NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.
1998-12-01
We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.
Transmission of light in deep sea water at the site of the ANTARES neutrino telescope
NASA Astrophysics Data System (ADS)
ANTARES Collaboration; Aguilar, J. A.; Albert, A.; Amram, P.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F. E.; Aslanides, E.; Aubert, J.-J.; Azoulay, R.; Bailey, D.; Basa, S.; Battaglieri, M.; Becherini, Y.; Bellotti, R.; Beltramelli, J.; Bertin, V.; Billault, M.; Blaes, R.; Blanc, F.; Bland, R. W.; de Botton, N.; Boulesteix, J.; Bouwhuis, M. C.; Brooks, C. B.; Bradbury, S. M.; Bruijn, R.; Brunner, J.; Bugeon, F.; Burgio, G. F.; Cafagna, F.; Calzas, A.; Caponetto, L.; Carmona, E.; Carr, J.; Cartwright, S. L.; Cecchini, S.; Charvis, P.; Circella, M.; Colnard, C.; Compère, C.; Croquette, J.; Cooper, S.; Coyle, P.; Cuneo, S.; Damy, G.; van Dantzig, R.; Deschamps, A.; de Marzo, C.; Destelle, J.-J.; de Vita, R.; Dinkelspiler, B.; Dispau, G.; Drougou, J.-F.; Druillole, F.; Engelen, J.; Favard, S.; Feinstein, F.; Ferry, S.; Festy, D.; Fopma, J.; Fuda, J.-L.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Goret, P.; Gournay, J.-F.; Hallewell, G.; Hartmann, B.; Heijboer, A.; Hello, Y.; Hernández-Rey, J. J.; Herrouin, G.; Hößl, J.; Hoffmann, C.; Hubbard, J. R.; Jaquet, M.; de Jong, M.; Jouvenot, F.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kooijman, P.; Korolkova, E. V.; Kouchner, A.; Kretschmer, W.; Kudryavtsev, V. A.; Lafoux, H.; Lagier, P.; Lamare, P.; Languillat, J.-C.; Laubier, L.; Legou, T.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Magnier, P.; Marcelin, M.; Margiotta, A.; Maron, C.; Massol, A.; Mazéas, F.; Mazeau, B.; Mazure, A.; McMillan, J. E.; Michel, J.-L.; Millot, C.; Milovanovic, A.; Montanet, F.; Montaruli, T.; Morel, J.-P.; Moscoso, L.; Nezri, E.; Niess, V.; Nooren, G. J.; Ogden, P.; Olivetto, C.; Palanque-Delabrouille, N.; Payre, P.; Petta, C.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Potheau, R.; Pradier, T.; Racca, C.; Randazzo, N.; Real, D.; van Rens, B. A. P.; Réthoré, F.; Ripani, M.; Roca-Blay, V.; Romeyer, A.; Rollin, J.-F.; Romita, M.; Rose, H. J.; Rostovtsev, A.; Ruppi, M.; Russo, G. V.; Sacquin, Y.; Saouter, S.; Schuller, J.-P.; Schuster, W.; Sokalski, I.; Suvorova, O.; Spooner, N. J. C.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Thompson, L. F.; Tilav, S.; Usik, A.; Valdy, P.; Vallage, B.; Vaudaine, G.; Vernin, P.; Virieux, J.; Vladimirsky, E.; de Vries, G.; de Witt Huberts, P.; de Wolf, E.; Zaborov, D.; Zaccone, H.; Zakharov, V.; Zavatarelli, S.; de Zornoza, J. D.; Zúñiga, J.
2005-02-01
The ANTARES neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the ANTARES site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length λabs and an effective scattering length λscteff. The values for blue (UV) light are found to be λabs ≃ 60(26) m, λscteff≃265(122)m, with significant (˜15%) time variability. Finally, the results of ANTARES simulations showing the effect of these water properties on the anticipated performance of the detector are presented.
Hughes, J; Clarke, F; Purslow, P; Warner, R
2018-05-18
Beef meat colour is impacted by both myoglobin status and the light scattering properties of the muscle, and the specific causative scattering elements of the latter are still unknown. We hypothesize that stretching muscles during rigor will generate a structure which favours light scattering, by increasing the length of the I-band (longer sarcomeres) and that a high rigor temperature will cause protein reconfiguration, changing the muscle structure and promoting light scattering. Muscle fibre fragments were isolated from four beef M. sternomandibularis and subjected to stretching (plus, minus) and three incubation temperatures (5, 15, 35 °C). Reflectance confocal laser scanning microscopy (rCLSM) revealed sarcomere stretching alone was not solely responsible for light scattering development. A high rigor temperature (35 °C) was more favourable for light scattering. Stretching and taking muscle into rigor at 35 °C promoted transverse shrinkage of muscle fibres and increased light scattering and could be applied post-mortem (PM) to reduce the occurrence of problematic dark meat. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, A E; Potapov, V T; Gorshkov, B G
We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)
Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors.
Zhou, Xiang; Liu, Qian; Wurm, Michael; Zhang, Qingmin; Ding, Yayun; Zhang, Zhenyu; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang
2015-07-01
Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy resolution of the detector.
Instrumentation on Multi-Scaled Scattering of Bio-Macromolecular Solutions
Chu, Benjamin; Fang, Dufei; Mao, Yimin
2015-01-01
The design, construction and initial tests on a combined laser light scattering and synchrotron X-ray scattering instrument can cover studies of length scales from atomic sizes in Angstroms to microns and dynamics from microseconds to seconds are presented. In addition to static light scattering (SLS), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD), the light scattering instrument is being developed to carry out studies in mildly turbid solutions, in the presence of multiple scattering. Three-dimensional photon cross correlation function (3D-PCCF) measurements have been introduced to couple with synchrotron X-ray scattering to study the structure, size and dynamics of macromolecules in solution. PMID:25946340
Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiang, E-mail: xiangzhou@whu.edu.cn; Zhang, Zhenyu; Liu, Qian
2015-07-15
Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and therebymore » the energy resolution of the detector.« less
Braun, Birgit; Dorgan, John R; Chandler, John P
2008-04-01
Mathematical treatment of light scattering within the Rayleigh-Gans-Debye limit for spheroids with polydispersity in both length and diameter is developed and experimentally tested using cellulosic nanowhiskers (CNW). Polydispersity indices are obtained by fitting the theoretical formfactor to experimental data. Good agreement is achieved using a polydispersity of 2.3 for the length, independent of the type of acid used. Diameter polydispersities are 2.1 and 3.0 for sulfuric and hydrochloric acids, respectively. These polydispersities allow the determination of average dimensions from the z-average mean-square radius (z) and the weight-average molecular weight (M w) easily obtained from Berry plots. For cotton linter hydrolyzed by hydrochloric acid, the average length and diameter are 244 and 22 nm. This compares to average length and diameter of 272 and 13 nm for sulfuric acid. This study establishes a new light-scattering methodology as a quick and robust tool for size characterization of polydisperse spheroidal nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torok, Aaron
The {pi}{sup +}{Sigma}{sup +} and {pi}{sup +}{Xi}{sup 0} scattering lengths were calculated in mixed-action Lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations at four light-quark masses, and at two light-quark masses on the fine MILC configurations. Heavy Baryon Chiral Perturbation Theory with two and three flavors of light quarks was used to perform the chiral extrapolations. To NNLO in the three-flavor chiral expansion, the kaon-baryon processes that were investigated show no signs of convergence. Using the two-flavor chiral expansion for extrapolation, the pion-hyperon scattering lengths are found to be a{sub {pi}}{sup +}{sub {Sigma}}{sup +} = -0.197{+-}0.017more » fm, and a{sub {pi}}{sup +}{sub {Xi}}{sup 0} = -0.098{+-}0.017 fm, where the comprehensive error includes statistical and systematic uncertainties.« less
Coupling between absorption and scattering in disordered colloids
NASA Astrophysics Data System (ADS)
Stephenson, Anna; Hwang, Victoria; Park, Jin-Gyu; Manoharan, Vinothan N.
We aim to understand how scattering and absorption are coupled in disordered colloidal suspensions containing absorbing molecules (dyes). When the absorption length is shorter than the transport length, absorption dominates, and absorption and scattering can be seen as two additive effects. However, when the transport length is shorter than the absorption length, the scattering and absorption become coupled, as multiple scattering increases the path length of the light in the sample, leading to a higher probability of absorption. To quantify this synergistic effect, we measure the diffuse reflectance spectra of colloidal samples of varying dye concentrations, thicknesses, and particle concentrations, and we calculate the transport length and absorption length from our measurements, using a radiative transfer model. At particle concentrations so high that the particles form disordered packings, we find a minimum in the transport length. We show that selecting a dye where the absorption peak matches the location of the minimum in the transport length allows for enhanced absorption. Kraft-Heinz Corporation, NSF GRFP 2015200426.
Light scattering from an atomic gas under conditions of quantum degeneracy
NASA Astrophysics Data System (ADS)
Porozova, V. M.; Gerasimov, L. V.; Havey, M. D.; Kupriyanov, D. V.
2018-05-01
Elastic light scattering from a macroscopic atomic sample existing in the Bose-Einstein condensate phase reveals a unique physical configuration of interacting light and matter waves. However, the joint coherent dynamics of the optical excitation induced by an incident photon is influenced by the presence of incoherent scattering channels. For a sample of sufficient length the excitation transports as a polariton wave and the propagation Green's function obeys the scattering equation which we derive. The polariton dynamics could be tracked in the outgoing channel of the scattered photon as we show via numerical solution of the scattering equation for one-dimensional geometry. The results are analyzed and compared with predictions of the conventional macroscopic Maxwell theory for light scattering from a nondegenerate atomic sample of the same density and size.
Brillouin Scattering of Picosecond Laser Pulses in Preformed, Short-Scale-Length Plasmas
NASA Astrophysics Data System (ADS)
Gaeris, A. C.; Fisher, Y.; Delettrez, J. A.; Meyerhofer, D. D.
1996-11-01
Brillouin scattering (BS) has been studied in short-scale-length, preformed plasmas. The backscattered and specularly reflected light resulting from the interaction of high-power picosecond pulses with preformed silicon plasmas has been measured. A first laser pulse forms a short-scale-length plasma -- without significant BS -- while a second delayed pulse interacts with an expanded, drifting underdense region of the plasma with density scale length (0 <= Ln <= 600 λ _L). The pulses are generated at λ L = 1054 nm, with intensities up to 10^16 W/cm^2. The backscattered light spectra, threshold intensities, and enhanced reflectivities have been determined for different plasma-density scale lengths and are compared to Liu, Rosenbluth, and White's(C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).) WKB treatment of stimulated Brillouin scattering in inhomogeneous drifting plasmas. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.
1977-01-01
circumstances for determining the onset with light scattering is that in which the laser is so powerful and/or the detector so sensitive that the...sec Boltzmann’s constant 1.38 x 10~16 ergs/mole, wave number length of detector window latent heat of vaporisation mass flow rate of steam In...constant, distance from light scattering volume to detector S supersaturation ratio, p /p t time T local temperature of vapor T temperature in
NASA Astrophysics Data System (ADS)
Scheffold, Frank
2014-08-01
To characterize the structural and dynamic properties of soft materials and small particles, information on the relevant mesoscopic length scales is required. Such information is often obtained from traditional static and dynamic light scattering (SLS/DLS) experiments in the single scattering regime. In many dense systems, however, these powerful techniques frequently fail due to strong multiple scattering of light. Here I will discuss some experimental innovations that have emerged over the last decade. New methods such as 3D static and dynamic light scattering (3D LS) as well as diffusing wave spectroscopy (DWS) can cover a much extended range of experimental parameters ranging from dilute polymer solutions, colloidal suspensions to extremely opaque viscoelastic emulsions.
Filamentation of ultrashort light pulses in a liquid scattering medium
NASA Astrophysics Data System (ADS)
Jukna, V.; Tamošauskas, G.; Valiulis, G.; Aputis, M.; Puida, M.; Ivanauskas, F.; Dubietis, A.
2009-01-01
We have studied filamentation of 1-ps laser pulses in a scattering medium (aqueous suspension of 2-μm polystyrene microspheres) and compared filamentation dynamics to that in pure water. Our results indicate that light scattering does not alter filamentation dynamics in general, but rather results in farther position of the nonlinear focus, shorter filament length, and the development of speckle structure in the peripheral part of the beam. The experimental observations are qualitatively reproduced by the numerical model which accounts for diffraction, self-focusing, multiphoton absorption, and light scattering introduced through a stochastic diffusion and diffraction term.
Method and apparatus for aerosol particle absorption spectroscopy
Campillo, Anthony J.; Lin, Horn-Bond
1983-11-15
A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.
Forward scattering in two-beam laser interferometry
NASA Astrophysics Data System (ADS)
Mana, G.; Massa, E.; Sasso, C. P.
2018-04-01
A fractional error as large as 25 pm mm-1 at the zero optical-path difference has been observed in an optical interferometer measuring the displacement of an x-ray interferometer used to determine the lattice parameter of silicon. Detailed investigations have brought to light that the error was caused by light forward-scattered from the beam feeding the interferometer. This paper reports on the impact of forward-scattered light on the accuracy of two-beam optical interferometry applied to length metrology, and supplies a model capable of explaining the observed error.
New light-shielding technique for shortening the baffle length of a star sensor
NASA Astrophysics Data System (ADS)
Kawano, Hiroyuki; Sato, Yukio; Mitani, Kenji; Kanai, Hiroshi; Hama, Kazumori
2002-10-01
We have developed a star sensor with a short baffle of 140 mm. Our baffle provides a Sun rejection angle of 35 degrees with stray light attenuation less than the intensity level of a visual magnitude of Mv = +5 for a wide field of view lens of 13x13 degrees. The application of a new light shielding technique taking advantage of total internal reflection phenomena enables us to reduce the baffle length to about three fourths that of the conventional two-stage baffle. We have introduced two ideas to make the baffle length shorter. The one is the application of a nearly half sphere convex lens as the first focusing lens. The bottom surface reflects the scattering rays with high incident angles of over 50 degrees by using the total internal reflection phenomena. The other is the painting of the surface of the baffle with not frosted but gloss black paint. The gloss black paint enables most of the specular reflection rays to go back to outer space without scattering. We confirm the baffle performance mentioned above by scattering ray tracing simulation and a light attenuation experiment in a darkroom on the ground.
Investigating the real translucency of the endodontic fiber posts
NASA Astrophysics Data System (ADS)
Camilotti, Fernando; Bonardi, Cláudia; Somer, Aloisi; Novatski, Andressa; Szesz, Anna Luiza; Loguércio, Alessandro Dourado; Kniphoff da Cruz, Gerson
2018-02-01
Researchers have been investigating the light intensity scattered by a translucent fiber post with application in dentistry by different methods. In this work, we introduce a new system capable to record a light scattered profile, step-by-step, as a function of the length of the translucent fiber post. To support our studies, an extensive characterization of the system was carried out and this is presented and discussed here. The system was implemented using the phase sensitive detection. The equipment measures the light scattered without the need of any preparing parts and the fiber post is fixed directly in the fiber post holder becoming ready for measurement. Measures can be recorded with a spatial resolution smaller than 0.01 mm throughout the length of the fiber post being investigated. The system was implemented by using a photomultiplier tube that improves sensitivity for the optical detection. The recorded result is a signal directly proportional to the scattered light and it allows us to obtain a normalized profile that can be used as a map of the scattered light of the fiber post in study. Furthermore, we are able to demonstrate a low intensity of light in the tip region of the fiber post, along with the dependency of the light attenuation with the fiber post body volume and shape. This new system will certainly contribute to achieve better results in fiber post designing and in restoration of endodontic treated teeth because it provides a more well-founded choice of the fiber post to be used, and of the time of exposure to the curing light.
Correlation transfer and diffusion of ultrasound-modulated multiply scattered light.
Sakadzić, Sava; Wang, Lihong V
2006-04-28
We develop a temporal correlation transfer equation (CTE) and a temporal correlation diffusion equation (CDE) for ultrasound-modulated multiply scattered light. These equations can be applied to an optically scattering medium with embedded optically scattering and absorbing objects to calculate the power spectrum of light modulated by a nonuniform ultrasound field. We present an analytical solution based on the CDE and Monte Carlo simulation results for light modulated by a cylinder of ultrasound in an optically scattering slab. We further validate with experimental measurements the numerical calculations for an actual ultrasound field. The CTE and CDE are valid for moderate ultrasound pressures and on a length scale comparable with the optical transport mean-free path. These equations should be applicable to a wide spectrum of conditions for ultrasound-modulated optical tomography of soft biological tissues.
Diffraction-controlled backscattering threshold and application to Raman gap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Harvey A.; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544; Mounaix, Philippe
2011-04-15
In most classic analytical models of linear stimulated scatter, light diffraction is omitted, a priori. However, modern laser optic typically includes a variant of the random phase plate [Y. Kato et al., Phys. Rev. Lett. 53, 1057 (1984)], resulting in diffraction limited laser intensity fluctuations - or localized speckles - which may result in explosive reflectivity growth as the average laser intensity approaches a critical value [H. A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994)]. Among the differences between stimulated Raman scatter (SRS) and stimulated Brillouin scatter is that the SRS scattered light diffracts more stronglymore » than the laser light with increase of electron density. This weakens the tendency of the SRS light to closely follow the most amplified paths, diminishing gain. Let G{sub 0} be the one-dimensional power gain exponent of the stimulated scatter. In this paper we show that differential diffraction gives rise to an increase of G{sub 0} at the SRS physical threshold with increase of electron density up to a drastic disruption of SRS as electron density approaches one fourth of its critical value from below. For three wave interaction lengths not small compared to a speckle length, this is a physically robust Raman gap mechanism.« less
Wang, Wenhao; Yu, Peng; Zhong, Zhiqin; Tong, Xin; Liu, Tianji; Li, Yanbo; Ashalley, Eric; Chen, Huanyang; Wu, Jiang; Wang, Zhiming
2018-08-31
Au nanobipyramids (NBPs) with sharp tips and narrow plasmon linewidths are ideal candidates for plasmonic applications. In this paper, we investigated the influencing factors of longitudinal plasmon resonance wavelength (LPRW) and scattering properties of single Au NBP by simulation. Compared with the volume, we establish the aspect ratio (length/width) as the dominant factor that affects the LPRW of Au NBPs. Plasmonic nanoparticles have been widely used for light-trapping enhancement in photovoltaics. To give a profound understanding of the superior light harvesting properties of Au NBPs, the near-field localization effect and far-field scattering mechanism of Au NBPs were investigated. Under the light injection at LPRW, the tip area shows near-field enhancement and the maximum scattering intensity appears on the side area of the waist owing to the remarkable optical absorption near the tips. Additionally, we confirm the fraction of light scattered into the substrate and angular distribution of the light scattered by the Au NBPs. The fraction of light scattered into the substrate reaches up to 97% from 400-1100 nm and preserves a broadband spectrum. This suggests that the NBP has a predominant forward scattering and reduced backward scattering. The excellent plasmonic scattering properties of Au NBPs are promising in photovoltaic devices and photothermal therapy.
Diffusing-wave spectroscopy in a standard dynamic light scattering setup
NASA Astrophysics Data System (ADS)
Fahimi, Zahra; Aangenendt, Frank J.; Voudouris, Panayiotis; Mattsson, Johan; Wyss, Hans M.
2017-12-01
Diffusing-wave spectroscopy (DWS) extends dynamic light scattering measurements to samples with strong multiple scattering. DWS treats the transport of photons through turbid samples as a diffusion process, thereby making it possible to extract the dynamics of scatterers from measured correlation functions. The analysis of DWS data requires knowledge of the path length distribution of photons traveling through the sample. While for flat sample cells this path length distribution can be readily calculated and expressed in analytical form; no such expression is available for cylindrical sample cells. DWS measurements have therefore typically relied on dedicated setups that use flat sample cells. Here we show how DWS measurements, in particular DWS-based microrheology measurements, can be performed in standard dynamic light scattering setups that use cylindrical sample cells. To do so we perform simple random-walk simulations that yield numerical predictions of the path length distribution as a function of both the transport mean free path and the detection angle. This information is used in experiments to extract the mean-square displacement of tracer particles in the material, as well as the corresponding frequency-dependent viscoelastic response. An important advantage of our approach is that by performing measurements at different detection angles, the average path length through the sample can be varied. For measurements performed on a single sample cell, this gives access to a wider range of length and time scales than obtained in a conventional DWS setup. Such angle-dependent measurements also offer an important consistency check, as for all detection angles the DWS analysis should yield the same tracer dynamics, even though the respective path length distributions are very different. We validate our approach by performing measurements both on aqueous suspensions of tracer particles and on solidlike gelatin samples, for which we find our DWS-based microrheology data to be in good agreement with rheological measurements performed on the same samples.
Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes
NASA Astrophysics Data System (ADS)
O'Brien, S. A.; Harvey, A.; Griffin, A.; Donnelly, T.; Mulcahy, D.; Coleman, J. N.; Donegan, J. F.; McCloskey, D.
2017-11-01
Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter—the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.
Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes.
O'Brien, S A; Harvey, A; Griffin, A; Donnelly, T; Mulcahy, D; Coleman, J N; Donegan, J F; McCloskey, D
2017-11-24
Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter-the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.
High-Energy Density science at the Linac Coherent Light Source
NASA Astrophysics Data System (ADS)
Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.
2016-03-01
The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. In recent experiments we have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on a scattering length comparable to the screening length. This technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.
High-Energy Density science at the Linac Coherent Light Source
Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.
2016-04-01
The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. Recently, our experiments have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on amore » scattering length comparable to the screening length. Moreover, this technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.« less
Direct Measurement of Scattered Light Effect on the Sensitivity in TAMA300
NASA Astrophysics Data System (ADS)
Takahashi, R.; Arai, Koji; Kawamaru, Seiji; Smith, Michael R.
2003-07-01
Laser interferometer gravitational wave detectors need vacuum tubes through which the laser beams pass. The light scattered from the arm cavity mirrors will make multiple reflections from the inside wall of the polished tube back onto the mirrors causing phase noise on the interferometer output beam. The TAMA300 has two 300-m length arms enclosed by vacuum tubes. By vibrating one of the tubes of the TAMA300, we directly observed the effect of scattered light on the displacement sensitivity. It was found that a tube vibration amplitude of 5.6 µm at 776.5 Hz increased the mirror displacement noise to 1.2 × 10-17 m. This noise level is consistent with the calculated noise due to the scattered light effect.
NASA Astrophysics Data System (ADS)
Shih, Marian Pei-Ling
The problem of optical imaging through a highly scattering volume diffuser, in particular, biological tissue, has received renewed interest in recent years because of a search for alternative imaging diagnostics in the optical wavelengths for the early detection of human breast cancer. This dissertation discusses the optical imaging of objects obscured by diffusers that contribute an otherwise overwhelming degree of multiple scatter. Many optical imaging techniques are based on the first-arriving light principle. These methods usually combine a transilluminating optical short pulse with a time windowing gate in order to form a flat shadowgraph image of absorbing objects either embedded within or hidden behind a scattering medium. The gate selectively records an image of the first-arriving light, while simultaneously rejecting the later-arriving scattered light. One set of the many implementations of the first -arriving light principle relies on the gating property of holography. This thesis presents several holographic optical gating experiments that demonstrate the role that the temporal coherence function of the illumination source plays in the imaging of all objects with short coherence length holography, with special emphasis on the application to image through diffusers and its resolution capabilities. Previous researchers have already successfully combined electronic holography, holography in which the recording medium is a two dimensional detector array instead of photographic film, with light-in-flight holography into a short coherence length holography method that images through various types of multiply scattering random media, including chicken breast tissue and wax. This thesis reports further experimental exploration of the short coherence holography method for imaging through severely scattering diffusers. There is a study on the effectiveness of spatial filtering of the first-arriving light, as well as a report of the imaging, by means of the short coherence holographic method, of an absorber through a living human hand. This thesis also includes both theoretical analyses and experimental results of a spectral dispersion holography system which, instead of optically synthesizing the broad spectrum illumination source that is used for the short coherence holography method, digitally synthesizes a broad spectrum hologram from a collection of single frequency component holograms. This system has the time gating properties of short coherence length holography, as well as experimentally demonstrated applications for imaging through multiply scattering media.
Spectrometer employing optical fiber time delays for frequency resolution
Schuss, Jack J.; Johnson, Larry C.
1979-01-01
This invention provides different length glass fibers for providing a broad range of optical time delays for short incident chromatic light pulses for the selective spatial and frequency analysis of the light with a single light detector. To this end, the frequencies of the incident light are orientated and matched with the different length fibers by dispersing the separate frequencies in space according to the respective fiber locations and lengths at the input terminal of the glass fibers. This makes the different length fibers useful in the field of plasma physics. To this end the short light pulses can be scattered by a plasma and then passed through the fibers for analyzing and diagnosing the plasma while it varies rapidly with time.
Light atom quantum oscillations in UC and US
Yiu, Yuen; Aczel, Adam A.; Granroth, Garrett E.; ...
2016-01-19
High energy vibrational scattering in the binary systems UC and US is measured using time-of-flight inelastic neutron scattering. A clear set of well-defined peaks equally separated in energy is observed in UC, corresponding to harmonic oscillations of the light C atoms in a cage of heavy U atoms. The scattering is much weaker in US and only a few oscillator peaks are visible. We show how the difference between the materials can be understood by considering the neutron scattering lengths and masses of the lighter atoms. Monte Carlo ray tracing is used to simulate the scattering, with near quantitative agreementmore » with the data in UC, and some differences with US. The possibility of observing anharmonicity and anisotropy in the potentials of the light atoms is investigated in UC. Lastly, the observed data is well accounted for by considering each light atom as a single atom isotropic quantum harmonic oscillator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Tim; Institut für Physikalische Chemie, Universität zu Köln, 50939 Köln; Schwab, Tobias
A random scattering approach to enhance light extraction in white top-emitting organic light-emitting diodes (OLEDs) is reported. Through solution processing from fluorinated solvents, a nano-particle scattering layer (NPSL) can be deposited directly on top of small molecule OLEDs without affecting their electrical performance. The scattering length for light inside the NPSL is determined from transmission measurements and found to be in agreement with Mie scattering theory. Furthermore, the dependence of the light outcoupling enhancement on electron transport layer thickness is studied. Depending on the electron transport layer thickness, the NPSL enhances the external quantum efficiency of the investigated white OLEDsmore » by between 1.5 and 2.3-fold. For a device structure that has been optimized prior to application of the NPSL, the maximum external quantum efficiency is improved from 4.7% to 7.4% (1.6-fold improvement). In addition, the scattering layer strongly reduces the undesired shift in emission color with viewing angle.« less
Measurement of the magneto-optical correlation length in turbid media
NASA Astrophysics Data System (ADS)
Lenke, Ralf; Eisenmann, Christoph; Reinke, Daniel; Maret, Georg
2002-11-01
In multiple light scattering media, magnetic field induced circular birefringence (Faraday effect) influences interference effects such as speckle pattern or coherent backscattering. It was predicted that in the diffusive regime the relevant correlation length with respect to the Faraday rotation l*F differs, in general, from the transport mean free path l*. We have experimentally verified the prediction that the ratio l*F/l scr>* equals 2 for Rayleigh scattering and decreases to 1 with increasing scatterer size. We also discuss the influence of the structure factor on l*F.
How Noniridescent Colors Are Generated by Quasi-ordered Structures of Bird Feathers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar
2012-03-26
We investigate the mechanism of structural coloration by quasi-ordered nanostructures in bird feather barbs. Small-angle X-ray scattering (SAXS) data reveal the structures are isotropic and have short-range order on length scales comparable to optical wavelengths. We perform angle-resolved reflection and scattering spectrometry to fully characterize the colors under directional and omni-directional illumination of white light. Under directional lighting, the colors change with the angle between the directions of illumination and observation. The angular dispersion of the primary peaks in the scattering/reflection spectra can be well explained by constructive interference of light that is scattered only once in the quasi-ordered structures.more » Using the Fourier power spectra of structure from the SAXS data we calculate optical scattering spectra and explain why the light scattering peak is the highest in the backscattering direction. Under omni-directional lighting, colors from the quasi-ordered structures are invariant with the viewing angle. The non-iridescent coloration results from the isotropic nature of structures instead of strong backscattering.« less
Light scattering measurement of sodium polyacrylate products
NASA Astrophysics Data System (ADS)
Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie
2015-03-01
In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.
Resonant soft X-ray scattering for polymer materials
Liu, Feng; Brady, Michael A.; Wang, Cheng
2016-04-16
Resonant Soft X-ray Scattering (RSoXS) was developed within the last few years, and the first dedicated resonant soft X-ray scattering beamline for soft materials was constructed at the Advanced Light Source, LBNL. RSoXS combines soft X-ray spectroscopy with X-ray scattering and thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Using RSoXS to characterize multi-length scale soft materials with heterogeneous chemical structures, we have demonstrated that soft X-ray scattering is a unique complementary technique to conventional hard X-ray and neutron scattering. Its unique chemical sensitivity, large accessible size scale, molecular bondmore » orientation sensitivity with polarized X-rays, and high coherence have shown great potential for chemically specific structural characterization for many classes of materials.« less
Research Update: A minimal region of squid reflectin for vapor-induced light scattering
NASA Astrophysics Data System (ADS)
Dennis, Patrick B.; Singh, Kristi M.; Vasudev, Milana C.; Naik, Rajesh R.; Crookes-Goodson, Wendy J.
2017-12-01
Reflectins are a family of proteins found in the light manipulating cells of cephalopods. These proteins are made up of a series of conserved repeats that contain highly represented amino acids thought to be important for function. Previous studies demonstrated that recombinant reflectins cast into thin films produced structural colors that could be dynamically modulated via changing environmental conditions. In this study, we demonstrate light scattering from reflectin films following exposure to a series of water vapor pulses. Analysis of film surface topography shows that the induction of light scatter is accompanied by self-assembly of reflectins into micro- and nanoscale features. Using a reductionist strategy, we determine which reflectin repeats and sub-repeats are necessary for these events following water vapor pulsing. With this approach, we identify a singly represented, 23-amino acid region in reflectins as being sufficient to recapitulate the light scattering properties observed in thin films of the full-length protein. Finally, the aqueous stability of reflectin films is leveraged to show that pre-exposure to buffers of varying pH can modulate the ability of water vapor pulses to induce light scatter and protein self-assembly.
Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning
Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David
2015-11-04
We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less
Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David
We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less
Observation of long phase-coherence length in epitaxial La-doped CdO thin films
NASA Astrophysics Data System (ADS)
Yun, Yu; Ma, Yang; Tao, Songsheng; Xing, Wenyu; Chen, Yangyang; Su, Tang; Yuan, Wei; Wei, Jian; Lin, Xi; Niu, Qian; Xie, X. C.; Han, Wei
2017-12-01
The search for long electron phase-coherence length, which is the length that an electron can keep its quantum wavelike properties, has attracted considerable interest in the last several decades. Here, we report the long phase-coherence length of ˜3.7 μm in La-doped CdO thin films at 2 K. Systematical investigations of the La doping and the temperature dependences of the electron mobility and the electron phase-coherence length reveal contrasting scattering mechanisms for these two physical properties. Furthermore, these results show that the oxygen vacancies could be the dominant scatters in CdO thin films that break the electron phase coherence, which would shed light on further investigation of phase-coherence properties in oxide materials.
Intraocular light scatter, reflections, fluorescence and absorption: what we see in the slit lamp.
van den Berg, Thomas J T P
2018-01-01
Much knowledge has been collected over the past 20 years about light scattering in the eye- in particular in the eye lens- and its visual effect, called straylight. It is the purpose of this review to discuss how these insights can be applied to understanding the slit lamp image. The slit lamp image mainly results from back scattering, whereas the effects on vision result mainly from forward scatter. Forward scatter originates from particles of about wavelength size distributed throughout the lens. Most of the slit lamp image originates from small particle scatter (Rayleigh scatter). For a population of middle aged lenses it will be shown that both these scatter components remove around 10% of the light from the direct beam. For slit lamp observation close to the reflection angles, zones of discontinuity (Wasserspalten) at anterior and posterior parts of the lens show up as rough surface reflections. All these light scatter effects increase with age, but the correlations with age, and also between the different components, are weak. For retro-illumination imaging it will be argued that the density or opacity seen in areas of cortical or posterior subcapsular cataract show up because of light scattering, not because of light loss. NOTES: (1) Light scatter must not be confused with aberrations. Light penetrating the eye is divided into two parts: a relatively small part is scattered, and removed from the direct beam. Most of the light is not scattered, but continues as the direct beam. This non-scattered part is the basis for functional imaging, but its quality is under the control of aberrations. Aberrations deflect light mainly over small angles (<1°), whereas light scatter is important because of the straylight effects over large angles (>1°), causing problems like glare and hazy vision. (2) The slit lamp image in older lenses and nuclear cataract is strongly influenced by absorption. However, this effect is greatly exaggerated by the light path lengths concerned. This obviates proper judgement of the functional importance of absorption, and hinders the appreciation of the Rayleigh nature of what is seen in the slit lamp image. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Softening of the stiffness of bottle-brush polymers by mutual interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolisetty, S.; Airaud, C.; Rosenfeldt, S.
2007-04-15
We study bottle-brush macromolecules in a good solvent by small-angle neutron scattering (SANS), static light scattering (SLS), and dynamic light scattering (DLS). These polymers consist of a linear backbone to which long side chains are chemically grafted. The backbone contains about 1600 monomer units (weight average) and every second monomer unit carries side chains with approximately 60 monomer units. The SLS and SANS data extrapolated to infinite dilution lead to the form factor of the polymer that can be described in terms of a wormlike chain with a contour length of 380 nm and a persistence length of 17.5 nm.more » An analysis of the DLS data confirms these model parameters. The scattering intensities taken at finite concentration can be modeled using the polymer reference interaction site model. It reveals a softening of the bottle-brush polymers caused by their mutual interaction. We demonstrate that the persistence decreases from 17.5 nm down to 5 nm upon increasing the concentration from dilute solution to the highest concentration (40.59 g/l) under consideration. The observed softening of the chains is comparable to the theoretically predicted decrease of the electrostatic persistence length of linear polyelectrolyte chains at finite concentrations.« less
To what extent is coherence lost in tissue?
NASA Astrophysics Data System (ADS)
Hode, Tomas; Jenkins, Peter; Jordison, Stefan; Hode, Lars
2011-03-01
In a series of experiments we investigated the extent to which coherence is preserved in tissue. We investigated whether the decrease in coherence length is dependent upon the coherence length of the illuminating light and possibly also if the light is polarized. We compared highly coherent light from a HeNe laser, and less coherent light from a semiconductor laser, in scattering media such as raw ground beef. We studied the laser speckle contrast after passing through 1 - 2 cm of meat. The conclusion is that the laser light is still coherent enough to form laser speckles after passing through a 2 cm thickness of meat.
Propagation of Circularly Polarized Light Through a Two-Dimensional Random Medium
NASA Astrophysics Data System (ADS)
Gorodnichev, E. E.
2017-12-01
The problem of small-angle multiple-scattering of circularly polarized light in a two-dimensional medium with large fiberlike inhomogeneities is studied. The attenuation lengths for elements the density matrix are calculated. It is found that with increasing the sample thickness the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the thickness, the off-diagonal element which is responsible for correlation between the cross-polarized waves dissapears. In the case of very thick samples the scattered field proves to be polarized perpendicular to the fibers. It is shown that the difference in the attenuation lengths of the density matrix elements results in a non-monotonic depth dependence of the degree of polarization.
Light Management in Flexible Glass by Wood Cellulose Coating
Fang, Zhi-Qiang; Zhu, Hong-Li; Li, Yuan-Yuan; Liu, Zhen; Dai, Jia-Qi; Preston, Colin; Garner, Sean; Cimo, Pat; Chai, Xin-Sheng; Chen, Gang; Hu, Liang-Bing
2014-01-01
Ultra-thin flexible glass with high transparency is attractive for a broad range of display applications; however, substrates with low optical haze are not ideal for thin film solar cells, since most of the light will go through the semiconductor layer without scattering, and the length of light travelling path in the active layer is small. By simply depositing a layer of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-oxidized wood fibers (TOWFs), we are able to tailor the optical properties of flexible glass dramatically from exhibiting low haze (<1%) to high haze (~56%) without compromising the total forward transmittance (~90%). The influence of the TOWFs morphology on the optical properties of TOWFs-coated flexible glass is investigated. As the average fiber length decreases, the transmission haze of TOWF-coated flexible glass illustrates a decreasing trend. Earth-abundant natural materials for transparent, hazy, and flexible glass have tremendous applicability in the fabrication of flexible optoelectronics with tunable light scattering effects by enabling inexpensive and large-scale processes. PMID:25068486
Size Determination of Y2O3 Crystallites in MgO Composite Using Mie Scattering
2017-11-07
particle size, and the path length through the material to generate an expected light transmission spectrum. These calculated curves were compared to...materials. In the current work, light transmission data are compared to the theoretical curves generated by the Mie scattering model in an attempt to...Since the authors wanted to compare the model’s predictions to the experimental %T values, it seemed logical to start with Beer’s Law: )exp()1( 2
Light scattering measurements supporting helical structures for chromatin in solution.
Campbell, A M; Cotter, R I; Pardon, J F
1978-05-01
Laser light scattering measurements have been made on a series of polynucleosomes containing from 50 to 150 nucleosomes. Radii of gyration have been determined as a function of polynucleosome length for different ionic strength solutions. The results suggest that at low ionic strength the chromatin adopts a loosely helical structure rather than a random coil. The helix becomes more regular on increasing the ionic strength, the dimension resembling those proposed by Finch and Klug for their solenoid model.
Koyama, Tatsuya; Iwasaki, Atsushi; Ogoshi, Yosuke; Okada, Eiji
2005-04-10
A practical and adequate approach to modeling light propagation in an adult head with a low-scattering cerebrospinal fluid (CSF) region by use of diffusion theory was investigated. The diffusion approximation does not hold in a nonscattering or low-scattering regions. The hybrid radiosity-diffusion method was adopted to model the light propagation in the head with a nonscattering region. In the hybrid method the geometry of the nonscattering region is acquired as a priori information. In reality, low-level scattering occurs in the CSF region and may reduce the error caused by the diffusion approximation. The partial optical path length and the spatial sensitivity profile calculated by the finite-element method agree well with those calculated by the Monte Carlo method in the case in which the transport scattering coefficient of the CSF layer is greater than 0.3 mm(-1). Because it is feasible to assume that the transport scattering coefficient of a CSF layer is 0.3 mm(-1), it is practical to adopt diffusion theory to the modeling of light propagation in an adult head as an alternative to the hybrid method.
NASA Astrophysics Data System (ADS)
Koyama, Tatsuya; Iwasaki, Atsushi; Ogoshi, Yosuke; Okada, Eiji
2005-04-01
A practical and adequate approach to modeling light propagation in an adult head with a low-scattering cerebrospinal fluid (CSF) region by use of diffusion theory was investigated. The diffusion approximation does not hold in a nonscattering or low-scattering regions. The hybrid radiosity-diffusion method was adopted to model the light propagation in the head with a nonscattering region. In the hybrid method the geometry of the nonscattering region is acquired as a priori information. In reality, low-level scattering occurs in the CSF region and may reduce the error caused by the diffusion approximation. The partial optical path length and the spatial sensitivity profile calculated by the finite-element method agree well with those calculated by the Monte Carlo method in the case in which the transport scattering coefficient of the CSF layer is greater than 0.3 mm^-1. Because it is feasible to assume that the transport scattering coefficient of a CSF layer is 0.3 mm^-1, it is practical to adopt diffusion theory to the modeling of light propagation in an adult head as an alternative to the hybrid method.
NASA Astrophysics Data System (ADS)
Hammer, H.-W.
2018-07-01
Few-body systems with large scattering length display universal properties which are independent of the details of short-distance dynamics. These features include universal correlations between few-body observables and a geometric spectrum of three- and higher-body bound states. They can be observed in a wide range of systems from ultracold atoms to hadrons and nuclei. In this contribution, we review universality in nuclei dominated by few-body physics. In particular, we discuss halo nuclei and the description of light nuclei in a strict expansion around the unitary limit of infinite scattering length.
LeBlanc, Serge Emile; Atanya, Monica; Burns, Kevin; Munger, Rejean
2011-04-21
It is well known that red blood cell scattering has an impact on whole blood oximetry as well as in vivo retinal oxygen saturation measurements. The goal of this study was to quantify the impact of small angle forward scatter on whole blood oximetry for scattering angles found in retinal oximetry light paths. Transmittance spectra of whole blood were measured in two different experimental setups: one that included small angle scatter in the transmitted signal and one that measured the transmitted signal only, at absorbance path lengths of 25, 50, 100, 250 and 500 µm. Oxygen saturation was determined by multiple linear regression in the 520-600 nm wavelength range and compared between path lengths and experimental setups. Mean calculated oxygen saturation differences between setups were greater than 10% at every absorbance path length. The deviations to the Beer-Lambert absorbance model had different spectral dependences between experimental setups, with the highest deviations found in the 520-540 nm range when scatter was added to the transmitted signal. These results are consistent with other models of forward scatter that predict different spectral dependences of the red blood cell scattering cross-section and haemoglobin extinction coefficients in this wavelength range.
Recent progress in distributed fiber optic sensors.
Bao, Xiaoyi; Chen, Liang
2012-01-01
Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.
Recent Progress in Distributed Fiber Optic Sensors
Bao, Xiaoyi; Chen, Liang
2012-01-01
Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices. PMID:23012508
High throughput optical scanner
Basiji, David A.; van den Engh, Gerrit J.
2001-01-01
A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholamrezaie, Fatemeh; Meskers, Stefan C. J., E-mail: s.c.j.meskers@tue.nl; Leeuw, Dago M. de
Scattering matrix theory is used to describe resonant optical properties of molecular monolayers. Three types of coupling are included: exciton-exciton, exciton-photon, and exciton-phonon coupling. We use the K-matrix formalism, developed originally to describe neutron scattering spectra in nuclear physics to compute the scattering of polaritons by phonons. This perturbation approach takes into account the three couplings and allows one to go beyond molecular exciton theory without the need of introducing additional boundary conditions for the polariton. We demonstrate that reflection, absorption, and extinction of light by 2D self-assembled monolayers of molecules containing quinque-thiophene chromophoric groups can be calculated. The extractedmore » coherence length of the Frenkel exciton is discussed.« less
Microscopic theory of linear light scattering from mesoscopic media and in near-field optics.
Keller, Ole
2005-08-01
On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scattering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-field calculation which appears from this approach is valid down to the microscopic region. Previous theories based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a microscopic potential description of the scattering process is established. In combination with the use of microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic conductivity response tensor enables one to establish a clear physical picture of the origin of local-field phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its generality in microscopic physics pointed out.
Soft x-ray speckle from rough surfaces
NASA Astrophysics Data System (ADS)
Porter, Matthew Stanton
Dynamic light scattering has been of great use in determining diffusion times for polymer solutions. At the same time, polymer thin films are becoming of increasing importance, especially in the semiconductor industry where they are used as photoresists and interlevel dielectrics. As the dimensions of these devices decrease we will reach a point where lasers will no longer be able to probe the length scales of interest. Current laser wavelengths limit the size of observable diffusion lengths to 180-700 nm. This dissertation will discuss attempts at pushing dynamic fight scattering experiments into the soft x-ray region so that we can examine fluctuations in polymer thin films on the molecular length scale. The dissertation explores the possibility of carrying out a dynamic light scattering experiment in the soft x-ray regime. A detailed account of how to meet the basic requirements for a coherent scattering experiment in the soft x-ray regime win be given. In addition, a complete description of the chamber design will be discussed. We used our custom designed scattering chamber to collect reproducible coherent soft x-ray scattering data from etched silicon wafers and from polystyrene coated silicon wafers. The data from the silicon wafers followed the statistics for a well-developed speckle pattern while the data from the polystyrene films exhibited Poisson statistics. We used the data from both the etched wafers and the polystyrene coated wafers to place a lower limit of ~20 Å on the RMS surface roughness of samples which will produce well defined speckle patterns for the current detector setup. Future experiments which use the criteria set forth in this dissertation have the opportunity to be even more successful than this dissertation project.
Geometrical-optics approximation of forward scattering by gradient-index spheres.
Li, Xiangzhen; Han, Xiang'e; Li, Renxian; Jiang, Huifen
2007-08-01
By means of geometrical optics we present an approximation method for acceleration of the computation of the scattering intensity distribution within a forward angular range (0-60 degrees ) for gradient-index spheres illuminated by a plane wave. The incident angle of reflected light is determined by the scattering angle, thus improving the approximation accuracy. The scattering angle and the optical path length are numerically integrated by a general-purpose integrator. With some special index models, the scattering angle and the optical path length can be expressed by a unique function and the calculation is faster. This method is proved effective for transparent particles with size parameters greater than 50. It fails to give good approximation results at scattering angles whose refractive rays are in the backward direction. For different index models, the geometrical-optics approximation is effective only for forward angles, typically those less than 60 degrees or when the refractive-index difference of a particle is less than a certain value.
Faddeev-chiral unitary approach to the K-d scattering length
NASA Astrophysics Data System (ADS)
Mizutani, T.; Fayard, C.; Saghai, B.; Tsushima, K.
2013-03-01
Our earlier Faddeev three-body study in the K--deuteron scattering length, AK-d, is revisited here in light of the recent developments on two fronts: (i) the improved chiral unitary approach to the theoretical description of the coupled K¯N related channels at low energies, and (ii) the new and improved measurement from SIDDHARTA Collaboration of the strong interaction energy shift and width in the lowest K--hydrogen atomic level. Those two, in combination, have allowed us to produce a reliable two-body input to the three-body calculation. All available low-energy K-p observables are well reproduced and predictions for the K¯N scattering lengths and amplitudes, (πΣ)∘ invariant-mass spectra, as well as for AK-d are put forward and compared with results from other sources. The findings of the present work are expected to be useful in interpreting the forthcoming data from CLAS, HADES, LEPS, and SIDDHARTA Collaborations.
Current-controlled light scattering and asymmetric plasmon propagation in graphene
NASA Astrophysics Data System (ADS)
Wenger, Tobias; Viola, Giovanni; Kinaret, Jari; Fogelström, Mikael; Tassin, Philippe
2018-02-01
We demonstrate that plasmons in graphene can be manipulated using a dc current. A source-drain current lifts the forward/backward degeneracy of the plasmons, creating two modes with different propagation properties parallel and antiparallel to the current. We show that the propagation length of the plasmon propagating parallel to the drift current is enhanced, while the propagation length for the antiparallel plasmon is suppressed. We also investigate the scattering of light off graphene due to the plasmons in a periodic dielectric environment and we find that the plasmon resonance separates in two peaks corresponding to the forward and backward plasmon modes. The narrower linewidth of the forward propagating plasmon may be of interest for refractive index sensing and the dc current control could be used for the modulation of mid-infrared electromagnetic radiation.
Using high haze (> 90%) light-trapping film to enhance the efficiency of a-Si:H solar cells
NASA Astrophysics Data System (ADS)
Chu, Wei-Ping; Lin, Jian-Shian; Lin, Tien-Chai; Tsai, Yu-Sheng; Kuo, Chen-Wei; Chung, Ming-Hua; Hsieh, Tsung-Eong; Liu, Lung-Chang; Juang, Fuh-Shyang; Chen, Nien-Po
2012-07-01
The high haze light-trapping (LT) film offers enhanced scattering of light and is applied to a-Si:H solar cells. UV glue was spin coated on glass, and then the LT pattern was imprinted. Finally, a UV lamp was used to cure the UV glue on the glass. The LT film effectively increased the Haze ratio of glass and decreased the reflectance of a-Si:H solar cells. Therefore, the photon path length was increased to obtain maximum absorption by the absorber layer. High Haze LT film is able to enhance short circuit current density and efficiency of the device, as partial composite film generates broader scattering light, thereby causing shorter wave length light to be absorbed by the P layer so that the short circuit current density decreases. In case of lab-made a-Si:H thin film solar cells with v-shaped LT films, superior optoelectronic performances have been found (Voc = 0.74 V, Jsc = 15.62 mA/cm2, F.F. = 70%, and η = 8.09%). We observed ~ 35% enhancement of the short-circuit current density and ~ 31% enhancement of the conversion efficiency.
Comparative Study of Light Scattering from Hepatoma Cells and Hepatocytes
NASA Astrophysics Data System (ADS)
Lin, Xiaogang; Wang, Rongrong; Guo, Yongcai; Gao, Chao; Guo, Xiaoen
2012-11-01
Primary liver cancer is one of the highest mortality malignant tumors in the world. China is a high occurrence area of primary liver cancer. Diagnosis of liver cancer, especially early diagnosis, is essential for improving patients' survival. Light scattering and measuring method is an emerging technology developed in recent decades, which has attracted a large number of biomedical researchers due to its advantages, such as fast, simple, high accuracy, good repeatability, and non-destructive. The hypothesis of this project is that there may be some different light scattering information between hepatoma cells and hepatocyte. Combined with the advantages of the dynamic light scattering method and the biological cytology, an experimental scheme to measure the light scattering information of cells was formulated. Hepatoma cells and hepatic cells were irradiated by a semiconductor laser (532 nm). And the Brookhaven BI-200SM wide-angle light scattering device and temperature control apparatus were adopted. The light scattering information of hepatoma cells and hepatic cells in vitro within the 15°C to 30°C temperature range was processed by a BI-9000AT digital autocorrelator. The following points were found: (a) the scattering intensities of human hepatic cells and hepatoma cells are nearly not affected by the temperature factor, and the former is always greater than the latter and (b) the relaxation time of hepatoma cells is longer than that of hepatic cells, and both the relaxation time are shortened with increasing temperature from 15°C to 25°C. It can be concluded that hepatoma cells could absorb more incident light than hepatic cells. The reason may be that there exists more protein and nucleic acid in cancerous cells than normal cells. Furthermore, based on the length relaxation time, a conclusion can be inferred that the Brownian movement of cancer cells is greater.
NASA Astrophysics Data System (ADS)
Velten, Andreas
2017-05-01
Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.
Few-mode fiber detection for tissue characterization in optical coherence tomography
NASA Astrophysics Data System (ADS)
Eugui, Pablo; Lichtenegger, Antonia; Augustin, Marco; Harper, Danielle J.; Fialová, Stanislava; Wartak, Andreas; Hitzenberger, Christoph K.; Baumann, Bernhard
2017-07-01
A few-mode fiber based detection for OCT systems is presented. The capability of few-mode fibers for delivering light through different fiber paths enables the application of these fibers for angular scattering tissue character- ization. Since the optical path lengths traveled in the fiber change between the fiber modes, the OCT image information will be reconstructed at different depth positions, separating the directly backscattered light from the light scattered at other angles. Using the proposed method, the relation between the angle of reflection from the sample and the respective modal intensity distribution was investigated. The system was demonstrated for imaging ex-vivo brain tissue samples of patients with Alzheimer's disease.
Features in the speckle correlations of light scattered from volume-disordered dielectric media
NASA Astrophysics Data System (ADS)
Malyshkin, V.; McGurn, A. R.; Maradudin, A. A.
1999-03-01
A diagrammatic perturbation theory approach, based on a scalar wave treatment, is used to study the scattering of light of frequency ω from a volume disordered dielectric medium. The dielectric medium is described by a position-dependent dielectric constant of the form ɛ(r-->)=ɛ(ω)+δɛ(r-->), where ɛ(ω) does not depend on r-->, and δɛ(r-->) is a zero-mean Gaussian random process defined by <δɛ(r-->)δɛ(r-->')>=σ2 exp(-\\|r-->-r-->'\\|2/a2), where the angle brackets denote an average over the ensemble of realizations of δɛ(r-->), a is the correlation length of the disorder, and σ is the root mean square deviation of the dielectric constant from its average value ɛ(ω). The speckle correlation function C(q-->,k-->\\|q-->',k-->')=<[I(q-->\\|k-->)-\\|k-->)>][I(q-->'\\|k-->')-'\\|k-->')]> where I(q-->\\|k-->) is proportional to the differential-scattering coefficient for the scattering of light of incident wave vector k--> into light of wave vector q--> is computed. In these calculations the contributions associated with both ladder and maximally crossed diagrams are summed in a Feynman diagram treatment of the speckle correlator, in the approximation that only s-wave-scattering terms are retained. Results are presented for the differential-scattering coefficient of light scattered from the disordered medium, which displays the phenomenon of enhanced backscattering, and for the correlator C in the approximation where C=C(1)+C(10)+C(1.5). The contribution C(1) is proportional to δ(q-->-k-->-q-->'+k-->') and describes the memory and time-reversed memory effects. C(10) is proportional to δ(q-->-k-->+q-->'-k-->'), while C(1.5) is unrestricted in its dependence on q-->,k-->,q-->',k-->'. The latter two contributions have recently been treated in the scattering of light from randomly rough surfaces, but have not been previously treated in the scattering of light by volume disordered media. A number of peaks associated with resonant processes are observed in C(1.5) considered as a function of the wave vectors of the incident and scattered light.
NASA Astrophysics Data System (ADS)
Duran, Sean Patrick Hynes
A line of sight imaging technique was developed which utilized pulse slicing of laser pulses to shorten the duration of the parent laser pulse, thereby making time gating more effective at removing multiple scattered light. This included the development of an optical train which utilized a Kerr cell to selectively pass the initial part of the laser pulse while rejecting photons contained later within the pulse. This line of sight ballistic imaging technique was applied to image high-pressure fuel sprays injected into conditions typically encountered in a diesel combustion chamber. Varying the environmental conditions into which the fuel was injected revealed trends in spray behavior which depend on both temperature and pressure. Different fuel types were also studied in this experiment which demonstrated remarkably different shedding structures from one another. Additional experiments were performed to characterize the imaging technique at ambient conditions. The technique was modified to use two wavelengths to allow further rejection of scattered light. The roles of spatial, temporal and polarization filtration were examined by imaging an USAF 1951 line-pair target through a highly scattering field of polystyrene micro-spheres. The optical density of the scattering field was varied by both the optical path length and number densities of the spheres. The equal optical density, but with variable path length results demonstrated the need for an aggressively shorter pulse length to effectively image the distance scales typical encountered in the primary breakup regions of diesel sprays. Results indicate that the system performance improved via the use of two wavelengths. A final investigation was undertaken to image coherent light which has elastically scattered orthogonal to the direction of the laser pulse. Two wavelengths were focused into ˜150 micron sheets via a cylindrical lens and passed under the injector nozzle. The two sheets were adjustable spatially to allow probing of the sprays three dimensional structure. The test matrix included two nozzle diameters, 160 and 320 microns, and two fuels dodecane and methyl oleate. Results are presented comparing the fuels and the effects of nozzle diameter. A mathematical interpretation of the results is also presented.
Desmin filaments studied by quasi-elastic light scattering.
Hohenadl, M; Storz, T; Kirpal, H; Kroy, K; Merkel, R
1999-01-01
We studied polymers of desmin, a muscle-specific type III intermediate filament protein, using quasi-elastic light scattering. Desmin was purified from chicken gizzard. Polymerization was induced either by 2 mM MgCl(2) or 150 mM NaCl. The polymer solutions were in the semidilute regime. We concluded that the persistence length of the filaments is between 0.1 and 1 microm. In all cases, we found a hydrodynamic diameter of desmin filaments of 16-18 nm. The filament dynamics exhibits a characteristic frequency in the sense that correlation functions measured on one sample but at different scattering vectors collapse onto a single master curve when time is normalized by the experimentally determined initial decay rate. PMID:10512839
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Daniel S.; Singh, Manpreet; Zhou, Hebing
2015-10-12
We report the characteristic optical responses of one-dimensional semiconducting oxide nanomaterials by examining the individual nanorods (NRs) of ZnO, SnO{sub 2}, indium tin oxide, and zinc tin oxide under precisely controlled, light-matter interaction geometry. Scattering signals from a large set of NRs of the different types are evaluated spatially along the NR length while varying the NR tilt angle, incident light polarization, and analyzer rotation. Subsequently, we identify material-indiscriminate, NR tilt angle- and incident polarization-dependent scattering behaviors exhibiting continuous, intermittent, and discrete responses. The insight gained from this study can advance our fundamental understanding of the optical behaviors of themore » technologically useful nanomaterials and, at the same time, promote the development of highly miniaturized, photonic and bio-optical devices utilizing the spatially controllable, optical responses of the individual semiconducting oxide NRs.« less
Single Crystal Diffuse Neutron Scattering
Welberry, Richard; Whitfield, Ross
2018-01-11
Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less
Single Crystal Diffuse Neutron Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welberry, Richard; Whitfield, Ross
Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less
All-dielectric cylindrical nanoantennas in the visible range
NASA Astrophysics Data System (ADS)
Dalal, Reena; Shankhwar, Nishant; Kalra, Yogita; Kumar, Ajeet; Sinha, R. K.
2017-08-01
All-dielectric nanoparticles have attained a lot of attention owing to the lesser loss and better quality than their metallic counterparts. As a result, they perceive applications in the field of nanoantennas, photovoltaics and nanolasers. In the dielectric nanoparticles, the electric and magnetic dipoles are created in dielectric nanoparticles when they interact with the light of a particular frequency. Kerker's type scattering is obtained where electric and magnetic dipoles interfere. In our design, Silicon cylindrical nanoparticles having radius of 70 nm and length 120 nm have been considered. The propagation of light is taken along the length of the cylinder. The scattering cross section has been obtained and plotted with respect to the wavelength. At the peaks of scattering spectra, electric and magnetic dipoles are created at the wavelengths of 510 nm and 600 nm, respectively. Both dipoles interfere at the wavelengths of 550 nm and 645 nm. At these wavelengths, far field scattering pattern has been calculated. At the wavelength 645 nm, forward scattering takes place because electric and magnetic dipoles are in phase at this wavelength. Further, directivity is enhanced by taking the planar array of the nanoparticles. It has been observed that directivity increases by increasing the size of the array. Also, there is an increase in the directivity by increasing the gap between the nanoparticles. This enhancement of directivity can lead to the design of all dielectric cylindrical nanoantennas.
Safrani, Avner; Abdulhalim, Ibrahim
2011-06-20
Longitudinal spatial coherence (LSC) is determined by the spatial frequency content of an optical beam. The use of lenses with a high numerical aperture (NA) in full-field optical coherence tomography and a narrowband light source makes the LSC length much shorter than the temporal coherence length, hence suggesting that high-resolution 3D images of biological and multilayered samples can be obtained based on the low LSC. A simplified model is derived, supported by experimental results, which describes the expected interference output signal of multilayered samples when high-NA lenses are used together with a narrowband light source. An expression for the correction factor for the layer thickness determination is found valid for high-NA objectives. Additionally, the method was applied to a strongly scattering layer, demonstrating the potential of this method for high-resolution imaging of scattering media.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.
2017-10-01
We report on an experimental effort to produce plasmas with long scale lengths for the study of parametric instabilities, such as two plasmon decay (TPD) and stimulated Raman scattering (SRS), under conditions relevant to fusion plasma. In the current experiment, plasmas are formed from low density (10-100 mg/cc) CH foam targets irradiated by Nike krypton fluoride laser pulses (λ = 248 nm, 1 nsec FWHM) with energies up to 1 kJ. This experiment is conducted with two primary diagnostics: the grid image refractometer (Nike-GIR) to measure electron density and temperature profiles of the coronas, and time-resolved spectrometers with absolute intensity calibration to examine scattered light features of TPD or SRS. Nike-GIR was recently upgraded with a 5th harmonic probe laser (λ = 213 nm) to access plasma regions near quarter critical density of 248 nm light (4.5 ×1021 cm-3). The results will be discussed with data obtained from 120 μm scale-length plasmas created on solid CH targets in previous LPI experiments at Nike. Work supported by DoE/NNSA.
NASA Astrophysics Data System (ADS)
Kryzhanovskiĭ, B. V.
1990-04-01
An investigation is made of the serious limitations on the growth of the amplitude of a Stokes wave associated with the optical Stark effect and with the dispersion of the group velocities of the interacting pulses. It is shown that when the distance traversed exceeds a certain length, the gain due to stimulated Raman scattering reaches saturation whereas the spectrum of the scattered light becomes broader and acquires a line structure. Saturation of the scattering is not manifested at pump intensities sufficient to bleach the scattering medium. The gain can be optimized by altering the offset from a resonance.
Nondestructive Method For Measuring The Scattering Coefficient Of Bulk Material
NASA Astrophysics Data System (ADS)
Groenhuis, R. A. J.; ten Bosch, J. J.
1981-05-01
During demineralization and remineralization of dental enamel its structure changes resulting in a change of the absorption and scattering coefficients of the enamel. By measuring these coefficients during demineralization and remineralization these processes can be monitored in a non-destructive way. For this purpose an experimental arrangement was made: a fibre illuminates a spot on the sample with monochromatic light with a wave-length between 400 nm and 700 nm; a photomultiplier measures the luminance of the light back-scattered by the sample as a function of the distance from the measuring snot to the spot of illumination. In a Monte Carlo-model this luminance is simulated using the same geometry given the scattering and absorption coefficients in a sample. Then the scattering and absorption coefficients in the sample are determined by selecting the theoretical curve fitting the experimental one. Scattering coefficients below 10 mm-1 and absorption coefficients obtained with this method on calibration samples correspond well with those obtained with another method. Scattering coefficients above 10 mm-1 (paper samples) were measured ton low. This perhaps is caused by the anisotropic structure of paper sheets. The method is very suitable to measure the scattering and absorption coefficients of bulk materials.
NASA Astrophysics Data System (ADS)
Gaeris, Andres Claudio
The Stimulated Brillouin Scattering (SBS) instability is studied in moderately short scale-length plasmas. The backscattered and specularly reflected light resulting from the interaction of a pair of high power picosecond duration laser pulses with solid Silicon, Gold and Parylene-N (CH) strip targets was spectrally resolved. The first, weaker laser pulse forms a short scale-length plasma while the second delayed one interacts with the isothermally expanded, underdense region of the plasma. The pulses are generated by the Table Top Terawatt (TTT) laser operating at 1054 nm (infrared) with intensities up to 5.10 16 W/cm2. Single laser pulses only show Lambertian scattering on the target critical surface. Pairs of pulses with high intensity in the second pulse show an additional backscattered, highly blueshifted feature, associated with SBS. Increasing this second pulse intensity even more leads to the appearance of a third feature, even more blueshifted than the second, resulting from the Brillouin sidescattering of the laser pulse reflected on the critical surface. The SBS threshold intensities and enhanced reflectivities for P-polarized light are determined for different plasma density scale-lengths. These measurements agree with the convective thresholds predicted by the SBS theory of Liu, Rosenbluth, and White using plasma profiles simulated by the LILAC code. The spectral position of the Brillouin back- and sidescattered features are determined. The SBS and Doppler shifts are much too small to explain the observed blueshifts. The refractive index shift is of the right magnitude, although more detailed verification is required in the future.
Bauerschmidt, S T; Novoa, D; Russell, P St J
2015-12-11
In 1964 Bloembergen and Shen predicted that Raman gain could be suppressed if the rates of phonon creation and annihilation (by inelastic scattering) exactly balance. This is only possible if the momentum required for each process is identical, i.e., phonon coherence waves created by pump-to-Stokes scattering are identical to those annihilated in pump-to-anti-Stokes scattering. In bulk gas cells, this can only be achieved over limited interaction lengths at an oblique angle to the pump axis. Here we report a simple system that provides dramatic Raman gain suppression over long collinear path lengths in hydrogen. It consists of a gas-filled hollow-core photonic crystal fiber whose zero dispersion point is pressure adjusted to lie close to the pump laser wavelength. At a certain precise pressure, stimulated generation of Stokes light in the fundamental mode is completely suppressed, allowing other much weaker phenomena such as spontaneous Raman scattering to be explored at high pump powers.
Probing a Spray Using Frequency-Analyzed Light Scattering
NASA Technical Reports Server (NTRS)
Eskridge, Richard; Lee, Michael H.; Rhys, Noah O.
2008-01-01
Frequency-analyzed laser-light scattering (FALLS) is a relatively simple technique that can be used to measure principal characteristics of a sheet of sprayed liquid as it breaks up into ligaments and then the ligaments break up into droplets. In particular, through frequency analysis of laser light scattered from a spray, it is possible to determine whether the laser-illuminated portion of the spray is in the intact-sheet region, the ligament region, or the droplet region. By logical extension, it is possible to determine the intact length from the location of the laser beam at the transition between the intact-sheet and ligament regions and to determine a breakup frequency from the results of the frequency analysis. Hence, FALLS could likely be useful both as a means of performing research on sprays in general and as a means of diagnostic sensing in diverse applications in which liquid fuels are sprayed. Sprays are also used for drying and to deposit paints and other coating materials.
Mancuso, J. Jacob; Halaney, David L.; Elahi, Sahar; Ho, Derek; Wang, Tianyi; Ouyang, Yongjian; Dijkstra, Jouke; Milner, Thomas E.; Feldman, Marc D.
2014-01-01
Abstract. We sought to elucidate the mechanisms underlying two common intravascular optical coherence tomography (IV-OCT) artifacts that occur when imaging metallic stents: “merry-go-rounding” (MGR), which is an increase in strut arc length (SAL), and “blooming,” which is an increase in the strut reflection thickness (blooming thickness). Due to uncontrollable variables that occur in vivo, we performed an in vitro assessment of MGR and blooming in stented vessel phantoms. Using Xience V and Driver stents, we examined the effects of catheter offset, intimal strut coverage, and residual blood on SAL and blooming thickness in IV-OCT images. Catheter offset and strut coverage both caused minor MGR, while the greatest MGR effect resulted from light scattering by residual blood in the vessel lumen, with 1% hematocrit (Hct) causing a more than fourfold increase in SAL compared with saline (p<0.001). Residual blood also resulted in blooming, with blooming thickness more than doubling when imaged in 0.5% Hct compared with saline (p<0.001). We demonstrate that a previously undescribed mechanism, light scattering by residual blood in the imaging field, is the predominant cause of MGR. Light scattering also results in blooming, and a newly described artifact, three-dimensional-MGR, which results in “ghost struts” in B-scans. PMID:25545341
Remote adjustable focus Raman spectroscopy probe
Schmucker, John E.; Blasi, Raymond J.; Archer, William B.
1999-01-01
A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.
Gorodnichev, E E
2018-04-01
The problem of multiple scattering of polarized light in a two-dimensional medium composed of fiberlike inhomogeneities is studied. The attenuation lengths for the density matrix elements are calculated. For a highly absorbing medium it is found that, as the sample thickness increases, the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the sample thickness, the off-diagonal elements which are responsible for correlations between the cross-polarized waves disappear. In the asymptotic limit of very thick samples the scattered light proves to be polarized perpendicular to the fibers. The difference in the attenuation lengths between the density matrix elements results in a nonmonotonic depth dependence of the degree of polarization. In the opposite case of a weakly absorbing medium, the off-diagonal element of the density matrix and, correspondingly, the correlations between the cross-polarized fields are shown to decay faster than the intensity of waves polarized along and perpendicular to the fibers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinke, I.; Lehmkühler, F., E-mail: felix.lehmkuehler@desy.de; Schroer, M. A.
2016-06-15
In this paper we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. As a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less
Invariance property of wave scattering through disordered media
Pierrat, Romain; Ambichl, Philipp; Gigan, Sylvain; Haber, Alexander; Carminati, Rémi; Rotter, Stefan
2014-01-01
A fundamental insight in the theory of diffusive random walks is that the mean length of trajectories traversing a finite open system is independent of the details of the diffusion process. Instead, the mean trajectory length depends only on the system's boundary geometry and is thus unaffected by the value of the mean free path. Here we show that this result is rooted on a much deeper level than that of a random walk, which allows us to extend the reach of this universal invariance property beyond the diffusion approximation. Specifically, we demonstrate that an equivalent invariance relation also holds for the scattering of waves in resonant structures as well as in ballistic, chaotic or in Anderson localized systems. Our work unifies a number of specific observations made in quite diverse fields of science ranging from the movement of ants to nuclear scattering theory. Potential experimental realizations using light fields in disordered media are discussed. PMID:25425671
Steinke, I.; Walther, M.; Lehmkühler, F.; ...
2016-06-01
In this study we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. Finally, as a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less
Diffraction scattering computed tomography: a window into the structures of complex nanomaterials
Birkbak, M. E.; Leemreize, H.; Frølich, S.; Stock, S. R.
2015-01-01
Modern functional nanomaterials and devices are increasingly composed of multiple phases arranged in three dimensions over several length scales. Therefore there is a pressing demand for improved methods for structural characterization of such complex materials. An excellent emerging technique that addresses this problem is diffraction/scattering computed tomography (DSCT). DSCT combines the merits of diffraction and/or small angle scattering with computed tomography to allow imaging the interior of materials based on the diffraction or small angle scattering signals. This allows, e.g., one to distinguish the distributions of polymorphs in complex mixtures. Here we review this technique and give examples of how it can shed light on modern nanoscale materials. PMID:26505175
Submicron scale tissue multifractal anisotropy in polarized laser light scattering
NASA Astrophysics Data System (ADS)
Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya
2018-03-01
The spatial fluctuations of the refractive index within biological tissues exhibit multifractal anisotropy, leaving its signature as a spectral linear diattenuation of scattered polarized light. The multifractal anisotropy has been quantitatively assessed by the processing of relevant Mueller matrix elements in the Fourier domain, utilizing the Born approximation and subsequent multifractal analysis. The differential scaling exponent and width of the singularity spectrum appear to be highly sensitive to the structural multifractal anisotropy at the micron/sub-micron length scales. An immediate practical use of these multifractal anisotropy parameters was explored for non-invasive screening of cervical precancerous alterations ex vivo, with the indication of a strong potential for clinical diagnostic purposes.
Characteristics of color optical shutter with dye-doped polymer network liquid crystal.
Lee, G H; Hwang, K Y; Jang, J E; Jin, Y W; Lee, S Y; Jung, J E
2011-03-01
The optical properties and the theoretical prediction of color optical shutter with dye-doped polymer network liquid crystal (PNLC) were investigated. The view-angle dependence of reflectance according to the bias conditions showed distinctive characteristics, which could be explained from the effects of dye absorption and path length. It was also shown that the thickness dependence of reflectance was strongly influenced by the light-scattering coefficient. Our experimental results matched up well with the theoretical prediction based on the light scattering of liquid crystals in polymer network and the absorption of dichroic dye. This work indicates potential to improve the optical device using dye-doped liquid crystal-polymer composite.
Photoinduced surface plasmon switching at VO2/Au interface.
Kumar, Nardeep; Rúa, Armando; Aldama, Jennifer; Echeverría, Karla; Fernández, Félix E; Lysenko, Sergiy
2018-05-28
Angle-resolved reflection, light scattering and ultrafast pump-probe spectroscopy combined with a surface plasmon-polariton (SPP) resonance technique in attenuated total reflection geometry was used to investigate the light-induced plasmonic switching in a photorefractive VO 2 /Au hybrid structure. Measurements of SPP scattering and reflection shows that the optically-induced formation of metallic state in a vanadium dioxide layer deposited on a gold film significantly alters the electromagnetic field enhancement and SPP propagation length at the VO 2 /Au interface. The ultrafast optical manipulation of SPP resonance is shown on a picosecond timescale. Obtained results demonstrate high potential of photorefractive vanadium oxides as efficient plasmonic modulating materials for ultrafast optoelectronic devices.
NASA Technical Reports Server (NTRS)
Macenka, Steven A.; Chipman, Russell A.; Daugherty, Brian J.; McClain, Stephen C.
2012-01-01
A report discusses the difficulty of measuring scattering properties of coated mirrors extremely close to the specular reflection peak. A prototype Optical Hetero dyne Near-angle Scatterometer (OHNS) was developed. Light from a long-coherence-length (>150 m) 532-nm laser is split into two arms. Acousto-optic modulators frequency shift the sample and reference beams, establishing a fixed beat frequency between the beams. The sample beam is directed at very high f/# onto a mirror sample, and the point spread function (PSF) formed after the mirror sample is scanned with a pinhole. This light is recombined by a non-polarizing beam splitter and measured through heterodyne detection with a spectrum analyzer. Polarizers control the illuminated and analyzed polarization states, allowing the polarization dependent scatter to be measured. The bidirectional reflective or scattering distribution function is normally measured through use of a scattering goniometer instrument. The instrumental beam width (collection angle span) over which the scatterometer responds is typically many degrees. The OHNS enables measurement at angles as small as the first Airy disk diameter.
Quasi-elastic light-scattering studies of single skeletal muscle fibers.
Haskell, R C; Carlson, F D
1981-01-01
Measurements were made of the intensity autocorrelation function, g(2)[tau], of light scattered from intact frog muscle fibers. During the tension plateau of an isometric tenanus, scattered field statistics were approximately Gaussian and intensity fluctuations were quasi-stationary. The half time, tau 1/2, for the decay of g(2)[tau] was typically 70 ms at a scattering angle of 30 degrees. The decay rate, 1/tau 1/2, of g(2)[tau] varied roughly linearly with the projection of the scattering vector on the fiber axis. 1/tau 1/2 was greater during the tension creep phase of tetani of highly stretched fibers, but was roughly independent of sarcomere length during the tension plateau. g(2)[tau] measured during rest or on diffraction pattern maxima during isometric contraction were flat with low amplitudes. These results are consistent with a model of a 200-mu m segment of an isometrically contracting fiber in which scattering material possesses relative axial velocities of 1-2 mu m/s accompanied by relative axial displacements greater than 0.1 mu m. The slow (1-2 mu m/s) motion of one portion of the fiber relative to another observed under the microscope (500X) during isometric contraction is consistent with the light-scattering results. Structural fluctuations on the scale of the myofibrillar sarcomere which may arise from asynchronous cycling of cross-bridges must involve relative axial velocities less than 3 mu m/s or relative axial displacements less than 0.05 mu m. PMID:6974014
NASA Astrophysics Data System (ADS)
Tanzid, Mehbuba; Hogan, Nathaniel J.; Robatjazi, Hossein; Veeraraghavan, Ashok; Halas, Naomi J.
2018-05-01
Imaging through scattering media can be improved with the addition of absorbers, since multiply-scattered photons, with their longer path length, are absorbed with a higher probability than ballistic photons. The image resolution enhancement is substantially greater when imaging through isotropic scatterers than when imaging through an ensemble of strongly forward-scattering particles. However, since the angular scattering distribution is determined by the size of the scatterers with respect to the wavelength of incident light, particles that are forward scatterers at visible wavelengths can be isotropic scatterers at infrared (IR) wavelengths. Here, we show that substantial image resolution enhancement can be achieved in the near-infrared wavelength regime for particles that are forward scattering at visible wavelengths using carbon black nanoparticles as a broadband absorber. This observation provides a new strategy for image enhancement through scattering media: by selecting the appropriate wavelength range for imaging, in this case the near-IR, the addition of absorbers more effectively enhances the image resolution.
Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus.
Santos, N C; Castanho, M A
1996-01-01
The tobacco mosaic virus is used as a model molecular assembly to illustrate the basic potentialities of light scattering techniques (both static and dynamic) to undergraduates. The work has two objectives: a pedagogic one (introducing light scattering to undergraduate students) and a scientific one (stabilization of the virus molecular assembly structure by the nucleic acid). Students are first challenged to confirm the stabilization of the cylindrical shape of the virus by the nucleic acid, at pH and ionic strength conditions where the coat proteins alone do not self-assemble. The experimental intramolecular scattering factor is compared with the theoretical ones for several model geometries. The data clearly suggest that the geometry is, in fact, a rod. Comparing the experimental values of gyration radius and hydrodynamic radius with the theoretical expectations further confirms this conclusion. Moreover, the rod structure is maintained over a wider range of pH and ionic strength than that valid for the coat proteins alone. The experimental values of the diffusion coefficient and radius of gyration are compared with the theoretical expectations assuming the dimensions detected by electron microscopy techniques. In fact, both values are in agreement (length approximately 300 nm, radius approximately 20 nm). PMID:8874039
Structure Formation in Salt-Free Solutions of Amphiphilic Sulfonated Polyelectrolytes
NASA Astrophysics Data System (ADS)
Bockstaller, Michael; Koehler, Werner
2000-03-01
Self-assembled systems have long attracted attention due to their practical importance in many technical and biological fields. Dodecyl-substituted poly(para-phenylen)sulfonates (abbreviated PPPS) are highly charged polyelectrolytes which in the uncharged state have been investigated extensively and an intrinsic persistence length of 15 nm has been reported. Due to their hydrophobic side chains, PPPS are compatible with water only as micellar aggregates and tend to form supramolecular structures even at concentrations as low as 10-5mol_mon.units/l. Because of the rodlike conformation of PPPS, this self-assembly leads to aggregates of anisotropic shape. Therefore, depolarized light scattering was employed to yield complementary information about structure and dynamics of these complex fluids. Aqueous solutions of PPPS at room temperature undergo a structural transition at a critical concentration of c_crit.=0.016 g/l. This transition is characterized by a strong increase of scattered intensity in forward direction and dynamic depolarized scattering. Above c_crit. the cylindrical micelles (L=310 nm, d=3.1 nm, N_radial=12) self assembly into large ellipsoidal clusters of size in the μ m range. Due to the strong increase of depolarized scattered intensity there has to be a preferential orientation of the micelles inside those clusters, which thus represent a lyotropic mesophase. By combining static and dynamic light scattering for the low q-range as well as small angle x-ray scattering for the higher q-range it is possible to determine size and shape of each aggregation step. Decreasing the molecular weight of the PPPS has profound influence on the micellar length and hence on c_crit. which is close to the overlap concentration (c ~ 1/L^3) allowing for the observation of the polyelectrolyte effect.
Gelation Kinetics and Network Structure of Cellulose Nanocrystals in Aqueous Solution.
Peddireddy, Karthik R; Capron, Isabelle; Nicolai, Taco; Benyahia, Lazhar
2016-10-10
Cellulose nanocrystals (CNC) are rod-like biosourced nanoparticles that are widely used in a range of applications. Charged CNC was obtained by acid extraction from cotton and dispersed in aqueous solution using ultrasound and characterized by light scattering. Aggregation and gelation of CNC induced by addition of NaCl was investigated by light scattering as a function of the NaCl concentration (30-70 mM), the CNC concentration (0.5-5 g/L), and the temperature (10-60 °C). Formation of fractal aggregates was observed that grow with time until they percolate and form a weak system spanning network. The aggregation rate and gel time were found to decrease very steeply with increasing NaCl concentration and more weakly with increasing CNC concentration. A decrease of the gel time was also observed with increasing temperature for T > 20 °C. The structure of the CNC networks was studied using confocal laser scanning microscopy and light scattering. The local structure of the networks was fractal and reflected that of the constituting aggregates. The gels were homogeneous on length scales larger than the correlation length, which decreased with increasing CNC concentration. The CNC gels flowed when tilted for C < 12 g/L and sedimentation was observed macroscopically for C < 4 g/L due to the collapse of the CNC network under gravity. The speed and extent of sedimentation was investigated as a function of the ionic strength and the CNC concentration. Gelled CNC could be completely redispersed by applying ultrasound.
Effect of grain size on optical transmittance of birefringent polycrystalline ceramics
NASA Astrophysics Data System (ADS)
Wen, Tzu-Chien
Polycrystalline ceramics are increasingly used for fabricating windows and domes for the mid infra-red regime (3-5 mum) due to their superior durability as compared to glass and the lower cost of their fabrication and finishing relative to single crystals without significant compromise in optical properties. Due to the noncubic structure, MgF2 and Al2O3 are birefringent ceramics. Birefringence causes scatter of light at the grain boundaries and diminishes in-line transmittance and optical performance. This dissertation presents experimental results and analyses of the grain-size and wavelength dependence of the in-line transmittance of polycrystalline MgF2 and Al2O3. Chapter 2 presents experimental results and analyses of light transmission in polycrystalline MgF2 as a function of the mean grain size at different wavelengths. The scattering coefficient of polycrystalline MgF 2 increased linearly with the mean grain size and inversely with the square of the wavelength of light. These trends are consistent with theoretical models based on both a limiting form of the Raleigh-Gans-Debye theory of particle scattering and light retardation theories that take refractive-index variations along the light path. Chapter 3 investigates the applicability of particle light scattering theories to light attenuation in birefringent polycrystalline ceramics by measuring light transmittance in a model two-phase system. The system consisted of microspheres of silica dispersed in a solution of glycerol in water. It was found that RGD theory showed the systematic deviation for higher particle volume fraction (φ > 0.2) and larger particle size (d p > 1 mum). This result suggested that light scattering models based on single particle scattering are unlikely to provide viable physical explanation for the effect of grain size on light transmittance in birefringent polycrystalline ceramics due to the high volume fraction in dense polycrystalline ceramics. Chapter 4 analyses light transmission properties of polycrystalline Al 2O3 using theories of wave propagation in random media. Fully dense polycrystalline Al2O3 was fabricated using a pressure filtration method. By obtaining the Delta n2 measured from EBSD, the wave retardation theories of Raman and Viswanathan and Kahan et al. provided upper and lower bounds for the theoretical predictions of light transmittance as a function of mean intercept length.
Yadav, P Jaya Prakash; Ghosh, Goutam; Maiti, Biswajit; Aswal, Vinod K; Goyal, P S; Maiti, Pralay
2008-04-17
Thermoreversible gelation of poly(vinylidene fluoride) (PVDF) has been studied in a new series of solvents (phthalates), for example, dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), and dihexyl phthalate (DHP) as a function of temperature and polymer concentration, both by test tube tilting and dynamic light scattering (DLS) method. The effect of aliphatic chain length (n) of diesters on the gelation kinetics, structure/microstructure and morphology of PVDF gels has been examined. Gelation rate was found to increase with increasing aliphatic chain length of diester. DLS results indicate that the sol-gel transformation proceeds via two-steps: first, microgel domains were formed, and then the infinite three-dimensional (3D) network is established by connecting microgels through polymer chains. The crystallites are responsible for 3D network for gelation in phthalates, and alpha-polymorph is formed during gelation producing higher amount of crystallinity with increasing aliphatic chain length of diester. Morphology of the networks of dried gels in different phthalates showed that fibril thickness and lateral dimensions decrease with higher homologues of phthalates. The scattering intensity is fitted with Debye-Bueche model in small-angle neutron scattering and suggested that both the correlation length and interlamellar spacing increases with n. A model has been proposed, based on electronic structure calculations, to explain the conformation of PVDF chain in presence of various phthalates and their complexes, which offer the cause of higher gelation rate for longer aliphatic chain length.
Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations
NASA Astrophysics Data System (ADS)
Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.
2016-11-01
Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.
Climate logging with a new rapid optical technique at siple dome
Bay, R.C.; Price, P.B.; Clow, G.D.; Gow, A.J.
2001-01-01
The dust logger design is based on a decade of experience in the use of light sources to measure optical properties of deep Antarctic ice. Light is emitted at the top of the instrument by side-directed LEDs, scattered or absorbed by dust in the ice surrounding the borehole, and collected in a downhole-pointing photomultiplier tube (PMT) a meter below. With this method the ice is sampled at ambient pressure in a much larger volume than is the case in a core study, and the entire length can be logged in one day. In ice in which scattering is dominated by bubbles, the absorption from dust impurities is perceived as a drop in signal, whereas in bubble-free ice the scattering from dust increases the light collected. We report on results obtained in Siple Dome Hole A in December 2000. The instrument measured increases in dust concentration extending over many meters during glacial maxima, as well as narrow spikes due to ??? 1 cm thick ash and dust bands of volcanic origin. Monte Carlo simulation is employed to clarify data analysis and predict the capabilities of future designs.
Scattering and the Point Spread Function of the New Generation Space Telescope
NASA Technical Reports Server (NTRS)
Schreur, Julian J.
1996-01-01
Preliminary design work on the New Generation Space Telescope (NGST) is currently under way. This telescope is envisioned as a lightweight, deployable Cassegrain reflector with an aperture of 8 meters, and an effective focal length of 80 meters. It is to be folded into a small-diameter package for launch by an Atlas booster, and unfolded in orbit. The primary is to consist of an octagon with a hole at the center, and with eight segments arranged in a flower petal configuration about the octagon. The comers of the petal-shaped segments are to be trimmed so that the package will fit atop the Atlas booster. This mirror, along with its secondary will focus the light from a point source into an image which is spread from a point by diffraction effects, figure errors, and scattering of light from the surface. The distribution of light in the image of a point source is called a point spread function (PSF). The obstruction of the incident light by the secondary mirror and its support structure, the trimmed corners of the petals, and the grooves between the segments all cause the diffraction pattern characterizing an ideal point spread function to be changed, with the trimmed comers causing the rings of the Airy pattern to become broken up, and the linear grooves causing diffraction spikes running radially away from the central spot, or Airy disk. Any figure errors the mirror segments may have, or any errors in aligning the petals with the central octagon will also spread the light out from the ideal point spread function. A point spread function for a mirror the size of the NGST and having an incident wavelength of 900 nm is considered. Most of the light is confined in a circle with a diameter of 0.05 arc seconds. The ring pattern ranges in intensity from 10(exp -2) near the center to 10(exp -6) near the edge of the plotted field, and can be clearly discerned in a log plot of the intensity. The total fraction of the light scattered from this point spread function is called the total integrated scattering (TIS), and the fraction remaining is called the Strehl ratio. The angular distribution of the scattered light is called the angle resolved scattering (ARS), and it shows a strong spike centered on a scattering angle of zero, and a broad , less intense distribution at larger angles. It is this scattered light, and its effect on the point spread function which is the focus of this study.
Distributed vibration fiber sensing system based on Polarization Diversity Receiver
NASA Astrophysics Data System (ADS)
Zhang, Junan; Jiang, Peng; Hu, Zhengliang; Hu, Yongming
2016-10-01
In this paper, we propose a distributed vibration fiber sensing system based on Polarization Diversity Receiver(PDR). We use Acoustic Optical Modulator(AOM) to generate pulse light and an unbalanced M-Z interferometer to generate two pulse light with a certain time delay in the same period. As the pulse lights propagating in fibers, the Backward Rayleigh scattering lights will interfere with each other. The vibration on the fiber will change the length and refractive index of fiber which results in the change of the phase of the interference signal. Hence, one arm of the M-Z interferometer is modulated by a sinusoidal phase-generated carrier(PGC) signal, and PGC demodulation algorithm has been used to acquire phase information from the Backward Rayleigh scattering lights. In order to overcome the influence of polarization-induced fading and enhance Signal Noise Ratio(SNR), we set a PDR before the photo detector. The Polarization Diversity Receiver segregates the interfere light into two lights with orthogonal states of polarization. Hence, there is always one channel has a better interfere light signal. The experiments are presented to verify the effectiveness of the distributed vibration fiber sensing system proposed.
Biomembranes research using thermal and cold neutrons
Heberle, Frederick A.; Myles, Dean A. A.; Katsaras, John
2015-08-01
In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: “whatever the radiation from Be may be, it has most remarkable properties.” Where it concerns hydrogen-rich biological materials, the “most remarkable” property is the neutron’s differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, impartingmore » sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. Furthermore, this article describes recent biomembranes research using a variety of neutron scattering techniques.« less
NASA Astrophysics Data System (ADS)
Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V.
2016-08-01
Optical phase conjugation (OPC)-based wavefront shaping techniques focus light through or within scattering media, which is critically important for deep-tissue optical imaging, manipulation, and therapy. However, to date, the sample thickness in OPC experiments has been limited to only a few millimeters. Here, by using a laser with a long coherence length and an optimized digital OPC system that can safely deliver more light power, we focused 532-nm light through tissue-mimicking phantoms up to 9.6 cm thick, as well as through ex vivo chicken breast tissue up to 2.5 cm thick. Our results demonstrate that OPC can be achieved even when photons have experienced on average 1000 scattering events. The demonstrated penetration of nearly 10 cm (˜100 transport mean free paths) has never been achieved before by any optical focusing technique, and it shows the promise of OPC for deep-tissue noninvasive optical imaging, manipulation, and therapy.
Surface and mass fractals in vapor-phase aggregates
NASA Astrophysics Data System (ADS)
Hurd, Alan J.; Schaefer, Dale W.; Martin, James E.
1987-03-01
Several types of fumed-silica aggregates with differing surface areas were studied over a wide range of spatial resolution by employing both light and neutron scattering. At intermediate length scales, between 100 and 1000 Å, the aggregates are mass fractals with Dm~=1.7-2.0, in basic agreement with simulations of aggregating clusters. At short length scales below 100 Å where the nature of the surfaces of the primary particles dominates the scattering, some of the samples appear to be fractally rough. In particular, a higher surface area seems to be correlated not with smaller primary particles in the aggregates, as previously assumed, but with fractally rough surfaces having Ds as high as 2.5. These may be the first materials discovered to have both mass and surface fractal structure.
Time-dependent photon migration imaging
NASA Astrophysics Data System (ADS)
Sevick, Eva M.; Wang, NaiGuang; Chance, Britton
1992-02-01
Recently, the application of both time- and frequency-resolved fluorescence techniques for the determination of photon migration characteristics in strongly scattering media has been used to characterize the optical properties in strongly scattering media. Specifically, Chance and coworkers have utilized measurement of photon migration characteristics to determine tissue hemoglobin absorbance and ultimately oxygenation status in homogeneous tissues. In this study, we present simulation results and experimental measurements for both techniques to show the capacity of time-dependent photon migration characteristics to image optically obscure absorbers located in strongly scattering media. The applications of time-dependent photon imaging in the biomedical community include imaging of light absorbing hematomas, tumors, hypoxic tissue volumes, and other tissue abnormalities. Herein, we show that the time-resolved parameter of mean photon path length, , and the frequency- resolved parameter of phase-shift, (theta) , can be used similarly to obtain three dimensional information of absorber position from two-dimensional measurements. Finally, we show that unlike imaging techniques that monitor the intensity of light without regard to the migration characteristics, the resolution of time-dependent photon migration measurements is enhanced by tissue scattering, further potentiating their use for biomedical imaging.
SANS contrast variation study of magnetoferritin structure at various iron loading
NASA Astrophysics Data System (ADS)
Melnikova, Lucia; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Oleksandr I.; Bulavin, Leonid A.; Garamus, Vasil M.; Almásy, László; Mitroova, Zuzana; Kopcansky, Peter
2015-03-01
Magnetoferritin, a synthetic derivate of iron storage protein - ferritin, has been synthesized with different iron oxide loading values. Small-angle neutron scattering experiments were applied to study the structure of magnetoferritin solutions using contrast variation method by varying the light to heavy water ratio of the solvent. Higher iron loading leads to increase of the neutron scattering length density of magnetoferritin and also to the increase of the polydispersity of complexes. The formation of the magnetic core and the variation of the protein shell structure upon iron loading are concluded.
NASA Astrophysics Data System (ADS)
Volkov, Vladimir V.; Loshchenov, V. B.; Konov, Vitalii I.; Kononenko, Vitalii V.
2010-10-01
We report techniques for the fabrication of laser radiation diffusers for interstitial photodynamic therapy. Using chemical etching of the distal end of silica fibre with a core diameter of 200 — 600 μm, we have obtained long (up to 40 mm) diffusers with good scattering uniformity. Laser ablation has been used to produce cylindrical diffusers with high emission contrast and a scattering uniformity no worse than ~10 % in their middle part. The maximum length of the diffusers produced by this method is 20 — 25 mm.
NASA Astrophysics Data System (ADS)
Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry; Ho, Cheng
2002-09-01
At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data on various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.
Airborne Laser Polar Nephelometer
NASA Technical Reports Server (NTRS)
Grams, Gerald W.
1973-01-01
A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously to collect particles from the same airflow tube used to make the scattered-light measurements. A size distribution function is obtained by analysis of the particles collected by the impaction device. Calculated values of the angular variation of the scattered-light intensity are obtained by applying Mie scattering theory to the observed size distribution function and assuming different values of the complex index of refraction of the particles. The calculated values are then compared with data on the actual variation of the scattered-light intensity obtained with the polar nephelometer. The most probable value of the complex refractive index is that which provides the best fit between the experimental light scattering data and the parameters calculated from the observed size distribution function.
NASA Astrophysics Data System (ADS)
Munin, Egberto; Lupato Conrado, Luis A.; Alves, Leandro P.; Zangaro, Renato A.
2004-05-01
The sealing cements used in endodontics are commonly of the type activated by chemical reactions. During polymerization, mechanical contractions are not uncommon, leading to non-perfect sealing or treatment failure. Photopolymerizable cements usually presents superior performance as compared to those chemically activated. However, difficulties in carrying-up the light to difficult-to-reach regions like the dental apex preclude those material of being accepted in the dental office routine. Recently, a novel technique for the light curing of photopolymerizable cements in endodontic applications has been proposed. Such a technique makes use of a polymeric light guide to deliver the curing light to the apex region, for a single step polymerization of the canal filler. For this work, a 28 mm long polymer light-guide, has been produced. The polymer surface was roughened to produce light scattering and allow the light to escape from the guide. The light scattering profile along the body of the guide is an important property for the proposed application. We used an integrating sphere to measure the irradiation profile for the proposed endodontic device. It was found that the experimental data for the amount of light coupled into the integrating sphere as a function of the length of the cone inside the sphere fits to a double exponential model.
Techniques for detecting the Cherenkov light from cascade showers in water
NASA Astrophysics Data System (ADS)
Khomyakov, V. A.; Bogdanov, A. G.; Kindin, V. V.; Kokoulin, R. P.; Petrukhin, A. A.; Khokhlov, S. S.; Shutenko, V. V.; Yashin, I. I.
2018-01-01
The NEVOD Cherenkov water detector (CWD) features a denser lattice of sensitive elements than the existing large-scale CWDs, whereby the spatial distribution of Cherenkov light from cascade showers is sampled with a superior resolution of 0.5 m, which is close to one radiation length for water (36 cm). The experimental techniques for investigating the Cherenkov light generated by particle cascades in water is proposed. The dependence of light intensity on the depth of shower development is for the first time measured at different distances from the shower axis. The results are compared with the Cherenkov light distributions predicted by various model descriptions for the scattering of cascade particles.
Design of a Paraxial Inverse Compton Scattering Diagnostic for an Intense Relativistic Electron Beam
2013-06-01
with a 50 cm focal length plano-convex lens (Fig. 4). Prior to entering the vacuum the laser light passes through a Brewster angled window, which...1/γ ~ 25 mrad. Brewster angled windows Beam dump Spectra Physics 5J Nd:YAG Focusing lens Insertable power meter z x y 37.8 cm Figure 4...visible green light is upscattered into the soft X-ray range and diverges from the interception point downstream at an angle θs = 1/γ ~ 25 mrad
Evolution of Trace Gases and Particles Emitted by a Chaparral Fire in California
2012-02-07
length of 78 m and was then focused onto an MCT detector . The cell exchange time was about ten seconds when the flow con- trol valves were open and IR...through a 1064 nm Nd:YAG laser cavity where light scattered by the particles was measured by two avalanche photodiode detectors . Sufficiently light...collected with higher signal-to- noise . Smoke samples collected more than 1.8 km from the source showed signs of aging (O3 for- mation) and were not
NASA Astrophysics Data System (ADS)
Kurihara, Kensuke; Ueda, Motoki; Hara, Isao; Ozeki, Eiichi; Togashi, Kaori; Kimura, Shunsaku
2017-07-01
Four kinds of A3B-type amphiphilic polydepsipeptides, (poly(sarcosine))3- b-poly( l-lactic acid) (the degree of polymerization of poly(sarcosine) are 10, 33, 55, and 85; S10 3 , S33 3 , S55 3 , and S85 3 ) were synthesized to prepare core-shell type polymeric micelles. Their in vivo dispositions and stimulations to trigger immune system to produce IgM upon multiple administrations to mice were examined. With increasing poly(sarcosine) chain lengths, the hydrophilic shell became thicker and the surface density at the most outer surface decreased on the basis of dynamic and static light scattering measurements. These two physical elements of polymeric micelles elicited opposite effects on the immune response in light of the chain length therefore to show an optimized poly(sarcosine) chain length existing between 33mer and 55mer to suppress the accelerated blood clearance phenomenon associated with polymeric micelles.
Applications of Quantum Theory of Atomic and Molecular Scattering to Problems in Hypersonic Flow
NASA Technical Reports Server (NTRS)
Malik, F. Bary
1995-01-01
The general status of a grant to investigate the applications of quantum theory in atomic and molecular scattering problems in hypersonic flow is summarized. Abstracts of five articles and eleven full-length articles published or submitted for publication are included as attachments. The following topics are addressed in these articles: fragmentation of heavy ions (HZE particles); parameterization of absorption cross sections; light ion transport; emission of light fragments as an indicator of equilibrated populations; quantum mechanical, optical model methods for calculating cross sections for particle fragmentation by hydrogen; evaluation of NUCFRG2, the semi-empirical nuclear fragmentation database; investigation of the single- and double-ionization of He by proton and anti-proton collisions; Bose-Einstein condensation of nuclei; and a liquid drop model in HZE particle fragmentation by hydrogen.
A new Monte Carlo code for light transport in biological tissue.
Torres-García, Eugenio; Oros-Pantoja, Rigoberto; Aranda-Lara, Liliana; Vieyra-Reyes, Patricia
2018-04-01
The aim of this work was to develop an event-by-event Monte Carlo code for light transport (called MCLTmx) to identify and quantify ballistic, diffuse, and absorbed photons, as well as their interaction coordinates inside the biological tissue. The mean free path length was computed between two interactions for scattering or absorption processes, and if necessary scatter angles were calculated, until the photon disappeared or went out of region of interest. A three-layer array (air-tissue-air) was used, forming a semi-infinite sandwich. The light source was placed at (0,0,0), emitting towards (0,0,1). The input data were: refractive indices, target thickness (0.02, 0.05, 0.1, 0.5, and 1 cm), number of particle histories, and λ from which the code calculated: anisotropy, scattering, and absorption coefficients. Validation presents differences less than 0.1% compared with that reported in the literature. The MCLTmx code discriminates between ballistic and diffuse photons, and inside of biological tissue, it calculates: specular reflection, diffuse reflection, ballistics transmission, diffuse transmission and absorption, and all parameters dependent on wavelength and thickness. The MCLTmx code can be useful for light transport inside any medium by changing the parameters that describe the new medium: anisotropy, dispersion and attenuation coefficients, and refractive indices for specific wavelength.
NASA Astrophysics Data System (ADS)
Rogers, Jeremy D.
2016-03-01
Numerous methods have been developed to quantify the light scattering properties of tissue. These properties are of interest in diagnostic and screening applications due to sensitivity to changes in tissue ultrastructure and changes associated with disease such as cancer. Tissue is considered a weak scatterer because that the mean free path is much larger than the correlation length. When this is the case, all scattering properties can be calculated from the refractive index correlation function Bn(r). Direct measurement of Bn(r) is challenging because it requires refractive index measurement at high resolution over a large tissue volume. Instead, a model is usually assumed. One particularly useful model, the Whittle-Matern function includes several realistic function types such as mass fractal and exponential. Optical scattering properties for weakly scattering media can be determined analytically from Bn(r) by applying the Rayleigh-Gans-Debye (RGD) or Born Approximation, and so measured scattering properties are used to fit parameters of the model function. Direct measurement of Bn(r) would provide confirmation that the function is a good representation of tissue or help in identifying the length scale at which changes occur. The RGD approximation relates the scattering phase function to the refractive index correlation function through a Fourier transform. This can be inverted without approximation, so goniometric measurement of the scattering can be converted to Bn(r). However, geometric constraints of the measurement of the phase function, angular resolution, and wavelength result in a band limited measurement of Bn(r). These limits are discussed and example measurements are described.
Kim, Do Yun; Santbergen, Rudi; Jäger, Klaus; Sever, Martin; Krč, Janez; Topič, Marko; Hänni, Simon; Zhang, Chao; Heidt, Anna; Meier, Matthias; van Swaaij, René A C M M; Zeman, Miro
2014-12-24
Thin-film silicon solar cells are often deposited on textured ZnO substrates. The solar-cell performance is strongly correlated to the substrate morphology, as this morphology determines light scattering, defective-region formation, and crystalline growth of hydrogenated nanocrystalline silicon (nc-Si:H). Our objective is to gain deeper insight in these correlations using the slope distribution, rms roughness (σ(rms)) and correlation length (lc) of textured substrates. A wide range of surface morphologies was obtained by Ar plasma treatment and wet etching of textured and flat-as-deposited ZnO substrates. The σ(rms), lc and slope distribution were deduced from AFM scans. Especially, the slope distribution of substrates was represented in an efficient way that light scattering and film growth direction can be more directly estimated at the same time. We observed that besides a high σ(rms), a high slope angle is beneficial to obtain high haze and scattering of light at larger angles, resulting in higher short-circuit current density of nc-Si:H solar cells. However, a high slope angle can also promote the creation of defective regions in nc-Si:H films grown on the substrate. It is also found that the crystalline fraction of nc-Si:H solar cells has a stronger correlation with the slope distributions than with σ(rms) of substrates. In this study, we successfully correlate all these observations with the solar-cell performance by using the slope distribution of substrates.
Hadron-Hadron Interactions from Nf=2 +1 +1 lattice QCD: Isospin-1 K K scattering length
NASA Astrophysics Data System (ADS)
Helmes, C.; Jost, C.; Knippschild, B.; Kostrzewa, B.; Liu, L.; Urbach, C.; Werner, M.; ETM Collaboration
2017-08-01
We present results for the interaction of two kaons at maximal isospin. The calculation is based on Nf=2 +1 +1 flavor gauge configurations generated by the European Twisted Mass Collaboration with pion masses ranging from about 230 MeV to 450 MeV at three values of the lattice spacing. The elastic scattering length a0I =1 is calculated at several values of the bare strange and light quark masses. We find MKa0=-0.385 (16 )stat(+0/-12)ms(+0/-5)ZP(4 )rf as the result of a combined extrapolation to the continuum and to the physical point, where the first error is statistical, and the three following are systematical. This translates to a0=-0.154 (6 )stat(-5+0)ms(-2+0)ZP(2 )rf fm .
Advanced readout methods for superheated emulsion detectors
NASA Astrophysics Data System (ADS)
d'Errico, F.; Di Fulvio, A.
2018-05-01
Superheated emulsions develop visible vapor bubbles when exposed to ionizing radiation. They consist in droplets of a metastable liquid, emulsified in an inert matrix. The formation of a bubble cavity is accompanied by sound waves. Evaporated bubbles also exhibit a lower refractive index, compared to the inert gel matrix. These two physical phenomena have been exploited to count the number of evaporated bubbles and thus measure the interacting radiation flux. Systems based on piezoelectric transducers have been traditionally used to acquire the acoustic (pressure) signals generated by bubble evaporation. Such systems can operate at ambient noise levels exceeding 100 dB; however, they are affected by a significant dead time (>10 ms). An optical readout technique relying on the scattering of light by neutron-induced bubbles has been recently improved in order to minimize measurement dead time and ambient noise sensitivity. Beams of infra-red light from light-emitting diode (LED) sources cross the active area of the detector and are deflected by evaporated bubbles. The scattered light correlates with bubble density. Planar photodiodes are affixed along the detector length in optimized positions, allowing the detection of scattered light from the bubbles and minimizing the detection of direct light from the LEDs. A low-noise signal-conditioning stage has been designed and realized to amplify the current induced in the photodiodes by scattered light and to subtract the background signal due to intrinsic scattering within the detector matrix. The proposed amplification architecture maximizes the measurement signal-to-noise ratio, yielding a readout uncertainty of 6% (±1 SD), with 1000 evaporated bubbles in a detector active volume of 150 ml (6 cm detector diameter). In this work, we prove that the intensity of scattered light also relates to the bubble size, which can be controlled by applying an external pressure to the detector emulsion. This effect can be exploited during the readout procedure to minimize shadowing effects between bubbles, which become severe when the latter are several thousands. The detector we used in this work is based on superheated C-318 (octafluorocyclobutane), emulsified in 100 μm ± 10% (1 SD) diameter drops in an inert matrix of approximately 150 ml. The detector was operated at room temperature and ambient pressure.
Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei
2013-01-14
Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).
Fining of Red Wine Monitored by Multiple Light Scattering.
Ferrentino, Giovanna; Ramezani, Mohsen; Morozova, Ksenia; Hafner, Daniela; Pedri, Ulrich; Pixner, Konrad; Scampicchio, Matteo
2017-07-12
This work describes a new approach based on multiple light scattering to study red wine clarification processes. The whole spectral signal (1933 backscattering points along the length of each sample vial) were fitted by a multivariate kinetic model that was built with a three-step mechanism, implying (1) adsorption of wine colloids to fining agents, (2) aggregation into larger particles, and (3) sedimentation. Each step is characterized by a reaction rate constant. According to the first reaction, the results showed that gelatin was the most efficient fining agent, concerning the main objective, which was the clarification of the wine, and consequently the increase in its limpidity. Such a trend was also discussed in relation to the results achieved by nephelometry, total phenols, ζ-potential, color, sensory, and electronic nose analyses. Also, higher concentrations of the fining agent (from 5 to 30 g/100 L) or higher temperatures (from 10 to 20 °C) sped up the process. Finally, the advantage of using the whole spectral signal vs classical univariate approaches was demonstrated by comparing the uncertainty associated with the rate constants of the proposed kinetic model. Overall, multiple light scattering technique showed a great potential for studying fining processes compared to classical univariate approaches.
The bundling of actin with polyethylene glycol 8000 in the presence and absence of gelsolin.
Goverman, J; Schick, L A; Newman, J
1996-01-01
Actin filament and bundle formation occur in the cytosol under conditions of very high total macromolecular concentration. In this study we have utilized the inert molecule polyethylene glycol 8000 (PEG) as a means of simulating crowded conditions in vitro. Column-purified Ca-actin was polymerized in the absence and presence of gelsolin (to regulate mean filament lengths between 50 and 5000 mers) and PEG (2-8%) using various concentrations of KCl and/or 2 mM divalent cations. Bundling was characterized by the scattered light intensity and mean diffusion coefficients obtained from dynamic light scattering, as well as by fluorescence and phase-contrast microscopy. The minimum concentration of KCl required for bundling decreases both with increasing concentration of PEG at a fixed mean filament length, and with decreasing filament length at a fixed concentration of PEG. In the absence of divalent cation, bundling is reversible on dilution, as determined by intensity levels, diffusion coefficients, and microscopy. However, with either 2 mM Mg2+ or Ca2+ added, bundling is irreversible under conditions of higher PEG concentrations or longer filaments, indicating that osmotic pressure effects cannot fully explain actin bundling with PEG. Weaker divalent cation-binding sites on actin as well as disulfide bonds appear to be involved in the irreversible bundling. Images FIGURE 7 PMID:8874022
Inter-DNA Attraction Mediated by Divalent Counterions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu Xiangyun; Andresen, Kurt; Kwok, Lisa W.
2007-07-20
Can nonspecifically bound divalent counterions induce attraction between DNA strands? Here, we present experimental evidence demonstrating attraction between short DNA strands mediated by Mg{sup 2+} ions. Solution small angle x-ray scattering data collected as a function of DNA concentration enable model independent extraction of the second virial coefficient. As the [Mg{sup 2+}] increases, this coefficient turns from positive to negative reflecting the transition from repulsive to attractive inter-DNA interaction. This surprising observation is corroborated by independent light scattering experiments. The dependence of the observed attraction on experimental parameters including DNA length provides valuable clues to its origin.
Intricate Plasma-Scattered Images and Spectra of Focused Femtosecond Laser Pulses
Ooi, C. H. Raymond; Talib, Md. Ridzuan
2016-01-01
We report on some interesting phenomena in the focusing and scattering of femtosecond laser pulses in free space that provide insights on intense laser plasma interactions. The scattered image in the far field is analyzed and the connection with the observed structure of the plasma at the focus is discussed. We explain the physical mechanisms behind the changes in the colorful and intricate image formed by scattering from the plasma for different compressions, as well as orientations of plano-convex lens. The laser power does not show significant effect on the images. The pulse repetition rate above 500 Hz can affect the image through slow dynamics The spectrum of each color in the image shows oscillatory peaks due to interference of delayed pulse that correlate with the plasma length. Spectral lines of atomic species are identified and new peaks are observed through the white light emitted by the plasma spot. We find that an Ar gas jet can brighten the white light of the plasma spot and produce high resolution spectral peaks. The intricate image is found to be extremely sensitive and this is useful for applications in sensing microscale objects. PMID:27571644
Reconfigurable and responsive droplet-based compound micro-lenses.
Nagelberg, Sara; Zarzar, Lauren D; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M; Kolle, Mathias
2017-03-07
Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications-integral micro-scale imaging devices and light field display technology-thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses.
Reconfigurable and responsive droplet-based compound micro-lenses
Nagelberg, Sara; Zarzar, Lauren D.; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A.; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M.; Kolle, Mathias
2017-01-01
Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications—integral micro-scale imaging devices and light field display technology—thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses. PMID:28266505
Moon, Kook Joo; Lee, Sun Woo; Lee, Yong Hun; Kim, Ji Hoon; Ahn, Ji Young; Lee, Seung Jun; Lee, Deug Woo; Kim, Soo Hyung
2013-06-12
TiO2 nanoparticles (NPs) with a size of 240 nm (T240), used as a light-scattering layer, were applied on 25-nm-sized TiO2 NPs (T25) that were used as a dye-absorbing layer in the photoelectrodes of dye-sensitized solar cells (DSSCs). In addition, the incident light was concentrated via a condenser lens, and the effect of light concentration on the capacity of the light-scattering layer was systematically investigated. At the optimized focal length of the condenser lens, T25/T240 double layer (DL)-based DSSCs with the photoactive area of 0.36 cm2 were found to have the short circuit current (Isc) of 11.92 mA, the open circuit voltage (Voc) of 0.74 V, and power conversion efficiency (PCE) of approximately 4.11%, which is significantly improved when they were compared to the T25 single layer (SL)-based DSSCs without using a solar concentrator (the corresponding values were the Isc of 2.53 mA, the Voc of 0.69, and the PCE of 3.57%). Thus, the use of the optimized light harvesting structure in the photoelectrodes of DSSCs in conjunction with light concentration was found to significantly enhance the power output of DSSCs.
Brillouin characterisation of optical microfibers
NASA Astrophysics Data System (ADS)
Farhan, Kazi Tasneem
The sleek shape of microfiber helps it to confine the light tightly and generate high nonlinear effect, which is 1000 times higher than the standard fiber. This project focuses on fabricating microfiber samples with different taper lengths and different waist diameter from three different kinds of fiber, single mode fiber (SMF), Gedoped and Ga-doped. All the samples were characterised in terms of Brillouin scattering and Brillouin gain and Brillouin lasing, and compared to each other and to the SMF fiber. Stimulated Brillouin scattering (SBS) has been demonstrated for short microfibers of length less than 10cm. The nonlinear effects of long tapers have not been reported yet. The theoretical perspective related to microfibers indicate the possibility of generation of stronger signals and newer frequencies. Among the many nonlinear effects Brillouin scattering is the easiest to observe and has not been studied using long microfibers until now. In this project microfibers of different lengths and waist diameter are fabricated. The microfibers were made from three different kinds of fiber: SMF, Germanium doped (Ge-doped) and Gallium doped (Ga-doped). The shapes of the fabricated samples are profiled to match the shape with the numerically simulated shape. The power performances are studied so that samples with minimum losses are used for Brillouin characterisation. The first experiment uses the microfiber samples for testing and recording the changes in Stokes generation for the different dimensions of each sample in a Brillouin scattering setup. These microfibers are tested in s second experiment of Brillouin laser setup to explore their possibilities of lasing. In the third experiment the microfibers are used in a pump probe technique setup to spatially measure the Brillouin gain along the length of each sample.
Characterizing Feshbach resonances in ultracold scattering calculations
NASA Astrophysics Data System (ADS)
Frye, Matthew D.; Hutson, Jeremy M.
2017-10-01
We describe procedures for converging on and characterizing zero-energy Feshbach resonances that appear in scattering lengths for ultracold atomic and molecular collisions as a function of an external field. The elastic procedure is appropriate for purely elastic scattering, where the scattering length is real and displays a true pole. The regularized scattering length procedure is appropriate when there is weak background inelasticity, so that the scattering length is complex and displays an oscillation rather than a pole, but the resonant scattering length ares is close to real. The fully complex procedure is appropriate when there is substantial background inelasticity and the real and imaginary parts of ares are required. We demonstrate these procedures for scattering of ultracold 85Rb in various initial states. All of them can converge on and provide full characterization of resonances, from initial guesses many thousands of widths away, using scattering calculations at only about ten values of the external field.
Breakdown of Universality for Unequal-Mass Fermi Gases with Infinite Scattering Length
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blume, D.; Daily, K. M.
We treat small trapped unequal-mass two-component Fermi gases at unitarity within a nonperturbative microscopic framework and investigate the system properties as functions of the mass ratio {kappa}, and the numbers N{sub 1} and N{sub 2} of heavy and light fermions. While equal-mass Fermi gases with infinitely large interspecies s-wave scattering length a{sub s} are universal, we find that unequal-mass Fermi gases are, for sufficiently large {kappa} and in the regime where Efimov physics is absent, not universal. In particular, the (N{sub 1},N{sub 2})=(2,1) and (3, 1) systems exhibit three-body and four-body resonances at {kappa}=12.314(2) and 10.4(2), respectively, as well asmore » surprisingly large finite-range effects. These findings have profound implications for ongoing experimental efforts and quantum simulation proposals that utilize unequal-mass atomic Fermi gases.« less
Two Point Space-Time Correlation of Density Fluctuations Measured in High Velocity Free Jets
NASA Technical Reports Server (NTRS)
Panda, Jayanta
2006-01-01
Two-point space-time correlations of air density fluctuations in unheated, fully-expanded free jets at Mach numbers M(sub j) = 0.95, 1.4, and 1.8 were measured using a Rayleigh scattering based diagnostic technique. The molecular scattered light from two small probe volumes of 1.03 mm length was measured for a completely non-intrusive means of determining the turbulent density fluctuations. The time series of density fluctuations were analyzed to estimate the integral length scale L in a moving frame of reference and the convective Mach number M(sub c) at different narrow Strouhal frequency (St) bands. It was observed that M(sub c) and the normalized moving frame length scale L*St/D, where D is the jet diameter, increased with Strouhal frequency before leveling off at the highest resolved frequency. Significant differences were observed between data obtained from the lip shear layer and the centerline of the jet. The wave number frequency transform of the correlation data demonstrated progressive increase in the radiative part of turbulence fluctuations with increasing jet Mach number.
Characterization of random scattering media and related information retrieval
NASA Astrophysics Data System (ADS)
Wang, Zhenyu
There has been substantial interest in optical imaging in and through random media in applications as diverse as environmental sensing and tumor detection. The rich scatter environment also leads to multiple paths or channels, which may provide higher capacity for communication. Coherent light passing through random media produces an intensity speckle pattern when imaged, as a result of multiple scatter and the imaging optics. When polarized coherent light is used, the speckle pattern is sensitive to the polarization state, depending on the amount of scatter, and such measurements provide information about the random medium. This may form the basis for enhanced imaging of random media and provide information on the scatterers themselves. Second and third order correlations over laser scan frequency are shown to lead to the ensemble averaged temporal impulse response, with sensitivity to the polarization state in the more weakly scattering regime. A new intensity interferometer is introduced that provides information about two signals incident on a scattering medium. The two coherent beams, which are not necessarily overlapping, interfere in a scattering medium. A sinusoidal modulation in the second order intensity correlation with laser scan frequency is shown to be related to the relative delay of the two incident beams. An intensity spatial correlation over input position reveals that decorrelation occurs over a length comparable to the incident beam size. Such decorrelation is also related to the amount of scatter. Remarkably, with two beams incident at different angles, the intensity correlation over the scan position has a sinusoidal modulation that is related to the incidence angle difference between the two input beams. This spatial correlation over input position thus provides information about input wavevectors.
NASA Astrophysics Data System (ADS)
Ozolinsh, Maris; Paulins, Paulis
2017-09-01
An experimental setup allowing the modeling of conditions in optical devices and in the eye at various degrees of scattering such as cataract pathology in human eyes is presented. The scattering in cells of polymer-dispersed liquid crystals (PDLCs) and ‘Smart Glass’ windows is used in the modeling experiments. Both applications are used as optical obstacles placed in different positions of the optical information flow pathway either directly on the stimuli demonstration computer screen or mounted directly after the image-formation lens of a digital camera. The degree of scattering is changed continuously by applying an AC voltage of up to 30-80 V to the PDLC cell. The setup uses a camera with 14 bit depth and a 24 mm focal length lens. Light-emitting diodes and diode-pumped solid-state lasers emitting radiation of different wavelengths are used as portable small-divergence light sources in the experiments. Image formation, optical system point spread function, modulation transfer functions, and system resolution limits are determined for such sample optical systems in student optics and optometry experimental exercises.
Rayleigh Scattering Diagnostic for Measurement of Velocity and Density Fluctuation Spectra
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.; Panda, Jayanta; Elam, Kristie A.
2002-01-01
A new molecular Rayleigh scattering based flow diagnostic is used for the first time to measure the power spectrum of gas density and radial velocity component in the plumes of high speed jets. The technique is based on analyzing the Rayleigh scattered light with a Fabry-Perot interferometer used in the static, imaging mode. The PC based data acquisition system is capable of simultaneous sampling of velocity and density at rates to 100 kHz and data record lengths to 10 million. Velocity and density power spectra and velocity-density cross spectra are presented for a subsonic jet, an underexpanded screeching jet, and for Mach 1.4 and Mach 1.8 supersonic jets. Software and hardware interfaces were developed to allow computer control of all aspects of the experiment and data acquisition.
Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurosawa, K.; Pierce, R.M.; Ushioda, S.
1986-01-15
We have made in situ measurements of attenuated total reflection (ATR) and Raman scattering from a layered structure consisting of a glass prism, a thin silver film, an MgF2 spacer, and a liquid mixture whose refractive index is matched to that of MgF2. When the incident angle of the laser beam coincides with the ATR angle, the surface-plasmon polariton (SPP) of the silver film is excited resonantly and the Raman scattering intensity of the liquid shows a maximum. The same effect is observed at the frequency of the Stokes scattered light. By measuring the decrease of the Raman scattering intensitymore » of the liquid with increase of the thickness of the MgF2 spacer layer, we have determined the decay length (l/sub d/) of the SPP field into the liquid. The measured value of l/sub d/ = 1539 A agrees with the calculated value, 1534 A.« less
Multiple scattering in planetary regoliths using first-order incoherent interactions
NASA Astrophysics Data System (ADS)
Muinonen, Karri; Markkanen, Johannes; Väisänen, Timo; Penttilä, Antti
2017-10-01
We consider scattering of light by a planetary regolith modeled using discrete random media of spherical particles. The size of the random medium can range from microscopic sizes of a few wavelengths to macroscopic sizes approaching infinity. The size of the particles is assumed to be of the order of the wavelength. We extend the numerical Monte Carlo method of radiative transfer and coherent backscattering (RT-CB) to the case of dense packing of particles. We adopt the ensemble-averaged first-order incoherent extinction, scattering, and absorption characteristics of a volume element of particles as input for the RT-CB. The volume element must be larger than the wavelength but smaller than the mean free path length of incoherent extinction. In the radiative transfer part, at each absorption and scattering process, we account for absorption with the help of the single-scattering albedo and peel off the Stokes parameters of radiation emerging from the medium in predefined scattering angles. We then generate a new scattering direction using the joint probability density for the local polar and azimuthal scattering angles. In the coherent backscattering part, we utilize amplitude scattering matrices along the radiative-transfer path and the reciprocal path, and utilize the reciprocity of electromagnetic waves to verify the computation. We illustrate the incoherent volume-element scattering characteristics and compare the dense-medium RT-CB to asymptotically exact results computed using the Superposition T-matrix method (STMM). We show that the dense-medium RT-CB compares favorably to the STMM results for the current cases of sparse and dense discrete random media studied. The novel method can be applied in modeling light scattering by the surfaces of asteroids and other airless solar system objects, including UV-Vis-NIR spectroscopy, photometry, polarimetry, and radar scattering problems.Acknowledgments. Research supported by European Research Council with Advanced Grant No. 320773 SAEMPL, Scattering and Absorption of ElectroMagnetic waves in ParticuLate media. Computational resources provided by CSC - IT Centre for Science Ltd, Finland.
How Far Is Quasar UV/Optical Variability from a Damped Random Walk at Low Frequency?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Hengxiao; Wang Junxian; Cai Zhenyi
Studies have shown that UV/optical light curves of quasars can be described using the prevalent damped random walk (DRW) model, also known as the Ornstein–Uhlenbeck process. A white noise power spectral density (PSD) is expected at low frequency in this model; however, a direct observational constraint to the low-frequency PSD slope is difficult due to the limited lengths of the light curves available. Meanwhile, quasars show scatter in their DRW parameters that is too large to be attributed to uncertainties in the measurements and dependence on the variation of known physical factors. In this work we present simulations showing that,more » if the low-frequency PSD deviates from the DRW, the red noise leakage can naturally produce large scatter in the variation parameters measured from simulated light curves. The steeper the low-frequency PSD slope, the larger scatter we expect. Based on observations of SDSS Stripe 82 quasars, we find that the low-frequency PSD slope should be no steeper than −1.3. The actual slope could be flatter, which consequently requires that the quasar variabilities should be influenced by other unknown factors. We speculate that the magnetic field and/or metallicity could be such additional factors.« less
Optical Sensors Using Stimulated Brillouin Scattering
NASA Technical Reports Server (NTRS)
Christensen, Caleb A (Inventor); Zavriyev, Anton (Inventor)
2017-01-01
A method for enhancing a sensitivity of an optical sensor having an optical cavity counter-propagates beams of pump light within the optical cavity to produce scattered light based on Stimulated Brillouin Scattering (SBS). The properties of the pump light are selected to generate fast-light conditions for the scattered light, such that the scattered light includes counter-propagating beams of fast light. The method prevents the pump light from resonating within the optical cavity, while allowing the scattered light to resonate within the optical cavity. At least portions of the scattered light are interfered outside of the optical cavity to produce a beat note for a measurement of the optical sensor. The disclosed method is particularly applicable to optical gyroscopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, K.; Yoshida, E.; Sugawa, T.
1995-08-01
It is shown for the first time to our knowledge that short-pulse amplification in high-power erbium-doped fiber amplifiers, simultaneously accompanied by stimulated Raman scattering, generates a broadband optical spectrum at high output power (270 mW). At 20 dB down from the peak the continuum extended over 329 nm, from 1427 to 1756 nm. The FWHM bandwidth was 125 nm, centered at 1650 nm. The coherence was measured to be 15 fringes, which corresponds to a 25-{mu}m coherence length. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.
Quantum Transport Theory of Optical and Plasmonic Response of Nanomaterials
NASA Astrophysics Data System (ADS)
Karimi, Farhad
The light-matter interaction is the cornerstone of photonics and optoelectronics. Advances in the fabrication techniques that has enabled the miniaturization of the semiconductor devices, along with emergence of nanomaterials such as graphene, have brought the fields of photonics and optoelectronics down to the nanoscale. Controlling the light-matter interaction at the nanoscale will impact on the development and improvement of many technologies, ranging from solar-energy harvesting to biosensing. However, the quantum confinement at the nanoscale makes nanostructured devices behave significantly differently than their larger counterparts, which turns the nanoscale control into a grand challenge. In order to pave the path toward it, we need to have a clear and accurate picture of how electrons interact with light at the nanoscale. This dissertation presents a rigorous quantum-transport method for studying the optical and plasmonic properties of nanomaterials. This method is based on a self-consistent-field approach within a Markovian master equation formalism (SCF-MMEF) coupled with the full-wave electromagnetic equations. The SCF-MMEF captures the interband electron-hole generation, as well as the interband and intraband transitions due to multiple competing scattering mechanisms, where the transition rates can have pronounced and widely differing dependencies on both carrier energy and momentum. The SCF-MMEF is applicable to any type of material with an arbitrary band dispersion and Bloch wave functions. We employ the SCF-MMEF to calculate the dielectric function, complex conductivity, and loss function for supported graphene. From the loss-function maximum, we obtain the plasmon dispersion and propagation length for different substrate types [nonpolar diamondlike carbon (DLC) and polar SiO2 and hBN], impurity densities, carrier densities, and temperatures. We find that plasmon propagation lengths are comparable on polar and nonpolar substrates and are on the order of tens of nanometers, considerably shorter than previously reported. In pursuit of finding less dissipative plasmonic materials, we calculate the dielectric function and plasmonic response of armchair (aGNRs)and zigzag (zGNRs) graphene nanoribbons via the SCF-MMEF. Supported GNRs provide almost the same interesting plasmonic features as graphene, with the added benefit of a less dissipative environment for electrons, owing to the low electronic density of states and thus lower electron scattering rates. Midinfrared plasmons in supported (3N+2)-aGNRs can propagate as far as several microns at room temperature, with 4-5-nm-wide ribbons having the longest propagation length. In other types of aGNRs and in zGNRs, the plasmon propagation length seldom exceeds 100 nm. Plasmon propagation lengths are much greater on nonpolar (e.g., diamondlike carbon) than on polar substrates (e.g., SiO2 or hBN), where electrons scatter strongly with surface optical phonons. Another advantage of the SCF-MMEF is that it can be used perturbatively to calculate the nonlinear optical response. We perturbatively employ the SCF-MMEF to calculate the GNRs optical nonlinearity. We show that graphene nanoribbons have a remarkably strong nonlinear optical response in the long-wavelength regime and over a broad frequency range, from terahertz to the nearinfrared. In the retarded regime, electron scattering has a critical effect on the optical nonlinearity of graphene nanoribbons, which cannot be captured via the commonly used relaxation-time approximation. At terahertz frequencies, where intrasubband optical transitions dominate, the strong nonlinearity (in particular, third-order Kerr nonlinearity) stems from the jagged shape of the electron energy distribution, caused by the interband electron scattering mechanisms along with the intraband inelastic scattering mechanisms. At the midinfrared to nearinfrared frequencies, where interband optical transitions dominate, the Kerr nonlinearity is significantly overestimated within the relaxation-time approximation. These findings unveil the critical effect of electron scattering on the optical nonlinearity of nanostructured graphene, and also underscore the capability of this class of materials for nonlinear nanophotonic applications.
NASA Astrophysics Data System (ADS)
Puķīte, Jānis; Wagner, Thomas
2016-05-01
We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on temperature and scattering processes.
NASA Astrophysics Data System (ADS)
Yang, Huan; Ding, Qiuyu; Li, Ben Q.; Jiang, Xinbing; Zhang, Manman
2018-02-01
Though noble metal nanoparticles have been explored to enhance the performance of the organic solar cell, effect of dielectric nanoparticles, and coupled effect of dielectric and metal nanoparticles, have rarely been reported, if at all, on organic solar cell. This work reports an experimental study on synergetic scattering of SiO2 and Ag nanoparticles in a bulk organic heterojunction for the broadband light absorption enhancement. The wavelength scale SiO2 particles were arranged as a monolayer on the surface of the solar cell to guide incident light into the active layer and prolong the effective optical length of the entered energy. This is achieved by the excitation of whispering gallery modes in SiO2 nanoparticles and by leaky mode radiation. When small size Ag particles were incorporated into the transport layer of the solar cell, synergetic scattering of SiO2 and Ag nanoparticles is formed by coupling of the whispering gallery mode of closely arranged SiO2 particles atop and collaborative localized surface plasma resonance scattering of Ag nanoparticles dispersed in the transport layer. As a result, the performance of the organic solar cell is greatly enhanced and the short-circuit current density has an improvement of 42.47%. Therefore, the organic solar cell incorporated with SiO2 and Ag particles presents a meaningful strategy to achieve high energy-harvesting performance. [Figure not available: see fulltext.
Spectroscopic method for determination of the absorption coefficient in brain tissue
NASA Astrophysics Data System (ADS)
Johansson, Johannes D.
2010-09-01
I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.
Ocular forward light scattering and corneal backward light scattering in patients with dry eye.
Koh, Shizuka; Maeda, Naoyuki; Ikeda, Chikako; Asonuma, Sanae; Mitamura, Hayato; Oie, Yoshinori; Soma, Takeshi; Tsujikawa, Motokazu; Kawasaki, Satoshi; Nishida, Kohji
2014-09-18
To evaluate ocular forward light scattering and corneal backward light scattering in patients with dry eye. Thirty-five eyes in 35 patients with dry eye and 20 eyes of 20 healthy control subjects were enrolled. The 35 dry eyes were classified into two groups according to whether superficial punctate keratopathy in the central 6-mm corneal zone (cSPK) was present or not. Ocular forward light scattering was quantified with a straylight meter. Corneal backward light scattering from the anterior, middle, and posterior corneal parts was assessed with a corneal densitometry program using the Scheimpflug imaging system. Both dry eye groups had significantly higher intraocular forward light scattering than the control group (both P<0.05). The dry eye group with cSPK had significantly higher values in anterior and total corneal backward light scattering than the other two groups. Moderate positive correlations were observed between the cSPK score and corneal backward light scattering from the anterior cornea (R=0.60, P<0.001) and corneal backward light scattering from the total cornea (R=0.54, P<0.001); however, no correlation was found between cSPK score and ocular forward light scattering (R=0.01, P=0.932). Ocular forward light scattering and corneal backward light scattering from the anterior cornea were greater in dry eyes than in normal eyes. Increased corneal backward light scattering in dry eye at least partially results from cSPK overlying the optical zone. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Design of a new Nd:YAG Thomson scattering system for MAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scannell, R.; Walsh, M. J.; Carolan, P. G.
2008-10-15
A new infrared Thomson scattering system has been designed for the MAST tokamak. The system will measure at 120 spatial points with {approx_equal}10 mm resolution across the plasma. Eight 30 Hz 1.6 J Nd:YAG lasers will be combined to produce a sampling rate of 240 Hz. The lasers will follow separate parallel beam paths to the MAST vessel. Scattered light will be collected at approximately f/6 over scattering angles ranging from 80 deg. to 120 deg. The laser energy and lens size, relative to an existing 1.2 J f/12 system, greatly increases the number of scattered photons collected per unitmore » length of laser beam. This is the third generation of this polychromator to be built and a number of modifications have been made to facilitate mass production and to improve performance. Detected scattered signals will be digitized at a rate of 1 GS/s by 8 bit analog to digital converters (ADCs.) Data may be read out from the ADCs between laser pulses to allow for real-time analysis.« less
2013-01-01
TiO2 nanoparticles (NPs) with a size of 240 nm (T240), used as a light-scattering layer, were applied on 25-nm-sized TiO2 NPs (T25) that were used as a dye-absorbing layer in the photoelectrodes of dye-sensitized solar cells (DSSCs). In addition, the incident light was concentrated via a condenser lens, and the effect of light concentration on the capacity of the light-scattering layer was systematically investigated. At the optimized focal length of the condenser lens, T25/T240 double layer (DL)-based DSSCs with the photoactive area of 0.36 cm2 were found to have the short circuit current (Isc) of 11.92 mA, the open circuit voltage (Voc) of 0.74 V, and power conversion efficiency (PCE) of approximately 4.11%, which is significantly improved when they were compared to the T25 single layer (SL)-based DSSCs without using a solar concentrator (the corresponding values were the Isc of 2.53 mA, the Voc of 0.69, and the PCE of 3.57%). Thus, the use of the optimized light harvesting structure in the photoelectrodes of DSSCs in conjunction with light concentration was found to significantly enhance the power output of DSSCs. PMID:23758633
Light transport and lasing in complex photonic structures
NASA Astrophysics Data System (ADS)
Liew, Seng Fatt
Complex photonic structures refer to composite optical materials with dielectric constant varying on length scales comparable to optical wavelengths. Light propagation in such heterogeneous composites is greatly different from homogeneous media due to scattering of light in all directions. Interference of these scattered light waves gives rise to many fascinating phenomena and it has been a fast growing research area, both for its fundamental physics and for its practical applications. In this thesis, we have investigated the optical properties of photonic structures with different degree of order, ranging from periodic to random. The first part of this thesis consists of numerical studies of the photonic band gap (PBG) effect in structures from 1D to 3D. From these studies, we have observed that PBG effect in a 1D photonic crystal is robust against uncorrelated disorder due to preservation of long-range positional order. However, in higher dimensions, the short-range positional order alone is sufficient to form PBGs in 2D and 3D photonic amorphous structures (PASS). We have identified several parameters including dielectric filling fraction and degree of order that can be tuned to create a broad isotropic PBG. The largest PBG is produced by the dielectric networks due to local uniformity in their dielectric constant distribution. In addition, we also show that deterministic aperiodic structures (DASs) such as the golden-angle spiral and topological defect structures can support a wide PBG and their optical resonances contain unexpected features compared to those in photonic crystals. Another growing research field based on complex photonic structures is the study of structural color in animals and plants. Previous studies have shown that non-iridescent color can be generated from PASs via single or double scatterings. For better understanding of the coloration mechanisms, we have measured the wavelength-dependent scattering length from the biomimetic samples. Our theoretical modeling and analysis explains why single scattering of light is dominant over multiple scattering in similar biological structures and is responsible for color generation. In collaboration with evolutionary biologists, we examine how closely-related species and populations of butterflies have evolved their structural color. We have used artificial selection on a lab model butterfly to evolve violet color from an ultra-violet brown color. The same coloration mechanism is found in other blue/violet species that have evolved their color in nature, which implies the same evolution path for their nanostructure. While the absorption of light is ubiquitous in nature and in applications, the question remains how absorption modifies the transmission in random media. Therefore, we numerically study the effects of optical absorption on the highest transmission states in a two-dimensional disordered waveguide. Our results show that strong absorption turns the highest transmission channel in random media from diffusive to ballistic-like transport. Finally, we have demonstrated lasing mode selection in a nearly circular semiconductor microdisk laser by shaping the spatial profile of the pump beam. Despite of strong mode overlap, selective pumping suppresses the competing lasing modes by either increasing their thresholds or reducing their power slopes. As a result, we can switch both the lasing frequency and the output direction. This powerful technique can have potential application as an on-chip tunable light source.
NASA Astrophysics Data System (ADS)
Pishdast, Masoud; Ghasemi, Seyed Abolfazl; Yazdanpanah, Jamal Aldin
2017-10-01
The role of plasma density scale length on two short and long laser pulse propagation and scattering in under dense plasma have been investigated in relativistic regime using 1 D PIC simulation. In our simulation, different density scale lengths and also two short and long pulse lengths with temporal pulse duration τL = 60 fs and τL = 300 fs , respectively have been used. It is found that laser pulse length and density scale length have considerable effects on the energetic electron generation. The analysis of total radiation spectrum reveals that, for short laser pulses and with reducing density scale length, more unstable electromagnetic modes grow and strong longitudinal electric field generates which leads to the generation of more energetic plasma particles. Meanwhile, the dominant scattering mechanism is Raman scattering and tends to Thomson scattering for longer laser pulse.
Zhou, Yu; Wang, Xinyu; Wang, Hai; Song, Yeping; Fang, Liang; Ye, Naiqing; Wang, Linjiang
2014-03-28
Anatase TiO2 mesocrystals with a Wulff construction of nearly 100% exposed {101} facets were successfully synthesized by a facile, green solvothermal method. Their morphology, and crystal structure are characterized by powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Accordingly, a possible growth mechanism of anatase TiO2 mesocrystals is elucidated in this work. The as-prepared single anatase TiO2 mesocrystal's mean center diameter is about 500 nm, and the length is about 1 μm. They exhibit high light adsorbance, high reflectance and low transmittance in the visible region due to the unique nearly 100% exposed {101} facets. When utilized as the scattering layer in dye-sensitized solar cells (DSSCs), such mesocrystals effectively enhanced light harvesting and led to an increase of the photocurrent of the DSSCs. As a result, by using an anatase TiO2 mesocrystal film as a scattering overlayer of a compact commercial P25 TiO2 nanoparticle film, the double layered DSSCs show a power conversion efficiency of 7.23%, indicating a great improvement compared to the DSSCs based on a P25 film (5.39%) and anatase TiO2 mesocrystal films, respectively. The synergetic effect of P25 and the mesocrystals as well as the latters unique feature of a Wulff construction of nearly 100% exposed (101) facets are probably responsible for the enhanced photoelectrical performance. In particular, we explore the possibility of the low surface area and exposed {101} facets as an efficient light scattering layer of DSSCs. Our work suggests that anatase TiO2 mesocrystals with the Wulff construction is a promising candidate as a superior scattering material for high-performance DSSCs.
Suits, Michael D L; Pluvinage, Benjamin; Law, Adrienne; Liu, Yan; Palma, Angelina S; Chai, Wengang; Feizi, Ten; Boraston, Alisdair B
2014-09-26
For a subset of pathogenic microorganisms, including Streptococcus pneumoniae, the recognition and degradation of host hyaluronan contributes to bacterial spreading through the extracellular matrix and enhancing access to host cell surfaces. The hyaluronate lyase (Hyl) presented on the surface of S. pneumoniae performs this role. Using glycan microarray screening, affinity electrophoresis, and isothermal titration calorimetry we show that the N-terminal module of Hyl is a hyaluronan-specific carbohydrate-binding module (CBM) and the founding member of CBM family 70. The 1.2 Å resolution x-ray crystal structure of CBM70 revealed it to have a β-sandwich fold, similar to other CBMs. The electrostatic properties of the binding site, which was identified by site-directed mutagenesis, are distinct from other CBMs and complementary to its acidic ligand, hyaluronan. Dynamic light scattering and solution small angle x-ray scattering revealed the full-length Hyl protein to exist as a monomer/dimer mixture in solution. Through a detailed analysis of the small angle x-ray scattering data, we report the pseudoatomic solution structures of the monomer and dimer forms of the full-length multimodular Hyl. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Structure, rheology and shear alignment of Pluronic block copolymer mixtures.
Newby, Gemma E; Hamley, Ian W; King, Stephen M; Martin, Christopher M; Terrill, Nicholas J
2009-01-01
The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, due to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions of cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression.
Effect of surface topographic features on the optical properties of skin: a phantom study
NASA Astrophysics Data System (ADS)
Liu, Guangli; Chen, Jianfeng; Zhao, Zuhua; Zhao, Gang; Dong, Erbao; Chu, Jiaru; Xu, Ronald X.
2016-10-01
Tissue-simulating phantoms are used to validate and calibrate optical imaging systems and to understand light transport in biological tissue. Light propagation in a strongly turbid medium such as skin tissue experiences multiple scattering and diffuse reflection from the surface. Surface roughness introduces phase shifts and optical path length differences for light which is scattered within the skin tissue and reflected from the surface. In this paper, we study the effect of mismatched surface roughness on optical measurement and subsequent determination of optical properties of skin tissue. A series of phantoms with controlled surface features and optical properties corresponding to normal human skin are fabricated. The fabrication of polydimethylsiloxane (PDMS) phantoms with known surface roughness follows a standard soft lithography process. Surface roughness of skin-simulating phantoms are measured with Bruker stylus profiler. The diffuse reflectance of the phantom is validated by a UV/VIS spectrophotometer. The results show that surface texture and roughness have considerable influence on the optical characteristics of skin. This study suggests that surface roughness should be considered as an important contributing factor for the determination of tissue optical properties.
Micellar Self-Assembly of Recombinant Resilin-/Elastin-Like Block Copolypeptides.
Weitzhandler, Isaac; Dzuricky, Michael; Hoffmann, Ingo; Garcia Quiroz, Felipe; Gradzielski, Michael; Chilkoti, Ashutosh
2017-08-14
Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Bennett N., E-mail: bennett.walker@fda.hhs.gov; Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993; James, Robert H.
Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearlymore » 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.« less
NASA Astrophysics Data System (ADS)
Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun
2014-05-01
Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.
Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin
2013-01-01
Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. PMID:24156077
Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin
2013-01-01
Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, F.G.A.; Camacho, F.G.; Perez, J.A.S.
1997-09-05
A mathematical model to estimate the solar irradiance profile and average light intensity inside a tubular photobioreactor under outdoor conditions is proposed, requiring only geographic, geometric, and solar position parameters. First, the length of the path into the culture traveled by any direct or disperse ray of light was calculated as the function of three variables: day of year, solar hour, and geographic latitude. Then, the phenomenon of light attenuation by biomass was studied considering Lambert-Beer`s law (only considering absorption) and the monodimensional model of Cornet et al. (1900) (considering absorption and scattering phenomena). Due to the existence of differentialmore » wavelength absorption, none of the literature models are useful for explaining light attenuation by the biomass. Therefore, an empirical hyperbolic expression is proposed. The equations to calculate light path length were substituted in the proposed hyperbolic expression, reproducing light intensity data obtained in the center of the loop tubes. The proposed model was also likely to estimate the irradiance accurately at any point inside the culture. Calculation of the local intensity was thus extended to the full culture volume in order to obtain the average irradiance, showing how the higher biomass productivities in a Phaeodactylum tricornutum UTEX 640 outdoor chemostat culture could be maintained by delaying light limitation.« less
Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik
2010-12-02
In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D(NSE) measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D(DLS). This behavior contrasts with neutral polymer solutions. With increasing salt content, D(DLS) approaches D(NSE), which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hückel length.
Suppression of sun interference in the star sensor baffling stray light by total internal reflection
NASA Astrophysics Data System (ADS)
Kawano, Hiroyuki; Shimoji, Haruhiko; Yoshikawa, Shoji; Miyatake, Katsumasa; Hama, Kazumori; Nakamura, Shuji
2005-09-01
We have developed a star sensor as an experimental device onboard the SERVIS-1 satellite launched in October 2003. The in-orbit data have verified its fundamental performance. One of the advantages of our star sensor is that the baffle has a small length of 120 mm instead of 182 mm in the conventional two-stage baffle design. The key concepts for light shielding are total internal reflection phenomena inside a nearly half sphere (NHS) lens and scattering light control by gloss black paint. However, undesirable background noise by the sun outside of the field of view (FOV) was observed in the corner of the FOV in the orbital experiment. Ray trace simulations revealed that slight scattering light on the specular baffle wall entered the NHS lens and reached the corner of the image sensor through the multi-reflection path inside the lens. It was found that the stray light path can be shielded effectively if the diameter of the aperture under the NHS lens was reduced. We redesigned the baffle and evaluated the light shielding ability with our sun interference test facility on the ground, and confirmed that the stray light was reduced below the acceptable level. As a result, the light shielding technique which we have proposed was proved to be effective for a small-size baffle. The redesigned star sensor is planned to be installed as a main attitude sensor for the SERVIS-2 satellite scheduled to be launched in February 2008.
Competitive Self-Assembly Manifests Supramolecular Darwinism in Soft-Oxometalates
NASA Astrophysics Data System (ADS)
Das, Santu; Kumar, Saurabh; Mallick, Apabrita; Roy, Soumyajit
2015-09-01
Topological transformation manifested in inorganic materials shows manifold possibilities. In our present work, we show a clear topological transformation in a soft-oxometalate (SOM) system which was formed from its polyoxometalate (POM) precursor [PMo12@Mo72Fe30]. This topological transformation was observed due to time dependent competitive self-assembly of two different length scale soft-oxometalate moieties formed from this two-component host-guest reaction. We characterized different morphologies by scanning electron microscopy, electron dispersive scattering spectroscopy, dynamic light scattering, horizontal attenuated total reflection-infrared spectroscopy and Raman spectroscopy. The predominant structure is selected by its size in a sort of supramolecular Darwinian competition in this process and is described here.
Non-label bioimaging utilizing scattering lights
NASA Astrophysics Data System (ADS)
Watanabe, Tomonobu M.; Ichimura, Taro; Fujita, Hideaki
2017-04-01
Optical microscopy is an indispensable tool for medical and life sciences. Especially, the microscopes utilized with scattering light offer a detailed internal observation of living specimens in real time because of their non-labeling and non-invasive capability. We here focus on two kinds of scattering lights, Raman scattering light and second harmonic generation light. Raman scattering light includes the information of all the molecular vibration modes of the molecules, and can be used to distinguish types and/or state of cell. Second harmonic generation light is derived from electric polarity of proteins in the specimen, and enables to detect their structural change. In this conference, we would like to introduce our challenges to extract biological information from those scattering lights.
Organic electroluminescent devices having improved light extraction
Shiang, Joseph John [Niskayuna, NY
2007-07-17
Organic electroluminescent devices having improved light extraction include a light-scattering medium disposed adjacent thereto. The light-scattering medium has a light scattering anisotropy parameter g in the range from greater than zero to about 0.99, and a scatterance parameter S less than about 0.22 or greater than about 3.
Zhang, Jingyan; Ge, Zhishen; Jiang, Xiaoze; Hassan, P A; Liu, Shiyong
2007-12-15
The kinetics and mechanism of sphere-to-rod transitions of sodium alkyl sulfate micelles induced by hydrotropic salt, p-toluidine hydrochloride (PTHC), were investigated by stopped-flow with light scattering detection. Spherical sodium dodecyl sulfate (SDS) micelles transform into short ellipsoidal shapes at low salt concentrations ([PTHC]/[SDS], chi(PTHC)=0.3 and 0.4). Upon stopped-flow mixing aqueous solutions of spherical SDS micelles with PTHC, the scattered light intensity gradually increases with time. Single exponential fitting of the dynamic traces leads to characteristic relaxation time, tau(g), for the growth process from spherical to ellipsoidal micelles, and it increases with increasing SDS concentrations. This suggests that ellipsoidal micelles might be produced by successive insertion of unimers into spherical micelles, similar to the case of formation of spherical micelles as suggested by Aniansson-Wall (A-W) theory. At chi(PTHC) > or = 0.5, rod-like micelles with much higher axial ratio form. The scattered light intensity exhibits an initially abrupt increase and then levels off. The dynamic curves can be well fitted with single exponential functions, and the obtained tau(g) decreases with increasing SDS concentration. Thus, the growth from spherical to rod-like micelles might proceed via fusion of spherical micelles, in agreement with mechanism proposed by Ikeda et al. At chi(PTHC)=0.3 and 0.6, the apparent activation energies obtained from temperature dependent kinetic studies for the micellar growth are 40.4 and 3.6 kJ/mol, respectively. The large differences between activation energies for the growth from spherical to ellipsoidal micelles at low chi(PTHC) and the sphere-to-rod transition at high chi(PTHC) further indicate that they should follow different mechanisms. Moreover, the sphere-to-rod transition kinetics of sodium alkyl sulfate with varying hydrophobic chain lengths (n=10, 12, 14, and 16) are also studied. The longer the carbon chain lengths, the slower the sphere-to-rod transition.
NASA Astrophysics Data System (ADS)
Sharma, Jayasree Roy; Mitra, Suchismita; Ghosh, Hemanta; Das, Gourab; Bose, Sukanta; Mandal, Sourav; Mukhopadhyay, Sumita; Saha, Hiranmay; Barua, A. K.
2018-02-01
In order to increase the stabilized efficiencies of thin film silicon (TFS) solar cells it is necessary to use better light management techniques. Texturization by etching of sputtered aluminum doped zinc oxide (Al:ZnO or AZO) films has opened up a variety of promises to optimize light trapping schemes. RF sputtered AZO film has been etched by potassium hydroxide (KOH). A systematic study of etching conditions such as etchant concentration, etching time, temperature management etc. have been performed in search of improved electrical and optical performances of the films. The change in etching conditions has exhibited a noticeable effect on the structure of AZO films for which the light trapping effect differs. After optimizing the etching conditions, nanorods have been found on the substrate. Hence, nanorods have been developed only by chemical etching, rather than the conventional development method (hydrothermal method, sol-gel method, electrolysis method etc.). The optimized etched substrate has 82% transmittance, moderate haze in the visible range and sheet resistance ∼13 (Ω/□). The developed nanorods (optimized etched substrate) provide better light trapping within the cell as the optical path length has been increased by using the nanorods. This provides an effect on carrier collection as well as the efficiency in a-Si solar cells. Finite difference time domain (FDTD) simulations have been performed to observe the light trapping by AZO nanorods formed on sputtered AZO films. For a p-i-n solar cell developed on AZO nanorods coated with sputtered AZO films, it has been found through simulations that, the incident light is back scattered into the absorbing layer, leading to an increase in photogenerated current and hence higher efficiency. It has been found that, the light that passes through the nanorods is not getting absorbed and maximum amount of light is back scattered towards the solar cell.
NASA Astrophysics Data System (ADS)
Nien, Chun; Li, Yi-Hsuan; Su, Vin-Cent; Kuan, Chieh-Hsiung
2017-02-01
Surface-enhanced Raman scattering (SERS) is a powerful technique for trace chemical analysis and single molecule detection in the application of biochemical monitoring and food safety due to its ability to enhance the Raman scattering of molecules near the metallic surface or nanostructures. Here, we present a comprehensive study of the SERS enhancement by the periodically nanostructured surface, where the thin film of silver is deposited onto the surface, except the sidewall of posts, of 1-D lamellar gratings with varying pitch to forming metal-dielectric composite nanostructures. By enhancing the localized and surface-propagating mode in the vicinity of the concaves, the SERS signal can be improved by amplifying the intensity of electric field and increasing the optical path length of the incident light. Experimental investigations show that the enhancement factor can be manipulated by varying the polarization of incident light and the pitch size of gratings. To demonstrate the SERS effects of the proposed structures, thin layers of benzoic acid, which is commonly used as a food preservative, are deposited on the SERS substrates by spin-coating a solution of benzoic acid and dried at room temperature. A Confocal Raman microscope with a 532 nm laser source is used to illuminate light and measure the Raman spectrum of benzoic acid. We demonstrate the Raman signal of benzoic acid can be enhanced on the order of 102 on the SERS substrates.
2016-04-01
polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are...The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are reported. The technique is demonstrated...cell filled with polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image
Critical fluid light scattering
NASA Technical Reports Server (NTRS)
Gammon, Robert W.
1988-01-01
The objective is to measure the decay rates of critical density fluctuations in a simple fluid (xenon) very near its liquid-vapor critical point using laser light scattering and photon correlation spectroscopy. Such experiments were severely limited on Earth by the presence of gravity which causes large density gradients in the sample when the compressibility diverges approaching the critical point. The goal is to measure fluctuation decay rates at least two decades closer to the critical point than is possible on earth, with a resolution of 3 microK. This will require loading the sample to 0.1 percent of the critical density and taking data as close as 100 microK to the critical temperature. The minimum mission time of 100 hours will allow a complete range of temperature points to be covered, limited by the thermal response of the sample. Other technical problems have to be addressed such as multiple scattering and the effect of wetting layers. The experiment entails measurement of the scattering intensity fluctuation decay rate at two angles for each temperature and simultaneously recording the scattering intensities and sample turbidity (from the transmission). The analyzed intensity and turbidity data gives the correlation length at each temperature and locates the critical temperature. The fluctuation decay rate data from these measurements will provide a severe test of the generalized hydrodynamic theories of transport coefficients in the critical regions. When compared to equivalent data from binary liquid critical mixtures they will test the universality of critical dynamics.
Microinhomogeneities of glasses of the system PbO-SiO2
NASA Astrophysics Data System (ADS)
Golubkov, V. V.; Bogdanov, V. N.; Pakhnin, A. Ya.; Solovyev, V. A.; Zhivaeva, E. V.; Kabanov, V. O.; Yanush, O. V.; Nemilov, S. V.; Kisliuk, A.; Soltwisch, M.; Quitmann, D.
1999-03-01
Small angle x-ray scattering (SAXS) and Rayleigh-Mandelstam-Brillouin (RMB) light scattering as well as ultrasonic sound velocities have been studied in glasses of the system PbO-SiO2 which has an unusually wide range of glass forming ability. The results of scattering are compared with calculations based on the concept of frozen-in equilibrium thermal fluctuations as the origin of static microinhomogeneities (MIH) in glasses. MIH of compositions seem to be the main source of scattering, and the calculations are found to be in qualitative agreement with both SAXS and RMB measurements. Glasses with PbO content above 40 mol.% are more homogeneous than ideal solutions of PbO and SiO2 whereas MIH in glasses with smaller PbO content are comparable with those expected for ideal solutions of PbO and SiO2. In the latter range SAXS measurements indicate the existence of medium-range order with correlation length of 5-7 Å.
Thin film solar cell design based on photonic crystal and diffractive grating structures.
Mutitu, James G; Shi, Shouyuan; Chen, Caihua; Creazzo, Timothy; Barnett, Allen; Honsberg, Christiana; Prather, Dennis W
2008-09-15
In this paper we present novel light trapping designs applied to multiple junction thin film solar cells. The new designs incorporate one dimensional photonic crystals as band pass filters that reflect short light wavelengths (400 - 867 nm) and transmit longer wavelengths(867 -1800 nm) at the interface between two adjacent cells. In addition, nano structured diffractive gratings that cut into the photonic crystal layers are incorporated to redirect incoming waves and hence increase the optical path length of light within the solar cells. Two designs based on the nano structured gratings that have been realized using the scattering matrix and particle swarm optimization methods are presented. We also show preliminary fabrication results of the proposed devices.
Apparatus for measuring particle properties
Rader, Daniel J.; Castaneda, Jaime N.; Grasser, Thomas W.; Brockmann, John E.
1998-01-01
An apparatus for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle's size can be determined from the intensity of the light scattered. The particle's velocity can be determined from the elapsed time between various intensities of the light scattered.
Light Scattering and Absorption Studies of Sickle Cell Hemoglobin
NASA Astrophysics Data System (ADS)
Kim-Shapiro, Daniel
1997-11-01
The use of physical techniques has been very important in understanding the pathophysiology of sickle cell disease. In particular, light scattering and absorption studies have been used to measure the kinetics of sickle cell hemoglobin polymerization and depolymerization (melting). The theory of sickle cell polymerization that has been derived and tested by these methods has not only led to an increased understanding of the pathophysiology of the disease but has also led to improved treatment strategies. Sickle cell disease effects about 1 out of 600 people of African descent born in the United States. The disease is caused by a mutant form of hemoglobin (the oxygen transporting molecule in the blood), hemoglobin S (HbS), which differs from normal adult hemoglobin by the substitution of a single amino acid for another. The polymerization of HbS, which occurs under conditions of low oxygen pressure, causes distortion and increased rigidity of the sickle red blood cell that leads to blockage of the capillaries and a host of resulting complications. The disease is associated with tissue damage, severe painful crises and a high degree of mortality. Light scattering studies of purified HbS and whole cells (conducted by F.A. Ferrone, J. Hofrichter, W.A. Eaton, and their associates) have been used to determine the mechanism of HbS polymerization. Polymerization will generally not occur when the hemoglobin is in an oxygen-rich environment. The question is, when HbS is rapidly deoxygenated (as it is when going from the lungs to the tissues) what is the kinetics of polymerization? Photolysis methods were used to rapidly deoxygenate HbS and light scattering was used as a function of time to measure the kinetics of polymerization. Polarized light scattering may be a more effective way to measure polymer content than total intensity light scattering. It was found that no polymerization occurs during a period of time called the delay time and subsequent polymerization occurs exponentially. The length of this delay time depends on the concentration of deoxy-HbS. The kinetics of polymerization was described by a novel double nucleation mechanism. These light scattering studies led to the understanding that many cells could travel through oxygen deficient tissue without sickling due to the delay time in polymerization. Some treatment strategies involve prolonging the delay time. Less work has been done in trying to understand polymer melting. Such investigations are important in order to determine whether polymers that reach the lungs melt before they enter the oxygen deficient tissues. I have initially addressed this problem by exploring the kinetics of oxygen binding to the polymers. These studies were conducted using time-resolved linear dichroism following laser photolysis. Preliminary studies in my laboratory indicate that polymer melting is slow enough to be an important consideration in understanding sickle cell disease. One of the most common therapies for sickle cell disease that is currently used involves administering the drug, hydroxyurea. The mechanism by which this drug benefits patients is not fully understood. One of its mechanisms (as determined by light scattering and absorption studies) involves increasing the delay time for polymerization.
Strong light absorption capability directed by structured profile of vertical Si nanowires
NASA Astrophysics Data System (ADS)
Chaliyawala, Harsh A.; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit
2017-11-01
Si nanowire arrays (SiNWAs) with random fractal geometry was fabricated using fast, mask-less, non-lithographic and facile approach by incorporating metal assisted electroless etching of n-type Si (111) substrates. The FESEM images demonstrate the formation of nano-porous surfaces that provide effective path for the incoming light to get trapped into the cavity of nanowires. The length of NWs increases from ∼1 to 10 μm with increase in the etching time having a diameter in the range of ∼25-82 nm. A transformation from zero to first order kinetics after a prolonged etching has been determined. The synthesized SiNWAs show high light trapping properties, including a maximum photon absorption across the entire visible and near IR range below the band gap of Si. The SiNWAs etched for 15 min exhibit extremely low specular and total reflectance of ∼0.2% and 4.5%, respectively over a broadband of wavelength. The reduction in the reflection loss is accompanied with the gradient of refractive index from air to Si substrate as well as due to the sub-wavelength structures, which manifests the light scattering effect. The COMSOL multiphysics simulation has been performed to study the high broadband light absorption capability in terms of the strong localized light field confinement by varying the length of the nanowire. Moreover, the SiNWs induces the dewetting ability at the solid/liquid interface and enhances the superhydrophobicity. Furthermore, a maximum length scale of 100-200 nm manifests a strong heterogeneity along the planar section of the surface of SiNWs. The study thus provides an insight on the light propagation into the random fractal geometries of Si nanowires. These outstanding properties should contribute to the structural optimization of various optoelectronic and photonic devices.
Intense laser pulse propagation in ionizing gases
NASA Astrophysics Data System (ADS)
Bian, Zhigang
2003-10-01
There have been considerable technological advances in the development of high intensity, short pulse lasers. However, high intensity laser pulses are subject to various laser-plasma instabilities. In this thesis, a theory is developed to study the scattering instability that occurs when a laser pulse propagates through and ionizes a gas. The instability is due to the intensity dependence of the ionization rate, which leads to a transversely structured free electron density. The instability is convective in the frame of laser pulse, but can have a relatively short growth length scaling as Lg˜k0/k2p where k0 is the laser wave number, k2p=w2p/c 2 and op is the plasma frequency. The most unstable perturbations correspond to a scattering angle for which the transverse wave number is around the plasma wave number, k p. The scattered light is frequency upshifted. The comparison between simple analytic theory and numerical simulation shows good agreement. Instabilities can drastically change the shape of the laser pulse and reduce the propagation distance of the laser pulse. Therefore, we change the propagation conditions and reduce the laser-plasma interaction possibilities in applications which require an interaction length well in excess of the Rayleigh length of the laser beam. One of the methods is to use a capillary to propagate the laser pulse. We studied the propagation of short pulses in a glass capillary. The propagation is simulated using the code WAKE, which has been modified to treat the case in which the simulation boundary is the wall of a capillary. Parameters that were examined include transmission efficiency of the waveguides as a function of gas pressure, laser intensity, and waveguide length, which is up to 40 Rayleigh lengths. The transmission efficiency decreases with waveguide length due to energy loss through the side-walls of the capillary. The loss increases with gas pressure due to ionization of the gas and scattering of the radiation. The intensity on the inner wall of the capillary is monitored to assure realistic simulations, consistent with optical breakdown of the waveguide material. Generally speaking the intensity on the wall increases with gas pressure due to the scattering of the lowest order capillary mode. Finally, the high order harmonic generation (HHG) in a capillary is investigated. The phase matching condition is studied to increase the conversion efficiency for high order harmonics generation. The phase matching occurs as a balance of the dispersion of the neutral gas, plasma and the waveguide.
Broadband near-field infrared spectroscopy with a high temperature plasma light source.
Lahneman, D J; Huffman, T J; Xu, Peng; Wang, S L; Grogan, T; Qazilbash, M M
2017-08-21
Scattering-type scanning near-field optical microscopy (S-SNOM) has enormous potential as a spectroscopy tool in the infrared spectral range where it can probe phonon resonances and carrier dynamics at the nanometer lengths scales. However, its applicability is limited by the lack of practical and affordable table-top light sources emitting intense broadband infrared radiation in the 100 cm -1 to 2,500 cm -1 spectral range. This paper introduces a high temperature plasma light source that is both ultra-broadband and has much more radiant power in the infrared spectral range than conventional, table-top thermal light sources such as the globar. We implement this plasma lamp in our near-field optical spectroscopy set up and demonstrate its capability as a broadband infrared nano-spectroscopy light source by obtaining near-field infrared amplitude and phase spectra of the phonon resonances of SiO 2 and SrTiO 3 .
Scatter Measurements Made With Ultraviolet Light
NASA Astrophysics Data System (ADS)
Anthon, Erik W.
1985-09-01
The quality of optical surfaces is generally evaluated by how much light (normally visible light) is scattered by the surface. Most optical glasses and many coating materials are completely opaque to ultraviolet light (253.7 nm). Ultraviolet light tends to scatter much more than visible light. Scatter measurements made with ultraviolet light are therefore very sensitive and the scatter from second surfaces and from the interior (bulk) of the optical material is eliminated by the opacity. A novel scattermeter that operates with ultraviolet light has been developed. The construction and operation of this scattermeter will be described. Cleaning soon becomes the limiting factor when measuring the surfaces with very low level of scatter. Sensitivity to repeated cleaning has been investigated. Different surfaces are compared and uniformity of surfaces is measured by mapping a surface area with an x-y stage. Polished glass surfaces generally have much higher scatter than natural glass surfaces (fire polished, drawn or floated surfaces). Very low scatter levels have been found on thin drawn glass.
NASA Astrophysics Data System (ADS)
Tseng, Snow H.; Chang, Shih-Hui
2018-04-01
Here we present a numerical simulation to analyze the effect of scattering on focusing light into closely-spaced twin peaks. The pseudospectral time-domain (PSTD) is implemented to model continuous-wave (CW) light propagation through a scattering medium. Simulations show that CW light can propagate through a scattering medium and focus into closely-spaced twin peaks. CW light of various wavelengths focusing into twin peaks with sub-diffraction spacing is simulated. In advance, light propagation through scattering media of various number densities is simulated to decipher the dependence of CW light focusing phenomenon on the scattering medium. The reported simulations demonstrate the feasibility of focusing CW light into twin peaks with sub-diffraction dimensions. More importantly, based upon numerical solutions of Maxwell’s equations, research findings show that the sub-diffraction focusing phenomenon can be achieved with scarce or densely-packed scattering media.
Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells
NASA Astrophysics Data System (ADS)
Park, Yongkeun; Diez-Silva, Monica; Fu, Dan; Popescu, Gabriel; Choi, Wonshik; Barman, Ishan; Suresh, Subra; Feld, Michael S.
2010-03-01
We present the light scattering of individual Plasmodium falciparum-parasitized human red blood cells (Pf-RBCs), and demonstrate progressive alterations to the scattering signal arising from the development of malaria-inducing parasites. By selectively imaging the electric fields using quantitative phase microscopy and a Fourier transform light scattering technique, we calculate the light scattering maps of individual Pf-RBCs. We show that the onset and progression of pathological states of the Pf-RBCs can be clearly identified by the static scattering maps. Progressive changes to the biophysical properties of the Pf-RBC membrane are captured from dynamic light scattering.
Exploiting Universality in Atoms with Large Scattering Lengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braaten, Eric
2012-05-31
The focus of this research project was atoms with scattering lengths that are large compared to the range of their interactions and which therefore exhibit universal behavior at sufficiently low energies. Recent dramatic advances in cooling atoms and in manipulating their scattering lengths have made this phenomenon of practical importance for controlling ultracold atoms and molecules. This research project was aimed at developing a systematically improvable method for calculating few-body observables for atoms with large scattering lengths starting from the universal results as a first approximation. Significant progress towards this goal was made during the five years of the project.
A general purpose wideband optical spatial frequency spectrum analyzer
NASA Technical Reports Server (NTRS)
Ballard, G. S.; Mellor, F. A.
1972-01-01
The light scattered at various angles by a transparent media is studied. An example of these applications is the optical Fourier spectrum measurement resulting from various spatial frequencies which were recorded on a photographic emulsion. A method for obtaining these measurements consists of illuminating the test object with parallel monochromatic light. A stationary lens, placed in the resulting wavefield at a distance of one focal length from the object, will focus parallel waves emanating from the test object at a point lying in the focal plane of the lens. A light detector with a small filtering aperture is then used to measure the intensity variation of the light in the focal or transform plane of the lens. Such measurements require the use of a lens which is highly corrected for all of the common aberrations except chromatic aberration.
Novel cylindrical illuminator tip for ultraviolet light delivery
NASA Astrophysics Data System (ADS)
Shangguan, HanQun; Haw, Thomas E.; Gregory, Kenton W.; Casperson, Lee W.
1993-06-01
The design, processing, and sequential testing of a novel cylindrical diffusing optical fiber tip for ultraviolet light delivery is described. This device has been shown to uniformly (+/- 15%) illuminate angioplasty balloons, 20 mm in length, that are used in an experimental photochemotherapeutic treatment of swine intimal hyperplasia. Our experiments show that uniform diffusing tips of < 400 micron diameter can be reliably constructed for this and other interstitial applications. Modeling results indicate that this design is scalable to smaller diameters. The diffusing tips are made by stripping the protective buffer and etching away the cladding over a length of 20 mm from the fiber tip and replacing it with a thin layer of optical epoxy mixed with Al2O3 powder. To improve the uniformity and ease of fabrication, we have evaluated a new device configuration where the tip is etched into a modified conical shape, and the distal end face is polished and then coated with an optically opaque epoxy. This is shown to uniformly scatter approximately 70% of the light launched into the fiber without forward transmission.
A fiber-coupled incoherent light source for ultra-precise optical trapping
NASA Astrophysics Data System (ADS)
Menke, Tim; Schittko, Robert; Mazurenko, Anton; Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Kaufman, Adam M.; Greiner, Markus
2017-04-01
The ability to engineer arbitrary optical potentials using spatial light modulation has opened up exciting possibilities in ultracold quantum gas experiments. Yet, despite the high trap quality currently achievable, interference-induced distortions caused by scattering along the optical path continue to impede more sensitive measurements. We present a design of a high-power, spatially and temporally incoherent light source that bears the potential to reduce the impact of such distortions. The device is based on an array of non-lasing semiconductor emitters mounted on a single chip whose optical output is coupled into a multi-mode fiber. By populating a large number of fiber modes, the low spatial coherence of the input light is further reduced due to the differing optical path lengths amongst the modes and the short coherence length of the light. In addition to theoretical calculations showcasing the feasibility of this approach, we present experimental measurements verifying the low degree of spatial coherence achievable with such a source, including a detailed analysis of the speckle contrast at the fiber end. We acknowledge support from the National Science Foundation, the Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program and an Army Research Office MURI program.
Apparatus for measuring particle properties
Rader, D.J.; Castaneda, J.N.; Grasser, T.W.; Brockmann, J.E.
1998-08-11
An apparatus is described for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle`s size can be determined from the intensity of the light scattered. The particle`s velocity can be determined from the elapsed time between various intensities of the light scattered. 11 figs.
Minami, Keiichiro; Maruyama, Yoko; Mihashi, Toshifumi; Miyata, Kazunori; Oshika, Tetsuro
2017-03-01
To evaluate the influence of increases in light scattering on intraocular lens (IOL) surfaces on paraxial forward scattering using goniophotometry and Hartmann-Shack wavefront aberrometry. Surface light scattering was reproduced experimentally by acceleratedly aging 4 intraocular lenses by 0, 3, 5, and 10 years each. Light scattering from both IOL surfaces was measured using Scheimpflug photography. The paraxial forward scattering from the aged IOLs was measured using a goniophotometer with a halogen light source (wavelength: 350-850 nm) and telecentric optics, and changes in the maximum intensity and full width at 10% of maximum intensity (FW10%) were evaluated. The influences on the retina image were examined using a Hartmann-Shack aberrometer (wavelength: 840 nm). The contrast and difference from the point spread function of the central centroids were evaluated. The mean surface light scattering from both IOL surfaces ranged from 30.0 to 118.3 computer compatible tape (CCT) and increased with each aging year. Evaluations using the goniophotometer and the Hartmann-Shack aberrometer showed no significant change in the paraxial forward scattering with the aging year (P > .45, Kruskal-Wallis test), and no association with the surface light scattering intensity was found (P > .75, Spearman rank correlation). This experimental study using aged IOLs demonstrated that surface light scattering does not influence paraxial forward scattering.
Laser Light Scattering with Multiple Scattering Suppression Used to Measure Particle Sizes
NASA Technical Reports Server (NTRS)
Meyer, William V.; Tin, Padetha; Lock, James A.; Cannell, David S.; Smart, Anthony E.; Taylor, Thomas W.
1999-01-01
Laser light scattering is the technique of choice for noninvasively sizing particles in a fluid. The members of the Advanced Technology Development (ATD) project in laser light scattering at the NASA Lewis Research Center have invented, tested, and recently enhanced a simple and elegant way to extend the concentration range of this standard laboratory particle-sizing technique by several orders of magnitude. With this technique, particles from 3 nm to 3 mm can be measured in a solution. Recently, laser light scattering evolved to successfully size particles in both clear solutions and concentrated milky-white solutions. The enhanced technique uses the property of light that causes it to form tall interference patterns at right angles to the scattering plane (perpendicular to the laser beam) when it is scattered from a narrow laser beam. Such multiple-scattered light forms a broad fuzzy halo around the focused beam, which, in turn, forms short interference patterns. By placing two fiber optics on top of each other and perpendicular to the laser beam (see the drawing), and then cross-correlating the signals they produce, only the tall interference patterns formed by singly scattered light are detected. To restate this, unless the two fiber optics see the same interference pattern, the scattered light is not incorporated into the signal. With this technique, only singly scattered light is seen (multiple-scattered light is rejected) because only singly scattered light has an interference pattern tall enough to span both of the fiber-optic pickups. This technique is simple to use, easy to align, and works at any angle. Placing a vertical slit in front of the signal collection fibers enhanced this approach. The slit serves as an optical mask, and it significantly shortens the time needed to collect good data by selectively masking out much of the unwanted light before cross-correlation is applied.
Bacterial Identification Using Light Scattering Measurements: a Preliminary Report
NASA Technical Reports Server (NTRS)
Wilkins, J. R.
1971-01-01
The light scattering properties of single bacterial cells were examined as a possible means of identification. Three species were studied with streptococcus faecalis exhibiting a unique pattern; the light-scattering traces for staphylococcus aureus and escherichia coli were quite similar although differences existed. Based on preliminary investigations, the light scattering approach appeared promising with additional research needed to include a wide variety of bacterial species, computer capability to handle and analyze data, and expansion of light scattering theory to include bacterial cells.
Atom-dimer scattering in a heteronuclear mixture with a finite intraspecies scattering length
NASA Astrophysics Data System (ADS)
Gao, Chao; Zhang, Peng
2018-04-01
We study the three-body problem of two ultracold identical bosonic atoms (denoted by B ) and one extra atom (denoted by X ), where the scattering length aB X between each bosonic atom and atom X is resonantly large and positive. We calculate the scattering length aad between one bosonic atom and the shallow dimer formed by the other bosonic atom and atom X , and investigate the effect induced by the interaction between the two bosonic atoms. We find that even if this interaction is weak (i.e., the corresponding scattering length aB B is of the same order of the van der Waals length rvdW or even smaller), it can still induce a significant effect for the atom-dimer scattering length aad. Explicitly, an atom-dimer scattering resonance can always occur when the value of aB B varies in the region with | aB B|≲ rvdW . As a result, both the sign and the absolute value of aad, as well as the behavior of the aad-aB X function, depends sensitively on the exact value of aB B. Our results show that, for a good quantitative theory, the intraspecies interaction is required to be taken into account for this heteronuclear system, even if this interaction is weak.
Chang, Yanjiao; Yang, Jingde; Ren, Lili; Zhou, Jiang
2018-08-15
The influence of chain length distribution of amylose on size and structure of the amylose nanoparticles (ANPs) prepared through nanoprecipitation was investigated. Amylose with different chain length distributions was obtained by β-amylase treating amylose paste for different times and measured by size exclusion chromatography (SEC) and fluorophore-assisted carbohydrate electrophoresis (FACE). ANPs prepared via precipitation were characterized by using dynamic light scattering (DLS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results showed that the β-amylase treatments led to decrease in chain length of amylose, and it was the most important factor affecting size of ANPs. When hydrolysis degree of amylose was 52.8%, mean size of ANPs decreased from 206.4 nm to 102.7 nm. All the ANPs displayed a V-type crystalline structure and the effect of amylose chain length on crystallinity of the precipitated ANPs was negligible in the investigated range. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quark-mass dependence of two-nucleon observables
NASA Astrophysics Data System (ADS)
Chen, Jiunn-Wei; Lee, Tze-Kei; Liu, C.-P.; Liu, Yu-Sheng
2012-11-01
We study the potential implications of lattice QCD determinations of the S-wave nucleon-nucleon scattering lengths with unphysical light quark masses. If the light quark masses are small enough such that nuclear effective field theory (NEFT) can be used to perform quark-mass extrapolations, then the leading quark-mass dependence of not only the effective range and the two-body current, but also all the low-energy deuteron matrix elements up to next-to-leading-order in NEFT can be obtained. As a proof of principle, we compute the quark-mass dependence of the deuteron charge radius, magnetic moment, polarizability, and the deuteron photodisintegration cross section using the lattice calculation of the scattering lengths at 354 MeV pion mass by the ``Nuclear Physics with Lattice QCD'' (NPLQCD) collaboration and the NEFT power counting scheme of Beane, Kaplan, and Vuorinen (BKV), even though it is not yet established that the 354 MeV pion mass is within the radius of convergence of the BKV scheme. Once the lattice result with quark mass within the NEFT radius of convergence is obtained, our observation can be used to constrain the time variation of isoscalar combination of u and d quark mass mq, to help the anthropic principle study to find the mq range that allows the existence of life, and to provide a weak test of the multiverse conjecture.
Röttgers, Rüdiger; Doxaran, David; Dupouy, Cecile
2016-01-25
The accurate determination of light absorption coefficients of particles in water, especially in very oligotrophic oceanic areas, is still a challenging task. Concentrating aquatic particles on a glass fiber filter and using the Quantitative Filter Technique (QFT) is a common practice. Its routine application is limited by the necessary use of high performance spectrophotometers, distinct problems induced by the strong scattering of the filters and artifacts induced by freezing and storing samples. Measurements of the sample inside a large integrating sphere reduce scattering effects and direct field measurements avoid artifacts due to sample preservation. A small, portable, Integrating Cavity Absorption Meter setup (QFT-ICAM) is presented, that allows rapid measurements of a sample filter. The measurement technique takes into account artifacts due to chlorophyll-a fluorescence. The QFT-ICAM is shown to be highly comparable to similar measurements in laboratory spectrophotometers, in terms of accuracy, precision, and path length amplification effects. No spectral artifacts were observed when compared to measurement of samples in suspension, whereas freezing and storing of sample filters induced small losses of water-soluble pigments (probably phycoerythrins). Remaining problems in determining the particulate absorption coefficient with the QFT-ICAM are strong sample-to-sample variations of the path length amplification, as well as fluorescence by pigments that is emitted in a different spectral region than that of chlorophyll-a.
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
Kozłowska, Małgorzata; Tarczewska, Aneta; Jakób, Michał; Bystranowska, Dominika; Taube, Michał; Kozak, Maciej; Czarnocki-Cieciura, Mariusz; Dziembowski, Andrzej; Orłowski, Marek; Tkocz, Katarzyna; Ożyhar, Andrzej
2017-01-01
Nucleoplasmins are a nuclear chaperone family defined by the presence of a highly conserved N-terminal core domain. X-ray crystallographic studies of isolated nucleoplasmin core domains revealed a β-propeller structure consisting of a set of five monomers that together form a stable pentamer. Recent studies on isolated N-terminal domains from Drosophila 39-kDa FK506-binding protein (FKBP39) and from other chromatin-associated proteins showed analogous, nucleoplasmin-like (NPL) pentameric structures. Here, we report that the NPL domain of the full-length FKBP39 does not form pentameric complexes. Multi-angle light scattering (MALS) and sedimentation equilibrium ultracentrifugation (SE AUC) analyses of the molecular mass of the full-length protein indicated that FKBP39 forms homotetrameric complexes. Molecular models reconstructed from small-angle X-ray scattering (SAXS) revealed that the NPL domain forms a stable, tetrameric core and that FK506-binding domains are linked to it by intrinsically disordered, flexible chains that form tentacle-like segments. Analyses of full-length FKBP39 and its isolated NPL domain suggested that the distal regions of the polypeptide chain influence and determine the quaternary conformation of the nucleoplasmin-like protein. These results provide new insights regarding the conserved structure of nucleoplasmin core domains and provide a potential explanation for the importance of the tetrameric structural organization of full-length nucleoplasmins. PMID:28074868
Anisotropic light scattering of individual sickle red blood cells.
Kim, Youngchan; Higgins, John M; Dasari, Ramachandra R; Suresh, Subra; Park, YongKeun
2012-04-01
We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.
A study of the polarization of light scattered by vegetation. M.S. Thesis
NASA Technical Reports Server (NTRS)
Woessner, P. N.
1985-01-01
This study was undertaken in order to better understand the factors that govern the polarization of light scattered from vegetation and soils. The intensity and polarization of light scattered by clover and grass in vivo and soil were measured at a number of different angles of incidence and reflectance. Both individual leaves and natural patches of leaves were measured. The light transmitted through the leaves was found to be negatively polarized. The light scattered from the upper leaf surface was found to be positively polarized in a manner which could be accounted for qualitatively but not quantitatively by the Fresnel reflection coefficients modified by a shadowing function of the form cos sup2 (g/2), where g is the phase angle. Findings indicate that the polarization of light scattered by vegetation is a more complex process than previously thought, and that besides the surface-scattered component of light, the volume-scattered and multiply-scattered components also contribute significantly to the polarization.
NASA Astrophysics Data System (ADS)
Turcu, Ioan; Bratfalean, Radu; Neamtu, Silvia
2008-07-01
The adequacy of the effective phase function (EPF) used to describe the light scattered at small angles was tested on aqueous suspensions of polystyrene microspheres. Angular resolved light scattering measurements were performed on two types of latex suspension, which contained polystyrene spheres of 3 µm and 5 µm diameters, respectively. The experimental data were fitted with two EPF approximants. If the polystyrene spheres are at least 3 µm in diameter the quasi-ballistic light scattering process can be described relatively well by the EPF in a small angular range centered in the forward direction. The forward light scattering by macroscopic samples containing microspheres can be modeled relatively well if the true Mie single particle scattering phase function is replaced by a simpler Henyey-Greenstein dependence having the same width at half-height as the first scattering lobe.
NASA Astrophysics Data System (ADS)
Zhou, Hongwei; Xu, Shenghua; Mi, Li; Sun, Zhiwei; Qin, Yanming
2014-09-01
Absolute coagulation rate constants were determined by independently, instead of simultaneously, using static and dynamic light scattering with the requested optical factors calculated by T-matrix method. The aggregating suspensions of latex particles with diameters of 500, 700, and 900 nm, that are all beyond validity limit of the traditional Rayleigh-Debye-Gans approximation, were adopted. The results from independent static and dynamic light scattering measurements were compared with those by simultaneously using static and dynamic light scattering; and three of them show good consistency. We found, theoretically and experimentally, that for independent static light scattering measurements there are blind scattering angles at that the scattering measurements become impossible and the number of blind angles increases rapidly with particle size. For independent dynamic light scattering measurements, however, there is no such a blind angle at all. A possible explanation of the observed phenomena is also presented.
Surface enhanced Raman scattering spectroscopic waveguide
Lascola, Robert J; McWhorter, Christopher S; Murph, Simona H
2015-04-14
A waveguide for use with surface-enhanced Raman spectroscopy is provided that includes a base structure with an inner surface that defines a cavity and that has an axis. Multiple molecules of an analyte are capable of being located within the cavity at the same time. A base layer is located on the inner surface of the base structure. The base layer extends in an axial direction along an axial length of an excitation section. Nanoparticles are carried by the base layer and may be uniformly distributed along the entire axial length of the excitation section. A flow cell for introducing analyte and excitation light into the waveguide and a method of applying nanoparticles may also be provided.
Multi-peaks scattering of light in glasses
NASA Astrophysics Data System (ADS)
Smirnov, V. A.; Vostrikova, L. I.
2018-04-01
Investigations of the multi-peaks scattering of the laser light on the micro-scale susceptibility gratings with small periodicities photo-induced in the various glass materials are presented. The observed pictures of the multi-peaks scattering of light in oxide samples show that the efficiencies of the processes of scattering can vary for the different chemical compositions. Experimental results are in agreement with the proposed theory of light scattering.
Diffusing Wave Spectroscopy Used to Study Foams
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A.; Durian, Douglas J.
2000-01-01
The white appearance of familiar objects such as clouds, snow, milk, or foam is due to the random scattering of light by the sample. As we all know, pure water is clear and easily passes a beam of light. However, tiny water droplets, such as those in a cloud, scatter light because the air and water droplet have different indexes of refraction. When many droplets, or scattering sites, are present, the incident light is scattered in random directions and the sample takes on a milky white appearance. In a glass of milk, the scattering is due to small colloidal particles. The white appearance of shaving cream, or foam, is due to the scattering of light at the water-bubble interface. Diffusing wave spectroscopy (DWS) is a laser light-scattering technique used to noninvasively probe the particle dynamics in systems that strongly scatter light. The technique takes advantage of the diffuse nature of light, which is reflected or transmitted from samples such as foams, dense colloidal suspensions (such as paint and milk), emulsions, liquid crystals, sandpiles, and even biological tissues.
Laser absorption spectroscopy of oxygen confined in highly porous hollow sphere xerogel.
Yang, Lin; Somesfalean, Gabriel; He, Sailing
2014-02-10
An Al2O3 xerogel with a distinctive microstructure is studied for the application of laser absorption spectroscopy of oxygen. The xerogel has an exceptionally high porosity (up to 88%) and a large pore size (up to 3.6 µm). Using the method of gas-in-scattering media absorption spectroscopy (GASMAS), a long optical path length (about 3.5m) and high enhancement factor (over 300 times) are achieved as the result of extremely strong multiple-scattering when the light is transmitted through the air-filled, hollow-sphere alumina xerogel. We investigate how the micro-physical feature influences the optical property. As part of the optical sensing system, the material's gas exchange dynamics are also experimentally studied.
Earth Observation taken by the Expedition 29 crew
2011-10-15
ISS029-E-031157 (15 Oct. 2011) --- One of the Expedition 29 crew members aboard the International Space Station recorded this oblique view showing the Mediterranean Sea area, including the Nile River and the river's delta, and the Sinai Peninsula, on Oct. 15, 2011. Cyprus is visible at left. At first look, the image appears to have been photographed in daylight, but actually it was taken at 01:01:08 GMT. Some areas of the photo like the river and river delta appear as the brightest areas because of either man-made lighting (mostly incandescent) or man-made lighting reflected off nearby surfaces. The other areas appear to be illuminated naturally by moonlight, starlight, or back-scattered light from the atmosphere. A 20-mm focal length was used to record the image.
Earth Observation taken by the Expedition 29 crew
2011-10-15
ISS029-E-031143 (15 Oct. 2011) --- One of the Expedition 29 crew members aboard the International Space Station recorded this oblique view showing the Mediterranean Sea area, including parts of Turkey, the Nile River and the river's delta, and the Sinai Peninsula, on Oct. 15, 2011. At first look, the image appears to have been photographed in daylight, but actually it was taken at 01:01:26 GMT. Some areas of the photo like the river and river delta appear as the brightest areas because of either man-made lighting (mostly incandescent) or man-made lighting reflected off nearby surfaces. The other areas appear to be illuminated naturally by moonlight, starlight, or back-scattered light from the atmosphere. A 20-mm focal length was used to record the image.
Intermode light diffusion in multimode optical waveguides with rough surfaces.
Stepanov, S; Chaikina, E I; Leskova, T A; Méndez, E R
2005-06-01
A theoretical analysis of incoherent intermode light power diffusion in multimode dielectric waveguides with rough (corrugated) surfaces is presented. The correlation length a of the surface-profile variations is assumed to be sufficiently large (a less less than lambda/2pi) to permit light scattering into the outer space only from the modes close to the critical angles of propagation and yet sufficiently small (a less less than d, where d is the average width of the waveguide) to permit direct interaction between a given mode and a large number of neighboring ones. The cases of a one-dimensional (1D) slab waveguide and a two-dimensional cylindrical waveguide (optical fiber) are analyzed, and we find that in both cases the partial differential equations that govern the evolution of the angular light power profile propagating along the waveguide are 1D and of the diffusion type. However, whereas in the former case the effective conductivity coefficient proves to be linearly dependent on the transverse-mode wave number, in the latter one the linear dependence is for the effective diffusion coefficient. The theoretical predictions are in reasonable agreement with experimental results for the intermode power diffusion in multimode (700 x 700) optical fibers with etched surfaces. The characteristic length of dispersion of a narrow angular power profile evaluated from the correlation length and standard deviation of heights of the surface profile proved to be in good agreement with the experimentally observed changes in the output angular power profiles.
NASA Astrophysics Data System (ADS)
Addonizio, M. L.; Fusco, L.; Antonaia, A.; Cominale, F.; Usatii, I.
2015-12-01
Aluminium induced texture (AIT) method has been used for obtaining highly textured glass substrate suitable for silicon based thin film solar cell technology. Wet etch step parameters of AIT process have been varied and effect of different etchants and different etching times on morphological and optical properties has been analyzed. The resulting morphology features (shape, size distribution, inclination angle) have been optimized in order to obtain the best scattering properties. ZnO:Ga (GZO) films have been deposited by sputtering technique on AIT-processed glass. Two different ZnO surface morphologies have been obtained, strongly depending on the underlying glass substrate morphology induced by different etching times. Very rough and porous texture (σrms ∼ 150 nm) was obtained on glass etched 2 min showing cauliflower-like structure, whereas a softer texture (σrms ∼ 78 nm) was obtained on glass etched 7 min giving wider and smoother U-shaped craters. The effect of different glass textures on optical confinement has been tested in amorphous silicon based p-i-n devices. Devices fabricated on GZO/high textured glass showed a quantum efficiency enhancement due to both an effective light trapping phenomenon and an effective anti-reflective optical behaviour. Short etching time produce smaller cavities (<1 μm) with deep U-shape characterized by high roughness, high inclination angle and low autocorrelation length. This surface morphology promoted a large light scattering phenomenon, as evidenced by haze value and by angular resolved scattering (ARS) behaviour, into a large range of diffraction angles, giving high probability of effective light trapping inside a PV device.
Optical memory effect from polarized Laguerre-Gaussian light beam in light-scattering turbid media
NASA Astrophysics Data System (ADS)
Shumyatsky, Pavel; Milione, Giovanni; Alfano, Robert R.
2014-06-01
Propagation effects of polarized Laguerre-Gaussian light with different orbital angular momentum (L) in turbid media are described. The optical memory effect in scattering media consisting of small and large size (compared to the wavelength) scatterers is investigated for scattered polarized light. Imaging using polarized laser modes with a varying orbital strength L-parameter was performed. The backscattered image quality (contrast) was enhanced by more than an order of magnitude using circularly polarized light when the concentration of scatterers was close to invisibility of the object.
Stimulated concentration (diffusion) light scattering on nanoparticles in a liquid suspension
NASA Astrophysics Data System (ADS)
Burkhanov, I. S.; Krivokhizha, S. V.; Chaikov, L. L.
2016-06-01
A nonlinear growth of the light scattering intensity has been observed and the frequency shift of the spectral line of scattered light has been measured in light backscattered in suspensions of diamond and latex nanoparticles in water. The shift corresponds to the HWHM of the line of spontaneous scattering on particles. We may conclude that there exists stimulated concentration (diffusion) light scattering on variations of the particle concentration, which is also called the stimulated Mie scattering. In a fibre probe scheme, the growth of the shift of the scattered spectral line is observed with an increase in the exciting beam power. The variation of the frequency shift with an increase in the exciting power is explained by convection in liquid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Tao; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900; Zheng, Jian, E-mail: jzheng@ustc.edu.cn
2016-06-15
A 2D cylindrically symmetric model with inclusion of both diffraction and self-focus effects is developed to deal with the stimulated scattering processes of a single hotspot. The calculated results show that the transverse distribution of the scattered light is sensitive to the longitudinal profiles of the plasma parameters. The analysis of the evolution of the scattered light indicates that it is the frequency mismatch of coupling due to the inhomogeneity of plasmas that determines the transverse distribution of the scattered light.
Tans, Petrus P.; Lashof, Daniel A.
1986-01-01
A device for determining the relative composition of a sample of a gas by comparison of the Raman-scattered light of the sample with that of a known gas comprising: a means for passing a single light source through the unknown and the known gases, choppers to alternate the Raman-scattered light into a common light detection and measuring system, optical fiber networks for spatially mixing the resulting Raman scattered light from each sample and directing the mixed light to selective detectors, and a compiler to record the light intensity of each wavelength of Raman-scattered light as a function of the sample from which it originated.
Soos, Miroslav; Lattuada, Marco; Sefcik, Jan
2009-11-12
In this work we studied the effect of intracluster multiple-light scattering on the scattering properties of a population of fractal aggregates. To do so, experimental data of diffusion-limited aggregation for three polystyrene latexes with similar surface properties but different primary particle diameters (equal to 118, 420, and 810 nm) were obtained by static light scattering and by means of a spectrophotometer. In parallel, a population balance equation (PBE) model, which takes into account the effect of intracluster multiple-light scattering by solving the T-matrix and the mean-field version of T-matrix, was formulated and validated against time evolution of the root mean radius of gyration,
Wei, Guoke; Wang, Jinliang; Chen, Yu
2015-01-01
The enhancement factor (EF) of surface-enhanced Raman scattering (SERS) from two-dimensional (2D) hexagonal silver nanorod (AgNR) arrays were investigated in terms of electromagnetic (EM) mechanism by using the discrete dipole approximation (DDA) method. The dependence of EF on several parameters, i.e., structure, length, excitation wavelength, incident angle and polarization, and gap size has been investigated. "Hotspots" were found distributed in the gaps between adjacent nanorods. Simulations of AgNR arrays of different lengths revealed that increasing the rod length from 374 to 937 nm (aspect ratio from 2.0 to 5.0) generated more "hotspots" but not necessarily increased EF under both 514 and 532 nm excitation. A narrow lateral gap (in the incident plane) was found to result in strong EF, while the dependence of EF on the diagonal gap (out of the incident plane) showed an oscillating behavior. The EF of the array was highly dependent on the angle and polarization of the incident light. The structure of AgNR and the excitation wavelength were also found to affect the EF. The EF of random arrays was stronger than that of an ordered one with the same average gap of 21 nm, which could be explained by the exponential dependence of EF on the lateral gap size. Our results also suggested that absorption rather than extinction or scattering could be a good indicator of EM enhancement. It is expected that the understanding of the dependence of local field enhancement on the structure of the nanoarrays and incident excitations will shine light on the optimal design of efficient SERS substrates and improved performance.
Static and dynamic light scattering by red blood cells: A numerical study.
Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard; Fedosov, Dmitry A
2017-01-01
Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods-multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring.
Static and dynamic light scattering by red blood cells: A numerical study
Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard
2017-01-01
Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods—multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring. PMID:28472125
Development of wide-angle 2D light scattering static cytometry
NASA Astrophysics Data System (ADS)
Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao
2016-10-01
We have recently developed a 2D light scattering static cytometer for cellular analysis in a label-free manner, which measures side scatter (SSC) light in the polar angular range from 79 to 101 degrees. Compared with conventional flow cytometry, our cytometric technique requires no fluorescent labeling of the cells, and static cytometry measurements can be performed without flow control. In this paper we present an improved label-free static cytometer that can obtain 2D light scattering patterns in a wider angular range. By illuminating the static microspheres on chip with a scanning optical fiber, wide-angle 2D light scattering patterns of single standard microspheres with a mean diameter of 3.87 μm are obtained. The 2D patterns of 3.87 μm microspheres contain both large-angle forward scatter (FSC) and SSC light in the polar angular range from 40 to 100 degrees, approximately. Experimental 2D patterns of 3.87 μm microspheres are in good agreement with Mie theory simulated ones. The wide-angle light scattering measurements may provide a better resolution for particle analysis as compared with the SSC measurements. Two dimensional light scattering patterns of HL-60 human acute leukemia cells are obtained by using our static cytometer. Compared with SSC 2D light scattering patterns, wide-angle 2D patterns contain richer information of the HL-60 cells. The obtaining of 2D light scattering patterns in a wide angular range could help to enhance the capabilities of our label-free static cytometry for cell analysis.
Schoenfeld, Andreas A; Poppinga, Daniela; Harder, Dietrich; Doerner, Karl-Joachim; Poppe, Bjoern
2014-07-07
Optical experiments and theoretical considerations have been undertaken in order to understand the causes of the 'orientation effect' and the 'parabola effect', the artefacts impairing the desired light absorption measurement on radiochromic EBT3 films with flatbed scanners. EBT3 films exposed to doses up to 20.9 Gy were scanned with an Epson Expression 10000XL flatbed scanner in landscape and portrait orientation. The horizontally and vertically polarized light components of the scanner were determined, and another Epson Expression 10000XL flatbed scanner was disassembled to examine its optical components. The optical properties of exposed and unexposed EBT3 films were studied with incident polarized and unpolarized white light, and the transmitted red light was investigated for its polarization and scattering properties including the distribution of the scattering angles. Neutral density filters were studied for comparison. Guidance was sought from the theory of light scattering from rod-like macromolecular structures. The drastic dose-dependent variation of the transmitted total light current as function of the orientation of front and rear polarizers, interpreted by light scattering theory, shows that the radiation-induced polymerization of the monomers of EBT3 films produces light scattering oscillators preferably polarized at right angles with the coating direction of the film. The directional distribution of the scattered light is partly anisotropic, with a preferred scattering plane at right angles with the coating direction, indicating light scattering from stacks of coherently vibrating oscillators piled up along the monomer crystals. The polyester carrier film also participates in these effects. The 'orientation' and 'parabola' artefacts due to flatbed scanning of radiochromic films can be explained by the interaction of the polarization-dependent and anisotropic light scattering from exposed and unexposed EBT3 films with the quantitative difference between the scanner's horizontally and vertically polarized light supply and with the limited directional acceptance of the scanner's light recording system.
Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator.
Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu
2015-09-01
In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.
Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator
NASA Astrophysics Data System (ADS)
Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu
2015-09-01
In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.
Improved Optics For Quasi-Elastic Light Scattering
NASA Technical Reports Server (NTRS)
Cheung, Harry Michael
1995-01-01
Improved optical train devised for use in light-scattering measurements of quasi-elastic light scattering (QELS) and laser spectroscopy. Measurements performed on solutions, microemulsions, micellular solutions, and colloidal dispersions. Simultaneous measurements of total intensity and fluctuations in total intensity of light scattered from sample at various angles provides data used, in conjunction with diffusion coefficients, to compute sizes of particles in sample.
NASA Astrophysics Data System (ADS)
Roy, Sanchita; Barua, Nilakshi; Buragohain, Alak K.; Ahmed, Gazi A.
2013-03-01
Investigations on treatment of ZnO nanoparticles on Staphylococcus aureus MTCC 737 strain was essentially made by using standard biochemical method. The anti-microbial assay against S. aureus, and time kill assay revealed the anti-bacterial activity of ZnO nanoparticles. We have substantiated this property of ZnO nanoparticles and light depolarization property by using light scattering tool. Light scattering measurements were carried out for ZnO, S. aureus, and ZnO treated S. aureus as a function of scattering angle at 543.5 and 632.8 nm wavelengths. This was done in order to find the scattering profile of the consequent product after the action of ZnO nanoparticles on bacteria by means of light scattering tool. S. aureus treated with ZnO nanoparticles showed closer agreement of the scattering profiles at both the wavelengths, however, the scattering profiles of ZnO nanoparticles and untreated S. aureus significantly varied for the two different laser wavelengths. It was also observed that there was higher intensity of scattering from all S. aureus treated with ZnO particles compared to the untreated ones. In our work, we have studied ZnO nanoparticles and the possibility of observing its anti-bacterial activity by using light scattering tool.
Design of fiber optic probes for laser light scattering
NASA Technical Reports Server (NTRS)
Dhadwal, Harbans S.; Chu, Benjamin
1989-01-01
A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.
Morris, Caleb; Werner, Liliana; Barra, Daniel; Liu, Erica; Stallings, Shannon; Floyd, Anne
2014-01-01
To evaluate light scattering and light transmittance in cadaver eye-explanted intraocular lenses (IOLs) manufactured from different materials. John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. Experimental study. Forty-nine pseudophakic cadaver eyes were selected according to IOL material/type and implantation duration, and the IOLs were explanted. Hydrophobic acrylic, hydrophilic acrylic, poly(methyl methacrylate) (PMMA), and silicone IOLs were included. Gross and light microscopy was performed for all IOLs. Light scattering was measured with an EAS 1000 Scheimpflug camera, and light transmittance was assessed using a Lambda 35 UV/Vis spectrophotometer (single-beam configuration with an RSA PE-20 integrating sphere). Analyses were performed at room temperature in the hydrated state and compared with analyses of controls. The highest levels of surface light scattering were measured for 3-piece hydrophobic acrylic, which was also the IOL type with the longest implantation duration among the Acrysof hydrophobic acrylic IOLs. Hydrophilic acrylic, PMMA, and silicone IOLs exhibited relatively low light-scattering levels. The lowest light-scattering levels were observed with PMMA IOLs (1-piece looped and 3-piece) and plate silicone IOLs, which represent the IOL types with the longest implantation duration in this series. Light transmittance values measured for all IOL types appeared to be similar to the values of the corresponding control IOLs. The phenomenon of surface light scattering (nanoglistenings) is more particularly related to hydrophobic acrylic IOLs and increases with implantation time. No significant effect of surface light scattering on IOL light transmittance was found. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Ahsan, Syed Saad; Pereyra, Brandon; Jung, Erica E; Erickson, David
2014-10-20
Most existing photobioreactors do a poor job of distributing light uniformly due to shading effects. One method by which this could be improved is through the use of internal wave-guiding structures incorporating engineered light scattering schemes. By varying the density of these scatterers, one can control the spatial distribution of light inside the reactor enabling better uniformity of illumination. Here, we compare a number of light scattering schemes and evaluate their ability to enhance biomass accumulation. We demonstrate a design for a gradient distribution of surface scatterers with uniform lateral scattering intensity that is superior for algal biomass accumulation, resulting in a 40% increase in the growth rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blume, D.; Daily, K. M.
Two-component Fermi and Bose gases with infinitely large interspecies s-wave scattering length a{sub s} exhibit a variety of intriguing properties. Among these are the scale invariance of two-component Fermi gases with equal masses, and the favorable scaling of Efimov features for two-component Bose gases and Bose-Fermi mixtures with unequal masses. This paper builds on our earlier work [Phys. Rev. Lett. 105, 170403 (2010)] and presents a detailed discussion of our studies of small unequal-mass two-component systems with infinite a{sub s} in the regime where three-body Efimov physics is absent. We report on nonuniversal few-body resonances. Just like with two-body systemsmore » on resonance, few-body systems have a zero-energy bound state in free space and a diverging generalized scattering length. Our calculations are performed within a nonperturbative microscopic framework and investigate the energetics and structural properties of small unequal-mass two-component systems as functions of the mass ratio {kappa}, and the numbers N{sub 1} and N{sub 2} of heavy and light atoms. For purely attractive Gaussian two-body interactions, we find that the (N{sub 1},N{sub 2})=(2,1) and (3,1) systems exhibit three-body and four-body resonances at mass ratios {kappa}=12.314(2) and 10.4(2), respectively. The three- and four-particle systems on resonance are found to be large. It seems feasible that the features discussed in this paper can be probed experimentally with present-day technology.« less
Polar nephelometer for atmospheric particulate studies
NASA Technical Reports Server (NTRS)
Hansen, M. Z.; Evans, W. H.
1980-01-01
A polar nephelometer for use in studying atmospheric aerosols was developed. The nephelometer detects molecular scatter from air and measures scattering from very clean air using pure molecular scattering for calibration. A compact system using a folded light path with an air cooled argon laser for the light source was designed. A small, sensitive detector unit permits easy angular rotation for changing the scattering angle. A narrow detector field of view of + or - 1/4 degree of scattering along with a single wavelength of incident light is used to minimize uncertainties in the scattering theory. The system is automated for data acquisition of the scattering matrix elements over an angular range from 2 degrees to 178 degrees of scattering. Both laser output and detector sensitivity are monitored to normalize the measured light scattering.
NASA Astrophysics Data System (ADS)
Han, Yun; Oo, Maung Khaing; Zhu, Yinian; Sukhishvili, Svetlana; Xiao, Limin; Demokan, M. Süleyman; Jin, Wei; Du, Henry
2007-09-01
We have explored the use of index-guiding liquid-core photonic crystal fiber (LC-PCF) as a platform for sensing and measurements of analyte solutions of minute volume by normal and surface-enhanced Raman scattering (SERS). The index-guiding LC-PCF was fabricated by selectively sealing via fusion splicing the cladding air channels of a hollow-core PCF (HC-PCF) while leaving the center core open at both ends of the fiber. The center core of the resultant fiber was subsequently filled with water-ethanol solution mixtures at various ethanol concentrations for normal Raman scattering measurements and with water-thiocynate solutions containing Ag nanoparticle aggregates for SERS detection of thiocynate at trace concentrations. The light-guiding nature in the solution phase inside the LC-PCF allows direct and strong light-field overlap with the solution phase over the entire length of the PCF (~30 cm). This detection scheme also dramatically reduces the contribution of silica to Raman spectral background, compared with the solid-core counterpart, thus its potential interference in spectral analysis. These features attribute to ready normal Raman measurements of water, ethanol, and water (99 vol.%)-ethanol (1 vol.%) solutions as well as sensitive and reproducible SERS detection of ~10 ppb thiocynate in water, all at a volume of ~0.1 μL.
Kirkwood, R. K.; Michel, P.; London, R.; ...
2011-05-26
To optimize the coupling to indirect drive targets in the National Ignition Campaign (NIC) at the National Ignition Facility, a model of stimulated scattering produced by multiple laser beams is used. The model has shown that scatter of the 351 nm beams can be significantly enhanced over single beam predictions in ignition relevant targets by the interaction of the multiple crossing beams with a millimeter scale length, 2.5 keV, 0.02 - 0.05 x critical density, plasma. The model uses a suite of simulation capabilities and its key aspects are benchmarked with experiments at smaller laser facilities. The model has alsomore » influenced the design of the initial targets used for NIC by showing that both the stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) can be reduced by the reduction of the plasma density in the beam intersection volume that is caused by an increase in the diameter of the laser entrance hole (LEH). In this model, a linear wave response leads to a small gain exponent produced by each crossing quad of beams (<~1 per quad) which amplifies the scattering that originates in the target interior where the individual beams are separated and crosses many or all other beams near the LEH as it exits the target. As a result all 23 crossing quads of beams produce a total gain exponent of several or greater for seeds of light with wavelengths in the range that is expected for scattering from the interior (480 to 580 nm for SRS). This means that in the absence of wave saturation, the overall multi-beam scatter will be significantly larger than the expectations for single beams. The potential for non-linear saturation of the Langmuir waves amplifying SRS light is also analyzed with a two dimensional, vectorized, particle in cell code (2D VPIC) that is benchmarked by amplification experiments in a plasma with normalized parameters similar to ignition targets. The physics of cumulative scattering by multiple crossing beams that simultaneously amplify the same SBS light wave is further demonstrated in experiments that benchmark the linear models for the ion waves amplifying SBS. Here, the expectation from this model and its experimental benchmarks is shown to be consistent with observations of stimulated Raman scatter in the first series of energetic experiments with ignition targets, confirming the importance of the multi-beam scattering model for optimizing coupling.« less
Multiple-Fiber-Optic Probe For Light-Scattering Measurements
NASA Technical Reports Server (NTRS)
Dhadwal, Harbans Singh; Ansari, Rafat R.
1996-01-01
Multiple-fiber-optical probe developed for use in measuring light scattered at various angles from specimens of materials. Designed for both static and dynamic light-scattering measurements of colloidal dispersions. Probe compact, rugged unit containing no moving parts and remains stationary during operation. Not restricted to operation in controlled, research-laboratory environment. Positioned inside or outside light-scattering chamber. Provides simultaneous measurements at small angular intervals over range of angles, made to include small scattering angles by orienting probe in appropriate direction.
NASA Astrophysics Data System (ADS)
Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik
2018-05-01
The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.
Biological cell classification by multiangle light scattering
Salzman, G.C.; Crowell, J.M.; Mullaney, P.F.
1975-06-03
The specification is directed to an apparatus and method for detecting light scattering from a biological cell. Light, preferably from a coherent source of radiation, intercepts an individual biological cell in a stream of cells passing through the beam. Light scattered from the cell is detected at a selected number of angles between 0 and 90/sup 0/ to the longitudinal axis of the beam with a circular array of light responsive elements which produce signals representative of the intensity of light incident thereon. Signals from the elements are processed to determine the light-scattering pattern of the cell and therefrom its identity.
Tans, P.P.; Lashof, D.A.
1986-12-23
A device is described for determining the relative composition of a sample of a gas by comparison of the Raman-scattered light of the sample with that of a known gas comprising: a means for passing a single light source through the unknown and the known gases, choppers to alternate the Raman-scattered light into a common light detection and measuring system, optical fiber networks for spatially mixing the resulting Raman scattered light from each sample and directing the mixed light to selective detectors, and a compiler to record the light intensity of each wavelength of Raman-scattered light as a function of the sample from which it originated. 6 figs.
Okajima, Koji; Aihara, Yusuke; Takayama, Yuki; Nakajima, Mihoko; Kashojiya, Sachiko; Hikima, Takaaki; Oroguchi, Tomotaka; Kobayashi, Amane; Sekiguchi, Yuki; Yamamoto, Masaki; Suzuki, Tomomi; Nagatani, Akira; Nakasako, Masayoshi; Tokutomi, Satoru
2014-01-03
Phototropin (phot), a blue light (BL) receptor in plants, has two photoreceptive domains named LOV1 and LOV2 as well as a Ser/Thr kinase domain (KD) and acts as a BL-regulated protein kinase. A LOV domain harbors a flavin mononucleotide that undergoes a cyclic photoreaction upon BL excitation via a signaling state in which the inhibition of the kinase activity by LOV2 is negated. To understand the molecular mechanism underlying the BL-dependent activation of the kinase, the photochemistry, kinase activity, and molecular structure were studied with the phot of Chlamydomonas reinhardtii. Full-length and LOV2-KD samples of C. reinhardtii phot showed cyclic photoreaction characteristics with the activation of LOV- and BL-dependent kinase. Truncation of LOV1 decreased the photosensitivity of the kinase activation, which was well explained by the fact that the signaling state lasted for a shorter period of time compared with that of the phot. Small angle x-ray scattering revealed monomeric forms of the proteins in solution and detected BL-dependent conformational changes, suggesting an extension of the global molecular shapes of both samples. Constructed molecular model of full-length phot based on the small angle x-ray scattering data proved the arrangement of LOV1, LOV2, and KD for the first time that showed a tandem arrangement both in the dark and under BL irradiation. The models suggest that LOV1 alters its position relative to LOV2-KD under BL irradiation. This finding demonstrates that LOV1 may interact with LOV2 and modify the photosensitivity of the kinase activation through alteration of the duration of the signaling state in LOV2.
Angular-dependent light scattering from cancer cells in different phases of the cell cycle.
Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong
2017-10-10
Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements. Angular-dependent light scattering measurements of cancer cells arrested in the G1, S, and G2 phases have been performed. Based on integral calculations for scattering intensities from 5° to 10° and from 110° to 150°, conclusions have been reached. Clearly, the sizes of the cancer cells in different phases of the cell cycle dominated the forward scatter. Accompanying the increase of cell size with the progression of the cell cycle, the forward scattering intensity also increased. Meanwhile, the DNA content of cancer cells in every phase of the cell cycle is responsible for light scattering at large scatter angles. The higher the DNA content of cancer cells was, the greater the positive effect on the high-scattering intensity. As expected, understanding the relationships between the light scattering from cancer cells and cell cycles will aid in the development of cancer diagnoses. Also, it may assist in the guidance of antineoplastic drugs clinically.
Current methods for the size determination of nanomaterials in aqueous suspension include dynamic or static light scattering and electron or atomic force microscopy techniques. Light scattering techniques are limited by poor resolution and the scattering intensity dependence on p...
NASA Astrophysics Data System (ADS)
Langmack, Christian; Schmidt, Richard; Zwerger, Wilhelm
2018-03-01
We calculate the spectrum of three-body Efimov bound states near a Feshbach resonance within a model which accounts both for the finite range of interactions and the presence of background scattering. The latter may be due to direct interactions in an open channel or a second overlapping Feshbach resonance. It is found that background scattering gives rise to substantial changes in the trimer spectrum as a function of the detuning away from a Feshbach resonance, in particular in the regime where the background channel supports Efimov states on its own. Compared to the situation with negligible background scattering, the regime where van der Waals universality applies is shifted to larger values of the resonance strength if the background scattering length is positive. For negative background scattering lengths, in turn, van der Waals universality extends to even small values of the resonance strength parameter, consistent with experimental results on Efimov states in 39K. Within a simple model, we show that short-range three-body forces do not affect van der Waals universality significantly. Repulsive three-body forces may, however, explain the observed variation between around -8 and -10 of the ratio between the scattering length where the first Efimov trimer appears and the van der Waals length.
Light Scattering by Marine Particles: Modeling with Non-spherical Shapes
2009-01-01
1491−1499, 1994. Gordon, H.R. and Tao Du, Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi...from Emiliania huxleyi, Applied Optics, (2009). van de Hulst, H.C., 1957. Light Scattering by Small Particles, Wiley. Xu, Yu-lin, and Bo A.S...G.C. Boynton, Light scattering by coccoliths detached from Emiliania huxleyi, Applied Optics, (2009). [submitted, in revision] 6 m = 1.05
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, D.E.
1979-11-01
The extraction of morphological parameters from biological cells by analysis of light-scatter patterns is described. A light-scattering measurement system has been designed and constructed that allows one to visually examine and photographically record biological cells or cell models and measure the light-scatter pattern of an individual cell or cell model. Using a laser or conventional illumination, the imaging system consists of a modified microscope with a 35 mm camera attached to record the cell image or light-scatter pattern. Models of biological cells were fabricated. The dynamic range and angular distributions of light scattered from these models was compared to calculatedmore » distributions. Spectrum analysis techniques applied on the light-scatter data give the sought after morphological cell parameters. These results compared favorably to shape parameters of the fabricated cell models confirming the mathematical model procedure. For nucleated biological material, correct nuclear and cell eccentricity as well as the nuclear and cytoplasmic diameters were determined. A method for comparing the flow equivalent of nuclear and cytoplasmic size to the actual dimensions is shown. This light-scattering experiment provides baseline information for automated cytology. In its present application, it involves correlating average size as measured in flow cytology to the actual dimensions determined from this technique. (ERB)« less
Shiraya, Tomoyasu; Kato, Satoshi; Minami, Keiichiro; Miyata, Kazunori
2017-02-01
The aim of this study was to experimentally examine the changes in the transmittances of photocoagulation lasers when surface light scattering increases in AcrySof intraocular lenses (IOLs). SA60AT IOLs (Alcon) were acceleratingly aging for 0, 3, 5, and 10 years to simulate surface light scattering, and the surface light-scattering intensities of both IOL surfaces were measured using a Scheimpflug photographer. The powers of laser beams that passed from a laser photocoagulator through the aged IOLs were measured at 532, 577, and 647 nm. Changes in the laser power and transmittance with the years of aging and the intensities of surface light scattering were examined. Although the intensity of surface light scattering increased with the years of aging, the laser power did not change with the years of aging (P > 0.30, Kruskal-Wallis test). There were no significant changes in the laser transmittance with the years of aging or the laser wavelength (P > 0.30 and 0.57, respectively). The intensity of surface light scattering revealed no significant association with the laser transmittance at any wavelength (P > 0.37, liner regression). The increases in the surface light scattering of the AcrySof IOLs would not influence retinal photocoagulation treatments for up to 10 years after implantation.
Polarized light scattering as a probe for changes in chromosome structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, Daniel Benjamin
1993-10-01
Measurements and calculations of polarized light scattering are applied to chromosomes. Calculations of the Mueller matrix, which completely describes how the polarization state of light is altered upon scattering, are developed for helical structures related to that of chromosomes. Measurements of the Mueller matrix are presented for octopus sperm heads, and dinoflagellates. Comparisons of theory and experiment are made. A working theory of polarized light scattering from helices is developed. The use of the first Born approximation vs the coupled dipole approximation are investigated. A comparison of continuous, calculated in this work, and discrete models is also discussed. By comparingmore » light scattering measurements with theoretical predictions the average orientation of DNA in an octopus sperm head is determined. Calculations are made for the Mueller matrix of DNA plectonemic helices at UV, visible and X-ray wavelengths. Finally evidence is presented that the chromosomes of dinoflagellates are responsible for observed differential scattering of circularly-polarized light. This differential scattering is found to vary in a manner that is possibly correlated to the cell cycle of the dinoflagellates. It is concluded that by properly choosing the wavelength probe polarized light scattering can provide a useful tool to study chromosome structure.« less
Oligonucleotide Length-Dependent Formation of Virus-Like Particles.
Maassen, Stan J; de Ruiter, Mark V; Lindhoud, Saskia; Cornelissen, Jeroen J L M
2018-05-23
Understanding the assembly pathway of viruses can contribute to creating monodisperse virus-based materials. In this study, the cowpea chlorotic mottle virus (CCMV) is used to determine the interactions between the capsid proteins of viruses and their cargo. The assembly of the capsid proteins in the presence of different lengths of short, single-stranded (ss) DNA is studied at neutral pH, at which the protein-protein interactions are weak. Chromatography, electrophoresis, microscopy, and light scattering data show that the assembly efficiency and speed of the particles increase with increasing length of oligonucleotides. The minimal length required for assembly under the conditions used herein is 14 nucleotides. Assembly of particles containing such short strands of ssDNA can take almost a month. This slow assembly process enabled the study of intermediate states, which confirmed a low cooperative assembly for CCMV and allowed for further expansion of current assembly theories. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Precision measurement of the n-3He incoherent scattering length using neutron interferometry.
Huber, M G; Arif, M; Black, T C; Chen, W C; Gentile, T R; Hussey, D S; Pushin, D A; Wietfeldt, F E; Yang, L
2009-05-22
We report the first measurement of the low-energy neutron-(3)He incoherent scattering length using neutron interferometry: b_{i};{'} = (-2.512 +/- 0.012 stat +/- 0.014 syst) fm. This is in good agreement with a recent calculation using the AV18 + 3N potential. The neutron-(3)He scattering lengths are important for testing and developing nuclear potential models that include three-nucleon forces, effective field theories for few-body nuclear systems, and neutron scattering measurements of quantum excitations in liquid helium. This work demonstrates the first use of a polarized nuclear target in a neutron interferometer.
NASA Astrophysics Data System (ADS)
Huh, Jae-Won; Yu, Byeong-Hun; Shin, Dong-Myung; Yoon, Tae-Hoon
2015-03-01
Recently, a transparent display has got much attention as one of the next generation display devices. Especially, active studies on a transparent display using organic light-emitting diodes (OLEDs) are in progress. However, since it is not possible to obtain black color using a transparent OLED, it suffers from poor visibility. This inevitable problem can be solved by using a light shutter. Light shutter technology can be divided into two types; light absorption and scattering. However, a light shutter based on light absorption cannot block the background image perfectly and a light shutter based on light scattering cannot provide black color. In this work we demonstrate a light shutter using two liquid crystal (LC) layers, a light absorption layer and a light scattering layer. To realize a light absorption layer and a light scattering layer, we use the planar state of a dye-doped chiral nematic LC (CNLC) cell and the focal-conic state of a long-pitch CNLC cell, respectively. The proposed light shutter device can block the background image perfectly and show black color. We expect that the proposed light shutter can increase the visibility of a transparent display.
Laser light scattering from wood samples soaked in water or in benzyl benzoate
NASA Astrophysics Data System (ADS)
Simonaho, S.-P.; Tolonen, Y.; Rouvinen, J.; Silvennoinen, R.
Laser light scattering from Scots pine (Pinus Sylvesteris L.) wood samples soaked in two different liquids, which were tap water and benzyl benzoate, has been experimentally investigated. Differences in the characteristics of the scattering pattern as function of the soaking time as well as the moisture effect in the orientation of scattering pattern has been experimentally investigated. The wood samples soaked in the test liquids altered the laser light scattering in along and across the grain directions. No correlation between the content of the water in the wood sample and the orientation of laser light scattering pattern was observed.
Large-aperture ground glass surface profile measurement using coherence scanning interferometry.
Bae, Eundeok; Kim, Yunseok; Park, Sanguk; Kim, Seung-Woo
2017-01-23
We present a coherence scanning interferometer configured to deal with rough glass surfaces exhibiting very low reflectance due to severe sub-surface light scattering. A compound light source is prepared by combining a superluminescent light-emitting diode with an ytterbium-doped fiber amplifier. The light source is attuned to offer a short temporal coherence length of 15 μm but with high spatial coherence to secure an adequate correlogram contrast by delivering strongly unbalanced optical power to the low reflectance target. In addition, the infrared spectral range of the light source is shifted close to the visible side at a 1,038 nm center wavelength, so a digital camera of multi-mega pixels available for industrial machine vision can be used to improve the correlogram contrast further with better lateral image resolutions. Experimental results obtained from a ground Zerodur mirror of 200 mm aperture size and 0.9 μm rms roughness are discussed to validate the proposed interferometer system.
Rainbow peacock spiders inspire miniature super-iridescent optics.
Hsiung, Bor-Kai; Siddique, Radwanul Hasan; Stavenga, Doekele G; Otto, Jürgen C; Allen, Michael C; Liu, Ying; Lu, Yong-Feng; Deheyn, Dimitri D; Shawkey, Matthew D; Blackledge, Todd A
2017-12-22
Colour produced by wavelength-dependent light scattering is a key component of visual communication in nature and acts particularly strongly in visual signalling by structurally-coloured animals during courtship. Two miniature peacock spiders (Maratus robinsoni and M. chrysomelas) court females using tiny structured scales (~ 40 × 10 μm 2 ) that reflect the full visual spectrum. Using TEM and optical modelling, we show that the spiders' scales have 2D nanogratings on microscale 3D convex surfaces with at least twice the resolving power of a conventional 2D diffraction grating of the same period. Whereas the long optical path lengths required for light-dispersive components to resolve individual wavelengths constrain current spectrometers to bulky sizes, our nano-3D printed prototypes demonstrate that the design principle of the peacock spiders' scales could inspire novel, miniature light-dispersive components.
Analytical optical scattering in clouds
NASA Technical Reports Server (NTRS)
Phanord, Dieudonne D.
1989-01-01
An analytical optical model for scattering of light due to lightning by clouds of different geometry is being developed. The self-consistent approach and the equivalent medium concept of Twersky was used to treat the case corresponding to outside illumination. Thus, the resulting multiple scattering problem is transformed with the knowledge of the bulk parameters, into scattering by a single obstacle in isolation. Based on the size parameter of a typical water droplet as compared to the incident wave length, the problem for the single scatterer equivalent to the distribution of cloud particles can be solved either by Mie or Rayleigh scattering theory. The super computing code of Wiscombe can be used immediately to produce results that can be compared to the Monte Carlo computer simulation for outside incidence. A fairly reasonable inverse approach using the solution of the outside illumination case was proposed to model analytically the situation for point sources located inside the thick optical cloud. Its mathematical details are still being investigated. When finished, it will provide scientists an enhanced capability to study more realistic clouds. For testing purposes, the direct approach to the inside illumination of clouds by lightning is under consideration. Presently, an analytical solution for the cubic cloud will soon be obtained. For cylindrical or spherical clouds, preliminary results are needed for scattering by bounded obstacles above or below a penetrable surface interface.
Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David J
2008-01-01
To investigate the cause of light scatter measured on the surface of AcrySof intraocular lenses (Alcon Laboratories, Inc., Fort Worth, TX) retrieved from pseudophakic postmortem human eyes. Ten intraocular lenses (Alcon AcrySofModel MA60BM) were retrieved postmortem and analyzed for light scatter before and after removal of surface-bound biofilms. Six of the 10 lenses exhibited light scatter that was clearly above baseline levels. In these 6 lenses, both peak and average pixel density were reduced by approximately 80% after surface cleaning. The current study demonstrates that a coating deposited in vivo on the lens surface is responsible for the light scatter observed when incident light is applied.
NASA Astrophysics Data System (ADS)
Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto
1997-06-01
We measured angular distribution of the light scattering from live mouse embryo with 632.8nm in wavelength to evaluate the embryo viability. We aim to measure the mitochondrial density in human embryo which have relation to the embryo viability. We have constructed the light scattering measurement system to detect the mitochondrial density non-invasively. We have employed two optical fibers for the illumination and sensing to change the angle between these fibers. There were two dips on the scattering angular distribution from the embryo. These dips existed on 30 and 85 deg. We calculated the scattering angular pattern by Mie theory to fit the measured scattering estimated scattering size and density. The best fitting was obtained when the particle size and density were 0.9 micrometers and 1010 particles per ml, respectively. These values coincided with the approximated values of mitochondrial in the embryo. The measured light scattering may mainly originated from mitochondria in spite of the existence of the various scattering particles in the embryo. Since our simple scattering measurement may offer the mitochondrial density in the embryo, it might become the practical method of human embryo on in vitro fertilization-embryo transfer.
Photovoltaic structures having a light scattering interface layer and methods of making the same
Liu, Xiangxin; Compaan, Alvin D.; Paudel, Naba Raj
2015-10-13
Photovoltaic (PV) cell structures having an integral light scattering interface layer configured to diffuse or scatter light prior to entering a semiconductor material and methods of making the same are described.
Methods and apparatus for transparent display using scattering nanoparticles
Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin
2017-06-14
Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.
Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David
2008-01-01
To investigate the surface light scatter and optical quality of AcrySof lenses (Alcon Laboratories, Inc., Fort Worth, TX) following simulated aging of 20 years. AcrySof lenses were exposed to exaggerated thermal conditions to simulate up to 20 years of aging and were tested for surface light scatter and optical quality (modulation transfer function). There were no significant differences from baseline for either the surface light scatter or optical quality of the lenses over time. The current study demonstrated that surface light scatter on AcrySof lenses did not increase under conditions simulating 20 years of aging. Because the simulated aging environment contained no protein, this work indirectly supports the finding that surface light scatter is due to the deposition of a biomaterial on the lens surface rather than changes in the material. Optical performance integrity of the test lenses was maintained under severe environmental conditions.
Effective phase function of light scattered at small angles by polydisperse particulate media
NASA Astrophysics Data System (ADS)
Turcu, I.
2008-06-01
Particles with typical dimensions higher than the light wavelength and relative refraction indexes close to one, scatter light mainly in the forward direction where the scattered light intensity has a narrow peak. For particulate media accomplishing these requirements the light scattered at small angles in a far-field detecting set-up can be described analytically by an effective phase function (EPF) even in the multiple scattering regime. The EPF model which was built for monodispersed systems has been extended to polydispersed media. The main ingredients consist in the replacement of the single particle phase function and of the optical thickness with their corresponding averaged values. Using a Gamma particle size distribution (PSD) as a testing model, the effect of polydispersity was systematically investigated. The increase of the average radius or/and of the PSD standard deviation leads to the decrease of the angular spreading of the small angle scattered light.
Methods and apparatus for transparent display using scattering nanoparticles
Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin
2016-05-10
Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.
Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre
Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut
2014-01-01
Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s−1 and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638
Sahraei, Nasim; Forberich, Karen; Venkataraj, Selvaraj; Aberle, Armin G; Peters, Marius
2014-01-13
Light scattering at randomly textured interfaces is essential to improve the absorption of thin-film silicon solar cells. Aluminium-induced texture (AIT) glass provides suitable scattering for amorphous silicon (a-Si:H) solar cells. The scattering properties of textured surfaces are usually characterised by two properties: the angularly resolved intensity distribution and the haze. However, we find that the commonly used haze equations cannot accurately describe the experimentally observed spectral dependence of the haze of AIT glass. This is particularly the case for surface morphologies with a large rms roughness and small lateral feature sizes. In this paper we present an improved method for haze calculation, based on the power spectral density (PSD) function of the randomly textured surface. To better reproduce the measured haze characteristics, we suggest two improvements: i) inclusion of the average lateral feature size of the textured surface into the haze calculation, and ii) considering the opening angle of the haze measurement. We show that with these two improvements an accurate prediction of the haze of AIT glass is possible. Furthermore, we use the new equation to define optimum morphology parameters for AIT glass to be used for a-Si:H solar cell applications. The autocorrelation length is identified as the critical parameter. For the investigated a-Si:H solar cells, the optimum autocorrelation length is shown to be 320 nm.
The Denaturation Transition of DNA in Mixed Solvents
Hammouda, Boualem; Worcester, David
2006-01-01
The helix-to-coil denaturation transition in DNA has been investigated in mixed solvents at high concentration using ultraviolet light absorption spectroscopy and small-angle neutron scattering. Two solvents have been used: water and ethylene glycol. The “melting” transition temperature was found to be 94°C for 4% mass fraction DNA/d-water and 38°C for 4% mass fraction DNA/d-ethylene glycol. The DNA melting transition temperature was found to vary linearly with the solvent fraction in the mixed solvents case. Deuterated solvents (d-water and d-ethylene glycol) were used to enhance the small-angle neutron scattering signal and 0.1M NaCl (or 0.0058 g/g mass fraction) salt concentration was added to screen charge interactions in all cases. DNA structural information was obtained by small-angle neutron scattering, including a correlation length characteristic of the inter-distance between the hydrogen-containing (desoxyribose sugar-amine base) groups. This correlation length was found to increase from 8.5 to 12.3 Å across the melting transition. Ethylene glycol and water mixed solvents were found to mix randomly in the solvation region in the helix phase, but nonideal solvent mixing was found in the melted coil phase. In the coil phase, solvent mixtures are more effective solvating agents than either of the individual solvents. Once melted, DNA coils behave like swollen water-soluble synthetic polymer chains. PMID:16815902
Evolution of circular and linear polarization in scattering environments
van der Laan, John D.; Wright, Jeremy Benjamin; Scrymgeour, David A.; ...
2015-12-02
This study quantifies the polarization persistence and memory of circularly polarized light in forward-scattering and isotropic (Rayleigh regime) environments; and for the first time, details the evolution of both circularly and linearly polarized states through scattering environments. Circularly polarized light persists through a larger number of scattering events longer than linearly polarized light for all forward-scattering environments; but not for scattering in the Rayleigh regime. Circular polarization’s increased persistence occurs for both forward and backscattered light. The simulated environments model polystyrene microspheres in water with particle diameters of 0.1 μm, 2.0 μm, and 3.0 μm. The evolution of the polarizationmore » states as they scatter throughout the various environments are illustrated on the Poincaré sphere after one, two, and ten scattering events.« less
Light scattering by marine algae: two-layer spherical and nonspherical models
NASA Astrophysics Data System (ADS)
Quirantes, Arturo; Bernard, Stewart
2004-11-01
Light scattering properties of algae-like particles are modeled using the T-matrix for coated scatterers. Two basic geometries have been considered: off-centered coated spheres and centered spheroids. Extinction, scattering and absorption efficiencies, plus scattering in the backward plane, are compared to simpler models like homogeneous (Mie) and coated (Aden-Kerker) models. The anomalous diffraction approximation (ADA), of widespread use in the oceanographic light-scattering community, has also been used as a first approximation, for both homogeneous and coated spheres. T-matrix calculations show that some light scattering values, such as extinction and scattering efficiencies, have little dependence on particle shape, thus reinforcing the view that simpler (Mie, Aden-Kerker) models can be applied to infer refractive index (RI) data from absorption curves. The backscattering efficiency, on the other hand, is quite sensitive to shape. This calls into question the use of light scattering techniques where the phase function plays a pivotal role, and can help explain the observed discrepancy between theoretical and experimental values of the backscattering coefficient in observed in oceanic studies.
Timmins, P A; Langowski, J; Brown, R S
1988-01-01
The precise molecular composition of the Xenopus laevis TFIIIA-5S ribosomal RNA complex (7S particle) has been established from small angle neutron and dynamic light scattering. The molecular weight of the particle was found to be 95,700 +/- 10,000 and 86,700 +/- 9000 daltons from these two methods respectively. The observed match point of 54.4% D2O obtained from contrast variation experiments indicates a 1:1 molar ratio. It is concluded that only a single molecule of TFIIIA, a zinc-finger protein, and of 5S RNA are present in this complex. At high neutron scattering contrast radius of gyration of 42.3 +/- 2 A was found for the 7S particle. In addition a diffusion coefficient of 4.4 x 10(-11) [m2 s-1] and a sedimentation coefficient of 6.2S were determined. The hydrodynamic radius obtained for the 7S particle is 48 +/- 5 A. A simple elongated cylindrical model with dimensions of 140 A length and 59 A diameter is compatible with the neutron results. A globular model can be excluded by the shallow nature of the neutron scattering curves. It is proposed that the observed difference of 15 A in length between the 7S particle and isolated 5S RNA most likely indicates that part(s) of the protein protrudes from the end(s) of the RNA molecule. There is no biochemical evidence for any gross alteration in 5S RNA conformation upon binding to TFIIIA. PMID:3419928
s -wave scattering length of a Gaussian potential
NASA Astrophysics Data System (ADS)
Jeszenszki, Peter; Cherny, Alexander Yu.; Brand, Joachim
2018-04-01
We provide accurate expressions for the s -wave scattering length for a Gaussian potential well in one, two, and three spatial dimensions. The Gaussian potential is widely used as a pseudopotential in the theoretical description of ultracold-atomic gases, where the s -wave scattering length is a physically relevant parameter. We first describe a numerical procedure to compute the value of the s -wave scattering length from the parameters of the Gaussian, but find that its accuracy is limited in the vicinity of singularities that result from the formation of new bound states. We then derive simple analytical expressions that capture the correct asymptotic behavior of the s -wave scattering length near the bound states. Expressions that are increasingly accurate in wide parameter regimes are found by a hierarchy of approximations that capture an increasing number of bound states. The small number of numerical coefficients that enter these expressions is determined from accurate numerical calculations. The approximate formulas combine the advantages of the numerical and approximate expressions, yielding an accurate and simple description from the weakly to the strongly interacting limit.
A Study of Brownian Motion Using Light Scattering
ERIC Educational Resources Information Center
Clark, Noel A.; Lunacek, Joseph H.
1969-01-01
Describes an apparatus designed to investigate molecular motion by means of light scattering. Light from a He-Ne laser is focused into a cell containing a suspension of polystyrene spheres. The scattered light, collected on the photosurface of a photomultiplier tube, is analyzed. The apparatus won first prize in Demonstration Lecture Apparatus in…
Protein aggregation studied by forward light scattering and light transmission analysis
NASA Astrophysics Data System (ADS)
Penzkofer, A.; Shirdel, J.; Zirak, P.; Breitkreuz, H.; Wolf, E.
2007-12-01
The aggregation of the circadian blue-light photo-receptor cryptochrome from Drosophila melanogaster (dCry) is studied by transmission and forward light scattering measurement in the protein transparent wavelength region. The light scattering in forward direction is caused by Rayleigh scattering which is proportional to the degree of aggregation. The light transmission through the samples in the transparent region is reduced by Mie light scattering in all directions. It depends on the degree of aggregation and the monomer volume fill factor of the aggregates (less total scattering with decreasing monomer volume fill factor of protein globule) allowing a distinction between tightly packed protein aggregation (monomer volume fill factor 1) and loosely packed protein aggregation (monomer volume fill factor less than 1). An increase in aggregation with temperature, concentration, and blue-light exposure is observed. At a temperature of 4 °C and a protein concentration of less than 0.135 mM no dCry aggregation was observed, while at 24 °C and 0.327 mM gelation occurred (loosely packed aggregates occupying the whole solution volume).
Large momentum part of a strongly correlated Fermi gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Shina
2008-12-15
It is well known that the momentum distribution of the two-component Fermi gas with large scattering length has a tail proportional to 1/k{sup 4} at large k. We show that the magnitude of this tail is equal to the adiabatic derivative of the energy with respect to the reciprocal of the scattering length, multiplied by a simple constant. This result holds at any temperature (as long as the effective interaction radius is negligible) and any large scattering length; it also applies to few-body cases. We then show some more connections between the 1/k{sup 4} tail and various physical quantities, includingmore » the pressure at thermal equilibrium and the rate of change of energy in a dynamic sweep of the inverse scattering length.« less
Statistical-thermodynamic model for light scattering from eye lens protein mixtures
NASA Astrophysics Data System (ADS)
Bell, Michael M.; Ross, David S.; Bautista, Maurino P.; Shahmohamad, Hossein; Langner, Andreas; Hamilton, John F.; Lahnovych, Carrie N.; Thurston, George M.
2017-02-01
We model light-scattering cross sections of concentrated aqueous mixtures of the bovine eye lens proteins γB- and α-crystallin by adapting a statistical-thermodynamic model of mixtures of spheres with short-range attractions. The model reproduces measured static light scattering cross sections, or Rayleigh ratios, of γB-α mixtures from dilute concentrations where light scattering intensity depends on molecular weights and virial coefficients, to realistically high concentration protein mixtures like those of the lens. The model relates γB-γB and γB-α attraction strengths and the γB-α size ratio to the free energy curvatures that set light scattering efficiency in tandem with protein refractive index increments. The model includes (i) hard-sphere α-α interactions, which create short-range order and transparency at high protein concentrations, (ii) short-range attractive plus hard-core γ-γ interactions, which produce intense light scattering and liquid-liquid phase separation in aqueous γ-crystallin solutions, and (iii) short-range attractive plus hard-core γ-α interactions, which strongly influence highly non-additive light scattering and phase separation in concentrated γ-α mixtures. The model reveals a new lens transparency mechanism, that prominent equilibrium composition fluctuations can be perpendicular to the refractive index gradient. The model reproduces the concave-up dependence of the Rayleigh ratio on α/γ composition at high concentrations, its concave-down nature at intermediate concentrations, non-monotonic dependence of light scattering on γ-α attraction strength, and more intricate, temperature-dependent features. We analytically compute the mixed virial series for light scattering efficiency through third order for the sticky-sphere mixture, and find that the full model represents the available light scattering data at concentrations several times those where the second and third mixed virial contributions fail. The model indicates that increased γ-γ attraction can raise γ-α mixture light scattering far more than it does for solutions of γ-crystallin alone, and can produce marked turbidity tens of degrees celsius above liquid-liquid separation.
Femnou, Armel N; Kuzmiak-Glancy, Sarah; Covian, Raul; Giles, Abigail V; Kay, Matthew W; Balaban, Robert S
2017-12-01
Absorbance spectroscopy of intrinsic cardiac chromophores provides nondestructive assessment of cytosolic oxygenation and mitochondria redox state. Isolated perfused heart spectroscopy is usually conducted by collecting reflected light from the heart surface, which represents a combination of surface scattering events and light that traversed portions of the myocardium. Reflectance spectroscopy with complex surface scattering effects in the beating heart leads to difficulty in quantitating chromophore absorbance. In this study, surface scattering was minimized and transmural path length optimized by placing a light source within the left ventricular chamber while monitoring transmurally transmitted light at the epicardial surface. The custom-designed intrachamber light catheter was a flexible coaxial cable (2.42-Fr) terminated with an encapsulated side-firing LED of 1.8 × 0.8 mm, altogether similar in size to a Millar pressure catheter. The LED catheter had minimal impact on aortic flow and heart rate in Langendorff perfusion and did not impact stability of the left ventricule of the working heart. Changes in transmural absorbance spectra were deconvoluted using a library of chromophore reference spectra to quantify the relative contribution of specific chromophores to the changes in measured absorbance. This broad-band spectral deconvolution approach eliminated errors that may result from simple dual-wavelength absorbance intensity. The myoglobin oxygenation level was only 82.2 ± 3.0%, whereas cytochrome c and cytochrome a + a 3 were 13.3 ± 1.4% and 12.6 ± 2.2% reduced, respectively, in the Langendorff-perfused heart. The intracardiac illumination strategy permits transmural optical absorbance spectroscopy in perfused hearts, which provides a noninvasive real-time monitor of cytosolic oxygenation and mitochondria redox state. NEW & NOTEWORTHY Here, a novel nondestructive real-time approach for monitoring intrinsic indicators of cardiac metabolism and oxygenation is described using a catheter-based transillumination of the left ventricular free wall together with complete spectral analysis of transmitted light. This approach is a significant improvement in the quality of cardiac optical absorbance spectroscopic metabolic analyses.
Small angle x-ray scattering of chromatin. Radius and mass per unit length depend on linker length.
Williams, S P; Langmore, J P
1991-01-01
Analyses of low angle x-ray scattering from chromatin, isolated by identical procedures but from different species, indicate that fiber diameter and number of nucleosomes per unit length increase with the amount of nucleosome linker DNA. Experiments were conducted at physiological ionic strength to obtain parameters reflecting the structure most likely present in living cells. Guinier analyses were performed on scattering from solutions of soluble chromatin from Necturus maculosus erythrocytes (linker length 48 bp), chicken erythrocytes (linker length 64 bp), and Thyone briareus sperm (linker length 87 bp). The results were extrapolated to infinite dilution to eliminate interparticle contributions to the scattering. Cross-sectional radii of gyration were found to be 10.9 +/- 0.5, 12.1 +/- 0.4, and 15.9 +/- 0.5 nm for Necturus, chicken, and Thyone chromatin, respectively, which are consistent with fiber diameters of 30.8, 34.2, and 45.0 nm. Mass per unit lengths were found to be 6.9 +/- 0.5, 8.3 +/- 0.6, and 11.8 +/- 1.4 nucleosomes per 10 nm for Necturus, chicken, and Thyone chromatin, respectively. The geometrical consequences of the experimental mass per unit lengths and radii of gyration are consistent with a conserved interaction among nucleosomes. Cross-linking agents were found to have little effect on fiber external geometry, but significant effect on internal structure. The absolute values of fiber diameter and mass per unit length, and their dependencies upon linker length agree with the predictions of the double-helical crossed-linker model. A compilation of all published x-ray scattering data from the last decade indicates that the relationship between chromatin structure and linker length is consistent with data obtained by other investigators. Images FIGURE 1 PMID:2049522
An analysis of scattered light in low dispersion IUE spectra
NASA Technical Reports Server (NTRS)
Basri, G.; Clarke, J. T.; Haisch, B. M.
1985-01-01
A detailed numerical simulation of light scattering from the low-resolution grating in the short wavelength spectrograph of the IUE Observatory was developed, in order to quantitatively analyze the effects of scattering on both continuum and line emission spectra. It is found that: (1) the redistribution of light by grating scattering did not appreciably alter either the shape or the absolute flux level of continuum spectra for A-F stars; (2) late-type stellar continua showed a tendency to flatten when observed in scattered light toward the shorter wavelengths; and (3) the effect of grating scattering on emission lines is to decrease measured line intensities by an increasing percentage toward the shorter wavelengths. The spectra obtained from scattering experiments for solar-type and late type stars are reproduced in graphic form.
Stimulated Brillouin Scattering Phase Conjugation in Fiber Optic Waveguides
2008-07-01
61] The discrepancy is reduced since the effective length of the interaction may be limited by the coherence length of the signal laser as in Eq...these cases, the coherence length of the pulsed laser typically limits the effective length of the Brillouin scattering interaction. Long... coherence length lasers with long fiber SBS media have been used to reduce threshold energy, but as indicated at the end of Chapter 2, this has produced
Determination of the pion-nucleon coupling constant and scattering lengths
NASA Astrophysics Data System (ADS)
Ericson, T. E.; Loiseau, B.; Thomas, A. W.
2002-07-01
We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π-p and π-d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g2c(GMO)/ 4π=14.11+/-0.05(statistical)+/-0.19(systematic) or f2c/4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (aπ-p+aπ-n)/2=[- 12+/-2(statistical)+/-8(systematic)]×10-4 m-1π and (aπ-p-aπ- n)/2=[895+/-3(statistical)+/-13 (systematic)]×10-4 m-1π. For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length.
Xu, Min; Wu, Tao T; Qu, Jianan Y
2008-01-01
A unified Mie and fractal model for light scattering by biological cells is presented. This model is shown to provide an excellent global agreement with the angular dependent elastic light scattering spectroscopy of cells over the whole visible range (400 to 700 nm) and at all scattering angles (1.1 to 165 deg) investigated. Mie scattering from the bare cell and the nucleus is found to dominate light scattering in the forward directions, whereas the random fluctuation of the background refractive index within the cell, behaving as a fractal random continuous medium, is found to dominate light scattering at other angles. Angularly dependent elastic light scattering spectroscopy aided by the unified Mie and fractal model is demonstrated to be an effective noninvasive approach to characterize biological cells and their internal structures. The acetowhitening effect induced by applying acetic acid on epithelial cells is investigated as an example. The changes in morphology and refractive index of epithelial cells, nuclei, and subcellular structures after the application of acetic acid are successfully probed and quantified using the proposed approach. The unified Mie and fractal model may serve as the foundation for optical detection of precancerous and cancerous changes in biological cells and tissues based on light scattering techniques.
Characterization of single particle aerosols by elastic light scattering at multiple wavelengths
NASA Astrophysics Data System (ADS)
Lane, P. A.; Hart, M. B.; Jain, V.; Tucker, J. E.; Eversole, J. D.
2018-03-01
We describe a system to characterize individual aerosol particles using stable and repeatable measurement of elastic light scattering. The method employs a linear electrodynamic quadrupole (LEQ) particle trap. Charged particles, continuously injected by electrospray into this system, are confined to move vertically along the stability line in the center of the LEQ past a point where they are optically interrogated. Light scattered in the near forward direction was measured at three different wavelengths using time-division multiplexed collinear laser beams. We validated our method by comparing measured silica microsphere data for four selected diameters (0.7, 1.0, 1.5 and 2.0 μm) to a model of collected scattered light intensities based upon Lorenz-Mie scattering theory. Scattered light measurements at the different wavelengths are correlated, allowing us to distinguish and classify inhomogeneous particles.
NASA Astrophysics Data System (ADS)
Chong, Shau Poh; Bernucci, Marcel T.; Borycki, Dawid; Radhakrishnan, Harsha; Srinivasan, Vivek J.
2017-02-01
Visible light is absorbed by intrinsic chromophores such as photopigment, melanin, and hemoglobin, and scattered by subcellular structures, all of which are potential retinal disease biomarkers. Recently, high-resolution quantitative measurement and mapping of hemoglobin concentrations was demonstrated using visible light Optical Coherence Tomography (OCT). Yet, most high-resolution visible light OCT systems adopt free-space, or bulk, optical setups, which could limit clinical applications. Here, the construction of a multi-functional fiber-optic OCT system for human retinal imaging with <2.5 micron axial resolution is described. A detailed noise characterization of two supercontinuum light sources with differing pulse repetition rates is presented. The higher repetition rate, lower noise, source is found to enable a sensitivity of 87 dB with 0.1 mW incident power at the cornea and a 98 microsecond exposure time. Using a broadband, asymmetric, fused single-mode fiber coupler designed for visible wavelengths, the sample arm is integrated into an ophthalmoscope platform, rendering it portable and suitable for clinical use. In vivo anatomical, Doppler, and spectroscopic imaging of the human retina is further demonstrated using a single oversampled B-scan. For spectroscopic fitting of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) content in the retinal vessels, a noise bias-corrected absorbance spectrum is estimated using a sliding short-time Fourier transform of the complex OCT signal and fit using a model of light absorption and scattering. This yielded path length (L) times molar concentration, LCHbO2 and LCHb. Based on these results, we conclude that high-resolution visible light OCT has potential for depth-resolved functional imaging of the eye.
In vivo diagnosis of skin cancer using polarized and multiple scattered light spectroscopy
NASA Astrophysics Data System (ADS)
Bartlett, Matthew Allen
This thesis research presents the development of a non-invasive diagnostic technique for distinguishing between skin cancer, moles, and normal skin using polarized and multiple scattered light spectroscopy. Polarized light incident on the skin is single scattered by the epidermal layer and multiple scattered by the dermal layer. The epidermal light maintains its initial polarization while the light from the dermal layer becomes randomized and multiple scattered. Mie theory was used to model the epidermal light as the scattering from the intercellular organelles. The dermal signal was modeled as the diffusion of light through a localized semi-homogeneous volume. These models were confirmed using skin phantom experiments, studied with in vitro cell cultures, and applied to human skin for in vivo testing. A CCD-based spectroscopy system was developed to perform all these experiments. The probe and the theory were tested on skin phantoms of latex spheres on top of a solid phantom. We next extended our phantom study to include in vitro cells on top of the solid phantom. Optical fluorescent microscope images revealed at least four distinct scatterers including mitochondria, nucleoli, nuclei, and cell membranes. Single scattering measurements on the mammalian cells consistently produced PSD's in the size range of the mitochondria. The clinical portion of the study consisted of in vivo measurements on cancer, mole, and normal skin spots. The clinical study combined the single scattering model from the phantom and in vitro cell studies with the diffusion model for multiple scattered light. When parameters from both layers were combined, we found that a sensitivity of 100% and 77% can be obtained for detecting cancers and moles, respectively, given the number of lesions examined.
NASA Astrophysics Data System (ADS)
E Alekseev, A.; Tezadov, Ya A.; Potapov, V. T.
2017-05-01
In the present paper we perform, for the first time, the analysis of the average intensity noise power level at the output of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source. The origin of the considered intensity noise lies in random phase fluctuations of a semiconductor laser source field. These phase fluctuations are converted to intensity noise in the process of interference of backscattered light. This intensity noise inevitably emerges in every phase-OTDR spatial channel and limits its sensitivity to external phase actions. The analysis of intensity noise in a phase-OTDR was based on the study of a fiber scattered-light interferometer (FSLI) which is treated as the constituent part of OTDR. When considered independently, FSLI has a broad intensity noise spectrum at its output; when FSLI is treated as a part of a phase-OTDR, due to aliasing effect, the wide FSLI noise spectrum is folded within the spectral band, determined by the probe pulse repetition frequency. In the analysis one of the conventional phase-OTDR schemes with rectangular dual-pulse probe signal was considered, the FSLI, which corresponds to this OTDR scheme, has two scattering fiber segments with additional time delay introduced between backscattered fields. The average intensity noise power and resulting noise spectrum at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments and by the additional time delay between the scattering segments. The average intensity noise characteristics at the output of the corresponding phase-OTDR are determined by the analogous parameters: the source coherence, the lengths of the parts constituting the dual-pulse and the time interval which separates the parts of the dual-pulse. In the paper the expression for the average noise power spectral density (NPSD) at the output of FSLI was theoretically derived and experimentally verified. Based on the found average NPSD of FSLI, a simple relation connecting the phase-OTDR parameters and the limiting level of full average intensity noise power at its output was derived. This relation was verified by experimental measurement of the average noise power at the output of phase-OTDR. The limiting noise level, considered in the paper, determines the fundamental noise floor for the phase-OTDR with given parameters of the source coherence, probe pulse length and time delay between two pulses constituting the dual-pulse.
Polarization of Light from Leaves Measured from 0.5 - 1.6 mm
NASA Technical Reports Server (NTRS)
Vanderbilt, V. C.; Ustin, S. L.; Daughtry, C. S. T.; Walthal, C. L.; Greenberg, J. A.
2006-01-01
The light scattered by plant canopies depends in part on the light scattering/absorbing properties of the leaves. Insights into these properties gained at the leaf scale are necessary ultimately to accomplish the region and global scale environmental goals of the EOS era. While this scattered light may be described by the four components of the Stokes vector, (intensity, magnitude of line= polarization, angle of plane of linear polarization, and magnitude of circular polarization), significant progress has been achieved toward understanding only the first component, the intensity of the scattered light. Recent research shows that the magnitude of the linearly polarized light may be a significant part of the light scattered by some canopies. Thus, consideration of the second component may be necessary to obtain an unambiguous understanding of the canopy processes. We measured the intensity and the linear polarization of the light scattered by single leaves, testing the hypothesis that the polarization of the light scattered by each leaf was attributable to properties of the surfaces of the leaf and specifically did not depend upon the properties of the interior of the leaf. This research extends previous investigations limited to the single leaves of approximately 20 species typically found in the area of Lafayette, Indiana, to the leaves of 30 species representing monocots, dicots and ferns from six continents.
Universal dimer–dimer scattering in lattice effective field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean
We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less
Universal dimer–dimer scattering in lattice effective field theory
Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean; ...
2017-03-14
We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less
Quantum scattering in one-dimensional systems satisfying the minimal length uncertainty relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph
In quantum gravity theories, when the scattering energy is comparable to the Planck energy the Heisenberg uncertainty principle breaks down and is replaced by the minimal length uncertainty relation. In this paper, the consequences of the minimal length uncertainty relation on one-dimensional quantum scattering are studied using an approach involving a recently proposed second-order differential equation. An exact analytical expression for the tunneling probability through a locally-periodic rectangular potential barrier system is obtained. Results show that the existence of a non-zero minimal length uncertainty tends to shift the resonant tunneling energies to the positive direction. Scattering through a locally-periodic potentialmore » composed of double-rectangular potential barriers shows that the first band of resonant tunneling energies widens for minimal length cases when the double-rectangular potential barrier is symmetric but narrows down when the double-rectangular potential barrier is asymmetric. A numerical solution which exploits the use of Wronskians is used to calculate the transmission probabilities through the Pöschl–Teller well, Gaussian barrier, and double-Gaussian barrier. Results show that the probability of passage through the Pöschl–Teller well and Gaussian barrier is smaller in the minimal length cases compared to the non-minimal length case. For the double-Gaussian barrier, the probability of passage for energies that are more positive than the resonant tunneling energy is larger in the minimal length cases compared to the non-minimal length case. The approach is exact and applicable to many types of scattering potential.« less
NASA Astrophysics Data System (ADS)
Shapovalov, K. A.; Salmin, V. V.; Lazarenko, V. I.; Gar‧kavenko, V. V.
2017-05-01
The model of the autofluorescence spectrum formation of a crystalline lens taking into account light scattering was presented. Cross sections of extinction, scattering and absorption were obtained numerically for models of normal crystalline lens and cataract according to the Mie theory for polydisperse systems. To validate the model, data on the autofluorescence spectra of the normal lens and cataracts were obtained using an experimental ophthalmologic spectrofluorometer with excitation by UV light emitting diodes. In the framework of the model, the influence of the lens light scattering on the shape of the luminescence spectrum was estimated. It was found that the changes in the fluorescence spectrum of lenses with cataracts can be completely interpreted by the light scattering.
Till, Ugo; Gaucher-Delmas, Mireille; Saint-Aguet, Pascale; Hamon, Glenn; Marty, Jean-Daniel; Chassenieux, Christophe; Payré, Bruno; Goudounèche, Dominique; Mingotaud, Anne-Françoise; Violleau, Frédéric
2014-12-01
Polymersomes formed from amphiphilic block copolymers, such as poly(ethyleneoxide-b-ε-caprolactone) (PEO-b-PCL) or poly(ethyleneoxide-b-methylmethacrylate), were characterized by asymmetrical flow field-flow fractionation coupled with quasi-elastic light scattering (QELS), multi-angle light scattering (MALS), and refractive index detection, leading to the determination of their size, shape, and molecular weight. The method was cross-examined with more classical ones, like batch dynamic and static light scattering, electron microscopy, and atomic force microscopy. The results show good complementarities between all the techniques; asymmetrical flow field-flow fractionation being the most pertinent one when the sample exhibits several different types of population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar
2010-07-28
We measured the polarization- and angle-resolved optical scattering and reflection spectra of the quasiordered nanostructures in the bird feather barbs. In addition to the primary peak that originates from single scattering, we observed a secondary peak which exhibits depolarization and distinct angular dispersion. We explained the secondary peak in terms of double scattering, i.e., light is scattered successively twice by the structure. The two sequential single-scattering events are considered uncorrelated. Using the Fourier power spectra of the nanostructures obtained from the small-angle x-ray scattering experiment, we calculated the double scattering of light in various directions. The double-scattering spectrum is broadermore » than the single-scattering spectrum, and it splits into two subpeaks at larger scattering angle. The good agreement between the simulation results and the experimental data confirms that double scattering of light makes a significant contribution to the structural color.« less
1994-01-01
data acquisition systems and run radio, but due to the short wave length the synchronously. light is more sensible to scattering by small Lidar...the raingauge records from the stations Jaen, in the central part of Andalusia, and Badajoz located in this region (Valladolid, Zamora, and Ciudad Real...EN 20-20.0.72H -- CIUDAD REAL Ix ( > to.I to- t-’l PERCENTAGE OF TIME ()PERCENTAGE OF ’TIME() Figure 9. Relative errors for Western Andalusia Figure 10
Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers
Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2015-01-01
This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems. PMID:26606898
Light scattering properties of self-organized nanostructured substrates for thin-film solar cells.
Mennucci, C; Del Sorbo, S; Pirotta, S; Galli, M; Andreani, L C; Martella, C; Giordano, M C; Buatier de Mongeot, F
2018-06-01
We investigate the scattering properties of novel kinds of nano-textured substrates, fabricated in a self-organized fashion by defocused ion beam sputtering. These substrates provide strong and broadband scattering of light and can be useful for applications in thin-film solar cells. In particular, we characterize the transmitted light in terms of haze and angle-resolved scattering, and we compare our results with those obtained for the commonly employed Asahi-U texture. The results indicate that the novel substrate has better scattering properties compared to reference Asahi-U substrates. We observe super-Lambertian light scattering behavior in selected spectral and angular regions due to the peculiar morphology of the nano-textured interface, which combines high aspect ratio pseudo random structures with a one-dimensional periodic pattern. The enhancement of light absorption observed in a prototype thin film semiconductor absorber grown on nano-textured glass with respect to an Asahi-U substrate further confirms the superior light trapping properties of the novel substrate.
NASA Technical Reports Server (NTRS)
Schaetzel, Klaus
1989-01-01
Since the development of laser light sources and fast digital electronics for signal processing, the classical discipline of light scattering on liquid systems experienced a strong revival plus an enormous expansion, mainly due to new dynamic light scattering techniques. While a large number of liquid systems can be investigated, ranging from pure liquids to multicomponent microemulsions, this review is largely restricted to applications on Brownian particles, typically in the submicron range. Static light scattering, the careful recording of the angular dependence of scattered light, is a valuable tool for the analysis of particle size and shape, or of their spatial ordering due to mutual interactions. Dynamic techniques, most notably photon correlation spectroscopy, give direct access to particle motion. This may be Brownian motion, which allows the determination of particle size, or some collective motion, e.g., electrophoresis, which yields particle mobility data. Suitable optical systems as well as the necessary data processing schemes are presented in some detail. Special attention is devoted to topics of current interest, like correlation over very large lag time ranges or multiple scattering.
Coherent Multiple Light Scattering in Ultracold Atomic Rb
NASA Astrophysics Data System (ADS)
Kulatunga, Pasad; Sukenik, C. I.; Balik, Salim; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.
2003-05-01
Wave transport in mesoscopic systems can be strongly influenced by coherent multiple scattering,which can lead to novel magneto-optic, transmission, and backscattering effects of light in atomic vapors. Although related to traditional studies of radiation trapping, in ultracold vapors negligible frequency or phase redistribution takes place in the scattering, and high-order coherent light scattering occurs. Among other things, this leads to enhancement of the influence of otherwise small non-resonant terms in the scattering amplitudes. We report investigation of multiple coherent light scattering from ultracold Rb atoms confined in a magneto-optic trap (MOT). In experimental studies, measurements are made of the angular, spectral, and polarization-dependent coherent backscattering profile of a low-intensity probe beam tuned near the F = 3 - F' = 4 hyperfine transition. The influence of higher probe beam intensity is also studied. In a theoretical study of angular intensity enhancement of backscattered light, we consider scattering orders up to 10 and a realistic and asymmetric Gaussian atom distribution in the MOT. Supported by NSF, NATO, and RFBR.
Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time Domain Technique
NASA Technical Reports Server (NTRS)
Sun, W.; Nousiainen, T.; Fu, Q.; Loeb, N. G.; Videen, G.; Muinonen, K.
2003-01-01
The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.
Bidirectional scattering of light from tree leaves
NASA Technical Reports Server (NTRS)
Brakke, Thomas W.; Smith, James A.; Harnden, Joann M.
1989-01-01
A laboratory goniometer consisting of an He-Ne laser (632.8 nm), vertical leaf holder, and silicon photovoltaic detector was used to measure the bidirectional scattering (both transmittance and reflectance) of red oak and red maple. The illumination angles were 0, 30, and 60 deg, and the scattering was recorded approximately every 10 deg in the principal plane. The scattering profiles obtained show the non-Lambertian characteristics of the scattering, particularly for the off-nadir illumination directions. The transmitted light was more isotropic than the reflected light.
Kinnunen, Matti; Kauppila, Antti; Karmenyan, Artashes; Myllylä, Risto
2011-09-15
Optical tweezers can be used to manipulate small objects and cells. A trap can be used to fix the position of a particle during light scattering measurements. The places of two separately trapped particles can also be changed. In this Letter we present elastic light scattering measurements as a function of scattering angle when two trapped spheres are illuminated with a He-Ne laser. This setup is suitable for trapping noncharged homogeneous spheres. We also demonstrate measurement of light scattering patterns from two separately trapped red blood cells. Two different illumination schemes are used for both samples.
Laser Rayleigh and Raman Diagnostics for Small Hydrogen/oxygen Rockets
NASA Technical Reports Server (NTRS)
Degroot, Wilhelmus A.; Zupanc, Frank J.
1993-01-01
Localized velocity, temperature, and species concentration measurements in rocket flow fields are needed to evaluate predictive computational fluid dynamics (CFD) codes and identify causes of poor rocket performance. Velocity, temperature, and total number density information have been successfully extracted from spectrally resolved Rayleigh scattering in the plume of small hydrogen/oxygen rockets. Light from a narrow band laser is scattered from the moving molecules with a Doppler shifted frequency. Two components of the velocity can be extracted by observing the scattered light from two directions. Thermal broadening of the scattered light provides a measure of the temperature, while the integrated scattering intensity is proportional to the number density. Spontaneous Raman scattering has been used to measure temperature and species concentration in similar plumes. Light from a dye laser is scattered by molecules in the rocket plume. Raman spectra scattered from major species are resolved by observing the inelastically scattered light with linear array mounted to a spectrometer. Temperature and oxygen concentrations have been extracted by fitting a model function to the measured Raman spectrum. Results of measurements on small rockets mounted inside a high altitude chamber using both diagnostic techniques are reported.
Quasiparticle Properties of a Mobile Impurity in a Bose-Einstein Condensate.
Christensen, Rasmus Søgaard; Levinsen, Jesper; Bruun, Georg M
2015-10-16
We develop a systematic perturbation theory for the quasiparticle properties of a single impurity immersed in a Bose-Einstein condensate. Analytical results are derived for the impurity energy, effective mass, and residue to third order in the impurity-boson scattering length. The energy is shown to depend logarithmically on the scattering length to third order, whereas the residue and the effective mass are given by analytical power series. When the boson-boson scattering length equals the boson-impurity scattering length, the energy has the same structure as that of a weakly interacting Bose gas, including terms of the Lee-Huang-Yang and fourth order logarithmic form. Our results, which cannot be obtained within the canonical Fröhlich model of an impurity interacting with phonons, provide valuable benchmarks for many-body theories and for experiments.
Thorough small-angle X-ray scattering analysis of the instability of liquid micro-jets in air.
Marmiroli, Benedetta; Cacho-Nerin, Fernando; Sartori, Barbara; Pérez, Javier; Amenitsch, Heinz
2014-01-01
Liquid jets are of interest, both for their industrial relevance and for scientific applications (more important, in particular for X-rays, after the advent of free-electron lasers that require liquid jets as sample carrier). Instability mechanisms have been described theoretically and by numerical simulation, but confirmed by few experimental techniques. In fact, these are mainly based on cameras, which is limited by the imaging resolution, and on light scattering, which is hindered by absorption, reflection, Mie scattering and multiple scattering due to complex air/liquid interfaces during jet break-up. In this communication it is demonstrated that synchrotron small-angle X-ray scattering (SAXS) can give quantitative information on liquid jet dynamics at the nanoscale, by detecting time-dependent morphology and break-up length. Jets ejected from circular tubes of different diameters (100-450 µm) and speeds (0.7-21 m s(-1)) have been explored to cover the Rayleigh and first wind-induced regimes. Various solvents (water, ethanol, 2-propanol) and their mixtures have been examined. The determination of the liquid jet behaviour becomes essential, as it provides background data in subsequent studies of chemical and biological reactions using SAXS or X-ray diffraction based on synchrotron radiation and free-electron lasers.
Gkoumas, Spyridon; Villanueva-Perez, Pablo; Wang, Zhentian; Romano, Lucia; Abis, Matteo; Stampanoni, Marco
2016-01-01
In X-ray grating interferometry, dark-field contrast arises due to partial extinction of the detected interference fringes. This is also called visibility reduction and is attributed to small-angle scattering from unresolved structures in the imaged object. In recent years, analytical quantitative frameworks of dark-field contrast have been developed for highly diluted monodisperse microsphere suspensions with maximum 6% volume fraction. These frameworks assume that scattering particles are separated by large enough distances, which make any interparticle scattering interference negligible. In this paper, we start from the small-angle scattering intensity equation and, by linking Fourier and real-space, we introduce the structure factor and thus extend the analytical and experimental quantitative interpretation of dark-field contrast, for a range of suspensions with volume fractions reaching 40%. The structure factor accounts for interparticle scattering interference. Without introducing any additional fitting parameters, we successfully predict the experimental values measured at the TOMCAT beamline, Swiss Light Source. Finally, we apply this theoretical framework to an experiment probing a range of system correlation lengths by acquiring dark-field images at different energies. This proposed method has the potential to be applied in single-shot-mode using a polychromatic X-ray tube setup and a single-photon-counting energy-resolving detector. PMID:27734931
Stand-alone scattering optical device using holographic photopolymer (Conference Presentation)
NASA Astrophysics Data System (ADS)
Park, Jongchan; Lee, KyeoReh; Park, YongKeun
2016-03-01
When a light propagates through highly disordered medium, its optical parameters such as amplitude, phase and polarization states are completely scrambled because of multiple scattering events. Since the multiple scattering is a fundamental optical process that contains extremely high degrees of freedom, optical information of a transmitted light is totally mingled. Until recently, the presence of multiple scattering in an inhomogeneous medium is considered as a major obstacle when manipulating a light transmitting through the medium. However, a recent development of wavefront shaping techniques enable us to control the propagation of light through turbid media; a light transmitting through a turbid medium can be effectively controlled by modulating the spatial profile of the incident light using spatial light modulator. In this work, stand-alone scattering optical device is proposed; a holographic photopolymer film, which is much economic compared to the other digital spatial light modulators, is used to record and reconstruct permanent wavefront to generate optical field behind a scattering medium. By employing our method, arbitrary optical field can be generated since the scattering medium completely mixes all the optical parameters which allow us to access all the optical information only by modulating spatial phase profile of the impinging wavefront. The method is experimentally demonstrated in both the far-field and near-field regime where it shows promising fidelity and stability. The proposed stand-alone scattering optical device will opens up new avenues for exploiting the randomness inherent in disordered medium.
Method for detection of dental caries and periodontal disease using optical imaging
Nathel, Howard; Kinney, John H.; Otis, Linda L.
1996-01-01
A method for detecting the presence of active and inactive caries in teeth and diagnosing periodontal disease uses non-ionizing radiation with techniques for reducing interference from scattered light. A beam of non-ionizing radiation is divided into sample and reference beams. The region to be examined is illuminated by the sample beam, and reflected or transmitted radiation from the sample is recombined with the reference beam to form an interference pattern on a detector. The length of the reference beam path is adjustable, allowing the operator to select the reflected or transmitted sample photons that recombine with the reference photons. Thus radiation scattered by the dental or periodontal tissue can be prevented from obscuring the interference pattern. A series of interference patterns may be generated and interpreted to locate dental caries and periodontal tissue interfaces.
Biasin, Elisa; van Driel, Tim Brandt; Kjær, Kasper S.; ...
2016-06-30
Here, we study the structural dynamics of photoexcited [Co(terpy) 2] 2+ in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows that the photoexcitation event leads to elongation of the Co-N bonds, followed by coherent Co-N bond length oscillations arising from the impulsive excitation of a vibrational mode dominated by the symmetrical stretch of all six Co-N bonds. This mode has a period of 0.33 ps and decays on a subpicosecond time scale. We find that the equilibrium bond-elongated structure of themore » high spin state is established on a single-picosecond time scale and that this state has a lifetime of ~7 ps.« less
Inverse design engineering of all-silicon polarization beam splitters
NASA Astrophysics Data System (ADS)
Frandsen, Lars H.; Sigmund, Ole
2016-03-01
Utilizing the inverse design engineering method of topology optimization, we have realized high-performing all-silicon ultra-compact polarization beam splitters. We show that the device footprint of the polarization beam splitter can be as compact as ~2 μm2 while performing experimentally with a polarization splitting loss lower than ~0.82 dB and an extinction ratio larger than ~15 dB in the C-band. We investigate the device performance as a function of the device length and find a lower length above which the performance only increases incrementally. Imposing a minimum feature size constraint in the optimization is shown to affect the performance negatively and reveals the necessity for light to scatter on a sub-wavelength scale to obtain functionalities in compact photonic devices.
NASA Laser Light Scattering Advanced Technology Development Workshop, 1988
NASA Technical Reports Server (NTRS)
Meyer, William V. (Editor)
1989-01-01
The major objective of the workshop was to explore the capabilities of existing and prospective laser light scattering hardware and to assess user requirements and needs for a laser light scattering instrument in a reduced gravity environment. The workshop addressed experimental needs and stressed hardware development.
Utility of light scatter in the morphological analysis of sperm
We were able to differentiate the morphologically diverse sperm nuclei of four animal species by using an Ortho flow cytometer to detect the forward light scatter from a red (helium-neon) laser. Cytograms depicting the axial light loss and forward red scatter signals revealed uni...
Light Scattering by Marine Particles: Modeling with Non-spherical Shapes
2011-09-30
coccoliths detached from Emiliania huxleyi, Limnology and Oceanography, 46, 1438−1454, 2001. Gordon, H.R., T.J. Smyth, W.M. Balch, and G.C. Boynton...Light scattering by coccoliths detached from Emiliania huxleyi, Applied Optics, (2009). PUBLICATIONS H.R. Gordon, Light scattering by randomly
Dressing effects on the occurrence scattering time retardation and advance in a dusty plasma
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae; Hanyang Plasma Team
2017-10-01
The dressing effects on the occurrence scattering time for the dust-dust interaction are investigated in a complex plasma. The first-order eikonal analysis is applied to obtain the scattering amplitude and the occurrence scattering time for the dust-dust interaction. The result shows that dressing effect enhances the retardation phenomena of the occurrence scattering time in the forward scattering domain. It is shown that the oscillatory behavior of the scaled occurrence scattering time is getting more significant with an increase of the Debye length. It is also found that the retardation domain of the occurrence scattering time increases with a decrease of the Debye length. The variation of the occurrence scattering time retardation and advance due to the dressing effect is also discussed.
NASA Astrophysics Data System (ADS)
Pradhan, Prabhakar; John Park, Daniel; Capoglu, Ilker; Subramanian, Hariharan; Damania, Dhwanil; Cherkezyan, Lusik; Taflove, Allen; Backman, Vadim
2017-06-01
Statistical properties of light waves reflected from a one-dimensional (1D) disordered optical medium [n(x) = n0+ dn(x),
Spatial resolution study and power calibration of the high-k scattering system on NSTX.
Lee, W; Park, H K; Cho, M H; Namkung, W; Smith, D R; Domier, C W; Luhmann, N C
2008-10-01
NSTX high-k scattering system has been extensively utilized in studying the microturbulence and coherent waves. An absolute calibration of the scattering system was performed employing a new millimeter-wave source and calibrated attenuators. One of the key parameters essential for the calibration of the multichannel scattering system is the interaction length. This interaction length is significantly different from the conventional one due to the curvature and magnetic shear effect.
Clusters in intense x-ray pulses
NASA Astrophysics Data System (ADS)
Bostedt, Christoph
2012-06-01
Free-electron lasers can deliver extremely intense, coherent x-ray flashes with femtosecond pulse length, opening the door for imaging single nanoscale objects in a single shot. All matter irradiated by these intense x-ray pulses, however, will be transformed into a highly-excited non-equilibrium plasma within femtoseconds. During the x-ray pulse complex electron dynamics and the onset of atomic disorder will be induced, leading to a time-varying sample. We have performed first experiments about x-ray laser pulse -- cluster interaction with a combined spectroscopy and imaging approach at both, the FLASH free electron laser in Hamburg (Germany) and the LCLS x-ray free-electron laser in Stanford (California). Atomic clusters are ideal for investigating the light - matter interaction because their size can be tuned from the molecular to the bulk regime, thus allowing to distinguish between intra and inter atomic processes. Imaging experiments with xenon clusters show power-density dependent changes in the scattering patterns. Modeling the scattering data indicates that the optical constants of the clusters change during the femtosecond pulse due to the transient creation of high charge states. The results show that ultra fast scattering is a promising approach to study transient states of matter on a femtosecond time scale. Coincident recording of time-of-flight spectra and scattering patterns allows the deconvolution of focal volume and particle size distribution effects. Single-shot single-particle experiments with keV x-rays reveal that for the highest power densities an highly excited and hot cluster plasma is formed for which recombination is suppressed. Time resolved infrared pump -- x-ray probe experiments have started. Here, the clusters are pumped into a nanoplasma state and their time evolution is probed with femtosecond x-ray scattering. The data show strong variations in the scattering patterns stemming from electronic reconfigurations in the cluster plasma. The results will be compared to theoretical predictions and discussed in light of current developments at free-electron laser sources.
NASA Astrophysics Data System (ADS)
Comerón, S.; Salo, H.; Knapen, J. H.
2018-02-01
Recent studies have made the community aware of the importance of accounting for scattered light when examining low-surface-brightness galaxy features such as thick discs. In our past studies of the thick discs of edge-on galaxies in the Spitzer Survey of Stellar Structure in Galaxies - the S4G - we modelled the point spread function as a Gaussian. In this paper we re-examine our results using a revised point spread function model that accounts for extended wings out to more than 2\\farcm5. We study the 3.6 μm images of 141 edge-on galaxies from the S4G and its early-type galaxy extension. Thus, we more than double the samples examined in our past studies. We decompose the surface-brightness profiles of the galaxies perpendicular to their mid-planes assuming that discs are made of two stellar discs in hydrostatic equilibrium. We decompose the axial surface-brightness profiles of galaxies to model the central mass concentration - described by a Sérsic function - and the disc - described by a broken exponential disc seen edge-on. Our improved treatment fully confirms the ubiquitous occurrence of thick discs. The main difference between our current fits and those presented in our previous papers is that now the scattered light from the thin disc dominates the surface brightness at levels below μ 26 mag arcsec-2. We stress that those extended thin disc tails are not physical, but pure scattered light. This change, however, does not drastically affect any of our previously presented results: 1) Thick discs are nearly ubiquitous. They are not an artefact caused by scattered light as has been suggested elsewhere. 2) Thick discs have masses comparable to those of thin discs in low-mass galaxies - with circular velocities vc< 120 km s-1 - whereas they are typically less massive than the thin discs in high-mass galaxies. 3) Thick discs and central mass concentrations seem to have formed at the same epoch from a common material reservoir. 4) Approximately 50% of the up-bending breaks in face-on galaxies are caused by the superposition of a thin and a thick disc where the scale-length of the latter is the largest. Data of Figs. B.1 and C.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A5
Method and Apparatus for Measuring Near-Angle Scattering of Mirror Coatings
NASA Technical Reports Server (NTRS)
Chipman, Russell A. (Inventor); Daugherty, Brian J. (Inventor); McClain, Stephen C. (Inventor); Macenka, Steven A. (Inventor)
2013-01-01
Disclosed herein is a method of determining the near angle scattering of a sample reflective surface comprising the steps of: a) splitting a beam of light having a coherence length of greater than or equal to about 2 meters into a sample beam and a reference beam; b) frequency shifting both the sample beam and the reference beam to produce a fixed beat frequency between the sample beam and the reference beam; c) directing the sample beam through a focusing lens and onto the sample reflective surface, d) reflecting the sample beam from the sample reflective surface through a detection restriction disposed on a movable stage; e) recombining the sample beam with the reference beam to form a recombined beam, followed by f) directing the recombined beam to a detector and performing heterodyne analysis on the recombined beam to measure the near-angle scattering of the sample reflective surface, wherein the position of the detection restriction relative to the sample beam is varied to occlude at least a portion of the sample beam to measure the near-angle scattering of the sample reflective surface. An apparatus according to the above method is also disclosed.
NASA Astrophysics Data System (ADS)
Feng, K. H.; Moeini, O.; McElroy, C. T.; Evans, R. D.; Petropavlovskikh, I. V.
2015-12-01
Total column ozone measured by a Brewer Mark III spectrophotometer (#85) from 2008 to 2015 is compared to the data obtained from three different Dobson spectrophotometers (#80, #82 and #42) that have been operating in parallel with the Brewer at the Amundsen-Scott Station near the South Pole. Measurements are made using either direct sunlight or light from the moon (up to 2 weeks per month). The result of the comparison was used to assess the performance of the two instrument types and determine the stability of the measurement systems. Both instruments suffer from non-linearity due to the presence of instrumental stray light caused by the out-off-band radiations scattered from the optics within the instrument. Stray light results in an underestimated ozone column at large ozone path lengths. Since measurements made at the location of the station (Latitude 89.99o, Longitude -24.80o) have solar zenith angles of 66.5 degrees or greater, the issue of stray light is a particular concern.
The distribution of the scattered laser light in laser-plate-target coupling
NASA Astrophysics Data System (ADS)
Xiao-bo, Nie; Tie-qiang, Chang; Dong-xian, Lai; Shen-ye, Liu; Zhi-jian, Zheng
1997-04-01
Theoretical and experimental studies of the angular distributions of scattered laser light in laser-Au-plate-target coupling are reported. A simple model that describes three-dimensional plasmas and scattered laser light is presented. The approximate shape of critical density surface has been given and the three-dimensional laser ray tracing is applied in the model. The theoretical results of the model are consistent with the experimental data for the scattered laser light in the polar angle range of 25° to 145° from the laser beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.
Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the rst time to regimes of electron density scale length (~500 to 700 μm), electron temperature (~3 to 5 keV), and laser intensity (6 to 16 x 10 14 W/cm 2) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRSmore » sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ~0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ~4 x 10 14 to ~6 x 10 14 W/cm 2. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.« less
Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; ...
2018-01-29
Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the rst time to regimes of electron density scale length (~500 to 700 μm), electron temperature (~3 to 5 keV), and laser intensity (6 to 16 x 10 14 W/cm 2) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRSmore » sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ~0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ~4 x 10 14 to ~6 x 10 14 W/cm 2. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.« less
SIDDHARTA results and implications of the results on antikaon-nucleon interaction
NASA Astrophysics Data System (ADS)
Marton, J.; Bazzi, M.; Beer, G.; Berucci, C.; Bellotti, G.; Bosnar, D.; Bragadireanu, A. M.; Cargnelli, M.; Clozza, A.; Curceanu, C.; Butt, A. Dawood; Fiorini, C.; Ghio, F.; Guaraldo, C.; Hayano, R.; Iliescu, M.; Iwasaki, M.; Sandri, P. Levi; Okada, S.; Pietreanu, D.; Piscicchia, K.; Vidal, A. Romero; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Tatsuno, H.; Doce, O. Vazquez; Widmann, E.; Zmeskal, J.
2016-05-01
The interaction of antikaons (K-) with nucleons and nuclei in the low-energy regime represents an active research field in hadron physics. There are important open questions like the existence of antikaon nuclear bound states like the prototype system being K- pp. Unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states in light kaonic atoms like kaonic hydrogen and helium isotopes. In the SIDDHARTA experiment at the electron-positron collider DAΦNE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound K-p atom leading to energy shift and broadening of the 1s state. The SIDDHARTA result triggered new theoretical work, which achieved major progress in the understanding of the low-energy strong interaction with strangeness reflected by the antikaon-nucleon scattering lengths calculated with the K--proton amplitudes constrained by the SIDDHARTA data. The most important open question is the experimental determination of the hadronic energy shift and width of kaonic deuterium which is planned by the SIDDHARTA-2 Collaboration.
NASA Astrophysics Data System (ADS)
Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Seka, W.; Michel, P.; Hohenberger, M.; Short, R. W.; Epstein, R.; Regan, S. P.; Campbell, E. M.; Chapman, T.; Goyon, C.; Ralph, J. E.; Barrios, M. A.; Moody, J. D.; Bates, J. W.
2018-01-01
Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (˜500 to 700 μ m ), electron temperature (˜3 to 5 keV), and laser intensity (6 to 16 ×1014 W /cm2 ) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ˜0.7 % to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ˜4×10 14 to ˜6 ×1014 W /cm2 . These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.
Light scattering by magnons in whispering gallery mode cavities
NASA Astrophysics Data System (ADS)
Sharma, Sanchar; Blanter, Yaroslav M.; Bauer, Gerrit E. W.
2017-09-01
Brillouin light scattering is an established technique to study magnons, the elementary excitations of a magnet. Its efficiency can be enhanced by cavities that concentrate the light intensity. Here, we theoretically study inelastic scattering of photons by a magnetic sphere that supports optical whispering gallery modes in a plane normal to the magnetization. Magnons with low angular momenta scatter the light in the forward direction with a pronounced asymmetry in the Stokes and the anti-Stokes scattering strength, consistent with earlier studies. Magnons with large angular momenta constitute Damon-Eschbach modes which are shown to inelastically reflect light. The reflection spectrum contains either a Stokes or anti-Stokes peak, depending on the direction of the magnetization, a selection rule that can be explained by the chirality of the Damon-Eshbach magnons. The controllable energy transfer can be used to manage the thermodynamics of the magnet by light.
Progress on the superconducting undulator for ANKA and on the instrumentation for R and D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casalbuoni, Sara; Baumbach, Tilo; Grau, Andreas
2010-06-23
Superconducting undulators show a larger magnetic field strength for the same gap and period length, as compared to permanent magnet devices, which allows to generate X-ray beams of higher brilliance and with harder spectrum. The worldwide first short period length superconducting undulator is in operation since 2005 at the synchrotron light source ANKA in Karlsruhe [1]. To further drive the development in this field a research and development program is being carried out. In this contribution we report on the last progress of the construction of a 1.5 m long superconducting undulator with a period length of 15 mm, plannedmore » to be installed in ANKA beginning 2010 to be the light source of the new beamline NANO for high resolution X-ray scattering. The key specifications of the system are an undulator parameter K higher than 2 (with a magnetic gap of 5 mm) and a phase error smaller than 3.5 degrees. Cryocoolers will keep the coils at 4.2 K for a beam heat load of 4 W. The ongoing R and D includes improvements in understanding of the magnetic field properties and of the beam heat load mechanisms. The tools and instruments under development to fulfill these tasks are also discussed.« less
Progress on the superconducting undulator for ANKA and on the instrumentation for R&D
NASA Astrophysics Data System (ADS)
Casalbuoni, Sara; Baumbach, Tilo; Grau, Andreas; Hagelstein, Michael; de Jauregui, David Saez; Boffo, Cristian; Borlein, Markus; Walter, Wolfgang; Magerl, Andreas; Mashkina, Elena; Vassiljev, Nikita
2010-06-01
Superconducting undulators show a larger magnetic field strength for the same gap and period length, as compared to permanent magnet devices, which allows to generate X-ray beams of higher brilliance and with harder spectrum. The worldwide first short period length superconducting undulator is in operation since 2005 at the synchrotron light source ANKA in Karlsruhe [1]. To further drive the development in this field a research and development program is being carried out. In this contribution we report on the last progress of the construction of a 1.5 m long superconducting undulator with a period length of 15 mm, planned to be installed in ANKA beginning 2010 to be the light source of the new beamline NANO for high resolution X-ray scattering. The key specifications of the system are an undulator parameter K higher than 2 (with a magnetic gap of 5 mm) and a phase error smaller than 3.5 degrees. Cryocoolers will keep the coils at 4.2 K for a beam heat load of 4 W. The ongoing R&D includes improvements in understanding of the magnetic field properties and of the beam heat load mechanisms. The tools and instruments under development to fulfill these tasks are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Dr Nirmesh; Liu, Dr C K; Hawkett, Dr B. S.
2014-01-01
The optical magnetic chaining technique (MCT) developed by Leal-Calderon, Bibette and co-workers in the 1990 s allows precise measurements of force profiles between droplets in monodisperse ferrofluid emulsions. However, the method lacks an in-situ determination of droplet size and therefore requires the combination of separately acquired measurements of droplet chain periodicity versus an applied magnetic field from optical Bragg scattering and droplet diameter inferred from dynamic light scattering (DLS) to recover surface force-distance profiles between the colloidal particles. Compound refractive lens (CRL) focussed small-angle scattering (SANS) MCT should result in more consistent measurements of droplet size (form factor measurements inmore » the absence of field) and droplet chaining period (from structure factor peaks when the magnetic field is applied); and, with access to shorter length scales, extend force measurements to closer approaches than possible by optical measurements. We report on CRL-SANS measurements of monodisperse ferrofluid emulsion droplets aligned in straight chains by an applied field perpendicular to the incident beam direction. Analysis of the scattering from the closely spaced droplets required algorithms that carefully treated resolution and its effect on mean scattering vector magnitudes in order to determine droplet size and chain periods to sufficient accuracy. At lower applied fields scattering patterns indicate structural correlations transverse to the magnetic field direction due to the formation of intermediate structures in early chain growth.« less
A phenomenological π-p scattering length from pionic hydrogen
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Wycech, S.
2004-07-01
We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length ah extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order α2logα using an extended charge distribution. A hadronic πN scattering length ahπ-p=0.0870(5)mπ-1 is deduced leading to a πNN coupling constant from the GMO relation gc2/(4π)=14.04(17).
Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths
NASA Astrophysics Data System (ADS)
Fried, Daniel; Glena, Richard E.; Featherstone, John D. B.; Seka, Wolf
1995-03-01
The light-scattering properties of dental enamel and dentin were measured at 543, 632, and 1053 nm. Angularly resolved scattering distributions for these materials were measured from 0 deg to 180 deg using a rotating goniometer. Surface scattering was minimized by immersing the samples in an index-matching bath. The scattering and absorption coefficients and the scattering phase function were deduced by comparing the measured scattering data with angularly resolved Monte Carlo light-scattering simulations. Enamel and dentin were best represented by a linear combination of a highly forward-peaked Henyey-Greenstein (HG) phase function and an isotropic phase function. Enamel weakly scatters light between 543 nm and 1.06 mu m, with the scattering coefficient ( mu s) ranging from mu s = 15 to 105 cm-1. The phase function is a combination of a HG function with g = 0.96 and a 30-60% isotropic phase function. For enamel, absorption is negligible. Dentin scatters strongly in the visible and near IR ( mu s approximately equals 260 cm-1) and absorbs weakly ( mu a approximately equals 4 cm-1). The scattering phase function for dentin is described by a HG function with g = 0.93 and a very weak isotropic scattering component ( approximately 2%).
Stimulated Brillouin Scattering: its Generation and Applications in Optical Fibre
NASA Astrophysics Data System (ADS)
Culverhouse, David
1992-01-01
Available from UMI in association with The British Library. In the work presented in this thesis, the generation of stimulated Brillouin scattering and its applications in optical fibres is theoretically and experimentally investigated. The study pursues three special cases: (i) Backward stimulated Brillouin scattering in long fibre lengths; (ii) Backward stimulated Brillouin scattering in high finesse all fibre ring resonators; (iii) Forward stimulated Brillouin scattering in dual moded single core fibres. Stimulated Brillouin scattering (SBS) occurs for relatively low input powers in monomode optical fibres, as the power density is very high because of the relatively small core size. For applications such as optical communications, SBS is seen as a potentially deleterious effect because it can limit the maximum optical power transmitted by the fibre and hence decrease the distance between repeaters. SBS, however, can also be used to advantage in optical fibres, for example to produce amplification. In this thesis the comprehensive study of SBS in relation to other non-linear scattering mechanisms in optical fibres leads to the derivation of explicit definitions for the Brillouin gain and the Brillouin threshold. The study of SBS in high finesse all fibre ring resonators also demonstrates how threshold powers can be reduced, typically, from milliwatts observed in long fibre lengths to microwatts. Because Brillouin scattering is primarily a result of the interaction of the incident optical beam with spontaneously generated (thermal) fluctuations in the density of the medium, the spectral features show a considerable variation with temperature thus providing a mechanism with sufficient sensitivity to realise tunable microwave generation and frequency shifting devices. Finally, the observation of stimulated Brillouin scattering in a forward direction (FSBS) in dual moded single-core fibre is also reported. Frequency shifts in the order of 17MHz are observed in optical fibre supporting LP_ {01} and LP_{11} modes at 514.5nm. The phenomenon is examined here in detail and the governing differential equations of the three wave parametric process (involving pump/laser, Brillouin signal and acoustic flexural wave phonon) is derived and solved. FSBS is possible because, although the overlap integral between a fibre flexural mode and the light is small, the phonon lifetime is much longer than in conventional SBS. FSBS may also be the first example of a non-linear effect which is enhanced by increasing the optical mode area at constant pump power.
Study of Light Scattering in the Human Eye
NASA Astrophysics Data System (ADS)
Perez, I. Kelly; Bruce, N. C.; Valdos, L. R. Berriel
2008-04-01
In this paper we present a numerical model of the human eye to be used in studies of the scattering of light in different components of the eye's optical system. Different parts of the eye are susceptible to produce scattering for different reasons; age, illness or injury. For example, cataracts can appear in the human lens or injuries or fungi can appear on the cornea. The aim of the study is to relate the backscattered light, which is what doctors measure or detect, to the forward scattered light, which is what affects the patient's vision. We present the model to be used, the raytrace procedure and some preliminary results for the image on the retina without scattering.
Weak scattering of scalar and electromagnetic random fields
NASA Astrophysics Data System (ADS)
Tong, Zhisong
This dissertation encompasses several studies relating to the theory of weak potential scattering of scalar and electromagnetic random, wide-sense statistically stationary fields from various types of deterministic or random linear media. The proposed theory is largely based on the first Born approximation for potential scattering and on the angular spectrum representation of fields. The main focus of the scalar counterpart of the theory is made on calculation of the second-order statistics of scattered light fields in cases when the scattering medium consists of several types of discrete particles with deterministic or random potentials. It is shown that the knowledge of the correlation properties for the particles of the same and different types, described with the newly introduced pair-scattering matrix, is crucial for determining the spectral and coherence states of the scattered radiation. The approach based on the pair-scattering matrix is then used for solving an inverse problem of determining the location of an "alien" particle within the scattering collection of "normal" particles, from several measurements of the spectral density of scattered light. Weak scalar scattering of light from a particulate medium in the presence of optical turbulence existing between the scattering centers is then approached using the combination of the Born's theory for treating the light interaction with discrete particles and the Rytov's theory for light propagation in extended turbulent medium. It is demonstrated how the statistics of scattered radiation depend on scattering potentials of particles and the power spectra of the refractive index fluctuations of turbulence. This theory is of utmost importance for applications involving atmospheric and oceanic light transmission. The second part of the dissertation includes the theoretical procedure developed for predicting the second-order statistics of the electromagnetic random fields, such as polarization and linear momentum, scattered from static media. The spatial distribution of these properties of scattered fields is shown to be substantially dependent on the correlation and polarization properties of incident fields and on the statistics of the refractive index distribution within the scatterers. Further, an example is considered which illustrates the usefulness of the electromagnetic scattering theory of random fields in the case when the scattering medium is a thin bio-tissue layer with the prescribed power spectrum of the refractive index fluctuations. The polarization state of the scattered light is shown to be influenced by correlation and polarization states of the illumination as well as by the particle size distribution of the tissue slice.
Faraday effect on stimulated Raman scattering in the linear region
NASA Astrophysics Data System (ADS)
Liu, Z. J.; Li, B.; Xiang, J.; Cao, L. H.; Zheng, C. Y.; Hao, L.
2018-04-01
The paper presents the effect of Faraday rotation on stimulated Raman scattering (SRS). When light propagates along the magnetic field upon plasma, Faraday rotation occurs. The rotation angle can be expressed as {{d}}θ /{{d}}{s}=2.93× {10}-4B\\tfrac{{n}e/{n}c}{\\sqrt{1-{n}e/{n}c}} {cm}}-1 approximately, where θ is the rotation angle and s is distance, n e is the electron density, n c is the critical density and B is magnetic field in unit of Gauss. Both the incident light and Raman light have Faraday effects. The angle between the polarization directions of incident light and Raman light changes with position. The driven force of electron plasma wave also reduces, and then SRS scattering level is reduced. Faraday rotation effect can increase the laser intensity threshold of Raman scattering, even if the magnetic field strength is small. The circularly polarized light incident case is also compared with that of the linearly polarized light incident. The Raman scattering level of linearly polarized light is much smaller than that of circularly polarized light in the magnetized plasma. The difference between linearly and circularly polarized lights is also discussed.
Chen, Shuming; Kwok, Hoi Sing
2010-01-04
Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost-effective method to rough the substrates and hence to scatter the light. By simply sand-blasting the edges and back-side surface of the glass substrates, a 20% improvement of forward efficiency has been demonstrated. Moreover, due to scattering effect, a constant color over all viewing angles and uniform light pattern with Lambertian distribution has been obtained. This simple and cost-effective method may be suitable for mass production of large-area OLEDs for lighting applications.
System for diffusing light from an optical fiber or light guide
Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [
2008-06-10
A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.
NASA Astrophysics Data System (ADS)
Phillips, C. B.; Valenti, M.
2009-12-01
Jupiter's moon Europa likely possesses an ocean of liquid water beneath its icy surface, but estimates of the thickness of the surface ice shell vary from a few kilometers to tens of kilometers. Color images of Europa reveal the existence of a reddish, non-ice component associated with a variety of geological features. The composition and origin of this material is uncertain, as is its relationship to Europa's various landforms. Published analyses of Galileo Near Infrared Mapping Spectrometer (NIMS) observations indicate the presence of highly hydrated sulfate compounds. This non-ice material may also bear biosignatures or other signs of biotic material. Additional spectral information from the Galileo Solid State Imager (SSI) could further elucidate the nature of the surface deposits, particularly when combined with information from the NIMS. However, little effort has been focused on this approach because proper calibration of the color image data is challenging, requiring both skill and patience to process the data and incorporate the appropriate scattered light correction. We are currently working to properly calibrate the color SSI data. The most important and most difficult issue to address in the analysis of multispectral SSI data entails using thorough calibrations and a correction for scattered light. Early in the Galileo mission, studies of the Galileo SSI data for the moon revealed discrepancies of up to 10% in relative reflectance between images containing scattered light and images corrected for scattered light. Scattered light adds a wavelength-dependent low-intensity brightness factor to pixels across an image. For example, a large bright geological feature located just outside the field of view of an image will scatter extra light onto neighboring pixels within the field of view. Scattered light can be seen as a dim halo surrounding an image that includes a bright limb, and can also come from light scattered inside the camera by dirt, edges, and the interfaces of lenses. Because of the wavelength dependence of this effect, a scattered light correction must be performed on any SSI multispectral dataset before quantitative spectral analysis can be done. The process involves using a point-spread function for each filter that helps determine the amount of scattered light expected for a given pixel based on its location and the model attenuation factor for that pixel. To remove scattered light for a particular image taken through a particular filter, the Fourier transform of the attenuation function, which is the point spread function for that filter, is convolved with the Fourier transform of the image at the same wavelength. The result is then filtered for noise in the frequency domain, and then transformed back to the spatial domain. This results in a version of the original image that would have been taken without the scattered light contribution. We will report on our initial results from this calibration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, X. Z.; Shen, W. Z., E-mail: wzshen@sjtu.edu.cn; Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, and Key Laboratory of Artificial Structures and Quantum Control
2015-06-14
Composite photoanode comprising nanoparticles and one-dimensional (1D) nanostructure is a promising alternative to conventional photoanode for dye-sensitized solar cells (DSCs). Besides fast electron transport channels, the 1D nanostructure also plays as light scattering centers. Here, we theoretically investigate the light scattering properties of capsule-shaped 1D nanostructure and their influence on the light collection of DSCs. It is found that the far-field light scattering of a single capsule depends on its volume, shape, and orientation: capsules with bigger equivalent spherical diameter, smaller aspect ratio, and horizontal orientation demonstrate stronger light scattering especially at large scattering angle. Using Monte Carlo approach, wemore » simulated and optimized the light harvesting efficiency of the cell. Two multilayer composite photoanodes containing orderly or randomly oriented capsules are proposed. DSCs composed of these two photoanodes are promising for higher efficiencies because of their efficient light collection and superior electron collection. These results will provide practical guidance to the design and optimization of the photoanodes for DSCs.« less
Castaño-Martín, B; Gros-Otero, J; Martínez, J; Teus, M
2017-11-01
The purpose of this study was to determine the light scattering in patients with Fuchs' endothelial dystrophy without clinically significant corneal oedema, and evaluate its relationship with endothelial cell count, corneal thickness, and corneal biomechanical parameters. The values of light scattering were measured by C-Quant ® (Oculus Optikgeräte GmbH, Germany) in 32 eyes of 17 patients diagnosed with Fuchs' endothelial dystrophy without clinically significant corneal oedema. Corneal biomechanical properties were determined using ORA (ocular response) and Corvis ST ® (tonometry). A light scattering value outside the normal range was observed in 93.8% of eyes studied. No statistically significant association (P>.05) was found between the values of the measured light scattering by C-Quant ® and endothelial count, pachymetry, or corneal biomechanical properties. In this study, changes were found in the values of light scattering values of patients with corneal Fuchs' endothelial dystrophy. This change does not appear to correlate significantly with disease severity. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.
Scaling behavior of nonisothermal phase separation.
Rüllmann, Max; Alig, Ingo
2004-04-22
The phase separation process in a critical mixture of polydimethylsiloxane and polyethylmethylsiloxane (PDMS/PEMS, a system with an upper critical solution temperature) was investigated by time-resolved light scattering during continuous quenches from the one-phase into the two-phase region. Continuous quenches were realized by cooling ramps with different cooling rates kappa. Phase separation kinetics is studied by means of the temporal evolution of the scattering vector qm and the intensity Im at the scattering peak. The curves qm(t) for different cooling rates can be shifted onto a single mastercurve. The curves Im(t) show similar behavior. As shift factors, a characteristic length Lc and a characteristic time tc are introduced. Both characteristic quantities depend on the cooling rate through power laws: Lc approximately kappa(-delta) and tc approximately kappa(-rho). Scaling behavior in isothermal critical demixing is well known. There the temporal evolutions of qm and Im for different quench depths DeltaT can be scaled with the correlation length xi and the interdiffusion coefficient D, both depending on DeltaT through critical power laws. We show in this paper that the cooling rate scaling in nonisothermal demixing is a consequence of the quench depth scaling in the isothermal case. The exponents delta and rho are related to the critical exponents nu and nu* of xi and D, respectively. The structure growth during nonisothermal demixing can be described with a semiempirical model based on the hydrodynamic coarsening mechanism well known in the isothermal case. In very late stages of nonisothermal phase separation a secondary scattering maximum appears. This is due to secondary demixing. We explain the onset of secondary demixing by a competition between interdiffusion and coarsening. (c) 2004 American Institute of Physics
POlarized Light Angle Reflectance Instrument I Polarized Incidence (POLAR:I)
NASA Technical Reports Server (NTRS)
Sarto, Anthony W.; Woldemar, Christopher M.; Vanderbilt, V. C.
1989-01-01
The light scattering properties of leaves are used as input data for models which mathematically describe the transport of photons within plant canopies. Polarization measurements may aid in the investigation of these properties. This paper describes an instrument for rapidly determining the bidirectional light scattering properties of leaves illuminated by linearly polarized light. Results for one species, magnolia, show large differences in the bidirectional light scattering properties depending whether or not the electric vector E is parallel to the foliage surface.
Micro-LiDAR velocity, temperature, density, concentration sensor
NASA Technical Reports Server (NTRS)
Dorrington, Adrian A. (Inventor); Danehy, Paul M. (Inventor)
2010-01-01
A light scatter sensor includes a sensor body in which are positioned a plurality of optical fibers. The sensor body includes a surface, in one end of each of the optical fibers terminates at the surface of the sensor body. One of the optical fibers is an illumination fiber for emitting light. A plurality of second optical fibers are collection fibers for collecting scattered light signals. A light sensor processor is connected to the collection fibers to detect the scattered light signals.
Sun, Lidong; Zhang, Sam; Sun, Xiaowei; He, Xiaodong
2010-07-01
Highly ordered TiO2 nanotube arrays are superior photoanodes for dye-sensitized solar cells (DSSCs) due to reduced intertube connections, vectorial electron transport, suppressed electron recombination, and enhanced light scattering. Performance of the cells is greatly affected by tube geometry, such as wall thickness, length, inner diameter and intertube spacing. In this paper, effect of geometry on the photovoltaic characteristics of DSSCs is reviewed. The nanotube wall has to be thick enough for a space charge layer to form for faster electron transportation and reduced recombination. When the tube wall is too thin to support the space charge layer, electron transport in the nanotubes will be hindered and reduced to that similar in a typical nanoparticle photoanode, and recombination will easily take place. Length of the nanotubes also plays a role: longer tube length is desired because of more dye loading, however, tube length longer than the electron diffusion length results in low collecting efficiency, which in turn, results in low short-circuit current density and thus low overall conversion efficiency. The tube inner diameter (pore size) affects the conversion efficiency through effective surface area, i.e., larger pore size gives rise to smaller surface area for dye adsorption, which results in low short-circuit current density under the same light soaking. Another issue that may seriously affect the conversion efficiency is whether each of the tube stands alone (free from connecting to the neighboring tubes) to facilitate infiltration of dye and fully use the outer surface area.
Stray light field dependence for large astronomical space telescopes
NASA Astrophysics Data System (ADS)
Lightsey, Paul A.; Bowers, Charles W.
2017-09-01
Future large astronomical telescopes in space will have architectures that expose the optics to large angular extents of the sky. Options for reducing stray light coming from the sky range from enclosing the telescope in a tubular baffle to having an open telescope structure with a large sunshield to eliminate solar illumination. These two options are considered for an on-axis telescope design to explore stray light considerations. A tubular baffle design will limit the sky exposure to the solid angle of the cone in front of the telescope set by the aspect ratio of the baffle length to Primary Mirror (PM) diameter. Illumination from this portion of the sky will be limited to the PM and structures internal to the tubular baffle. Alternatively, an open structure design will allow a large portion of the sky to directly illuminate the PM and Secondary Mirror (SM) as well as illuminating sunshield and other structure surfaces which will reflect or scatter light onto the PM and SM. Portions of this illumination of the PM and SM will be scattered into the optical train as stray light. A Radiance Transfer Function (RTF) is calculated for the open architecture that determines the ratio of the stray light background radiance in the image contributed by a patch of sky having unit radiance. The full 4π steradian of sky is divided into a grid of patches, with the location of each patch defined in the telescope coordinate system. By rotating the celestial sky radiance maps into the telescope coordinate frame for a given pointing direction of the telescope, the RTF may be applied to the sky brightness and the results integrated to get the total stray light from the sky for that pointing direction. The RTF data generated for the open architecture may analyzed as a function of the expanding cone angle about the pointing direction. In this manner, the open architecture data may be used to directly compare to a tubular baffle design parameterized by allowed cone angle based on the aspect ratio of the tubular baffle length to PM diameter. Additional analysis has been done to examine the stray light implications for the fields near the image of a bright source. This near field stray light is shown to be dependent on the Bidirectional Reflectance Distribution Function (BRDF) characteristics of the mirrors in the optical train. The near field stray light contribution is dominated by those mirrors closer to the focal plane compared to the contributions from the PM and SM. Hence the near field stray light is independent of the exterior telescope baffle geometry. Contributions from self-emission from the telescope have been compared to natural background for telescopes operating at infrared wavelengths.
NASA Astrophysics Data System (ADS)
Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto
2008-02-01
We performed simultaneous measurement of light scattering and absorption due to reduction of cytochrome c oxidase as intrinsic optical signals that are related to morphological characteristics and energy metabolism, respectively, for rat brains after oxygen/glucose deprivation by saline infusion. To detect change in light scattering, we determined the wavelength that was the most insensitive to change in light absorption due to the reduction of cytochrome c oxidase on the basis of multiwavelength analysis of diffuse reflectance data set for each rat. Then the relationships between scattering signal and absorption signals related to the reductions of heme aa 3 (605 nm) and CuA (830 nm) in cytochrome c oxidase were examined. Measurements showed that after starting saline infusion, the reduction of heme aa 3 started first; thereafter triphasic, large scattering change occurred (200-300 s), during which the reduction of CuA started. Despite such complex behaviors of IOSs, almost linear correlations were seen between the scattering signal and the heme aa 3-related absorption signal, while a relatively large animal-to-animal variation was observed in the correlation between the scattering signal and CuA-related absorption signal. Transmission electron microscopic observation revealed that dendritic swelling and mitochondrial deformation occurred in the cortical surface tissue after the triphasic scattering change. These results suggest that mitochondrial energy failure accompanies morphological alteration in the brain tissue and results in change in light scattering; light scattering will become an important indicator of tissue viability in brain.
VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids
NASA Astrophysics Data System (ADS)
Svensson, T.; Andersson, M.; Rippe, L.; Svanberg, S.; Andersson-Engels, S.; Johansson, J.; Folestad, S.
2008-02-01
We present a minimalistic and flexible single-beam instrumentation based on sensitive tunable diode laser absorption spectroscopy (TDLAS) and its use in structural analysis of highly scattering pharmaceutical solids. By utilising a vertical cavity surface emitting laser (VCSEL) for sensing of molecular oxygen dispersed in tablets, we address structural properties such as porosity. Experiments involve working with unknown path lengths, severe backscattering and diffuse light. These unusual experimental conditions has led to the use of the term gas in scattering media absorption spectroscopy (GASMAS). By employing fully digital wavelength modulation spectroscopy and coherent sampling, system sensitivity in ambient air experiments reaches the 10-7 range. Oxygen absorption exhibited by our tablets, being influenced by both sample porosity and scattering, was in the range 8×10-5 to 2×10-3, and corresponds to 2-50 mm of path length through ambient air (Leq). The day-to-day reproducibility was on average 1.8% (0.3 mm Leq), being limited by mechanical positioning. This is the first time sub-millimetre sensitivity is reached in GASMAS. We also demonstrate measurements on gas transport on a 1-s time scale. By employing pulsed illumination and time-correlated single-photon counting, we reveal that GASMAS exhibits excellent correlation with time-domain photon migration. In addition, we introduce an optical measure of porosity by relating oxygen absorption to average photon time-of-flight. Finally, the simplicity, robustness and low cost of this novel TDLAS instrumentation provide industrial potential.
Bright-White Beetle Scales Optimise Multiple Scattering of Light
NASA Astrophysics Data System (ADS)
Burresi, Matteo; Cortese, Lorenzo; Pattelli, Lorenzo; Kolle, Mathias; Vukusic, Peter; Wiersma, Diederik S.; Steiner, Ullrich; Vignolini, Silvia
2014-08-01
Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure.
Singh, M Suheshkumar; Yalavarthy, Phaneendra K; Vasu, R M; Rajan, K
2010-07-01
To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms. A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model based numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations.
Precision calculation of threshold πd scattering, πN scattering lengths, and the GMO sum rule
NASA Astrophysics Data System (ADS)
Baru, V.; Hanhart, C.; Hoferichter, M.; Kubis, B.; Nogga, A.; Phillips, D. R.
2011-12-01
We use chiral perturbation theory (ChPT) to calculate the πd scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) [1], where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a and a. We study isospin-breaking contributions to the three-body part of a due to mass differences, isospin violation in the πN scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.
Scattering rings in optically anisotropic porous silicon
NASA Astrophysics Data System (ADS)
Oton, C. J.; Gaburro, Z.; Ghulinyan, M.; Pancheri, L.; Bettotti, P.; Negro, L. Dal; Pavesi, L.
2002-12-01
We report the observation of strongly anisotropic scattering of laser light at oblique incidence on a (100)-oriented porous silicon layer. The scattered light forms cones tangent to the incident and reflected beams. The conical pattern is caused by scattering on the vertical walls of pores, which are straight along the layer thickness. The light cone defines structured light rings onto a screen normal to the cone axis. We explain the various structures by optical anisotropy of porous silicon. For the sample under analysis, we directly measure from the ring patterns a value of Δn/nord=8% of positive birefringence.
Light propagation in dentin: influence of microstructure on anisotropy.
Kienle, Alwin; Forster, Florian K; Diebolder, Rolf; Hibst, Raimund
2003-01-21
We investigated the dependence of light propagation in human dentin on its microstructure. The main scatterers in dentin are the tubules, the shape of which can be approximated as long cylinders. We calculated the scattering of electromagnetic waves by an infinitely long cylinder and applied the results in a Monte Carlo code that simulates the light propagation in a dentin slab considering multi-scattering. The theory was compared with goniometric measurements. A pronounced anisotropic scattering pattern was found experimentally and theoretically. In addition, intensity peaks were measured which are shown to be caused by light diffraction by the tubules.
Microwave studies of weak localization and antilocalization in epitaxial graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drabińska, Aneta; Kamińska, Maria; Wołoś, Agnieszka
2013-12-04
A microwave detection method was applied to study weak localization and antilocalization in epitaxial graphene sheets grown on both polarities of SiC substrates. Both coherence and scattering length values were obtained. The scattering lengths were found to be smaller for graphene grown on C-face of SiC. The decoherence rate was found to depend linearly on temperature, showing the electron-electron scattering mechanism.
Entrainment of circadian rhythms to irregular light/dark cycles: a subterranean perspective
Flôres, Danilo E. F. L.; Jannetti, Milene G.; Valentinuzzi, Veronica S.; Oda, Gisele A.
2016-01-01
Synchronization of biological rhythms to the 24-hour day/night has long been studied with model organisms, under artificial light/dark cycles in the laboratory. The commonly used rectangular light/dark cycles, comprising hours of continuous light and darkness, may not be representative of the natural light exposure for most species, including humans. Subterranean rodents live in dark underground tunnels and offer a unique opportunity to investigate extreme mechanisms of photic entrainment in the wild. Here, we show automated field recordings of the daily light exposure patterns in a South American subterranean rodent, the tuco-tuco (Ctenomys aff. knighti ). In the laboratory, we exposed tuco-tucos to a simplified version of this natural light exposure pattern, to determine the minimum light timing information that is necessary for synchronization. As predicted from our previous studies using mathematical modeling, the activity rhythm of tuco-tucos synchronized to this mostly simplified light/dark regimen consisting of a single light pulse per day, occurring at randomly scattered times within a day length interval. Our integrated semi-natural, lab and computer simulation findings indicate that photic entrainment of circadian oscillators is robust, even in face of artificially reduced exposure and increased phase instability of the synchronizing stimuli. PMID:27698436
NASA Astrophysics Data System (ADS)
Travelet, Christophe; Stemmelen, Mylène; Lapinte, Vincent; Dubreuil, Frédéric; Robin, Jean-Jacques; Borsali, Redouane
2013-06-01
The self-assembly in solution of original structures of amphiphilic partially natural copolymers based on polyoxazoline [more precisely poly(2-methyl-2-oxazoline) (POx)] and grape seed vegetable oil derivatives (linear, T-, and trident-structure) is investigated. The results show that such systems are found, using dynamic light scattering (DLS), to spontaneously self-organize into monomodal, narrow-size, and stable nanoparticles in aqueous medium. The obtained hydrodynamic diameters ( D h) range from 8.6 to 32.5 nm. Specifically, such size increases strongly with increasing natural block (i.e., lipophilic species) length due to higher hydrophobic interactions (from 10.1 nm for C19 to 19.2 nm for C57). Furthermore, increasing the polyoxazoline (i.e., hydrophilic block) length leads to a moderate linear increase of the D h-values. Therefore, the first-order size effect comes from the natural lipophilic block, whereas the characteristic size can be tuned more finely (i.e., in a second-order) by choosing appropriately the polyoxazoline length. The DLS results in terms of characteristic size are corroborated using nanoparticle tracking analysis (NTA), and also by atomic force microscopy (AFM) and transmission electron microscopy (TEM) imaging where well-defined spherical and individual nanoparticles exhibit a very good mechanical resistance upon drying. Moreover, changing the lipophilic block architecture from linear to T-shape, while keeping the same molar mass, generates a branching and thus a shrinking by a factor of 2 of the nanoparticle volume, as observed by DLS. In this paper, it is clearly shown that the self-assemblies of amphiphilic block copolymer obtained from grape seed vegetable oil derivatives (sustainable renewable resources) as well as their tunability are of great interest for biomass valorization at the nanoscale level [continuation of the article by Stemmelen et al. (Polym Chem 4:1445-1458, 2013)].
Light scattering from normal and cervical cancer cells.
Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong
2017-04-20
The light scattering characteristic plays a very important role in optic imaging and diagnostic applications. For optical detection of the cell, cell scattering characteristics have an extremely vital role. In this paper, we use the finite-difference time-domain (FDTD) algorithm to simulate the propagation and scattering of light in biological cells. The two-dimensional scattering cell models were set up based on the FDTD algorithm. The cell models of normal cells and cancerous cells were established, and the shapes of organelles, such as mitochondria, were elliptical. Based on these models, three aspects of the scattering characteristics were studied. First, the radar cross section (RCS) distribution curves of the corresponding cell models were calculated, then corresponding relationships between the size and the refractive index of the nucleus and light scattering information were analyzed in the three periods of cell canceration. The values of RCS increase positively with the increase of the nucleo-cytoplasmic ratio in the cancerous process when the scattering angle ranges from 0° to 20°. Second, the effect of organelles in the scattering was analyzed. The peak value of the RCS of cells with mitochondria is higher than the cells without mitochondria when the scattering angle ranges from 20° to 180°. Third, we demonstrated that the influence of cell shape is important, and the impact was revealed by the two typical ideal cells: round cells and oval cells. When the scattering angle ranges from 0° to 80°, the peak values and the frequencies of the appearance of the peaks from the two models are roughly similar. It can be concluded that: (1) the size of the nuclei and the change of the refractive index of cells have a certain impact on light scattering information of the whole cell; (2) mitochondria and other small organelles contribute to the cell light scattering characteristics in the larger scattering angle area; and (3) the change of the cell shape significantly influences the value of scattering peak and the deviation of scattering peak position. The results of the numerical simulation will guide subsequent experiments and early diagnosis of cervical cancer.
Experimental evidence for two thermodynamic length scales in neutralized polyacrylate gels
NASA Astrophysics Data System (ADS)
Horkay, Ferenc; Hecht, Anne-Marie; Grillo, Isabelle; Basser, Peter J.; Geissler, Erik
2002-11-01
The small angle neutron scattering (SANS) behavior of fully neutralized sodium polyacrylate gels is investigated in the presence of calcium ions. Analysis of the SANS response reveals the existence of three characteristic length scales, two of which are of thermodynamic origin, while the third length is associated with the frozen-in structural inhomogeneities. This latter contribution exhibits power law behavior with a slope of about -3.6, reflecting the presence of interfaces. The osmotically active component of the scattering signal is defined by two characteristic length scales, a correlation length ξ and a persistence length L.
Fiber optic probe for light scattering measurements
Nave, Stanley E.; Livingston, Ronald R.; Prather, William S.
1995-01-01
A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.
Fiber optic probe for light scattering measurements
Nave, S.E.; Livingston, R.R.; Prather, W.S.
1993-01-01
This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.
NASA Astrophysics Data System (ADS)
Oelze, Michael L.; O'Brien, William D.
2004-11-01
Backscattered rf signals used to construct conventional ultrasound B-mode images contain frequency-dependent information that can be examined through the backscattered power spectrum. The backscattered power spectrum is found by taking the magnitude squared of the Fourier transform of a gated time segment corresponding to a region in the scattering volume. When a time segment is gated, the edges of the gated regions change the frequency content of the backscattered power spectrum due to truncating of the waveform. Tapered windows, like the Hanning window, and longer gate lengths reduce the relative contribution of the gate-edge effects. A new gate-edge correction factor was developed that partially accounted for the edge effects. The gate-edge correction factor gave more accurate estimates of scatterer properties at small gate lengths compared to conventional windowing functions. The gate-edge correction factor gave estimates of scatterer properties within 5% of actual values at very small gate lengths (less than 5 spatial pulse lengths) in both simulations and from measurements on glass-bead phantoms. While the gate-edge correction factor gave higher accuracy of estimates at smaller gate lengths, the precision of estimates was not improved at small gate lengths over conventional windowing functions. .
Ultraviolet radiation cataract: dose dependence
NASA Astrophysics Data System (ADS)
Soderberg, Per G.; Loefgren, Stefan
1994-07-01
Current safety limits for cataract development after acute exposure to ultraviolet radiation (UVR) are based on experiments analyzing experimental data with a quantal, effect-no effect, dose-response model. The present study showed that intensity of forward light scattering is better described with a continuous dose-response model. It was found that 3, 30 and 300 kJ/m2UVR300nm induces increased light scattering within 6 h. For all three doses the intensity of forward light scattering was constant after 6 h. The intensity of forward light scattering was proportional to the log dose of UVR300nm. There was a slight increase of the intensity of forward light scattering on the contralateral side in animals that received 300 kJ/m2. Altogether 72 Sprague-Dawley male rats were included. Half of the rats were exposed in vivo on one side to UVR300nm. The other half was kept as a control group, receiving the same treatment as exposed rats but without delivery of UVR300nm to the eye. Subgroups of the rats received either of the three doses. Rats were sacrificed at varying intervals after the exposure. The lenses were extracted and the forward light scattering was estimated. It is concluded that intensity of forward light scattering in the lens after exposure to UVR300nm should be described with a continuous dose-reponse model.
Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak.
Berni, L A; Albuquerque, B F C
2010-12-01
Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esférico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.
Kato, Haruhisa; Nakamura, Ayako; Takahashi, Kayori; Kinugasa, Shinichi
2012-01-01
Accurate determination of the intensity-average diameter of polystyrene latex (PS-latex) by dynamic light scattering (DLS) was carried out through extrapolation of both the concentration of PS-latex and the observed scattering angle. Intensity-average diameter and size distribution were reliably determined by asymmetric flow field flow fractionation (AFFFF) using multi-angle light scattering (MALS) with consideration of band broadening in AFFFF separation. The intensity-average diameter determined by DLS and AFFFF-MALS agreed well within the estimated uncertainties, although the size distribution of PS-latex determined by DLS was less reliable in comparison with that determined by AFFFF-MALS. PMID:28348293
Literature survey for suppression of scattered light in large space telescopes
NASA Technical Reports Server (NTRS)
Tifft, W. G.; Fannin, B. B.
1973-01-01
A literature survey is presented of articles dealing with all aspects of predicting, measuring, and controlling unwanted scattered (stray) light. The survey is divided into four broad classifications: (1) existing baffle/telescope designs; (2) computer programs for the analysis/design of light suppression systems; (3) the mechanism, measurement, and control of light scattering; and (4) the advantages and problems introduced by the space environment for the operation of diffraction-limited optical systems.
NASA Astrophysics Data System (ADS)
Bouloussa, H.; Yu, J.; Roussigné, Y.; Belmeguenai, M.; Stashkevitch, A.; Yang, H.; Chérif, S. M.
2018-06-01
Interface Dzyaloshinskii–Moriya interaction (iDMI) is known to induce spinwaves non-reciprocity in ultrathin films. Indeed, Brillouin light scattering has been used to investigate how the lateral size reduction can affect the iDMI constant in Pt (6 nm)/Co (3 nm) based-nanostripe arrays. For this, 100 and 300 nm-width nanostripes have been fabricated using e-beam lithography and ion etching, and their behaviour has then been compared to the reference continuous film. The experimental data showed that the measured iDMI induced non-reciprocity is slightly different for the 100 nm-width nanostripes with respect to the other samples. This suggests that the width of the nanostripes can influence the strength of the apparent iDMI if this dimension is comparable to the spin waves attenuation length propagating within the nanostripes. Indeed, in contrast to the other samples, the linear frequency difference (non-reciprocity) behaviour versus wavenumber for the 100 nm-width nanostripes has been analysed and discussed through two approaches: either a different iDMI constant or an iDMI constant similar to one of the continuous films with a non-zero intercept for a zero wavenumber.
NASA Astrophysics Data System (ADS)
Guillén, C.; Herrero, J.
2015-01-01
Metal layers with high roughness and electrical conductivity are required as back-reflector electrodes in several optoelectronic devices. The metal layer thickness and the process temperature should be adjusted to reduce the material and energetic costs for the electrode preparation. Here, Ag thin films with thickness ranging from 30 to 200 nm have been deposited by sputtering at room temperature on glass substrates. The structure, morphology, optical and electrical properties of the films have been analyzed in the as-grown conditions and after thermal treatment in flowing nitrogen at various temperatures in the 150-550 °C range. The surface texture has been characterized by the root-mean-square roughness and the correlation length coefficients, which are directly related to the electrical resistivity and the light-scattering parameter (reflectance haze) for the various samples. The increment in the reflectance haze has been used to detect surface agglomeration processes that are found dependent on both the film thickness and the annealing temperature. A good compromise between light-scattering and electrical conductivity has been achieved with 70 nm-thick Ag films after 350 °C heating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Weiwei; Mei, Chao; Zeng, Xianghua, E-mail: xhzeng@yzu.edu.cn
2016-03-14
Both light scattering and dye adsorbing are important for the power conversion efficiency PCE performance of dye sensitized solar cell (DSSC). Nanostructured scattering layers with a large specific surface area are regarded as an efficient way to improve the PCE by increasing dye adsorbing, but excess adsorbed dye will hinder light scattering and light penetration. Thus, how to balance the dye adsorbing and light penetration is a key problem to improve the PCE performance. Here, multiple-shelled ZnO microspheres with a mesoporous surface are fabricated by a hydrothermal method and are used as scattering layers on the TiO{sub 2} photoanode ofmore » the DSSC in the presence of N719 dye and iodine–based electrolyte, and the results reveal that the DSSCs based on triple shelled ZnO microsphere with a mesoporous surface exhibit an enhanced PCE of 7.66%, which is 13.0% higher than those without the scattering layers (6.78%), indicating that multiple-shelled microspheres with a mesoporous surface can ensure enough light scattering between the shells, and a favorable concentration of the adsorbed dye can improve the light penetration. These results may provide a promising pathway to obtain the high efficient DSSCs.« less
NASA Astrophysics Data System (ADS)
Gritsevich, M.; Penttilä, A.; Maconi, G.; Kassamakov, I.; Martikainen, J.; Markkanen, J.; Vaisanen, T.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.
2017-12-01
Electromagnetic scattering is a fundamental physical process that allows inferring characteristics of an object studied remotely. This possibility is enhanced by obtaining the light-scattering response at multiple wavelengths and viewing geometries, i.e., by considering a wider range of the phase angle (the angle between the incident light and the light reflected from the object) in the experiment. Within the ERC Advanced Grant project SAEMPL (http://cordis.europa.eu/project/rcn/107666_en.html) we have assembled an interdisciplinary group of scientists to develop a fully automated, 3D scatterometer that can measure scattered light at different wavelengths from small particulate samples. The setup comprises: (a) the PXI Express platform to synchronously record data from several photomultiplier tubes (PMTs); (b) a motorized rotation stage to precisely control the azimuthal angle of the PMTs around 360°; and (c) a versatile light source, whose wavelength, polarization, intensity, and beam shape can be precisely controlled. An acoustic levitator is used to hold the sample without touching it. The device is the first of its kind, since it measures controlled spectral angular scattering including all polarization effects, for an arbitrary object in the µm-cm size scale. It permits a nondestructive, disturbance-free measurement with control of the orientation and location of the scattering object. To demonstrate our approach we performed detailed measurements of light scattered by a Chelyabinsk LL5 chondrite particle, derived from the light-colored lithology sample of the meteorite. These measurements are cross-validated against the modeled light-scattering characteristics of the sample, i.e., the intensity and the degree of linear polarization of the reflected light, calculated with state-of-the-art electromagnetic techniques (see Muinonen et al., this meeting). We demonstrate a unique non-destructive approach to derive the optical properties of small grain samples which facilitates research on highly valuable planetary materials, such as samples returned from space missions or rare meteorites.
Design and Study of the Observation Optics for the Thomson Scattering Planned at Wendelstein 7-X
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantarini, J.; Knauer, J. P.; Pasch, E.
2008-03-19
The main aim of the Thomson scattering system is the measurement of electron temperature and density profiles with high time and spatial resolution. To cover the whole laser beam line (1.6 m) through the plasma cross section, two ports are provided for the observation optics, which image the scattering volumes (each with 28 mm length and 9 mm diameter) onto fiber bundles. The observation optics are important components of the diagnostic set-up, because their imaging properties determine the spectral and spatial resolution of the whole system. Therefore the design of the optics must be optimized according to the geometrical constrainsmore » of the observation ports in terms of position and dimensions. To optimize this optical engineering, the commercial ZEMAX program is used. The composition of the optical system is elaborated to minimize losses of collected light with wavelength from 700 nm up to 1064 nm. Environmental criteria (e.g. neutrons, ECR plasma heating and temperature) will be considered choosing optical materials. First results of calculations will be presented.« less
Analysis of the scattering performance of human retinal tissue layers
NASA Astrophysics Data System (ADS)
Zhu, Dan; Gao, Zhisan; Ye, Haishui; Yuan, Qun
2017-02-01
Human retina is different from other ocular tissues, such as cornea, crystalline lens and vitreous because of high scattering performance. As an anisotropic tissue, we cannot neglect its impact on the polarization state of the scattered light. In this paper, Mie scattering and radiative transfer theory are applied to analyze the polarization state of backscattered light from four types of retinal tissues, including neural retina, retinal pigment epithelial (RPE), choroid and sclera. The results show that the most backscattered zones in different depths have almost the same electrical fields of Jones vector, which represents the polarization state of light, whether neural retina layer is under normal incidence or oblique incidence. Very little change occurs in the polarization of backscattered light compared to that of the incident light. Polarization distribution of backward scattered light from neural retina layer doesn't make apparent effects on polarization phase shifting in spectral domain OCT because its thickness is far less than photon mean free path, while other retinal tissues do not meet this rule.
Study of resonance light scattering for remote optical probing
NASA Technical Reports Server (NTRS)
Penney, C. M.; Morey, W. W.; St. Peters, R. L.; Silverstein, S. D.; Lapp, M.; White, D. R.
1973-01-01
Enhanced scattering and fluorescence processes in the visible and UV were investigated which will enable improved remote measurements of gas properties. The theoretical relationship between scattering and fluorescence from an isolated molecule in the approach to resonance is examined through analysis of the time dependence of re-emitted light following excitation of pulsed incident light. Quantitative estimates are developed for the relative and absolute intensities of fluorescence and resonance scattering. New results are obtained for depolarization of scattering excited by light at wavelengths within a dissociative continuum. The experimental work was performed in two separate facilities. One of these utilizes argon and krypton lasers, single moded by a tilted etalon, and a 3/4 meter double monochromator. This facility was used to determine properties of the re-emission from NO2, I2 and O3 excited by visible light. The second facility involves a narrow-line dye laser, and a 3/4 meter single monochromator. The dye laser produces pulsed light with 5 nsec pulse duration and 0.005 nm spectral width.
FDTD scattered field formulation for scatterers in stratified dispersive media.
Olkkonen, Juuso
2010-03-01
We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.
Method for detection of dental caries and periodontal disease using optical imaging
Nathel, H.; Kinney, J.H.; Otis, L.L.
1996-10-29
A method is disclosed for detecting the presence of active and inactive caries in teeth and diagnosing periodontal disease uses non-ionizing radiation with techniques for reducing interference from scattered light. A beam of non-ionizing radiation is divided into sample and reference beams. The region to be examined is illuminated by the sample beam, and reflected or transmitted radiation from the sample is recombined with the reference beam to form an interference pattern on a detector. The length of the reference beam path is adjustable, allowing the operator to select the reflected or transmitted sample photons that recombine with the reference photons. Thus radiation scattered by the dental or periodontal tissue can be prevented from obscuring the interference pattern. A series of interference patterns may be generated and interpreted to locate dental caries and periodontal tissue interfaces. 7 figs.
Borycki, Dawid; Kholiqov, Oybek; Srinivasan, Vivek J
2017-02-01
Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer-Lambert Law. Thus, iNIRS is a promising approach for quantitative and noninvasive monitoring of perfusion and optical properties in vivo.
NASA Astrophysics Data System (ADS)
Sharma, A.; Posey, R.
1996-02-01
Four-photon mixing followed by stimulated Raman scattering is observed in LP 02 mode in a 7.9 μm core diameter optical fiber. A localized transverse stress efficiency couples LP 02 to the LP 21 mode with a macroscopic beat length of 1.8 mm. LP 02-LP 21 modal interference is investigated by detecting the 550-590 nm SRS through a pinhole in the far field exit plane. Quantitative explanation of wavelength dependent intensity modulation results in a precise experimental determination of {∂[β 02(λ) - β 21(λ)] }/{∂λ}, for mode-propagation constants β02( λ) and β21( λ) of LP 02 and LP 21 modes respectively, as well as Δ, the relative core-cladding refractive index difference. The LP 02-LP 21 modal interference is used for sensing of temperature between 50-300°C.
Process for sensing defects on a smooth cylindrical interior surface in tubing
Dutton, G. Wayne
1987-11-17
The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90.degree. by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle.
Process for sensing defects on a smooth cylindrical interior surface in tubing
Dutton, G.W.
1987-11-17
The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90[degree] by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle. 6 figs.
Process and apparatus for sensing defects on a smooth cylindrical surface in tubing
Dutton, G.W.
1985-08-05
The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90/sup 0/ by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle.
Light scattering properties of kidney epithelial cells and nuclei
NASA Astrophysics Data System (ADS)
Vitol, Elina A.; Kurzweg, Timothy P.; Nabet, Bahram
2006-02-01
Enlargement of mammalian cells nuclei due to the cancerous inflammation can be detected early through noninvasive optical techniques. We report on the results of cellular experiments, aimed towards the development of a fiber optic endoscopic probe used for precancerous detection of Barrett's esophagus. We previously presented white light scattering results from tissue phantoms (polystyrene polybead microspheres). In this paper, we discuss light scattering properties of epithelial MDCK (Madine-Darby Canine Kidney) cells and cell nuclei suspensions. A bifurcated optical fiber is used for experimental illumination and signal detection. The resulting scattering spectra from the cells do not exhibit the predicted Mie theory oscillatory behavior inherent to ideally spherical scatterers, such as polystyrene microspheres. However, we are able to demonstrate that the Fourier transform spectra of the cell suspensions are well correlated with the Fourier transform spectra of cell nuclei, concluding that the dominate scatterer in the backscattering region is the nucleus. This correlation experimentally illustrates that in the backscattering region, the cell nuclei are the main scatterer in the cells of the incident light.
Scattered light characterization of FORTIS
NASA Astrophysics Data System (ADS)
McCandliss, Stephan R.; Carter, Anna; Redwine, Keith; Teste, Stephane; Pelton, Russell; Hagopian, John; Kutyrev, Alexander; Li, Mary J.; Moseley, S. Harvey
2017-08-01
We describe our efforts to build a Wide-Field Lyman alpha Geocoronal simulator (WFLaGs) for characterizing the end-to-end sensitivity of FORTIS (Far-UV Off Rowland-circle Telescope for Imaging and Spectroscopy) to scattered Lyman α emission from outside of the nominal (1/2 degree)2 field-of-view. WFLaGs is a 50 mm diameter F/1 aluminum parabolic collimator fed by a hollow cathode discharge lamp with a 80 mm clear MgF2 window housed in a vacuum skin. It creates emission over a 10 degree FOV. WFLaGS will allow us to validate and refine a recently developed scattered light model and verify our scatter light mitigation strategies, which will incorporate low scatter baffle materials, and possibly 3-d printed light traps, covering exposed scatter centers. We present measurements of scattering intensity of Lyman alpha as a function of angle with respect to the specular reflectance direction for several candidate baffle materials. Initial testing of WFLaGs will be described.
Determination of wood grain direction from laser light scattering pattern
NASA Astrophysics Data System (ADS)
Simonaho, Simo-Pekka; Palviainen, Jari; Tolonen, Yrjö; Silvennoinen, Raimo
2004-01-01
Laser light scattering patterns from the grains of wood are investigated in detail to gain information about the characteristics of scattering patterns related to the direction of the grains. For this purpose, wood samples of Scots pine ( Pinus sylvestris L.) and silver birch ( Betula pubescens) were investigated. The orientation and shape of the scattering pattern of laser light in wood was found to correlate well with the direction of grain angles in a three-dimensional domain. The proposed method was also experimentally verified.
Sopori, Bhushan L.
1995-01-01
Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities.
Sopori, B.L.
1995-04-11
Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. 20 figures.
Evaluation of very long baseline interferometry atmospheric modeling improvements
NASA Technical Reports Server (NTRS)
Macmillan, D. S.; Ma, C.
1994-01-01
We determine the improvement in baseline length precision and accuracy using new atmospheric delay mapping functions and MTT by analyzing the NASA Crustal Dynamics Project research and development (R&D) experiments and the International Radio Interferometric Surveying (IRIS) A experiments. These mapping functions reduce baseline length scatter by about 20% below that using the CfA2.2 dry and Chao wet mapping functions. With the newer mapping functions, average station vertical scatter inferred from observed length precision (given by length repeatabilites) is 11.4 mm for the 1987-1990 monthly R&D series of experiments and 5.6 mm for the 3-week-long extended research and development experiment (ERDE) series. The inferred monthly R&D station vertical scatter is reduced by 2 mm or by 7 mm is a root-sum-square (rss) sense. Length repeatabilities are optimum when observations below a 7-8 deg elevation cutoff are removed from the geodetic solution. Analyses of IRIS-A data from 1984 through 1991 and the monthly R&D experiments both yielded a nonatmospheric unmodeled station vertical error or about 8 mm. In addition, analysis of the IRIS-A exeriments revealed systematic effects in the evolution of some baseline length measurements. The length rate of change has an apparent acceleration, and the length evolution has a quasi-annual signature. We show that the origin of these effects is unlikely to be related to atmospheric modeling errors. Rates of change of the transatlantic Westford-Wettzell and Richmond-Wettzell baseline lengths calculated from 1988 through 1991 agree with the NUVEL-1 plate motion model (Argus and Gordon, 1991) to within 1 mm/yr. Short-term (less than 90 days) variations of IRIS-A baseline length measurements contribute more than 90% of the observed scatter about a best fit line, and this short-term scatter has large variations on an annual time scale.
Lattice QCD Calculation of Hadronic Light-by-Light Scattering.
Green, Jeremy; Gryniuk, Oleksii; von Hippel, Georg; Meyer, Harvey B; Pascalutsa, Vladimir
2015-11-27
We perform a lattice QCD calculation of the hadronic light-by-light scattering amplitude in a broad kinematical range. At forward kinematics, the results are compared to a phenomenological analysis based on dispersive sum rules for light-by-light scattering. The size of the pion pole contribution is investigated for momenta of typical hadronic size. The presented numerical methods can be used to compute the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. Our calculations are carried out in two-flavor QCD with the pion mass in the range of 270-450 MeV and contain so far only the diagrams with fully connected quark lines.
Locally-enhanced light scattering by a monocrystalline silicon wafer
NASA Astrophysics Data System (ADS)
Ma, Li; Zhang, Pan; Li, Zhen-Hua; Liu, Chun-Xiang; Li, Xing; Zhan, Zi-Jun; Ren, Xiao-Rong; He, Chang-Wei; Chen, Chao; Cheng, Chuan-Fu
2018-03-01
We study the optical properties of light scattering by a monocrystalline silicon wafer, by using transparent material to replicate its surface structure and illuminating a fabricated sample with a laser source. The experimental results show that the scattering field contains four spots of concentrated intensity with high local energy, and these spots are distributed at the four vertices of a square with lines of intensity linking adjacent spots. After discussing simulations of and theory about the formation of this light scattering, we conclude that the scattering field is formed by the effects of both geometrical optics and physical optics. Moreover, we calculate the central angle of the spots in the light field, and the result indicates that the locally-enhanced intensity spots have a definite scattering angle. These results may possibly provide a method for improving energy efficiency within mono-Si based solar cells.
Fiber optic light-scattering measurement system for evaluation of embryo viability: model experiment
NASA Astrophysics Data System (ADS)
Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto
1996-05-01
We evaluated the particle density detectability and particle size detectivity of our fiber-optic light-scattering measurement system. In order to prevent the multiple pregnancy on current in vitro fertilization-embryo transfer, we have aimed to develop a new quantitative and non- invasive method to select a single viable human embryo. We employed the measurement of mitochondria localization in an embryo, which may have the correlation with development ability. We applied the angular distribution measurement of the light-scattering intensity from the embryo to obtain the information originated from the mitochondria. The latex spheres with a diameter of 1.0 micrometers were used to simulate the scattering intensity of the mitochondria. The measurement probes of our system consisted of two fibers for illumination and sensing. They were arranged at a right angle to a microscope optical axis to measure the angular distribution of the light-scattering intensity. We observed that the light-scattering intensity increased monotonically in the range from 106 to 1010 particles per ml. Since the mitochondria density in a human embryo corresponded to 2.5 X 107 per ml in the measurement chamber, we may measure the mitochondria density in the human embryo. The angular dependence of light-scattering intensity changed with the sphere diameters. This result showed the possibility of the selective measurement of the mitochondria density in the embryo in spite of the presence of the other cell organelle. We think that our light-scattering measurement system might be applicable to the evaluation method for the embryo viability.
Effective optical path length for tandem diffuse cubic cavities as gas absorption cell
NASA Astrophysics Data System (ADS)
Yu, J.; Gao, Q.; Zhang, Y. G.; Zhang, Z. G.; Wu, S. H.
2014-12-01
Tandem diffuse cubic cavities designed by connecting two single diffuse cubic-shaped cavities, A and B, with an aperture (port fraction fap) in the middle of the connecting baffle was developed as a gas absorption cell. The effective optical path length (EOPL) was evaluated by comparing the oxygen absorption signal in the cavity and in air based on tunable diode laser absorption spectroscopy (TDLAS). Experimental results manifested an enhancement of EOPL for the tandem diffuse cubic cavities as the decrease of fap and can be expressed as the sum of EOPL of two single cubic cavities at fap < 0.01, which coincided well with theoretical analysis. The simulating EOPL was smaller than experimental results at fap > 0.01, which indicated that back scattering light from cavity B to cavity A cannot be ignored at this condition.
Atomic force microscopy of gastric mucin
NASA Astrophysics Data System (ADS)
Chasan, Bernard; Hong, Zhenning; Bansil, Rama; Turner, Bradley; Ramakrishnan Bhaskar, K.; Afdhal, Nezam
2001-03-01
We report on the first results from an AFM study of porcine gastric mucin employing the tapping mode technique in aqueous solution. This glycoprotein is responsible for protecting the stomach epithelium from acid damage. Mucin was imaged on a mica substrate at pH7, and at pH2. At the higher pH we detected individual molecules in disordered configuration, with characteristic lengths of 20-40 nm. At the lower pH the mucin forms extended rod-like clusters that, at high concentrations, are aligned into planar arrays. Individual clusters are of order 50 nm long and 20 nm wide while the entire array is of order several hundred nm both in length and width. The clustering behavior at low pH is consistent with that previously detected in dynamic light scattering experiments by Cao et. al. (Biophysical J. 76:120-1258 1999).
Schoen, K; Snow, W M; Kaiser, H; Werner, S A
2005-01-01
The neutron index of refraction is generally derived theoretically in the Fermi approximation. However, the Fermi approximation neglects the effects of the binding of the nuclei of a material as well as multiple scattering. Calculations by Nowak introduced correction terms to the neutron index of refraction that are quadratic in the scattering length and of order 10(-3) fm for hydrogen and deuterium. These correction terms produce a small shift in the final value for the coherent scattering length of H2 in a recent neutron interferometry experiment.
Scattering models for some vegetation samples
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.; Antar, Y. M. M.
1987-01-01
The Helmholtz integral equation is presently derived for a scatterer of arbitrary shape, and reduced in order to obtain the far zone-scattered field in terms of the field within the scatterer. Attention is given to the effect of different approaches to field estimation within the scatterer on the backscattering cross section, as illustrated numerically by the cases of a circular disk, a needle, and a finite-length cylinder. A comparison is made of the results obtained by modeling a leaf by means of a circular disk within the Shifrin approximation, and a tree branch by means of a finite-length cylinder, with measurements from a single leaf and a single branch.
Microscopic Imaging and Spectroscopy with Scattered Light
Boustany, Nada N.; Boppart, Stephen A.; Backman, Vadim
2012-01-01
Optical contrast based on elastic scattering interactions between light and matter can be used to probe cellular structure and dynamics, and image tissue architecture. The quantitative nature and high sensitivity of light scattering signals to subtle alterations in tissue morphology, as well as the ability to visualize unstained tissue in vivo, has recently generated significant interest in optical scatter based biosensing and imaging. Here we review the fundamental methodologies used to acquire and interpret optical scatter data. We report on recent findings in this field and present current advances in optical scatter techniques and computational methods. Cellular and tissue data enabled by current advances in optical scatter spectroscopy and imaging stand to impact a variety of biomedical applications including clinical tissue diagnosis, in vivo imaging, drug discovery and basic cell biology. PMID:20617940
NASA Astrophysics Data System (ADS)
Engström, J. E.; Leck, C.
2011-08-01
The presented filter-based optical method for determination of soot (light absorbing carbon or Black Carbon, BC) can be implemented in the field under primitive conditions and at low cost. This enables researchers with small economical means to perform monitoring at remote locations, especially in the Asia where it is much needed. One concern when applying filter-based optical measurements of BC is that they suffer from systematic errors due to the light scattering of non-absorbing particles co-deposited on the filter, such as inorganic salts and mineral dust. In addition to an optical correction of the non-absorbing material this study provides a protocol for correction of light scattering based on the chemical quantification of the material, which is a novelty. A newly designed photometer was implemented to measure light transmission on particle accumulating filters, which includes an additional sensor recording backscattered light. The choice of polycarbonate membrane filters avoided high chemical blank values and reduced errors associated with length of the light path through the filter. Two protocols for corrections were applied to aerosol samples collected at the Maldives Climate Observatory Hanimaadhoo during episodes with either continentally influenced air from the Indian/Arabian subcontinents (winter season) or pristine air from the Southern Indian Ocean (summer monsoon). The two ways of correction (optical and chemical) lowered the particle light absorption of BC by 63 to 61 %, respectively, for data from the Arabian Sea sourced group, resulting in median BC absorption coefficients of 4.2 and 3.5 Mm-1. Corresponding values for the South Indian Ocean data were 69 and 97 % (0.38 and 0.02 Mm-1). A comparison with other studies in the area indicated an overestimation of their BC levels, by up to two orders of magnitude. This raises the necessity for chemical correction protocols on optical filter-based determinations of BC, before even the sign on the radiative forcing based on their effects can be assessed.
Strain-induced three-photon effects
NASA Astrophysics Data System (ADS)
Jeong, Jae-Woo; Shin, Sung-Chul; Lyubchanskii, I. L.; Varyukhin, V. N.
2000-11-01
Strain-induced three-photon effects such as optical second-harmonic generation and hyper-Rayleigh light scattering, characterized by electromagnetic radiation at the double frequency of an incident light, are phenomenologically investigated by adopting a nonlinear photoelastic interaction. The relations between the strain and the nonlinear optical susceptibility for crystal surfaces with point symmetries of 4mm and 3m are described by a symmetry analysis of the nonlinear photoelastic tensor. We theoretically demonstrate a possibility of determining the strain components by measuring the rotational anisotropy of radiation at the second-harmonic frequency. Hyper-Rayleigh light scattering by dislocation strain is also described using a nonlinear photoelastic tensor. The angular dependencies of light scattered at the double frequency of an incident light for different scattering geometries are analyzed.
Light scattering apparatus and method for determining radiation exposure to plastic detectors
Hermes, Robert E.
2002-01-01
An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.
Microwave-assisted synthesis and micellization behavior of soy-based copoly(2-oxazoline)s.
Hoogenboom, Richard; Leenen, Mark A M; Huang, Haiying; Fustin, Charles-André; Gohy, Jean-François; Schubert, Ulrich S
2006-01-01
Polymers based on renewable resources are promising candidates for replacing common organic polymers, and thus, for reducing oil consumption. In this contribution we report the microwave-assisted synthesis of block and statistical copolymers from 2-ethyl-2-oxazoline and 2-"soy alkyl"-2-oxazoline via a cationic ring-opening polymerization mechanism. The synthesized copolymers were characterized by gel permeation chromatography and 1 H-NMR spectroscopy. The micellization of these amphiphilic copolymers was investigated by dynamic light scattering and atomic force microscopy to examine the effect of hydrophobic block length and monomer distribution on the resulting micellar characteristics.
NASA Astrophysics Data System (ADS)
Wind, L.; Szymanski, W. W.
2002-06-01
Figure 3 of this paper has not printed correctly. Specifically, the character ψ is missing five times. The correct figure is reproduced below. The electronic version is unaffected. Figure 3. Schematic diagram of the lp detector system. The angle subtained by the cone of light that will be detected is constant and is determined by the focal length of the lens and the radius of the pinhole. To the left of the position indicated by z* the lp geometry behaves in the same way as the open detector geometry.
2006-01-31
nanoring [10], the Au nanocrescent has a higher local field enhancement factor in the near infrared wavelength region due to the simultaneous...incorporation of SERS hot spots including sharp nanotip and nanoring geometries and thus the strong hybrid resonance modes from nanocavity resonance mode and tip...Raman, "A change of wave-length in light scattering," Nature 121, 619-619 (1928). 22. Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle
Anisotropic Light Scattering from Ferrofluids
NASA Astrophysics Data System (ADS)
Rablau, Corneliu; Vaishnava, Prem; Naik, Ratna; Lawes, Gavin; Tackett, Ron; Sudakar, C.
2008-03-01
We have investigated the light scattering in DC magnetic fields from aqueous suspensions of Fe3O4 nanoparticles coated with tetra methyl ammonium hydroxide and γ-Fe2O3 nanoparticles embedded in alginate hydrogel. For Fe3O4 ferrofluid, anomalous light scattering behavior was observed when light propagated both parallel and perpendicular to the magnetic fields. This behavior is attributed to the alignment and aggregation of the nanoparticles in chain-like structures. A very different light scattering behavior was observed for γ-Fe2O3 alginate sample where, under the similar conditions, the application of the magnetic field produced no structured change in scattering. We attribute this difference to the absence of chain-like structures and constrained mobility of iron nanoparticles in the alginate sample. The observation is in agreement with our relaxation and dissipative heating results^1 where both samples exhibited Neel relaxation but only the Fe3O4 ferrofluid showed Brownian relaxation. The results suggest that Brownian relaxation and nanoparticle mobility are important for producing non-linear light scattering in such systems. ^1P.P. Vaishnava, R. Tackett, A. Dixit, C. Sudakar, R. Naik, and G. Lawes, J. Appl. Phys. 102, 063914 (2007).
Bose gases near resonance: Renormalized interactions in a condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Fei, E-mail: feizhou@phas.ubc.ca; Mashayekhi, Mohammad S.
2013-01-15
Bose gases at large scattering lengths or beyond the usual dilute limit for a long time have been one of the most challenging problems in many-body physics. In this article, we investigate the fundamental properties of a near-resonance Bose gas and illustrate that three-dimensional Bose gases become nearly fermionized near resonance when the chemical potential as a function of scattering lengths reaches a maximum and the atomic condensates lose metastability. The instability and accompanying maximum are shown to be a precursor of the sign change of g{sub 2}, the renormalized two-body interaction between condensed atoms. g{sub 2} changes from effectivelymore » repulsive to attractive when approaching resonance from the molecular side, even though the scattering length is still positive. This occurs when dimers, under the influence of condensates, emerge at zero energy in the atomic gases at a finite positive scattering length. We carry out our studies of Bose gases via applying a self-consistent renormalization group equation which is further subject to a boundary condition. We also comment on the relation between the approach here and the diagrammatic calculation in an early article [D. Borzov, M.S. Mashayekhi, S. Zhang, J.-L. Song, F. Zhou, Phys. Rev. A 85 (2012) 023620]. - Highlights: Black-Right-Pointing-Pointer A Bose gas becomes nearly fermionized when its chemical potential approaches a maximum near resonance. Black-Right-Pointing-Pointer At the maximum, an onset instability sets in at a positive scattering length. Black-Right-Pointing-Pointer Condensates strongly influence the renormalization flow of few-body running coupling constants. Black-Right-Pointing-Pointer The effective two-body interaction constant changes its sign at a positive scattering length.« less
NASA Astrophysics Data System (ADS)
Shao, Hongbing
Software testing with scientific software systems often suffers from test oracle problem, i.e., lack of test oracles. Amsterdam discrete dipole approximation code (ADDA) is a scientific software system that can be used to simulate light scattering of scatterers of various types. Testing of ADDA suffers from "test oracle problem". In this thesis work, I established a testing framework to test scientific software systems and evaluated this framework using ADDA as a case study. To test ADDA, I first used CMMIE code as the pseudo oracle to test ADDA in simulating light scattering of a homogeneous sphere scatterer. Comparable results were obtained between ADDA and CMMIE code. This validated ADDA for use with homogeneous sphere scatterers. Then I used experimental result obtained for light scattering of a homogeneous sphere to validate use of ADDA with sphere scatterers. ADDA produced light scattering simulation comparable to the experimentally measured result. This further validated the use of ADDA for simulating light scattering of sphere scatterers. Then I used metamorphic testing to generate test cases covering scatterers of various geometries, orientations, homogeneity or non-homogeneity. ADDA was tested under each of these test cases and all tests passed. The use of statistical analysis together with metamorphic testing is discussed as a future direction. In short, using ADDA as a case study, I established a testing framework, including use of pseudo oracles, experimental results and the metamorphic testing techniques to test scientific software systems that suffer from test oracle problems. Each of these techniques is necessary and contributes to the testing of the software under test.
Small-Angle Scatter Measurement.
NASA Astrophysics Data System (ADS)
Wein, Steven Jay
The design, analysis, and performance of a small -angle scatterometer are presented. The effects of the diffraction background, geometrical aberrations and system scatter at the small-angles are separated. Graphs are provided that quantify their contribution. The far-field irradiance distributions of weakly truncated and untruncated Gaussian beams are compared. The envelope of diffraction ringing is shown to decrease proportionately with the level of truncation in the pupil. Spherical aberration and defocus are shown to have little effect on the higher-order diffraction rings of Gaussian apertures and as such will have a negligible effect on most scatter measurements. A method is presented for determining the scattered irradiance level for a given BRDF in relation to the peak irradiance of the point spread function. A method of Gaussian apodization is presented and tested that allows the level of diffraction ringing to become a design parameter. Upon sufficient reduction of the diffraction background, the scattered light from the scatterometers' primary mirror is seen to be the limiting component of the small-angle instrument profile. The scatterometer described was able to make a meaningful measurement close enough to the specular direction at 0.6328mum in order to observe the characteristic height and width of the scatter function. This allowed the rms roughness and autocorrelation length of the surface to be determined from the scatter data at this wavelength. The inferred rms roughness agreed well with an independent optical profilometer measurement of the surface. The BRDF of the samples were also measured at 10.6mum. The rms roughness inferred from this scatter data did not agree with the other measurements. The BRDF did not scale in accordance with the scaler diffraction theory of microrough surfaces. The scattering in the visible was dominated by the effects of surface roughness whereas the scattering in the far-infrared was apparently dominated by the effects of contaminants and surface defects. The model for the surface statistics is investigated. A K_0 (modified Bessel function) autocorrelation function is shown to predict the scattered light distribution of these samples much better than the conventional negative -exponential function. Additionally, a sampling theory is developed that addresses the negative-exponentially correlated output of lock-in amplifiers, detectors, and electronic circuits in general. It is shown that the optimum sampling rate is approximately one sample per time constant and at this rate the improvement in SNR is sqrt {N/2} where N is the number of measurements.
Veligdan, James Thomas
1997-01-01
An optical display includes a plurality of optical waveguides each including a cladding bound core for guiding internal display light between first and second opposite ends by total internal reflection. The waveguides are stacked together to define a collective display thickness. Each of the cores includes a heterogeneous portion defining a light scattering site disposed longitudinally between the first and second ends. Adjacent ones of the sites are longitudinally offset from each other for forming a longitudinal internal image display over the display thickness upon scattering of internal display light thereagainst for generating a display image. In a preferred embodiment, the waveguides and scattering sites are transparent for transmitting therethrough an external image in superposition with the display image formed by scattering the internal light off the scattering sites for defining a heads up display.
Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berni, L. A.; Albuquerque, B. F. C.
2010-12-15
Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esferico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contributemore » to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.« less
NASA Astrophysics Data System (ADS)
Kocifaj, Miroslav
2018-02-01
The mechanism in which multiple scattering influences the radiance of a night sky has been poorly quantified until recently, or even completely unknown from the theoretical point of view. In this paper, the relative contribution of higher-scattering radiances to the total sky radiance is treated analytically for all orders of scattering, showing that a fast and accurate numerical solution to the problem exists. Unlike a class of ray tracing codes in which CPU requirements increase tremendously with each new scattering mode, the solution developed here requires the same processor time for each scattering mode. This allows for rapid estimation of higher-scattering radiances and residual error that is otherwise unknown if these radiances remain undetermined. Such convergence testing is necessary to guarantee accuracy and the stability of the numerical predictions. The performance of the method developed here is demonstrated in a set of numerical experiments aiming to uncover the relative importance of higher-scattering radiances at different distances from a light source. We have shown, that multiple scattering effects are generally low if distance to the light source is below 30 km. At large distances the multiple scattering can become important at the dark sky elements situated opposite to the light source. However, the brightness at this part of sky is several orders of magnitude smaller than that of a glowing dome of light over a city, so we do not expect that a partial increase or even doubling the radiance of otherwise dark sky elements can noticeably affect astronomical observations or living organisms (including humans). Single scattering is an appropriate approximation to the sky radiance of a night sky in the vast majority of cases.
Mindukshev, Igor; Gambaryan, Stepan; Kehrer, Linda; Schuetz, Claudia; Kobsar, Anna; Rukoyatkina, Natalia; Nikolaev, Viacheslav O; Krivchenko, Alexander; Watson, Steve P; Walter, Ulrich; Geiger, Joerg
2012-07-01
Determinations of platelet receptor functions are indispensable diagnostic indicators of cardiovascular and hemostatic diseases including hereditary and acquired receptor defects and receptor responses to drugs. However, presently available techniques for assessing platelet function have some disadvantages, such as low sensitivity and the requirement of large sample sizes and unphysiologically high agonist concentrations. Our goal was to develop and initially characterize a new technique designed to quantitatively analyze platelet receptor activation and platelet function on the basis of measuring changes in low angle light scattering. We developed a novel technique based on low angle light scattering registering changes in light scattering at a range of different angles in platelet suspensions during activation. The method proved to be highly sensitive for simultaneous real time detection of changes in size and shape of platelets during activation. Unlike commonly-used methods, the light scattering method could detect platelet shape change and aggregation in response to nanomolar concentrations of extracellular nucleotides. Furthermore, our results demonstrate that the advantages of the light scattering method make it a choice method for platelet receptor monitoring and for investigation of both murine and human platelets in disease models. Our data demonstrate the suitability and superiority of this new low angle light scattering method for comprehensive analyses of platelet receptors and functions. This highly sensitive, quantitative, and online detection of essential physiological, pathophysiological and pharmacological-response properties of human and mouse platelets is a significant improvement over conventional techniques.
Quantifying adsorption-induced deformation of nanoporous materials on different length scales
Morak, Roland; Braxmeier, Stephan; Ludescher, Lukas; Hüsing, Nicola; Reichenauer, Gudrung
2017-01-01
A new in situ setup combining small-angle neutron scattering (SANS) and dilatometry was used to measure water-adsorption-induced deformation of a monolithic silica sample with hierarchical porosity. The sample exhibits a disordered framework consisting of macropores and struts containing two-dimensional hexagonally ordered cylindrical mesopores. The use of an H2O/D2O water mixture with zero scattering length density as an adsorptive allows a quantitative determination of the pore lattice strain from the shift of the corresponding diffraction peak. This radial strut deformation is compared with the simultaneously measured macroscopic length change of the sample with dilatometry, and differences between the two quantities are discussed on the basis of the deformation mechanisms effective at the different length scales. It is demonstrated that the SANS data also provide a facile way to quantitatively determine the adsorption isotherm of the material by evaluating the incoherent scattering contribution of H2O at large scattering vectors. PMID:29021735
Optical bandgap modelling from the structural arrangement of carbon nanotubes.
Butler, Timothy P; Rashid, Ijaz; Montelongo, Yunuen; Amaratunga, Gehan A J; Butt, Haider
2018-06-14
The optical bandgap properties of vertically-aligned carbon nanotube (VACNT) arrays were probed through their interaction with white light, with the light reflected from the rotating arrays measured with a spectrometer. The precise deterministic control over the structure of vertically-aligned carbon nanotube arrays through electron beam lithography and well-controlled growth conditions brings with it the ability to produce exotic photonic crystals over a relatively large area. The characterisation of the behaviour of these materials in the presence of light is a necessary first step toward application. Relatively large area array structures of high-quality VACNTs were fabricated in square, hexagonal, circular and pseudorandom patterned arrays with length scales on the order of those of visible light for the purpose of investigating how they may be used to manipulate an impinging light beam. In order to investigate the optical properties of these arrays a set of measurement apparatus was designed which allowed the accurate measurement of their optical bandgap characteristics. The patterned samples were rotated under the illuminating white light beam, revealing interesting optical bandgap results caused by the changing patterns and relative positions of the scattering elements (VACNTs).
Side-emitting fiber optic position sensor
Weiss, Jonathan D [Albuquerque, NM
2008-02-12
A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.
Simulating propagation of coherent light in random media using the Fredholm type integral equation
NASA Astrophysics Data System (ADS)
Kraszewski, Maciej; Pluciński, Jerzy
2017-06-01
Studying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g. Radiative Transfer Theory and Monte Carlo methods) but they do not treat coherence properties of light directly. Some variations of these methods allows to predict behavior of coherent light but only for an averaged realization of the scattering medium. This limits their application in studying many physical phenomena connected to a specific distribution of scattering particles (e.g. laser speckle). In general, numerical simulation of coherent light propagation in a specific realization of random medium is a time- and memory-consuming problem. The goal of the presented research was to develop new efficient method for solving this problem. The method, presented in our earlier works, is based on solving the Fredholm type integral equation, which describes multiple light scattering process. This equation can be discretized and solved numerically using various algorithms e.g. by direct solving the corresponding linear equations system, as well as by using iterative or Monte Carlo solvers. Here we present recent development of this method including its comparison with well-known analytical results and a finite-difference type simulations. We also present extension of the method for problems of multiple scattering of a polarized light on large spherical particles that joins presented mathematical formalism with Mie theory.
Particle measurement systems and methods
Steele, Paul T [Livermore, CA
2011-10-04
A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.
Observation of two-beam collective scattering phenomena in a Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Dimitrova, Ivana; Lunden, William; Amato-Grill, Jesse; Jepsen, Niklas; Yu, Yichao; Messer, Michael; Rigaldo, Thomas; Puentes, Graciana; Weld, David; Ketterle, Wolfgang
2017-11-01
Different regimes of collective light scattering are observed when an elongated Bose-Einstein condensate is pumped by two noninterfering beams counterpropagating along its long axis. In the limit of small Rayleigh scattering rates, the presence of a second pump beam suppresses superradiance, whereas at large Rayleigh scattering rates it lowers the effective threshold power for collective light scattering. In the latter regime, the quench dynamics of the two-beam system are oscillatory, compared to monotonic in the single-beam case. In addition, the dependence on power, detuning, and atom number is explored. The observed features of the two-beam system qualitatively agree with the recent theoretical prediction of a supersolid crystalline phase of light and matter at large Rayleigh scattering rates.
Ho, Derek; Kim, Sanghoon; Drake, Tyler K.; Eldridge, Will J.; Wax, Adam
2014-01-01
We present a fast approach for size determination of spherical scatterers using the continuous wavelet transform of the angular light scattering profile to address the computational limitations of previously developed sizing techniques. The potential accuracy, speed, and robustness of the algorithm were determined in simulated models of scattering by polystyrene beads and cells. The algorithm was tested experimentally on angular light scattering data from polystyrene bead phantoms and MCF-7 breast cancer cells using a 2D a/LCI system. Theoretical sizing of simulated profiles of beads and cells produced strong fits between calculated and actual size (r2 = 0.9969 and r2 = 0.9979 respectively), and experimental size determinations were accurate to within one micron. PMID:25360350
Detection of internal structure by scattered light intensity: Application to kidney cell sorting
NASA Technical Reports Server (NTRS)
Goolsby, C. L.; Kunze, M. E.
1985-01-01
Scattered light measurements in flow cytometry were sucessfully used to distinguish cells on the basis of differing morphology and internal structure. Differences in scattered light patterns due to changes in internal structure would be expected to occur at large scattering angles. Practically, the results of these calculations suggest that in experimental situations an array of detectors would be useful. Although in general the detection of the scattered light intensity at several intervals within the 10 to 60 region would be sufficient, there are many examples where increased sensitivity could be acheived at other angles. The ability to measure at many different angular intervals would allow the experimenter to empirically select the optimum intervals for the varying conditions of cell size, N/C ratio, granule size and internal structure from sample to sample. The feasibility of making scattered light measurements at many different intervals in flow cytometry was demonstrated. The implementation of simplified versions of these techniques in conjunction with independant measurements of cell size could potentially improve the usefulness of flow cytometry in the study of the internal structure of cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenfeld, A; Poppinga, D; Poppe, B
Purpose: This study aims to investigate the optical properties of radiochromic EBT3 films on exposure to polarized incident light. Methods: An optical table setup was used to investigate the properties of exposed and unexposed EBT3 films. The films were placed with their long side horizontally and illuminated with polarized incident white light. The polarization of light with the electrical vector pointing vertically is referred to as 0°, accordingly horizontal orientation corresponds to 90°. The light transmission was measured depending on the polarization angle of the incident light and the polarization of a polarizer in front of the detector. Secondly, themore » scattering properties of exposed and unexposed films were measured by placing a plane convex lens behind the films and a screen in its focal plane. Thereby, the distribution of the scattering angles appears as an intensity map on the screen. The distributions of scattering angles caused by EBT3 films and by neutral density filters were compared. Results: EBT3 films show a strong dependence of the light transmission on the polarization of the incident light. With both polarizers parallel, a peak transmission was found at 90° orientation of the polarizers. With the rear polarizer at right angles with the front polarizer, peak transmissions were found at front polarizer orientations 45° and 135°. The scattering appears to be anisotropic with a preference direction parallel to the long side of the film. The portion of scattered light and the half value scattering angle both increase with the dose on the film. Conclusion: EBT3 films show dose dependent changes in polarized light transmission and anisotropic light scattering. These effects impair the light absorption measurements on exposed films performed with commercial flatbed scanners and are causing the well-known artifacts of radiochromic film dosimetry with flatbed scanners, the “orientation effect” and the “parabola effect”.« less
Development of a multispectral light-scatter sensor for bacterial colonies
USDA-ARS?s Scientific Manuscript database
We report a multispectral elastic-light-scatter instrument that can simultaneously detect three-wavelength scatter patterns and associated optical densities from individual bacterial colonies, overcoming the limits of the single-wavelength predecessor. Absorption measurements on liquid bacterial sam...
Apparatus and method for spectroscopic analysis of scattering media
Strobl, Karlheinz; Bigio, Irving J.; Loree, Thomas R.
1994-01-01
Apparatus and method for spectroscopic analysis of scattering media. Subtle differences in materials have been found to be detectable from plots of intensity as a function of wavelength of collected emitted and scattered light versus wavelength of excitation light.
Wilcox, R.B.
1991-09-10
A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch. 11 figures.
Wilcox, Russell B.
1991-01-01
A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch.
Kristin Lewis; William P. Arnott; Hans Moosmuller; Cyle E. Wold
2008-01-01
A dual-wavelength photoacoustic instrument operating at 405 and 870 nm was used during the 2006 Fire Lab at Missoula Experiment to measure light scattering and absorption by smoke from the combustion of a variety of biomass fuels. Simultaneous measurements of aerosol light scattering by reciprocal nephelometry within the instrument's acoustic resonator accompany...
Light Scattering by Marine Particles: Modeling with Non-Spherical Shapes
2011-04-15
scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi. Limnology and Oceanography, 46. 1438— 1454,2001. H.R...application to coccoliths detached from Emiliania huxleyi," Limnol. Oceanogr. 46, 1438-1454 (2001). 5. H.R.Gordon, "Backscattering of light from...by coccoliths detached from Emiliania huxleyi," Applied Optics, 48, 6059-6073 (2009). Light scattering by coccoliths detached from Emiliania
Metal Sorbing Vesicles: Light Scattering Characterization and Metal Sorbtion Behavior.
NASA Astrophysics Data System (ADS)
van Zanten, John Hollis
1992-01-01
The research described herein consisted of two parts: light scattering characterization of vesicles and kinetic investigations of metal sorbing vesicles. Static light scattering techniques can be used to determine the geometric size, shape and apparent molecular weight of phosphatidylcholine vesicles in aqueous suspension. A Rayleigh-Gans-Debye (RGD) approximation analysis of multiangle scattered light intensity data yields the size and degree of polydispersity of the vesicles in solution, while the Zimm plot technique provides the radius of gyration and apparent weight-average molecular weight. Together the RGD approximation and Zimm plots can be used to confirm the geometric shape of vesicles and can give a good estimate of the vesicle wall thickness in some cases. Vesicles varying from 40 to 115 nm in diameter have been characterized effectively. The static light scattering measurements indicate that, as expected, phosphatidylcholine vesicles in this size range scatter light as isotropic hollow spheres. Additionally, static and dynamic light scattering measurements have been made and compared with one another. The values for geometric radii determined by static light scattering typically agree with those estimated by dynamic light scattering to within a few percent. Interestingly however, dynamic measurements suggest that there is a significant degree of polydispersity present in the vesicle dispersions, while static measurements indicate near size monodisperse dispersions. Metal sorbing vesicles which harbor ionophores, such as antibiotic A23187 and synthetic carriers, in their bilayer membranes have been produced. These vesicles also encapsulate the chelating compound, nitrilotriacetate, to provide the driving force for metal ion uptake. Very dilute dispersions (on the order of 0.03% w/v) of these metal sorbing vesicles were capable of removing Cd ^{2+} and Pb^{2+ } from dilute aqueous solution (5 ppm and less) and concentrating these metal ions several hundred to more than a thousand fold in the vesicle interior in a few minutes time. Synthetic ionophores were found to preferentially transport Pb^{2+} over Cd^{2+}, thus suggesting that engineered vesicle dispersions can be used as selective separations media. The effect of ionophore concentration, solution pH, solution ionic strength, initial metal ion concentration and vesicle concentration have been investigated.
NASA Astrophysics Data System (ADS)
Benaron, David A.; Lennox, M.; Stevenson, David K.
1992-05-01
Reconstructing deep-tissue images in real time using spectrophotometric data from optically diffusing thick tissues has been problematic. Continuous wave applications (e.g., pulse oximetry, regional cerebral saturation) ignore both the multiple paths traveled by the photons through the tissue and the effects of scattering, allowing scalar measurements but only under limited conditions; interferometry works poorly in thick, highly-scattering media; frequency- modulated approaches may not allow full deconvolution of scattering and absorbance; and pulsed-light techniques allow for preservation of information regarding the multiple paths taken by light through the tissue, but reconstruction is both computation intensive and limited by the relative surface area available for detection of photons. We have developed a picosecond times-of-flight and absorbance (TOFA) optical system, time-constrained to measure only photons with a narrow range of path lengths and arriving within a narrow angel of the emitter-detector axis. The delay until arrival of the earliest arriving photons is a function of both the scattering and absorbance of the tissues in a direct line between the emitter and detector, reducing the influence of surrounding tissues. Measurement using a variety of emitter and detector locations produces spatial information which can be analyzed in a standard 2-D grid, or subject to computer reconstruction to produce tomographic images representing 3-D structure. Using such a technique, we have been able to demonstrate the principles of tc-TOFA, detect and localize diffusive and/or absorptive objects suspended in highly scattering media (such as blood admixed with yeast), and perform simple 3-D reconstructions using phantom objects. We are now attempting to obtain images in vivo. Potential future applications include use as a research tool, and as a continuous, noninvasive, nondestructive monitor in diagnostic imaging, fetal monitoring, neurologic and cardiac assessment. The technique may lead to real-time optical imaging and quantitation of tissues oxygen delivery.
Shedding Synchrotron Light on a Puzzle of Glasses
Chumakov, Aleksandr [European Synchrotron Radiation Facility, Grenoble, France
2017-12-09
Vibrational dynamics of glasses remains a point of controversial discussions. In particular, the density of vibrational states (DOS) reveals an excess of states above the Debye model called "boson peak." Despite the fact that this universal feature for all glasses has been known for more than 35 years, the nature of the boson peak is still not understood. The application of nuclear inelastic scattering via synchrotron radiation perhaps provides a clearer, more consistent picture of the subject. The distinguishing features of nuclear inelastic scattering relative to, e.g., neutron inelastic scattering, are ideal momentum integration and exact scaling of the DOS in absolute units. This allows for reliable comparison to data from other techniques such as Brillouin light scattering. Another strong point is ideal isotope selectivity: the DOS is measured for a single isotope with a specific low-energy nuclear transition. This allows for special "design" of an experiment to study, for instance, the dynamics of only center-of-mass motions. Recently, we have investigated the transformation of the DOS as a function of several key parameters such as temperature, cooling rate, and density. In all cases the transformation of the DOS is sufficiently well described by a transformation of the continuous medium, in particular, by changes of the macroscopic density and the sound velocity. These results suggest a collective sound-like nature of vibrational dynamics in glasses and cast doubts on microscopic models of glass dynamics. Further insight can be obtained in combined studies of glass with nuclear inelastic and inelastic neutron scattering. Applying two techniques, we have measured the energy dependence of the characteristic correlation length of atomic motions. The data do not reveal localization of atomic vibrations at the energy of the boson peak. Once again, the results suggest that special features of glass dynamics are related to extended motions and not to local models.
Polarized Light Scattering from Perfect and Perturbed Surfaces and Fundamental Scattering Systems
1992-02-29
ob- one frequency, an extension of it to multiple-field interac- served in the elastically scattered light emitted from glass tions would follow the...that 8. V CeIll . A. A. Maradudin, A. M. Marvin, and A. R. McGurn, can explain only gross scattering features. It is inde "Some aspects of light...and a surface of index n a 10.0 - 0.01. Such a surface could be made with a series of 1/4-wave dielectric layers on a glass substrate. It Is more
Ye, Yiyang; Chen, Tupei; Zhen, Juyuan; Xu, Chen; Zhang, Jun; Li, Huakai
2018-02-01
The ability to selectively scatter green light is essential for an RGB transparent projection display, and this can be achieved by a silver-core, titania-shell nanostructure (Ag@TiO 2 ), based on the metallic nanoparticle's localized surface plasmon resonance. The ability to selectively scatter green light is shown in a theoretical design, in which structural optimization is included, and is then experimentally verified by characterization of a transparent film produced by dispersing such nanoparticles in a polymer matrix. A visual assessesment indicates that a high-quality green image can be clearly displayed on the transparent film. For completeness, a theoretical design for selective scattering of red light based on Ag@TiO 2 is also shown.
Nettesheim, Florian; Grillo, Isabelle; Lindner, Peter; Richtering, Walter
2004-05-11
We report on the influence of shear on a nonionic lamellar phase of tetraethyleneglycol monododecyl ether (C12E4) in D2O containing clay particles (Laponite RD). The system was studied by means of small-angle light scattering (SALS) and small-angle neutron scattering (SANS) under shear. The SANS experiments were conducted using a H2O/D2O mixture of the respective scattering length density to selectively match the clay scattering. The rheological properties show the familiar shear thickening regime associated with the formation of multilamellar vesicles (MLVs) and a shear thinning regime at higher stresses. The variation of viscosity is less pronounced as commonly observed. In the shear thinning regime, depolarized SALS reveals an unexpectedly strong variation of the MLV size. SANS experiments using the samples with lamellar contrast reveal a change in interlamellar spacing of up to 30% at stresses that lead to MLV formation. This change is much more pronounced than the change observed, when shear suppresses thermal bilayer undulations. Microphase separation occurs, and as a consequence, the lamellar spacing decreases drastically. The coincidence of the change in lamellar spacing and the onset of MLV formation is a strong indication for a morphology-driven microphase separation.
Rübe, Andrea; Hause, Gerd; Mäder, Karsten; Kohlbrecher, Joachim
2005-10-03
The contrast variation technique in small angle neutron scattering (SANS) was used to investigate the inner structure of nanocapsules on the example of poly(D,L-lactide) (PLA) nanocapsules. The determination of the PLA and Poloxamer shell thickness was the focus of this study. Highest sensitivity on the inner structure of the nanocapsules was obtained when the scattering length density of the solvent was varied between the one of the Miglyol core and the PLA shell. According to the fit data the PLA shell thickness was 9.8 nm. The z-averaged radius determined by SANS experiments correlated well with dynamic light scattering (DLS) results, although DLS values were systematically slightly higher than the ones measured by SANS. This could be explained by taking into account the influence of Poloxamer attached to the nanocapsules surface. For a refined fit model with a second shell consisting of Poloxamer, SANS values and DLS values fitted well with each other. The characterization method presented here is significant because detailed insights into the nanocapsule and the Poloxamer shell were gained for the first time. This method could be used to develop strategies for the optimization of the shell properties concerning controlled release and to study changes in the shell structure during degradation processes.
NASA Astrophysics Data System (ADS)
Ortiz-Montalvo, D. L.; Conny, J. M.
2017-12-01
We study the scattering properties of irregularly shaped ambient dust particles. The way in which they scatter and absorb light has implications for aerosol optical remote sensing and aerosol radiative forcing applications. However, understanding light scattering and absorption by non-spherical particles can be very challenging. We used focused ion-beam scanning electron microscopy and energy-dispersive x-ray spectroscopy (FIB-SEM-EDS) to reconstruct three-dimensional (3-D) configurations of dust particles collected from urban and Asian sources. The 3-D reconstructions were then used in a discrete dipole approximation method (DDA) to determine their scattering properties for a range of shapes, sizes, and refractive indices. Scattering properties where obtained using actual-shapes of the particles, as well as, (theoretical) equivalently-sized geometrical shapes like spheres, ellipsoids, cubes, rectangular prisms, and tetrahedrons. We use Q-space analysis to interpret the angular distribution of the scattered light obtained for each particle. Q-space analysis has been recently used to distinguish scattering by particles of different shapes, and it involves plotting the scattered intensity versus the scattering wave vector (q or qR) on a log-log scale, where q = 2ksin(θ/2), k = 2π/λ, and R = particle effective radius. Results from a limited number of particles show that when Q-space analysis is applied, common patterns appear that agree with previous Q-space studies done on ice crystals and other irregularly shaped particles. More specifically, we found similar Q-space regimes including a forward scattering regime of constant intensity when qR < 1, followed by the Guinier regime when qR ≈ 1, which is then followed by a complex power law regime with a -3 slope regime, a transition regime, and then a -4 slope regime. Currently, Q-space comparisons between actual- and geometric shapes are underway with the objective of determining which geometric shape best represents the angular distribution and magnitude of the scattered light. Current work also focuses on the effects of the imaginary part of the refractive index on the light scattering of our dust particles.
An, Seongpil; Jo, Hong Seok; Kim, Yong Il; Song, Kyo Yong; Kim, Min-Woo; Lee, Kyu Bum; Yarin, Alexander L; Yoon, Sam S
2017-07-06
Bioluminescent jellyfish has a unique structure derived from fiber/polymer interfaces that is advantageous for effective light scattering in the dark, deep sea water. Herein, we demonstrate the fabrication of bio-inspired hybrid films by mimicry of the jellyfish's structure, leading to excellent light-scattering performance and defrosting capability. A haze value reaching 59.3% and a heating temperature of up to 292 °C were achieved with the films. Accordingly, the developed surface constitutes an attractive optical device for lighting applications, especially for street or vehicle luminaries for freezing Arctic-climate countries. The morphological details of the hybrid films were revealed by scanning electron microscopy. The light-scattering properties of these films were examined by ultraviolet-visible-infrared spectrophotometry and anti-glare effect analyses. The defrosting performance of the hybrid films was evaluated via heating tests and infra-red observations.
Flexible polymer waveguides for light-activated therapy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kim, Moonseok; Kwok, Sheldon J. J.; Lin, Harvey H.; Lee, Dong Hee; Yun, Seok Hyun
2017-02-01
Conventional light-activated therapies, such as photodynamic therapy (PDT), photochemical tissue bonding (PTB), collagen crosslinking (CXL), low-level light therapy (LLLT), and antimicrobial therapy utilize external light sources and light propagation through free space, limiting treatment to accessible and superficial areas of the body. Recent progress has been made in developing biocompatible polymer waveguides to enhance light delivery to deep tissues. To further expand clinical utility, waveguides should be flexible and tough enough to enable use in anatomically difficult-to-reach regions, while having the requisite optical properties to achieve uniform and efficient illumination of the target area. Here, we present a new class of flexible polymer waveguides optimized for uniform light extraction into tissues. Our slab waveguides comprise two designs: first, a flexible polydimethylsiloxane (PDMS) based elastomer for CXL, and second, a tough polyacrylamide and alginate hydrogel for large-area phototherapies. Our waveguides are optically transparent in the visible wavelengths (400-750 nm) and a multimode fiber is used to couple light into the waveguide. We characterized the light propagation through the waveguides and light extraction into tissue, and validated our results with optical simulation. By changing the thickness and scattering properties, uniform light extraction through the length of the waveguide could be achieved. We demonstrate proof-of-concept scleral photo-crosslinking of an ex vivo porcine eyeball for prevention of myopia.
NASA Astrophysics Data System (ADS)
Shvartsman, Leonid D.; Fine, Ilya
2001-06-01
We develop theoretical models of light transmission through whole blood considering RBC aggregation. RBC aggregates are considered to be the main centers of scattering in red/near- infrared spectral region. In pulsatile blood flow the periodic changes of aggregate geometry cause oscillations of light scattering. Thus scattering-assisted mechanism has to be taken into account in pulse oximeter calibration. In case of over-systolic vessel occlusion the size of aggregates grows, and the light transmission rises. Light diffraction on a single scatterer makes the transmission growth non- monotonic for certain spectral range. For the most typical set of aggregate parameters this range corresponds to wavelengths below 760 nm, and this prediction fits well both in vivo and in vitro experimental results. This spectral range depends on the refraction index mismatch and the geometry of aggregates. Both of them may be affected by the chemistry of blood. For instance, changes of glucose and hemoglobin have different effect on light transmission time response. Consequently, their content may be determined from time evolution of optical transmission.
Quantitative photoplethysmography: Lambert-Beer law or inverse function incorporating light scatter.
Cejnar, M; Kobler, H; Hunyor, S N
1993-03-01
Finger blood volume is commonly determined from measurement of infra-red (IR) light transmittance using the Lambert-Beer law of light absorption derived for use in non-scattering media, even when such transmission involves light scatter around the phalangeal bone. Simultaneous IR transmittance and finger volume were measured over the full dynamic range of vascular volumes in seven subjects and outcomes compared with data fitted according to the Lambert-Beer exponential function and an inverse function derived for light attenuation by scattering materials. Curves were fitted by the least-squares method and goodness of fit was compared using standard errors of estimate (SEE). The inverse function gave a better data fit in six of the subjects: mean SEE 1.9 (SD 0.7, range 0.7-2.8) and 4.6 (2.2, 2.0-8.0) respectively (p < 0.02, paired t-test). Thus, when relating IR transmittance to blood volume, as occurs in the finger during measurements of arterial compliance, an inverse function derived from a model of light attenuation by scattering media gives more accurate results than the traditional exponential fit.
Improved fiberoptic spectrophotometer
Tans, P.P.; Lashof, D.A.
1985-04-02
The present invention allows for accurate spectrophotmetric comparison of the Raman scattering from a sample gas with the Raman scattering from a known gas via a novel fiber optic network. The need for complicated electronic of optical circuit balancing, control, or error compensation circuitry is eliminated. The laser cavity is split into two regions, one of which houses the plasma discharge and produces laser power, and the other of which is adapted to house tubes containing the gas samples. Light from the laser source is beamed simultaneously through samples of the reference gas and the unknown gas, and Raman-scattered light is emitted. The Raman-scattered light from the known and unknown mixtures is then alternately passed through a fiber optic network where the various wavelengths are spatially mixed. The mixed light is then passed into a system of light detectors, each of which are adapted to measure one of the wavelengths of light representing a constituent element of the gases. When the test is complete, each gas sample can be assigned a Raman-scattered profile from the data consisting of the ratios each of the constituent elements bear to each other. (LEW)
Ramírez-Duverger, Aldo S; Gaspar-Armenta, Jorge A; García-Llamas, Raúl
2003-08-01
We report experimental results of the resonant scattering of light from a prism-glass/Ag/MgF2/air system with use of the attenuated total reflection technique for p and s polarized light. Two MgF2 film thicknesses were used. The system with the thinner dielectric layer supports two transverse magnetic (TM) and two transverse electric (TE) guided modes at a wavelength of 632.8 nm, and the system with the thicker dielectric layer supports three TM and three TE guided modes. In both cases we found dips in the specular reflection as a function of incident angle that is due to excitation of guided modes in the MgF2 film. The scattered light shows peaks at angles corresponding to the measured excitation of the guided modes. These peaks are due to single-order scattering and occur for any angle of the incident light. All features in the scattering response are enhanced in resonance conditions, and the efficiency of injecting light into the guide is reduced.
NASA Astrophysics Data System (ADS)
Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry
2007-10-01
pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4.5 GeV with BABAR / A. Denig. The pion vector form-factor and (g-2)u / C. Smith. Partially quenched CHPT results to two loops / J. Bijnens. Pion-pion scattering with mixed action lattice QCD / P.F. Bedaque. Meson systems with Ginsparg-Wilson valence quarks / A. Walker-Loud. Low energy constants from the MILC collaboration / C. Bernard. Finite volume effects: lattice meets CHPT / G. Schierholz. Lattice QCD simulations with two light dynamical (Wilson) quarks / L. Giusti. Do we understand the low-energy constant L8? / M. Golterman. Quark mass dependence of LECs in the two-flavour sector / M. Schmid. Progress report on the [Pie symbol]0 Lifetime experiment (PRIMEX) at Jlab / D.E. McNulty. Determination of the charged pion polarizabilities / L.V. Fil'kov. Proposed measurement of electroproduction of [Pie symbol]0 near threshold using a large acceptance spectrometer / R.A. Lindgren. The [Pie symbol] meson in [Pie symbol]K scattering / B. Moussallam. Strangeness -1 Meson-Baryon scattering S-wave / J.A. Oller. Results on light mesons decays and dynamics at KLOE / M. Martini. Studies of decays of [symbol] and [symbol] mesons with WASA detector / A. Kupsc. Heavy Quark-Diquark symmetry and X PT for doubly heavy baryons / T. Mehen. HHChPT applied to the charmed-strange parity partners/ R.P. Springer. Study of pion structure through precise measurements of the [Pie symbol]+ --> e+[symbol] decay / D. Pocanic. Exceptional and non-exceptional contributions to the radiative [Pie symbol] decay / V. Mateu. Leading chiral logarithms from unitarity, analyticity and the Roy equations / A. Fuhrer. All orders symmetric subtraction of the nonlinear sigma model in D=4 / A. Quadri -- pt. C. Chiral dynamics in few-nucleon systems. Working group summary: chiral dynamics in few-nucleon systems / H.W Hammer, N. Kalantar-Nayestanaki, and D.R. Phillips. Power counting in nuclear chiral effective field theory / U. van Kolck. On the consistency of Weinberg's power counting / U-G Mei ner. Renormalization of singular potentials and power counting / M.P. Valderrrama. The challenge of calculating Baryon-Baryon scattering from lattice QCD / S.R. Beane. Precise absolute np scattering cross section and the charged [Pie symbol] NN coupling constant / S. E. Vigdor. Probing hadronic parity violation using few nucleon systems / S.A. Page. Extracting the neutron-neutron scattering length from neutron-deuteron breakup / C.R. Howell. Extraction of [equationl] from [Pie symbol]-d --> [equation] / A. Grudestig. The three- and four-body system with large scattering length / L. Platter. 3N and 4N systems and the Ay puzzle / T. Clegg. Recent progress in nuclear lattice simulations with effective field theory / D. Lee. Few-body studies at KVI / J.G. Messchendorp. Results of three nucleon experiments from RIKEN / K. Sekiguchi. A new opportunity to measure the total photoabsorption cross section of helium / P. T. Debevec. Three-body photodisintegration of 3He with double polarizations / X. Zong. Large two-pion exchange contributions to the pp --> pp[Pie symbol]0 reaction / F. Myhrer. Towards a systematic theory of nuclear forces / E. Epelbaum. Ab initio calculations of eletromagnetic reactions in light nuclei / W. Leidemann. Electron scattering from a polarized deuterium target at BLAST / R. Fatemi. Neutron-neutron scattering length from the reaction [equation] / V. Lensky. Renormalization group analysis of nuclear current operators / S.X. Nakamura. Recent results and future plans at MAX-LAB / K.G. Fissum. Nucleon polarizabilities from deutron compton scattering, and its lessons for chiral power counting / H. W. Grie hammer. Compton scattering on HE-3 / D. Choudhury -- pt. D. Hadron structure and Meson-Baryon interactions. Summary of the working group on Hadron structure and Meson-Baryon interactions / G. Feldman and T.R. Hemmert. Finite volume effects: lattice meets CHPT / G. Schierholz. Lattice discretization errors in chiral effective field theories / B.C. Tiburzi. SU(3)-breaking effects in hyperon semileptonic decays from lattice QCD / S. Simula. Uncertainty bands for chiral extrapolations / B.U. Musch. Update of the nucleon electromagnetic form factors / C. B. Crawford. N and N to ? transition from factors from lattice QCD / C. Alexandrou. The [equation] transition at low Q2 and the pionic contribution / S. Stave. Strange Quark CoNtributions to the form factors of the nucleon / F. Benmokhtar. Dynamical polarizabilities of the nucleon / B. Pasquini. Hadron magnetic moments and polarizabilities in lattice QCD / F.X. Lee. Spin-dependent compton scattering from 3He and the neutron spin polarizabilities / H. Gao. Chiral dynamics from Dyson-Schwinger equations / C.D. Roberts. Radiative neutron [Beta symbol]-decay in effective field theory / S. Gardner. Comparison between different renormalization schemes for co-variant BChPT / T.A. Gail. Non-perturbative study of the light pseudoscalar masses in chiral dynamics / José Antonio Oller. Masses and widths of hadrons in nuclear matter / M. Kotulla. Chiral effective field theory at finite density / R.J. Furnstahl. The K-nuclear interaction: a search fro deeply bound K-nuclear clusters / P. Camerini. Moments of GPDs from lattice QCD / D.G. Richards. Generalized parton distributions in effective field theory / J.W. Chen. Near-threshold pion production: experimental update / M.W. Ahmed. Pion photoproduction near threshold theory update / L. Tiator.
Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation
Liu, Yan; Ma, Cheng; Shen, Yuecheng; Shi, Junhui; Wang, Lihong V.
2017-01-01
Wavefront shaping based on digital optical phase conjugation (DOPC) focuses light through or inside scattering media, but the low speed of DOPC prevents it from being applied to thick, living biological tissue. Although a fast DOPC approach was recently developed, the reported single-shot wavefront measurement method does not work when the goal is to focus light inside, instead of through, highly scattering media. Here, using a ferroelectric liquid crystal based spatial light modulator, we develop a simpler but faster DOPC system that focuses light not only through, but also inside scattering media. By controlling 2.6 × 105 optical degrees of freedom, our system focused light through 3 mm thick moving chicken tissue, with a system latency of 3.0 ms. Using ultrasound-guided DOPC, along with a binary wavefront measurement method, our system focused light inside a scattering medium comprising moving tissue with a latency of 6.0 ms, which is one to two orders of magnitude shorter than those of previous digital wavefront shaping systems. Since the demonstrated speed approaches tissue decorrelation rates, this work is an important step toward in vivo deep-tissue non-invasive optical imaging, manipulation, and therapy. PMID:28815194
A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model
NASA Astrophysics Data System (ADS)
Ma, Chunyong; Xu, Shu; Wang, Hongsong; Tian, Fenglin; Chen, Ge
2016-12-01
A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We establish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the reflection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.
2012-11-28
boiling of the liquid or vaporization of the particle). Light scatters out of the propagation path. • Enhanced absorption from nanoplasmas . 8 I...and thus, nanoplasmas that absorb and scatter the light • NLO behavior is fluence dependent • Uncalibrated measurements of transmitted, absorbed...after the first 1-2 ns • Proposed mechanism: Initial scattering by nanoplasmas followed by additional scattering from bubble growth in the
Xu, Min
2017-01-01
Biological tissue has a complex structure and exhibits rich spectroscopic behavior. There has been no tissue model until now that has been able to account for the observed spectroscopy of tissue light scattering and its anisotropy. Here we present, for the first time, a plum pudding random medium (PPRM) model for biological tissue which succinctly describes tissue as a superposition of distinctive scattering structures (plum) embedded inside a fractal continuous medium of background refractive index fluctuation (pudding). PPRM faithfully reproduces the wavelength dependence of tissue light scattering and attributes the “anomalous” trend in the anisotropy to the plum and the powerlaw dependence of the reduced scattering coefficient to the fractal scattering pudding. Most importantly, PPRM opens up a novel venue of quantifying the tissue architecture and microscopic structures on average from macroscopic probing of the bulk with scattered light alone without tissue excision. We demonstrate this potential by visualizing the fine microscopic structural alterations in breast tissue (adipose, glandular, fibrocystic, fibroadenoma, and ductal carcinoma) deduced from noncontact spectroscopic measurement. PMID:28663913
Extracting the σ-term from low-energy pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Ruiz de Elvira, Jacobo; Hoferichter, Martin; Kubis, Bastian; Meißner, Ulf-G.
2018-02-01
We present an extraction of the pion-nucleon (π N) scattering lengths from low-energy π N scattering, by fitting a representation based on Roy-Steiner equations to the low-energy data base. We show that the resulting values confirm the scattering-length determination from pionic atoms, and discuss the stability of the fit results regarding electromagnetic corrections and experimental normalization uncertainties in detail. Our results provide further evidence for a large π N σ-term, {σ }π N=58(5) {{MeV}}, in agreement with, albeit less precise than, the determination from pionic atoms.
Analytical fitting model for rough-surface BRDF.
Renhorn, Ingmar G E; Boreman, Glenn D
2008-08-18
A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.
Dual-domain point diffraction interferometer
Naulleau, Patrick P.; Goldberg, Kenneth Alan
2000-01-01
A hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI is provided. The dual-domain PS/PDI combines the separate noise-suppression capabilities of the widely-used phase-shifting and Fourier-transform fringe pattern analysis methods. The dual-domain PS/PDI relies on both a more restrictive implementation of the image plane PS/PDI mask and a new analysis method to be applied to the interferograms generated and recorded by the modified PS/PDI. The more restrictive PS/PDI mask guarantees the elimination of spatial-frequency crosstalk between the signal and the scattered-light noise arising from scattered-reference-light interfering with the test beam. The new dual-domain analysis method is then used to eliminate scattered-light noise arising from both the scattered-reference-light interfering with the test beam and the scattered-reference-light interfering with the "true" pinhole-diffracted reference light. The dual-domain analysis method has also been demonstrated to provide performance enhancement when using the non-optimized standard PS/PDI design. The dual-domain PS/PDI is essentially a three-tiered filtering system composed of lowpass spatial-filtering the test-beam electric field using the more restrictive PS/PDI mask, bandpass spatial-filtering the individual interferogram irradiance frames making up the phase-shifting series, and bandpass temporal-filtering the phase-shifting series as a whole.
NASA Astrophysics Data System (ADS)
Gautam, Siddharth S.; Ok, Salim; Cole, David R.
2017-06-01
Geo-fluids consisting of C-O-H volatiles are the main mode of transport of mass and energy throughout the lithosphere and are commonly found confined in pores, grain boundaries and fractures. The confinement of these fluids by porous media at the length scales of a few nanometers gives rise to numerous physical and chemical properties that deviate from the bulk behavior. Studying the structural and dynamical properties of these confined fluids at the length and time scales of nanometers and picoseconds respectively forms an important component of understanding their behavior. To study confined fluids, non-destructive penetrative probes are needed. Nuclear magnetic resonance (NMR) by virtue of its ability to monitor longitudinal and transverse magnetization relaxations of spins, and chemical shifts brought about by the chemical environment of a nucleus, and measuring diffusion coefficient provides a good opportunity to study dynamics and chemical structure at the molecular length and time scales. Another technique that gives insights into the dynamics and structure at these length and time scales is neutron scattering (NS). This is because the wavelength and energies of cold and thermal neutrons used in scattering experiments are in the same range as the spatial features and energies involved in the dynamical processes occurring at the molecular level. Molecular Dynamics (MD) simulations on the other hand help with the interpretation of the NMR and NS data. Simulations can also supplement the experiments by calculating quantities not easily accessible to experiments. Thus using NMR, NS and MD simulations in conjunction, a complete description of the molecular structure and dynamics of confined geo-fluids can be obtained. In the current review, our aim is to show how a synergistic use of these three techniques has helped shed light on the complex behavior of water, CO2, and low molecular weight hydrocarbons. After summarizing the theoretical backgrounds of the techniques, we will discuss some recent examples of the use of NMR, NS, and MD simulations to the study of confined fluids.
NASA Technical Reports Server (NTRS)
Magi, Brian I.; Hobbs, Peter V.; Schmid, Beat; Redermann, Jens
2003-01-01
Airborne in situ measurements of vertical profiles of aerosol light scattering, light absorption, and single scattering albedo (omega (sub 0)) are presented for a number of locations in southern Africa during the dry, biomass burning season. Features of the profiles include haze layers, clean air slots, and marked decreases in light scattering in passing from the boundary layer into the free troposphere. Frequency distributions of omega (sub 0) reflect the strong influence of smoke from biomass burning. For example, during a period when heavy smoke was advected into the region from the north, the mean value of omega (sub 0) in the boundary layer was 0.81 +/- 0.02 compared to 0.89 +/- 0.03 prior to this intrusion. Comparisons of layer aerosol optical depths derived from the in situ measurements with those measured by a Sun photometer aboard the aircraft show excellent agreement.
Shen, Jian; Deng, Degang; Kong, Weijin; Liu, Shijie; Shen, Zicai; Wei, Chaoyang; He, Hongbo; Shao, Jianda; Fan, Zhengxiu
2006-11-01
By introducing the scattering probability of a subsurface defect (SSD) and statistical distribution functions of SSD radius, refractive index, and position, we derive an extended bidirectional reflectance distribution function (BRDF) from the Jones scattering matrix. This function is applicable to the calculation for comparison with measurement of polarized light-scattering resulting from a SSD. A numerical calculation of the extended BRDF for the case of p-polarized incident light was performed by means of the Monte Carlo method. Our numerical results indicate that the extended BRDF strongly depends on the light incidence angle, the light scattering angle, and the out-of-plane azimuth angle. We observe a 180 degrees symmetry with respect to the azimuth angle. We further investigate the influence of the SSD density, the substrate refractive index, and the statistical distributions of the SSD radius and refractive index on the extended BRDF. For transparent substrates, we also find the dependence of the extended BRDF on the SSD positions.
Physics of a rapid CD4 lymphocyte count with colloidal gold.
Hansen, P; Barry, D; Restell, A; Sylvia, D; Magnin, O; Dombkowski, D; Preffer, F
2012-03-01
The inherent surface charges and small diameters that confer colloidal stability to gold particle conjugates (immunogold) are detrimental to rapid cell surface labeling and distinct cluster definition in flow cytometric light scatter assays. Although the inherent immunogold surface charge prevents self aggregation when stored in liquid suspension, it also slows binding to cells to timeframes of hours and inhibits cell surface coverage. Although the small diameter of immunogold particles prevents settling when in liquid suspension, small particles have small light scattering cross sections and weak light scatter signals. We report a new, small particle lyophilized immunogold reagent that maintains activity after 42°C storage for a year and can be rapidly dissolved into stable liquid suspension for use in labelling cells with larger particle aggregates that have enhanced scattering cross section. Labeling requires less than 1 min at 20°C, which is ∼30 times faster than customary fluorescent antibody labeling. The labeling step involves neutralizing the surface charge of immunogold and creating specifically bound aggregates of gold on the cell surface. This process provides distinct side-scatter cluster separation with blue laser light at 488 nm, which is further improved by using red laser light at 640 nm. Similar comparisons using LED light sources showed less improvement with red light, thereby indicating that coherent light scatter is of significance in enhancing side-scatter cluster separation. The physical principles elucidated here for this technique are compatible with most flow cytometers; however, future studies of its clinical efficacy should be of primary interest in point-of-care applications where robust reagents and rapid results are important. Copyright © 2011 International Society for Advancement of Cytometry.
Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes.
Wilson, Jeremy D; Cottrell, William J; Foster, Thomas H
2007-01-01
Angularly resolved light scattering and wavelength-resolved darkfield scattering spectroscopy measurements were performed on intact, control EMT6 cells and cells stained with high-extinction lysosomal- or mitochondrial-localizing dyes. In the presence of the lysosomal-localizing dye NPe6, we observe changes in the details of light scattering from stained and unstained cells, which have both wavelength- and angular-dependent features. Analysis of measurements performed at several wavelengths reveals a reduced scattering cross section near the absorption maximum of the lysosomal-localizing dye. When identical measurements are made with cells loaded with a similar mitochondrial-localizing dye, HPPH, we find no evidence that staining mitochondria had any effect on the light scattering. Changes in the scattering properties of candidate populations of organelles induced by the addition of an absorber are modeled with Mie theory, and we find that any absorber-induced scattering response is very sensitive to the inherent refractive index of the organelle population. Our measurements and modeling are consistent with EMT6-cell-mitochondria having refractive indices close to those reported in the literature for organelles, approximately 1.4. The reduction in scattering cross section induced by NPe6 constrains the refractive index of lysosomes to be significantly higher. We estimate the refractive index of lysosomes in EMT6 cells to be approximately 1.6.
Fluorinated diglucose detergents for membrane-protein extraction.
Boussambe, Gildas Nyame Mendendy; Guillet, Pierre; Mahler, Florian; Marconnet, Anaïs; Vargas, Carolyn; Cornut, Damien; Soulié, Marine; Ebel, Christine; Le Roy, Aline; Jawhari, Anass; Bonneté, Françoise; Keller, Sandro; Durand, Grégory
2018-05-29
Fluorinated surfactants have scarcely been explored for the direct extraction of proteins from membranes because fluorination is believed to abrogate detergency. However, we have recently shown that a commercially available fluorinated surfactant readily solubilizes lipid membranes, thereby suggesting that fluorination per se does not interfere with detergent activity. In this work, we developed new fluorinated surfactants that exhibit detergency in terms of both lipid-vesicle solubilization and membrane-protein extraction. The compounds made and tested contain two glucose moieties as polar headgroup, a hydrogenated thioether linker, and a perfluorinated alkyl tail with either 4, 6, or 8 carbon atoms. The physicochemical properties of the micelles formed by the three fluorinated surfactants were evaluated by NMR spectroscopy, surface tensiometry, isothermal titration calorimetry, dynamic light scattering, small-angle X-ray scattering, and analytical ultracentrifugation. At 25°C, micellization was mainly entropy-driven, and the CMC values were found to decrease with chain length of the fluorinated tail, whereas the aggregation number increased with chain length. Remarkably, all three surfactants were found to solubilize lipid vesicles and extract a broad range of proteins from Escherichiacoli membranes. These findings demonstrate, for the first time, that nonionic fluorinated surfactants could be further exploited for the direct extraction and solubilization of membrane proteins. Copyright © 2018. Published by Elsevier Inc.
Laser speckle imaging in the spatial frequency domain
Mazhar, Amaan; Cuccia, David J.; Rice, Tyler B.; Carp, Stefan A.; Durkin, Anthony J.; Boas, David A.; Choi, Bernard; Tromberg, Bruce J.
2011-01-01
Laser Speckle Imaging (LSI) images interference patterns produced by coherent addition of scattered laser light to map subsurface tissue perfusion. However, the effect of longer path length photons is typically unknown and poses a limitation towards absolute quantification. In this work, LSI is integrated with spatial frequency domain imaging (SFDI) to suppress multiple scattering and absorption effects. First, depth sensitive speckle contrast is shown in phantoms by separating a deep source (4 mm) from a shallow source (2 mm) of speckle contrast by using a high spatial frequency of illumination (0.24 mm−1). We develop an SFD adapted correlation diffusion model and show that with high frequency (0.24 mm−1) illumination, doubling of absorption contrast results in only a 1% change in speckle contrast versus 25% change using a planar unmodulated (0 mm−1) illumination. Similar absorption change is mimicked in vivo imaging a finger occlusion and the relative speckle contrast change from baseline is 10% at 0.26 mm−1 versus 60% at 0 mm−1 during a finger occlusion. These results underscore the importance of path length and optical properties in determining speckle contrast. They provide an integrated approach for simultaneous mapping of blood flow (speckle contrast) and oxygenation (optical properties) which can be used to inform tissue metabolism. PMID:21698018
Polymeric assembly of gluten proteins in an aqueous ethanol solvent.
Dahesh, Mohsen; Banc, Amélie; Duri, Agnès; Morel, Marie-Hélène; Ramos, Laurence
2014-09-25
The supramolecular organization of wheat gluten proteins is largely unknown due to the intrinsic complexity of this family of proteins and their insolubility in water. We fractionate gluten in a water/ethanol mixture (50/50 v/v) and obtain a protein extract which is depleted in gliadin, the monomeric part of wheat gluten proteins, and enriched in glutenin, the polymeric part of wheat gluten proteins. We investigate the structure of the proteins in the solvent used for extraction over a wide range of concentration, by combining X-ray scattering and multiangle static and dynamic light scattering. Our data show that, in the ethanol/water mixture, the proteins display features characteristic of flexible polymer chains in a good solvent. In the dilute regime, the proteins form very loose structures of characteristic size 150 nm, with an internal dynamics which is quantitatively similar to that of branched polymer coils. In more concentrated regimes, data highlight a hierarchical structure with one characteristic length scale of the order of a few nm, which displays the scaling with concentration expected for a semidilute polymer in good solvent, and a fractal arrangement at a much larger length scale. This structure is strikingly similar to that of polymeric gels, thus providing some factual knowledge to rationalize the viscoelastic properties of wheat gluten proteins and their assemblies.
Rosenberg, M J; Solodov, A A; Myatt, J F; Seka, W; Michel, P; Hohenberger, M; Short, R W; Epstein, R; Regan, S P; Campbell, E M; Chapman, T; Goyon, C; Ralph, J E; Barrios, M A; Moody, J D; Bates, J W
2018-02-02
Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (∼500 to 700 μm), electron temperature (∼3 to 5 keV), and laser intensity (6 to 16×10^{14} W/cm^{2}) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ∼0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ∼4×10^{14} to ∼6×10^{14} W/cm^{2}. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.
Optical readout of displacements of nanowires along two mutually perpendicular directions
NASA Astrophysics Data System (ADS)
Fu, Chenghua
2017-05-01
Nanowires are good force transducers due to their low mass. The singleness of the direction of the motion detection in a certain system is an existing limitation, and to overcome the limitation is the key point in this article. Optical methods, such as polarized light interferometry and light scattering, are generally used for detecting the displacement of nanowires. Typically, either light interference or light scattering is considered when relating the displacement of a nanowire with the photodetector's measurements. In this work, we consider both the light interference along the optical axis and light scattering perpendicular to the optical axis of a micro-lens fiber optic interferometer. Identifying the displacement along the two directions and the corresponding vibration conversion efficiency coefficients for the nanowire is a significant part of our study. Our analysis shows that the optimal working point of the micro-lens fiber optic interferometer can realize the detection of displacement along the optical axis without the disturbance coming from the motion perpendicular to the optical axis, and vice versa. We use Mie scattering theory to calculate the scattering light for the reason that the size of the nanowire is comparable to the wavelength of light. Our results could provide a guide for optical readout experiments of the displacement of nanowires.
Propagation of laser beams in scattering media.
Zuev, V E; Kabanov, M V; Savelev, B A
1969-01-01
Experimental investigations have been undertaken of some aspects of the propagation of helium-neon gas laser radiation at lambda = 0.63 micro for different scattering media (artificial water fogs, wood smokes, model media). It has been shown that the attenuation coefficients practically coincide when coherent and incoherent radiation is scattered. The applicability limits of Bouguer-Beer's law for describing the attenuation of radiation in scattering media are investigated and the intensity of multiple forward-scattered light for different geometrical parameters of the source and radiation receiver are measured. The applicability of single scattering theory formulas for describing forward-scattered light intensity are discussed.
Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light.
Taira, Yoshitaka; Hayakawa, Takehito; Katoh, Masahiro
2017-07-10
Inverse Thomson scattering is a well-known radiation process that produces high-energy photons both in nature and in the laboratory. Nonlinear inverse Thomson scattering occurring inside an intense light field is a process which generates higher harmonic photons. In this paper, we theoretically show that the higher harmonic gamma-ray produced by nonlinear inverse Thomson scattering of circularly polarized light is a gamma-ray vortex, which means that it possesses a helical wave front and carries orbital angular momentum. Our work explains a recent experimental result regarding nonlinear inverse Thomson scattering that clearly shows an annular intensity distribution as a remarkable feature of a vortex beam. Our work implies that gamma-ray vortices should be produced in various situations in astrophysics in which high-energy electrons and intense circularly polarized light fields coexist. Nonlinear inverse Thomson scattering is a promising radiation process for realizing a gamma-ray vortex source based on currently available laser and accelerator technologies, which would be an indispensable tool for exploring gamma-ray vortex science.
High-power laser radiation in atmospheric aerosols: Nonlinear optics of aerodispersed media
NASA Astrophysics Data System (ADS)
Zuev, V. E.; Zemlianov, A. A.; Kopytin, Iu. D.; Kuzikovskii, A. V.
The bulk of this book contains the results of investigations carried out at the Institute of Atmospheric Optics, Siberian Branch, USSR Academy of Science with the participation of the authors. The microphysical and optical characteristics of atmospheric aerosols are considered, taking into account light scattering by a single aerosol particle, light scattering by a system of particles, the scattering phase matrix, light scattering by clouds and fogs, light scattering by hazes, and scattering phase functions of polydispersed aerosols. Other topics studies are related to low-energy (subexplosive) effects of radiation on individual particles, the formation of clear zones in clouds and fogs due to the vaporization of droplets under regular regimes, self-action of a wave beam in a water aerosol under conditions of regular droplet vaporization, laser beam propagation through an explosively evaporating water-droplet aerosol, the propagation of high-power laser radiation through hazes, the ionization and optical breakdown in aerosol media, and laser monitoring of a turbid atmosphere using nonlinear effects.
Evaluation of advanced light scattering technology for microgravity experiments
NASA Technical Reports Server (NTRS)
Fredericks, W. J.; Rosenblum, W. M.
1990-01-01
The capabilities of modern light scattering equipment and the uses it might have in studying processes in microgravity are evaluated. Emphasis is on the resolution of polydisperse systems. This choice was made since a major use of light scattering was expected to be the study of crystal growth of macromolecules in low gravity environments. An evaluation of a modern photon correlation spectrometer and a Mie spectrometer is presented.
NASA Astrophysics Data System (ADS)
Zabarylo, U.; Minet, O.
2010-01-01
Investigations on the application of optical procedures for the diagnosis of rheumatism using scattered light images are only at the beginning both in terms of new image-processing methods and subsequent clinical application. For semi-automatic diagnosis using laser light, the multispectral scattered light images are registered and overlapped to pseudo-coloured images, which depict diagnostically essential contents by visually highlighting pathological changes.
Light Scattering by Marine Particles: Modeling with Non-spherical Shapes
2010-09-30
4271—4282 (1996). Gordon, H.R. and Tao Du, Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi... Emiliania huxleyi, Applied Optics, (2009). PUBLICATIONS H.R. Gordon, T.J. Smyth, W.M. Balch, and G.C. Boynton, Light scattering by coccoliths...detached from Emiliania huxleyi, Applied Optics, 48, 6059–6073 (2009). [published, refereed] 5 H.R. Gordon, Some Reflections on 35 Years of
Yurinskaya, Valentina; Aksenov, Nikolay; Moshkov, Alexey; Model, Michael; Goryachaya, Tatyana; Vereninov, Alexey
2017-10-01
A decrease in flow cytometric forward light scatter (FSC) is commonly interpreted as a sign of apoptotic cell volume decrease (AVD). However, the intensity of light scattering depends not only on the cell size but also on its other characteristics, such as hydration, which may affect the scattering in the opposite way. That makes estimation of AVD by FSC problematic. Here, we aimed to clarify the relationship between light scattering, cell hydration (assayed by buoyant density) and cell size by the Coulter technique. We used human lymphoid cells U937 exposed to staurosporine, etoposide or hypertonic stress as an apoptotic model. An initial increase in FSC was found to occur in apoptotic cells treated with staurosporine and hypertonic solutions; it is accompanied by cell dehydration and is absent in apoptosis caused by etoposide that is consistent with the lack of dehydration in this case. Thus, the effect of dehydration on the scattering signal outweighs the effect of reduction in cell size. The subsequent FSC decrease, which occurred in parallel to accumulation of annexin-positive cells, was similar in apoptosis caused by all three types of inducers. We conclude that an increase, but not a decrease in light scattering, indicates the initial cell volume decrease associated with apoptotic cell dehydration.
Early Stages of Oxidative Stress-Induced Membrane Permeabilization: A Neutron Reflectometry Study
Smith, Hillary L.; Howland, Michael C.; Szmodis, Alan W.; Li, Qijuan; Daemen, Luke L.; Parikh, Atul N.; Majewski, Jaroslaw
2009-01-01
Neutron reflectometry was used to probe in situ the structure of supported lipid bilayers at the solid–liquid interface during the early stages of UV-induced oxidative degradation. Single-component supported lipid bilayers composed of gel phase, dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and fluid phase, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), phospholipids were exposed to low-dose oxidative stress generated by UV light and their structures were examined by neutron reflectometry. An interrupted illumination mode, involving exposures in 15 min increments with 2 h intervals between subsequent exposures, and a continuous mode involving a single 60 (or 90) min exposure period were employed. In both cases, pronounced differences in the structure of the lipid bilayer after exposure were observed. Interrupted exposure led to a substantial decrease in membrane coverage but preserved its total thickness at reduced scattering length densities. These results indicate that the initial phase during UV-induced membrane degradation involves the formation of hydrophilic channels within the membrane. This is consistent with the loss of some lipid molecules we observe and attendant reorganization of residual lipids forming hemimicellar edges of the hydrophilic channels. In contrast, continuous illumination produced a graded interface of continuously varied scattering length density (and hence hydrocarbon density) extending 100–150 Å into the liquid phase. Exposure of a DPPC bilayer to UV light in the presence of a reservoir of unfused vesicles showed low net membrane disintegration during oxidative stress, presumably because of surface back-filling from the bulk reservoir. Chemical evidence for membrane degradation was obtained by mass spectrometry and Fourier transform infrared spectroscopy. Further evidence for the formation of hydrophilic channels was furnished by fluorescence microscopy and imaging ellipsometry data. PMID:19275260
Marcano, Aristides; Alvarado, Salvador; Meng, Junwei; Caballero, Daniel; Moares, Ernesto Marín; Edziah, Raymond
2014-01-01
We developed a pump-probe photothermal lens spectrophotometer that uses a broadband arc-lamp and a set of interference filters to provide tunable, nearly monochromatic radiation between 370 and 730 nm as the pump light source. This light is focused onto an absorbing sample, generating a photothermal lens of millimeter dimensions. A highly collimated monochromatic probe light from a low-power He-Ne laser interrogates the generated lens, yielding a photothermal signal proportional to the absorption of light. We measure the absorption spectra of scattering dye solutions using the device. We show that the spectra are not affected by the presence of scattering, confirming that the method only measures the absorption of light that results in generation of heat. By comparing the photothermal spectra with the usual absorption spectra determined using commercial transmission spectrophotometers, we estimate the quantum yield of scattering of the sample. We discuss applications of the device for spectroscopic characterization of samples such as blood and gold nanoparticles that exhibit a complex behavior upon interaction with light.
LASER BIOLOGY AND MEDICINE: Light scattering study of rheumatoid arthritis
NASA Astrophysics Data System (ADS)
Beuthan, J.; Netz, U.; Minet, O.; Klose, Annerose D.; Hielscher, A. H.; Scheel, A.; Henniger, J.; Müller, G.
2002-11-01
The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient μs, absorption coefficient μa, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the finger cross section. Model tests of the quality of this reconstruction method show good results.
Luo, Furong; Bao, Xuan; Qin, Yingyan; Hou, Min; Wu, Mingxing
2018-06-01
To evaluate the long-term effect of glistenings and surface light scattering of intraocular lenses (IOLs) on visual and optical performance after cataract surgery. Pseudophakic eyes that underwent standard phacoemulsification and two types of hydrophobic acrylic spherical IOL implantation without complications for at least 5 years were included in this retrospective study. Participants were divided into the glistenings, surface light scattering, and control groups according to the current condition of the IOLs. Then participants received a follow-up examination including uncorrected and corrected distance visual acuity (UDVA and CDVA), contrast sensitivity, straylight, and intraocular higher order aberrations, as well as point spread function (PSF) and modulation transfer function (MTF). A total of 140 eyes were included in the study. UDVA, CDVA, and glare sensitivity were not significantly different among the three groups (P > .05). However, compared with the control group, the IOLs of the glistenings and surface light scattering groups were associated with significantly lower contrast sensitivity under no glare conditions. Furthermore, eye with glistenings exhibited the highest straylight value (P < .05), whereas no difference was found between the surface light scattering and control groups. In contrast to the control group, the spherical aberration increased and the mean values of PSF and MTF decreased in the glistenings and surface light scattering groups. Both glistenings and surface light scattering tend to impair subjective visual performance, such as contrast sensitivity, and potentially affect objective optical quality, including straylight, spherical aberration, PSF, and MTF. [J Refract Surg. 2018;34(6):372-378.]. Copyright 2018, SLACK Incorporated.
Hybrid Monte Carlo-Diffusion Method For Light Propagation in Tissue With a Low-Scattering Region
NASA Astrophysics Data System (ADS)
Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji
2003-06-01
The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.
Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region.
Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji
2003-06-01
The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.
Son, Suhyun; Shin, Eeseul; Kim, Byeong-Su
2014-02-10
Light-responsive polymeric micelles have emerged as site-specific and time-controlled systems for advanced drug delivery. Spiropyran (SP), a well-known photochromic molecule, was used to initiate the ring-opening multibranching polymerization of glycidol to afford a series of hyperbranched polyglycerols (SP-hb-PG). The micelle assembly and disassembly were induced by an external light source owing to the reversible photoisomerization of hydrophobic SP to hydrophilic merocyanine (MC). Transmission electron microscopy, atomic force microscopy, UV/vis spectroscopy, and dynamic light scattering demonstrated the successful assembly and disassembly of SP-hb-PG micelles. In addition, the critical micelle concentration (CMC) was determined through the fluorescence analysis of pyrene to confirm the amphiphilicity of respective SP-hb-PGn (n = 15, 29, and 36) micelles, with CMC values ranging from 13 to 20 mg/L, which is correlated to the length of the polar polyglycerol backbone. Moreover, the superior biocompatibility of the prepared SP-hb-PG was evaluated using WI-38 cells and HeLa cells, suggesting the prospective applicability of the micelles in smart drug delivery systems.
NASA Technical Reports Server (NTRS)
Sun, W.; Loeb, N. G.; Fu, Q.
2004-01-01
A recently developed finite-difference time domain scheme is examined using the exact analytic solutions for light scattering by a coated sphere immersed in an absorbing medium. The relative differences are less than 1% in the extinction, scattering, and absorption efficiencies and less than 5% in the scattering phase functions. The definition of apparent single-scattering properties is also discussed. (C) 2003 Elsevier Ltd. All rights reserved.
Bio-Optics and Bio-Inspired Optical Materials.
Tadepalli, Sirimuvva; Slocik, Joseph M; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth
2017-10-25
Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.
High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same
NASA Technical Reports Server (NTRS)
Sood, Ashok K. (Inventor); Welser, Roger E. (Inventor)
2014-01-01
Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.
Broadband optical switch based on liquid crystal dynamic scattering.
Geis, M W; Bos, P J; Liberman, V; Rothschild, M
2016-06-27
This work demonstrates a novel broadband optical switch, based on dynamic-scattering effect in liquid crystals (LCs). Dynamic-scattering-mode technology was developed for display applications over four decades ago, but was displaced in favor of the twisted-nematic LCs. However, with the recent development of more stable LCs, dynamic scattering provides advantages over other technologies for optical switching. We demonstrate broadband polarization-insensitive attenuation of light directly passing thought the cell by 4 to 5 orders of magnitude at 633 nm. The attenuation is accomplished by light scattering to higher angles. Switching times of 150 μs to 10% transmission have been demonstrated. No degradation of devices is found after hundreds of switching cycles. The light-rejection mechanism is due to scattering, induced by disruption of LC director orientation with dopant ion motion with an applied electric field. Angular dependence of scattering is characterized as a function of bias voltage.
NASA Technical Reports Server (NTRS)
Piatek, J. L.; Hapke, B. W.; Nelson, R. M.; Hale, A. S.; Smythe, W. D.
2003-01-01
The nature of the scattering of light is thought to be well understood when the medium is made up of independent scatterers that are much larger than the wavelength of that light. This is not the case when the size of the scattering objects is similar to or smaller than the wavelength or the scatterers are not independent. In an attempt to examine the applicability of independent particle scattering models, to planetary regoliths, a dataset of experimental results were compared with theoretical predictions.
Asano, Natsuki; Kitamura, Shinichi; Terao, Ken
2013-08-15
Small-angle X-ray scattering and static and dynamic light scattering measurements were made for cyclic amylose tris(phenylcarbamate) (cATPC) of which weight-average molar mass M(w) ranges from 1.3 × 10(4) to 1.5 × 10(5) to determine their z-average mean square radius of gyration z, particle scattering function P(q), hydrodynamic radius R(H), and second virial coefficient A2 in methyl acetate (MEA), ethyl acetate (EA), and 4-methyl-2-pentanone (MIBK). The obtained z, P(q), and R(H) data were analyzed in terms of the wormlike ring to estimate the helix pitch per residue h and the Kuhn segment length λ(-1) (the stiffness parameter, twice the persistence length). Both h and λ(-1) for cATPC in MEA, EA, and MIBK are smaller than those for linear amylose tris(phenylcarbamate) (ATPC) in the corresponding solvent and the discrepancy becomes more significant with increasing the molar volume of the solvent. This indicates that not every rigid ring has the same local helical structure and chain stiffness as that for the linear polymer in the M(w) range investigated while infinitely long ring chains should have the same local conformation. This conformational difference also affects A2. In actuality, negative A2 was observed for cATPC in MIBK at the Θ temperature of linear ATPC whereas intermolecular topological interaction of ring polymers increases A2.
Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothberg, Lewis
2012-11-30
Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential tomore » be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.« less
Light Scattering by Marine Particles: Modeling with Non-spherical Shapes
2008-01-01
Emiliania huxleyi, Limnology and Oceanography, 46, 1438−1454. Gordon, H.R., 2004, Inverse Radiative Transfer, Coccolith Backscattering, and Light Scattering...16430. Voss, K.J., W.M. Balch, and K.A. Kilpatrick, 1998, Scattering and attenuation properties of Emiliania huxleyi cells and their detached
Polarized Optical Scattering Measurements of Metallic Nanoparticles on a Thin Film Silicon Wafer
NASA Astrophysics Data System (ADS)
Liu, Cheng-Yang; Liu, Tze-An; Fu, Wei-En
2009-09-01
Light scattering has shown its powerful diagnostic capability to characterize optical quality surfaces. In this study, the theory of bidirectional reflectance distribution function (BRDF) was used to analyze the metallic nanoparticles' sizes on wafer surfaces. The BRDF of a surface is defined as the angular distribution of radiance scattered by the surface normalized by the irradiance incident on the surface. A goniometric optical scatter instrument has been developed to perform the BRDF measurements on polarized light scattering on wafer surfaces for the diameter and distribution measurements of metallic nanoparticles. The designed optical scatter instrument is capable of distinguishing various types of optical scattering characteristics, which are corresponding to the diameters of the metallic nanoparticles, near surfaces by using the Mueller matrix calculation. The metallic nanoparticle diameter of measurement is 60 nm on 2 inch thin film wafers. These measurement results demonstrate that the polarization of light scattered by metallic particles can be used to determine the size of metallic nanoparticles on silicon wafers.
Near specular scatter analysis method with a new goniophotometer
NASA Astrophysics Data System (ADS)
Meyen, Stephanie; Sutter, Florian; Heller, Peter
2014-09-01
The challenge of improving component quality and reducing cost has focused the attention of the solar thermal power industry on reliable component characterization methods. Since the reflector plays a key role in the energy conversion chain, the analysis of its reflectance properties has become a lively discussed issue in recent years. State of the art measurement instruments for specular reflectance do not give satisfying results, because they do not resolve sufficiently the near specular scatter of possible low cost mirror material candidates. The measurement of the BRDF offers a better solution than the traditional approach of placing a detector in the specular reflected beam path. However, due to the requirement of high angular resolution in the range of 1 mrad (0.057°) or better and the challenge of measuring high dynamic differences between the specular peak and the scatter signal, typical commercial scanning goniophotometers capable of this are rare. These instruments also face the disadvantages of impractically long acquisition times and, to reach the high angular resolution, occupy a large space (several meters side length). We have taken on the appealing idea of a parallel imaging goniophotometer and designed a prototype based on this principle. A mirrored ellipsoid is used to redirect the reflected light coming from a sample towards a camera with a fisheye lens. This way the complete light distribution is captured simultaneously. A key feature allows the distinction of the high intensity specular peak and the low intensity scatter. In this article we explain the prototype design and demonstrate its functionality based on comparison measurements done with a commercial scanning goniophotometer. We identify limitations related in part to the concept and in part to the specific prototype and suggest improvements. Finally we conclude that the concept is well suitable for the analysis of near specular scatter of mirror materials, although less adequate for the analysis of rough surfaces that require a full 180° view angle. Results obtained with this instrument are useful to evaluate the performance of a reflector material for a specific concentrating solar collector design and also serve in other applications that require near specular scatter analysis like degradation and soiling research.
García, Antonio A.; Pirez-Gomez, Miguel A.; Pech-Pacheco, José L.; Mendez-Galvan, Jorge F.; Machain-Williams, Carlos; Talavera-Aguilar, Lourdes; Espinosa-Carrillo, José H.; Duarte-Villaseñor, Miriam M.; Be-Ortiz, Christian; Espinosa-de los Monteros, Luz E.; Castillo-Pacheco, Ariel; Garcia-Rejon, Julian E.
2017-01-01
Antibody detection and accurate diagnosis of tropical diseases is essential to help prevent the spread of disease. However, most detection methods lack cost-effectiveness and field portability, which are essential features for achieving diagnosis in a timely manner. To address this, 3D-printed oblate spheroid sample chambers were fabricated to measure green light scattering of gold nanoparticles using an optical caustic focus to detect antibodies. Scattering signals of 20–200 nm gold nanoparticles using a green laser were compared to green light emitting diode (LED) light source signals and to Mie theory. The change in signal from 60 to 120 nm decreased in the order of Mie Theory > optical caustic scattering > 90° scattering. These results suggested that conjugating 60 nm gold nanoparticles and using an optical caustic system to detect plasmonic light scattering, would result in a sensitive test for detecting human antibodies in serum. Therefore, we studied the light scattering response of conjugated gold nanoparticles exposed to different concentrations of anti-protein E antibody, and a feasibility study of 10 human serum samples using dot blot and a handheld optical caustic-based sensor device. The overall agreement between detection methods suggests that the new sensor concept shows promise to detect gold nanoparticle aggregation in a homogeneous assay. Further testing and protocol optimization is needed to draw conclusions on the positive and negative predictive values for this new testing system. PMID:28817080
Soliton-induced relativistic-scattering and amplification.
Rubino, E; Lotti, A; Belgiorno, F; Cacciatori, S L; Couairon, A; Leonhardt, U; Faccio, D
2012-01-01
Solitons are of fundamental importance in photonics due to applications in optical data transmission and also as a tool for investigating novel phenomena ranging from light generation at new frequencies and wave-trapping to rogue waves. Solitons are also moving scatterers: they generate refractive index perturbations moving at the speed of light. Here we found that such perturbations scatter light in an unusual way: they amplify light by the mixing of positive and negative frequencies, as we describe using a first Born approximation and numerical simulations. The simplest scenario in which these effects may be observed is within the initial stages of optical soliton propagation: a steep shock front develops that may efficiently scatter a second, weaker probe pulse into relatively intense positive and negative frequency modes with amplification at the expense of the soliton. Our results show a novel all-optical amplification scheme that relies on soliton induced scattering.
Magnon and phonon thermometry with inelastic light scattering
NASA Astrophysics Data System (ADS)
Olsson, Kevin S.; An, Kyongmo; Li, Xiaoqin
2018-04-01
Spin caloritronics investigates the interplay between the transport of spin and heat. In the spin Seebeck effect, a thermal gradient across a magnetic material generates a spin current. A temperature difference between the energy carriers of the spin and lattice subsystems, namely the magnons and phonons, is necessary for such thermal nonequilibrium generation of spin current. Inelastic light scattering is a powerful method that can resolve the individual temperatures of magnons and phonons. In this review, we discuss the thermometry capabilities of inelastic light scattering for measuring optical and acoustic phonons, as well as magnons. A scattering spectrum offers three temperature sensitive parameters: frequency shift, linewidth, and integrated intensity. We discuss the temperatures measured via each of these parameters for both phonon and magnons. Finally, we discuss inelastic light scattering experiments that have examined the magnon and phonon temperatures in thermal nonequilibrium which are particularly relevant to spin caloritronic phenomena.
Ultrasonic trap for light scattering measurement
NASA Astrophysics Data System (ADS)
Barton, Petr; Pavlu, Jiri
2017-04-01
Light scattering is complex phenomenon occurring widely in space environments, including the dense dusty clouds, nebulas or even the upper atmosphere of the Earth. However, when the size of the dust (or of other scattering center) is close to the incident light wavelength, theoretical determination is difficult. In such case, Mie theory is to be used but there is a lack of the material constants for most space-related materials. For experimental measurement of light scattering, we designed unique apparatus, based on ultrasonic trap. Using acoustic levitation we are able to capture the dust grain in midair, irradiate it with laser, and observe scattering directly with goniometer-mounted photodiode. Advantage of this approach is ability to measure directly in the air (thus, no need for the carrier medium) and possibility to study non-spherical particles. Since the trap development is nearly finished and initial experiments are carried out, the paper presents first tests on water droplets.
Study of coherent reflectometer for imaging internal structures of highly scattering media
NASA Astrophysics Data System (ADS)
Poupardin, Mathieu; Dolfi, Agnes
1996-01-01
Optical reflectometers are potentially useful tools for imaging internal structures of turbid media, particularly of biological media. To get a point by point image, an active imaging system has to distinguish light scattered from a sample volume and light scattered by other locations in the media. Operating this discrimination of light with reflectometers based on coherence can be realized in two ways: assuring a geometric selection or a temporal selection. In this paper we present both methods, showing in each case the influence of the different parameters on the size of the sample volume under the assumption of single scattering. We also study the influence on the detection efficiency of the coherence loss of the incident light resulting from multiple scattering. We adapt a model, first developed for atmospheric lidar in turbulent atmosphere, to get an analytical expression of this detection efficiency in the function of the optical coefficients of the media.
Israelsen, Nathan D; Wooley, Donald; Hanson, Cynthia; Vargis, Elizabeth
2016-01-01
Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to develop an optimized process for fabricating Raman-labeled nanoparticles for a SERS-based immunoassay on a polystyrene substrate. We have developed a method for fabricating SERS nanoparticle probes for use in a light scattering immunoassay on a polystyrene substrate. The light scattering profile of both spherical gold nanoparticle and gold nanorod SERS probes were characterized using Raman spectroscopy and optical absorbance spectroscopy. The effects of substrate interference and autofluorescence were reduced by selecting a Raman reporter with a strong light scattering response in a spectral region where interfering substrate emission peaks are minimized. Both spherical gold nanoparticles and gold nanorods SERS probes used in the immunoassay were detected at labeling concentrations in the low pM range. This analytical sensitivity falls within the typical dynamic range for direct labeling of cell-surface biomarkers using SERS probes. SERS nanoparticle probes were fabricated to produce a strong light scattering signal despite substrate interference. The optical extinction and inelastic light scattering of these probes was detected by optical absorbance spectroscopy and Raman spectroscopy, respectively. This immunoassay demonstrates the feasibility of analyzing strongly enhanced Raman signals on polystyrene, which is an inexpensive yet non-ideal Raman substrate. The assay sensitivity, which is in the low pM range, suggests that these SERS probe particles could be used for Raman labeling of cell or tissue samples in a polystyrene tissue culture plate. With continued development, this approach could be used for direct labeling of multiple cell surface biomarkers on strongly interfering substrate platforms.
Reddy Chichili, Vishnu Priyanka; Kumar, Veerendra; Sivaraman, J.
2016-01-01
Protein-protein interactions are key events controlling several biological processes. We have developed and employed a method to trap transiently interacting protein complexes for structural studies using glycine-rich linkers to fuse interacting partners, one of which is unstructured. Initial steps involve isothermal titration calorimetry to identify the minimum binding region of the unstructured protein in its interaction with its stable binding partner. This is followed by computational analysis to identify the approximate site of the interaction and to design an appropriate linker length. Subsequently, fused constructs are generated and characterized using size exclusion chromatography and dynamic light scattering experiments. The structure of the chimeric protein is then solved by crystallization, and validated both in vitro and in vivo by substituting key interacting residues of the full length, unlinked proteins with alanine. This protocol offers the opportunity to study crucial and currently unattainable transient protein interactions involved in various biological processes. PMID:26985443
NASA Astrophysics Data System (ADS)
Baumgart, M.; Druml, N.; Consani, M.
2018-05-01
This paper presents a simulation approach for Time-of-Flight cameras to estimate sensor performance and accuracy, as well as to help understanding experimentally discovered effects. The main scope is the detailed simulation of the optical signals. We use a raytracing-based approach and use the optical path length as the master parameter for depth calculations. The procedure is described in detail with references to our implementation in Zemax OpticStudio and Python. Our simulation approach supports multiple and extended light sources and allows accounting for all effects within the geometrical optics model. Especially multi-object reflection/scattering ray-paths, translucent objects, and aberration effects (e.g. distortion caused by the ToF lens) are supported. The optical path length approach also enables the implementation of different ToF senor types and transient imaging evaluations. The main features are demonstrated on a simple 3D test scene.
Acousto-Optical Evaluation Of Fiber Size In Wood Pulp
NASA Astrophysics Data System (ADS)
Dion, J. L.; Garceau, J. J.; Morissette, J. C.
1986-10-01
In the pulp and paper industry, the problem of regular and fast evaluation of wood fiber characteristics such as length and specific area is an important one. With this in view, we have been studying an acousto-optical technique based on the acoustic agglomeration of fibers in a water suspension, where a stationary ultrasonic field is created at about 150 kHz. Under the influence of radiation forces, fibers re-orient themselves parallel to the nodal planes of acoustic pressure, and regroup or agglomerate in these planes in different characteristic times. These are mesured by means of the light scattered at small angles. We have found that these times depend on the size distribution of fibers, particularly length. We present results obtained with an assortment of fiber types, under various experimental conditions which indicate eventual applications in the automatic control of pulp production.
Precision determination of the πN scattering lengths and the charged πNN coupling constant
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Thomas, A. W.
2000-01-01
We critically evaluate the isovector GMO sumrule for the charged πNN coupling constant using recent precision data from π-p and π-d atoms and with careful attention to systematic errors. From the π-d scattering length we deduce the pion-proton scattering lengths 1/2(aπ-p + aπ-n) = (-20 +/- 6(statistic)+/-10 (systematic) .10-4m-1πc and 1/2(aπ-p - aπ-n) = (903 +/- 14) . 10-4m-1πc. From this a direct evaluation gives g2c(GMO)/4π = 14.20 +/- 0.07 (statistic)+/-0.13(systematic) or f2c/4π = 0.0786 +/- 0.0008.
NASA Technical Reports Server (NTRS)
Grams, G. W.
1982-01-01
A variety of studies were carried out to help establish the accuracy of quantities describing physical characteristics of cloud particles (such as size, shape, and composition) that are to be inferred from light scattering data obtained with the nephelameter experiment on the Galileo spacecraft. The objectives were to provide data for validating and testing procedures for analyzing the Galileo nephelameter data with light scattering observations in a variety of on-going laboratory and field measurement programs for which simultaneous observations of the physical characteristics of the scattering particles were available.
Backward elastic light scattering of malaria infected red blood cells
NASA Astrophysics Data System (ADS)
Lee, Seungjun; Lu, Wei
2011-08-01
We investigated the backward light scattering pattern of healthy and malaria (Plasmodium falciparum) parasitized red blood cells. The spectrum could clearly distinguish between predominant ring stage infected blood cells and healthy blood cells. Further, we found that infected samples mixed with different stages of P. falciparum showed different signals, suggesting that even variance in parasite stages could also be detected by the spectrum. These results together with the backward scattering technique suggest the potential of non-invasive diagnosis of malaria through light scattering of blood cells near the surface of human body, such as using eyes or skin surface.
Absorption and scattering of light by nonspherical particles. [in atmosphere
NASA Technical Reports Server (NTRS)
Bohren, C. F.
1986-01-01
Using the example of the polarization of scattered light, it is shown that the scattering matrices for identical, randomly ordered particles and for spherical particles are unequal. The spherical assumptions of Mie theory are therefore inconsistent with the random shapes and sizes of atmospheric particulates. The implications for corrections made to extinction measurements of forward scattering light are discussed. Several analytical methods are examined as potential bases for developing more accurate models, including Rayleigh theory, Fraunhoffer Diffraction theory, anomalous diffraction theory, Rayleigh-Gans theory, the separation of variables technique, the Purcell-Pennypacker method, the T-matrix method, and finite difference calculations.
Double scattering of light from Biophotonic Nanostructures with short-range order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar
2010-07-28
We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.
Jacobson, C M; Borchardt, M T; Den Hartog, D J; Falkowski, A F; Morton, L A; Thomas, M A
2016-11-01
The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.
NASA Astrophysics Data System (ADS)
Jacobson, C. M.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A.
2016-11-01
The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.
Observation of cooperative Mie scattering from an ultracold atomic cloud
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, H.; Stehle, C.; Slama, S.
Scattering of light at a distribution of scatterers is an intrinsically cooperative process, which means that the scattering rate and the angular distribution of the scattered light are essentially governed by bulk properties of the distribution, such as its size, shape, and density, although local disorder and density fluctuations may have an important impact on the cooperativity. Via measurements of the radiation pressure force exerted by a far-detuned laser beam on a very small and dense cloud of ultracold atoms, we are able to identify the respective roles of superradiant acceleration of the scattering rate and of Mie scattering inmore » the cooperative process. They lead, respectively, to a suppression or an enhancement of the radiation pressure force. We observe a maximum in the radiation pressure force as a function of the phase shift induced in the incident laser beam by the cloud's refractive index. The maximum marks the borderline of the validity of the Rayleigh-Debye-Gans approximation from a regime, where Mie scattering is more complex. Our observations thus help to clarify the intricate relationship between Rayleigh scattering of light at a coarse-grained ensemble of individual scatterers and Mie scattering at the bulk density distribution.« less
NASA Astrophysics Data System (ADS)
Silva, F. M. L.; Alencar, L. D. S.; Bernardi, M. I. B.; Lima, F. W. S.; Melo, C. A. S.
2015-06-01
In this work we investigate the scattering of light in means turbid in the presence or not of pigment and nanoparticles. For this we initially using a sample of collagen from means turbid with and without the presence of curcuma pigments and nanoparticles. Our results show that the light scattering is more intense in the samples with nanoparticles and curcuma pigment.
A preview of a modular surface light scattering instrument with autotracking optics
NASA Technical Reports Server (NTRS)
Meyer, William V.; Tin, Padetha; Mann, J. Adin, Jr.; Cheung, H. Michael; Rogers, Richard B.; Lading, Lars
1994-01-01
NASA's Advanced Technology Development (ATD) program is sponsoring the development of a new generation of surface light scattering hardware. This instrument is designed to non-invasively measure the surface response function of liquids over a wide range of operating conditions while automatically compensating for a sloshing surface. The surface response function can be used to compute surface tension, properties of monolayers present, viscosity, surface tension gradient and surface temperature. The instrument uses optical and electronic building blocks developed for the laser light scattering program at NASA Lewis along with several unique surface light scattering components. The emphasis of this paper is the compensation for bulk surface motion (slosh). Some data processing background information is also included.
Riesner, Detlev; Buenemann, Hans
1973-01-01
A stopped-flow apparatus utilizing light-scattering for following the progress of a reaction is described. The method is applicable to all reactions that result in a significant change of the average molecular weight. It was possible due to several modifications of a conventional stopped-flow system to obtain a sensitivity comparable to that of commercial instruments for static light-scattering measurements. Experiments on three reactions are reported: association and dissociation of mercury ligands with DNA, dissociation of the dimers of DNA-dependent RNA polymerase, and complex formation of tRNASer (yeast) with the cognate aminoacyl-tRNA synthetase. The changes in the intensities of the scattered light are calculated and compared with the measured amplitudes. PMID:4577138
NASA Astrophysics Data System (ADS)
Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine
2017-06-01
Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.
Jet Evolution Visualized and Quantified Using Filtered Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Reeder, Mark F.
1996-01-01
Filtered Rayleigh scattering was utilized as a flow diagnostic in an investigation of a method for enhancing mixing in supersonic jets. The primary objectives of the study were to visualize the effect of vortex generating tabs on supersonic jets, to exact quantitative data from these planar visualizations, and to detect the presence of secondary flows (i.e., streamwise vorticity) generated by the tabs. An injection seeded frequency-doubled Nd:YAG was the light source and a 14 bit Princeton Instruments iodine charge coupled display (ICCD) camera recorded the image through an iodine cell. The incident wave length of the laser was held constant for each flow case so that the filter absorbed unwanted background light, but permitted part of the thermally broadened Rayleigh scattering light to pas through. The visualizations were performed for axisymmetric jets (D=1.9 cm) operated at perfectly expanded conditions for Mach 1.0, 1.5, and 2.0. All data were recorded for the jet cross section at x/D=3. One hundred instantaneous images were recorded and averaged for each case, with a threshold set to eliminate unavoidable particulate scattering. A key factor in these experiments was that the stagnation air was heated such that the expansion of the flow in the nozzle resulted in the static temperature in the jet being equal to the ambient temperature, assuming isentropic flow. Since the thermodynamic conditions of the flow were approximately the same for each case, increases in the intensity recorded by the ICCD camera could be directly attributed to the Doppler shift, and hence velocity. Visualizations were performed for Mach 1.5 and Mach 2.0 jets with tabs inserted at the nozzle exit. The distortion of the jet was readily apparent and was consistent with Mie scattering-based visualizations. Asymmetry in the intensities of the images indicate the presence of secondary flow patterns which are consistent with the streamwise vortices measured using more traditional diagnostics in subsonic jets with the same tab configurations. Because each tab causes shocks to form, the assumption of isentropic flow is not valid for these cases. However, within a reasonable first-order estimation,the intensity across the illuminated plane for these cases can be related to a value combining density and velocity.
Foot length--a new and potentially useful measurement in the neonate.
James, D K; Dryburgh, E H; Chiswick, M L
1979-03-01
The foot length, occipito-frontal head circumference (OFC), crown-rump, and crown-heel length (CHL) of 123 neonates of gestational ages 26-42 weeks, were measured between 12 hours and 5 days. A gauge, designed and constructed at St Mary's Hospital, Manchester, was used to measure foot length. In term babies (37-42 weeks) who were of weights appropriate for gestational age (AGA) the scatter about the mean of foot length measurements was small (coefficient of variation = 4.5%) compared with birthweight (coefficient of variation = 12.0%). The wide range of foot length measurements in babies of different gestational ages prevented maturity being accurately estimated. The mean birthweight of term light-for-dates (LFD) babies was 30.9% lower than term AGA babies, whereas the mean foot length, OFC, and body length of LFD babies was reduced by only 4.2-8.8%. There was a positive linear correlation between foot length and other indices of body size in LFD and AGA babies of all gestational ages. However, in premature babies (less than 37 weeks) the correlation between foot length and birthweight (r = 0.95) and foot length and CHL (r = 0.96) was pronounced. The 95% confidence limits of the regression lines were +/- 327 g and +/- 2.3 cm respectively. Birthweight and CHL of premature babies can therefore be estimated from a measurement of foot length that is performed simply and rapidly. Measurements of foot length are valuable in premature babies who are too ill at birth for conventional anthropometric measurements to be made, and in whom such measurements cannot be carried out subsequently because of the encumbrance of the incubator and intensive care apparatus. Drug dosages and intravenous fluid requirements based on body weight or surface area can be indirectly calculated from a measurement of foot length.
Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering
Mamontov, Eugene
2016-09-24
In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancymore » distance in the anion sublattice of the fluorite-related structure of bismuth oxide.« less
NASA Astrophysics Data System (ADS)
Geng, Xiang F.; Hu, Xing Q.; Xia, Ji J.; Jia, Xue C.
2013-04-01
A series of novel di-hydroxyl-sulfate-betaine-type zwitterionic gemini surfactants of 1,2-bis[N-ethyl-N-(2-hydroxyl-3-sulfopropyl)-alkylammonium] alkyl betaines (DBAs-n, where s and n represent the spacer length of 2, 4 and 6 and the hydrocarbon chain length of 8, 12, 14, 16 and 18, respectively) were synthesized by reacting alkylamine with sodium 3-chloro-2-hydroxypropanesulfonate (the alternative sulphonated agent), followed by the reactions with а,ω-dibromoalkyl and then ethyl bromide. Their adsorption and aggregation properties were investigated by means of equilibrium surface tension, dynamic light-scattering (DLS) and transmission electron microscopy (TEM). DBAs-n gemini surfactants showed excellent surface activities and packed tightly at the interface. For example, the minimum CMC value for DBAs-n series was of the order of 10-5 M and the surface tension of water can be decreased as low as 22.2 mN/m. It was also found that the aggregates of DBAs-n solutions were significantly dependent on their hydrocarbon chain lengths. The aggregates changed from vesicles to entangled fiber-like micelles as the chain length increased from dodecyl to tetradecyl.
Electric Field Induced Interfacial Instabilities
NASA Technical Reports Server (NTRS)
Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-Lun; Onuki, Akira
1996-01-01
The study of the interface in a charge-free, nonpolar, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In zero gravity, the interface is unstable at all long wavelengths in the presence of a field applied across it. It is conjectured that this will cause the binary fluid to break up into domains small enough to be outside the instability condition. The resulting pattern formation, and the effects on the critical properties as the domains approach the correlation length are of acute interest. With direct observation, laser light scattering, and interferometry, the phenomena can be probed to gain further understanding of interfacial instabilities and the pattern formation which results, and dimensional crossover in critical systems as the critical fluctuations in a particular direction are suppressed by external forces.
Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging
NASA Astrophysics Data System (ADS)
McGrath, Andrew J.; Dolan, Ciaran; Cheong, Soshan; Herman, David A. J.; Naysmith, Briar; Zong, Fangrong; Galvosas, Petrik; Farrand, Kathryn J.; Hermans, Ian F.; Brimble, Margaret; Williams, David E.; Jin, Jianyong; Tilley, Richard D.
2017-10-01
Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte ("Fe-PolyM3") assemblies, with good cell viability (>80%) remaining up to 100 μg mL-1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.
Visible light scatter measurements of the Advanced X-ray Astronomical Facility /AXAF/ mirror samples
NASA Technical Reports Server (NTRS)
Griner, D. B.
1981-01-01
NASA is studying the properties of mirror surfaces for X-ray telescopes, the data of which will be used to develop the telescope system for the Advanced X-ray Astronomical Facility. Visible light scatter measurements, using a computer controlled scanner, are made of various mirror samples to determine surface roughness. Total diffuse scatter is calculated using numerical integration techniques and used to estimate the rms surface roughness. The data measurements are then compared with X-ray scatter measurements of the same samples. A summary of the data generated is presented, along with graphs showing changes in scatter on samples before and after cleaning. Results show that very smooth surfaces can be polished on the common substrate materials (from 2 to 10 Angstroms), and nickel appears to give the lowest visible light scatter.
NASA Astrophysics Data System (ADS)
He, Xiao Dong
This thesis studies light scattering processes off rough surfaces. Analytic models for reflection, transmission and subsurface scattering of light are developed. The results are applicable to realistic image generation in computer graphics. The investigation focuses on the basic issue of how light is scattered locally by general surfaces which are neither diffuse nor specular; Physical optics is employed to account for diffraction and interference which play a crucial role in the scattering of light for most surfaces. The thesis presents: (1) A new reflectance model; (2) A new transmittance model; (3) A new subsurface scattering model. All of these models are physically-based, depend on only physical parameters, apply to a wide range of materials and surface finishes and more importantly, provide a smooth transition from diffuse-like to specular reflection as the wavelength and incidence angle are increased or the surface roughness is decreased. The reflectance and transmittance models are based on the Kirchhoff Theory and the subsurface scattering model is based on Energy Transport Theory. They are valid only for surfaces with shallow slopes. The thesis shows that predicted reflectance distributions given by the reflectance model compare favorably with experiment. The thesis also investigates and implements fast ways of computing the reflectance and transmittance models. Furthermore, the thesis demonstrates that a high level of realistic image generation can be achieved due to the physically -correct treatment of the scattering processes by the reflectance model.
Light scattering properties of spheroidal particles
NASA Technical Reports Server (NTRS)
Asano, S.
1979-01-01
In the present paper, the light scattering characteristics of spheroidal particles are evaluated within the framework of a scattering theory developed for a homogeneous isotropic spheroid. This approach is shown to be well suited for computing the scattering quantities of spheroidal particles of fairly large sizes (up to a size parameter of 30). The effects of particle size, shape, index of refraction, and orientation on the scattering efficiency factors and the scattering intensity functions are studied and interpreted physically. It is shown that, in the case of oblique incidence, the scattering properties of a long slender prolate spheroid resemble those of an infinitely long circular cylinder.
Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Jiancheng, Zeng; Dayong, Zhang; Yongquan, Luo
2014-06-16
Polymer network liquid crystal (PNLC) was one of the most potential liquid crystal for submillisecond response phase modulation, which was possible to be applied in submillisecond response phase only spatial light modulator. But until now the light scattering when liquid crystal director was reoriented by external electric field limited its phase modulation application. Dynamic response of phase change when high voltage was applied was also not elucidated. The mechanism that determines the light scattering was studied by analyzing the polymer network morphology by SEM method. Samples were prepared by varying the polymerization temperature, UV curing intensity and polymerization time. The morphology effect on the dynamic response of phase change was studied, in which high voltage was usually applied and electro-striction effect was often induced. The experimental results indicate that the polymer network morphology was mainly characterized by cross linked single fibrils, cross linked fibril bundles or even both. Although the formation of fibril bundle usually induced large light scattering, such a polymer network could endure higher voltage. In contrast, although the formation of cross linked single fibrils induced small light scattering, such a polymer network cannot endure higher voltage. There is a tradeoff between the light scattering and high voltage endurance. The electro-optical properties such as threshold voltage and response time were taken to verify our conclusion. For future application, the monomer molecular structure, the liquid crystal solvent and the polymerization conditions should be optimized to generate optimal polymer network morphology.
Light scattering in optical CT scanning of Presage dosimeters
NASA Astrophysics Data System (ADS)
Xu, Y.; Adamovics, J.; Cheeseborough, J. C.; Chao, K. S.; Wuu, C. S.
2010-11-01
The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS" optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.
Absorbance and light scattering of lenses organ cultured with glucose.
Alghamdi, Ali Hendi Sahmi; Mohamed, Hasabelrasoul; Sledge, Samiyyah M; Borchman, Douglas
2018-06-06
Purpose/Aim: Diabetes is one of the major factors related to cataract. Our aim was to determine if the attenuation of light through glucose treated lenses was due to light scattering from structural changes or absorbance from metabolic changes. Human and rat lenses were cultured in a medium with and without 55 mM glucose for a period of five days. Absorbance and light scattering were measured using a ultraviolet spectrometer. Aldose reductase and catalase activity, RAGE, and glutathione were measured using classical assays. Almost all of the glucose related attenuation of light through the human lens was due to light scattering from structural changes. Glucose treatment caused three absorbance band to appear at 484, 540 to 644 and 657 nm in both the rat and human lens. The optimum time point for equilibration of human lenses was found to be between 2 and 3 days in organ culture. Glucose caused a more significant effect on the opacity of human lenses compared with rat lenses. Since the levels of glutathione, catalase and aldose reductase were reduced in glucose treated rat lenses compared with untreated lenses, glucose may have caused oxidative stress on the rat lens. The absorbance and light scattering of glucose treated lenses in organ culture were quantitated for the first time which could be important for future studies designed to test the efficacy of agents to ameliorate the opacity. Almost all of the glucose related attenuation of light through the human lens was due to light scattering from structural changes and not absorbance from metabolic changes. Glucose caused a more significant effect on the opacity of human lenses compared with rat lenses. The lens model employed could be used to study the efficacy of agents that potentially ameliorate lens opacity.
Battistoni, Andrea; Bencivenga, Filippo; Fioretto, Daniele; Masciovecchio, Claudio
2014-10-15
In this Letter, we present a simple method to avoid the well-known spurious contributions in the Brillouin light scattering (BLS) spectrum arising from the finite aperture of collection optics. The method relies on the use of special spatial filters able to select the scattered light with arbitrary precision around a given value of the momentum transfer (Q). We demonstrate the effectiveness of such filters by analyzing the BLS spectra of a reference sample as a function of scattering angle. This practical and inexpensive method could be an extremely useful tool to fully exploit the potentiality of Brillouin acoustic spectroscopy, as it will easily allow for effective Q-variable experiments with unparalleled luminosity and resolution.
Light scattering study of rheumatoid arthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beuthan, J; Netz, U; Minet, O
The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient {mu}{sub s}, absorption coefficient {mu}{sub a}, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the fingermore » cross section. Model tests of the quality of this reconstruction method show good results. (laser biology and medicine)« less
Monte Carlo simulation of light reflection from cosmetic powders on the skin
NASA Astrophysics Data System (ADS)
Okamoto, Takashi; Motoda, Masafumi; Igarashi, Takanori; Nakao, Keisuke
2011-07-01
The reflection and scattering properties of light incident on skin covered with powder particles have been investigated. A three-layer skin structure with a spot is modeled, and the propagation of light in the skin and the scattering of light by particles on the skin surface are simulated by means of a Monte Carlo method. Under the condition in which only single scattering of light occurs in the powder layer, the reflection spectra of light from the skin change dramatically with the size of powder particles. The color difference between normal skin and spots is found to diminish more when powder particles smaller than the wavelength of light are used. It is shown that particle polydispersity suppresses substantially the extreme spectral change caused by monodisperse particles with a size comparable to the light wavelength.
A Thermal Model for Carbon Nanotube Interconnects
Mohsin, Kaji Muhammad; Srivastava, Ashok; Sharma, Ashwani K.; Mayberry, Clay
2013-01-01
In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI) interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT) interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters. PMID:28348333
PCS: The First Fluid Physics Payload on ISS
NASA Technical Reports Server (NTRS)
Doherty, M.; Sankaran, S.
2002-01-01
The Physics of Colloids in Space (PCS) experiment was accommodated within International Space Station (ISS) EXpedite the PRocessing of Experiments to Space Station (EXPRESS) Rack 2 and was remotely operated from early June 2001 until February 2002 from NASA Glenn Research Center's Telescience Support Center in Cleveland, Ohio and from a remote site at Harvard University in Cambridge, Massachusetts. PCS is an experiment conceived by Professor David A. Weitz of Harvard University (the Principal Investigator), focusing on the behavior of three different classes of colloid mixtures. The sophisticated light scattering instrumentation comprising PCS is capable of color imaging, and dynamic and static light scattering from 11 to 169 degrees, Bragg scattering over the range from 10 to 60 degrees, and laser light scattering at low angles from 0.3 to 6.0 degrees. The PCS instrumentation performed remarkably well, demonstrating a flexibility that enabled experiments to be performed that had not been envisioned prior to launch. While on-orbit, PCS accomplished 2400 hours of science operations, and was declared a resounding success. Each of the eight sample cells worked well and produced interesting and important results. Crystal nucleation and growth and the resulting structures of two binary colloidal crystal alloys were studied, with the long duration microgravity environment of the ISS facilitating extended studies on the growth and coarsening characteristics of the crystals. In another experiment run, the de-mixing of the colloid-polymer critical-point sample was studied as it phase-separates into two phases, one that resembles a gas and one that resembles a liquid. This process was studied over four decades of length scale, from 1 micron to 1 centimeter, behavior that cannot be observed in this sample on Earth because sedimentation would cause the colloids to fall to the bottom of the cell faster than the de-mixing process could occur. Similarly, the study of gelation and aging of another colloid-polymer sample, the colloid-polymer gel, also provided valuable information on gelation mechanisms, as did investigations on the extremely the low concentration silica and polystyrene fractal gel samples.