emissions from Independence Day fireworks smoke sampled at Los Alamos National Laboratory, New Mexico U.S.A. on 4–5 July 2016. Aerosol optical properties were measured with a photoacoustic extinctiometer (PAX, DMT, Inc., Model 870 nm) at low RH < 30% and a humidity controlled nephelometry system (Ecotech, Inc., 450 nm Aurora). ‘Dry’ light scattering coefficient (σsp)more » increased from background < 15 Mm –1 reaching 120 Mm –1 (450 nm) as a 2-min event peak, while the absorption coefficient increased from background of 0.5–4.4 Mm –1 (870 nm). The event peak occurred at 00:35 on 5 July 2016, ~3 h after local fireworks events, and decreased to background by 04:00 on 5 July 2016, showing well mixed aerosol properties. A notable result is that the aerosol hygroscopic response, as characterized by the ratio of wet to dry light scattering or f(RH = 85%), declined to 1.02 at the peak fireworks influence from a background ~1.7. Strong wavelength dependence of light scattering with Ångström exponent ~2.2 throughout the event showed a size distribution dominated by sub-micrometer particles. Likewise, single scattering albedo at 870 nm remained constant throughout the event with ω = 0.86 ± 0.03, indicating light absorbing carbon, though not dominant, was mixed with organic carbon. Subsequent laboratory testing with ground-level sparklers showed that pyrotechnics smoke can generate a strong hygroscopic response, however. As confirmed with chemical analysis, the chemistry of the fireworks was key to defining the hygroscopic response. As a result, sparkler smoke was dominated by salt species such as hygroscopic potassium chloride while it lacked the black powder explosives in aerial fireworks that contribute organic and elemental carbon to its non-hygroscopic smoke.« less
Low hygroscopicity of ambient fresh carbonaceous aerosols from pyrotechnics smoke
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrico, Christian M.; Gomez, Samantha Laray; Dubey, Manvendra Krishna
Pyrotechnics (fireworks) displays are common for many cultures worldwide, with Independence Day celebrations occurring annually on July 4th as the most notable in the U.S. Given an episodic nature, fireworks aerosol properties are poorly characterized. Here we report observations of optical properties of fresh smoke emissions from Independence Day fireworks smoke sampled at Los Alamos National Laboratory, New Mexico U.S.A. on 4–5 July 2016. Aerosol optical properties were measured with a photoacoustic extinctiometer (PAX, DMT, Inc., Model 870 nm) at low RH < 30% and a humidity controlled nephelometry system (Ecotech, Inc., 450 nm Aurora). ‘Dry’ light scattering coefficient (σsp)more » increased from background < 15 Mm –1 reaching 120 Mm –1 (450 nm) as a 2-min event peak, while the absorption coefficient increased from background of 0.5–4.4 Mm –1 (870 nm). The event peak occurred at 00:35 on 5 July 2016, ~3 h after local fireworks events, and decreased to background by 04:00 on 5 July 2016, showing well mixed aerosol properties. A notable result is that the aerosol hygroscopic response, as characterized by the ratio of wet to dry light scattering or f(RH = 85%), declined to 1.02 at the peak fireworks influence from a background ~1.7. Strong wavelength dependence of light scattering with Ångström exponent ~2.2 throughout the event showed a size distribution dominated by sub-micrometer particles. Likewise, single scattering albedo at 870 nm remained constant throughout the event with ω = 0.86 ± 0.03, indicating light absorbing carbon, though not dominant, was mixed with organic carbon. Subsequent laboratory testing with ground-level sparklers showed that pyrotechnics smoke can generate a strong hygroscopic response, however. As confirmed with chemical analysis, the chemistry of the fireworks was key to defining the hygroscopic response. As a result, sparkler smoke was dominated by salt species such as hygroscopic potassium chloride while it lacked the black powder explosives in aerial fireworks that contribute organic and elemental carbon to its non-hygroscopic smoke.« less
Low hygroscopicity of ambient fresh carbonaceous aerosols from pyrotechnics smoke
NASA Astrophysics Data System (ADS)
Carrico, Christian M.; Gomez, Samantha L.; Dubey, Manvendra K.; Aiken, Allison C.
2018-04-01
Pyrotechnics (fireworks) displays are common for many cultures worldwide, with Independence Day celebrations occurring annually on July 4th as the most notable in the U.S. Given an episodic nature, fireworks aerosol properties are poorly characterized. Here we report observations of optical properties of fresh smoke emissions from Independence Day fireworks smoke sampled at Los Alamos National Laboratory, New Mexico U.S.A. on 4-5 July 2016. Aerosol optical properties were measured with a photoacoustic extinctiometer (PAX, DMT, Inc., Model 870 nm) at low RH < 30% and a humidity controlled nephelometry system (Ecotech, Inc., 450 nm Aurora). 'Dry' light scattering coefficient (σsp) increased from background < 15 Mm-1 reaching 120 Mm-1 (450 nm) as a 2-min event peak, while the absorption coefficient increased from background of 0.5-4.4 Mm-1 (870 nm). The event peak occurred at 00:35 on 5 July 2016, ∼3 h after local fireworks events, and decreased to background by 04:00 on 5 July 2016, showing well mixed aerosol properties. A notable result is that the aerosol hygroscopic response, as characterized by the ratio of wet to dry light scattering or f(RH = 85%), declined to 1.02 at the peak fireworks influence from a background ∼1.7. Strong wavelength dependence of light scattering with Ångström exponent ∼2.2 throughout the event showed a size distribution dominated by sub-micrometer particles. Likewise, single scattering albedo at 870 nm remained constant throughout the event with ω = 0.86 ± 0.03, indicating light absorbing carbon, though not dominant, was mixed with organic carbon. Subsequent laboratory testing with ground-level sparklers showed that pyrotechnics smoke can generate a strong hygroscopic response, however. As confirmed with chemical analysis, the chemistry of the fireworks was key to defining the hygroscopic response. Sparkler smoke was dominated by salt species such as hygroscopic potassium chloride while it lacked the black powder explosives in aerial fireworks that contribute organic and elemental carbon to its non-hygroscopic smoke.
Small angle scattering polarization biopsy: a comparative analysis of various skin diseases
NASA Astrophysics Data System (ADS)
Zimnyakov, D. A.; Alonova, M. V.; Yermolenko, S. B.; Ivashko, P. V.; Reshetnikova, E. M.; Galkina, E. M.; Utz, S. R.
2013-12-01
An approach to differentiation of the morphological features of normal and pathological human epidermis on the base of statistical analysis of the local polarization states of laser light forward scattered by in-vitro tissue samples is discussed. The eccentricity and the azimuth angle of local polarization ellipses retrieved for various positions of the focused laser beam on the tissue surface, and the coefficient of collimated transmittance are considered as the diagnostic parameters for differentiation. The experimental data obtained with the psoriasis, discoid lupus erythematosus, alopecia, lichen planus, scabies, demodex, and normal skin samples are presented.
Three-dimensional surface profile intensity correction for spatially modulated imaging
NASA Astrophysics Data System (ADS)
Gioux, Sylvain; Mazhar, Amaan; Cuccia, David J.; Durkin, Anthony J.; Tromberg, Bruce J.; Frangioni, John V.
2009-05-01
We describe a noncontact profile correction technique for quantitative, wide-field optical measurement of tissue absorption (μa) and reduced scattering (μs') coefficients, based on geometric correction of the sample's Lambertian (diffuse) reflectance intensity. Because the projection of structured light onto an object is the basis for both phase-shifting profilometry and modulated imaging, we were able to develop a single instrument capable of performing both techniques. In so doing, the surface of the three-dimensional object could be acquired and used to extract the object's optical properties. The optical properties of flat polydimethylsiloxane (silicone) phantoms with homogenous tissue-like optical properties were extracted, with and without profilometry correction, after vertical translation and tilting of the phantoms at various angles. Objects having a complex shape, including a hemispheric silicone phantom and human fingers, were acquired and similarly processed, with vascular constriction of a finger being readily detectable through changes in its optical properties. Using profilometry correction, the accuracy of extracted absorption and reduced scattering coefficients improved from two- to ten-fold for surfaces having height variations as much as 3 cm and tilt angles as high as 40 deg. These data lay the foundation for employing structured light for quantitative imaging during surgery.
NASA Astrophysics Data System (ADS)
Fonseca, E. S. R.; de Jesus, M. E. P.
2007-07-01
The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to absorption ratios. Experimental validation of the proposed method is accomplished by a set of measurements on solid absorbing and scattering phantoms.
NASA Astrophysics Data System (ADS)
Simpson, Rebecca; Laufer, Jan G.; Kohl-Bareis, Matthias; Essenpreis, Matthias; Cope, Mark
1997-08-01
The vast majority of 'non-invasive' measurements of human tissues using near infrared spectroscopy rely on passing light through the dermis and subdermis of the skin. Accurate knowledge of the optical properties of these tissues is essential to put into models of light transport and predict the effects of skin perfusion on measurements of deep tissue. Additionally, the skin could be a useful accessible organ for non-invasively determining the constituents of blood flowing through it. Samples of abdominal human skin (including subdermal tissue) were obtained from either post mortem examinations or plastic surgery. The samples were separated into a dermal layer (epidermis and dermis, 1.5 to 2 mm tick), and a sub-cutaneous layer comprised largely of fat. They were enclosed between two glass coverslips and placed in an integrating sphere to measure their reflectance and transmittance over a range of wavelengths from 600 to 1000 nm. The reflectance and transmittance values were converted into average absorption and reduced scattering coefficients by comparison with a Monte Carlo model of light transport. Improvements to the Monte Carlo model and measurement technique removed some previous uncertainties. The results show excellent separation of reduced scattering and absorption coefficient, with clear absorption peaks of hemoglobin, water and lipid. The effect of tissue storage upon measured optical properties was investigated.
Pavlou, Andrew T.; Ji, Wei; Brown, Forrest B.
2016-01-23
Here, a proper treatment of thermal neutron scattering requires accounting for chemical binding through a scattering law S(α,β,T). Monte Carlo codes sample the secondary neutron energy and angle after a thermal scattering event from probability tables generated from S(α,β,T) tables at discrete temperatures, requiring a large amount of data for multiscale and multiphysics problems with detailed temperature gradients. We have previously developed a method to handle this temperature dependence on-the-fly during the Monte Carlo random walk using polynomial expansions in 1/T to directly sample the secondary energy and angle. In this paper, the on-the-fly method is implemented into MCNP6 andmore » tested in both graphite-moderated and light water-moderated systems. The on-the-fly method is compared with the thermal ACE libraries that come standard with MCNP6, yielding good agreement with integral reactor quantities like k-eigenvalue and differential quantities like single-scatter secondary energy and angle distributions. The simulation runtimes are comparable between the two methods (on the order of 5–15% difference for the problems tested) and the on-the-fly fit coefficients only require 5–15 MB of total data storage.« less
NASA Astrophysics Data System (ADS)
Bravo, Jaime; Davis, Scott C.; Roberts, David W.; Paulsen, Keith D.; Kanick, Stephen C.
2015-03-01
Quantification of targeted fluorescence markers during neurosurgery has the potential to improve and standardize surgical distinction between normal and cancerous tissues. However, quantitative analysis of marker fluorescence is complicated by tissue background absorption and scattering properties. Correction algorithms that transform raw fluorescence intensity into quantitative units, independent of absorption and scattering, require a paired measurement of localized white light reflectance to provide estimates of the optical properties. This study focuses on the unique problem of developing a spectral analysis algorithm to extract tissue absorption and scattering properties from white light spectra that contain contributions from both elastically scattered photons and fluorescence emission from a strong fluorophore (i.e. fluorescein). A fiber-optic reflectance device was used to perform measurements in a small set of optical phantoms, constructed with Intralipid (1% lipid), whole blood (1% volume fraction) and fluorescein (0.16-10 μg/mL). Results show that the novel spectral analysis algorithm yields accurate estimates of tissue parameters independent of fluorescein concentration, with relative errors of blood volume fraction, blood oxygenation fraction (BOF), and the reduced scattering coefficient (at 521 nm) of <7%, <1%, and <22%, respectively. These data represent a first step towards quantification of fluorescein in tissue in vivo.
Focusing light into desired patterns through turbid media by feedback-based wavefront shaping
NASA Astrophysics Data System (ADS)
Wan, Lipeng; Chen, Ziyang; Huang, Huiling; Pu, Jixiong
2016-07-01
We demonstrate that the focusing of light into desired patterns through turbid media can be realized using feedback-based wavefront shaping. Three desired focused patterns—a triangle, a circle, and a rectangle—are used as examples to study this ability. During the process of modulating scattered light, the Pearson's correlation coefficient is introduced as a feedback signal. It is found that the speckle field formed by the turbid media gradually transforms into the desired pattern through a process of modulation of the input beam wave front. The proposed approach has potential applications in biomedical treatment and laser material processing.
Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope.
Mercatelli, Raffaella; Ratto, Fulvio; Centi, Sonia; Soria, Silvia; Romano, Giovanni; Matteini, Paolo; Quercioli, Franco; Pini, Roberto; Fusi, Franco
2013-10-21
In this paper we report on a new use for dark-field microscopy in order to retrieve two-dimensional maps of optical parameters of a thin sample such as a cryptograph, a histological section, or a cell monolayer. In particular, we discuss the construction of quantitative charts of light absorbance and scattering coefficients of a polyvinyl alcohol film that was embedded with gold nanorods and then etched using a focused mode-locked Ti:Sapphire oscillator. Individual pulses from this laser excite plasmonic oscillations of the gold nanorods, thus triggering plastic deformations of the particles and their environment, which are confined within a few hundred nm of the light focus. In turn, these deformations modify the light absorbance and scattering landscape, which can be measured with optical resolution in a dark-field microscope equipped with an objective of tuneable numerical aperture. This technique may prove to be valuable for various applications, such as the fast readout of optically encoded data or to model functional interactions between light and biological tissue at the level of cellular organelles, including the photothermolysis of cancer.
Reflection and transmission of light at periodic layered metamaterial films
NASA Astrophysics Data System (ADS)
Paul, Thomas; Menzel, Christoph; Śmigaj, Wojciech; Rockstuhl, Carsten; Lalanne, Philippe; Lederer, Falk
2011-09-01
The appropriate description of light scattering (transmission/reflection) at a bulky artificial medium, consisting of a sequence of functional metamaterial and natural material films, represents a major challenge in current theoretical nano-optics. Because in many relevant cases, in particular, in the optical domain, a metamaterial must not be described by an effective permittivity and permeability the usual Fresnel formalism cannot be applied. A reliable alternative consists in using a Bloch mode formalism known, e.g., from the theory of photonic crystals. It permits to split this complex issue into two more elementary ones, namely the study of light propagation in an infinitely extended metamaterial and the analysis of light scattering at interfaces between adjacent meta and natural materials. The first problem is routinely solved by calculating the relevant Bloch modes and their dispersion relations. The second task is more involved and represents the subject of the present study. It consists in using the general Bloch mode orthogonality to derive rigorous expressions for the reflection and transmission coefficients at an interface between two three-dimensional absorptive periodic media for arbitrary incidence. A considerable simplification can be achieved if only the fundamental Bloch modes of both media govern the scattering properties at the interface. If this approximation is valid, which depends on the longitudinal metamaterial period, the periodic metamaterial may be termed homogeneous. Only in this case the disentanglement of the fundamental modes of both media can be performed and the reflection/transmission coefficients can be expressed in terms of two impedances, each depending solely on the properties of the fundamental mode of the respective medium. In order to complement the picture, we apply the present formalism to the quite general problem of reflection/transmission at a metamaterial film sandwiched between a dissimilar metamaterial. This situation asks for a devoted treatment where multiple modes have to be taken into account.
Peripheral elastic and inelastic scattering of O17,18 on light targets at 12 MeV/nucleon
NASA Astrophysics Data System (ADS)
Al-Abdullah, T.; Carstoiu, F.; Gagliardi, C. A.; Tabacaru, G.; Trache, L.; Tribble, R. E.
2014-06-01
A study of interaction of neutron-rich oxygen isotopes O17,18 with light targets has been undertaken in order to determine the optical potentials needed for the transfer reaction C13(O17,O18)C12. Optical potentials in both incoming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the F17(p,γ)Ne18 which is essential to estimate the production of F18 at stellar energies in ONe novae. The success of the asymptotic normalization coefficient (ANC) as indirect method for astrophysics is guaranteed if the reaction mechanism is peripheral and the distorted wave Born approximation cross-section calculations are warranted and stable against the optical model potential (OMP) used. We demonstrate the stability of the ANC method and the OMP results by using good-quality elastic and inelastic-scattering data with stable beams before extending the procedures to rare-ion beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total-scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of O17, O18, and O16 projectiles is made.
A test of local Lorentz invariance with Compton scattering asymmetry
Mohanmurthy, Prajwal; Narayan, Amrendra; Dutta, Dipangkar
2016-12-14
Here, we report on a measurement of the constancy and anisotropy of the speed of light relative to the electrons in photon-electron scattering. We also used the Compton scattering asymmetry measured by the new Compton polarimeter in Hall~C at Jefferson Lab to test for deviations from unity of the vacuum refractive index (more » $n$). For photon energies in the range of 9 - 46 MeV, we obtain a new limit of $$1-n < 1.4 \\times 10^{-8}$$. In addition, the absence of sidereal variation over the six month period of the measurement constrains any anisotropies in the speed of light. These constitute the first study of Lorentz invariance using Compton asymmetry. Within the minimal standard model extension framework, our result yield limits on the photon and electron coefficients $$\\tilde{\\kappa}_{0^+}^{YZ}, c_{TX}, \\tilde{\\kappa}_{0^+}^{ZX}$$, and $$c_{TY}$$. Though, these limits are several orders of magnitude larger than the current best limits, they demonstrate the feasibility of using Compton asymmetry for tests of Lorentz invariance. For future parity violating electron scattering experiments at Jefferson Lab we will use higher energy electrons enabling better constraints.« less
NASA Astrophysics Data System (ADS)
Bae, Euiwon; Bai, Nan; Aroonnual, Amornrat; Bhunia, Arun K.; Robinson, J. Paul; Hirleman, E. Daniel
2009-05-01
In order to maximize the utility of the optical scattering technology in the area of bacterial colony identification, it is necessary to have a thorough understanding of how bacteria species grow into different morphological aggregation and subsequently function as distinctive optical amplitude and phase modulators to alter the incoming Gaussian laser beam. In this paper, a 2-dimentional reaction-diffusion (RD) model with nutrient concentration, diffusion coefficient, and agar hardness as variables is investigated to explain the correlation between the various environmental parameters and the distinctive morphological aggregations formed by different bacteria species. More importantly, the morphological change of the bacterial colony against time is demonstrated by this model, which is able to characterize the spatio-temporal patterns formed by the bacteria colonies over their entire growth curve. The bacteria population density information obtained from the RD model is mathematically converted to the amplitude/phase modulation factor used in the scalar diffraction theory which predicts the light scattering patterns for bacterial colonies. The conclusions drawn from the RD model combined with the scalar diffraction theory are useful in guiding the design of the optical scattering instrument aiming at bacteria colony detection and classification.
NASA Astrophysics Data System (ADS)
Freedman, A.; Onasch, T. B.; Renbaum-Wollf, L.; Lambe, A. T.; Davidovits, P.; Kebabian, P. L.
2015-12-01
Accurate, as compared to precise, measurement of aerosol absorption has always posed a significant problem for the particle radiative properties community. Filter-based instruments do not actually measure absorption but rather light transmission through the filter; absorption must be derived from this data using multiple corrections. The potential for matrix-induced effects is also great for organic-laden aerosols. The introduction of true in situ measurement instruments using photoacoustic or photothermal interferometric techniques represents a significant advance in the state-of-the-art. However, measurement artifacts caused by changes in humidity still represent a significant hurdle as does the lack of a good calibration standard at most measurement wavelengths. And, in the absence of any particle-based absorption standard, there is no way to demonstrate any real level of accuracy. We, along with others, have proposed that under the circumstance of low single scattering albedo (SSA), absorption is best determined by difference using measurement of total extinction and scattering. We discuss a robust, compact, field deployable instrument (the CAPS PMssa) that simultaneously measures airborne particle light extinction and scattering coefficients and thus the single scattering albedo (SSA) on the same sample volume. The extinction measurement is based on cavity attenuated phase shift (CAPS) techniques as employed in the CAPS PMex particle extinction monitor; scattering is measured using integrating nephelometry by incorporating a Lambertian integrating sphere within the sample cell. The scattering measurement is calibrated using the extinction measurement of non-absorbing particles. For small particles and low SSA, absorption can be measured with an accuracy of 6-8% at absorption levels as low as a few Mm-1. We present new results of the measurement of the mass absorption coefficient (MAC) of soot generated by an inverted methane diffusion flame at 630 nm. A value of 6.60 ±0.2 m2 g-1 was determined where the uncertainty refers to the precision of the measurement. The overall accuracy of the measurement, traceable to the properties of polystyrene latex particles, is estimated to be better than ±10%.
Yoshimura, Humberto N; Chimanski, Afonso; Cesar, Paulo F
2015-10-01
Ceramic composites are promising materials for dental restorations. However, it is difficult to prepare highly translucent composites due to the light scattering that occurs in multiphase ceramics. The objective of this work was to verify the effectiveness of a systematic approach in designing specific glass compositions with target properties in order to prepare glass infiltrated ceramic composites with high translucency. First it was necessary to calculate from literature data the viscosity of glass at the infiltration temperature using the SciGlass software. Then, a glass composition was designed for targeted viscosity and refractive index. The glass of the system SiO2-B2O3-Al2O3-La2O3-TiO2 prepared by melting the oxide raw materials was spontaneously infiltrated into porous alumina preforms at 1200°C. The optical properties were evaluated using a refractometer and a spectrophotometer. The absorption and scattering coefficients were calculated using the Kubelka-Munk model. The light transmittance of prepared composite was significantly higher than a commercial ceramic-glass composite, due to the matching of glass and preform refractive indexes which decreased the scattering, and also to the decrease in absorption coefficient. The proposed systematic approach was efficient for development of glass infiltrated ceramic composites with high translucency, which benefits include the better aesthetic performance of the final prosthesis. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Rahman, Masoud; Tajabadi, Fariba; Shooshtari, Leyla; Taghavinia, Nima
2011-04-04
Hollow structures show both light scattering and light trapping, which makes them promising for dye-sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO(2) fibers are prepared by layer-by-layer (LbL) self-assembly deposition of TiO(2) nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO(2) dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO(2) nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25-fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50% in conversion efficiency. By employing the intensity-modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light-harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NOTE: The modified Beer Lambert law revisited
NASA Astrophysics Data System (ADS)
Kocsis, L.; Herman, P.; Eke, A.
2006-03-01
The modified Beer Lambert law (MBLL) is the basis of continuous-wave near-infrared tissue spectroscopy (cwNIRS). The differential form of MBLL (dMBLL) states that the change in light attenuation is proportional to the changes in the concentrations of tissue chromophores, mainly oxy- and deoxyhaemoglobin. If attenuation changes are measured at two or more wavelengths, concentration changes can be calculated. The dMBLL is based on two assumptions: (1) the absorption of the tissue changes homogeneously, and (2) the scattering loss is constant. It is known that absorption changes are usually inhomogeneous, and therefore dMBLL underestimates the changes in concentrations (partial volume effect) and every calculated value is influenced by the change in the concentration of other chromophores (cross-talk between chromophores). However, the error introduced by the second assumption (cross-talk of scattering changes) has not been assessed previously. An analytically treatable special case (semi-infinite, homogeneous medium, with optical properties of the cerebral cortex) is utilized here to estimate its order of magnitude. We show that the per cent change of the transport scattering coefficient and that of the absorption coefficient have an approximately equal effect on the changes of attenuation, and a 1% increase in scattering increases the estimated concentration changes by about 0.5 µM.
The modified Beer-Lambert law revisited.
Kocsis, L; Herman, P; Eke, A
2006-03-07
The modified Beer-Lambert law (MBLL) is the basis of continuous-wave near-infrared tissue spectroscopy (cwNIRS). The differential form of MBLL (dMBLL) states that the change in light attenuation is proportional to the changes in the concentrations of tissue chromophores, mainly oxy- and deoxyhaemoglobin. If attenuation changes are measured at two or more wavelengths, concentration changes can be calculated. The dMBLL is based on two assumptions: (1) the absorption of the tissue changes homogeneously, and (2) the scattering loss is constant. It is known that absorption changes are usually inhomogeneous, and therefore dMBLL underestimates the changes in concentrations (partial volume effect) and every calculated value is influenced by the change in the concentration of other chromophores (cross-talk between chromophores). However, the error introduced by the second assumption (cross-talk of scattering changes) has not been assessed previously. An analytically treatable special case (semi-infinite, homogeneous medium, with optical properties of the cerebral cortex) is utilized here to estimate its order of magnitude. We show that the per cent change of the transport scattering coefficient and that of the absorption coefficient have an approximately equal effect on the changes of attenuation, and a 1% increase in scattering increases the estimated concentration changes by about 0.5 microM.
Velocity persistence of Brownian particles generated in a glow discharge
NASA Astrophysics Data System (ADS)
Hurd, Alan J.; Ho, Pauline
1989-06-01
Quasielastic light scattering from Brownian particles in the rarefied environment of a glow discharge exhibits Gaussianlike intensity correlation functions owing to the long mean free paths of the particles. The shape of the correlation function depends on the particles' average thermal velocity and friction coefficient, which can be related to aggregate mass and structure, and indicates a crossover from kinetic to hydrodynamic behavior.
Cavitation Inception in Separated Flows.
1981-12-01
measured data. Keller (1972, 1973) determined the nuclei population by using a single particle light scattering device (the sample volume was... computations of the average pressure coefficient. The amount of air dissolved in the water varied from 10 to 11 ppm ( molar ) and was measured with a Van Slyke...fluctuating pressures were also measured. .-The conditions for cavitation inception and desinence were determined and several holograms were recorded
Kim, Hyun Keol; Montejo, Ludguier D; Jia, Jingfei; Hielscher, Andreas H
2017-06-01
We introduce here the finite volume formulation of the frequency-domain simplified spherical harmonics model with n -th order absorption coefficients (FD-SP N ) that approximates the frequency-domain equation of radiative transfer (FD-ERT). We then present the FD-SP N based reconstruction algorithm that recovers absorption and scattering coefficients in biological tissue. The FD-SP N model with 3 rd order absorption coefficient (i.e., FD-SP 3 ) is used as a forward model to solve the inverse problem. The FD-SP 3 is discretized with a node-centered finite volume scheme and solved with a restarted generalized minimum residual (GMRES) algorithm. The absorption and scattering coefficients are retrieved using a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. Finally, the forward and inverse algorithms are evaluated using numerical phantoms with optical properties and size that mimic small-volume tissue such as finger joints and small animals. The forward results show that the FD-SP 3 model approximates the FD-ERT (S 12 ) solution within relatively high accuracy; the average error in the phase (<3.7%) and the amplitude (<7.1%) of the partial current at the boundary are reported. From the inverse results we find that the absorption and scattering coefficient maps are more accurately reconstructed with the SP 3 model than those with the SP 1 model. Therefore, this work shows that the FD-SP 3 is an efficient model for optical tomographic imaging of small-volume media with non-diffuse properties both in terms of computational time and accuracy as it requires significantly lower CPU time than the FD-ERT (S 12 ) and also it is more accurate than the FD-SP 1 .
NASA Technical Reports Server (NTRS)
Strawa, Anthony W.; Hallar, A. G.; Arnott, W. P.; Covert, D.; Elleman, R.; Ogren, J.; Schmid, B.; Luu, A.
2004-01-01
The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult to measure aerosol properties. One of the main purposes of the DOE Aerosol Intensive Operating Period (IOP) flown in May, 2003 was to assess our ability to measure absorption coefficient in situ. This paper compares measurements of aerosol optical properties made during the IOP. Measurements of aerosol absorption coefficient were made by Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter (U. Washington) and on the DOE Cessna 172 (NOAA-C,MDL). Aerosol absorption coefficient was also measured by a photoacoustic instrument (DRI) that was operated on an aircraft for the first time during the IOP. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-AkC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Measurements of absorption coefficient from all of these instruments during appropriate periods are compared. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model.
NASA Astrophysics Data System (ADS)
Petta, V.; Pharmakakis, N.; Papatheodorou, G. N.; Yannopoulos, S. N.
2008-06-01
We present a detailed dynamic light scattering study of the phase separation in the ocular lens emerging during cold cataract development. Cold cataract is a phase separation effect that proceeds via spinodal decomposition of the lens cytoplasm with cooling. The intensity autocorrelation functions of the lens protein content are analyzed with the aid of two methods, providing information on the populations and dynamics of the scattering elements associated with cold cataract. It is found that the temperature dependence of many measurable parameters changes appreciably at the characteristic temperature ˜16±1°C which is associated with the onset of cold cataract. By extending the temperature range of this work to previously inaccessible regimes, i.e., well below the phase separation or coexistence curve at Tcc , we have been able to accurately determine the temperature dependence of the collective and self-diffusion coefficients of proteins near the spinodal. The analysis showed that the dynamics of proteins bears some resemblance to the dynamics of structural glasses, where the apparent activation energy for particle diffusion increases below Tcc , indicating a highly cooperative motion. Application of ideas developed for studying the critical dynamics of binary protein-solvent mixtures, as well as the use of a modified Arrhenius equation, enabled us to estimate the spinodal temperature Tsp of the lens nucleus. The applicability of dynamic light scattering as a noninvasive, early-diagnostic tool for ocular diseases is also demonstrated in light of the findings of the present paper.
NASA Astrophysics Data System (ADS)
Tsao, Chao-hsi; Freniere, Edward R.; Smith, Linda
2009-02-01
The use of white LEDs for solid-state lighting to address applications in the automotive, architectural and general illumination markets is just emerging. LEDs promise greater energy efficiency and lower maintenance costs. However, there is a significant amount of design and cost optimization to be done while companies continue to improve semiconductor manufacturing processes and begin to apply more efficient and better color rendering luminescent materials such as phosphor and quantum dot nanomaterials. In the last decade, accurate and predictive opto-mechanical software modeling has enabled adherence to performance, consistency, cost, and aesthetic criteria without the cost and time associated with iterative hardware prototyping. More sophisticated models that include simulation of optical phenomenon, such as luminescence, promise to yield designs that are more predictive - giving design engineers and materials scientists more control over the design process to quickly reach optimum performance, manufacturability, and cost criteria. A design case study is presented where first, a phosphor formulation and excitation source are optimized for a white light. The phosphor formulation, the excitation source and other LED components are optically and mechanically modeled and ray traced. Finally, its performance is analyzed. A blue LED source is characterized by its relative spectral power distribution and angular intensity distribution. YAG:Ce phosphor is characterized by relative absorption, excitation and emission spectra, quantum efficiency and bulk absorption coefficient. Bulk scatter properties are characterized by wavelength dependent scatter coefficients, anisotropy and bulk absorption coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter
Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less
Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; ...
2015-12-11
Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less
The theory behind the full scattering profile
NASA Astrophysics Data System (ADS)
Feder, Idit; Duadi, Hamootal; Fixler, Dror
2018-02-01
Optical methods for extracting properties of tissues are commonly used. These methods are non-invasive, cause no harm to the patient and are characterized by high speed. The human tissue is a turbid media hence it poses a challenge for different optical methods. In addition the analysis of the emitted light requires calibration for achieving accuracy information. Most of the methods analyze the reflected light based on their phase and amplitude or the transmitted light. We suggest a new optical method for extracting optical properties of cylindrical tissues based on their full scattering profile (FSP), which means the angular distribution of the reemitted light. The FSP of cylindrical tissues is relevant for biomedical measurement of fingers, earlobes or pinched tissues. We found the iso-pathlength (IPL) point, a point on the surface of the cylinder medium where the light intensity remains constant and does not depend on the reduced scattering coefficient of the medium, but rather depends on the spatial structure and the cylindrical geometry. However, a similar behavior was also previously reported in reflection from a semi-infinite medium. Moreover, we presented a linear dependency between the radius of the tissue and the point's location. This point can be used as a self-calibration point and thus improve the accuracy of optical tissue measurements. This natural phenomenon has not been investigated before. We show this phenomenon theoretically, based on the diffusion theory, which is supported by our simulation results using Monte Carlo simulation.
NASA Astrophysics Data System (ADS)
Chen, Jianjun; Ying, Qi; Kleeman, Michael J.
2009-12-01
Gases and particulate matter predictions from the UCD/CIT air quality model were used in a visibility model to predict source contributions to visual impairment in the San Joaquin Valley (SJV), the southern portion of California's Central Valley, during December 2000 and January 2001. Within the SJV, daytime (0800-1700 PST) light extinction was dominated by scattering associated with airborne particles. Measured daytime particle scattering coefficients were compared to predicted values at approximately 40 locations across the SJV after correction for the increased temperature and decreased relative humidity produced by "smart heaters" placed upstream of nephelometers. Mean fractional bias and mean fractional error were -0.22 and 0.65, respectively, indicating reasonable agreement between model predictions and measurements. Particulate water, nitrate, organic matter, and ammonium were the major particulate species contributing to light scattering in the SJV. Daytime light extinction in the SJV averaged between December 25, 2000 and January 7, 2001 was mainly associated with animal ammonia sources (28%), diesel engines (18%), catalyst gasoline engines (9%), other anthropogenic sources (9%), and wood smoke (7%) with initial and boundary conditions accounting for 13%. The source apportionment results from this study apply to wintertime conditions when airborne particulate matter concentrations are typically at their annual maximum. Further study would be required to quantify source contributions to light extinction in other seasons.
NASA Astrophysics Data System (ADS)
Eddowes, M. H.; Mills, T. N.; Delpy, D. T.
1995-05-01
A Monte Carlo model of light backscattered from turbid media has been used to simulate the effects of weak localization in biological tissues. A validation technique is used that implies that for the scattering and absorption coefficients and for refractive index mismatches found in tissues, the Monte Carlo method is likely to provide more accurate results than the methods previously used. The model also has the ability to simulate the effects of various illumination profiles and other laboratory-imposed conditions. A curve-fitting routine has been developed that might be used to extract the optical coefficients from the angular intensity profiles seen in experiments on turbid biological tissues, data that could be obtained in vivo.
Asymptotic Solutions for Optical Properties of Large Particles with Strong Absorption
NASA Technical Reports Server (NTRS)
Yang, Ping; Gao, Bo-Cai; Baum, Bryan A.; Hu, Yong X.; Wiscombe, Warren J.; Mishchenko, Michael I.; Winker, Dave M.; Nasiri, Shaima L.; Einaudi, Franco (Technical Monitor)
2000-01-01
For scattering calculations involving nonspherical particles such as ice crystals, we show that the transverse wave condition is not applicable to the refracted electromagnetic wave in the context of geometric optics when absorption is involved. Either the TM wave condition (i.e., where the magnetic field of the refracted wave is transverse with respect to the wave direction) or the TE wave condition (i.e., where the electric field is transverse with respect to the propagating direction of the wave) may be assumed for the refracted wave in an absorbing medium to locally satisfy the electromagnetic boundary condition in the ray tracing calculation. The wave mode assumed for the refracted wave affects both the reflection and refraction coefficients. As a result, a nonunique solution for these coefficients is derived from the electromagnetic boundary condition. In this study we have identified the appropriate solution for the Fresnel reflection/refraction coefficients in light scattering calculation based on the ray tracing technique. We present the 3 x 2 refraction or transmission matrix that completely accounts for the inhomogeneity of the refracted wave in an absorbing medium. Using the Fresnel coefficients for an absorbing medium, we derive an asymptotic solution in an analytical format for the scattering properties of a general polyhedral particle. Numerical results are presented for hexagonal plates and columns with both preferred and random orientations. The asymptotic theory can produce reasonable accuracy in the phase function calculations in the infrared window region (wavelengths near 10 micron) if the particle size (in diameter) is on the order of 40 micron or larger. However, since strong absorption is assumed in the computation of the single-scattering albedo in the asymptotic theory, the single scattering albedo does not change with variation of the particle size. As a result, the asymptotic theory can lead to substantial errors in the computation of single-scattering albedo for small and moderate particle sizes. However, from comparison of the asymptotic results with the FDTD solution, it is expected that a convergence between the FDTD results and the asymptotic theory results can be reached when the particle size approaches 200 micron. We show that the phase function at side-scattering and backscattering angles is insensitive to particle shape if the random orientation condition is assumed. However, if preferred orientations are assumed for particles, the phase function has a strong dependence on scattering azimuthal angle. The single-scattering albedo also shows very strong dependence on the inclination angle of incident radiation with respect to the rotating axis for the preferred particle orientations.
Liaparinos, Panagiotis F; Kandarakis, Ioannis S; Cavouras, Dionisis A; Delis, Harry B; Panayiotakis, George S
2007-05-01
Lu2SiO5: Ce (LSO) scintillator is a relatively new luminescent material which has been successfully applied in positron emission tomography systems. Since it has been recently commercially available in powder form, it could be of value to investigate its performance for use in x-ray projection imaging as both physical and scintillating properties indicate a promising material for such applications. In the present study, a custom and validated Monte Carlo simulation code was used in order to examine the performance of LSO, under diagnostic radiology (mammography and general radiography) conditions. The Monte Carlo code was based on a model using Mie scattering theory for the description of light attenuation. Imaging characteristics, related to image brightness, spatial resolution and noise of LSO screens were predicted using only physical parameters of the phosphor. The overall performance of LSO powder phosphor screens was investigated in terms of the: (i) quantum detection efficiency (ii) emitted K-characteristic radiation (iii) luminescence efficiency (iv) modulation transfer function (v) Swank factor and (vi) zero-frequency detective quantum efficiency [DQE(0)]. Results were compared to the traditional rare-earth Gd2O2S:Tb (GOS) phosphor material. The relative luminescence efficiency of LSO phosphor was found inferior to that of GOS. This is due to the lower intrinsic conversion efficiency of LSO (0.08 instead of 0.15 of GOS) and the relatively high light extinction coefficient mext of this phosphor (0.239 mircom(-1) instead of 0.218 /microm(-1) for GOS). However, the property of increased light extinction combined with the rather sharp angular distribution of scattered light photons (anisotropy factor g=0.624 for LSO instead of 0.494 for GOS) reduce lateral light spreading and improve spatial resolution. In addition, LSO screens were found to exhibit better x-ray absorption as well as higher signal to noise transfer properties in the energy range from 18 keV up to 50.2 keV (e.g. DQE(0)=0.62 at 18 keV and for 34 mg/cm2, instead of 0.58 for GOS). The results indicate that certain optical properties of LSO (optical extinction coefficient, scattering anisotropy factor) combined with the relatively high x-ray coefficients, make this material a promising phosphor which, under appropriate conditions, could be considered for use in x-ray projection imaging detectors.
Near-infrared spectroscopy of renal tissue in vivo
NASA Astrophysics Data System (ADS)
Grosenick, Dirk; Steinkellner, Oliver; Wabnitz, Heidrun; Macdonald, Rainer; Niendorf, Thoralf; Cantow, Kathleen; Flemming, Bert; Seeliger, Erdmann
2013-03-01
We have developed a method to quantify hemoglobin concentration and oxygen saturation within the renal cortex by near-infrared spectroscopy. A fiber optic probe was used to transmit the radiation of three semiconductor lasers at 690 nm, 800 nm and 830 nm to the tissue, and to collect diffusely remitted light at source-detector separations from 1 mm to 4 mm. To derive tissue hemoglobin concentration and oxygen saturation of hemoglobin the spatial dependence of the measured cw intensities was fitted by a Monte Carlo model. In this model the tissue was assumed to be homogeneous. The scaling factors between measured intensities and simulated photon flux were obtained by applying the same setup to a homogeneous semi-infinite phantom with known optical properties and by performing Monte Carlo simulations for this phantom. To accelerate the fit of the tissue optical properties a look-up table of the simulated reflected intensities was generated for the needed range of absorption and scattering coefficients. The intensities at the three wavelengths were fitted simultaneously using hemoglobin concentration, oxygen saturation, the reduced scattering coefficient at 800 nm and the scatter power coefficient as fit parameters. The method was employed to study the temporal changes of renal hemoglobin concentration and blood oxygenation on an anesthetized rat during a short period of renal ischemia induced by aortic occlusion and during subsequent reperfusion.
NASA Astrophysics Data System (ADS)
Wang, Chiao Yi; Yu, Ting Wen; Sung, Kung Bin
2018-02-01
Estimating optical properties of tissues is a crucial step to model photon migration in tissue, facilitate the design of the probe geometry, better interpret data measured from tissue and predict photon energy distributions in tissue for various diagnostic and therapeutic applications. Diffuse reflectance spectroscopy (DRS) using visible and near-infrared light is a well-known method for estimating optical properties of tissues. For estimating optical properties of muscles, most existing researches have used integrating spheres for ex-vivo measurements. However, due to inter-subject variability and sitespecific conditions, an in-vivo approach can provide more accurate estimations of muscle absorption and scattering coefficients, which is important for the tomographic reconstruction of changes in the absorption or fluorescence in tissue. In this study, we used DRS with wavelengths between 600 nm and 800 nm and a fiber bundle with source-to-detector separations in the range of 0.18-0.35 cm to quantify wavelength-dependent scattering and absorption coefficients of human muscles in vivo with an inverse Monte Carlo model. Reflectance spectra were measured on the neck and the upper arm of one volunteer. After calibrating spectra with tissue phantoms made of Intralipid and India ink, we estimated scattering and absorption coefficients of muscles. The results are compared to those measured ex vivo in the literature.
NASA Astrophysics Data System (ADS)
Otsuki, Soichi
2018-04-01
Polarimetric imaging of absorbing, strongly scattering, or birefringent inclusions is investigated in a negligibly absorbing, moderately scattering, and isotropic slab medium. It was proved that the reduced effective scattering Mueller matrix is exactly calculated from experimental or simulated raw matrices even if the medium is anisotropic and/or heterogeneous, or the outgoing light beam exits obliquely to the normal of the slab surface. The calculation also gives a reasonable approximation of the reduced matrix using a light beam with a finite diameter for illumination. The reduced matrix was calculated using a Monte Carlo simulation and was factorized in two dimensions by the Lu-Chipman polar decomposition. The intensity of backscattered light shows clear and modestly clear differences for absorbing and strongly scattering inclusions, respectively, whereas it shows no difference for birefringent inclusions. Conversely, some polarization parameters, for example, the selective depolarization coefficients exhibit only a slight difference for the absorbing inclusions, whereas they showed clear difference for the strongly scattering or birefringent inclusions. Moreover, these quantities become larger with increasing the difference in the optical properties of the inclusions relative to the surrounding medium. However, it is difficult to recognize inclusions that buried at the depth deeper than 3 mm under the surface. Thus, the present technique can detect the approximate shape and size of these inclusions, and considering the depth where inclusions lie, estimate their optical properties. This study reveals the possibility of the polarization-sensitive imaging of turbid inhomogeneous media using a pencil beam for illumination.
Infrared singularities of scattering amplitudes in perturbative QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becher, Thomas; Neubert, Matthias
2013-11-01
An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficientsmore » of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.« less
Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model
NASA Astrophysics Data System (ADS)
Wang, Jia Jie; Han, Yi Ping; Chang, Jiao Yong; Chen, Zhu Yang
2018-02-01
Within the framework of generalized Lorenz-Mie theory (GLMT), an eccentrically stratified dielectric sphere model illuminated by an arbitrarily incident Bessel beam is applied to investigate the scattering characteristics of a single nucleated biological cell. The Bessel beam propagating in an arbitrary direction is expanded in terms of vector spherical wave functions (VSWFs), where the beam shape coefficients (BSCs) are calculated rigorously in a closed analytical form. The effects of the half-cone angle of Bessel beam, the location of the particle in the beam, the size ratio of nucleus to cell, and the location of the nucleus inside the cell on the scattering properties of a nucleated cell are analyzed. The results provide useful references for optical diagnostic and imaging of particle having nucleated structure.
Chirp optical coherence tomography of layered scattering media.
Haberland, U H; Blazek, V; Schmitt, H J
1998-07-01
A new noninvasive technique that reveals cross sectional images of scattering media is presented. It is based on a continuous wave frequency modulated radar, but uses a tunable laser in the near infrared. As the full width at half maximum resolution of 16 μm is demonstrated with an external cavity laser, the chirp optical coherence tomography becomes an alternative to conventional short coherence tomography with the advantage of a simplified optical setup. The analysis of two-layer solid phantoms shows that the backscattered light gets stronger with decreasing anisotropic factor and increasing scattering coefficient, as predicted by Monte Carlo simulations. By introducing a two-phase chirp sequence, the combination of lateral resolved perfusion and depth resolved structure is shown. © 1998 Society of Photo-Optical Instrumentation Engineers.
Long-term variability of aerosol optical properties and radiative effects in Northern Finland
NASA Astrophysics Data System (ADS)
Lihavainen, Heikki; Hyvärinen, Antti; Asmi, Eija; Hatakka, Juha; Viisanen, Yrjö
2017-04-01
We introduce long term dataset of aerosol scattering and absorption properties and combined aerosol optical properties measured in Pallas Atmosphere-Ecosystem Supersite in Norhern Finland. The station is located 170 km north of the Arctic Circle. The station is affected by both pristine Arctic air masses as well as long transported air pollution from northern Europe. We studied the optical properties of aerosols and their radiative effects in continental and marine air masses, including seasonal cycles and long-term trends. The average (median) scattering coefficient, backscattering fraction, absorption coefficient and single scattering albedo at the wavelength of 550 nm were 7.9 (4.4) 1/Mm, 0.13 (0.12), 0.74 (0.35) 1/Mm and 0.92 (0.93), respectively. We observed clear seasonal cycles in these variables, the scattering coefficient having high values during summer and low in fall, and absorption coefficient having high values during winter and low in fall. We found that the high values of the absorption coefficient and low values of the single scattering albedo were related to continental air masses from lower latitudes. These aerosols can induce an additional effect on the surface albedo and melting of snow. We observed the signal of the Arctic haze in marine (northern) air masses during March and April. The haze increased the value of the absorption coefficient by almost 80% and that of the scattering coefficient by about 50% compared with the annual-average values. We did not observe any long-term trend in the scattering coefficient, while our analysis showed a clear decreasing trend in the backscattering fraction and scattering Ångström exponent during winter. We also observed clear relationship with temperature and aerosol scattering coefficient. We will present also how these different features affects to aerosol direct radiative forcing.
Orientation dynamics in isotropic phases of model oligofluorenes: glass or liquid crystal.
Somma, E; Chi, C; Loppinet, B; Grinshtein, J; Graf, R; Fytas, G; Spiess, H W; Wegner, G
2006-05-28
Orientation molecular dynamics were investigated in a series of "defect-free" oligofluorenes by depolarized dynamic light scattering and dynamic NMR spectroscopy. Typical liquid crystalline pretransitional dynamics were observed upon cooling the isotropic phase to the liquid crystalline phase with strong increase of the scattered intensity and slowing down of the characteristic time of the probed collective relaxation. This is well accounted for by the Landau-de Gennes theory, however, with a strong temperature dependence of the viscosity coefficient, reflecting the proximity of the glass transition. For the trimer the two transitions almost overlap and the molecular orientation coincide with the alpha-relaxation associated with the glass transition. The NMR measurements confirm that the time scale of the dynamics is completely governed by the glass process, yet the geometry of the motion is anisotropic, yielding order parameters ranging from 0.15 to 0.25 for the long axis in the liquid crystalline phase. The glass transition is therefore geometrically restricted with poorly ordered mesophase which is consistent with the weak transverse phonons in the light scattering experiment down to Tg+20 K.
Online determination of biophysical parameters of mucous membranes of a human body
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2013-07-01
We have developed a method for online determination of biophysical parameters of mucous membranes (MMs) of a human body (transport scattering coefficient, scattering anisotropy factor, haemoglobin concentration, degrees of blood oxygenation, average diameter of capillaries with blood) from measurements of spectral and spatial characteristics of diffuse reflection. The method is based on regression relationships between linearly independent components of the measured light signals and the unknown parameters of MMs, obtained by simulation of the radiation transfer in the MM under conditions of its general variability. We have proposed and justified the calibration-free fibre-optic method for determining the concentration of haemoglobin in MMs by measuring the light signals diffusely reflected by the tissue in four spectral regions at two different distances from the illumination spot. We have selected the optimal wavelengths of optical probing for the implementation of the method.
Apparatus and method for sensing motion in a microelectro-mechanical system
Dickey, Fred M.; Holswade, Scott C.
1999-01-01
An apparatus and method are disclosed for optically sensing motion in a microelectromechanical system (also termed a MEMS device) formed by surface micromachining or LIGA. The apparatus operates by reflecting or scattering a light beam off a corrugated surface (e.g. gear teeth or a reference feature) of a moveable member (e.g. a gear, rack or linkage) within the MEMS device and detecting the reflected or scattered light. The apparatus can be used to characterize a MEMS device, measuring one or more performance characteristic such as spring and damping coefficients, torque and friction, or uniformity of motion of the moveable member. The apparatus can also be used to determine the direction and extent of motion of the moveable member; or to determine a particular mechanical state that a MEMS device is in. Finally, the apparatus and method can be used for providing feedback to the MEMS device to improve performance and reliability.
Oxygen Nanobubble Tracking by Light Scattering in Single Cells and Tissues.
Bhandari, Pushpak; Wang, Xiaolei; Irudayaraj, Joseph
2017-03-28
Oxygen nanobubbles (ONBs) have significant potential in targeted imaging and treatment in cancer diagnosis and therapy. Precise localization and tracking of single ONBs is demonstrated based on hyperspectral dark-field microscope (HSDFM) to image and track single oxygen nanobubbles in single cells. ONBs were proposed as promising contrast-generating imaging agents due to their strong light scattering generated from nonuniformity of refractive index at the interface. With this powerful platform, we have revealed the trajectories and quantities of ONBs in cells, and demonstrated the relation between the size and diffusion coefficient. We have also evaluated the presence of ONBs in the nucleus with respect to an increase in incubation time and have quantified the uptake in single cells in ex vivo tumor tissues. Our results demonstrate that HSDFM can be a versatile platform to detect and measure cellulosic nanoparticles at the single-cell level and to assess the dynamics and trajectories of this delivery system.
Thermal diffusion behavior of hard-sphere suspensions.
Ning, Hui; Buitenhuis, Johan; Dhont, Jan K G; Wiegand, Simone
2006-11-28
We studied the thermal diffusion behavior of octadecyl coated silica particles (R(h)=27 nm) in toluene between 15.0 and 50.0 degrees C in a volume fraction range of 1%-30% by means of thermal diffusion forced Rayleigh scattering. The colloidal particles behave like hard spheres at high temperatures and as sticky spheres at low temperatures. With increasing temperature, the obtained Soret coefficient S(T) of the silica particles changed sign from negative to positive, which implies that the colloidal particles move to the warm side at low temperatures, whereas they move to the cold side at high temperatures. Additionally, we observed also a sign change of the Soret coefficient from positive to negative with increasing volume fraction. This is the first colloidal system for which a sign change with temperature and volume fraction has been observed. The concentration dependence of the thermal diffusion coefficient of the colloidal spheres is related to the colloid-colloid interactions, and will be compared with an existing theoretical description for interacting spherical particles. To characterize the particle-particle interaction parameters, we performed static and dynamic light scattering experiments. The temperature dependence of the thermal diffusion coefficient is predominantly determined by single colloidal particle properties, which are related to colloid-solvent molecule interactions.
Experimental study on the sensitive depth of backwards detected light in turbid media.
Zhang, Yunyao; Huang, Liqing; Zhang, Ning; Tian, Heng; Zhu, Jingping
2018-05-28
In the recent past, optical spectroscopy and imaging methods for biomedical diagnosis and target enhancing have been widely researched. The challenge to improve the performance of these methods is to know the sensitive depth of the backwards detected light well. Former research mainly employed a Monte Carlo method to run simulations to statistically describe the light sensitive depth. An experimental method for investigating the sensitive depth was developed and is presented here. An absorption plate was employed to remove all the light that may have travelled deeper than the plate, leaving only the light which cannot reach the plate. By measuring the received backwards light intensity and the depth between the probe and the plate, the light intensity distribution along the depth dimension can be achieved. The depth with the maximum light intensity was recorded as the sensitive depth. The experimental results showed that the maximum light intensity was nearly the same in a short depth range. It could be deduced that the sensitive depth was a range, rather than a single depth. This sensitive depth range as well as its central depth increased consistently with the increasing source-detection distance. Relationships between sensitive depth and optical properties were also investigated. It also showed that the reduced scattering coefficient affects the central sensitive depth and the range of the sensitive depth more than the absorption coefficient, so they cannot be simply added as reduced distinct coefficients to describe the sensitive depth. This study provides an efficient method for investigation of sensitive depth. It may facilitate the development of spectroscopy and imaging techniques for biomedical diagnosis and underwater imaging.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2014-03-01
We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. The estimated images of absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of reduced scattering coefficients showed a broad scattering spectrum, exhibiting larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. In vivo experiments with exposed brain of rats during CSD confirmed the possibility of the method to evaluate both hemodynamics and changes in tissue morphology due to electrical depolarization.
Tromberg, B.J.; Tsay, T.T.; Berns, M.W.; Svaasand, L.O.; Haskell, R.C.
1995-06-13
Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid. 14 figs.
Tromberg, Bruce J.; Tsay, Tsong T.; Berns, Michael W.; Svaasand, Lara O.; Haskell, Richard C.
1995-01-01
Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid.
NASA Astrophysics Data System (ADS)
Loria Salazar, S.; Arnott, W. P.; Moosmuller, H.; Colucci, D.
2012-12-01
Reno, Nevada, USA is subject to typical urban aerosol, wind-blown dust, and occasional biomass burning smoke from anthropogenic and natural fires. Reno has complex air flow at levels relevant for aerosol transport. At times recirculating mountain and urban flow arrives from the Sierra Nevada, San Francisco, CA and Sacramento, CA. The urban plumes are further modified by biogenic forest emissions and secondary aerosol formation during transport over the Sierra Nevada Mountains to Reno. This complicates the use of MODIS aerosol optical depth (AOD) for air quality measurements in Reno. Our laboratory at the University of Nevada Reno has collocated multispectral photoacoustic instruments and reciprocal nephelometers to measure light absorption and light scattering coefficients as well as an AERONET operated CIMEL CE-318 ground-based sunphotometer. Preliminary measurements from August 2011 indicate substantially larger Cimel AOD than could be accounted for by use of the in situ aerosol extinction measurements combined with mixing height estimate. This poster presents new results comparing AERONET AOD and single scattering albedo and MODIS AOD with in situ measurements for summer and fall 2012, along with extensive back trajectory analysis, to evaluate conditions when satellite measurement may be useful for air pollution applications in Reno.
Progress in radar snow research. [Brookings, South Dakota
NASA Technical Reports Server (NTRS)
Stiles, W. H.; Ulaby, F. T.; Fung, A. K.; Aslam, A.
1981-01-01
Multifrequency measurements of the radar backscatter from snow-covered terrain were made at several sites in Brookings, South Dakota, during the month of March of 1979. The data are used to examine the response of the scattering coefficient to the following parameters: (1) snow surface roughness, (2) snow liquid water content, and (3) snow water equivalent. The results indicate that the scattering coefficient is insensitive to snow surface roughness if the snow is drv. For wet snow, however, surface roughness can have a strong influence on the magnitude of the scattering coefficient. These observations confirm the results predicted by a theoretical model that describes the snow as a volume of Rayleig scatterers, bounded by a Gaussian random surface. In addition, empirical models were developed to relate the scattering coefficient to snow liquid water content and the dependence of the scattering coefficient on water equivalent was evaluated for both wet and dry snow conditions.
NASA Astrophysics Data System (ADS)
Xu, Jin; Bergin, M. H.; Yu, X.; Liu, G.; Zhao, J.; Carrico, C. M.; Baumann, K.
In order to understand the possible influence of aerosols on the environment in the agricultural Yangtze delta region of China, a one-month field sampling campaign was carried out during November 1999 in Linan, China. Measurements included the aerosol light scattering coefficient at 530 nm, σsp, measured at both dry relative humidity (RH<40%) and under ambient conditions (sample RH=63±19%), and the absorption coefficient at 565 nm, σap, for aerosol particles having diameters <2.5 μm (PM 2.5). At the same time, daily filter samples of PM 2.5 as well as aerosol particles having diameters <10 μm (PM 10) were collected and analyzed for mass, major ion, organic compound (OC), and elemental carbon (EC) concentrations in order to determine which anthropogenic chemical species were primarily responsible for aerosol light extinction. The aerosol loading in the rural Yangtze delta region was comparable to highly polluted urban areas, with mean and standard deviation (S.D.) values for σsp, σap and PM 2.5 of 353 Mm -1 (202 Mm -1), 23 Mm -1 (14 Mm -1) and 90 μg m -3 (47 μg m -3), respectively. A clear diurnal pattern was observed in σsp and σap with minimum values occurring in the middle of the day, most likely associated with the maximum midday mixing height. The ratio of the change in light scattering coefficient at ambient RH to that at controlled RH (RH<40%), Fσsp (RH), indicates that condensed water typically contributed ˜40% to the light scattering budget in this region. The mass scattering efficiency of the dry aerosol, E scat_2.5, and mass absorption efficiency of EC, E abs_2.5, have mean and S.D. values of 4.0 m 2 g -1 (0.4 m 2 g -1) and 8.6 m 2 g -1 (7.0 m 2 g -1), respectively. PM 2.5 concentrations in Linan and two other locations in the Yangtze delta, Sheshan and Changshu (which have monthly mean values ranging from ˜80 to 110 μg m -3), are all significantly higher than the proposed 24-h average US PM 2.5 NAAQS of 65 μg m -3. Organic compounds are the dominant chemical species accounting for ˜50% of the PM 2.5 mass at all three sites. The results indicate that aerosol loadings in the agricultural Yangtze delta region of China are relatively high, and suggest that aerosols have a significant impact on visibility, climate, crop production, and human health in this region.
Sheet-like chiro-optical material designs based C(Y) surfaces
NASA Astrophysics Data System (ADS)
Saba, M.; Robisch, A.-L.; Thiel, M.; Hess, O.; Schroeder-Turk, Gerd E.
2017-04-01
A spatial structure for which mirror reflection cannot be represented by rotations and translations is chiral. For photonic crystals and metamaterials, chirality implies the possibility of circular dichroism, that is, that the propagation of left-circularly polarized light may differ from that of right-circularly polarized light. Here we draw attention to chiral sheet- or surface-like geometries based on chiral triply-periodic minimal surfaces. Specifically we analyse two photonic crystal designs based on the C(Y) minimal surface, by band structure analysis and by scattering matrix calculations of the reflection coefficient, for high-dielectric contrasts.
Backscattering from a randomly rough dielectric surface
NASA Technical Reports Server (NTRS)
Fung, Adrian K.; Li, Zongqian; Chen, K. S.
1992-01-01
A backscattering model for scattering from a randomly rough dielectric surface is developed based on an approximate solution of a pair of integral equations for the tangential surface fields. Both like and cross-polarized scattering coefficients are obtained. It is found that the like polarized scattering coefficients contain two types of terms: single scattering terms and multiple scattering terms. The single scattering terms in like polarized scattering are shown to reduce the first-order solutions derived from the small perturbation method when the roughness parameters satisfy the slightly rough conditions. When surface roughnesses are large but the surface slope is small, only a single scattering term corresponding to the standard Kirchhoff model is significant. If the surface slope is large, the multiple scattering term will also be significant. The cross-polarized backscattering coefficients satisfy reciprocity and contain only multiple scattering terms. The difference between vertical and horizontal scattering coefficients is found to increase with the dielectric constant and is generally smaller than that predicted by the first-order small perturbation model. Good agreements are obtained between this model and measurements from statistically known surfaces.
Feasibility of Prostate Cancer Diagnosis by Transrectal Photoacoustic Imaging
2014-05-01
cancer imaging [1]. Currently, most PA imaging systems adopt a nanosecond pulsed laser with high pulse energy because a short light pulse can...health, including prostate cancer detection [3]. A nanosecond pulsed laser with high pulse energy is usually extremely expensive (from tens to...scattering coefficients of 0.04 cm-1 and 8.4 cm-1, respectively, measured with an ISS Oximeter ). An optically and acoustically transparent tube was filled
Establishing the diffuse correlation spectroscopy signal relationship with blood flow.
Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A
2016-07-01
Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.
Characterization of light scattering in nematic droplet-polymer films
NASA Astrophysics Data System (ADS)
Kinugasa, Naoki; Yano, Yuichi; Takigawa, Akio; Kawahara, Hideo
1992-06-01
The optical properties of nematic droplet-polymer films were studied both in the on and off state using Lambert-Beer''s law to characterize their scattering phenomena. For the preparation of the devices, NCAP process was employed with the different diameter, distribution, shape, and density of nematic droplets. Their cell thickness and refractive indices concerning the birefringence of liquid crystals were also controlled. The results showed that the scattering phenomena of nematic droplet-polymer films were likely caused by two types of features. One, related to the surface area of nematic droplets, was the difference of the refractive indices in the interface between liquid crystals and polymer matrix. The other, related to the liquid crystal volume inside the nematic droplets, was the birefringence of liquid crystals. Considering such relations, the extinction coefficient of Lambert-Beer''s law could be described by the sum of the area in the interface multiplied by the difference of the refractive indices between two materials and the liquid crystal volume multiplied by their birefringence. Furthermore, it was found their parallel transmittance in the off state and haze ratio in the on state were well characterized by such extinction coefficient of Lambert-Beer''s law.
NASA Astrophysics Data System (ADS)
Kobayashi, Masaki; Kikuchi, Naoto; Sato, Akihiro
2015-01-01
This letter proposes and demonstrates ultrasound-combined optical imaging in dense scattering media. A peroxyoxalate chemiluminescence system that includes fluorophores to chemically excite the pigment is stimulated by ultrasound irradiation with power of less than 0.14 W/cm2. Using focused ultrasound, the chemiluminescence is selectively spatially enhanced, which leads to imaging of the pigment when embedded in a light-scattering medium via scanning of the focal point. The ultrasonically enhanced intensity of the chemiluminescence depends on the base intensity of the chemiluminescence without the applied ultrasound irradiation, which thereby enables quantitative determination of the fluorophore concentration. The authors demonstrate the potential of this method to resolve chemiluminescent targets in a dense scattering medium that is comparable to biological tissue. An image was acquired of a chemiluminescent target that included indocyanine green as the fluorophore embedded at a depth of 20 mm in an Intralipid-10% 200 ml/l solution scattering medium (the reduced scattering coefficient was estimated to be approximately 1.3 mm-1), indicating the potential for expansion of this technique for use in biological applications.
View From a Megacity: Aerosol Light Absorption and Scattering at Four Sites in and Near Mexico City.
NASA Astrophysics Data System (ADS)
Paredes-Miranda, G.; Arnott, W. P.; Gaffney, J. S.; Marley, N. A.
2006-12-01
As part of the Megacity Impacts on Regional and Global Environments, MIRAGE-Mex deployment to Mexico City in the period of 30 days, March 2006, a suite of photoacoustic spectrometers (PAS) were installed to measure at ground level the light absorption and scattering by aerosols at four sites: an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP), a suburban site at the Technological University of Tecamac, a rural site at "La Biznaga" ranch, and a site at the Paseo de Cortes (altitude 3,810 meters ASL) in the rural area above Amecameca in the State of Mexico, on the saddle between the volcanoes Popocatepetl and Iztaccihuatl. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions while the other sites provided characterization of the plume, mixed in with any local sources. The second and third sites are north of Mexico City, and the fourth site is south. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Instruments at the second and third sites operate at 870 nm, and the one at the fourth site at 780 nm. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 40 and 250 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed. Comparisons with TSI nephelometer scattering and Aetholemeter absorption measurements at the T0 site will be presented. We will present a broad overview of the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site. Insight on the dynamical connections will be discussed.
NASA Astrophysics Data System (ADS)
Kirchstetter, T.; Hadley, O. L.; Preble, C.; Gadgil, A.
2010-12-01
Traditional cooking methods in developing regions of the world generate gas and particle phase pollutants that endanger the lives of more than a billion people and contribute appreciably to the burden of climate-changing particles in the atmosphere. This presentation compares pollutant emissions from the traditional “three-stone fire” and an improved cookstove developed for refugees in Darfur: the Berkeley-Darfur Stove (BDS). The BDS was designed for increased fuel efficiency to decrease the risk of assault that women often face when gathering fuel wood. Reduced pollutant exposure and climate impact are potential co-benefits. Testing of these stoves at the Lawrence Berkeley National Laboratory facility includes 1-Hz measurements of concentrations of particulate matter, black carbon, carbon monoxide, and carbon dioxide; coefficients of particle light absorption and scattering; and absorption Angstrom exponent. Absorption and scattering coefficients were measured at 532 nm using a photoacoustic absorption instrument equipped with a reciprocal nephelometer. The BDS heated food faster and consumed less wood in cooking tests compared to the three-stone fire. The BDS emitted less carbon monoxide and particulate matter but comparable mass of black carbon compared to the three-stone fire for the same cooking task. Values of the absorption Angstrom exponent ranged from about 1 - 3, indicating the emission of both black carbon and light-absorbing organic carbon (i.e., brown carbon). Values of (dry) aerosol single scattering albedo were mostly in the range of 0.25 - 0.55, indicating that the emitted particles tend to absorb more light than they scatter. Our analysis considered the variability of pollutant emissions during different phases of the fire. Particulate matter emissions were highest during the first several minutes of cooking, which included igniting the wood, whereas carbon monoxide emissions were highest during the last several minutes of cooking when smoldering became more dominant. Comparison of photoacoustic absorption and aethalometer black carbon provided an easy means of correcting black carbon concentrations, which were low by a factor of 2 at the end of the aethalometer sampling cycle if uncorrected.
Yoshida, Keiichiro; Nishidate, Izumi; Ishizuka, Tomohiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2015-05-01
In order to estimate multispectral images of the absorption and scattering properties in the cerebral cortex of in vivo rat brain, we investigated spectral reflectance images estimated by the Wiener estimation method using a digital RGB camera. A Monte Carlo simulation-based multiple regression analysis for the corresponding spectral absorbance images at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm) was then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentrations of oxygenated hemoglobin and that of deoxygenated hemoglobin were estimated as the absorption parameters, whereas the coefficient a and the exponent b of the reduced scattering coefficient spectrum approximated by a power law function were estimated as the scattering parameters. The spectra of absorption and reduced scattering coefficients were reconstructed from the absorption and scattering parameters, and the spectral images of absorption and reduced scattering coefficients were then estimated. In order to confirm the feasibility of this method, we performed in vivo experiments on exposed rat brain. The estimated images of the absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of the reduced scattering coefficients had a broad scattering spectrum, exhibiting a larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. The changes in the estimated absorption and scattering parameters during normoxia, hyperoxia, and anoxia indicate the potential applicability of the method by which to evaluate the pathophysiological conditions of in vivo brain due to the loss of tissue viability.
NASA Astrophysics Data System (ADS)
Zhu, Timothy C.; Lu, Amy; Ong, Yi-Hong
2016-03-01
Accurate determination of in-vivo light fluence rate is critical for preclinical and clinical studies involving photodynamic therapy (PDT). This study compares the longitudinal light fluence distribution inside biological tissue in the central axis of a 1 cm diameter circular uniform light field for a range of in-vivo tissue optical properties (absorption coefficients (μa) between 0.01 and 1 cm-1 and reduced scattering coefficients (μs') between 2 and 40 cm-1). This was done using Monte-Carlo simulations for a semi-infinite turbid medium in an air-tissue interface. The end goal is to develop an analytical expression that would fit the results from the Monte Carlo simulation for both the 1 cm diameter circular beam and the broad beam. Each of these parameters is expressed as a function of tissue optical properties. These results can then be compared against the existing expressions in the literature for broad beam for analysis in both accuracy and applicable range. Using the 6-parameter model, the range and accuracy for light transport through biological tissue is improved and may be used in the future as a guide in PDT for light fluence distribution for known tissue optical properties.
Instrument for underwater high-angular resolution volume scattering function measurements
NASA Astrophysics Data System (ADS)
Dueweke, Paul W.; Bolstad, Jay; Leonard, Donald A.; Sweeney, Harold E.; Boyer, Philip A.; Winkler, Erik M.
1997-02-01
A prototype instrument for in situ measurements of the volume scattering function (VSF) and the beam attenuation of water has been built and tested in the EOO laboratory. The intended application of the instrument is the enhancement of Navy operational optical systems for finding and imaging underwater objects such as mines. A description of the apparatus that was built and preliminary laboratory data will be presented. The instrument measures the VSF, (beta) ((theta) ), near the optical axis in both the forward and back directions from approximately 0.2 degrees off axis to approximately 5 degrees in 0.1 degree steps and at side angles of 45 degrees, 90 degrees, and 135 degrees. A diode- pumped, frequency-doubled, Nd:YAG laser provides the 532 nm light. This is the most used wavelength for underwater optical systems. The forward and back scattered light is collected and focused to a plane where scattering angles in the water are mapped onto concentric rings. At this focal plane, a conical reflector compresses the annular optical data onto a line along the cone axis where it is read by a MOS linear image array providing over 500 separate angular measurements. The beam attenuation coefficient, c, is also measured by means of a unique dual path configuration.
Thermally induced changes of optical and vital parameters in human cancer cells
NASA Astrophysics Data System (ADS)
Dressler, C.; Schwandt, D.; Beuthan, J.; Mildaziene, V.; Zabarylo, U.; Minet, O.
2010-11-01
Minimally invasive laser-induced thermotherapy (LITT) presents an alternative method to conventional tumor therapeutically interventions, such as surgery, chemotherapy, radiotherapy or nuclear medicine. Optical tissue characteristics of tumor cells and their heat-induced changes are essential issues for controlling LITT progressions. Therefore, it is indispensable to exactly know the absorption coefficient μa, the scattering coefficient μs and the anisotropy factor g as well as their changes under rising temperatures in order to simulate the treatment parameters successfully. Optical parameters of two different cancer model tissues - breast cancer cells species MX1 and colon cancer cells species CX1 - were measured in the spectral range 400 - 1100 nm as well as in the temperature range 37 - 60°C. The absorption coefficient of both cell species was low throughout the spectral range analyzed, while μs of both species rose with increasing temperatures. The anisotropy factor g however dropped for both tissues with increasing temperatures. Light scatterings inside tissues proceeded continuously forward for all species tested. It was demonstrated that optical tissue properties undergo significant changes along with the vital status of the cells when the temperature increases.
Influence of temperature and charge effects on thermophoresis of polystyrene beads⋆.
Syshchyk, Olga; Afanasenkau, Dzmitry; Wang, Zilin; Kriegs, Hartmut; Buitenhuis, Johan; Wiegand, Simone
2016-12-01
We study the thermodiffusion behavior of spherical polystyrene beads with a diameter of 25 nm by infrared thermal diffusion Forced Rayleigh Scattering (IR-TDFRS). Similar beads were used to investigate the radial dependence of the Soret coefficient by different authors. While Duhr and Braun (Proc. Natl. Acad. Sci. U.S.A. 104, 9346 (2007)) observed a quadratic radial dependence Braibanti et al. (Phys. Rev. Lett. 100, 108303 (2008)) found a linear radial dependence of the Soret coefficient. We demonstrated that special care needs to be taken to obtain reliable thermophoretic data, because the measurements are very sensitive to surface properties. The colloidal particles were characterized by transmission electron microscopy and dynamic light scattering (DLS) experiments were performed. We carried out systematic thermophoretic measurements as a function of temperature, buffer and surfactant concentration. The temperature dependence was analyzed using an empirical formula. To describe the Debye length dependence we used a theoretical model by Dhont. The resulting surface charge density is in agreement with previous literature results. Finally, we analyze the dependence of the Soret coefficient on the concentration of the anionic surfactant sodium dodecyl sulfate (SDS), applying an empirical thermodynamic approach accounting for chemical contributions.
Computationally effective solution of the inverse problem in time-of-flight spectroscopy.
Kamran, Faisal; Abildgaard, Otto H A; Subash, Arman A; Andersen, Peter E; Andersson-Engels, Stefan; Khoptyar, Dmitry
2015-03-09
Photon time-of-flight (PTOF) spectroscopy enables the estimation of absorption and reduced scattering coefficients of turbid media by measuring the propagation time of short light pulses through turbid medium. The present investigation provides a comparison of the assessed absorption and reduced scattering coefficients from PTOF measurements of intralipid 20% and India ink-based optical phantoms covering a wide range of optical properties relevant for biological tissues and dairy products. Three different models are used to obtain the optical properties by fitting to measured temporal profiles: the Liemert-Kienle model (LKM), the diffusion model (DM) and a white Monte-Carlo (WMC) simulation-based algorithm. For the infinite space geometry, a very good agreement is found between the LKM and WMC, while the results obtained by the DM differ, indicating that the LKM can provide accurate estimation of the optical parameters beyond the limits of the diffusion approximation in a computational effective and accurate manner. This result increases the potential range of applications for PTOF spectroscopy within industrial and biomedical applications.
Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio
2015-12-30
An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.
An inexpensive light-scattering particle monitor: field validation
Edwards, Rufus D.; Johnson, Michael; Shields, Kyra Naumoff; Allen, Tracy; Canuz, Eduardo; Smith, Kirk R.
2014-01-01
We have developed a small, light, passive, inexpensive, datalogging particle monitor called the “UCB” (University of California Berkeley particle monitor). Following previously published laboratory assessments, we present here results of tests of its performance in field settings at high particle concentrations. We demonstrate the mass sensitivity of the UCB in relation to gravimetric filter-based PM2.5 mass estimates as well as commercial light-scattering instruments co-located in field chamber tests and in kitchens of wood-burning households. The coefficient of variation of the unadjusted UCB mass response in relation to gravimetric estimates was 15%. Although requiring adjustment for differences in sensitivity, inter-monitor performance was consistently high (r2 > 0.99). Moreover, the UCB can consistently estimate PM2.5 mass concentrations in wood-burning kitchens (Pearson r2 = 0.89; N = 99), with good agreement between duplicate measures (Pearson r2 = 0.94; N = 88). In addition, with appropriate cleaning of the sensing chamber, UCB mass sensitivity does not decrease with time when used intensively in open woodfire kitchens, demonstrating the significant potential of this monitor. PMID:17909644
Aethalometer multiple scattering correction Cref for mineral dust aerosols
NASA Astrophysics Data System (ADS)
Di Biagio, Claudia; Formenti, Paola; Cazaunau, Mathieu; Pangui, Edouard; Marchand, Nicolas; Doussin, Jean-François
2017-08-01
In this study we provide a first estimate of the Aethalometer multiple scattering correction Cref for mineral dust aerosols. Cref is an empirical constant used to correct the aerosol absorption coefficient measurements for the multiple scattering artefact of the Aethalometer; i.e. the filter fibres on which aerosols are deposited scatter light and this is miscounted as absorption. The Cref at 450 and 660 nm was obtained from the direct comparison of Aethalometer data (Magee Sci. AE31) with (i) the absorption coefficient calculated as the difference between the extinction and scattering coefficients measured by a Cavity Attenuated Phase Shift Extinction analyser (CAPS PMex) and a nephelometer respectively at 450 nm and (ii) the absorption coefficient from a MAAP (Multi-Angle Absorption Photometer) at 660 nm. Measurements were performed on seven dust aerosol samples generated in the laboratory by the mechanical shaking of natural parent soils issued from different source regions worldwide. The single scattering albedo (SSA) at 450 and 660 nm and the size distribution of the aerosols were also measured. Cref for mineral dust varies between 1.81 and 2.56 for a SSA of 0.85-0.96 at 450 nm and between 1.75 and 2.28 for a SSA of 0.98-0.99 at 660 nm. The calculated mean for dust is 2.09 (±0.22) at 450 nm and 1.92 (±0.17) at 660 nm. With this new Cref the dust absorption coefficient by the Aethalometer is about 2 % (450 nm) and 11 % (660 nm) higher than that obtained by using Cref = 2.14 at both 450 and 660 nm, as usually assumed in the literature. This difference induces a change of up to 3 % in the dust SSA at 660 nm. The Cref seems to be independent of the fine and coarse particle size fractions, and so the obtained Cref can be applied to dust both close to sources and following transport. Additional experiments performed with pure kaolinite minerals and polluted ambient aerosols indicate Cref of 2.49 (±0.02) and 2.32 (±0.01) at 450 and 660 nm (SSA = 0.96-0.97) for kaolinite, and Cref of 2.32 (±0.36) at 450 nm and 2.32 (±0.35) at 660 nm for pollution aerosols (SSA = 0.62-0.87 at 450 nm and 0.42-0.76 at 660 nm).
The Viscoelastic Properties of Nematic Monodomains Containing Liquid Crystal Polymers.
NASA Astrophysics Data System (ADS)
Gu, Dongfeng
The work presented here investigates the viscoelastic properties of nematic materials containing liquid crystal polymers (LCP). We focus on how the elastic constants and the viscosity coefficients of the mixture systems are influenced by polymer architectures. In dynamic light scattering studies of the relaxation of the director orientation fluctuations for the splay, twist, and bend deformation modes, decrease of the relaxation rates was observed when LCPs were dissolved into low molar mass nematics (LMMN). For the side-chain LCPs, the slowing down in the bend mode is comparable to or larger than those of the splay and twist modes. For main-chain LCPs, the relative changes in the relaxation rates for the twist and splay modes are about one order of magnitude larger than that for the bend mode. The results of light scattering under an electric field show that the decrease in the twist relaxation rate is due to a large increase in the twist viscosity and a minor decrease in the twist elastic constant. These changes were found to increase with decrease of the spacer length, with increase of molecular weight, and with decrease of the backbone flexibility. In Freedericksz transition measurements, the splay and bend elastic constants and the dielectric anisotropies of the nematic mixtures were determined and the values are 5~15% lower than those of the pure solvent. From the analysis of the results of Freedericksz transition and light scattering experiments, a complete set of the elastic constants and viscosity coefficients corresponding to the three director deformation modes were obtained for the LCP mixtures. The changes in the viscosity coefficients due to addition of LCPs were analysed to estimate the anisotropic shapes of the polymer backbone via a hydrodynamic model. The results suggest that an oblate backbone configuration is maintained by the side-chain LCPs and a prolate chain configuration appears for the main-chain LCPs. The rheological behavior of a side-chain and a main-chain LCP nematic solutions were investigated. The addition of the side-chain LCP into a flow-aligning LMMN (5CB) induces director tumbling in the mixture, and, the dissolution of the main-chain LCP into a director tumbling LMMN (8CB) makes the solution become a flow-aligning nematic. Based on the hydrodynamic theory, these observations are further confirmation of the chain anisotropies of the LCPs investigated. Ericksen's transversely isotropic fluid model was used to extract the various viscosity coefficients with good accuracy. In addition, we believe that this is the first time the bulk rheological consequences of director tumbling in LMMNs has been observed.
Theory of lasing in a multiple-scattering medium
NASA Astrophysics Data System (ADS)
John, Sajeev; Pang, Gendi
1996-10-01
In several recent experiments, isotropic lasing action was observed in paints that contain rhodamine 640 dye molecules in methanol solution as gain media and titania particles as optical scatterers. These so-called paint-on laser systems are extraordinary because they are highly disordered systems. The microscopic mechanism for laser activity and the coherence properties of light emission in this multiple-light-scattering medium have not yet been elucidated. In this paper we derive the emission intensity properties of a model dye system with excited singlet and triplet electronic energy levels, which is immersed in a multiple-scattering medium with transport mean free path l*. Using physically reasonable estimates for the absorption and emission cross section for the singlet and triplet manifolds, and the singlet-triplet intersystem crossing rate, we solve the nonlinear laser rate equations for the dye molecules. This leads to a diffusion equation for the light intensity in the medium with a nonlinear intensity-dependent gain coefficient. Using this model we are able to account for nearly all of the experimentally observed properties of laser paint reported so far when l*>>λ0, the emission wavelength. This includes the dependence of the peak intensity of amplified emission on the mean free path l*, the dye concentration ρ, and the pump intensity characteristics. Our model recaptures the collapse of the emission linewidth at a specific threshold pump intensity and describes how this threshold intensity varies with l*. In addition, our model predicts a dramatic increase in the peak intensity and a further lowering of the lasing threshold for the strong scattering limit l*-->λ0. This suggests a striking enhancement of the characteristics of laser paint near the photon localization threshold in a disordered medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhamami, Mosa; Kolios, Michael C.; Tavakkoli, Jahan, E-mail: jtavakkoli@ryerson.ca
Purpose: The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissuesin vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments. Methods: A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissuesin vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on sevenmore » HIFU-treated tissue samples. Within each tissue sample, PA signals were acquired from 22 locations equally divided between two regions of interest within two volumes in tissue – a HIFU-treated volume and an untreated volume. Optical spectroscopy was then carried out on 10 HIFU-treated chicken breast specimens in the wavelength range of 500–900 nm, in 1-nm increments, using a spectrophotometer with an integrating sphere attachment. The authors’ optical spectroscopy raw data (total transmittance and diffuse reflectance) were used to obtain the optical absorption and reduced scattering coefficients of HIFU-induced thermal lesions and native tissues by employing the inverse adding-doubling method. The aforementioned interaction coefficients were subsequently used to calculate the effective attenuation coefficient and light penetration depth of HIFU-treated and native tissues in the wavelength range of 500–900 nm. Results: HIFU-treated tissues produced greater PA signals than native tissues at 720 and 845 nm. At 720 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.68 ± 0.25 (mean ± standard error of the mean). At 845 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.75 ± 0.26 (mean ± standard error of the mean). The authors’ spectroscopic investigation has shown that HIFU-treated tissues have a greater optical absorption and reduced scattering coefficients than native tissues in the wavelength range of 500–900 nm. In fact, at 720 and 845 nm, the ratio of the optical absorption coefficient of HIFU-treated tissues to that of native tissues was 1.13 and 1.17, respectively; on the other hand, the ratio of the reduced scattering coefficient of HIFU-treated tissues to that of native tissues was 13.22 and 14.67 at 720 and 845 nm, respectively. Consequently, HIFU-treated tissues have a higher effective attenuation coefficient and a lower light penetration depth than native tissues in the wavelength range 500–900 nm. Conclusions: Using a PA approach, HIFU-treated tissues interrogated at 720 and 845 nm optical wavelengths can be differentiated from untreated tissues. Based on the authors’ spectroscopic investigation, the authors conclude that the observed PA contrast between HIFU-induced thermal lesions and untreated tissue is due, in part, to the increase in the optical absorption coefficient, the reduced scattering coefficient and, therefore, the deposited laser energy fluence in HIFU-treated tissues.« less
Monostatic lidar/radar invisibility using coated spheres.
Zhai, Peng-Wang; You, Yu; Kattawar, George W; Yang, Ping
2008-02-04
The Lorenz-Mie theory is revisited to explicitly include materials whose permeability is different from unity. The expansion coefficients of the scattered field are given for light scattering by both homogeneous and coated spheres. It is shown that the backscatter is exactly zero if the impedance of the spherical particles is equal to the intrinsic impedance of the surrounding medium. If spherical particles are sufficiently large, the zero backscatter can be explained as impedance matching using the asymptotic expression for the radar backscattering cross section. In the case of a coated sphere, the shell can be regarded as a cloak if the product of the thickness and the imaginary part of the refractive index of the outer shell is large.
Absorption and Scattering of Aerosol measured onboard R/V Gisang1 over the Yellow Sea
NASA Astrophysics Data System (ADS)
Inae, K.; Lee, M.; Shin, B.; Ryoo, S.; Jung, J.; Kim, S. W.
2017-12-01
Absorption and scattering coefficient were measured onboard RV Gisang 1 over the Yellow Sea (covering 124° 127°E, 31° 38°N) during May June, 2016. BC concentration was analyzed at seven wavelengths (370, 470, 520, 590, 660, 880, and 950nm) every 1 minute by Aethalometer. Scattering coefficient was measured at three wavelengths (450, 550, and 750nm) every 5 minutes with Nephelometer. The mean absorption coefficient was 1.2 Mm-1 at 880nm and the mean scattering coefficient was 116Mm-1 at 550nm. Single scattering albedo(SSA) reached the maximum value of 3.0 at 700nm. The calculated mean scattering angstrom exponent(SAE) was 1.6 and absorbing angstrom exponent(AAE) was 1.1. The AAE and SAE were higher in aged Chinese plume.
On measuring the scattering coefficient in a nondiffuse sound field
NASA Astrophysics Data System (ADS)
Kanev, N. G.
2017-11-01
The laws of sound decay in a cubic room, one wall of which is absorbing and the other scattering, are obtained. It is shown that under certain conditions, sound decay in a room occurs nonexponentially and the shape of the decay curve depends on the scattering coefficient of the walls. This makes it possible to suggest a method for measuring the scattering coefficient by the analysis the decay curve when the walls have sound-scattering materials and structures. Expressions are obtained for approximating the measured decay curve, and the boundaries of the method's applicability are determined.
Optical Sensors Using Stimulated Brillouin Scattering
NASA Technical Reports Server (NTRS)
Christensen, Caleb A (Inventor); Zavriyev, Anton (Inventor)
2017-01-01
A method for enhancing a sensitivity of an optical sensor having an optical cavity counter-propagates beams of pump light within the optical cavity to produce scattered light based on Stimulated Brillouin Scattering (SBS). The properties of the pump light are selected to generate fast-light conditions for the scattered light, such that the scattered light includes counter-propagating beams of fast light. The method prevents the pump light from resonating within the optical cavity, while allowing the scattered light to resonate within the optical cavity. At least portions of the scattered light are interfered outside of the optical cavity to produce a beat note for a measurement of the optical sensor. The disclosed method is particularly applicable to optical gyroscopes.
Prediction of apparent extinction for optical transmission through rain
NASA Astrophysics Data System (ADS)
Vasseur, H.; Gibbins, C. J.
1996-12-01
At optical wavelengths, geometrical optics holds that the extinction efficiency of raindrops is equal to two. This approximation yields a wavelength-independent extinction coefficient that, however, can hardly be used to predict accurately rain extinction measured in optical transmissions. Actually, in addition to the extinct direct incoming light, a significant part of the power scattered by the rain particles reaches the receiver. This leads to a reduced apparent extinction that depends on both rain characteristics and link parameters. A simple method is proposed to evaluate this apparent extinction. It accounts for the additional scattered power that enters the receiver when one considers the forward-scattering pattern of the raindrops as well as the multiple-scattering effects using, respectively, the Fraunhofer diffraction and Twersky theory. It results in a direct analytical formula that enables a quick and accurate estimation of the rain apparent extinction and highlights the influence of the link parameters. Predictions of apparent extinction through rain are found in excellent agreement with measurements in the visible and IR regions.
Coherent scattering of a spherical wave from an irregular surface. [antenna pattern effects
NASA Technical Reports Server (NTRS)
Fung, A. K.
1983-01-01
The scattering of a spherical wave from a rough surface using the Kirchhoff approximation is considered. An expression representing the measured coherent scattering coefficient is derived. It is shown that the sphericity of the wavefront and the antenna pattern can become an important factor in the interpretation of ground-based measurements. The condition under which the coherent scattering-coefficient expression reduces to that corresponding to a plane wave incidence is given. The condition under which the result reduces to the standard image solution is also derived. In general, the consideration of antenna pattern and sphericity is unimportant unless the surface-height standard deviation is small, i.e., unless the coherent scattering component is significant. An application of the derived coherent backscattering coefficient together with the existing incoherent scattering coefficient to interpret measurements from concrete and asphalt surfaces is shown.
NASA Astrophysics Data System (ADS)
Danila, B.; McGurn, A. R.
2005-03-01
A theoretical discussion is given of the diffuse scattering of p -polarized electromagnetic waves from a vacuum-dielectric interface characterized by a one-dimensional disorder in the form of parallel, Gaussian shaped, dielectric ridges positioned at random on a planar semi-infinite dielectric substrate. The parameters of the surface roughness are chosen so that the surface is characterized as weakly rough with a low ridge concentration. The emphasis is on phase coherent features in the speckle pattern of light scattered from the surface. These features are determined from the intensity-intensity correlation function of the speckle pattern and are studied as functions of the frequency of light for frequencies near the dielectric frequency resonances of the ridge material. In the first part of the study, the ridges on the substrate are taken to be identical, made from either GaAs, NaF, or ZnS. The substrate for all cases is CdS. In a second set of studies, the heights and widths of the ridges are statistically distributed. The effects of these different types of randomness on the scattering from the random array of dielectric ridges is determined near the dielectric resonance frequency of the ridge material. The work presented is an extension of studies [A. B. McGurn and R. M. Fitzgerald, Phys. Rev. B 65, 155414 (2002)] that originally treated only the differential reflection coefficient of the diffuse scattering of light (not speckle correlation functions) from a system of identical ridges. The object of the present work is to demonstrate the effects of the dielectric frequency resonances of the ridge materials on the phase coherent features found in the speckle patterns of the diffusely scattered light. The dielectric frequency resonances are shown to enhance the observation of the weak localization of electromagnetic surface waves at the random interface. The frequencies treated in this work are in the infrared. Previous weak localization studies have concentrated mainly on the visible and ultraviolet.
Ocular forward light scattering and corneal backward light scattering in patients with dry eye.
Koh, Shizuka; Maeda, Naoyuki; Ikeda, Chikako; Asonuma, Sanae; Mitamura, Hayato; Oie, Yoshinori; Soma, Takeshi; Tsujikawa, Motokazu; Kawasaki, Satoshi; Nishida, Kohji
2014-09-18
To evaluate ocular forward light scattering and corneal backward light scattering in patients with dry eye. Thirty-five eyes in 35 patients with dry eye and 20 eyes of 20 healthy control subjects were enrolled. The 35 dry eyes were classified into two groups according to whether superficial punctate keratopathy in the central 6-mm corneal zone (cSPK) was present or not. Ocular forward light scattering was quantified with a straylight meter. Corneal backward light scattering from the anterior, middle, and posterior corneal parts was assessed with a corneal densitometry program using the Scheimpflug imaging system. Both dry eye groups had significantly higher intraocular forward light scattering than the control group (both P<0.05). The dry eye group with cSPK had significantly higher values in anterior and total corneal backward light scattering than the other two groups. Moderate positive correlations were observed between the cSPK score and corneal backward light scattering from the anterior cornea (R=0.60, P<0.001) and corneal backward light scattering from the total cornea (R=0.54, P<0.001); however, no correlation was found between cSPK score and ocular forward light scattering (R=0.01, P=0.932). Ocular forward light scattering and corneal backward light scattering from the anterior cornea were greater in dry eyes than in normal eyes. Increased corneal backward light scattering in dry eye at least partially results from cSPK overlying the optical zone. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
NASA Astrophysics Data System (ADS)
Zhou, Yaqing; Wang, Qiyuan; Huang, Rujin; Liu, Suixin; Tie, Xuexi; Su, Xiaoli; Niu, Xinyi; Zhao, Zhuzi; Ni, Haiyan; Wang, Meng; Zhang, Yonggang; Cao, Junji
2017-09-01
An intensive measurement campaign was conducted in Beijing during the Asia-Pacific Economic Cooperation (APEC) Summit 2014 to investigate the effectiveness of stringent emission controls on aerosol optical properties and direct radiative forcing (DRF). Average values of PM2.5, light scattering (bscat), and light absorption (babs) coefficients decreased by 40, 64, and 56%, respectively, during the APEC control period compared with noncontrol periods. For the APEC control period, the PM2.5 mass scattering and absorption efficiencies were both smaller than the noncontrol period by a factor of 2. Calculations based on a revised IMPROVE method and linear regression showed that sulfate, nitrate, organic matter, elemental carbon, and fine soil contributed comparably to the light extinction coefficient (bext) in both periods, but the bext values were 27-64% lower during the APEC period. A positive matrix factorization receptor model showed that bext from two secondary aerosol sources, biomass burning, traffic-related emissions, and coal burning decreased by 26-87% during the APEC control period. The average DRF calculated from the Tropospheric Ultraviolet and Visible radiation model was -11.9 and -4.6 W m-2 at the surface during the noncontrol and APEC control periods, respectively, suggesting an overall cooling effect. The reduction of DRF from each emission source ranged from 30-80% during the APEC control period. The results suggest that the pollution control measures implemented for APEC substantially reduced air pollution and could help mitigate the cooling effects of aerosols at the surface in Beijing.
Critical fluid light scattering
NASA Technical Reports Server (NTRS)
Gammon, Robert W.
1988-01-01
The objective is to measure the decay rates of critical density fluctuations in a simple fluid (xenon) very near its liquid-vapor critical point using laser light scattering and photon correlation spectroscopy. Such experiments were severely limited on Earth by the presence of gravity which causes large density gradients in the sample when the compressibility diverges approaching the critical point. The goal is to measure fluctuation decay rates at least two decades closer to the critical point than is possible on earth, with a resolution of 3 microK. This will require loading the sample to 0.1 percent of the critical density and taking data as close as 100 microK to the critical temperature. The minimum mission time of 100 hours will allow a complete range of temperature points to be covered, limited by the thermal response of the sample. Other technical problems have to be addressed such as multiple scattering and the effect of wetting layers. The experiment entails measurement of the scattering intensity fluctuation decay rate at two angles for each temperature and simultaneously recording the scattering intensities and sample turbidity (from the transmission). The analyzed intensity and turbidity data gives the correlation length at each temperature and locates the critical temperature. The fluctuation decay rate data from these measurements will provide a severe test of the generalized hydrodynamic theories of transport coefficients in the critical regions. When compared to equivalent data from binary liquid critical mixtures they will test the universality of critical dynamics.
Statistics of biospeckles with application to diagnostics of periodontitis
NASA Astrophysics Data System (ADS)
Starukhin, Pavel Y.; Kharish, Natalia A.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Tuchin, Valery V.
1999-04-01
Results of Monte-Carlo simulations Doppler shift are presented for the model of random medium that contain moving particles. The single-layered and two-layered configurations of the medium are considered. Doppler shift of the frequency of laser light is investigated as a function of such parameters as absorption coefficient, scattering coefficient, and thickness of the medium. Possibility of application of speckle interferometry for diagnostics in dentistry has been analyzed. Problem of standardization of the measuring procedure has been studied. Deviation of output characteristics of Doppler system for blood microcirculation measurements has been investigated. Dependence of form of Doppler spectrum on the number of speckles, integration by aperture, has been studied in experiments in vivo.
LeBlanc, Serge Emile; Atanya, Monica; Burns, Kevin; Munger, Rejean
2011-04-21
It is well known that red blood cell scattering has an impact on whole blood oximetry as well as in vivo retinal oxygen saturation measurements. The goal of this study was to quantify the impact of small angle forward scatter on whole blood oximetry for scattering angles found in retinal oximetry light paths. Transmittance spectra of whole blood were measured in two different experimental setups: one that included small angle scatter in the transmitted signal and one that measured the transmitted signal only, at absorbance path lengths of 25, 50, 100, 250 and 500 µm. Oxygen saturation was determined by multiple linear regression in the 520-600 nm wavelength range and compared between path lengths and experimental setups. Mean calculated oxygen saturation differences between setups were greater than 10% at every absorbance path length. The deviations to the Beer-Lambert absorbance model had different spectral dependences between experimental setups, with the highest deviations found in the 520-540 nm range when scatter was added to the transmitted signal. These results are consistent with other models of forward scatter that predict different spectral dependences of the red blood cell scattering cross-section and haemoglobin extinction coefficients in this wavelength range.
Comparison of the Radiative Two-Flux and Diffusion Approximations
NASA Technical Reports Server (NTRS)
Spuckler, Charles M.
2006-01-01
Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and radiation scattered back by internal scattering sites while the Fresnel reflection only accounts for surface reflections.
The threshold sensitivity of the molecular condensation nuclei detector
NASA Astrophysics Data System (ADS)
Kuptsov, Vladimir D.; Katelevsky, Vadim Y.; Valyukhov, Vladimir P.
2015-05-01
Molecular condensation nuclei (MCN) method is used in production engineering and process monitoring and relates to optical metrology methods of measuring the concentrations of various contaminants in the environment. Ultra high sensitivity of MCN method to a class of substances is determined by measuring the optical scattering aerosol particles, at the centers of which are located the detectable impurities molecules. This article investigates the influence of MCN manifestations coefficient (ratio of the concentration of aerosol particles to the concentration of molecules detectable impurities) on the sensitivity of the MCN detector. The MCN method is based on the application of various physicochemical processes to the flow of a gas containing impurities. As a result of these processes aerosol particle that are about 106 times larger than the original molecule of the impurity are produced. The ability of the aerosol particle to scatter incident light also increases ~1014 ÷1016 times compared with the original molecule and the aerosol particle with the molecule of the impurity in the center is easily detected by light scattering inside a photometer. By measuring of the light scattering intensity is determined concentration of chemical impurities in the air. An application nephelometric optical metrology scheme of light scattering by aerosol particles ensures stable operation of reliable and flexible measuring systems. Light scattering by aerosol particles is calculated on the basis of the Mie's theory as aerosol particle sizes comparable to the wavelength of the optical radiation. The experimental results are shown for detectable impurities of metal carbonyls. Gas analyzers based on the MCN method find application in industries with the possibility of highly toxic emissions into the atmosphere (carbonyl technology of metal coatings and products, destruction of chemical weapons, etc.), during storage and transportation of toxic substances, as well as in the inspection of large-scale objects. There are some perspective areas of use MCN detector: prevention of illegal use of dangerous substances, revealing of their origin and leakage paths by means of marking with special non-radioactive chemical compounds; investigation of large-scale atmospheric circulation with the help of marking substances; nondestructive inspection for highly efficient filters with indicating agent concentration and for the inspection of the devices of high level tightness (heat-exchangers of fast nuclear reactors).
Diffusing light probing of aged wet foams
NASA Astrophysics Data System (ADS)
Slavnetskov, I. O.; Kalacheva, A. V.; Yuvchenko, S. A.; Markova, N. S.; Zimnyakov, D. A.
2018-04-01
Features of diffusing light probes of aged liquid foams are discussed. These probes were carried out using broadband and laser radiation with the wavelength of 532 nm. Experimental data were obtained for aged samples of Gillette shaving cream as a model foamed substance. The coefficients of diffusion and collimated transmittance were applied for characterization of the structural changes in the aged wet foams. Also, the changes in the liquid fraction due to gravitational drainage were monitored using volumometric measurements in the course of the foam aging. Obtained empirical data on the diffuse and collimated transmittance were used as the reference values for correction of the spectral measurements in the visible range with a broadband source of probe light. The problem of correction of the collimated transmittance partially corrupted by the diffusing component of multiply scattered light is discussed.
The bundling of actin with polyethylene glycol 8000 in the presence and absence of gelsolin.
Goverman, J; Schick, L A; Newman, J
1996-01-01
Actin filament and bundle formation occur in the cytosol under conditions of very high total macromolecular concentration. In this study we have utilized the inert molecule polyethylene glycol 8000 (PEG) as a means of simulating crowded conditions in vitro. Column-purified Ca-actin was polymerized in the absence and presence of gelsolin (to regulate mean filament lengths between 50 and 5000 mers) and PEG (2-8%) using various concentrations of KCl and/or 2 mM divalent cations. Bundling was characterized by the scattered light intensity and mean diffusion coefficients obtained from dynamic light scattering, as well as by fluorescence and phase-contrast microscopy. The minimum concentration of KCl required for bundling decreases both with increasing concentration of PEG at a fixed mean filament length, and with decreasing filament length at a fixed concentration of PEG. In the absence of divalent cation, bundling is reversible on dilution, as determined by intensity levels, diffusion coefficients, and microscopy. However, with either 2 mM Mg2+ or Ca2+ added, bundling is irreversible under conditions of higher PEG concentrations or longer filaments, indicating that osmotic pressure effects cannot fully explain actin bundling with PEG. Weaker divalent cation-binding sites on actin as well as disulfide bonds appear to be involved in the irreversible bundling. Images FIGURE 7 PMID:8874022
Effect of interstitial low level laser therapy on tibial defect
NASA Astrophysics Data System (ADS)
Lee, Sangyeob; Ha, Myungjin; Hwang, Donghyun; Yu, Sungkon; Jang, Seulki; Park, Jihoon; Radfar, Edalat; Kim, Hansung; Jung, Byungjo
2016-03-01
Tibial defect is very common musculoskeletal disorder which makes patient painful and uncomfortable. Many studies about bone regeneration tried to figure out fast bone healing on early phase. It is already known that low level laser therapy (LLLT) is very convenient and good for beginning of bone disorder. However, light scattering and absorption obstruct musculoskeletal therapy which need optimal photon energy delivery. This study has used an interstitial laser probe (ILP) to overcome the limitations of light penetration depth and scattering. Animals (mouse, C57BL/6) were divided into three groups: laser treated test group 1 (660 nm; power 10 mW; total energy 5 J) and test group 2 (660 nm; power 20 mW; total energy 10 J); and untreated control group. All animals were taken surgical operation to make tibial defect on right crest of tibia. The test groups were treated every 48 hours with ILP. Bone volume and X-ray attenuation coefficient were measured on 0, 14th and 28th day with u-CT after treatment and were used to evaluate effect of LLLT. Results show that bone volume of test groups has been improved more than control group. X-ray attenuation coefficients of each groups have slightly different. The results suggest that LLLT combined with ILP may affect on early phase of bone regeneration and may be used in various musculoskeletal disease in deep tissue layer.
Röttgers, Rüdiger; Doxaran, David; Dupouy, Cecile
2016-01-25
The accurate determination of light absorption coefficients of particles in water, especially in very oligotrophic oceanic areas, is still a challenging task. Concentrating aquatic particles on a glass fiber filter and using the Quantitative Filter Technique (QFT) is a common practice. Its routine application is limited by the necessary use of high performance spectrophotometers, distinct problems induced by the strong scattering of the filters and artifacts induced by freezing and storing samples. Measurements of the sample inside a large integrating sphere reduce scattering effects and direct field measurements avoid artifacts due to sample preservation. A small, portable, Integrating Cavity Absorption Meter setup (QFT-ICAM) is presented, that allows rapid measurements of a sample filter. The measurement technique takes into account artifacts due to chlorophyll-a fluorescence. The QFT-ICAM is shown to be highly comparable to similar measurements in laboratory spectrophotometers, in terms of accuracy, precision, and path length amplification effects. No spectral artifacts were observed when compared to measurement of samples in suspension, whereas freezing and storing of sample filters induced small losses of water-soluble pigments (probably phycoerythrins). Remaining problems in determining the particulate absorption coefficient with the QFT-ICAM are strong sample-to-sample variations of the path length amplification, as well as fluorescence by pigments that is emitted in a different spectral region than that of chlorophyll-a.
Cadogan, Shane Patrick; Hahn, Christian Joachim; Rausch, Michael Heinrich; Fröba, Andreas Paul
2017-08-01
The applicability of dynamic light scattering (DLS) for the characterization of the size of supercritical carbon dioxide (sc-CO 2 )-swollen micelles in a polyester polyol-based multicomponent microemulsion with nonionic surfactant has been thoroughly proved for the first time in this work. Systematic experiments confirming that a hydrodynamic mode is observable in either a homodyne or a heterodyne detection scheme as well as the evaluation of the influence of the laser power applied to the slightly colored microemulsion have ensured an accurate implementation of this technique for a technically relevant system. The correlation times associated with the translational diffusion coefficient of the swollen micelles in a continuous liquid phase were measured for temperatures from (298.15 to 338.15)K at pressures of (90 and 100)bar. While there was no significant effect of pressure, it was found that the translational diffusion coefficient increases with increasing temperature as expected. We postulate this is primarily related to the effect of decreasing viscosity of the continuous phase. An estimation of the hydrodynamic diameter of the sc-CO 2 -swollen micelles is in good agreement with values for similar systems reported in the literature. For the derivation of absolute sizes for corresponding systems, also dynamic viscosity and refractive index data will be determined simultaneously in a currently developed closed experimental loop. Copyright © 2017 Elsevier Inc. All rights reserved.
Brillouin light scattering as a probe for low frequency quasiparticles in solids
NASA Astrophysics Data System (ADS)
Klimovich, Nikita; Olson, Kevin; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin
2015-03-01
In increasingly small electronic and spintronic devices, electrons, optical phonons, acoustic phonons, and magnons are often driven out of local thermal equilibrium. Thermal transport based on equilibrium dynamics does not adequately describe these systems necessitating a better understanding of non-equilibrium transport processes. Measuring the specific temperatures of the different energy carriers is therefore crucial in understanding the thermal transport. Brillouin light scattering (BLS) has recently been explored as a temperature sensor for low frequency acoustic phonons in glass, and also magnons in metallic and insulating ferromagnetic materials. We report the measured BLS spectra of acoustic phonons in Silicon at different temperatures. The temperature dependence of the BLS peak frequency, linewidth, and integrated intensity are examined to evaluate their potential uses as temperature sensors of acoustic phonons. We also observe a large nonequilibrium in phonon-magnon temperature in YIG under the effects of laser heating and thereby extract a value for the phonon-magnon coupling coefficient. This work is funded by the National Science Foundation and the Army Research Office.
Static and dynamic light scattering studies on dilute polyrotaxane solutions
NASA Astrophysics Data System (ADS)
Kume, Tetsuya; Araki, Jun; Sakai, Yasuhiro; Mayumi, Koichi; Kidowaki, Masatoshi; Yokoyama, Hideaki; Ito, Kohzo
2009-08-01
Static and dynamic light scattering measurements were performed for dilute polyrotaxane solutions in different types of solvent systems, i.e. dimethylacetamide (DMAc) or dimethylformamide (DMF) containing 1-6 wt% lithium chloride (LiCl), 1 M aqueous sodium hydroxide (NaOH) and dimethylsulfoxide (DMSO). No aggregation of the polyrotaxane in DMF/LiCl was confirmed in the present study. Radius of gyration of the dissolved polyrotaxane was largest in NaOHaq., followed by values in amide solvents/LiCl and that in DMSO, and was probably dominated not by Coulombic repulsion but by the mutual affinity between solvent and polyrotaxane. Ratio of radius of gyration to hydrodynamic radius suggested the flexible random-coiled conformation in DMSO and relatively more extended, semi-flexible ones in amide solvents/LiCl and NaOHaq. The obtained values of second virial coefficient and weight average molecular weight seemed to be affected by a potential change in differential refractive index increments, caused by selective macrocationization or ionization.
3D printing of tissue-simulating phantoms for calibration of biomedical optical devices
NASA Astrophysics Data System (ADS)
Zhao, Zuhua; Zhou, Ximing; Shen, Shuwei; Liu, Guangli; Yuan, Li; Meng, Yuquan; Lv, Xiang; Shao, Pengfei; Dong, Erbao; Xu, Ronald X.
2016-10-01
Clinical utility of many biomedical optical devices is limited by the lack of effective and traceable calibration methods. Optical phantoms that simulate biological tissues used for optical device calibration have been explored. However, these phantoms can hardly simulate both structural and optical properties of multi-layered biological tissue. To address this limitation, we develop a 3D printing production line that integrates spin coating, light-cured 3D printing and Fused Deposition Modeling (FDM) for freeform fabrication of optical phantoms with mechanical and optical heterogeneities. With the gel wax Polydimethylsiloxane (PDMS), and colorless light-curable ink as matrix materials, titanium dioxide (TiO2) powder as the scattering ingredient, graphite powder and black carbon as the absorption ingredient, a multilayer phantom with high-precision is fabricated. The absorption and scattering coefficients of each layer are measured by a double integrating sphere system. The results demonstrate that the system has the potential to fabricate reliable tissue-simulating phantoms to calibrate optical imaging devices.
NASA Astrophysics Data System (ADS)
Chen, Zhanguang; Song, Tianhe; Chen, Xi; Wang, Shaobin; Chen, Junhui
2010-10-01
The interaction between photosensitizer anticancer drug hematoporphyrin monomethyl ether (HMME) and ctDNA has been studied based on the decreased resonance light scattering (RLS) phenomenon. The RLS, UV-vis and fluorescence spectra characteristics of the HMME-ctDNA system were investigated. Besides, the phosphodiesters quaternary ammonium salt (PQAS), a kind of new gemini surfactant synthesized recently, was used to determine anticancer drug HMME based on the increasing RLS intensity. Under the optimum assay conditions, the enhanced RLS intensity was proportional to the concentration of HMME. The linear range was 0.8-8.4 μg mL -1, with correlation coefficient R2 = 0.9913. The detection limit was 0.014 μg mL -1. The human serum samples and urine samples were determined satisfactorily, which proved that this method was reliable and applicable in the determination of HMME in body fluid. The presented method was simple, sensitive and straightforward and could be a significant method in clinical analysis.
Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance
Ma, L L; Borwankar, A U; Willsey, B W; Yoon, K Y; Tam, J O; Sokolov, K V; Feldman, M D; Milner, T E; Johnston, K P
2013-01-01
A homologous series of Au-coated iron oxide nanoparticles, with hydrodynamic diameters smaller than 60 nm was synthesized with very low Auto-iron mass ratios as low as 0.15. The hydrodynamic diameter was determined by dynamic light scattering and the composition by atomic absorption spectroscopy and energy dispersive x-ray spectroscopy (EDS). Unusually low Au precursor supersaturation levels were utilized to nucleate and grow Au coatings on iron oxide relative to formation of pure Au nanoparticles. This approach produced unusually thin coatings, by lowering autocatalytic growth of Au on Au, as shown by transmission electron microscopy (TEM). Nearly all of the nanoparticles were attracted by a magnet indicating a minimal amount of pure Au particles The coatings were sufficiently thin to shift the surface plasmon resonance (SPR) to the near infrared (NIR), with large extinction coefficients., despite the small particle hydrodynamic diameters, observed from dynamic light scattering to be less than 60 nm. PMID:23238021
DOE Office of Scientific and Technical Information (OSTI.GOV)
Böcklin, Christoph, E-mail: boecklic@ethz.ch; Baumann, Dirk; Fröhlich, Jürg
A novel way to attain three dimensional fluence rate maps from Monte-Carlo simulations of photon propagation is presented in this work. The propagation of light in a turbid medium is described by the radiative transfer equation and formulated in terms of radiance. For many applications, particularly in biomedical optics, the fluence rate is a more useful quantity and directly derived from the radiance by integrating over all directions. Contrary to the usual way which calculates the fluence rate from absorbed photon power, the fluence rate in this work is directly calculated from the photon packet trajectory. The voxel based algorithmmore » works in arbitrary geometries and material distributions. It is shown that the new algorithm is more efficient and also works in materials with a low or even zero absorption coefficient. The capabilities of the new algorithm are demonstrated on a curved layered structure, where a non-scattering, non-absorbing layer is sandwiched between two highly scattering layers.« less
Kuehner, D E; Heyer, C; Rämsch, C; Fornefeld, U M; Blanch, H W; Prausnitz, J M
1997-01-01
The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4-7 and ionic strength 0.05-5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation. PMID:9414232
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Masaki, E-mail: masaki@tohtech.ac.jp; Kikuchi, Naoto; Sato, Akihiro
This letter proposes and demonstrates ultrasound-combined optical imaging in dense scattering media. A peroxyoxalate chemiluminescence system that includes fluorophores to chemically excite the pigment is stimulated by ultrasound irradiation with power of less than 0.14 W/cm{sup 2}. Using focused ultrasound, the chemiluminescence is selectively spatially enhanced, which leads to imaging of the pigment when embedded in a light-scattering medium via scanning of the focal point. The ultrasonically enhanced intensity of the chemiluminescence depends on the base intensity of the chemiluminescence without the applied ultrasound irradiation, which thereby enables quantitative determination of the fluorophore concentration. The authors demonstrate the potential of thismore » method to resolve chemiluminescent targets in a dense scattering medium that is comparable to biological tissue. An image was acquired of a chemiluminescent target that included indocyanine green as the fluorophore embedded at a depth of 20 mm in an Intralipid-10% 200 ml/l solution scattering medium (the reduced scattering coefficient was estimated to be approximately 1.3 mm{sup −1}), indicating the potential for expansion of this technique for use in biological applications.« less
Rayleigh-Brillouin scattering in SF6 in the kinetic regime
NASA Astrophysics Data System (ADS)
Wang, Yuanqing; Yu, Yin; Liang, Kun; Marques, Wilson; van de Water, Willem; Ubachs, Wim
2017-02-01
Rayleigh-Brillouin spectral profiles are measured with a laser-based scatterometry setup for a 90° scattering angle at a high signal-to-noise ratio (r.m.s. noise below 0.15% w.r.t. peak intensity) in sulfur-hexafluoride gas for pressures in the range 0.2-5 bar and for a wavelength of λ = 403.0 nm. The high quality data are compared to a number of light scattering models in order to address the effects of rotational and vibrational relaxation. While the vibrational relaxation rate is so slow that vibration degrees of freedom remain frozen, rotations relax on time scales comparable to those of the density fluctuations. Therefore, the heat capacity, the thermal conductivity and the bulk viscosity are all frequency-dependent transport coefficients. This is relevant for the Tenti model that depends on the values chosen for these transport coefficients. This is not the case for the other two models considered: a kinetic model based on rough-sphere interactions, and a model based on fluctuating hydrodynamics. The deviations with the experiment are similar between the three different models, except for the hydrodynamic model at pressures p≲ 2bar . As all models are in line with the ideal gas law, we hypothesize the presence of real gas effects in the measured spectra.
Tedford, Clark E; DeLapp, Scott; Jacques, Steven; Anders, Juanita
2015-04-01
Photobiomodulation (PBM) also known as low-level light therapy has been used successfully for the treatment of injury and disease of the nervous system. The use of PBM to treat injury and diseases of the brain requires an in-depth understanding of light propagation through tissues including scalp, skull, meninges, and brain. This study investigated the light penetration gradients in the human cadaver brain using a Transcranial Laser System with a 30 mm diameter beam of 808 nm wavelength light. In addition, the wavelength-dependence of light scatter and absorbance in intraparenchymal brain tissue using 660, 808, and 940 nm wavelengths was investigated. Intact human cadaver heads (n = 8) were obtained for measurement of light propagation through the scalp/skull/meninges and into brain tissue. The cadaver heads were sectioned in either the transverse or mid-sagittal. The sectioned head was mounted into a cranial fixture with an 808 nm wavelength laser system illuminating the head from beneath with either pulsed-wave (PW) or continuous-wave (CW) laser light. A linear array of nine isotropic optical fibers on a 5 mm pitch was inserted into the brain tissue along the optical axis of the beam. Light collected from each fiber was delivered to a multichannel power meter. As the array was lowered into the tissue, the power from each probe was recorded at 5 mm increments until the inner aspect of the dura mater was reached. Intraparenchymal light penetration measurements were made by delivering a series of wavelengths (660, 808, and 940 nm) through a separate optical fiber within the array, which was offset from the array line by 5 mm. Local light penetration was determined and compared across the selected wavelengths. Unfixed cadaver brains provide good anatomical localization and reliable measurements of light scatter and penetration in the CNS tissues. Transcranial application of 808 nm wavelength light penetrated the scalp, skull, meninges, and brain to a depth of approximately 40 mm with an effective attenuation coefficient for the system of 2.22 cm(-1) . No differences were observed in the results between the PW and CW laser light. The intraparenchymal studies demonstrated less absorption and scattering for the 808 nm wavelength light compared to the 660 or 940 nm wavelengths. Transcranial light measurements of unfixed human cadaver brains allowed for determinations of light penetration variables. While unfixed human cadaver studies do not reflect all the conditions seen in the living condition, comparisons of light scatter and penetration and estimates of fluence levels can be used to establish further clinical dosing. The 808 nm wavelength light demonstrated superior CNS tissue penetration. © 2015 Wiley Periodicals, Inc.
A method for determination mass absorption coefficient of gamma rays by Compton scattering.
El Abd, A
2014-12-01
A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aerosol chemical composition and light scattering during a winter season in Beijing
NASA Astrophysics Data System (ADS)
Tao, Jun; Zhang, Leiming; Gao, Jian; Wang, Han; Chai, Faihe; Wang, Shulan
2015-06-01
To evaluate PM2.5 contributions to light scattering under different air pollution levels, PM2.5 and its major chemical components, PM10, size-segregated water-soluble ions, and aerosol scattering coefficient (bsp) under dry conditions were measured at an urban site in Beijing in January 2013 when heavy pollution events frequently occurred. Measurements were categorized into three pollution levels including heavy-polluted (Air Quality Index (AQI) ≥ 200), light-polluted (200 > AQI ≥ 100) and clean periods (AQI < 100). The average PM2.5 mass concentration was 248 μg m-3 during the heavy-polluted period, which was 2.4 and 5.6 times of those during the light-polluted (104 μg m-3) and clean (44 μg m-3) periods, respectively. The concentrations of SO42-, NO3- and NH4+ increased much more than those of OC and EC during the heavy-polluted period compared with those during the light-polluted and clean periods. Good correlations between PM2.5 and bsp were found (R2 > 0.95) during the different pollution levels. The mass scattering efficiency (MSE) of PM2.5 was 4.9 m2 g-1 during the heavy-polluted period, which was higher than those during the light-polluted (4.3 m2 g-1) and clean periods (3.6 m2 g-1). To further evaluate the impact of individual chemical components of PM2.5 on light scattering, a multiple linear regression equation of measured bsp against the mass concentration of (NH4)2SO4, NH4NO3, Organic Matter (OM), EC, Fine Soil (FS), Coarse Matter (CM) and Other chemical compounds were performed. (NH4)2SO4, NH4NO3 and OM were the dominant species contributing to bsp under both dry and ambient conditions. OM contributed more to bsp than the sum of (NH4)2SO4 and NH4NO3 did under the dry condition during all the pollution periods and this was also the case under the ambient condition during the light-polluted and clean periods. However, the total contributions of (NH4)2SO4 and NH4NO3 to bsp under the ambient condition was 55%, much more than the 29% contribution from OM during the heavy-polluted period. High (NH4)2SO4 and NH4NO3 concentrations and their hygroscopicity were the main reasons causing visibility degradation during the heavy-polluted period, and the effect can be enhanced under high RH conditions.
Are non-linearity effects of absorption important for MAX-DOAS observations?
NASA Astrophysics Data System (ADS)
Pukite, Janis; Wang, Yang; Wagner, Thomas
2017-04-01
For scattered light observations the absorption optical depth depends non-linearly on the trace gas concentrations if their absorption is strong. This is the case because the Beer-Lambert law is generally not applicable for scattered light measurements due to many (i.e. more than one) light paths contributing to the measurement. While in many cases a linear approximation can be made, for scenarios with strong absorption non-linear effects cannot always be neglected. This is especially the case for observation geometries with spatially extended and diffuse light paths, especially in satellite limb geometry but also for nadir measurements as well. Fortunately the effects of non-linear effects can be quantified by means of expanding the radiative transfer equation in a Taylor series with respect to the trace gas absorption coefficients. Herewith if necessary (1) the higher order absorption structures can be described as separate fit parameters in the DOAS fit and (2) the algorithm constraints of retrievals of VCDs and profiles can be improved by considering higher order sensitivity parameters. In this study we investigate the contribution of the higher order absorption structures for MAX-DOAS observation geometry for different atmospheric and ground properties (cloud and aerosol effects, trace gas amount, albedo) and geometry (different Sun and viewing angles).
NASA Astrophysics Data System (ADS)
Montejo, Ludguier D.; Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.
2013-03-01
We apply the Fourier Transform to absorption and scattering coefficient images of proximal interphalangeal (PIP) joints and evaluate the performance of these coefficients as classifiers using receiver operator characteristic (ROC) curve analysis. We find 25 features that yield a Youden index over 0.7, 3 features that yield a Youden index over 0.8, and 1 feature that yields a Youden index over 0.9 (90.0% sensitivity and 100% specificity). In general, scattering coefficient images yield better one-dimensional classifiers compared to absorption coefficient images. Using features derived from scattering coefficient images we obtain an average Youden index of 0.58 +/- 0.16, and an average Youden index of 0.45 +/- 0.15 when using features from absorption coefficient images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Bennett N., E-mail: bennett.walker@fda.hhs.gov; Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993; James, Robert H.
Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearlymore » 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.« less
Hygroscopic Measurements of Aerosol Particles in Colorado during the Discover AQ Campaign 2014
NASA Astrophysics Data System (ADS)
Orozco, D.; Delgado, R.; Espinosa, R.; Martins, J. V.; Hoff, R. M.
2014-12-01
In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground observations with other optical aerosol measurements such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. In the summer of 2014, the DISCOVER-AQ campaign was held in Colorado, where systematic and concurrent observations of column- integrated surface, and vertically-resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Aerosol optical properties were measured in the UMBC trailer at the city of Golden using a TSI-3563 nephelometer and an in-situ Polarized Imaging Nephelometer (PI-NEPH) designed and built by the LACO group at UMBC. The PI-NEPH measures aerosol phase matrix components in high angular range between 2 and 178 degrees scattering angle at three wavelengths (λ=473, 532 and 671nm). The two measured elements of the phase matrix, intensity (P11) and linear polarization (P12) provide extensive characterization of the scattering properties of the studied aerosol. The scattering coefficient, P11 and P12 were measured under different humidity conditions to obtain the enhancement factor f(RH) and the dependence of P11 and P12 to RH using a humidifier dryer system covering a RH range from 20 to 90%. The ratio between scattering coefficients at high and low humidity in Golden Colorado showed relatively low hygroscopic growth in the aerosol particles f(RH=80%) was 1.27±0.19 for the first three weeks of sampling. According to speciated measurements performed at the UMBC trailer, the predominance of dust and organic aerosols over more hygroscopic nitrate and sulfate in the region are responsible for the low hygroscopicity. In addition, transported smoke remnants from wildfires in the Pacific Northwest were detected as the elemental and organic carbon concentrations increased. The P11 and P12 elements from smoke and local sources are discussed as well as the vertical distribution by airborne and ground comparisons.
NASA Astrophysics Data System (ADS)
Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun
2014-05-01
Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.
NASA Astrophysics Data System (ADS)
Chen, X. W.; Zhao, C. Y.; Wang, B. X.
2018-05-01
Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.
Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin
2013-01-01
Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. PMID:24156077
Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin
2013-01-01
Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.
NASA Astrophysics Data System (ADS)
Gyawali, M.; Arnott, W. P.; Lewis, K.; Moosmüller, H.
2009-10-01
Hundreds of wildfires in Northern California were sparked by lightning during the summer of 2008, resulting in downwind smoke for the months of June and July. Comparisons are reported for aerosol optics measurements in Reno, Nevada made during the very smoky month of July and the relatively clean month of August. Photoacoustic instruments equipped with integrating nephelometers were used to measure aerosol light scattering and absorption coefficients at wavelengths of 405 nm and 870 nm, revealing a strong variation of aerosol light absorption with wavelength. Insight on fuels burned is gleaned from comparison of Ångström exponents of absorption (AEA) versus single scattering albedo (SSA) of the ambient measurements with laboratory biomass smoke measurements for many fuels. Measurements during the month of August, which were largely unaffected by fire smoke, exhibit surprisingly low AEA for aerosol light absorption when the SSA is highest, again likely as a consequence of the underappreciated wavelength dependence of aerosol light absorption by particles coated with non-absorbing organic and inorganic matter. Coated sphere calculations were used to show that AEA as large as 1.6 are possible for wood smoke even with non-absorbing organic coatings on black carbon cores, suggesting care be exercised when diagnosing AEA.
Interpreting spectral unmixing coefficients: From spectral weights to mass fractions
NASA Astrophysics Data System (ADS)
Grumpe, Arne; Mengewein, Natascha; Rommel, Daniela; Mall, Urs; Wöhler, Christian
2018-01-01
It is well known that many common planetary minerals exhibit prominent absorption features. Consequently, the analysis of spectral reflectance measurements has become a major tool of remote sensing. Quantifying the mineral abundances, however, is not a trivial task. The interaction between the incident light rays and particulate surfaces, e.g., the lunar regolith, leads to a non-linear relationship between the reflectance spectra of the pure minerals, the so-called ;endmembers;, and the surface's reflectance spectrum. It is, however, possible to transform the non-linear reflectance mixture into a linear mixture of single-scattering albedos of the Hapke model. The abundances obtained by inverting the linear single-scattering albedo mixture may be interpreted as volume fractions which are weighted by the endmember's extinction coefficient. Commonly, identical extinction coefficients are assumed throughout all endmembers and the obtained volume fractions are converted to mass fractions using either measured or assumed densities. In theory, the proposed method may cover different grain sizes if each grain size range of a mineral is treated as a distinct endmember. Here, we present a method to transform the mixing coefficients to mass fractions for arbitrary combinations of extinction coefficients and densities. The required parameters are computed from reflectance measurements of well defined endmember mixtures. Consequently, additional measurements, e.g., the endmember density, are no longer required. We evaluate the method based on laboratory measurements and various results presented in the literature, respectively. It is shown that the procedure transforms the mixing coefficients to mass fractions yielding an accuracy comparable to carefully calibrated laboratory measurements without additional knowledge. For our laboratory measurements, the square root of the mean squared error is less than 4.82 wt%. In addition, the method corrects for systematic effects originating from mixtures of endmembers showing a highly varying albedo, e.g., plagioclase and pyroxene.
NASA Technical Reports Server (NTRS)
Claassen, J. P.; Fung, A. K.
1977-01-01
The radar equation for incoherent scenes is derived and scattering coefficients are introduced in a systematic way to account for the complete interaction between the incident wave and the random scene. Intensity (power) and correlation techniques similar to that for coherent targets are proposed to measure all the scattering parameters. The sensitivity of the intensity technique to various practical realizations of the antenna polarization requirements is evaluated by means of computer simulated measurements, conducted with a scattering characteristic similar to that of the sea. It was shown that for scenes satisfying reciprocity one must admit three new cross-correlation scattering coefficients in addition to the commonly measured autocorrelation coefficients.
NASA Astrophysics Data System (ADS)
Everett, Matthew J.; Colston, Bill W., Jr.; Sathyam, Ujwal S.; Da Silva, Luiz B.; Fried, Daniel; Featherstone, John D. B.
1999-05-01
There is no diagnostic technology presently available utilizing non-ionizing radiation that can image the state of demineralization of dental enamel in vivo for the detection, characterization and monitoring of early, incipient caries lesions. In this study, a Polarization Sensitive Optical Coherence Tomography (PS-OCT) system was evaluated for its potential for the non-invasive diagnosis of early carious lesions. We demonstrated clear discrimination in PS-OCT imags between regions of normal and demineralized enamel in bovine enamel blocks containing well-characterized artificial lesions. Moreover, high-resolution, cross- sectional images were acquired that clearly discriminate between the normal and carious regions of extracted human teeth. Regions that appeared to be demineralized in the PS- OCT imags were verified using histological thin sections examined under polarized light. The PS-OCT system discriminates between normal and carious regions by measuring the state of polarization of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. The demineralized regions of enamel have a large scattering coefficient, thus depolarizing the incident light. This initial study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions.
Violet laser diodes as light sources for cytometry.
Shapiro, H M; Perlmutter, N G
2001-06-01
Violet laser diodes have recently become commercially available. These devices emit 5-25 mW in the range of 395-415 nm, and are available in systems that incorporate the diodes with collimating optics and regulated power supplies in housing incorporating thermoelectric coolers, which are necessary to maintain stable output. Such systems now cost several thousand dollars, but are expected to drop substantially in price. Materials and Methods A 4-mW, 397-nm violet diode system was used in a laboratory-built flow cytometer to excite fluorescence of DAPI and Hoechst dyes in permeabilized and intact cells. Forward and orthogonal light scattering were also measured. DNA content histograms with good precision (G(0)/G(1) coefficient of variation 1.7%) were obtained with DAPI staining; precision was lower using Hoechst 33342. Hoechst 34580, with an excitation maximum nearer 400 nm, yielded the highest fluorescence intensity, but appeared to decompose after a short time in solution. Scatter signals exhibited relatively broad distributions. Violet laser diodes are relatively inexpensive, compact, efficient, and quiet light sources for DNA fluorescence measurement using DAPI and Hoechst dyes; they can also excite several other fluorescent probes. Copyright 2001 Wiley-Liss, Inc.
Improved Gaussian Beam-Scattering Algorithm
NASA Technical Reports Server (NTRS)
Lock, James A.
1995-01-01
The localized model of the beam-shape coefficients for Gaussian beam-scattering theory by a spherical particle provides a great simplification in the numerical implementation of the theory. We derive an alternative form for the localized coefficients that is more convenient for computer computations and that provides physical insight into the details of the scattering process. We construct a FORTRAN program for Gaussian beam scattering with the localized model and compare its computer run time on a personal computer with that of a traditional Mie scattering program and with three other published methods for computing Gaussian beam scattering. We show that the analytical form of the beam-shape coefficients makes evident the fact that the excitation rate of morphology-dependent resonances is greatly enhanced for far off-axis incidence of the Gaussian beam.
NASA Astrophysics Data System (ADS)
Arnott, W. P.; Miranda, G. P.; Gaffney, J. S.; Marley, N. A.
2007-05-01
Four photoacoustic spectrometers (PAS) for aerosol light scattering and absorption measurements were deployed in and near Mexico City in March 2006 as part of the Megacity Impacts on Regional and Global Environments (MIRAGE). The four sites included: an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP); a suburban site at the Technological University of Tecamac; a rural site at "La Biznaga" ranch; and a site at the Paseo de Cortes (altitude 3,810 meters ASL) in the rural area above Amecameca in the State of Mexico, on the saddle between the volcanoes Popocatepetl and Iztaccihuatl. A similar campaign was held in Las Vegas, Nevada, USA in January-February, 2003. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions while the other sites provided characterization of the plume, mixed in with any local sources. The second and third sites are north of Mexico City, and the fourth site is south. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Instruments at the second and third sites operate at 870 nm, and the one at the fourth site at 780 nm. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed probably as a consequence of secondary aerosol formation. Comparisons with TSI nephelometer scattering at the T0 site will be presented. We will present the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site and compare with Las Vegas diurnal variation. Mexico City 'breaths' more during the course of the day than Las Vegas, Nevada in part because the latitude of Mexico City resulted in more direct solar radiation. Further insight on the meteorological connections will be discussed.
Non-label bioimaging utilizing scattering lights
NASA Astrophysics Data System (ADS)
Watanabe, Tomonobu M.; Ichimura, Taro; Fujita, Hideaki
2017-04-01
Optical microscopy is an indispensable tool for medical and life sciences. Especially, the microscopes utilized with scattering light offer a detailed internal observation of living specimens in real time because of their non-labeling and non-invasive capability. We here focus on two kinds of scattering lights, Raman scattering light and second harmonic generation light. Raman scattering light includes the information of all the molecular vibration modes of the molecules, and can be used to distinguish types and/or state of cell. Second harmonic generation light is derived from electric polarity of proteins in the specimen, and enables to detect their structural change. In this conference, we would like to introduce our challenges to extract biological information from those scattering lights.
Organic electroluminescent devices having improved light extraction
Shiang, Joseph John [Niskayuna, NY
2007-07-17
Organic electroluminescent devices having improved light extraction include a light-scattering medium disposed adjacent thereto. The light-scattering medium has a light scattering anisotropy parameter g in the range from greater than zero to about 0.99, and a scatterance parameter S less than about 0.22 or greater than about 3.
Refining atmosphere light to improve the dark channel prior algorithm
NASA Astrophysics Data System (ADS)
Gan, Ling; Li, Dagang; Zhou, Can
2017-05-01
The defogging image gotten through dark channel prior algorithm has some shortcomings, such like color distortion, dimmer light and detail-loss near the observer. The main reasons are that the atmosphere light is estimated as one value and its change in different scene depth is not considered. So we modeled the atmosphere, one parameter of the defogging model. Firstly, we scatter the atmosphere light into equivalent point and build discrete model of the light. Secondly, we build some rough and possible models through analyzing the relationship between the atmosphere light and the medium transmission. Finally, by analyzing the results of many experiments qualitatively and quantitatively, we get the selected and optimized model. Although using this method causes the time-consuming to increase slightly, the evaluations, histogram correlation coefficient and peak signal-to-noise ratio are improved significantly and the defogging result is more conformed to human visual. And the color and the details near the observer in the defogging image are better than that achieved by the primal method.
Polarimetric scattering from layered media with multiple species of scatterers
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Kong, J. A.; Hsu, C. C.; Tassoudji, M. A.; Shin, R. T.
1995-01-01
Geophysical media are usually heterogeneous and contain multiple species of scatterers. In this paper a model is presented to calculate effective permittivities and polarimetric backscattering coefficients of multispecies-layered media. The same physical description is consistently used in the derivation of both permittivities and scattering coefficients. The strong permittivity fluctuation theory is extended to account for the multiple species of scatterers with a general ellipsoidal shape whose orientations are randomly distributed. Under the distorted Born approximation, polarimetric scattering coefficients are obtained. These calculations are applicable to the special cases of spheroidal and spherical scatterers. The model is used to study effects of scatterer shapes and multispecies mixtures on polarimetric signatures of heterogeneous media. The multispecies model accounts for moisture content in scattering media such as snowpack in an ice sheet. The results indicate a high sensitivity of backscatter to moisture with a stronger dependence for drier snow and ice grain size is important to the backscatter. For frost-covered saline ice, model results for bare ice are compared with measured data at C band and then the frost flower formation is simulated with a layer of fanlike ice crystals including brine infiltration over a rough interface. The results with the frost cover suggest a significant increase in scattering coefficients and a polarimetric signature closer to isotropic characteristics compared to the thin saline ice case.
Aerosol optical properties at rural background area in Western Saudi Arabia
NASA Astrophysics Data System (ADS)
Lihavainen, H.; Alghamdi, M. A.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Shabbaj, I. I.; Almehmadi, F. M.
2017-11-01
To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Ångström exponents and single scattering albedo over the measurement period. The average scattering and absorption coefficients at wavelength 525 nm were 109 ± 71 Mm- 1 (mean ± SD, at STP conditions) and 15 ± 17 Mm- 1 (at STP conditions), respectively. As expected, the scattering coefficient was dominated by large desert dust particles with low Ångström scattering exponent, 0.49 ± 0.62. Especially from February to June the Ångström scattering exponent was clearly lower (0.23) and scattering coefficients higher (124 Mm- 1) than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10-PM2.5) mass concentrations to identify source characteristics. Three different factors with clearly different properties were found; anthropogenic, BC source and desert dust. Mass absorption efficiencies for BC source and desert dust factors were, 6.0 m2 g- 1 and 0.4 m2 g- 1, respectively, and mass scattering efficiencies for anthropogenic (sulphate) and desert dust, 2.5 m2 g- 1 and 0.8 m2 g- 1, respectively.
Cropper, Paul M; Hansen, Jaron C; Eatough, Delbert J
2013-09-01
The US. Environmental Protection Agency (EPA) has proposed a new secondary standard based on visibility in urban areas. The proposed standard will be based on light extinction, calculated from 24-hr averaged measurements. It would be desirable to base the standard on a shorter averaging time to better represent human perception of visibility This could be accomplished by either an estimation of extinction from semicontinuous particulate matter (PM) data or direct measurement of scattering and absorption. To this end we have compared 1-hr measurements of fine plus coarse particulate scattering using a nephelometer along with an estimate of absorption from aethalometer measurements. The study took place in Lindon, UT, during February and March 2012. The nephelometer measurements were corrected for coarse particle scattering and compared to the Filter Dynamic Measurement System (FDMS) tapered element oscillating microbalance monitor (TEOM) PM2.5 measurements. The two measurements agreed with a mass scattering coefficient of 3.3 +/- 0.3 m2/g at relative humidity below 80%. However at higher humidity, the nephelometer gave higher scattering results due to water absorbed by ammonium nitrate and ammonium sulfate in the particles. This particle-associated water is not measured by the FDMS TEOM. The FDMS TEOM data could be corrected for this difference using appropriate IMPROVE protocols if the particle composition is known. However a better approach may be to use a particle measurement system that allows for semicontinuous measurements but also measures particle bound water Data are presented from a 2003 study in Rubidoux, CA, showing how this could be accomplished using a Grimm model 1100 aerosol spectrometer or comparable instrument.
NASA Technical Reports Server (NTRS)
Pallix, Joan B.; Copeland, Richard A.; Arnold, James O. (Technical Monitor)
1995-01-01
Advanced laser-based diagnostics have been developed to examine catalytic effects and atom/surface interactions on thermal protection materials. This study establishes the feasibility of using laser-induced fluorescence for detection of O and N atom loss in a diffusion tube to measure surface catalytic activity. The experimental apparatus is versatile in that it allows fluorescence detection to be used for measuring species selective recombination coefficients as well as diffusion tube and microwave discharge diagnostics. Many of the potential sources of error in measuring atom recombination coefficients by this method have been identified and taken into account. These include scattered light, detector saturation, sample surface cleanliness, reactor design, gas pressure and composition, and selectivity of the laser probe. Recombination coefficients and their associated errors are reported for N and O atoms on a quartz surface at room temperature.
The Ascension Island Boundary Layer in the Remote Southeast Atlantic is Often Smoky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuidema, Paquita; Sedlacek, Arthur J.; Flynn, Connor
Observations from June through October, 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Derived mass absorption cross-sections using light absorptioin coefficients at three wavelengths as a function of rBC mass indirectly indicate the presence of other light-absorbing organic aerosols (e.g., brown carbon), most pronounced in June. A filter-based estimate of single-scattering-albedo increases systematically from August to October, also apparent in 2017. Boundary-layermore » aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass-burning season, evolving to smoke predominantly present in the free-troposphere in September-October, typically resting upon the cloud-top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August of 2016, is investigated further. Back trajectories indicate the boundary layer transport was directly westward from the African continent, which is unusual in August.« less
Apparatus for measuring particle properties
Rader, Daniel J.; Castaneda, Jaime N.; Grasser, Thomas W.; Brockmann, John E.
1998-01-01
An apparatus for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle's size can be determined from the intensity of the light scattered. The particle's velocity can be determined from the elapsed time between various intensities of the light scattered.
Wide-field phase imaging for the endoscopic detection of dysplasia and early-stage esophageal cancer
NASA Astrophysics Data System (ADS)
Fitzpatrick, C. R. M.; Gordon, G. S. D.; Sawyer, T. W.; Wilkinson, T. D.; Bohndiek, S. E.
2018-02-01
Esophageal cancer has a 5-year survival rate below 20%, but can be curatively resected if it is detected early. At present, poor contrast for early lesions in white light imaging leads to a high miss rate in standard-of- care endoscopic surveillance. Early lesions in the esophagus, referred to as dysplasia, are characterized by an abundance of abnormal cells with enlarged nuclei. This tissue has a different refractive index profile to healthy tissue, which results in different light scattering properties and provides a source of endogenous contrast that can be exploited for advanced endoscopic imaging. For example, point measurements of such contrast can be made with scattering spectroscopy, while optical coherence tomography generates volumetric data. However, both require specialist interpretation for diagnostic decision making. We propose combining wide-field phase imaging with existing white light endoscopy in order to provide enhanced contrast for dysplasia and early-stage cancer in an image format that is familiar to endoscopists. Wide-field phase imaging in endoscopy can be achieved using coherent illumination combined with phase retrieval algorithms. Here, we present the design and simulation of a benchtop phase imaging system that is compatible with capsule endoscopy. We have undertaken preliminary optical modelling of the phase imaging setup, including aberration correction simulations and an investigation into distinguishing between different tissue phantom scattering coefficients. As our approach is based on phase retrieval rather than interferometry, it is feasible to realize a device with low-cost components for future clinical implementation.
Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi
2011-02-01
Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Knyazikhin, Yuri; Chiu, J. Christine; Wiscombe, Warren J.
2012-01-01
The single scattering albedo omega(sub O lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength lambda and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(sub O lambda)(r)/omega(sub O lambda)(r (sub O)) of two single scattering albedo spectra is a linear function of omega(sub O lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum omega(sub O lambda)(r) via one known spectrum omega(sub O lambda)(r (sub O)). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.
Turbidity in the southern Irish Sea
NASA Astrophysics Data System (ADS)
Bowers, D. G.; Gaffney, S.; White, M.; Bowyer, P.
2002-10-01
This paper presents new in situ optical and associated measurements from 85 stations in the central and southern Irish Sea. There is a strong linear relationship between the irradiance reflectance RA in the orange-red part of the spectrum (580-680 nm) and the diffuse attenuation coefficient, K, for white light: K=0.05+0.26 R A, where K is in m -1 and RA has been corrected to just above-surface reflectance and expressed as a percentage. The significance of this result is that this particular reflectance can be measured by the advanced very high resolution radiometer on board the NOAA series of satellites. In principle, therefore, cloud cover permitting, the transparency of the Irish Sea to sunlight, can be mapped from space. This result is shown to be consistent with a simple optical model in which light scattering is principally by mineral suspended solids, and light absorption is by water, mineral suspended solids and chlorophyll. Best fit between model and observations is achieved with a specific scattering coefficient of 0.5 m 2 g -1. The measurements were made during four cruises, at different times of year and across the range of turbidity found in the Irish Sea. The geographical distribution of suspended sediments confirms the presence, previously inferred from satellite imagery, of two separate turbidity maxima, one off Wicklow Head, the other off Anglesey. These correspond to the areas of strongest tidal currents. Yellow substance was found in highest concentration in a band along the Irish coast. Chlorophyll concentrations were generally low during these cruises. A residual problem is that a direct comparison of in situ reflectance and satellite measured reflectance possible on one of the cruises shows a serious discrepancy, although on average there appears to be a good agreement between satellite and in situ reflectance.
NASA Astrophysics Data System (ADS)
Chang, Vivide Tuan-Chyan; Merisier, Delson; Yu, Bing; Walmer, David K.; Ramanujam, Nirmala
2011-03-01
A significant challenge in detecting cervical pre-cancer in low-resource settings is the lack of effective screening facilities and trained personnel to detect the disease before it is advanced. Light based technologies, particularly quantitative optical spectroscopy, have the potential to provide an effective, low cost, and portable solution for cervical pre-cancer screening in these communities. We have developed and characterized a portable USB-powered optical spectroscopic system to quantify total hemoglobin content, hemoglobin saturation, and reduced scattering coefficient of cervical tissue in vivo. The system consists of a high-power LED as light source, a bifurcated fiber optic assembly, and two USB spectrometers for sample and calibration spectra acquisitions. The system was subsequently tested in Leogane, Haiti, where diffuse reflectance spectra from 33 colposcopically normal sites in 21 patients were acquired. Two different calibration methods, i.e., a post-study diffuse reflectance standard measurement and a real time self-calibration channel were studied. Our results suggest that a self-calibration channel enabled more accurate extraction of scattering contrast through simultaneous real-time correction of intensity drifts in the system. A self-calibration system also minimizes operator bias and required training. Hence, future contact spectroscopy or imaging systems should incorporate a selfcalibration channel to reliably extract scattering contrast.
NASA Astrophysics Data System (ADS)
Liu, Lingling; Li, Chenxi; Zhao, Huijuan; Yi, Xi; Gao, Feng; Meng, Wei; Lu, Yiming
2014-03-01
Radiance is sensitive to the variations of tissue optical parameters, such as absorption coefficient μa, scattering coefficient μs, and anisotropy factor g. Therefore, similar to fluence, radiance can be used for tissue characterization. Compared with fluence, radiance has the advantage of offering the direction information of light intensity. Taking such advantage, the optical parameters can be determined by rotating the detector through 360 deg with only a single optode pair. Instead of the translation mode used in the fluence-based technologies, the Rotation mode has less invasiveness in the clinical diagnosis. This paper explores a new method to obtain the optical properties by measuring the distribution of light intensity in liquid phantom with only a single optode pair and the detector rotation through 360 deg. The angular radiance and distance-dependent radiance are verified by comparing experimental measurement data with Monte Carlo (MC) simulation for the short source-detector separations and diffusion approximation for the large source-detector separations. Detecting angular radiance with only a single optode pair under a certain source-detection separation will present a way for prostate diagnose and light dose calculation during the photon dynamic therapy (PDT).
Scatter Measurements Made With Ultraviolet Light
NASA Astrophysics Data System (ADS)
Anthon, Erik W.
1985-09-01
The quality of optical surfaces is generally evaluated by how much light (normally visible light) is scattered by the surface. Most optical glasses and many coating materials are completely opaque to ultraviolet light (253.7 nm). Ultraviolet light tends to scatter much more than visible light. Scatter measurements made with ultraviolet light are therefore very sensitive and the scatter from second surfaces and from the interior (bulk) of the optical material is eliminated by the opacity. A novel scattermeter that operates with ultraviolet light has been developed. The construction and operation of this scattermeter will be described. Cleaning soon becomes the limiting factor when measuring the surfaces with very low level of scatter. Sensitivity to repeated cleaning has been investigated. Different surfaces are compared and uniformity of surfaces is measured by mapping a surface area with an x-y stage. Polished glass surfaces generally have much higher scatter than natural glass surfaces (fire polished, drawn or floated surfaces). Very low scatter levels have been found on thin drawn glass.
Multi-wavelength aerosol light absorption measurements in the Amazon rainforest
NASA Astrophysics Data System (ADS)
Saturno, Jorge; Chi, Xuguang; Pöhlker, Christopher; Morán, Daniel; Ditas, Florian; Massabò, Dario; Prati, Paolo; Rizzo, Luciana; Artaxo, Paulo; Andreae, Meinrat
2015-04-01
The most important light-absorbing aerosol is black carbon (BC), which is emitted by incomplete combustion of fossil fuels and biomass. BC is considered the second anthropogenic contributor to global warming. Beyond BC, other aerosols like some organics, dust, and primary biological aerosol particles are able to absorb radiation. In contrast to BC, the light absorption coefficient of these aerosols is wavelength dependent. Therefore, multi-wavelength measurements become important in environments where BC is not the predominant light-absorbing aerosol like in the Amazon. The Amazon Tall Tower Observatory (ATTO) site is located in the remote Amazon rainforest, one of the most pristine continental sites in the world during the wet season. In the dry season, winds coming from the southern hemisphere are loaded with biomass burning aerosol particles originated by farming-related deforestation. BC and aerosol number concentration data from the last two years indicate this is the most polluted period. Two different techniques have been implemented to measure the light absorption at different wavelengths; one of them is the 7-wavelengths Aethalometer, model AE30, an instrument that measures the light attenuation on a filter substrate and requires multiple scattering and filter-loading corrections to retrieve the light absorption coefficient. The other method is an offline technique, the Multi-Wavelength Absorbance Analysis (MWAA), which is able to measure reflectance and absorbance by aerosols collected on a filter and, by means of a radiative model, can retrieve the light absorption coefficient. Filters collected during May-September 2014, comprehending wet-to-dry transition and most of the dry season, were analyzed. The results indicate that the Absorption Ångström Exponent (AAE), a parameter that is directly proportional to the wavelength dependence of the aerosol light absorption, is close to 1.0 during the transition period and slightly decreases in the beginning of the dry season. However, during strong biomass burning episodes in the dry season, the AAE increases significantly, and reaches values higher than 1.3, indicating the presence of wavelength dependent light-absorbing aerosols like organics (brown carbon). The present study is a contribution to the understanding of the optical properties of light-absorbing aerosol particles under pristine and biomass-burning conditions.
NASA Astrophysics Data System (ADS)
Tseng, Snow H.; Chang, Shih-Hui
2018-04-01
Here we present a numerical simulation to analyze the effect of scattering on focusing light into closely-spaced twin peaks. The pseudospectral time-domain (PSTD) is implemented to model continuous-wave (CW) light propagation through a scattering medium. Simulations show that CW light can propagate through a scattering medium and focus into closely-spaced twin peaks. CW light of various wavelengths focusing into twin peaks with sub-diffraction spacing is simulated. In advance, light propagation through scattering media of various number densities is simulated to decipher the dependence of CW light focusing phenomenon on the scattering medium. The reported simulations demonstrate the feasibility of focusing CW light into twin peaks with sub-diffraction dimensions. More importantly, based upon numerical solutions of Maxwell’s equations, research findings show that the sub-diffraction focusing phenomenon can be achieved with scarce or densely-packed scattering media.
NASA Astrophysics Data System (ADS)
Yang, Yi; Wang, Tianheng; Biswal, Nrusingh C.; Wang, Xiaohong; Sanders, Melinda; Brewer, Molly; Zhu, Quing
2011-09-01
Optical scattering coefficient from ex vivo unfixed normal and malignant ovarian tissue was quantitatively extracted by fitting optical coherence tomography (OCT) A-line signals to a single scattering model. 1097 average A-line measurements at a wavelength of 1310 nm were performed at 108 sites obtained from 18 ovaries. The average scattering coefficient obtained from the normal tissue group consisted of 833 measurements from 88 sites was 2.41 mm-1 (+/-0.59), while the average coefficient obtained from the malignant tissue group consisted of 264 measurements from 20 sites was 1.55 mm-1 (+/-0.46). The malignant ovarian tissue showed significant lower scattering than the normal group (p < 0.001). The amount of collagen within OCT imaging depth was analyzed from the tissue histological section stained with Sirius Red. The average collagen area fraction (CAF) obtained from the normal tissue group was 48.4% (+/-12.3%), while the average CAF obtained from the malignant tissue group was 11.4% (+/-4.7%). A statistical significance of the collagen content was found between the two groups (p < 0.001). These results demonstrated that quantitative measurements of optical scattering coefficient from OCT images could be a potential powerful method for ovarian cancer detection.
NASA Astrophysics Data System (ADS)
Marks, Amelia A.; Lamare, Maxim L.; King, Martin D.
2017-12-01
Radiative-transfer calculations of the light reflectivity and extinction coefficient in laboratory-generated sea ice doped with and without black carbon demonstrate that the radiative-transfer model TUV-snow can be used to predict the light reflectance and extinction coefficient as a function of wavelength. The sea ice is representative of first-year sea ice containing typical amounts of black carbon and other light-absorbing impurities. The experiments give confidence in the application of the model to predict albedo of other sea ice fabrics. Sea ices, ˜ 30 cm thick, were generated in the Royal Holloway Sea Ice Simulator ( ˜ 2000 L tanks) with scattering cross sections measured between 0.012 and 0.032 m2 kg-1 for four ices. Sea ices were generated with and without ˜ 5 cm upper layers containing particulate black carbon. Nadir reflectances between 0.60 and 0.78 were measured along with extinction coefficients of 0.1 to 0.03 cm-1 (e-folding depths of 10-30 cm) at a wavelength of 500 nm. Values were measured between light wavelengths of 350 and 650 nm. The sea ices generated in the Royal Holloway Sea Ice Simulator were found to be representative of natural sea ices. Particulate black carbon at mass ratios of ˜ 75, ˜ 150 and ˜ 300 ng g-1 in a 5 cm ice layer lowers the albedo to 97, 90 and 79 % of the reflectivity of an undoped clean
sea ice (at a wavelength of 500 nm).
Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells
NASA Astrophysics Data System (ADS)
Park, Yongkeun; Diez-Silva, Monica; Fu, Dan; Popescu, Gabriel; Choi, Wonshik; Barman, Ishan; Suresh, Subra; Feld, Michael S.
2010-03-01
We present the light scattering of individual Plasmodium falciparum-parasitized human red blood cells (Pf-RBCs), and demonstrate progressive alterations to the scattering signal arising from the development of malaria-inducing parasites. By selectively imaging the electric fields using quantitative phase microscopy and a Fourier transform light scattering technique, we calculate the light scattering maps of individual Pf-RBCs. We show that the onset and progression of pathological states of the Pf-RBCs can be clearly identified by the static scattering maps. Progressive changes to the biophysical properties of the Pf-RBC membrane are captured from dynamic light scattering.
Apparatus for measuring particle properties
Rader, D.J.; Castaneda, J.N.; Grasser, T.W.; Brockmann, J.E.
1998-08-11
An apparatus is described for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle`s size can be determined from the intensity of the light scattered. The particle`s velocity can be determined from the elapsed time between various intensities of the light scattered. 11 figs.
Optical Characterization of Tissue Phantoms Using a Silicon Integrated fdNIRS System on Chip.
Sthalekar, Chirag C; Miao, Yun; Koomson, Valencia Joyner
2017-04-01
An interface circuit with signal processing and digitizing circuits for a high frequency, large area avalanche photodiode (APD) has been integrated in a 130 nm BiCMOS chip. The system enables the absolute oximetry of tissue using frequency domain Near Infrared Spectroscopy (fdNIRS). The system measures the light absorbed and scattered by the tissue by measuring the reduction in the amplitude of signal and phase shift introduced between the light source and detector which are placed a finite distance away from each other. The received 80 MHz RF signal is downconverted to a low frequency and amplified using a heterodyning scheme. The front-end transimpedance amplifier has a 3-level programmable gain that increases the dynamic range to 60 dB. The phase difference between an identical reference channel and the optical channel is measured with a 0.5° accuracy. The detectable current range is [Formula: see text] and with a 40 A/W reponsivity using the APD, power levels as low as 500 pW can be detected. Measurements of the absorption and reduced scattering coefficients of solid tissue phantoms using this system are compared with those using a commercial instrument with differences within 30%. Measurement of a milk based liquid tissue phantom show an increase in absorption coefficient with addition of black ink. The miniaturized circuit serves as an efficiently scalable system for multi-site detection for applications in neonatal cerebral oximetry and optical mammography.
Minami, Keiichiro; Maruyama, Yoko; Mihashi, Toshifumi; Miyata, Kazunori; Oshika, Tetsuro
2017-03-01
To evaluate the influence of increases in light scattering on intraocular lens (IOL) surfaces on paraxial forward scattering using goniophotometry and Hartmann-Shack wavefront aberrometry. Surface light scattering was reproduced experimentally by acceleratedly aging 4 intraocular lenses by 0, 3, 5, and 10 years each. Light scattering from both IOL surfaces was measured using Scheimpflug photography. The paraxial forward scattering from the aged IOLs was measured using a goniophotometer with a halogen light source (wavelength: 350-850 nm) and telecentric optics, and changes in the maximum intensity and full width at 10% of maximum intensity (FW10%) were evaluated. The influences on the retina image were examined using a Hartmann-Shack aberrometer (wavelength: 840 nm). The contrast and difference from the point spread function of the central centroids were evaluated. The mean surface light scattering from both IOL surfaces ranged from 30.0 to 118.3 computer compatible tape (CCT) and increased with each aging year. Evaluations using the goniophotometer and the Hartmann-Shack aberrometer showed no significant change in the paraxial forward scattering with the aging year (P > .45, Kruskal-Wallis test), and no association with the surface light scattering intensity was found (P > .75, Spearman rank correlation). This experimental study using aged IOLs demonstrated that surface light scattering does not influence paraxial forward scattering.
Laser Light Scattering with Multiple Scattering Suppression Used to Measure Particle Sizes
NASA Technical Reports Server (NTRS)
Meyer, William V.; Tin, Padetha; Lock, James A.; Cannell, David S.; Smart, Anthony E.; Taylor, Thomas W.
1999-01-01
Laser light scattering is the technique of choice for noninvasively sizing particles in a fluid. The members of the Advanced Technology Development (ATD) project in laser light scattering at the NASA Lewis Research Center have invented, tested, and recently enhanced a simple and elegant way to extend the concentration range of this standard laboratory particle-sizing technique by several orders of magnitude. With this technique, particles from 3 nm to 3 mm can be measured in a solution. Recently, laser light scattering evolved to successfully size particles in both clear solutions and concentrated milky-white solutions. The enhanced technique uses the property of light that causes it to form tall interference patterns at right angles to the scattering plane (perpendicular to the laser beam) when it is scattered from a narrow laser beam. Such multiple-scattered light forms a broad fuzzy halo around the focused beam, which, in turn, forms short interference patterns. By placing two fiber optics on top of each other and perpendicular to the laser beam (see the drawing), and then cross-correlating the signals they produce, only the tall interference patterns formed by singly scattered light are detected. To restate this, unless the two fiber optics see the same interference pattern, the scattered light is not incorporated into the signal. With this technique, only singly scattered light is seen (multiple-scattered light is rejected) because only singly scattered light has an interference pattern tall enough to span both of the fiber-optic pickups. This technique is simple to use, easy to align, and works at any angle. Placing a vertical slit in front of the signal collection fibers enhanced this approach. The slit serves as an optical mask, and it significantly shortens the time needed to collect good data by selectively masking out much of the unwanted light before cross-correlation is applied.
Design of Multi-Resonant Cavities Based on Metal-Coated Dielectric Nanocylinders
NASA Astrophysics Data System (ADS)
Dong, Junyuan; Yu, Guanxia; Fu, Jingjing; Luo, Min; Du, Wenwen
2018-06-01
In this paper, the light scattering properties for multiple silver-coated dielectric nanocylinders with the symmetrical distribution were investigated. Based on the transfer matrix method, we derive the general transmission and reflection coefficient matrices for multiple dielectric nanocylinders. When the incident light frequencies are less than the plasma frequencies, the surface plasmons (SPs) appear in the interface between the silver and dielectrics. Numerical simulations show that there are three peaks of absorption cross-section (ACS) in the relationship between the ACS and the frequencies of the incident light, when the distance between the silver-coated dielectric nanocylinders is chosen properly. These SPs resonance peaks are characterised as resonances intrinsic to the cylindrically periodic system corresponding to different inner cavity structures. These multi-resonant cavities may have potential applications in integrated devices, optical sensors and optical storage devices.
Wei, Yiyi; Ma, Lulu; Cao, Tingting; Zhang, Qing; Wu, Jun; Buseck, Peter R; Thompson, J E
2013-10-01
An aerosol albedometer was combined with laser-induced incandescence (LII) to achieve simultaneous measurements of aerosol scattering, extinction coefficient, and soot mass concentration. Frequency doubling of a Nd:YAG laser line resulted in a colinear beam of both λ = 532 and 1064 nm. The green beam was used to perform cavity ring-down spectroscopy (CRDS), with simultaneous measurements of scattering coefficient made through use of a reciprocal sphere nephelometer. The 1064 nm beam was selected and directed into a second integrating sphere and used for LII of light-absorbing kerosene lamp soot. Thermal denuder experiments showed the LII signals were not affected by the particle mixing state when laser peak power was 1.5-2.5 MW. The combined measurements of optical properties and soot mass concentration allowed determination of mass absorption cross section (M.A.C., m(2)/g) with 1 min time resolution when soot concentrations were in the low microgram per cubic meter range. Fresh kerosene nanosphere soot (ns-soot) exhibited a mean M.A.C and standard deviation of 9.3 ± 2.7 m(2)/g while limited measurements on dry ambient aerosol yielded an average of 8.2 ± 5.9 m(2)/g when soot was >0.25 μg/m(3). The method also detected increases in M.A.C. values associated with enhanced light absorption when polydisperse, laboratory-generated ns-soot particles were embedded within or coated with ammonium nitrate, ammonium sulfate, and glycerol. Glycerol coatings produced the largest fractional increase in M.A.C. (1.41-fold increase), while solid coatings of ammonium sulfate and ammonium nitrate produced increases of 1.10 and 1.06, respectively. Fresh, ns-soot did not exhibit increased M.A.C. at high relative humidity (RH); however, lab-generated soot coated with ammonium nitrate and held at 85% RH exhibited M.A.C. values nearly double the low-humidity case. The hybrid instrument for simultaneously tracking soot mass concentration and aerosol optical properties in real time is a valuable tool for probing enhanced absorption by soot at atmospherically relevant concentrations.
NASA Astrophysics Data System (ADS)
Lihavainen, H.; Alghamdi, M.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Shabbaj, I. I.; Almehmadi, F. M.
2017-12-01
To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Ångström exponents and single scattering albedo over the measurement period. As expected, the scattering coefficient was dominated by large desert dust particles with low Ångström scattering exponent. Especially from February to June the Ångström scattering exponent was clearly lower and scattering coefficients higher than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10- PM2.5) mass concentrations to characterise aerosols from different sources. Analysis revealed three clearly different types of sources, anthropogenic, BC source and desert dust. These factors have clearly different seasonal and diurnal variation. The contribution of desert dust factor was dominating from February to May, whereas the contribution of anthropogenic factor is quite steady over the whole year. We estimated the mass absorption and scattering efficiencies for the factors and they agreed well with earlier observations. Hence, this method could be used to distinguish aerosol source characteristics, at least in fairly simple cases.
Temperature dependence of electron impact ionization coefficient in bulk silicon
NASA Astrophysics Data System (ADS)
Ahmed, Mowfaq Jalil
2017-09-01
This work exhibits a modified procedure to compute the electron impact ionization coefficient of silicon for temperatures between 77 and 800K and electric fields ranging from 70 to 400 kV/cm. The ionization coefficients are computed from the electron momentum distribution function through solving the Boltzmann transport equation (BTE). The arrangement is acquired by joining Legendre polynomial extension with BTE. The resulting BTE is solved by differences-differential method using MATLAB®. Six (X) equivalent ellipsoidal and non-parabolic valleys of the conduction band of silicon are taken into account. Concerning the scattering mechanisms, the interval acoustic scattering, non-polar optical scattering and II scattering are taken into consideration. This investigation showed that the ionization coefficients decrease with increasing temperature. The overall results are in good agreement with previous experimental and theoretical reported data predominantly at high electric fields.
Phantom Preparation and Optical Property Determination
NASA Astrophysics Data System (ADS)
He, Di; He, Jie; Mao, Heng
2018-12-01
Tissue-like optical phantoms are important in testing new imaging algorithms. Homogeneous optical phantoms with determined optical properties are the first step of making a proper heterogeneous phantom for multi-modality imaging. Typical recipes for such phantoms consist of epoxy resin, hardener, India ink and titanium oxide. By altering the concentration of India ink and titanium oxide, we are able to get multiple homogeneous phantoms with different absorption and scattering coefficients by carefully mixing all the ingredients. After fabricating the phantoms, we need to find their individual optical properties including the absorption and scattering coefficients. This is achieved by solving diffusion equation of each phantom as a homogeneous slab under canonical illumination. We solve the diffusion equation of homogeneous slab in frequency domain and get the formula for theoretical measurements. Under our steady-state diffused optical tomography (DOT) imaging system, we are able to obtain the real distribution of the incident light produced by a laser. With this source distribution we got and the formula we derived, numerical experiments show how measurements change while varying the value of absorption and scattering coefficients. Then we notice that the measurements alone will not be enough for us to get unique optical properties for steady-state DOT problem. Thus in order to determine the optical properties of a homogeneous slab we want to fix one of the coefficients first and use optimization methods to find another one. Then by assemble multiple homogeneous slab phantoms with different optical properties, we are able to obtain a heterogeneous phantom suitable for testing multi-modality imaging algorithms. In this paper, we describe how to make phantoms, derive a formula to solve the diffusion equation, demonstrate the non-uniqueness of steady-state DOT problem by analysing some numerical results of our formula, and finally propose a possible way to determine optical properties for homogeneous slab for our future work.
Bacterial Identification Using Light Scattering Measurements: a Preliminary Report
NASA Technical Reports Server (NTRS)
Wilkins, J. R.
1971-01-01
The light scattering properties of single bacterial cells were examined as a possible means of identification. Three species were studied with streptococcus faecalis exhibiting a unique pattern; the light-scattering traces for staphylococcus aureus and escherichia coli were quite similar although differences existed. Based on preliminary investigations, the light scattering approach appeared promising with additional research needed to include a wide variety of bacterial species, computer capability to handle and analyze data, and expansion of light scattering theory to include bacterial cells.
Timmins, P A; Langowski, J; Brown, R S
1988-01-01
The precise molecular composition of the Xenopus laevis TFIIIA-5S ribosomal RNA complex (7S particle) has been established from small angle neutron and dynamic light scattering. The molecular weight of the particle was found to be 95,700 +/- 10,000 and 86,700 +/- 9000 daltons from these two methods respectively. The observed match point of 54.4% D2O obtained from contrast variation experiments indicates a 1:1 molar ratio. It is concluded that only a single molecule of TFIIIA, a zinc-finger protein, and of 5S RNA are present in this complex. At high neutron scattering contrast radius of gyration of 42.3 +/- 2 A was found for the 7S particle. In addition a diffusion coefficient of 4.4 x 10(-11) [m2 s-1] and a sedimentation coefficient of 6.2S were determined. The hydrodynamic radius obtained for the 7S particle is 48 +/- 5 A. A simple elongated cylindrical model with dimensions of 140 A length and 59 A diameter is compatible with the neutron results. A globular model can be excluded by the shallow nature of the neutron scattering curves. It is proposed that the observed difference of 15 A in length between the 7S particle and isolated 5S RNA most likely indicates that part(s) of the protein protrudes from the end(s) of the RNA molecule. There is no biochemical evidence for any gross alteration in 5S RNA conformation upon binding to TFIIIA. PMID:3419928
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
Anisotropic light scattering of individual sickle red blood cells.
Kim, Youngchan; Higgins, John M; Dasari, Ramachandra R; Suresh, Subra; Park, YongKeun
2012-04-01
We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, A E; Potapov, V T; Gorshkov, B G
We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)
NASA Astrophysics Data System (ADS)
Turcu, Ioan; Bratfalean, Radu; Neamtu, Silvia
2008-07-01
The adequacy of the effective phase function (EPF) used to describe the light scattered at small angles was tested on aqueous suspensions of polystyrene microspheres. Angular resolved light scattering measurements were performed on two types of latex suspension, which contained polystyrene spheres of 3 µm and 5 µm diameters, respectively. The experimental data were fitted with two EPF approximants. If the polystyrene spheres are at least 3 µm in diameter the quasi-ballistic light scattering process can be described relatively well by the EPF in a small angular range centered in the forward direction. The forward light scattering by macroscopic samples containing microspheres can be modeled relatively well if the true Mie single particle scattering phase function is replaced by a simpler Henyey-Greenstein dependence having the same width at half-height as the first scattering lobe.
NASA Astrophysics Data System (ADS)
Zhou, Hongwei; Xu, Shenghua; Mi, Li; Sun, Zhiwei; Qin, Yanming
2014-09-01
Absolute coagulation rate constants were determined by independently, instead of simultaneously, using static and dynamic light scattering with the requested optical factors calculated by T-matrix method. The aggregating suspensions of latex particles with diameters of 500, 700, and 900 nm, that are all beyond validity limit of the traditional Rayleigh-Debye-Gans approximation, were adopted. The results from independent static and dynamic light scattering measurements were compared with those by simultaneously using static and dynamic light scattering; and three of them show good consistency. We found, theoretically and experimentally, that for independent static light scattering measurements there are blind scattering angles at that the scattering measurements become impossible and the number of blind angles increases rapidly with particle size. For independent dynamic light scattering measurements, however, there is no such a blind angle at all. A possible explanation of the observed phenomena is also presented.
Instrumentation on Multi-Scaled Scattering of Bio-Macromolecular Solutions
Chu, Benjamin; Fang, Dufei; Mao, Yimin
2015-01-01
The design, construction and initial tests on a combined laser light scattering and synchrotron X-ray scattering instrument can cover studies of length scales from atomic sizes in Angstroms to microns and dynamics from microseconds to seconds are presented. In addition to static light scattering (SLS), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD), the light scattering instrument is being developed to carry out studies in mildly turbid solutions, in the presence of multiple scattering. Three-dimensional photon cross correlation function (3D-PCCF) measurements have been introduced to couple with synchrotron X-ray scattering to study the structure, size and dynamics of macromolecules in solution. PMID:25946340
NASA Astrophysics Data System (ADS)
Shoukat, Sobia; Naqvi, Qaisar A.
2016-12-01
In this manuscript, scattering from a perfect electric conducting strip located at planar interface of topological insulator (TI)-chiral medium is investigated using the Kobayashi Potential method. Longitudinal components of electric and magnetic vector potential in terms of unknown weighting function are considered. Use of related set of boundary conditions yields two algebraic equations and four dual integral equations (DIEs). Integrand of two DIEs are expanded in terms of the characteristic functions with expansion coefficients which must satisfy, simultaneously, the discontinuous property of the Weber-Schafheitlin integrals, required edge and boundary conditions. The resulting expressions are then combined with algebraic equations to express the weighting function in terms of expansion coefficients, these expansion coefficients are then substituted in remaining DIEs. The projection is applied using the Jacobi polynomials. This treatment yields matrix equation for expansion coefficients which is solved numerically. These unknown expansion coefficients are used to find the scattered field. The far zone scattering width is investigated with respect to different parameters of the geometry, i.e, chirality of chiral medium, angle of incidence, size of the strip. Significant effects of different parameters including TI parameter on the scattering width are noted.
A simple method for finding the scattering coefficients of quantum graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cottrell, Seth S.
2015-09-15
Quantum walks are roughly analogous to classical random walks, and similar to classical walks they have been used to find new (quantum) algorithms. When studying the behavior of large graphs or combinations of graphs, it is useful to find the response of a subgraph to signals of different frequencies. In doing so, we can replace an entire subgraph with a single vertex with variable scattering coefficients. In this paper, a simple technique for quickly finding the scattering coefficients of any discrete-time quantum graph will be presented. These scattering coefficients can be expressed entirely in terms of the characteristic polynomial ofmore » the graph’s time step operator. This is a marked improvement over previous techniques which have traditionally required finding eigenstates for a given eigenvalue, which is far more computationally costly. With the scattering coefficients we can easily derive the “impulse response” which is the key to predicting the response of a graph to any signal. This gives us a powerful set of tools for rapidly understanding the behavior of graphs or for reducing a large graph into its constituent subgraphs regardless of how they are connected.« less
Multi-peaks scattering of light in glasses
NASA Astrophysics Data System (ADS)
Smirnov, V. A.; Vostrikova, L. I.
2018-04-01
Investigations of the multi-peaks scattering of the laser light on the micro-scale susceptibility gratings with small periodicities photo-induced in the various glass materials are presented. The observed pictures of the multi-peaks scattering of light in oxide samples show that the efficiencies of the processes of scattering can vary for the different chemical compositions. Experimental results are in agreement with the proposed theory of light scattering.
Diffusing Wave Spectroscopy Used to Study Foams
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A.; Durian, Douglas J.
2000-01-01
The white appearance of familiar objects such as clouds, snow, milk, or foam is due to the random scattering of light by the sample. As we all know, pure water is clear and easily passes a beam of light. However, tiny water droplets, such as those in a cloud, scatter light because the air and water droplet have different indexes of refraction. When many droplets, or scattering sites, are present, the incident light is scattered in random directions and the sample takes on a milky white appearance. In a glass of milk, the scattering is due to small colloidal particles. The white appearance of shaving cream, or foam, is due to the scattering of light at the water-bubble interface. Diffusing wave spectroscopy (DWS) is a laser light-scattering technique used to noninvasively probe the particle dynamics in systems that strongly scatter light. The technique takes advantage of the diffuse nature of light, which is reflected or transmitted from samples such as foams, dense colloidal suspensions (such as paint and milk), emulsions, liquid crystals, sandpiles, and even biological tissues.
Look-Ahead Distance of a fiber probe used to assist neurosurgery: Phantom and Monte Carlo study
NASA Astrophysics Data System (ADS)
Qian, Zhiyu; Victor, Sunder S.; Gu, Yueqing; Giller, Cole A.; Liu, Hanli
2003-08-01
A short-separation, optical reflectance probe has been developed to assist the neurosurgeon in functional neurosurgery for accurate localization of the surgical target. Because of the scattering nature of tissue, the optical probe has a "Look Ahead Distance" (LAD), at which the measured optical reflectance starts to "see" or "sense" the underlying brain structure due to the difference in light scattering of tissue. To quantify the LAD, 2-layer laboratory phantoms have been developed to mimic gray and white matter of the brain, and Monte Carlo simulations have been also used to confirm the experimental findings. Based on both the laboratory and simulation results, a quantitative empirical equation is developed to express the LAD as a function of scattering coefficient of the measured tissue for a 400-micron-diameter fiber probe. The quantified LAD of the probe is highly desirable so as to improve the spatial resolution of the probe for better surgery guidance.
Slater, John F; Dibb, Jack E; Keim, Barry D; Talbot, Robert W
2002-03-27
Chemical, optical, and physical measurements of fine aerosols (aerodynamic diameter < or = 2.5 microm) have been performed at a mountaintop location adjacent to the White Mountain National Forest in northern NH, USA. A 1-month long sampling campaign was conducted at Cranmore Mountain during spring 2000. We report on the apportionment of light extinction by fine aerosols into its major chemical components, and relationships between variations in aerosol parameters and changes in air mass origin. Filter-based, 24-h integrated samples were collected and analyzed for major inorganic ions, as well as organic (OC), elemental (EC), and total carbon. Light scattering and light absorption coefficients were measured at 5-min intervals using an integrating nephelometer and a light absorption photometer. Fine particle number density was measured with a condensation particle counter. Air mass origins and transport patterns were investigated through the use of 3-day backward trajectories and a synoptic climate classification system. Two distinct transport regimes were observed: (1) flow from the north/northeast (N/NE) occurred during 9 out of 18 sample-days; and (2) flow from the west/southwest (W/SW) occurred 8 out of 18 sample-days. All measured and derived aerosol and meteorological parameters were separated into two categories based on these different flow scenarios. During W/SW flow, higher values of aerosol chemical concentration, absorption and scattering coefficients, number density, and haziness were observed compared to N/NE flow. The highest level of haziness was associated with the climate classification Frontal Atlantic Return, which brought polluted air into the region from the mid-Atlantic corridor. Fine particle mass scattering efficiencies of (NH4)2SO4 and OC were 5.35 +/- 0.42 m2 g(-1) and 1.56 +/- 0.40 m2 g(-1), respectively, when transport was out of the N/NE. When transport was from the W/SW the values were 4.94 +/- 0.68 m2 g(-1) for (NH4)2SO4 and 2.18 +/- 0.91 m2 g(-1) for OC. EC mass absorption efficiency when transport was from the N/NE was 9.66 +/- 1.06 m2 g(-1) and 10.80 +/- 1.76 m2 g(-1) when transport was from the W/SW. Results from this work can be used to predict visual air quality in the White Mountain National Forest based on a forecasted synoptic climate classification and its associated visibility.
Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee
2015-10-08
This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.
Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee
2015-01-01
This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients. PMID:28793599
Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.
Raut, Ashlesha S; Kalonia, Devendra S
2016-05-02
Opalescence in protein solutions reduces aesthetic appeal of a formulation and can be an indicator of the presence of aggregates or precursor to phase separation in solution signifying reduced product stability. Liquid-liquid phase separation of a protein solution into a protein-rich and a protein-poor phase has been well-documented for globular proteins and recently observed for monoclonal antibody solutions, resulting in physical instability of the formulation. The present review discusses opalescence and liquid-liquid phase separation (LLPS) for therapeutic protein formulations. A brief discussion on theoretical concepts based on thermodynamics, kinetics, and light scattering is presented. This review also discusses theoretical concepts behind intense light scattering in the vicinity of the critical point termed as "critical opalescence". Both opalescence and LLPS are affected by the formulation factors including pH, ionic strength, protein concentration, temperature, and excipients. Literature reports for the effect of these formulation factors on attractive protein-protein interactions in solution as assessed by the second virial coefficient (B2) and the cloud-point temperature (Tcloud) measurements are also presented. The review also highlights pharmaceutical implications of LLPS in protein solutions.
Models of human platelet thrombospondin in solution. A dynamic light-scattering study.
Vuillard, L; Clezardin, P; Miller, A
1991-01-01
The translational diffusion coefficient (D20,w) of human platelet thrombospondin was measured by dynamic light-scattering. D20,w, measured in 20 mM-Hepes buffer, pH 7.4, containing 350 mM-NaCl and 2 mM-CaCl2, was 1.73(+/- 0.02) x 10(-7) cm2.s-1. After removal of bound Ca2+ by addition of EDTA, D20,w decreased to 1.56(+/- 0.04) x 10(-7) cm2.s-1; this was not a consequence of aggregation. D20,w showed little sensitivity to NaCl concentration between 130 and 550 mM. Through hydrodynamic analysis combining D20,w and other parameters taken from the literature, two major types of models for thrombospondin can be proposed: either classic compact models (i.e. low degree of hydration) such as prolate or oblate ellipsoids with a high axial ratio (greater than 20) or models of low axial ratio made of multiple subunits with significant cavities (i.e. high degree of hydration). PMID:1902085
Heterogeneous Mixtures as NLO Christiansen Filters for Optical Limiting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Exarhos, Gregory J.; Ferris, Kim F.; Samuels, William D.
Mixtures of two non-absorbing and index-matched materials with contrasting nonlinear optical response have been shown to optically limit above a critical fluence of pulsed nanosecond laser light. Under these conditions, index mismatch is induced between the disparate phases leading to strong Tyndall scattering. The effect has been demonstrated previously by the authors in both solid-liquid mixtures (hexadecane and calcium fluoride), and surfactant-stabilized liquid-liquid emulsions consisting of dichloroethane as the organic phase and a concentrated aqueous phase of sodium thiocyanate (NaSCN). Materials used in these studies exhibit low absorption coefficients over extended wavelength regions allowing for a broadband response of themore » limiter. Recently, limiting has been observed at 532 nm in a polymer composite consisting of barium fluoride and poly-(n-butyl acrylate). A modified open-aperture z-scan method was used to quantify optical limiter performance in this system. Modeling studies provide the basis for designing optical limiters based upon this light scattering mechanism and show the importance of size resonance and constituent optical properties on limiter performance.« less
Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu; ...
2016-05-27
Here, measurements of the optical properties (absorption, scattering and extinction) of PM 1, PM 2.5 and PM 10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM 10 and the fraction of themore » scattering that is contributed by submicron particles ( f sca, PM 1 ) at both sites and with similar slopes and intercepts (for a given pair of wavelengths), suggesting that the derived relationship may be generally applicable for understanding variations in particle size distributions from remote sensing measurements. At the more urban T0 site, the f sca, PM 1 increased with photochemical age, whereas at the downwind, more rural T1 site the f sca, PM 1 decreased slightly with photochemical age. This difference in behavior reflects differences in transport, local production and local emission of supermicron particles between the sites. Light absorption is dominated by submicron particles, but there is some absorption by supermicron particles (~15 % of the total). The supermicron absorption derives from a combination of black carbon that has penetrated into the supermicron mode and from dust, and there is a clear increase in the mass absorption coefficient of just the supermicron particles with increasing average particle size. The mass scattering coefficient (MSC) for the supermicron particles was directly observed to vary inversely with the average particle size, demonstrating that MSC cannot always be treated as a constant in estimating mass concentrations from scattering measurements, or vice versa. The total particle backscatter fraction exhibited some dependence upon the relative abundance of sub- versus supermicron particles; however this was modulated by variations in the median size of particles within a given size range; variations in the submicron size distribution had a particularly large influence on the observed backscatter efficiency and an approximate method to account for this variability is introduced. The relationship between the absorption and scattering Ångström exponents is examined and used to update a previously suggested particle classification scheme. Differences in composition led to differences in the sensitivity of PM 2.5 to heating in a thermodenuder to the average particle size, with more extensive evaporation (observed as a larger decrease in the PM 2.5 extinction coefficient) corresponding to smaller particles; i.e., submicron particles were generally more susceptible to heating than the supermicron particles. The influence of heating on the particle hygroscopicity varied with the effective particle size, with larger changes observed when the PM 2.5 distribution was dominated by smaller particles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu
Here, measurements of the optical properties (absorption, scattering and extinction) of PM 1, PM 2.5 and PM 10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM 10 and the fraction of themore » scattering that is contributed by submicron particles ( f sca, PM 1 ) at both sites and with similar slopes and intercepts (for a given pair of wavelengths), suggesting that the derived relationship may be generally applicable for understanding variations in particle size distributions from remote sensing measurements. At the more urban T0 site, the f sca, PM 1 increased with photochemical age, whereas at the downwind, more rural T1 site the f sca, PM 1 decreased slightly with photochemical age. This difference in behavior reflects differences in transport, local production and local emission of supermicron particles between the sites. Light absorption is dominated by submicron particles, but there is some absorption by supermicron particles (~15 % of the total). The supermicron absorption derives from a combination of black carbon that has penetrated into the supermicron mode and from dust, and there is a clear increase in the mass absorption coefficient of just the supermicron particles with increasing average particle size. The mass scattering coefficient (MSC) for the supermicron particles was directly observed to vary inversely with the average particle size, demonstrating that MSC cannot always be treated as a constant in estimating mass concentrations from scattering measurements, or vice versa. The total particle backscatter fraction exhibited some dependence upon the relative abundance of sub- versus supermicron particles; however this was modulated by variations in the median size of particles within a given size range; variations in the submicron size distribution had a particularly large influence on the observed backscatter efficiency and an approximate method to account for this variability is introduced. The relationship between the absorption and scattering Ångström exponents is examined and used to update a previously suggested particle classification scheme. Differences in composition led to differences in the sensitivity of PM 2.5 to heating in a thermodenuder to the average particle size, with more extensive evaporation (observed as a larger decrease in the PM 2.5 extinction coefficient) corresponding to smaller particles; i.e., submicron particles were generally more susceptible to heating than the supermicron particles. The influence of heating on the particle hygroscopicity varied with the effective particle size, with larger changes observed when the PM 2.5 distribution was dominated by smaller particles.« less
NASA Astrophysics Data System (ADS)
Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu; Atkinson, Dean B.; Pekour, Mikhail S.; Zaveri, Rahul A.; Zelenyuk, Alla; Zhang, Qi
2016-05-01
Measurements of the optical properties (absorption, scattering and extinction) of PM1, PM2.5 and PM10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM10 and the fraction of the scattering that is contributed by submicron particles (fsca, PM
The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques
NASA Technical Reports Server (NTRS)
Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)
2002-01-01
Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5 M/m). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.
The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques
NASA Technical Reports Server (NTRS)
Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)
2002-01-01
Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.
Multiple-scattering coefficients and absorption controlled diffusive processes
NASA Astrophysics Data System (ADS)
Godoy, Salvador; García-Colín, L. S.; Micenmacher, Victor
1999-11-01
Multiple-scattering transmission and reflection coefficients (T,R) are introduced in addition to the diffusion coefficient D for the description of ballistic diffusion in the presence of absorption. For 1D (one-dimensional) systems, the measurement of only one between T and D imposes restrictions on the possible values of the other. If D is measured, then T is bounded between the Landauer and Lambert-Beer equations. Measurements of both (T,D) imply the theoretical knowledge of the microscopic absorption Σa and scattering rΣs cross sections.
Two-dimensional Kerr-Fourier imaging of translucent phantoms in thick turbid media
NASA Astrophysics Data System (ADS)
Liang, X.; Wang, L.; Ho, P. P.; Alfano, R. R.
1995-06-01
Translucent scattering phantoms hidden inside a 5.5-cm-thick Intralipid solution were imaged as a function of phantom scattering coefficients by the use of a picosecond time-and space-gated Kerr-Fourier imaging system. A 2-mm-thick translucent phantom with a 0.1% concentration (scattering coefficient) difference from the 55-mm-thick surrounding scattering host can be distinguished at a signal level of approximately 10-10 of the incidence illumination intensity.
NASA Astrophysics Data System (ADS)
Hsiao, Ta-Chih; Chen, Wei-Nai; Ye, Wei-Cheng; Lin, Neng-Huei; Tsay, Si-Chee; Lin, Tang-Huang; Lee, Chung-Te; Chuang, Ming-Tung; Pantina, Peter; Wang, Sheng-Hsiang
2017-02-01
The Lulin Atmospheric Background Station (LABS, 23.47°N 120.87°E, 2862 m ASL) in Central Taiwan was constructed in 2006 and is the only high-altitude background station in the western Pacific region for studying the influence of continental outflow. In this study, extensive optical properties of aerosols, including the aerosol light scattering coefficient (σs) and light absorption coefficient (σa), were collected from 2013 to 2014. The intensive optical properties, including mass scattering efficiency (αs), mass absorption efficiency (αa), single scattering albedo (ω), scattering Ångstrӧm exponent (Å), and backscattering fraction (b), were determined and investigated, and the distinct seasonal cycle was observed. The value of αs began to increase in January and reached a maximum in April; the mean in spring was 5.89 m2 g-1 with a standard deviation (SD) of 4.54 m2 g-1 and a 4.48 m2 g-1 interquartile range (IQR: 2.95-7.43 m2 g-1). The trend was similar in αa, with a maximum in March and a monthly mean of 0.84 m2 g-1. The peak values of ω (Mean = 0.92, SD = 0.03, IQR: 0.90-0.93) and Å (Mean = 2.22, SD = 0.61, IQR: 2.12-2.47) occurred in autumn. These annual patterns of optical properties were associated with different long-range transport patterns of air pollutants such as biomass burning (BB) aerosol in spring and potential anthropogenic emissions in autumn. The optical measurements performed at LABS during spring in 2013 were compared with those simultaneously performed at the Doi Ang Kang Meteorology Station, Chiang Mai Province, Thailand (DAK, 19.93°N, 99.05°E, 1536 m a.s.l.), which is located in the Southeast Asia BB source region. Furthermore, the relationships among αs, αa, and b were used to characterize the potential aerosol types transported to LABS during different seasons, and the data were inspected according to the HYSPLIT 5-day backward trajectories, which differentiate between different regions of air mass origin.
NASA Astrophysics Data System (ADS)
Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.
2016-04-01
In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.
Optical memory effect from polarized Laguerre-Gaussian light beam in light-scattering turbid media
NASA Astrophysics Data System (ADS)
Shumyatsky, Pavel; Milione, Giovanni; Alfano, Robert R.
2014-06-01
Propagation effects of polarized Laguerre-Gaussian light with different orbital angular momentum (L) in turbid media are described. The optical memory effect in scattering media consisting of small and large size (compared to the wavelength) scatterers is investigated for scattered polarized light. Imaging using polarized laser modes with a varying orbital strength L-parameter was performed. The backscattered image quality (contrast) was enhanced by more than an order of magnitude using circularly polarized light when the concentration of scatterers was close to invisibility of the object.
Stimulated concentration (diffusion) light scattering on nanoparticles in a liquid suspension
NASA Astrophysics Data System (ADS)
Burkhanov, I. S.; Krivokhizha, S. V.; Chaikov, L. L.
2016-06-01
A nonlinear growth of the light scattering intensity has been observed and the frequency shift of the spectral line of scattered light has been measured in light backscattered in suspensions of diamond and latex nanoparticles in water. The shift corresponds to the HWHM of the line of spontaneous scattering on particles. We may conclude that there exists stimulated concentration (diffusion) light scattering on variations of the particle concentration, which is also called the stimulated Mie scattering. In a fibre probe scheme, the growth of the shift of the scattered spectral line is observed with an increase in the exciting beam power. The variation of the frequency shift with an increase in the exciting power is explained by convection in liquid.
Many-body Effects in a Laterally Inhomogeneous Semiconductor Quantum Well
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Li, Jian-Zhong; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Many body effects on conduction and diffusion of electrons and holes in a semiconductor quantum well are studied using a microscopic theory. The roles played by the screened Hartree-Fock (SHE) terms and the scattering terms are examined. It is found that the electron and hole conductivities depend only on the scattering terms, while the two-component electron-hole diffusion coefficients depend on both the SHE part and the scattering part. We show that, in the limit of the ambipolax diffusion approximation, however, the diffusion coefficients for carrier density and temperature are independent of electron-hole scattering. In particular, we found that the SHE terms lead to a reduction of density-diffusion coefficients and an increase in temperature-diffusion coefficients. Such a reduction or increase is explained in terms of a density-and temperature dependent energy landscape created by the bandgap renormalization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Tao; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900; Zheng, Jian, E-mail: jzheng@ustc.edu.cn
2016-06-15
A 2D cylindrically symmetric model with inclusion of both diffraction and self-focus effects is developed to deal with the stimulated scattering processes of a single hotspot. The calculated results show that the transverse distribution of the scattered light is sensitive to the longitudinal profiles of the plasma parameters. The analysis of the evolution of the scattered light indicates that it is the frequency mismatch of coupling due to the inhomogeneity of plasmas that determines the transverse distribution of the scattered light.
Mechanism of laser-induced stress relaxation in cartilage
NASA Astrophysics Data System (ADS)
Sobol, Emil N.; Sviridov, Alexander P.; Omelchenko, Alexander I.; Bagratashvili, Victor N.; Bagratashvili, Nodar V.; Popov, Vladimir K.
1997-06-01
The paper presents theoretical and experimental results allowing to discuss and understand the mechanism of stress relaxation and reshaping of cartilage under laser radiation. A carbon dioxide and a Holmium laser was used for treatment of rabbits and human cartilage. We measured temperature, stress, amplitude of oscillation by free and forced vibration, internal friction, and light scattering in the course of laser irradiation. Using experimental data and theoretical modeling of heat and mass transfer in cartilaginous tissue we estimated the values of transformation heat, diffusion coefficients and energy activation for water movement.
Dynamics of polymer nanoparticles and chains.
NASA Astrophysics Data System (ADS)
Streletzky, Kiril; McKenna, John; Hillier, Gerry
2006-10-01
We present a Dynamic Light Scattering study of transport properties of the polymer chains and nanoparticles made out of the same starting solution. The spectra of both systems are highly non-exponential requiring a spectral time moment analysis. Our findings indicate the existence of several modes of relaxation in both systems. The comparison of the mean relaxation rates and diffusion coefficients of the different modes in two systems under good solvent conditions will be reported. Temperature sensitivity of the polymer nanoparticles and its possible applications in pharmaceutical, coatings, and petroleum industries will also be discussed.
Angell-Petersen, Even; Hirschberg, Henry; Madsen, Steen J
2007-01-01
Light and heat distributions are measured in a rat glioma model used in photodynamic therapy. A fiber delivering 632-nm light is fixed in the brain of anesthetized BDIX rats. Fluence rates are measured using calibrated isotropic probes that are positioned stereotactically. Mathematical models are then used to derive tissue optical properties, enabling calculation of fluence rate distributions for general tumor and light application geometries. The fluence rates in tumor-free brains agree well with the models based on diffusion theory and Monte Carlo simulation. In both cases, the best fit is found for absorption and reduced scattering coefficients of 0.57 and 28 cm(-1), respectively. In brains with implanted BT(4)C tumors, a discrepancy between diffusion and Monte Carlo-derived two-layer models is noted. Both models suggest that tumor tissue has higher absorption and less scattering than normal brain. Temperatures are measured by inserting thermocouples directly into tumor-free brains. A model based on diffusion theory and the bioheat equation is found to be in good agreement with the experimental data and predict a thermal penetration depth of 0.60 cm in normal rat brain. The predicted parameters can be used to estimate the fluences, fluence rates, and temperatures achieved during photodynamic therapy.
Intraocular light scatter, reflections, fluorescence and absorption: what we see in the slit lamp.
van den Berg, Thomas J T P
2018-01-01
Much knowledge has been collected over the past 20 years about light scattering in the eye- in particular in the eye lens- and its visual effect, called straylight. It is the purpose of this review to discuss how these insights can be applied to understanding the slit lamp image. The slit lamp image mainly results from back scattering, whereas the effects on vision result mainly from forward scatter. Forward scatter originates from particles of about wavelength size distributed throughout the lens. Most of the slit lamp image originates from small particle scatter (Rayleigh scatter). For a population of middle aged lenses it will be shown that both these scatter components remove around 10% of the light from the direct beam. For slit lamp observation close to the reflection angles, zones of discontinuity (Wasserspalten) at anterior and posterior parts of the lens show up as rough surface reflections. All these light scatter effects increase with age, but the correlations with age, and also between the different components, are weak. For retro-illumination imaging it will be argued that the density or opacity seen in areas of cortical or posterior subcapsular cataract show up because of light scattering, not because of light loss. NOTES: (1) Light scatter must not be confused with aberrations. Light penetrating the eye is divided into two parts: a relatively small part is scattered, and removed from the direct beam. Most of the light is not scattered, but continues as the direct beam. This non-scattered part is the basis for functional imaging, but its quality is under the control of aberrations. Aberrations deflect light mainly over small angles (<1°), whereas light scatter is important because of the straylight effects over large angles (>1°), causing problems like glare and hazy vision. (2) The slit lamp image in older lenses and nuclear cataract is strongly influenced by absorption. However, this effect is greatly exaggerated by the light path lengths concerned. This obviates proper judgement of the functional importance of absorption, and hinders the appreciation of the Rayleigh nature of what is seen in the slit lamp image. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Sun, Dajun; Rouse, Rodney; Patel, Vikram; Wu, Yong; Zheng, Jiwen; Karmakar, Alokita; Patri, Anil K.; Keire, David; Ma, Jia; Jiang, Wenlei
2018-01-01
The objective of this study was to evaluate physicochemical equivalence between brand (i.e., Ferrlecit) and generic sodium ferric gluconate (SFG) in sucrose injection by conducting a series of comparative in vitro characterizations using advanced analytical techniques. The elemental iron and carbon content, thermal properties, viscosity, particle size, zeta potential, sedimentation coefficient, and molecular weight were determined. There was no noticeable difference between brand and generic SFG in sucrose injection for the above physical parameters evaluated, except for the sedimentation coefficient determined by sedimentation velocity analytical ultracentrifugation (SV-AUC) and molecular weight by asymmetric field flow fractionation-multi-angle light scattering (AFFF-MALS). In addition, brand and generic SFG complex products showed comparable molecular weight distributions when determined by gel permeation chromatography (GPC). The observed minor differences between brand and generic SFG, such as sedimentation coefficient, do not impact their biological activities in separate studies of in vitro cellular uptake and rat biodistribution. Coupled with the ongoing clinical study comparing the labile iron level in healthy volunteers, the FDA-funded post-market studies intended to illustrate comprehensive surveillance efforts ensuring safety and efficacy profiles of generic SFG complex in sucrose injection, and also to shed new light on the approval standards on generic parenteral iron colloidal products. PMID:29303999
Tans, Petrus P.; Lashof, Daniel A.
1986-01-01
A device for determining the relative composition of a sample of a gas by comparison of the Raman-scattered light of the sample with that of a known gas comprising: a means for passing a single light source through the unknown and the known gases, choppers to alternate the Raman-scattered light into a common light detection and measuring system, optical fiber networks for spatially mixing the resulting Raman scattered light from each sample and directing the mixed light to selective detectors, and a compiler to record the light intensity of each wavelength of Raman-scattered light as a function of the sample from which it originated.
Soos, Miroslav; Lattuada, Marco; Sefcik, Jan
2009-11-12
In this work we studied the effect of intracluster multiple-light scattering on the scattering properties of a population of fractal aggregates. To do so, experimental data of diffusion-limited aggregation for three polystyrene latexes with similar surface properties but different primary particle diameters (equal to 118, 420, and 810 nm) were obtained by static light scattering and by means of a spectrophotometer. In parallel, a population balance equation (PBE) model, which takes into account the effect of intracluster multiple-light scattering by solving the T-matrix and the mean-field version of T-matrix, was formulated and validated against time evolution of the root mean radius of gyration,
Sabetghadam, Samaneh; Ahmadi-Givi, Farhang
2014-01-01
Light extinction, which is the extent of attenuation of light signal for every distance traveled by light in the absence of special weather conditions (e.g., fog and rain), can be expressed as the sum of scattering and absorption effects of aerosols. In this paper, diurnal and seasonal variations of the extinction coefficient are investigated for the urban areas of Tehran from 2007 to 2009. Cases of visibility impairment that were concurrent with reports of fog, mist, precipitation, or relative humidity above 90% are filtered. The mean value and standard deviation of daily extinction are 0.49 and 0.39 km(-1), respectively. The average is much higher than that in many other large cities in the world, indicating the rather poor air quality over Tehran. The extinction coefficient shows obvious diurnal variations in each season, with a peak in the morning that is more pronounced in the wintertime. Also, there is a very slight increasing trend in the annual variations of atmospheric extinction coefficient, which suggests that air quality has regressed since 2007. The horizontal extinction coefficient decreased from January to July in each year and then increased between July and December, with the maximum value in the winter. Diurnal variation of extinction is often associated with small values for low relative humidity (RH), but increases significantly at higher RH. Annual correlation analysis shows that there is a positive correlation between the extinction coefficient and RH, CO, PM10, SO2, and NO2 concentration, while negative correlation exists between the extinction and T, WS, and O3, implying their unfavorable impact on extinction variation. The extinction budget was derived from multiple regression equations using the regression coefficients. On average, 44% of the extinction is from suspended particles, 3% is from air molecules, about 5% is from NO2 absorption, 0.35% is from RH, and approximately 48% is unaccounted for, which may represent errors in the data as well as contribution of other atmospheric constituents omitted from the analysis. Stronger regression equation is achieved in the summer, meaning that the extinction is more predictable in this season using pollutant concentrations.
Development of wide-angle 2D light scattering static cytometry
NASA Astrophysics Data System (ADS)
Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao
2016-10-01
We have recently developed a 2D light scattering static cytometer for cellular analysis in a label-free manner, which measures side scatter (SSC) light in the polar angular range from 79 to 101 degrees. Compared with conventional flow cytometry, our cytometric technique requires no fluorescent labeling of the cells, and static cytometry measurements can be performed without flow control. In this paper we present an improved label-free static cytometer that can obtain 2D light scattering patterns in a wider angular range. By illuminating the static microspheres on chip with a scanning optical fiber, wide-angle 2D light scattering patterns of single standard microspheres with a mean diameter of 3.87 μm are obtained. The 2D patterns of 3.87 μm microspheres contain both large-angle forward scatter (FSC) and SSC light in the polar angular range from 40 to 100 degrees, approximately. Experimental 2D patterns of 3.87 μm microspheres are in good agreement with Mie theory simulated ones. The wide-angle light scattering measurements may provide a better resolution for particle analysis as compared with the SSC measurements. Two dimensional light scattering patterns of HL-60 human acute leukemia cells are obtained by using our static cytometer. Compared with SSC 2D light scattering patterns, wide-angle 2D patterns contain richer information of the HL-60 cells. The obtaining of 2D light scattering patterns in a wide angular range could help to enhance the capabilities of our label-free static cytometry for cell analysis.
Schoenfeld, Andreas A; Poppinga, Daniela; Harder, Dietrich; Doerner, Karl-Joachim; Poppe, Bjoern
2014-07-07
Optical experiments and theoretical considerations have been undertaken in order to understand the causes of the 'orientation effect' and the 'parabola effect', the artefacts impairing the desired light absorption measurement on radiochromic EBT3 films with flatbed scanners. EBT3 films exposed to doses up to 20.9 Gy were scanned with an Epson Expression 10000XL flatbed scanner in landscape and portrait orientation. The horizontally and vertically polarized light components of the scanner were determined, and another Epson Expression 10000XL flatbed scanner was disassembled to examine its optical components. The optical properties of exposed and unexposed EBT3 films were studied with incident polarized and unpolarized white light, and the transmitted red light was investigated for its polarization and scattering properties including the distribution of the scattering angles. Neutral density filters were studied for comparison. Guidance was sought from the theory of light scattering from rod-like macromolecular structures. The drastic dose-dependent variation of the transmitted total light current as function of the orientation of front and rear polarizers, interpreted by light scattering theory, shows that the radiation-induced polymerization of the monomers of EBT3 films produces light scattering oscillators preferably polarized at right angles with the coating direction of the film. The directional distribution of the scattered light is partly anisotropic, with a preferred scattering plane at right angles with the coating direction, indicating light scattering from stacks of coherently vibrating oscillators piled up along the monomer crystals. The polyester carrier film also participates in these effects. The 'orientation' and 'parabola' artefacts due to flatbed scanning of radiochromic films can be explained by the interaction of the polarization-dependent and anisotropic light scattering from exposed and unexposed EBT3 films with the quantitative difference between the scanner's horizontally and vertically polarized light supply and with the limited directional acceptance of the scanner's light recording system.
Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator.
Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu
2015-09-01
In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.
Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator
NASA Astrophysics Data System (ADS)
Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu
2015-09-01
In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.
NASA Astrophysics Data System (ADS)
Roy, Sanchita; Barua, Nilakshi; Buragohain, Alak K.; Ahmed, Gazi A.
2013-03-01
Investigations on treatment of ZnO nanoparticles on Staphylococcus aureus MTCC 737 strain was essentially made by using standard biochemical method. The anti-microbial assay against S. aureus, and time kill assay revealed the anti-bacterial activity of ZnO nanoparticles. We have substantiated this property of ZnO nanoparticles and light depolarization property by using light scattering tool. Light scattering measurements were carried out for ZnO, S. aureus, and ZnO treated S. aureus as a function of scattering angle at 543.5 and 632.8 nm wavelengths. This was done in order to find the scattering profile of the consequent product after the action of ZnO nanoparticles on bacteria by means of light scattering tool. S. aureus treated with ZnO nanoparticles showed closer agreement of the scattering profiles at both the wavelengths, however, the scattering profiles of ZnO nanoparticles and untreated S. aureus significantly varied for the two different laser wavelengths. It was also observed that there was higher intensity of scattering from all S. aureus treated with ZnO particles compared to the untreated ones. In our work, we have studied ZnO nanoparticles and the possibility of observing its anti-bacterial activity by using light scattering tool.
Heavy quark diffusion in strong magnetic fields at weak coupling and implications for elliptic flow
Fukushima, Kenji; Hattori, Koichi; Yee, Ho -Ung; ...
2016-04-20
In this paper, we compute the momentum diffusion coefficients of heavy quarks, κ ∥ and κ ⊥, in a strong magnetic field B along the directions parallel and perpendicular to B, respectively, at the leading order in QCD coupling constant α s. We consider a regime relevant for the relativistic heavy ion collisions, α seB << T 2 << eB, so that thermal excitations of light quarks are restricted to the lowest Landau level (LLL) states. In the vanishing light-quark mass limit, we find κ LO ⊥ ∝ α 2 sTeB in the leading order that arises from screened Coulombmore » scatterings with (1+1)-dimensional LLL quarks, while κ ∥ gets no contribution from the scatterings with LLL quarks due to kinematic restrictions. We show that the first nonzero leading order contributions to κ LO ∥ come from the two separate effects: 1) the screened Coulomb scatterings with thermal gluons, and 2) a finite light-quark mass m q. The former leads to κ LO,gluon ∥ ∝ α 2 sT 3 and the latter to κ LO,massive ∥ ∝ α s(α seB) 1/2m 2 q. Based on our results, we propose a new scenario for the large value of heavy-quark elliptic flow observed in RHIC and LHC. Namely, when κ ⊥ >> κ ∥, an anisotropy in drag forces gives rise to a sizable amount of the heavy-quark elliptic flow even if heavy quarks do not fully belong to an ellipsoidally expanding background fluid.« less
Heavy quark diffusion in strong magnetic fields at weak coupling and implications for elliptic flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukushima, Kenji; Hattori, Koichi; Yee, Ho -Ung
In this paper, we compute the momentum diffusion coefficients of heavy quarks, κ ∥ and κ ⊥, in a strong magnetic field B along the directions parallel and perpendicular to B, respectively, at the leading order in QCD coupling constant α s. We consider a regime relevant for the relativistic heavy ion collisions, α seB << T 2 << eB, so that thermal excitations of light quarks are restricted to the lowest Landau level (LLL) states. In the vanishing light-quark mass limit, we find κ LO ⊥ ∝ α 2 sTeB in the leading order that arises from screened Coulombmore » scatterings with (1+1)-dimensional LLL quarks, while κ ∥ gets no contribution from the scatterings with LLL quarks due to kinematic restrictions. We show that the first nonzero leading order contributions to κ LO ∥ come from the two separate effects: 1) the screened Coulomb scatterings with thermal gluons, and 2) a finite light-quark mass m q. The former leads to κ LO,gluon ∥ ∝ α 2 sT 3 and the latter to κ LO,massive ∥ ∝ α s(α seB) 1/2m 2 q. Based on our results, we propose a new scenario for the large value of heavy-quark elliptic flow observed in RHIC and LHC. Namely, when κ ⊥ >> κ ∥, an anisotropy in drag forces gives rise to a sizable amount of the heavy-quark elliptic flow even if heavy quarks do not fully belong to an ellipsoidally expanding background fluid.« less
NASA Astrophysics Data System (ADS)
Sharma, Sandeep; Goodarzi, Mohammad; Aernouts, Ben; Gellynck, Karolien; Vlaminck, Lieven; Bockstaele, Ronny; Cornelissen, Maria; Ramon, Herman; Saeys, Wouter
2014-05-01
Near infrared spectroscopy offers a promising technological platform for continuous glucose monitoring in the human body. NIR measurements can be performed in vivo with an implantable single-chip based optical NIR sensor. However, the application of NIR spectroscopy for accurate estimation of the analyte concentration in highly scattering biological systems still remains a challenge. For instance, a thin tissue layer may grow in the optical path of the sensor. As most biological tissues allow only a small fraction of the collimated light to pass, this might result in a large reduction of the light throughput. To quantify the effect of presence of a thin tissue layer in the optical path, the bulk optical properties of tissue samples grown on sensor dummies which had been implanted for several months in goats were characterized using Double Integrating Spheres and unscattered transmittance measurements. The measured values of diffuse reflectance, diffuse transmittance and collimated transmittance were used as input to Inverse Adding-Doubling algorithm to estimate the bulk optical properties of the samples. The estimates of absorption and scattering coefficients were then used to calculate the light attenuation through a thin tissue layer. Based on the lower reduction in unscattered transmittance and higher absorptivity of glucose molecules, the measurement in the combination band was found to be the better option for the implantable sensor. As the tissues were found to be highly forward scattering with very low unscattered transmittance, the diffuse transmittance measurement based sensor configuration was recommended for the implantable glucose sensor.
Design of fiber optic probes for laser light scattering
NASA Technical Reports Server (NTRS)
Dhadwal, Harbans S.; Chu, Benjamin
1989-01-01
A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.
Aerosol Light Absorption and Scattering Assessments and the Impact of City Size on Air Pollution
NASA Astrophysics Data System (ADS)
Paredes-Miranda, Guadalupe
The general problem of urban pollution and its relation to the city population is examined in this dissertation. A simple model suggests that pollutant concentrations should scale approximately with the square root of city population. This model and its experimental evaluation presented here serve as important guidelines for urban planning and attainment of air quality standards including the limits that air pollution places on city population. The model was evaluated using measurements of air pollution. Optical properties of aerosol pollutants such as light absorption and scattering plus chemical species mass concentrations were measured with a photoacoustic spectrometer, a reciprocal nephelometer, and an aerosol mass spectrometer in Mexico City in the context of the multinational project "Megacity Initiative: Local And Global Research Observations (MILAGRO)" in March 2006. Aerosol light absorption and scattering measurements were also obtained for Reno and Las Vegas, NV USA in December 2008-March 2009 and January-February 2003, respectively. In all three cities, the morning scattering peak occurs a few hours later than the absorption peak due to the formation of secondary photochemically produced aerosols. In particular, for Mexico City we determined the fraction of photochemically generated secondary aerosols to be about 75% of total aerosol mass concentration at its peak near midday. The simple 2-d box model suggests that commonly emitted primary air pollutant (e.g., black carbon) mass concentrations scale approximately as the square root of the urban population. This argument extends to the absorption coefficient, as it is approximately proportional to the black carbon mass concentration. Since urban secondary pollutants form through photochemical reactions involving primary precursors, in linear approximation their mass concentration also should scale with the square root of population. Therefore, the scattering coefficient, a proxy for particulate matter mass concentration, is also expected to scale the same way. Experimental data for five cities: Mexico City, Mexico; Las Vegas and Reno, NV, USA; Beijing, China; and Delhi, India (the data for the last two cities were obtained from the literature); are in reasonable accord with the model. The scaling relation provided by the model may be considered a useful metric depending on the assumption that specific city conditions (such as latitude, altitude, local meteorological conditions, degree of industrialization, population density, number of cars per capita, city shape, etc.) vary randomly, independent of city size. While more detailed studies (including data from more cities) are needed, we believe that this relatively weak dependence of the pollution concentration on the city population might help to explain why the worsening of urban air quality does not directly lead to a decrease in the rate of growth in city population.
Morris, Caleb; Werner, Liliana; Barra, Daniel; Liu, Erica; Stallings, Shannon; Floyd, Anne
2014-01-01
To evaluate light scattering and light transmittance in cadaver eye-explanted intraocular lenses (IOLs) manufactured from different materials. John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. Experimental study. Forty-nine pseudophakic cadaver eyes were selected according to IOL material/type and implantation duration, and the IOLs were explanted. Hydrophobic acrylic, hydrophilic acrylic, poly(methyl methacrylate) (PMMA), and silicone IOLs were included. Gross and light microscopy was performed for all IOLs. Light scattering was measured with an EAS 1000 Scheimpflug camera, and light transmittance was assessed using a Lambda 35 UV/Vis spectrophotometer (single-beam configuration with an RSA PE-20 integrating sphere). Analyses were performed at room temperature in the hydrated state and compared with analyses of controls. The highest levels of surface light scattering were measured for 3-piece hydrophobic acrylic, which was also the IOL type with the longest implantation duration among the Acrysof hydrophobic acrylic IOLs. Hydrophilic acrylic, PMMA, and silicone IOLs exhibited relatively low light-scattering levels. The lowest light-scattering levels were observed with PMMA IOLs (1-piece looped and 3-piece) and plate silicone IOLs, which represent the IOL types with the longest implantation duration in this series. Light transmittance values measured for all IOL types appeared to be similar to the values of the corresponding control IOLs. The phenomenon of surface light scattering (nanoglistenings) is more particularly related to hydrophobic acrylic IOLs and increases with implantation time. No significant effect of surface light scattering on IOL light transmittance was found. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Łojewski, Tomasz; Zieba, Katarzyna; Lojewska, Joanna
2010-10-15
The paper deals with the application of size exclusion chromatography (SEC) for the studies of paper degradation phenomena. The goal is to solve some of the technical problems connected with the calibration of multi-detector SEC system and to find the correlation between SEC and viscometric results of degree of polymerization of cellulose. The results gathered for the paper samples degraded by acidic air pollutant (NO(2)) are used as an example of SEC-MALLS application. From the correlation between intrinsic viscosities and absolute value of molecular masses obtained with SEC/MALLS (Multi Angle Laser Light Scattering) technique, Mark-Houwink coefficients for cellulose in cupri-ethylenediamine solution were determined. Thus obtained coefficients were used for the determination of viscometric degree of polymerization (molecular mass) of the aged samples. An excellent correlation was found between the chromatographic values of molecular masses obtained with SEC-UV/VIS detection and the viscometric ones utilizing the improved values of Mark-Houwink coefficients. Copyright © 2010 Elsevier B.V. All rights reserved.
Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media.
Nomura, Y; Hazeki, O; Tamura, M
1997-06-01
The time-resolved Beer-Lambert law proposed for oxygen monitoring using pulsed light was extended to the non-time-resolved case in a scattered medium such as living tissues with continuous illumination. The time-resolved Beer-Lambert law was valid for the phantom model and living tissues in the visible and near-infrared regions. The absolute concentration and oxygen saturation of haemoglobin in rat brain and thigh muscle could be determined. The temporal profile of rat brain was reproduced by Monte Carlo simulation. When the temporal profiles of rat brain under different oxygenation states were integrated with time, the absorbance difference was linearly related to changes in the absorption coefficient. When the simulated profiles were integrated, there was a linear relationship within the absorption coefficient which was predicted for fractional inspiratory oxygen concentration from 10 to 100% and, in the case beyond the range of the absorption coefficient, the deviation from linearity was slight. We concluded that an optical pathlength which is independent of changes in the absorption coefficient is a good approximation for near-infrared oxygen monitoring.
Yu, Hui; Qi, Dan; Li, Heng-da; Xu, Ke-xin; Yuan, Wei-jie
2012-03-01
Weak signal, low instrument signal-to-noise ratio, continuous variation of human physiological environment and the interferences from other components in blood make it difficult to extract the blood glucose information from near infrared spectrum in noninvasive blood glucose measurement. The floating-reference method, which analyses the effect of glucose concentration variation on absorption coefficient and scattering coefficient, gets spectrum at the reference point and the measurement point where the light intensity variations from absorption and scattering are counteractive and biggest respectively. By using the spectrum from reference point as reference, floating-reference method can reduce the interferences from variation of physiological environment and experiment circumstance. In the present paper, the effectiveness of floating-reference method working on improving prediction precision and stability was assessed through application experiments. The comparison was made between models whose data were processed with and without floating-reference method. The results showed that the root mean square error of prediction (RMSEP) decreased by 34.7% maximally. The floating-reference method could reduce the influences of changes of samples' state, instrument noises and drift, and improve the models' prediction precision and stability effectively.
The Ascension Island boundary layer in the remote southeast Atlantic is often smoky
Zuidema, Paquita; Sedlacek III, Arthur J.; Flynn, Connor; ...
2018-03-31
Observations from June through October, 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Light absorption coefficients at three visible wavelengths as a function of rBC mass indirectly indicate the presence of other light-absorbing aerosols (e.g., brown carbon), most pronounced in June. The single-scattering-albedo increases systematically from August to October in both 2016 and 2017, with monthly-means of 0.78±0.02 (August), 0.81±0.03 (September) andmore » 0.83±0.03 (October) at the green wavelength. Boundary-layer aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass-burning season, evolving to smoke predominantly present above the cloud layers in September-October, typically resting upon the cloud-top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August of 2016, is investigated further. Also, backtrajectories indicate more direct boundary layer transport westward from the African continent is central to explaining the elevated surface aerosol loadings.« less
The Ascension Island boundary layer in the remote southeast Atlantic is often smoky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuidema, Paquita; Sedlacek III, Arthur J.; Flynn, Connor
Observations from June through October, 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Light absorption coefficients at three visible wavelengths as a function of rBC mass indirectly indicate the presence of other light-absorbing aerosols (e.g., brown carbon), most pronounced in June. The single-scattering-albedo increases systematically from August to October in both 2016 and 2017, with monthly-means of 0.78±0.02 (August), 0.81±0.03 (September) andmore » 0.83±0.03 (October) at the green wavelength. Boundary-layer aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass-burning season, evolving to smoke predominantly present above the cloud layers in September-October, typically resting upon the cloud-top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August of 2016, is investigated further. Also, backtrajectories indicate more direct boundary layer transport westward from the African continent is central to explaining the elevated surface aerosol loadings.« less
Ahsan, Syed Saad; Pereyra, Brandon; Jung, Erica E; Erickson, David
2014-10-20
Most existing photobioreactors do a poor job of distributing light uniformly due to shading effects. One method by which this could be improved is through the use of internal wave-guiding structures incorporating engineered light scattering schemes. By varying the density of these scatterers, one can control the spatial distribution of light inside the reactor enabling better uniformity of illumination. Here, we compare a number of light scattering schemes and evaluate their ability to enhance biomass accumulation. We demonstrate a design for a gradient distribution of surface scatterers with uniform lateral scattering intensity that is superior for algal biomass accumulation, resulting in a 40% increase in the growth rate.
Calculations of radar backscattering coefficient of vegetation-covered soils
NASA Technical Reports Server (NTRS)
Mo, T.; Schmugge, T. J.; Jackson, T. J. (Principal Investigator)
1983-01-01
A model for simulating the measured backscattering coefficient of vegetation-covered soil surfaces includes both coherent and incoherent components of the backscattered radar pulses from a rough sil surface. The effect of vegetation canopy scattering is also incorporated into the model by making the radar pulse subject to two-way attenuation and volume scattering when it passes through the vegetation layer. Model results agree well with the measured angular distributions of the radar backscattering coefficient for HH polarization at the 1.6 GHz and 4.75 GHz frequencies over grass-covered fields. It was found that the coherent scattering component is very important at angles near nadir, while the vegetation volume scattering is dominant at incident angles 30 degrees.
Polar nephelometer for atmospheric particulate studies
NASA Technical Reports Server (NTRS)
Hansen, M. Z.; Evans, W. H.
1980-01-01
A polar nephelometer for use in studying atmospheric aerosols was developed. The nephelometer detects molecular scatter from air and measures scattering from very clean air using pure molecular scattering for calibration. A compact system using a folded light path with an air cooled argon laser for the light source was designed. A small, sensitive detector unit permits easy angular rotation for changing the scattering angle. A narrow detector field of view of + or - 1/4 degree of scattering along with a single wavelength of incident light is used to minimize uncertainties in the scattering theory. The system is automated for data acquisition of the scattering matrix elements over an angular range from 2 degrees to 178 degrees of scattering. Both laser output and detector sensitivity are monitored to normalize the measured light scattering.
A ray tracing model for leaf bidirectional scattering studies
NASA Technical Reports Server (NTRS)
Brakke, T. W.; Smith, J. A.
1987-01-01
A leaf is modeled as a deterministic two-dimensional structure consisting of a network of circular arcs designed to represent the internal morphology of major species. The path of an individual ray through the leaf is computed using geometric optics. At each intersection of the ray with an arc, the specular reflected and transmitted rays are calculated according to the Snell and Fresnel equations. Diffuse scattering is treated according to Lambert's law. Absorption is also permitted but requires a detailed knowledge of the spectral attenuation coefficients. An ensemble of initial rays are chosen for each incident direction with the initial intersection points on the leaf surface selected randomly. The final equilibrium state after all interactions then yields the leaf bidirectional reflectance and transmittance distributions. The model also yields the internal two dimensional light gradient profile of the leaf.
Multiple-Fiber-Optic Probe For Light-Scattering Measurements
NASA Technical Reports Server (NTRS)
Dhadwal, Harbans Singh; Ansari, Rafat R.
1996-01-01
Multiple-fiber-optical probe developed for use in measuring light scattered at various angles from specimens of materials. Designed for both static and dynamic light-scattering measurements of colloidal dispersions. Probe compact, rugged unit containing no moving parts and remains stationary during operation. Not restricted to operation in controlled, research-laboratory environment. Positioned inside or outside light-scattering chamber. Provides simultaneous measurements at small angular intervals over range of angles, made to include small scattering angles by orienting probe in appropriate direction.
NASA Astrophysics Data System (ADS)
Pradhan, Prabhakar; John Park, Daniel; Capoglu, Ilker; Subramanian, Hariharan; Damania, Dhwanil; Cherkezyan, Lusik; Taflove, Allen; Backman, Vadim
2017-06-01
Statistical properties of light waves reflected from a one-dimensional (1D) disordered optical medium [n(x) = n0+ dn(x),
NASA Astrophysics Data System (ADS)
Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik
2018-05-01
The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.
Solid harmonic wavelet scattering for predictions of molecule properties
NASA Astrophysics Data System (ADS)
Eickenberg, Michael; Exarchakis, Georgios; Hirn, Matthew; Mallat, Stéphane; Thiry, Louis
2018-06-01
We present a machine learning algorithm for the prediction of molecule properties inspired by ideas from density functional theory (DFT). Using Gaussian-type orbital functions, we create surrogate electronic densities of the molecule from which we compute invariant "solid harmonic scattering coefficients" that account for different types of interactions at different scales. Multilinear regressions of various physical properties of molecules are computed from these invariant coefficients. Numerical experiments show that these regressions have near state-of-the-art performance, even with relatively few training examples. Predictions over small sets of scattering coefficients can reach a DFT precision while being interpretable.
NASA Astrophysics Data System (ADS)
Yang, Yi; Wang, Tianheng; Biswal, Nrusingh; Wang, Xiaohong; Sanders, Melinda; Brewer, Molly; Zhu, Quing
2012-01-01
Optical scattering coefficient from ex-vivo unfixed normal and malignant ovarian tissue was quantitatively extracted by fitting optical coherence tomography (OCT) A-line signals to a single scattering model. 1097 average A-line measurements at a wavelength of 1310nm were performed at 108 sites obtained from 18 ovaries. The average scattering coefficient obtained from normal group consisted of 833 measurements from 88 sites was 2.41 mm-1 (+/-0.59), while the average coefficient obtained from malignant group consisted of 264 measurements from 20 sites was 1.55 mm-1 (+/-0.46). Using a threshold of 2 mm-1 for each ovary, a sensitivity of 100% and a specificity of 100% were achieved. The amount of collagen within OCT imaging depth was analyzed from the tissue histological section stained with Sirius Red. The average collagen area fraction (CAF) obtained from normal group was 48.4% (+/-12.3%), while the average CAF obtained from malignant group was 11.4% (+/-4.7%). Statistical significance of the collagen content was found between the two groups (p < 0.001). The preliminary data demonstrated that quantitative extraction of optical scattering coefficient from OCT images could be a potential powerful method for ovarian cancer detection and diagnosis.
Biological cell classification by multiangle light scattering
Salzman, G.C.; Crowell, J.M.; Mullaney, P.F.
1975-06-03
The specification is directed to an apparatus and method for detecting light scattering from a biological cell. Light, preferably from a coherent source of radiation, intercepts an individual biological cell in a stream of cells passing through the beam. Light scattered from the cell is detected at a selected number of angles between 0 and 90/sup 0/ to the longitudinal axis of the beam with a circular array of light responsive elements which produce signals representative of the intensity of light incident thereon. Signals from the elements are processed to determine the light-scattering pattern of the cell and therefrom its identity.
Tans, P.P.; Lashof, D.A.
1986-12-23
A device is described for determining the relative composition of a sample of a gas by comparison of the Raman-scattered light of the sample with that of a known gas comprising: a means for passing a single light source through the unknown and the known gases, choppers to alternate the Raman-scattered light into a common light detection and measuring system, optical fiber networks for spatially mixing the resulting Raman scattered light from each sample and directing the mixed light to selective detectors, and a compiler to record the light intensity of each wavelength of Raman-scattered light as a function of the sample from which it originated. 6 figs.
Angular-dependent light scattering from cancer cells in different phases of the cell cycle.
Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong
2017-10-10
Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements. Angular-dependent light scattering measurements of cancer cells arrested in the G1, S, and G2 phases have been performed. Based on integral calculations for scattering intensities from 5° to 10° and from 110° to 150°, conclusions have been reached. Clearly, the sizes of the cancer cells in different phases of the cell cycle dominated the forward scatter. Accompanying the increase of cell size with the progression of the cell cycle, the forward scattering intensity also increased. Meanwhile, the DNA content of cancer cells in every phase of the cell cycle is responsible for light scattering at large scatter angles. The higher the DNA content of cancer cells was, the greater the positive effect on the high-scattering intensity. As expected, understanding the relationships between the light scattering from cancer cells and cell cycles will aid in the development of cancer diagnoses. Also, it may assist in the guidance of antineoplastic drugs clinically.
Current methods for the size determination of nanomaterials in aqueous suspension include dynamic or static light scattering and electron or atomic force microscopy techniques. Light scattering techniques are limited by poor resolution and the scattering intensity dependence on p...
NASA Astrophysics Data System (ADS)
Ueda, S.; Nakayama, T.; Taketani, F.; Adachi, K.; Matsuki, A.; Iwamoto, Y.; Sadanaga, Y.; Matsumi, Y.
2015-09-01
The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory-BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a heater maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the heater and was found to be 22-23 %. The largest enhancements (> 30 %) were observed under high absorption coefficient conditions when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption coefficient events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high density electron beam. The majority of the soot in all samples was found as mixed particles with spherical sulfate or as clusters of sulfate spherules. For samples showing high enhancement (> 30 %) of BC light absorption, TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be embedded into the sulfate. The SP2 measurements also suggested that the proportion of thickly-coated soot was greater. Thus, the observed enhancement of BC light absorption was found to differ according to the mixing states and morphology of soot-containing particles. The enhancement of BC light absorption in our in situ measurements and its relation with individual features of soot-containing particles will be useful to evaluate direct radiative forcing in the leeward areas of large emission sources of BC.
NASA Astrophysics Data System (ADS)
Gordon, Devin A.; DeNoyer, Lin; Meyer, Corey W.; Sweet, Noah W.; Burns, David M.; Bruckman, Laura S.; French, Roger H.
2017-08-01
Poly(ethylene-terephthalate) (PET) film is widely used in photovoltaic module backsheets for its dielectric break- down strength, and in applications requiring high optical clarity for its high transmission in the visible region. However, PET degrades and loses optical clarity under exposure to ultraviolet (UV) irradiance, heat, and moisture. Stabilizers are often included in PET formulation to increase its longevity; however, even these are subject to degradation and further reduce optical clarity. To study the weathering induced changes in the optical properties in PET films, samples of a UV-stabilized grade of PET were exposed to heat, moisture, and UV irradiance as prescribed by ASTM-G154 Cycle 4 for 168 hour time intervals. UV-Vis reflection and transmission spectra were collected via Multi-Angle, Polarization-Dependent, Reflection, Transmission, and Scattering (MaPd:RTS) spectroscopy after each exposure interval. The resulting spectra were used to calculate the complex index of refraction throughout the UV-Vis spectral region via an iterative optimization process based upon the Fresnel equations. The index of refraction and extinction coefficient were found to vary throughout the UV-Vis region with time under exposure. The spectra were also used to investigate changes in light scattering behavior with increasing exposure time. The intensity of scattered light was found to increase at higher angles with time under exposure.
Transient kinetics of the rapid shape change of unstirred human blood platelets stimulated with ADP.
Deranleau, D A; Dubler, D; Rothen, C; Lüscher, E F
1982-01-01
Unstirred (isotropic) suspensions of human blood platelets stimulated with ADP in a stopped-flow laser turbidimeter exhibit a distinct extinction maximum during the course of the classical rapid conversion of initially smooth flat discoid cells to smaller-body spiny spheres. This implies the existence of a transient intermediate having a larger average light scattering cross section (extinction coefficient) than either the disc or the spiny sphere. Monophasic extinction increases reaching the same final value were observed when either discoid or spiny sphere platelets were converted to smooth spheres by treatment with chlorpromazine, and sphering of discoid cells was accompanied by a larger total extinction change than the retraction of pseudopods by already spherical cells. These and other results suggest that the ADP-induced transient state represents platelets that are approximately as "spherical" as the irregular spiny sphere but lack the characteristic long pseudopods and as a consequence are larger bodied. Fitting the ADP progress curves to the series reaction A leads to B leads to C by means of the light scattering equivalent of the Beer-Lambert law yielded scattering cross sections that are consistent with this explanation. The rate constants for the two reaction steps were identical, indicating that ADP activation corresponds to a continuous random (Poisson) process with successive apparent states "disc," "sphere," and "spiny sphere," whose individual probabilities are determined by a single rate-limiting step. PMID:6961409
Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements
NASA Astrophysics Data System (ADS)
Malinina, Elizaveta; Rozanov, Alexei; Rozanov, Vladimir; Liebing, Patricia; Bovensmann, Heinrich; Burrows, John P.
2018-04-01
Replacing backscattering with reduced scattering. A better formulation of reflectance function?
NASA Astrophysics Data System (ADS)
Piskozub, Jacek; McKee, David; Freda, Wlodzimierz
2014-05-01
Modern reflectance formulas all involve backscattering coefficient divided by absorption coefficient (bb/a). The backscattering (or backward scattering) coefficient describes how much of the incident radiation is scattered at angles between 90 and 180 deg. However, water leaving photons are not necessarily backscattered because it is possible for a variable fraction to exit after multiple forward scattering events. Therefore the whole angular function of scattering probability (phase function) influences the reflectance signal. This is the reason why phase functions of identical backscattering ratio may result in different reflectance values, contrary to the universally used formula. This creates the question whether there may exist a better formula using a parameter better describing phase function shape than backscattering ratio. The asymmetry parameter g (the average scattering cosine) is commonly used to parametrize phase functions. A replacement for backscattering should decrease with increasing g. Therefore, the simplest candidate to replace backscattering has the form of b(1-g), where b is the scattering coefficient. Such a parameter is well known in biomedical optics under the name of reduced scattering (sometimes transport scattering). It has even been used in parametrizing reflectance in (highly turbid) human tissues. However no attempt has been made to check its usefulness in marine optics. We perform Monte Carlo radiative transfer calculations of reflectance for multiple combinations of inherent optical properties, including different phase functions. The results are used to create a new reflectance formula as a function of reduced scattering and absorption and test its robustness to changes in phase function shape compared to the traditional bb/a formula. We discuss its usefulness as well as advantages and disadvantages compared to the traditional formulation.
NASA Astrophysics Data System (ADS)
Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee, Audrey K.
2016-02-01
Optical coherence tomography (OCT) and blue light cystoscopy (BLC) have shown significant potential as complementary technologies to traditional white light cystoscopy (WLC) for early bladder cancer detection. Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing new technology designs, the diagnostic potential of systems, and novel image processing algorithms prior to validation in real tissue. Importantly, the phantom should mimic features of healthy and diseased tissue as they appear under WLC, BLC, and OCT, which are sensitive to tissue color and structure, fluorescent contrast, and optical scattering of subsurface layers, respectively. We present a phantom posing the hollow shape of the bladder and fabricated using a combination of 3D-printing and spray-coating with Dragon Skin (DS) (Smooth-On Inc.), a highly elastic polymer to mimic the layered structure of the bladder. Optical scattering of DS was tuned by addition of titanium dioxide, resulting in scattering coefficients sufficient to cover the human bladder range (0.49 to 2.0 mm^-1). Mucosal vasculature and tissue coloration were mimicked with elastic cord and red dye, respectively. Urethral access was provided through a small hole excised from the base of the phantom. Inserted features of bladder pathology included altered tissue color (WLC), fluorescence emission (BLC), and variations in layered structure (OCT). The phantom surface and underlying material were assessed on the basis of elasticity, optical scattering, layer thicknesses, and qualitative image appearance. WLC, BLC, and OCT images of normal and cancerous features in the phantom qualitatively matched corresponding images from human bladders.
Time domain diffuse optical spectroscopy: In vivo quantification of collagen in breast tissue
NASA Astrophysics Data System (ADS)
Taroni, Paola; Pifferi, Antonio; Quarto, Giovanna; Farina, Andrea; Ieva, Francesca; Paganoni, Anna Maria; Abbate, Francesca; Cassano, Enrico; Cubeddu, Rinaldo
2015-05-01
Time-resolved diffuse optical spectroscopy provides non-invasively the optical characterization of highly diffusive media, such as biological tissues. Light pulses are injected into the tissue and the effects of light propagation on re-emitted pulses are interpreted with the diffusion theory to assess simultaneously tissue absorption and reduced scattering coefficients. Performing spectral measurements, information on tissue composition and structure is derived applying the Beer law to the measured absorption and an empiric approximation to Mie theory to the reduced scattering. The absorption properties of collagen powder were preliminarily measured in the range of 600-1100 nm using a laboratory set-up for broadband time-resolved diffuse optical spectroscopy. Optical projection images were subsequently acquired in compressed breast geometry on 218 subjects, either healthy or bearing breast lesions, using a portable instrument for optical mammography that operates at 7 wavelengths selected in the range 635-1060 nm. For all subjects, tissue composition was estimated in terms of oxy- and deoxy-hemoglobin, water, lipids, and collagen. Information on tissue microscopic structure was also derived. Good correlation was obtained between mammographic breast density (a strong risk factor for breast cancer) and an optical index based on collagen content and scattering power (that accounts mostly for tissue collagen). Logistic regression applied to all optically derived parameters showed that subjects at high risk for developing breast cancer for their high breast density can effectively be identified based on collagen content and scattering parameters. Tissue composition assessed in breast lesions with a perturbative approach indicated that collagen and hemoglobin content are significantly higher in malignant lesions than in benign ones.
Light Scattering by Marine Particles: Modeling with Non-spherical Shapes
2009-01-01
1491−1499, 1994. Gordon, H.R. and Tao Du, Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi...from Emiliania huxleyi, Applied Optics, (2009). van de Hulst, H.C., 1957. Light Scattering by Small Particles, Wiley. Xu, Yu-lin, and Bo A.S...G.C. Boynton, Light scattering by coccoliths detached from Emiliania huxleyi, Applied Optics, (2009). [submitted, in revision] 6 m = 1.05
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, D.E.
1979-11-01
The extraction of morphological parameters from biological cells by analysis of light-scatter patterns is described. A light-scattering measurement system has been designed and constructed that allows one to visually examine and photographically record biological cells or cell models and measure the light-scatter pattern of an individual cell or cell model. Using a laser or conventional illumination, the imaging system consists of a modified microscope with a 35 mm camera attached to record the cell image or light-scatter pattern. Models of biological cells were fabricated. The dynamic range and angular distributions of light scattered from these models was compared to calculatedmore » distributions. Spectrum analysis techniques applied on the light-scatter data give the sought after morphological cell parameters. These results compared favorably to shape parameters of the fabricated cell models confirming the mathematical model procedure. For nucleated biological material, correct nuclear and cell eccentricity as well as the nuclear and cytoplasmic diameters were determined. A method for comparing the flow equivalent of nuclear and cytoplasmic size to the actual dimensions is shown. This light-scattering experiment provides baseline information for automated cytology. In its present application, it involves correlating average size as measured in flow cytology to the actual dimensions determined from this technique. (ERB)« less
Shiraya, Tomoyasu; Kato, Satoshi; Minami, Keiichiro; Miyata, Kazunori
2017-02-01
The aim of this study was to experimentally examine the changes in the transmittances of photocoagulation lasers when surface light scattering increases in AcrySof intraocular lenses (IOLs). SA60AT IOLs (Alcon) were acceleratingly aging for 0, 3, 5, and 10 years to simulate surface light scattering, and the surface light-scattering intensities of both IOL surfaces were measured using a Scheimpflug photographer. The powers of laser beams that passed from a laser photocoagulator through the aged IOLs were measured at 532, 577, and 647 nm. Changes in the laser power and transmittance with the years of aging and the intensities of surface light scattering were examined. Although the intensity of surface light scattering increased with the years of aging, the laser power did not change with the years of aging (P > 0.30, Kruskal-Wallis test). There were no significant changes in the laser transmittance with the years of aging or the laser wavelength (P > 0.30 and 0.57, respectively). The intensity of surface light scattering revealed no significant association with the laser transmittance at any wavelength (P > 0.37, liner regression). The increases in the surface light scattering of the AcrySof IOLs would not influence retinal photocoagulation treatments for up to 10 years after implantation.
Hughes, J; Clarke, F; Purslow, P; Warner, R
2018-05-18
Beef meat colour is impacted by both myoglobin status and the light scattering properties of the muscle, and the specific causative scattering elements of the latter are still unknown. We hypothesize that stretching muscles during rigor will generate a structure which favours light scattering, by increasing the length of the I-band (longer sarcomeres) and that a high rigor temperature will cause protein reconfiguration, changing the muscle structure and promoting light scattering. Muscle fibre fragments were isolated from four beef M. sternomandibularis and subjected to stretching (plus, minus) and three incubation temperatures (5, 15, 35 °C). Reflectance confocal laser scanning microscopy (rCLSM) revealed sarcomere stretching alone was not solely responsible for light scattering development. A high rigor temperature (35 °C) was more favourable for light scattering. Stretching and taking muscle into rigor at 35 °C promoted transverse shrinkage of muscle fibres and increased light scattering and could be applied post-mortem (PM) to reduce the occurrence of problematic dark meat. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Polarized light scattering as a probe for changes in chromosome structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, Daniel Benjamin
1993-10-01
Measurements and calculations of polarized light scattering are applied to chromosomes. Calculations of the Mueller matrix, which completely describes how the polarization state of light is altered upon scattering, are developed for helical structures related to that of chromosomes. Measurements of the Mueller matrix are presented for octopus sperm heads, and dinoflagellates. Comparisons of theory and experiment are made. A working theory of polarized light scattering from helices is developed. The use of the first Born approximation vs the coupled dipole approximation are investigated. A comparison of continuous, calculated in this work, and discrete models is also discussed. By comparingmore » light scattering measurements with theoretical predictions the average orientation of DNA in an octopus sperm head is determined. Calculations are made for the Mueller matrix of DNA plectonemic helices at UV, visible and X-ray wavelengths. Finally evidence is presented that the chromosomes of dinoflagellates are responsible for observed differential scattering of circularly-polarized light. This differential scattering is found to vary in a manner that is possibly correlated to the cell cycle of the dinoflagellates. It is concluded that by properly choosing the wavelength probe polarized light scattering can provide a useful tool to study chromosome structure.« less
Thermal diffusion behavior of nonionic surfactants in water.
Ning, Hui; Kita, Rio; Kriegs, Hartmut; Luettmer-Strathmann, Jutta; Wiegand, Simone
2006-06-08
We studied the thermal diffusion behavior of hexaethylene glycol monododecyl ether (C12E6) in water by means of thermal diffusion forced Rayleigh scattering (TDFRS) and determined Soret coefficients, thermal diffusion coefficients, and diffusion constants at different temperatures and concentrations. At low surfactant concentrations, the measured Soret coefficient is positive, which implies that surfactant micelles move toward the cold region in a temperature gradient. For C12E6/water at a high surfactant concentration of w1 = 90 wt % and a temperature of T = 25 degrees C, however, a negative Soret coefficient S(T) was observed. Because the concentration part of the TDFRS diffraction signal for binary systems is expected to consist of a single mode, we were surprised to find a second, slow mode for C12E6/water system in a certain temperature and concentration range. To clarify the origin of this second mode, we investigated also, tetraethylene glycol monohexyl ether (C6E4), tetraethylene glycol monooctyl ether (C8E4), pentaethylene glycol monododecyl ether (C12E5), and octaethylene glycol monohexadecyl ether (C16E8) and compared the results with the previous results for octaethylene glycol monodecyl ether (C10E8). Except for C6E4 and C10E8, a second slow mode was observed in all systems usually for state points close to the phase boundary. The diffusion coefficient and Soret coefficient derived from the fast mode can be identified as the typical mutual diffusion and Soret coefficients of the micellar solutions and compare well with the independently determined diffusion coefficients in a dynamic light scattering experiment. Experiments with added salt show that the slow mode is suppressed by the addition of w(NaCl) = 0.02 mol/L sodium chloride. This suggests that the slow mode is related to the small amount of absorbing ionic dye, less than 10(-5) by weight, which is added in TDFRS experiments to create a temperature grating. The origin of the slow mode of the TDFRS signal will be tentatively interpreted in terms of a ternary mixture of neutral micelles, dye-charged micelles, and water.
Study of the epidermis ablation effect on the efficiency of optical clearing of skin in vivo
NASA Astrophysics Data System (ADS)
Genina, E. A.; Ksenofontova, N. S.; Bashkatov, A. N.; Terentyuk, G. S.; Tuchin, V. V.
2017-06-01
We present the results of a comparative analysis of optical immersion clearing of skin in laboratory animals in vivo with and without preliminary ablation of epidermis. Laser ablation is implemented using a setup based on a pulsed erbium laser (λ = 2940 nm). The size of the damaged region amounted to 6 × 6 mm, the depth being smaller than 50 μm. As an optical clearing agent (OCA), use is made of polyethylene glycol (PEG-300). Based on optical coherence tomography, we use the single scattering model to estimate the scattering coefficient in the process of optical clearing in 2 regions at depths of 50-170 μm and 150-400 μm. The results show that skin surface ablation leads to the local oedema of the affected region that increases the scattering coefficient. However, the intense evaporation of water from the ablation zone facilitates the optical clearing at the expense of tissue dehydration, particularly in the upper layers. The assessment of the optical clearing efficiency shows that the efficiency exceeding 30% can be achieved at a depth from 50 to 170 μm in 120 min after ablation, as well as after the same ablation with subsequent application of PEG-300, which increases the efficiency of the immersion method by almost 1.8 times. At a depth from 150 to 400 μm, dehydration of upper layers cannot completely compensate for an increase in light scattering by dermis after epidermis ablation. The additional effect of OCA enhances the optical clearing of skin at the expense of improving the refractive index matching between dermis components, but the maximal efficiency of optical clearing in 120 min does not exceed 6%.
NASA Astrophysics Data System (ADS)
Huh, Jae-Won; Yu, Byeong-Hun; Shin, Dong-Myung; Yoon, Tae-Hoon
2015-03-01
Recently, a transparent display has got much attention as one of the next generation display devices. Especially, active studies on a transparent display using organic light-emitting diodes (OLEDs) are in progress. However, since it is not possible to obtain black color using a transparent OLED, it suffers from poor visibility. This inevitable problem can be solved by using a light shutter. Light shutter technology can be divided into two types; light absorption and scattering. However, a light shutter based on light absorption cannot block the background image perfectly and a light shutter based on light scattering cannot provide black color. In this work we demonstrate a light shutter using two liquid crystal (LC) layers, a light absorption layer and a light scattering layer. To realize a light absorption layer and a light scattering layer, we use the planar state of a dye-doped chiral nematic LC (CNLC) cell and the focal-conic state of a long-pitch CNLC cell, respectively. The proposed light shutter device can block the background image perfectly and show black color. We expect that the proposed light shutter can increase the visibility of a transparent display.
NASA Astrophysics Data System (ADS)
Wagnieres, Georges A.; Cheng, Shangguan; Zellweger, Matthieu; Doegnitz-Utke, Nora; Braichotte, Daniel; Ballini, Jean-Pierre; van den Bergh, Hubert
1996-12-01
The design and characterization of optical phantoms which have the same absorption and scattering characteristics as biological tissues in a broad spectral window (between 400 and 650 nm) are presented. These low cost phantoms use agarose dissolved in water as the transparent matrix. The latter is loaded with various amounts of silicon dioxide, intralipid, ink, bovine serum, blood, azide, penicillin and fluorochromes. The silicon dioxide and intralipid particles are responsible for the light scattering whereas the ink and blood are the absorbers. The penicillin and the azide are used to insure the conservation of such phantoms when stored at 4 degrees Celsius. The serum and fluorochromes, such as Coumarin 30, produce an autofluorescence similar to human tissues. Various fluorochromes or photosensitizers can be added to these phantoms to simulate a photodetection procedure. The absorption and fluorescence spectroscopy of the dyes tested was not different in these phantoms than in live tissues. The mechanical properties of these gelatinous phantoms are also of interest as they can easily be molded and reshaped with a conventional cutter, so that for instance layered structures, with different optical properties in each layer, can be designed. The optical properties of these phantoms were determined between 400 and 650 nm by measuring their effective attenuation coefficient ((mu) eff) and total reflectance (Rd). The microscopic absorption and reduced scattering coefficients ((mu) a, (mu) s') were deduced from (mu) eff and Rd using a Monte-Carlo simulation.
NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.
1998-12-01
We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.
Expansion of Tabulated Scattering Matrices in Generalized Spherical Functions
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Geogdzhayev, Igor V.; Yang, Ping
2016-01-01
An efficient way to solve the vector radiative transfer equation for plane-parallel turbid media is to Fourier-decompose it in azimuth. This methodology is typically based on the analytical computation of the Fourier components of the phase matrix and is predicated on the knowledge of the coefficients appearing in the expansion of the normalized scattering matrix in generalized spherical functions. Quite often the expansion coefficients have to be determined from tabulated values of the scattering matrix obtained from measurements or calculated by solving the Maxwell equations. In such cases one needs an efficient and accurate computer procedure converting a tabulated scattering matrix into the corresponding set of expansion coefficients. This short communication summarizes the theoretical basis of this procedure and serves as the user guide to a simple public-domain FORTRAN program.
On the relationship between aerosol content and errors in telephotometer experiments.
NASA Technical Reports Server (NTRS)
Thomas, R. W. L.
1971-01-01
This paper presents an invariant imbedding theory of multiple scattering phenomena contributing to errors in telephotometer experiments. The theory indicates that there is a simple relationship between the magnitudes of the errors introduced by successive orders of scattering and it is shown that for all optical thicknesses each order can be represented by a coefficient which depends on the field of view of the telescope and the properties of the scattering medium. The verification of the theory and the derivation of the coefficients have been accomplished by a Monte Carlo program. Both monodisperse and polydisperse systems of Mie scatterers have been treated. The results demonstrate that for a given optical thickness the coefficients increase strongly with the mean particle size particularly for the smaller fields of view.
NASA Astrophysics Data System (ADS)
Shan, Huihui; Zhang, Hui; Liu, Junjian; Wang, Shenhao; Ma, Xiaomin; Zhang, Lianqing; Liu, Dong; Xie, Chenbo; Tao, Zongming
2018-02-01
Aerosol extinction coefficient profile is an essential parameter for atmospheric radiation model. But it is difficult to get the full aerosol extinction profile from the ground to the tropopause especially in near ground precisely using backscattering lidar. A combined measurement of side-scattering, backscattering and Raman-scattering lidar is proposed to retrieve the aerosol extinction coefficient profile from the surface to the tropopause which covered a dynamic range of 5 orders. The side-scattering technique solves the dead zone and the overlap problem caused by the traditional lidar in the near range. Using the Raman-scattering the aerosol lidar ratio (extinction to backscatter ratio) can be obtained. The cases studies in this paper show the proposed method is reasonable and feasible.
Laser light scattering from wood samples soaked in water or in benzyl benzoate
NASA Astrophysics Data System (ADS)
Simonaho, S.-P.; Tolonen, Y.; Rouvinen, J.; Silvennoinen, R.
Laser light scattering from Scots pine (Pinus Sylvesteris L.) wood samples soaked in two different liquids, which were tap water and benzyl benzoate, has been experimentally investigated. Differences in the characteristics of the scattering pattern as function of the soaking time as well as the moisture effect in the orientation of scattering pattern has been experimentally investigated. The wood samples soaked in the test liquids altered the laser light scattering in along and across the grain directions. No correlation between the content of the water in the wood sample and the orientation of laser light scattering pattern was observed.
Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David J
2008-01-01
To investigate the cause of light scatter measured on the surface of AcrySof intraocular lenses (Alcon Laboratories, Inc., Fort Worth, TX) retrieved from pseudophakic postmortem human eyes. Ten intraocular lenses (Alcon AcrySofModel MA60BM) were retrieved postmortem and analyzed for light scatter before and after removal of surface-bound biofilms. Six of the 10 lenses exhibited light scatter that was clearly above baseline levels. In these 6 lenses, both peak and average pixel density were reduced by approximately 80% after surface cleaning. The current study demonstrates that a coating deposited in vivo on the lens surface is responsible for the light scatter observed when incident light is applied.
NASA Astrophysics Data System (ADS)
Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto
1997-06-01
We measured angular distribution of the light scattering from live mouse embryo with 632.8nm in wavelength to evaluate the embryo viability. We aim to measure the mitochondrial density in human embryo which have relation to the embryo viability. We have constructed the light scattering measurement system to detect the mitochondrial density non-invasively. We have employed two optical fibers for the illumination and sensing to change the angle between these fibers. There were two dips on the scattering angular distribution from the embryo. These dips existed on 30 and 85 deg. We calculated the scattering angular pattern by Mie theory to fit the measured scattering estimated scattering size and density. The best fitting was obtained when the particle size and density were 0.9 micrometers and 1010 particles per ml, respectively. These values coincided with the approximated values of mitochondrial in the embryo. The measured light scattering may mainly originated from mitochondria in spite of the existence of the various scattering particles in the embryo. Since our simple scattering measurement may offer the mitochondrial density in the embryo, it might become the practical method of human embryo on in vitro fertilization-embryo transfer.
Wang, Wenhao; Yu, Peng; Zhong, Zhiqin; Tong, Xin; Liu, Tianji; Li, Yanbo; Ashalley, Eric; Chen, Huanyang; Wu, Jiang; Wang, Zhiming
2018-08-31
Au nanobipyramids (NBPs) with sharp tips and narrow plasmon linewidths are ideal candidates for plasmonic applications. In this paper, we investigated the influencing factors of longitudinal plasmon resonance wavelength (LPRW) and scattering properties of single Au NBP by simulation. Compared with the volume, we establish the aspect ratio (length/width) as the dominant factor that affects the LPRW of Au NBPs. Plasmonic nanoparticles have been widely used for light-trapping enhancement in photovoltaics. To give a profound understanding of the superior light harvesting properties of Au NBPs, the near-field localization effect and far-field scattering mechanism of Au NBPs were investigated. Under the light injection at LPRW, the tip area shows near-field enhancement and the maximum scattering intensity appears on the side area of the waist owing to the remarkable optical absorption near the tips. Additionally, we confirm the fraction of light scattered into the substrate and angular distribution of the light scattered by the Au NBPs. The fraction of light scattered into the substrate reaches up to 97% from 400-1100 nm and preserves a broadband spectrum. This suggests that the NBP has a predominant forward scattering and reduced backward scattering. The excellent plasmonic scattering properties of Au NBPs are promising in photovoltaic devices and photothermal therapy.
Control of optical transport parameters of 'porous medium – supercritical fluid' systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimnyakov, D A; Ushakova, O V; Yuvchenko, S A
2015-11-30
The possibility of controlling optical transport parameters (in particular, transport scattering coefficient) of porous systems based on polymer fibres, saturated with carbon dioxide in different phase states (gaseous, liquid and supercritical) has been experimentally studied. An increase in the pressure of the saturating medium leads to a rise of its refractive index and, correspondingly, the diffuse-transmission coefficient of the system due to the decrease in the transport scattering coefficient. It is shown that, in the case of subcritical saturating carbon dioxide, the small-angle diffuse transmission of probed porous layers at pressures close to the saturated vapour pressure is determined bymore » the effect of capillary condensation in pores. The immersion effect in 'porous medium – supercritical fluid' systems, where the fluid pressure is used as a control parameter, is considered. The results of reconstructing the values of transport scattering coefficient of probed layers for different refractive indices of a saturating fluid are presented. (radiation scattering)« less
Argo, Paul E.; Fitzgerald, T. Joseph
1993-01-01
Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.
Unusual concentration-dependent microscopic dynamics of dendrimers in aqueous solution
NASA Astrophysics Data System (ADS)
Wong, Kaikin; Wu, Chin Ming; Lam, Hak Fai; Chathoth, Suresh M.
2016-05-01
Dendrimers are novel three-dimensional, hyperbranched globular nanopolymeric macromolecules. The nanoscopic size, narrow polydispersity index, excellent control over molecular structure, availability of multiple functional groups at the periphery, and cavities in the interior made them very attractive candidate for drug delivery. In this communication, we have studied the microscopic dynamics of tetra-acid and pentaerythritol glycidyl ether dendrimers dissolved in aqueous solution with different concentrations. The effects of concentration and temperature to their long-range diffusion process are investigated by dynamic light scattering. Experimental results show a huge variation in the translational diffusion coefficient for the two dendrimers samples. Besides, the dependence of diffusion coefficients on concentration is unusually different in these dendrimer samples. Although the diffusion process follows Arrhenius relation with the temperature in both systems, the activation energy for the diffusion process has a distinct concentration dependence.
Photovoltaic structures having a light scattering interface layer and methods of making the same
Liu, Xiangxin; Compaan, Alvin D.; Paudel, Naba Raj
2015-10-13
Photovoltaic (PV) cell structures having an integral light scattering interface layer configured to diffuse or scatter light prior to entering a semiconductor material and methods of making the same are described.
Methods and apparatus for transparent display using scattering nanoparticles
Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin
2017-06-14
Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.
Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David
2008-01-01
To investigate the surface light scatter and optical quality of AcrySof lenses (Alcon Laboratories, Inc., Fort Worth, TX) following simulated aging of 20 years. AcrySof lenses were exposed to exaggerated thermal conditions to simulate up to 20 years of aging and were tested for surface light scatter and optical quality (modulation transfer function). There were no significant differences from baseline for either the surface light scatter or optical quality of the lenses over time. The current study demonstrated that surface light scatter on AcrySof lenses did not increase under conditions simulating 20 years of aging. Because the simulated aging environment contained no protein, this work indirectly supports the finding that surface light scatter is due to the deposition of a biomaterial on the lens surface rather than changes in the material. Optical performance integrity of the test lenses was maintained under severe environmental conditions.
Effective phase function of light scattered at small angles by polydisperse particulate media
NASA Astrophysics Data System (ADS)
Turcu, I.
2008-06-01
Particles with typical dimensions higher than the light wavelength and relative refraction indexes close to one, scatter light mainly in the forward direction where the scattered light intensity has a narrow peak. For particulate media accomplishing these requirements the light scattered at small angles in a far-field detecting set-up can be described analytically by an effective phase function (EPF) even in the multiple scattering regime. The EPF model which was built for monodispersed systems has been extended to polydispersed media. The main ingredients consist in the replacement of the single particle phase function and of the optical thickness with their corresponding averaged values. Using a Gamma particle size distribution (PSD) as a testing model, the effect of polydispersity was systematically investigated. The increase of the average radius or/and of the PSD standard deviation leads to the decrease of the angular spreading of the small angle scattered light.
Methods and apparatus for transparent display using scattering nanoparticles
Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin
2016-05-10
Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.
Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre
Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut
2014-01-01
Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s−1 and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638
Utilization of functional near infrared spectroscopy for non-invasive evaluation
NASA Astrophysics Data System (ADS)
Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.
2016-07-01
The goal of this brief review is to report the techniques of functional near infrared spectroscopy for non-invasive evaluation in human study. The development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to define the light penetration into tissues multilayers. There are a lot of studies that demonstrate signal from fNIRS which can be used to evaluate the changes of oxygenation level and measure the limitation of muscle performance in human brain and muscle tissues. Comprehensive reviews of diffuse reflectance based on beer lambert law theory were presented in this paper. The principle and development of fNIRS instrumentation is reported in detail.
NASA Astrophysics Data System (ADS)
Abdallah, Omar; Stork, Wilhelm; Muller-Glaser, Klaus
2004-06-01
The deficiencies of the currently used pulse oximeter are discussed in diverse literature. A hazardous pitfalls of this method is that the pulse oximeter will not detect carboxyhemoglobin (COHb) and methemoglobin (metHb) concentrations. This leads to incorrect measurement of oxygen saturation by carbon monoxide poisoning and methemoglobinemia. Also the total hemoglobin concentration will not be considered and can only be measured in-vitro up to now. A second pitfall of the standard pulse oximetry is that it will not be able to show a result by low perfusion of tissues. This case is available inter alia when the patient is under shock or has a low blood pressure. The new non-invasive system we designed measures the actual (fractional) oxygen saturation and hemoglobin concentration. It will enable us also to measure COHb and metHb. The measurement can be applied at better perfused body central parts. Four or more light emitting diodes (LEDs) or laser diodes (LDs) and five photodiodes (PDs) are used. The reflected light signal detected by photodiodes is processed using a modified Lambert-Beer law (I=I0×e-α.d ). According to this law, when a non scattering probe is irradiated with light having the incident intensity I0, the intensity of transmitted light I decays exponentially with the absorption coefficient a of that probe and its thickness d. Modifications of this law have been performed following the theoretical developed models in literature, Monte Carlo simulation and experimental measurement.
Using Light Scattering to Track, Characterize and Manipulate Colloids
NASA Astrophysics Data System (ADS)
van Oostrum, P. D. J.
2011-03-01
A new technique is developed to analyze in-line Digital Holographic Microscopy images, making it possible to characterize, and track colloidal particles in three dimensions at unprecedented accuracy. We took digital snapshots of the interference pattern between the light scattered by micrometer particles and the unaltered portion of a laser beam that was used to illuminate dilute colloidal dispersions on a light microscope in transmission mode. We numerically fit Mie-theory for the light-scattering by micrometer sized particles to these experimental in-line holograms. The fit values give the position in three dimensions with an accuracy of a few nanometers in the lateral directions and several tens of nanometers in the axial direction. The individual particles radii and refractive indices could be determined to within tens of nanometers and a few hundredths respectively. By using a fast CCD camera, we can track particles with millisecond resolution in time which allows us to study dynamical properties such as the hydrodynamic radius and the sedimentation coefficient. The scattering behavior of the particles that we use to track and characterize colloidal particles makes it possible to exert pico-Newton forces on them close to a diffraction limited focus. When these effects are used to confine colloids in space, this technique is called Optical Tweezers. Both by numerical calculations and by experiments, we explore the possibilities of optical tweezers in soft condensed matter research. Using optical tweezers we placed multiple particles in interesting configurations to measure the interaction forces between them. The interaction forces were Yukawa-like screened charge repulsions. Careful timing of the blinking of time-shared optical tweezers and of the recording of holographic snapshots, we were able to measure interaction forces with femto-Newton accuracy from an analysis of (driven) Brownian motion. Forces exerted by external fields such as electric fields and gravity were measured as well. We induced electric dipoles in colloidal particles by applying radio frequency electric fields. Dipole induced strings of particles were formed and made permanent by van der Waals attractions or thermal annealing. Such colloidal strings form colloidal analogues of charged and un-charged (bio-) polymers. The diffusion and bending behavior of such strings was probed using DHM and optical tweezers.
Method and apparatus for aerosol particle absorption spectroscopy
Campillo, Anthony J.; Lin, Horn-Bond
1983-11-15
A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu
2016-01-01
Measurements of the optical properties (absorption, scattering and extinction) of PM 1, PM 2.5 and PM 10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM 10 and the fraction of the scatteringmore » that is contributed by submicron particles ( f sca, PM 1 ) at both sites and with similar slopes and intercepts (for a given pair of wavelengths), suggesting that the derived relationship may be generally applicable for understanding variations in particle size distributions from remote sensing measurements. At the more urban T0 site, the f sca, PM 1 increased with photochemical age, whereas at the downwind, more rural T1 site the f sca, PM 1 decreased slightly with photochemical age. This difference in behavior reflects differences in transport, local production and local emission of supermicron particles between the sites. Light absorption is dominated by submicron particles, but there is some absorption by supermicron particles (~15 % of the total). The supermicron absorption derives from a combination of black carbon that has penetrated into the supermicron mode and from dust, and there is a clear increase in the mass absorption coefficient of just the supermicron particles with increasing average particle size. The mass scattering coefficient (MSC) for the supermicron particles was directly observed to vary inversely with the average particle size, demonstrating that MSC cannot always be treated as a constant in estimating mass concentrations from scattering measurements, or vice versa. The total particle backscatter fraction exhibited some dependence upon the relative abundance of sub- versus supermicron particles; however this was modulated by variations in the median size of particles within a given size range; variations in the submicron size distribution had a particularly large influence on the observed backscatter efficiency and an approximate method to account for this variability is introduced. The relationship between the absorption and scattering Ångström exponents is examined and used to update a previously suggested particle classification scheme. Differences in composition led to differences in the sensitivity of PM 2.5 to heating in a thermodenuder to the average particle size, with more extensive evaporation (observed as a larger decrease in the PM 2.5 extinction coefficient) corresponding to smaller particles; i.e., submicron particles were generally more susceptible to heating than the supermicron particles. The influence of heating on the particle hygroscopicity varied with the effective particle size, with larger changes observed when the PM 2.5 distribution was dominated by smaller particles.« less
Visible and near-infrared bulk optical properties of raw milk.
Aernouts, B; Van Beers, R; Watté, R; Huybrechts, T; Lammertyn, J; Saeys, W
2015-10-01
The implementation of optical sensor technology to monitor the milk quality on dairy farms and milk processing plants would support the early detection of altering production processes. Basic visible and near-infrared spectroscopy is already widely used to measure the composition of agricultural and food products. However, to obtain maximal performance, the design of such optical sensors should be optimized with regard to the optical properties of the samples to be measured. Therefore, the aim of this study was to determine the visible and near-infrared bulk absorption coefficient, bulk scattering coefficient, and scattering anisotropy spectra for a diverse set of raw milk samples originating from individual cow milkings, representing the milk variability present on dairy farms. Accordingly, this database of bulk optical properties can be used in future simulation studies to efficiently optimize and validate the design of an optical milk quality sensor. In a next step of the current study, the relation between the obtained bulk optical properties and milk quality properties was analyzed in detail. The bulk absorption coefficient spectra were found to mainly contain information on the water, fat, and casein content, whereas the bulk scattering coefficient spectra were found to be primarily influenced by the quantity and the size of the fat globules. Moreover, a strong positive correlation (r ≥ 0.975) was found between the fat content in raw milk and the measured bulk scattering coefficients in the 1,300 to 1,400 nm wavelength range. Relative to the bulk scattering coefficient, the variability on the scattering anisotropy factor was found to be limited. This is because the milk scattering anisotropy is nearly independent of the fat globule and casein micelle quantity, while it is mainly determined by the size of the fat globules. As this study shows high correlations between the sample's bulk optical properties and the milk composition and fat globule size, a sensor that allows for robust separation between the absorption and scattering properties would enable accurate prediction of the raw milk quality parameters. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Evolution of circular and linear polarization in scattering environments
van der Laan, John D.; Wright, Jeremy Benjamin; Scrymgeour, David A.; ...
2015-12-02
This study quantifies the polarization persistence and memory of circularly polarized light in forward-scattering and isotropic (Rayleigh regime) environments; and for the first time, details the evolution of both circularly and linearly polarized states through scattering environments. Circularly polarized light persists through a larger number of scattering events longer than linearly polarized light for all forward-scattering environments; but not for scattering in the Rayleigh regime. Circular polarization’s increased persistence occurs for both forward and backscattered light. The simulated environments model polystyrene microspheres in water with particle diameters of 0.1 μm, 2.0 μm, and 3.0 μm. The evolution of the polarizationmore » states as they scatter throughout the various environments are illustrated on the Poincaré sphere after one, two, and ten scattering events.« less
A Study of Brownian Motion Using Light Scattering
ERIC Educational Resources Information Center
Clark, Noel A.; Lunacek, Joseph H.
1969-01-01
Describes an apparatus designed to investigate molecular motion by means of light scattering. Light from a He-Ne laser is focused into a cell containing a suspension of polystyrene spheres. The scattered light, collected on the photosurface of a photomultiplier tube, is analyzed. The apparatus won first prize in Demonstration Lecture Apparatus in…
Protein aggregation studied by forward light scattering and light transmission analysis
NASA Astrophysics Data System (ADS)
Penzkofer, A.; Shirdel, J.; Zirak, P.; Breitkreuz, H.; Wolf, E.
2007-12-01
The aggregation of the circadian blue-light photo-receptor cryptochrome from Drosophila melanogaster (dCry) is studied by transmission and forward light scattering measurement in the protein transparent wavelength region. The light scattering in forward direction is caused by Rayleigh scattering which is proportional to the degree of aggregation. The light transmission through the samples in the transparent region is reduced by Mie light scattering in all directions. It depends on the degree of aggregation and the monomer volume fill factor of the aggregates (less total scattering with decreasing monomer volume fill factor of protein globule) allowing a distinction between tightly packed protein aggregation (monomer volume fill factor 1) and loosely packed protein aggregation (monomer volume fill factor less than 1). An increase in aggregation with temperature, concentration, and blue-light exposure is observed. At a temperature of 4 °C and a protein concentration of less than 0.135 mM no dCry aggregation was observed, while at 24 °C and 0.327 mM gelation occurred (loosely packed aggregates occupying the whole solution volume).
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.
2017-08-14
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this study, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. Themore » general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Finally, our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.« less
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian.
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J
2017-08-01
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this paper, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. The general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this study, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. Themore » general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Finally, our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.« less
Light scattering from an atomic gas under conditions of quantum degeneracy
NASA Astrophysics Data System (ADS)
Porozova, V. M.; Gerasimov, L. V.; Havey, M. D.; Kupriyanov, D. V.
2018-05-01
Elastic light scattering from a macroscopic atomic sample existing in the Bose-Einstein condensate phase reveals a unique physical configuration of interacting light and matter waves. However, the joint coherent dynamics of the optical excitation induced by an incident photon is influenced by the presence of incoherent scattering channels. For a sample of sufficient length the excitation transports as a polariton wave and the propagation Green's function obeys the scattering equation which we derive. The polariton dynamics could be tracked in the outgoing channel of the scattered photon as we show via numerical solution of the scattering equation for one-dimensional geometry. The results are analyzed and compared with predictions of the conventional macroscopic Maxwell theory for light scattering from a nondegenerate atomic sample of the same density and size.
An analysis of scattered light in low dispersion IUE spectra
NASA Technical Reports Server (NTRS)
Basri, G.; Clarke, J. T.; Haisch, B. M.
1985-01-01
A detailed numerical simulation of light scattering from the low-resolution grating in the short wavelength spectrograph of the IUE Observatory was developed, in order to quantitatively analyze the effects of scattering on both continuum and line emission spectra. It is found that: (1) the redistribution of light by grating scattering did not appreciably alter either the shape or the absolute flux level of continuum spectra for A-F stars; (2) late-type stellar continua showed a tendency to flatten when observed in scattered light toward the shorter wavelengths; and (3) the effect of grating scattering on emission lines is to decrease measured line intensities by an increasing percentage toward the shorter wavelengths. The spectra obtained from scattering experiments for solar-type and late type stars are reproduced in graphic form.
NASA Astrophysics Data System (ADS)
Preissler, Natalie; Bierwagen, Oliver; Ramu, Ashok T.; Speck, James S.
2013-08-01
A comprehensive study of the room-temperature electrical and electrothermal transport of single-crystalline indium oxide (In2O3) and indium tin oxide (ITO) films over a wide range of electron concentrations is reported. We measured the room-temperature Hall mobility μH and Seebeck coefficient S of unintentionally doped and Sn-doped high-quality, plasma-assisted molecular-beam-epitaxy-grown In2O3 for volume Hall electron concentrations nH from 7×1016 cm-3 (unintentionally doped) to 1×1021 cm-3 (highly Sn-doped, ITO). The resulting empirical S(nH) relation can be directly used in other In2O3 samples to estimate the volume electron concentration from simple Seebeck coefficient measurements. The mobility and Seebeck coefficient were modeled by a numerical solution of the Boltzmann transport equation. Ionized impurity scattering and polar optical phonon scattering were found to be the dominant scattering mechanisms. Acoustic phonon scattering was found to be negligible. Fitting the temperature-dependent mobility above room temperature of an In2O3 film with high mobility allowed us to find the effective Debye temperature (ΘD=700 K) and number of phonon modes (NOPML=1.33) that best describe the polar optical phonon scattering. The modeling also yielded the Hall scattering factor rH as a function of electron concentration, which is not negligible (rH≈1.4) at nondegenerate electron concentrations. Fitting the Hall-scattering-factor corrected concentration-dependent Seebeck coefficient S(n) for nondegenerate samples to the numerical solution of the Boltzmann transport equation and to widely used, simplified equations allowed us to extract an effective electron mass of m*=(0.30±0.03)me (with free electron mass me). The modeled mobility and Seebeck coefficient based on polar optical phonon and ionized impurity scattering describes the experimental results very accurately up to electron concentrations of 1019 cm-3, and qualitatively explains a mobility plateau or local maximum around 1020 cm-3. Ionized impurity scattering with doubly charged donors best describes the mobility in our unintentionally doped films, consistent with oxygen vacancies as unintentional shallow donors, whereas singly charged donors best describe our Sn-doped films. Our modeling yields a (phonon-limited) maximum theoretical drift mobility and Hall mobility of μ=190 cm2/Vs and μH=270 cm2/Vs, respectively. Simplified equations for the Seebeck coefficient describe the measured values in the nondegenerate regime using a Seebeck scattering parameter of r=-0.55 (which is consistent with the determined Debye temperature), and provide an estimate of the Seebeck coefficient to lower electron concentrations. The simplified equations fail to describe the Seebeck coefficient around the Mott transition (nMott=5.5×1018 cm-3) from nondegenerate to degenerate electron concentrations, whereas the numerical modeling accurately describes this region.
NASA Astrophysics Data System (ADS)
Nikitin, Sergei Yu
2009-07-01
Formulas are derived for evaluating the diffusion coefficient and size of gas molecules from transient coherent anti-Stokes Raman scattering measurements. Numerical estimates are presented for hydrogen.
Clean Air Slots Amid Dense Atmospheric Pollution in Southern Africa
NASA Technical Reports Server (NTRS)
Hobbs, Peter V.
2003-01-01
During the flights of the University of Washington's Convair-580 in the Southern African Regional Science Initiative (SAFARI 2000) in southern Africa, a phenomenon was observed that has not been reported previously. This was the occurrence of thin layers of remarkably clean air, sandwiched between heavily polluted air, which persisted for many hours during the day. Photographs are shown of these clean air slots (CAS), and particle concentrations and light scattering coefficients in and around such slot are presented. An explanation is proposed for the propensity of CAS to form in southern Africa during the dry season.
Xu, Min; Wu, Tao T; Qu, Jianan Y
2008-01-01
A unified Mie and fractal model for light scattering by biological cells is presented. This model is shown to provide an excellent global agreement with the angular dependent elastic light scattering spectroscopy of cells over the whole visible range (400 to 700 nm) and at all scattering angles (1.1 to 165 deg) investigated. Mie scattering from the bare cell and the nucleus is found to dominate light scattering in the forward directions, whereas the random fluctuation of the background refractive index within the cell, behaving as a fractal random continuous medium, is found to dominate light scattering at other angles. Angularly dependent elastic light scattering spectroscopy aided by the unified Mie and fractal model is demonstrated to be an effective noninvasive approach to characterize biological cells and their internal structures. The acetowhitening effect induced by applying acetic acid on epithelial cells is investigated as an example. The changes in morphology and refractive index of epithelial cells, nuclei, and subcellular structures after the application of acetic acid are successfully probed and quantified using the proposed approach. The unified Mie and fractal model may serve as the foundation for optical detection of precancerous and cancerous changes in biological cells and tissues based on light scattering techniques.
NASA Technical Reports Server (NTRS)
Zaller, Michelle; Anderson, Robert C.; Hicks, Yolanda R.; Locke, Randy J.
1999-01-01
In aviation gas turbine combustors, many factors, such as the degree and extent of fuel/air mixing and fuel vaporization achieved prior to combustion, influence the formation of undesirable pollutants. To assist in analyzing the extent of fuel/air mixing, flow visualization techniques have been used to interrogate the fuel distributions during subcomponent tests of lean-burning fuel injectors. Discrimination between liquid and vapor phases of the fuel was determined by comparing planar laser-induced fluorescence (PLIF) images, elastically-scattered light images, and phase/Doppler interferometer measurements. Estimates of Sauter mean diameters are made by ratioing PLIF and Mie scattered intensities for various sprays, and factors affecting the accuracy of these estimates are discussed. Mie calculations of absorption coefficients indicate that the fluorescence intensities of individual droplets are proportional to their surface areas, instead of their volumes, due to the high absorbance of the liquid fuel for the selected excitation wavelengths.
Spatial frequency domain tomography of protoporphyrin IX fluorescence in preclinical glioma models
Konecky, Soren D.; Owen, Chris M.; Rice, Tyler; Valdés, Pablo A.; Kolste, Kolbein; Wilson, Brian C.; Leblond, Frederic; Roberts, David W.; Paulsen, Keith D.
2012-01-01
Abstract. Multifrequency (0 to 0.3 mm−1), multiwavelength (633, 680, 720, 800, and 820 nm) spatial frequency domain imaging (SFDI) of 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) was used to recover absorption, scattering, and fluorescence properties of glioblastoma multiforme spheroids in tissue-simulating phantoms and in vivo in a mouse model. Three-dimensional tomographic reconstructions of the frequency-dependent remitted light localized the depths of the spheroids within 500 μm, and the total amount of PpIX in the reconstructed images was constant to within 30% when spheroid depth was varied. In vivo tumor-to-normal contrast was greater than ∼1.5 in reduced scattering coefficient for all wavelengths and was ∼1.3 for the tissue concentration of deoxyhemoglobin (ctHb). The study demonstrates the feasibility of SFDI for providing enhanced image guidance during surgical resection of brain tumors. PMID:22612131
NASA Technical Reports Server (NTRS)
Vining, Cronin B.
1991-01-01
A model is presented for the high-temperature transport properties of large-grain-size, heavily doped n-type silicon-germanium alloys. Electron and phonon transport coefficients are calculated using standard Boltzmann equation expressions in the relaxation time approximation. Good agreement with experiment is found by considering acoustic phonon and ionized impurity scattering for electrons, and phonon-phonon, point defect, and electron-phonon scattering for phonons. The parameters describing electron transport in heavily doped and lightly doped materials are significantly different and suggest that most carriers in heavily doped materials are in a band formed largely from impurity states. The maximum dimensionless thermoelectric figure of merit for single-crystal, n-type Si(0.8)Ge(0.2) at 1300 K is estimated at ZT about 1.13 with an optimum carrier concentration of n about 2.9 x 10 to the 20th/cu cm.
Characterization of single particle aerosols by elastic light scattering at multiple wavelengths
NASA Astrophysics Data System (ADS)
Lane, P. A.; Hart, M. B.; Jain, V.; Tucker, J. E.; Eversole, J. D.
2018-03-01
We describe a system to characterize individual aerosol particles using stable and repeatable measurement of elastic light scattering. The method employs a linear electrodynamic quadrupole (LEQ) particle trap. Charged particles, continuously injected by electrospray into this system, are confined to move vertically along the stability line in the center of the LEQ past a point where they are optically interrogated. Light scattered in the near forward direction was measured at three different wavelengths using time-division multiplexed collinear laser beams. We validated our method by comparing measured silica microsphere data for four selected diameters (0.7, 1.0, 1.5 and 2.0 μm) to a model of collected scattered light intensities based upon Lorenz-Mie scattering theory. Scattered light measurements at the different wavelengths are correlated, allowing us to distinguish and classify inhomogeneous particles.
Physiological and pathological clinical conditions and light scattering in brain
NASA Astrophysics Data System (ADS)
Kurata, Tsuyoshi; Iwata, Sachiko; Tsuda, Kennosuke; Kinoshita, Masahiro; Saikusa, Mamoru; Hara, Naoko; Oda, Motoki; Ohmae, Etsuko; Araki, Yuko; Sugioka, Takashi; Takashima, Sachio; Iwata, Osuke
2016-08-01
MRI of preterm infants at term commonly reveals subtle brain lesions such as diffuse white matter injury, which are linked with later cognitive impairments. The timing and mechanism of such injury remains unclear. The reduced scattering coefficient of near-infrared light (μs’) has been shown to correlate linearly with gestational age in neonates. To identify clinical variables associated with brain μs’, 60 preterm and full-term infants were studied within 7 days of birth. Dependence of μs’ obtained from the frontal head on clinical variables was assessed. In the univariate analysis, smaller μs’ was associated with antenatal glucocorticoid, emergency Caesarean section, requirement for mechanical ventilation, smaller gestational age, smaller body sizes, low 1- and 5-minute Apgar scores, higher cord blood pH and PO2, and higher blood HCO3- at the time of study. Multivariate analysis revealed that smaller gestational age, requirement for mechanical ventilation, and higher HCO3- at the time of study were correlated with smaller μs’. Brain μs’ depended on variables associated with physiological maturation and pathological conditions of the brain. Further longitudinal studies may help identify pathological events and clinical conditions responsible for subtle brain injury and subsequent cognitive impairments following preterm birth.
de Monchy, Romain; Rouyer, Julien; Destrempes, François; Chayer, Boris; Cloutier, Guy; Franceschini, Emilie
2018-04-01
Quantitative ultrasound techniques based on the backscatter coefficient (BSC) have been commonly used to characterize red blood cell (RBC) aggregation. Specifically, a scattering model is fitted to measured BSC and estimated parameters can provide a meaningful description of the RBC aggregates' structure (i.e., aggregate size and compactness). In most cases, scattering models assumed monodisperse RBC aggregates. This study proposes the Effective Medium Theory combined with the polydisperse Structure Factor Model (EMTSFM) to incorporate the polydispersity of aggregate size. From the measured BSC, this model allows estimating three structural parameters: the mean radius of the aggregate size distribution, the width of the distribution, and the compactness of the aggregates. Two successive experiments were conducted: a first experiment on blood sheared in a Couette flow device coupled with an ultrasonic probe, and a second experiment, on the same blood sample, sheared in a plane-plane rheometer coupled to a light microscope. Results demonstrated that the polydisperse EMTSFM provided the best fit to the BSC data when compared to the classical monodisperse models for the higher levels of aggregation at hematocrits between 10% and 40%. Fitting the polydisperse model yielded aggregate size distributions that were consistent with direct light microscope observations at low hematocrits.
NASA Astrophysics Data System (ADS)
Guillén, C.; Herrero, J.
2015-01-01
Metal layers with high roughness and electrical conductivity are required as back-reflector electrodes in several optoelectronic devices. The metal layer thickness and the process temperature should be adjusted to reduce the material and energetic costs for the electrode preparation. Here, Ag thin films with thickness ranging from 30 to 200 nm have been deposited by sputtering at room temperature on glass substrates. The structure, morphology, optical and electrical properties of the films have been analyzed in the as-grown conditions and after thermal treatment in flowing nitrogen at various temperatures in the 150-550 °C range. The surface texture has been characterized by the root-mean-square roughness and the correlation length coefficients, which are directly related to the electrical resistivity and the light-scattering parameter (reflectance haze) for the various samples. The increment in the reflectance haze has been used to detect surface agglomeration processes that are found dependent on both the film thickness and the annealing temperature. A good compromise between light-scattering and electrical conductivity has been achieved with 70 nm-thick Ag films after 350 °C heating.
Kendrick, B S; Kerwin, B A; Chang, B S; Philo, J S
2001-12-15
Characterizing the solution structure of protein-polymer conjugates and protein-ligand interactions is important in fields such as biotechnology and biochemistry. Size-exclusion high-performance liquid chromatography with online classical light scattering (LS), refractive index (RI), and UV detection offers a powerful tool in such characterization. Novel methods are presented utilizing LS, RI, and UV signals to rapidly determine the degree of conjugation and the molecular mass of the protein conjugate. Baseline resolution of the chromatographic peaks is not required; peaks need only be sufficiently separated to represent relatively pure fractions. An improved technique for determining the polypeptide-only mass of protein conjugates is also described. These techniques are applied to determining the degree of erythropoietin glycosylation, the degree of polyethylene glycol conjugation to RNase A and brain-derived neurotrophic factor, and the solution association states of these molecules. Calibration methods for the RI, UV, and LS detectors will also be addressed, as well as online methods to determine protein extinction coefficients and dn/dc values both unconjugated and conjugated protein molecules. (c)2001 Elsevier Science.
Yan, Wenwu; Wang, Nani; Zhang, Peimin; Zhang, Jiajie; Wu, Shuchao; Zhu, Yan
2016-08-01
Sucralose is widely used in food and beverages as sweetener. Current synthesis approaches typically provide sucralose products with varying levels of related chlorinated carbohydrates which can affect the taste and flavor-modifying properties of sucralose. Quantification of related compounds in sucralose is often hampered by the lack of commercially available standards. In this work, nine related compounds were purified (purity>97%) and identified by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR), then a rapid and simple HPLC coupled with evaporative light scattering detection (ELSD) method has been developed for the simultaneous determination of sucralose and related compounds. Under optimized conditions, the method showed good linearity in the range of 2-600μgmL(-1) with determination coefficients R(2)⩾0.9990. Moreover, low limits of detection in the range of 0.5-2.0μgmL(-1) and good repeatability (RSD<3%, n=6) were obtained. Recoveries were from 96.8% to 101.2%. Finally, the method has been successfully applied to sucralose quality control and purification process monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hyperbolic umbilic caustics from oblate water drops with tilted illumination: Observations
NASA Astrophysics Data System (ADS)
Jobe, Oli; Thiessen, David B.; Marston, Philip L.
2017-11-01
Various groups have reported observations of hyperbolic umbilic diffraction catastrophe patterns in the far-field scattering by oblate acoustically levitated drops with symmetric illumination. In observations of that type the drop's symmetry axis is vertical and the illuminating light beam (typically an expanded laser beam) travels horizontally. In the research summarized here, scattering patterns in the primary rainbow region and drop measurements were recorded with vertically tilted laser beam illumination having a grazing angle as large as 4 degrees. The findings from these observations may be summarized as follows: (a) It remains possible to adjust the drop aspect ratio (diameter/height) = D/H so as to produce a V-shaped hyperbolic umbilic focal section (HUFS) in the far-field scattering. (b) The shift in the required D/H was typically an increase of less than 1% and was quadratic in the tilt. (c) The apex of the V-shaped HUFS was shifted vertically by an amount proportional to the tilt with a coefficient close to unity. The levitated drops had negligible up-down asymmetry. Our method of investigation should be useful for other generalized rainbows with tilted illumination.
NASA Astrophysics Data System (ADS)
Bililign, Solomon; Singh, Sujeeta; Fiddler, Marc; Smith, Damon
2015-03-01
The phenomena of scattering, absorption, and emission of light and other electromagnetic radiation by small particles are central to many science and engineering disciplines. Absorption of solar radiation by black carbon aerosols has a significant impact on the atmospheric energy distribution and hydrologic processes. By intercepting incoming solar radiation before it reaches the surface, aerosols heat the atmosphere and, in turn, cool the surface. The magnitude of the atmospheric forcing induced by anthropogenic absorbing aerosols, mainly black carbon (BC) emitted from biomass burning and combustion processes has been suggested to be comparable to the atmospheric forcing by all greenhouse gases (GHGs). Despite the global abundance of biomass burning for cooking, forests clearing for agriculture and wild fires, the optical properties of these aerosols have not been characterized at wide range of wavelengths. Our laboratory uses a combination of Cavity ring down spectroscopy and integrating nephelometry to measure optical properties of (extinction, absorption and scattering coefficients) of biomass aerosols. Preliminary results will be presented. Supported by the Department of Defense under Grant #W911NF-11-1-0188.
Cohen, D; Stamnes, S; Tanikawa, T; Sommersten, E R; Stamnes, J J; Lotsberg, J K; Stamnes, K
2013-04-22
A comparison is presented of two different methods for polarized radiative transfer in coupled media consisting of two adjacent slabs with different refractive indices, each slab being a stratified medium with no change in optical properties except in the direction of stratification. One of the methods is based on solving the integro-differential radiative transfer equation for the two coupled slabs using the discrete ordinate approximation. The other method is based on probabilistic and statistical concepts and simulates the propagation of polarized light using the Monte Carlo approach. The emphasis is on non-Rayleigh scattering for particles in the Mie regime. Comparisons with benchmark results available for a slab with constant refractive index show that both methods reproduce these benchmark results when the refractive index is set to be the same in the two slabs. Computed results for test cases with coupling (different refractive indices in the two slabs) show that the two methods produce essentially identical results for identical input in terms of absorption and scattering coefficients and scattering phase matrices.
Implementation of an Analytical Raman Scattering Correction for Satellite Ocean-Color Processing
NASA Technical Reports Server (NTRS)
McKinna, Lachlan I. W.; Werdell, P. Jeremy; Proctor, Christopher W.
2016-01-01
Raman scattering of photons by seawater molecules is an inelastic scattering process. This effect can contribute significantly to the water-leaving radiance signal observed by space-borne ocean-color spectroradiometers. If not accounted for during ocean-color processing, Raman scattering can cause biases in derived inherent optical properties (IOPs). Here we describe a Raman scattering correction (RSC) algorithm that has been integrated within NASA's standard ocean-color processing software. We tested the RSC with NASA's Generalized Inherent Optical Properties algorithm (GIOP). A comparison between derived IOPs and in situ data revealed that the magnitude of the derived backscattering coefficient and the phytoplankton absorption coefficient were reduced when the RSC was applied, whilst the absorption coefficient of colored dissolved and detrital matter remained unchanged. Importantly, our results show that the RSC did not degrade the retrieval skill of the GIOP. In addition, a timeseries study of oligotrophic waters near Bermuda showed that the RSC did not introduce unwanted temporal trends or artifacts into derived IOPs.
NASA Astrophysics Data System (ADS)
Banerjee, Paromita; Soni, Jalpa; Purwar, Harsh; Ghosh, Nirmalya; Sengupta, Tapas K.
2013-03-01
Development of methods for quantification of cellular association and patterns in growing bacterial colony is of considerable current interest, not only to help understand multicellular behavior of a bacterial species but also to facilitate detection and identification of a bacterial species in a given space and under a given set of condition(s). We have explored quantitative spectral light scattering polarimetry for probing the morphological and structural changes taking place during colony formations of growing Bacillus thuringiensis bacteria under different conditions (in normal nutrient agar representing favorable growth environment, in the presence of 1% glucose as an additional nutrient, and 3 mM sodium arsenate as toxic material). The method is based on the measurement of spectral 3×3 Mueller matrices (which involves linear polarization measurements alone) and its subsequent analysis via polar decomposition to extract the intrinsic polarization parameters. Moreover, the fractal micro-optical parameter, namely, the Hurst exponent H, is determined via fractal-Born approximation-based inverse analysis of the polarization-preserving component of the light scattering spectra. Interesting differences are noted in the derived values for the H parameter and the intrinsic polarization parameters (linear diattenuation d, linear retardance δ, and linear depolarization Δ coefficients) of the growing bacterial colonies under different conditions. The bacterial colony growing in presence of 1% glucose exhibit the strongest fractality (lowest value of H), whereas that growing in presence of 3 mM sodium arsenate showed the weakest fractality. Moreover, the values for δ and d parameters are found to be considerably higher for the colony growing in presence of glucose, indicating more structured growth pattern. These findings are corroborated further with optical microscopic studies conducted on the same samples.
Lung cancer diagnosis with quantitative DIC microscopy and support vector machine
NASA Astrophysics Data System (ADS)
Zheng, Longfei; Cai, Shuangshuang; Zeng, Bixin; Xu, Min
2017-01-01
We report the study of lung squamous cell carcinoma diagnosis using the TI-DIC microscopy and the scattering-phase theorem. The spatially resolved optical properties of tissue are computed from the 2D phase map via the scattering-phase theorem. The scattering coefficient, the reduced scattering coefficient, and the anisotropy factor are all found to increase with the grade of lung cancer. The retrieved optical parameters are shown to distinguish cancer cases from the normal cases with high accuracy. This label-free microscopic approach applicable to fresh tissues may be promising for in situ rapid cancer diagnosis.
NASA Astrophysics Data System (ADS)
Stegmann, Patrick G.; Tang, Guanglin; Yang, Ping; Johnson, Benjamin T.
2018-05-01
A structural model is developed for the single-scattering properties of snow and graupel particles with a strongly heterogeneous morphology and an arbitrary variable mass density. This effort is aimed to provide a mechanism to consider particle mass density variation in the microwave scattering coefficients implemented in the Community Radiative Transfer Model (CRTM). The stochastic model applies a bicontinuous random medium algorithm to a simple base shape and uses the Finite-Difference-Time-Domain (FDTD) method to compute the single-scattering properties of the resulting complex morphology.